
Chapter 10
Parametric Resonance: Application on Low
Noise Mechanical and Electromechanical
Amplifiers

Naser Nasrolahzadeh, Mohammad Fard, and Milad Tatari

Abstract Due to the growing demand for low noise signal amplification, develop-
ing mechanical and electromechanical parametric amplifiers is a topic of interest.
Parametric amplification in mechanical domain refers to the method for amplifying
the dynamic response of a mechanical sensor by modulating system parameters
such as effective stiffness. Most of the studies in this regard have been focused
on truncating equation of motion such that only linear terms remain. In this chapter,
mathematical models of mechanical and electromechanical parametric amplifiers
in the literature are reviewed. Then, the effect of nonlinearity is investigated by
including a cubic nonlinearity on the governing equation of a classical degenerate
parametric amplifier. To this end, the method of multiple scales (perturbation)
has been utilized to calculate steady state solution of the nonlinear Mathieu-
type equation. In addition, by determining the nature of singular points, stability
analysis over the steady state response is performed. All the frequency response
curves demonstrate a Duffing-like trend near the primary resonance of the system;
however, the number of stable solutions changes with the parameters of the system.
Furthermore, performance metrics of the system is analyzed in the presence of
nonlinearity. The findings indicate that even very small nonlinearity term can
dramatically decrease system performance as well as changing the relative phase
in which maximum gain occurs.
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10.1 Introduction

Parametric resonance occurs in mechanical systems with external excitation when
parameters of the system are at certain values. Mathematically, the equations of
motion for these systems are considered as the equation with time-dependence
coefficients. In the mechanical context, this means stiffness, mass, or force is
changing periodically. In fact, the word “parametric” refers to parameter-dependent
behavior of the system [1]. Therefore, in these systems resonances are directly
connected to certain values of the parameters. It seems that Faraday [2] was the
first researcher who observed parametric resonance. According to his studies, a
vertically oscillating fluid with forcing frequency close to the natural frequencies
of the system generates horizontal waves. A pendulum with oscillating support
can be considered as a classical example of parametric resonance, where the
equation of motion leads to the Mathieu [3] equation in its linear form. A great
majority of studies in this regard have been conducted to model parametrically
excited systems [4, 5]. This has been done on various cases including, swing, ship,
pendulum and structures. In addition, controlling the vibration of the system due
to parametric resonance is another subject that has a long history. For instance,
Oueini and Nayfeh [6] suggested a nonlinear feedback law to control the first
mode vibrations of a cantilever beam that is under principal parametric excitation.
Vibration suppression of a cantilever beam when it is excited externally as well
as parametrically was investigated by Eissa and Amer [7]. Similarly, they used a
control law based on cubic velocity feedback to deal with the problem of vibration
suppression. Although the resonance phenomenon is usually considered as a threat
in mechanical applications, the concept can be utilized as an effective tool to develop
mechanical and electromechanical parametric amplifiers. Parametric amplification
is a well-established concept in the field of electrical engineering and has been
widely implemented; however, the technique has not received enough attention in
mechanical engineering context.

In mechanical and electromechanical applications, parametric amplification
refers to the method for amplifying the dynamic response of a mechanical sensor
by modulating system parameters, including mass, stiffness, and damping [8]. In
this approach, a system parameter such as spring constant that is effective in the
vibration behavior of the sensor is controlled by parametric pumping to amplify
the response amplitude of the system which is directly excited. Basically, there
are two types of parametric amplifiers; degenerate and nondegenerate amplifiers.
The former refers to those systems where the pumping frequency is tuned at twice
of the direct excitation signal. The latter is used for the system when pumping
signal is locked at frequencies that are different from twice of the direct signal. In
addition, frequency of the direct excitation should be sufficiently close to the values
that cause resonance response. It is worth mentioning that in a nonlinear system,
the resonance response exists at the natural frequency of the system as well as its
harmonics (e.g., sub-harmonics and super harmonics). Parametrically excited beams
are very good cases in point to study parametric amplification in mechanical and
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Fig. 10.1 Parametrically excited microbeams in a mass sensing device [10]

electromechanical sensors. In fact, microbeams are the most important element in
almost all MEMS (Fig. 10.1). Jazar et al. [9] reviewed all important forces that affect
the dynamic behavior of microbeams in MEMS and then formulated the equation
of motion of the microbeam. Actually, the outcome of this study is the most general
mathematical model for microbeams in MEMS. The model considers all attributes
and therefore is somewhat complicated. However, this model can be simplified in
different application when some terms are ignorable or a special case is going to be
studied.

Classically, mechanical measurements are firstly converted to electrical signals
by means of transducers and then the signal is electrically amplified. However, in
some cases such as atomic force microscopy it is required to amplify the mechanical
motion to improve the detection sensitivity. In fact, mechanical parametric ampli-
fication is mainly functional when the inherently noisy electrical amplifiers affect
the measurement accuracy [11]. Therefore, in order to accomplish low noise signal
amplification, various studies have been recently conducted on this topic to develop
mechanical and electromechanical resonators, especially in MEMS/NEMS [8, 9,
11–17]. In different reported works in the literature, parametric amplification has
been effectively implemented when the mechanical spring constant is modulated
at twice the resonance frequency by external electrostatic forces [11, 18] or
mechanical pumping [19]. Rugar and Grutter [11] were among the first researchers
who study the parametric amplification in mechanical domain. They investigated
noise squeezing as well as low noise amplification in a micro-cantilever beam.
All other works in this regard are based on this study, where parametric amplifiers
were investigated for torsional micro-resonators [16, 20], coupled micro-resonators
[13], electric force microscope [21], and micro-cantilevers [8, 19]. Rhoads et al.
[22] analytically and experimentally studied a macro-scale cantilever beam as a
pure mechanical amplifier. In this degenerate amplifier, the base excitation was
considered at transverse as well as axial directions. The analysis of this model
is investigated by truncating the governing equation of motion of the system
such that only linear terms remain. While the above-mentioned cases are fairly
well understood in the linear domain, the impact of nonlinearities on different
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parametric amplifiers has recently drawn many researchers attention [23]. Although
in the linear analysis, the response of the system shows great performance and
boundless gain for the amplifier, in a practical situation, as it was observed in
experimental test of a macro-scale cantilever beam [22], the growth of the response
is limited. This discrepancy between linear analysis and experimental results can
be a result of inherit nonlinearities in the system that are not considered in the
linearized equation of motion. Jazar et al. [9, 17] studied the dynamic behavior of
an electrically actuated microcantilever. The study analyzes the steady state motion
of the microcantilever with and w/o initial polarization and for linear and nonlinear
condition (e.g., small and large vibration amplitude).

The main aim of this chapter is studying the behavior of the mechanical and
electromechanical parametric amplifiers. Therefore, some mathematical models
of mechanical and electromechanical parametric amplifiers in the literature are
reviewed. To accomplish the analysis of these mathematical models, it is firstly
required to acquire the necessary background about perturbation method. Therefore,
the method of multiple scales is reviewed by solving a nonlinear forced oscillator as
well as the Mathieu equation. Then, the nonlinear model of a classical degenerate
parametric amplifier is introduced and the method of multiple scales is utilized
to deal with the problem. In the next step, the stability analysis of the system is
investigated. After that, in the results and discussion section, the outcomes of the
perturbation solution are demonstrated and described; finally conclusion section will
close the chapter.

10.2 Analytical Modeling of Mechanical
and Electromechanical Parametric Amplifiers

In this section, the modeling process of some conducted studies regarding mechan-
ical and electromechanical parametric amplifiers is briefly reported. In the scope
of MEMS amplifiers, usually, the effective stiffness of the resonator is modulated
electrostatically in such a way that parametric excitation arises. However, in
macroscale cases base excitation can be used for this purpose. Therefore, reviewing
some studies will help to get involved with the subject as well as understanding its
applications.

Jazar et al. [9] have defined all important forces that affect the dynamic behavior
of microbeams in MEMS and then formulated the equation of motion of the
microbeam. According to this conducted study the general non-dimensionalized
equation of motion of the microbeam is as following:

RY C
�
� C a6

r
1Cr2

� PY C
�
1 C b3 � a7

r
1Cr2

�
Y C ˛Y 3

C a4Y 2 PY C a5 .1 � Y / Y D 1

.1�Y /2 Œ.� C �/ C 2
p

2�� sin .r�/ � � cos .2r�/�

(10.1)
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Fig. 10.2 Schematic of electrically actuated microcantilever [9]

where Y stands for the lateral motion, � represents time, ai are constant that
can be calculated from the geometry and properties of the beam, b3 and ˛ are
the terms for initial stretch and nonlinear stiffness, r D !

!1
, � and � are,

respectively, representatives of the polarization (vp) and modulating (v) voltages
in nondimensenalized form (Fig. 10.2).

This equation considers the most important forces that affect the dynamic
behavior of the electrically actuated microbeam. These are inertia, rigidity, elec-
trostatic, viscous, internal tension, squeeze film, and thermal forces. Enthusiastic
readers can find detailed procedure to extract the general equation of motion
(10.1) in [9]. There are some other less important forces such as fringing, van der
Waals, and Casimir that are in secondary level in comparison with the considered
forces. Moreover, the equation can be pruned to (10.2) if one neglects squeeze-
film fa6

r
1Cr2

PY C a7
r

1Cr2 Y g, thermal forces fa4Y
2 PY C a5 .1 � Y / Y g, and initial

stretch.

RY C � PY C Y C ˛Y 3 D 1

.1 � Y /2
..� C �/ C 2

p
2�� sin .r�/ � � cos .2r�/

(10.2)

Assuming no polarization voltage, the governing equation is more simplified as
following:

RY C � PY C Y C ˛Y 3 D 1

.1 � Y /2
.� � � cos .2r�/ (10.3)

By expanding the electrostatic term in series form as (10.4), the complexity of
this equation of motion can be reduced.

1

.1 � Y /2
D 1 C 2Y C 3Y 2 C 4Y 3 C 5Y 4 C : : : (10.4)

A simple linear analysis requires expansion of the series up to O.Y 2/ provided
that the term ˛Y 3 is also neglected from the left-hand side. On the other hand,
in nonlinear analysis, due to the third order term of Y in the left-hand side, it
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Fig. 10.3 The block diagram of an electromechanical parametric amplifier. Cantilever resonator
is pumped by electrostatic force of the capacitor plate and the piezoelectric bimorph is used for the
direct excitation [11]

is reasonable to expand the series term up to O.Y 4/. However, many researchers
have neglected nonlinear terms of the electrostatic force while they have considered
the cubic nonlinearity for stiffness of the microbeam. Although this assumption
reduces the accuracy of the model, but gives a straightforward nonlinear Mathieu-
type equation that eases investigation of the dynamic behavior of the system. In
this condition, the microbeam is simply modeled as a mass, varying stiffness, and
damper system.

Rugar and Grutter [11] were among the first researchers who mentioned the
parametric amplification in mechanical domain. In the accomplished work by
them according to Fig. 10.3, the silicon microbeam is pumped electrically and a
piezoelectric bimorph is used for the direct excitation. The parametric modulation
is carried out by means of a capacitor with time-varying voltage V .t/ on it. Thus,
the effective stiffness of the beam is expressed as follows:

k.t/ D k0 C kp.t/ and k.p/ D @Fe

@x
D 1

2

@2C

@x2
.V .t//2 (10.5)

where Fe represents electrostatic force, C stands for the electrode-cantilever capac-
itance, and x is the displacement of the beam.

The equation of motion of the cantilever beam was considered as a single degree
of freedom mass, damper, and time-varying stiffness oscillator as follows:

m Rx C m!0

Q
Px C �

k0 C kp.t/
�

x D F.t/ (10.6)
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Fig. 10.4 An in-plane parametrically excited oscillator. In this micrograph S indicates the folded
beam springs, C demonstrates the two sets of interdigitated comb finger banks, B shows on the
backbone, and N exhibits non-interdigitated comb fingers [18]

where F .t/ D F0 cos.!0t C �/ is the direct excitation signal, kp.t/ D �k sin 2!0t,
Q is the quality factor of resonance, x is the cantilever displacement, and ¨0 is the
unforced resonance frequency of the cantilever beam, that is ¨0

2 D k
m . Expressing

the damping factor c as m¨0

Q is conventional because the right condition for the
occurrence of parametric resonance can be intuitively understood [10]. Generally
speaking, increasing quality factor broadens the region of instability.

Zhang et al. [18] investigated an in-plane parametrically excited mass sensor
with electrostatic force as the driving force. Figure 10.4 depicts a scanning electron
micrograph of the oscillator. As it can be seen, there are two sets of parallel
interdigitated comb finger banks on either end of the backbone and two sets of
non-interdigitated comb fingers on each side. Applying a time-varying voltage to
the non-interdigitated fingers as pumping signal leads to modulation of the stiffness
of the system and parametric resonance.

In order to derive equation of motion of the sensor, similar to the previous case,
a simple mass, spring, and damper system was considered as follows:

m Rx C c Px C Fk.x/ D Fe .t; x/ (10.7)

Fk.x/ D k1x C k2x
3 (10.8)

Fe .x; t/ D � �
kr1x C kr2x

3
�

VA
2.1 C cos.!t// (10.9)
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Fig. 10.5 An out-of-plane electromechanical microbeam oscillator. Three Schottky electrodes at
clamped points for parametric pumping (gate 1), resonance detection (gate 2), and direct excitation
(gate 3) [12]

where the letter k is used for the mechanical stiffness and kr represents electrostatic
stiffness. Finally they have reported the following non-dimensional expression for
the normalized equation of motion of the sensor.

x00 C �x0 C .ˇ C 2ı cos .2�//x C .ı3 C ı0
3 cos .2�//x3 D 0 (10.10)

Here, prime stands for derivative with respect to £. Note all the Greek letters
coefficient in this nonlinear Mathieu equation are of small order (e.g., O.©/), but the
“ that is O.1/.

Mahboob et al. [12] investigated a electromechanical oscillator as it is shown in
Fig. 10.5. As it is observed, the resonator is a clamped–clamped microbeam with
Schottky contacted two-dimensional electron systems (2DES) in clamped points.
In this parametric amplifier, the stiffness modulating transducer is integrated into
the mechanical element that can reduce the size of the resonator. The excitation
of the oscillator is accomplished when an AC voltage is applied between the top
gate and the 2DES. In fact, the piezoelectric effect leads to bending of the beam
and resonance at the frequency of the applied voltage which is compatible with the
fundamental mode of the beam.

In this case also the electromechanical resonator has been simplified as a mass,
damper, and time-varying spring system. Thus, similar to the previous works, the
governing equation of this parametric amplifier is reported to be as:
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Fig. 10.6 A base excited
cantilever beam as a
macroscale mechanical
parametric amplifiers [22]

Rx C !0

Q
Px C !0

2
�
1 C p

2C � sin.2!0t/
�

x D 	 sin.!0t C �/ (10.11)

where the
p

2Cœ sin.2¨0t/ is pumping signal that is implemented from gate 1 (see
Fig. 10.5), the ˜ sin.¨0tC�/ is direct excitation signal via gate 3 that arises primary
resonance of the beam.

Rhoads et al. [22] studied the macroscale mechanical parametric amplifiers in
the case of a base excited cantilever beam. In this degenerate amplifier, the base
excitation, according to Eq. (10.12), was considered at transverse (vp) as well as
axial (up) directions (Fig. 10.6).

This is carried out by installing the cantilever beam on a shaker that generates
two sinusoidal signals as follows:

xp D A cos .
t C ˆ/ C B cos .2
t/ (10.12)

up D xp sin ˛; vp D xp cos ˛ (10.13)

where the signal with frequency 
 is used for direct excitation and the signal with
frequency 2! is used for parametric pumping. By using energy method that can be
found in detail in [22] the governing equation of motion of the system for the first
mode is reported as:

Rz C 2"�Pz C .1 C "�2

2 cos .2
t/ C "�1


2 cos .
t C ˆ//z

D "	1

2 cos .
t C ˆ/ C "	2


2 cos .2
t/ (10.14)
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As evident, this equation of motion is also similar to other reviewed cases in
which stiffness of the mechanical resonator is modulated by a pumping signal.
Therefore, the study of a general equation of motion similar to (10.6), (10.10),
(10.11), and (10.14) might be useful to understand the effects of different parameters
of the system on the behavior of mechanical and electromechanical parametric
amplifiers. In the next sections, the general form of a classical degenerate parametric
amplifier will be investigated.

10.3 Mathematical Background

In this section, prerequisite math to deal with governing equations of mechanical
parametric amplifiers are introduced. For the sake of investigating these systems,
one needs to have an appropriate knowledge about solving weakly nonlinear
oscillators via perturbation techniques. There are various perturbation methods
including Poincare, multiple scale, averaging and harmonic balance. These methods
are vastly applied on oscillating systems in order to solve their nonlinear equations
of motion. There is no denying that the perturbation method is useful in the case of
weak nonlinearity and the resulting analytical solution is an approximation around
the corresponding linear system. Due to popularity of the method of multiple scales
in comparison with others, we review its basic concepts to solve weakly nonlinear
equations. The enthusiastic readers can acquire deep understanding of perturbation
technique by studying perturbation methods by Nayfeh [24].

10.3.1 The Method of Multiple Scales

The main idea of this method is that the expansion of the response is the function
of multiple independent variables. This is carried out by introducing fast-scale and
slow-scale variables and treating them as independent variables. It is carried out by
letting:

Tn D ©nt for n D 0; 1; 2; : : : (10.15)

Here, T0 is a fast time scale and T1 is a slow time scale describing variation in
the response of the system. Thus, the derivative with respect to t can be expressed
in the new scales by using partial derivatives as follow:

d

dt
D dT0

dt

@

@T0

C ©
dT1

dt

@

@T1

C : : : D D0 C ©D1 C : : : (10.16)
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where DkD @
@Tk

, subsequently we have:

d2

dt2
D D0

2 C 2©D0D1 C : : : (10.17)

Now, one can express the response (x) in the form of new variables according to

x .t; ©/ D x .T0; T1; : : : ; Tn; ©/ D
nX

iD0

©ix .T0; T1; : : : ; Tn/ C O.©nC1/ (10.18)

It is worth mentioning that the number of independent variables is corresponding
to the expansion order. In other words, when we expand the response to O.©3/, the
T0; T1 and T2 time scales are required.

In order to use the method of multiple scale for solving equations of motion such
as (10.11), it might be a wise decision to start with a directly excited oscillating
systems. It is mainly because one needs to understand the different resonance cases
that can be occurred in a nonlinear oscillating system under direct excitation (e.g.,
primary resonance, sub-harmonic and super harmonic cases). Then, we can apply
the method on a simple parametrically excited system to solve the Mathieu equation.
Due to the time-varying coefficient of the mathematical model regarding parametric
amplifiers, this could be a useful step to acquire the required insight into their
Mathieu-type nature. Finally, the combined excitation that arises in the degenerate
parametric amplifiers can be easily managed.

10.3.2 Direct Excitation for System with Cubic Nonlinearity

Forced vibration of an oscillating system with governing equation such as (10.19) is
investigated. This can be the representative of a slightly damped motion of a particle
that is attached to a spring with hardening nonlinearity. For the sake of simplicity,
the natural frequency of the system is considered to be unity.

Rx C x C 2©� Px C ©˛x3 D ©	 cos 
t (10.19)

By expressing approximate solution of the system in different time scales
according to the multiple scales method and expanding the response to the order
of O.©2/, we have:

x .t; ©/ D x0 .T0; T1/ C ©x1 .T0; T1/ C O.©2/ (10.20)

Now, by applying new variables time derivatives and separating the terms of
the resultant equation in accordance with their orders, one can obtain following
equations for O.1/ and O.©/.
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O.1/ W D2
0x0 C x0 D 0 (10.21)

O ."/ W D2
0x1 C x1 D �2D0D1x0 � ˛x3

0 � 2�x0 C 	 cos .
T0/ (10.22)

The solution of Eq. (10.21) can be expressed as:

x0 D 1

2
A .T1/ eiT0 C cc: (10.23)

where A .T1/ is a complex-valued quantity and cc. stands for complex conjugate
of the first term. By using the above expression for x0 in the second equation,
the undetermined function A .T1/ is obtained. This can be accomplished when
the expressions which produce secular term in Eq. (10.22) are put equal to zero.
The process of eliminating secular terms depends on the frequency of the direct
excitation. Up until now, we have not assumed the excitation frequency to be equal
to a predefined value. This value is important for solving the above perturbation
problem because different values for 
 lead to different responses. In fact, in a
nonlinear system, the resonance response exists at the natural frequency of the
system as well as its harmonics. Generally speaking, there are three cases that may
occur:

• Primary Resonance Case: it refers to the situation when excitation frequency is
near to the natural frequency of the system (
 Š !).

• Sub-Harmonic Resonance Cases: it arises when excitation frequency is near the
integer multiples of the natural frequency (
 Š n! and n D 2; 3; : : :).

• Super-Harmonic Resonance Cases: it is opposite concept to the previous case and
occurs when the frequency of the driving excitation is close to an integer fraction
of the natural frequency (Š !

n and n D 2; 3; : : :).

It is worth mentioning that as the nonlinearity of the system grows to higher or-
ders, the effects of sub-harmonic and super-harmonic cases will be more noticeable.
In this place, the solution is progressed for the case of primary resonance. Therefore,
by substituting x0 in Eq. (10.22) as well as assuming 
 D 1 C ©¢ , where ¢ D O.1/,
we will have:

D2
0x1 C x1 D f�.2i

�
A

0 C �A
�

C 3˛A2 NA/ exp .iT0/ � ˛A3 exp .3iT0/

C 	

2
exp .i .T0 C ¢T1//g C cc (10.24)

where prime denotes the derivative with respect to T1 (e.g., A0 D D1A) and NA is
complex conjugate of A. The secular term is eliminated when the terms that are the
coefficient of exp .iT0/ are put equal to zero, thus:

2i
�
A0 C �A

� C 3˛A2 NA C 	

2
exp .i¢T1/ D 0 (10.25)
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Now by expressing A in polar form as

A D 1

2
a .T1/ ei“.T1/ (10.26)

where a and “ are real values; by substituting it into Eq. (10.25), one can separate
real and imaginary parts that lead to a set of differential equation as follows:

a0 D �a� C 	

2
sin .�T1 � ˇ/ (10.27)

aˇ0 D 3˛

8
a3 � 	

2
cos .�T1 � ˇ/ (10.28)

Finally, the first approximate solution can be expressed as x0 C O.©/, in which
the a and “ are calculated from steady state solution of Eqs. (10.27) and (10.28).

10.3.3 Parametric Excitation of Linear Systems

We will apply the method of multiple scales on the Mathieu equation where natural
frequency is a time-varying parameter according to Eq. (10.29). This parametrically
excited linear oscillator can simulate small amplitude oscillations of a swing whose
natural frequency is varying periodically in time.

Rx C �
¨2 C ©œcosnt

�
x D 0 (10.29)

The Mathieu equation is very interesting for researchers [1, 14, 25] because
an instability phenomenon occurs when natural frequency of the system (!) and
frequency of the excitation (n) are tuned at certain values. Here, we consider a
special case that is n D 2. In this case when ¨2 ¤ m2; m D 1; 2; 3, the equilibrium
x D 0 is stable near © D 0; however, for some cases when ¨2 Š k2, the solution
is unstable [1, 4]. In this place, the case m D 1 that leads to ¨2 D 1 C ©¢ when
¢ D O.1/ is studied. This is mainly because we will investigate the degenerate
parametric amplifiers in the next section. It is important to recall that in these types
of amplifiers, the frequency of the parametric excitation is tuned at twice of the
natural frequency of the system that is so-called principal resonance case of the
system. Thus, Eq. (10.30) is solved by the method of multiple scales in order to
discuss about ¢ and © parameters for which the instability phenomenon arises.

Rx C .1 C ©¢ C ©œ cos 2t/ x D 0 (10.30)

By expanding the response to the order of O.©2/, we have:

x .t; ©/ D x0 .T0; T1/ C ©x1 .T0; T1/ C O.©2/ (10.31)
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By substituting (10.31) into (10.30) and separating the terms of O.1/ and O.©/,
one can obtain:

D2
0x0 C x0 D 0 (10.32)

D2
0x1 C x1 D �2D0D1x0 � .� C � cos .2T0// x0 (10.33)

The solution of Eq. (10.32) is:

x0 D 1

2
A .T1/ eiT0 C cc: (10.34)

In this step, by using this solution in the second equation and expressing the
cosine term in its exponential form, we find:

D2
0x1 C x1 D f�iA

0

exp .iT0/ � 1

2
A� exp .iT0/

� A

4
� exp .3iT0/ �

NA
4

œ exp fi .T0/g C cc (10.35)

The solution for x1 is periodic when the secular terms are eliminated from the
above equation, which implies that:

�iA
0 � A

2
� �

NA
4

œ D 0 (10.36)

Now by expressing A D a C ib and substituting it into Eq. (10.36), one can
separate real and imaginary parts that lead to a set of differential equation as follows:

a0 D
�

��

2
C �

4

�
b (10.37)

b0 D
�

�

2
C �

4

�
a (10.38)

The solutions of this set of equation are proportional to e.�sT1/, where s D
1
2

q
�2

4
� �2. Hence, we find that solution is unstable or periodic solution does not

exist when j¢ j < �=2.

10.3.4 The Mathieu Equation with Viscous Damping

Since there is always an amount of damping in the mechanical systems, a small
viscous damping term can be considered in the Mathieu equation as:
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Rx C ©—Px C .1 C ©¢ C ©œ cos 2t/ x D 0 (10.39)

If the solving procedure is repeated for this case, one finds that the following
terms that produce secular terms should be eliminated:

�iA0 � A

2
� �

NA
4

œ � i
A

2
— D 0 (10.40)

Similar to the last case, if we take A D a C ib, then

a0 D ��

2
a C

�
�

4
� �

2

�
b (10.41)

b0 D
�

�

4
C �

2

�
a � �

2
b (10.42)

This leads to s D � �

2
� 1

2

q
�2

4
� �2 that is the zeros of the characteristics

equation; the characteristics equation is calculated from:

ˇ̌
ˇ̌
ˇ̌
ˇ

s C �

2
��

4
C �

2

��

4
� �

2
s C �

2

ˇ̌
ˇ̌
ˇ̌
ˇ

D 0 (10.43)

Thus, the trivial solution is stable when — > 0 and œ2 < 4
�
—2 C ¢2

�
. As evident,

when the damping term is omitted that leads to previous condition for undamped
system. The critical condition (œ D 2

p
—2 C ¢2) demonstrates the curve in the .¢; œ/

plane that separate stable and unstable solutions; Fig. 10.7 depicts the instability
bounds with and without damping in the .¢; œ/ plane for different values of damping.
As it can be seen, when 0 < � < �

2
, the instability region has been shifted up, and

for — > �
2

the instability domain does not appear.

10.4 System Model

According to governing equations of motion for reviewed mechanical and elec-
tromechanical parametric amplifiers in Sect. 10.2, the general form of governing
equation for a linear degenerate amplifier may be expressed as Eq. (10.44).

Rz C 2©—Pz C z C ©œ cos .2
t/ z D ©˜ cos .
t C ˆ/ (10.44)

where z represents the mechanical resonators displacement, � is the pumping
signal amplitude, — considered for linear dissipation effects, 	 and 
 represent
direct excitation signal amplitude and frequency, t represents non-dimensional time
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variable, ˆ stands for relative phase parameter which is necessary for amplifier
tuning. This simple equation is a good case in point to investigate the effects of
different parameters in the response and performance of the different parametric
amplifiers.

Similarly, nonlinear parametric amplifiers can be studied by this equation pro-
vided that compatible term of nonlinearity to be added to the linear equation. Since
the cubic nonlinearity is a typical nonlinear term in mechanical cases, especially
structural vibrations, the basic equation is amended by a cubic nonlinear term as Eq.
(10.45), where ’ is a parameter for highlighting the order of effective nonlinearity in
the system. In addition, for the sake of simplification of the analysis and according
to the conducted studies [18], each of nonlinearity, dissipation, and excitation terms
has been considered to be O .©/. It is indisputable that perturbation method has
proved its effectiveness for these forms of equation. It should be noted that this
problem is investigated in [23] by the method of averaging. Here, similar to previous
cases in this chapter, the method of multiple scales is used to deal with the problem.
Furthermore, the stability analysis of the steady state solution is studied.

Rz C 2©—Pz C z C ©œ cos .2
t/ z C ©’z3 D ©˜ cos .
t C ˆ/ (10.45)

10.4.1 Perturbation Solution

By expanding z as the following expression and substituting it into Eq. (10.45), one
can obtain Eqs. (10.47) and (10.48) for terms with same order.

z .T0; T1/ D Z0 .T0; T1/ C ©Z1 .T0; T1/ C : : : (10.46)

O.1/ W D2
0Z0 C Z0 D 0 (10.47)



10 Parametric Resonance: Application on Low Noise Mechanical. . . 293

O ."/ W D2
0Z1 C Z1 D �2D0D1Z0 � �Z0 cos .2
T0/

� ˛Z3
0 � 2�Z0 C 	 cos .
T0 C ˆ/ (10.48)

The solution of Eq. (10.42) can be expressed as:

Z0 D 1

2
A .T1/ eiT0 C cc (10.49)

where A .T1/ is a complex quantity and cc. stands for complex conjugate of the first
term. In addition, for the sake of investigating system behavior around its natural
frequency, a detuning parameter .¢/ is defined, and direct excitation frequency is
considered to be 
 D 1C ©¢ . By taking this measure the frequency response curves
of the system can be extracted. These curves are very useful for demonstrating
response variation with parameters of the system. With this in mind and substituting
(10.49) into Eq. (10.48), one can find the expressions which produce secular terms
are eliminated if:

�2i
�
A0 C �A

	 � 1

2
� NAei2�T1 � 3˛A2 NA C 1

2
	ei.�T1Cˆ/ D 0 (10.50)

Consider A .T1/ in polar form as (10.51) in order to manage Eq. (10.50).

A D 1

2
a .T1/ ei“.T1/ (10.51)

where a and “ are real-valued quantities. Substituting (10.51) into Eq. (10.50), one
can separate real and imaginary parts; then, a little manipulation over two equations
yields:

a0 D �1

4
�a sin 2 .�T1 � ˇ/ � a� C 1

2
	 sin .�T1 � ˇ C ˆ/ (10.52)

aˇ0 D 1

4
�a cos 2 .�T1 � ˇ/ C 3˛

8
a3 � 1

2
	 cos .�T1 � ˇ C ˆ/ (10.53)

Next, by letting � D �T1 � ˇ, Eqs. (10.52) and (10.53) will be transformed into
an autonomous system, the results can be expressed as:

a0 D �1

4
�a sin 2� � a� C 1

2
	 sin .� C ˆ/ (10.54)

a� 0 D a� � 1

4
�a cos 2� � 3˛

8
a3 C 1

2
	 cos .� C ˆ/ (10.55)

With Eqs. (10.54) and (10.55) in hand, the steady state solution for the system
of interest can be obtained by setting .a0; � 0/ D .0; 0/. Generally, one may find a
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closed form expression solution for pumping off (i.e., � D 0) situation in parametric
amplifiers; however, steady state solution of the considered degenerate amplifier
when � ¤ 0 should be evaluated numerically.

10.4.2 Stability Analysis

In order to study the stability of steady state motion, one can impose a small
perturbation to steady state solution and investigate the results by determining the
nature of singular points [4]; therefore, we let,

a D a0 C a1 (10.56)

� D �0 C �1 (10.57)

where a0 & �0 represent the singular point and a1 & �1 are small perturbations over
them. By substituting given expression for a & � into Eqs. (10.54) and (10.55) and
knowing that a0 & �0 satisfy steady state solution as well as neglecting nonlinear
terms, the following equations can be obtained.

a0
1 D �

�
� C 1

4
� sin 2�0

�
a1 C

�
1

2
	 cos .�0 C ˆ/ � 1

2
�a0 cos 2�0

�
�1 (10.58)

� 0
1 D �

�
3

4
˛a0 C 	

2a0
2

cos .�0 C ˆ/

�
a1 C

�
1

2
� sin 2�0 � 	

2a0

sin .�0 C ˆ/

�
�1

(10.59)

These equations can be demonstrated in matrix form such that,



a0

1

� 0
1

�
D

�
T1 T2

T3 T4

 

a1

�1

�
(10.60)

where

T1 D �
�

� C 1

4
� sin 2�0

�
(10.61)

T2 D
�

1

2
	 cos .�0 C ˆ/ � 1

2
�a0 cos 2�0

�
(10.62)

T3 D �
�

3

4
˛a0 C 	

2a0
2

cos .�0 C ˆ/

�
(10.63)

T4 D
�

1

2
� sin 2�0 � 	

2a0

sin .�0 C ˆ/

�
(10.64)
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As it is clear, the stability of the steady state motion of an expression like fX 0g D
ŒA� fXg depends on the eigenvalues of the A matrix; thus, by evaluating eigenvalues
(s) for the T matrix in (10.60), the nature of singular points will be revealed. Hence,
one needs to solve the following determinant:

ˇ̌
ˇ̌
ˇ

s C � C 1
4
� sin 2�0 � 1

2
	 cos .�0 C ˆ/ C 1

2
�a0 cos 2�0

3
4
˛a0 C 	

2a0
2 cos .�0 C ˆ/ s � 1

2
� sin 2�0 C 	

2a0
sin .�0 C ˆ/

ˇ̌
ˇ̌
ˇ D 0 (10.65)

s2 � .T1 C T4/ s C .T1T4 � T2T3/ D 0 (10.66)

s D .T1 C T4/ ˙
q

.T1 C T4/
2 � 4 .T1T4 � T2T3/

2
(10.67)

According to the above equation, the steady state motion is unstable if
.T1 C T4/ > 0 or .T1T4 � T2T3/ < 0. Having been calculated from (10.67)
for a specific singular point, a complex s with negative real part means a stable
solution (e.g., Stable focus); otherwise the steady state solution is unstable (e.g.,
Saddle point).

Similar to all linear parametrically excited systems, wedge of instability appears
for the unforced linear equation of motion of the system. To extract this wedge of
instability near principal resonance case, one needs to investigate Eq. (10.68).

Rz C 2©—Pz C z C ©œ cos .2
t/ z D 0 (10.68)

By repeating the procedure of solving according to the method of multiple scales,
one finds two equations that are identical to Eqs. (10.54) and (10.55), but in which
’ and ˜ are put equal to zero. As it is clear, in this condition trivial solution will
be appeared, and stability analysis of the trivial solution will reveal the bounds of
instability. In fact, in the case of Eq. (10.68) the secular terms are eliminated as
long as:

�2i
�
A0 C �A

	 � 1

2
� NAei2�T1 D 0 (10.69)

Considering

A D 1

2
.p � iq/ei�T1 (10.70)

where p and q are real. By substituting (10.70) into Eq. (10.69) and separating real
and imaginary parts, one obtains:

p0 D ��p C
�

�� � �

4

�
q (10.71)

q0 D
�

� � �

4

�
p � �q (10.72)
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Calculating eigenvalues of the coefficient matrix of these set of equations
leads to:

s D �� �
r

�2

16
� �2 (10.73)

That implies the trivial solution is stable if:

œ2 < 16.—2 C ¢2/ (10.74)

10.5 Results and Discussion

10.5.1 Frequency Response Curves

In the first place, the steady state solution of the linear system (’ D 0) is
calculated for different parameters of the system. As it can be seen in Fig. 10.8,
amplitude of the system is grown by increasing the effects of pumping signal, and
it becomes boundless when the pumping signal violates linear stability threshold
(œ D 4

p
—2 C ¢2). Figure 10.9 demonstrates the effects of damping and direct

excitation on the amplitude of the amplifier. As it is expected, by increasing the
direct excitation, the response of the system is magnified; and more damping reduces
the amplitude of the amplifier.
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Fig. 10.8 Linear frequency response—increasing pumping signal leads to boundless amplitude
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There is no denying that for nonlinear system many stable and unstable solutions
can exist. Therefore, to investigate the nature of this solution, the phase portraits of
the system have been numerically calculated by solving Eqs. (10.54) and (10.55)
with different initial values for a & � . Figure 10.10 shows the phase plane diagrams
for 3 different pumping signals when the detuning parameter is 0.1 (� D 0:1). As
it can be observed the number of stable and unstable solutions varies for different
pumping amplitudes. While for � D 0:035 there are two stable and one unstable
solution, one can see three stable and two unstable solution for the � D 0:055

and 0.09. For example consider phase plane diagram that has been illustrated in
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Fig. 10.11 Phase plan diagrams of the system for different parameters. (a) ¢ D 0:05; œ D 0:035,
(b) ¢ D 0:05; œ D 0:055, (c) ¢ D 0:05; œ D 0:09, (d) ¢ D 0:01; œ D 0:035, (e) ¢ D 0:01; œ D
0:055 and (f) ¢ D 0:01; œ D 0:09

Fig. 10.10, by tracking the solution routes in the phase plane diagrams, one can
find three stable foci which are the feasible steady state solutions, one of the stable
solutions has very small amplitude while two others have large amplitude. These
stable solutions are almost identical in amplitude, but they have different phase.

Figure 10.11 depicts the phase portrait with same pumping signals when detuning
parameter is 0.05 and 0.01. Again, there is no equal number of stable and unstable
solutions for different pumping signals as well as detuning parameters. In order to
investigate this phenomenon, it is a good idea to plot frequency response curves
of the system for different pumping signals to have all steady state solution in a
frequency range.

When both a0 & � 0 are considered equal to zero in (10.54) and (10.55), the
steady state solutions for the system of interest can be extracted. Figures 10.12,
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Fig. 10.13 Amplitude and phase frequency response in steady state mode when pumping ampli-
tude is slightly above its parametric instability threshold (ˆ D �  
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10.13, and 10.14 depict the amplitude and phase of the steady state solution for
different parameters of the system. As expected, due to the cubic nonlinearity, the
frequency response curves demonstrate a Duffing-like trend near their resonance
frequency that is ¢ D 0. Note that frequency response curves have been calculated
for three different conditions. In the first place, the steady state solutions are
obtained when parameters are set in such a way that pumping amplitude is under
principal resonance instability threshold, that is œ D 4

p
—2 C ¢2. Then, by keeping

other parameter in their previous values, the pumping signal is magnified slightly
and well above the instability threshold.

As it can be observed from Fig. 10.12 for under instability threshold condition
(i.e., œ < 4� when ¢ D 0/, the steady state solution has three branches in a
frequency band that means different steady state solutions in frequency response
regime. By evaluating corresponding eigenvalues for the solutions, it is revealed
that the upper and lower branches are stable solutions for this region and the
middle branch is unstable steady state solution that cannot be achieved in the
reality. Furthermore, Figs. 10.13 and 10.14 show that when the pumping amplitude
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is slightly and far above instability threshold, the frequency response solutions
have five distinct branches. Therefore, they can represent five different steady state
solutions; however, the stability analysis for these conditions leads to three stable
solutions which are feasible and two unstable stationary points. As it is clear from
Figs. 10.13 and 10.14, over a wide frequency range the amplitude of two upper
stable branches is almost equal, while they have completely different phase. The
other interesting phenomena about steady state solution with parameters above
instability threshold is that the higher the pumping signal amplitude, the wider
frequency range to have three stable solutions.

Figures 10.15 and 10.16 show the effects of nonlinear term in the amplitude of
the steady state solution. As it can be seen, by increasing the order of nonlinear
term, the amplitude of the amplifier is decreased, regardless of variation of pumping
signal. It also leads to smaller frequency range for five steady state solutions when
the pumping signal is above the linear stability threshold (Fig. 10.16).

10.5.2 System Performance Metrics

An important parameter for evaluating system performance is the gain of the para-
metric amplifier which is defined according to Eq. (10.75). Parametric amplifier’s
gain is the ratio of the steady state amplitude with pumping signal to amplitude
without pumping signal. In order to study the effects of different parameters on
performance of the amplifier, the gain of the system can be evaluated by changing
parameters. To this end, a specific parameter of the system such as relative phase
(ˆ) can be considered as variable, then by keeping other parameters as constant
values, the gain is extracted. This procedure can be managed for all parameters of
the system, including pumping, damping, nonlinearity, and detuning.
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Firstly, the gain is calculated for linear system to examine the effects of
parameters such as damping and relative excitation phase. Figure 10.17 illustrates
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the effects of pumping signal and damping on the gain of the system. It is clear from
this figure that the gain becomes boundless when the pumping signal reaches to
instability threshold. Moreover, as it can be observed, damping term does not have
an effective impact on gain, but with higher damping, the pumping signal should
and can be more increased to result in a better gain. Figure 10.18 shows the effects
of relative phase excitation (ˆ) on gain of the linear system for different pumping
signal. According to the graphs of Fig. 10.18, the excitation phase can change the
gain of the system in different orders. Although the excitation phase is not such
important parameter in small pumping levels, it has a great role to play when the
amplitude of pumping signal is large enough and close to instability threshold. This
outcome can be discussed from another point of view, in which the pumping signal
is kept constant and the damping parameter is varied. In fact, when the damping
decreases, the required pumping signal for high gain value that arises near instability
threshold reduces. Figure 10.19 demonstrates the results for this case.

In the second place, the effect of nonlinearity is examined on system perfor-
mance; Fig. 10.20 shows the gain of the amplifier for nonlinearity with different
orders. Calculated gains indicate that the more the level of nonlinearity, the less
the effectiveness of the amplifier. Undoubtedly, as it can be seen from the results,
even very small nonlinearity term can dramatically decrease system performance;
therefore, analysis results with linear approximation may significantly be different
for an even slightly nonlinear system. In addition, the finding reveals that nonlinear
amplifiers can work well over instability threshold constraint which was previously
predicted for linear systems. Furthermore, there is no denying that as long as
pumping amplitude is strong enough, large gains still can be acquired.
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Fig. 10.18 The effects of pumping signal and relative phase excitation on the gain of the linear
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The impact of relative phase is also examined for different nonlinearity orders.
According to Fig. 10.21, the more the order of nonlinearity, the more distortion
occurs in the gain of the amplifier. In fact, the nonlinearity term change the
phase in which maximum gain occurs that is due to the imposed asymmetry on
the gain versus relative phase axis diagram. In addition, investigation of different
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Fig. 10.20 The effects of nonlinearity and pumping signal on the gain of the amplifier (meaningful
nonlinear amplifiers gain over linear instability threshold that is œ > 4�)
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Fig. 10.21 Gain vs. relative phase for different nonlinearity orders (as the order of nonlinearity
increases, much distortion arises)

detuning parameter for system performance has revealed small changes in system
performance. According to Fig. 10.22, in low pumping signal amplitude region
(e.g., � < 0:04/, small positive detuning from resonance frequency leads to higher
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Fig. 10.22 Gain vs. pumping signal (small improvement on system performance by tuning ¢)

system gain. In contrast, in high pumping signal amplitudes (e.g., � D 0:08/, the
outcome from slight negative detuning provides better performance than working at
resonance frequency (� D 0).

10.6 Conclusion

Governing equations of motion for mechanical and electromechanical parametric
amplifiers in the literature were reviewed. According to them, a general equation
of motion for a nonlinear classical degenerate parametric amplifier was considered.
The study of the parametric amplifier with a cubic nonlinearity was accomplished
by means of the method of multiple scales. The stability analysis for the steady state
motion of the nonlinear degenerate parametric amplifier as well as trivial solution
of the unforced linear system was conducted. All the steady state solutions demon-
strated a Duffing-like behavior in their frequency response curves. In addition,
the stable solution branches were switched to three when pumping amplitude was
increased over the instability threshold constraint for the unforced linear system.
Furthermore, the effects of nonlinearity, relative phase, pumping signal amplitude,
and detuning parameters were investigated on system performance. The findings
indicate that even very small nonlinearity term can dramatically decrease system
performance as well as changing the relative phase in which maximum gain occurs.
The paper attempted to show that nonlinear amplifiers are stable and can be realized
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when there is no alternative to avoid working in nonlinear range; nevertheless,
nonlinearities limit the maximum gains of parametric amplifiers compared with
classical linear amplifiers.

Key Symbols

m Mass
k Stiffness
c Damping
Q Quality factor
t, � Time
x, z, y Lateral displacement of the resonator
V Excitation voltage
Fe Electrostatic force
r Dimensionless excitation frequency
¨i i-th resonance frequency
� Pumping signal amplitude
	 Direct excitation amplitude
ˆ Relative phase of direct excitation
— Linear dissipation
’ Coefficient of cubic nonlinearity for stiffness

 Frequency of the direct excitation
¢ Detuning parameter
a Amplitude of amplifier response
” Phase of amplifier response
© Small positive value
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