
Chapter 1
Smart Flat Ride Tuning

Hormoz Marzbani and Reza N. Jazar

Abstract Flat ride is the condition that the unpleasant pitch oscillation of the
vehicle body turns into more tolerable bounce oscillation, when a car hits a bump
in forward motion. Based on experimental results, Maurice Olley discovered and
introduced two conditions for flat ride:

1. The radius of gyration in pitch should be equal to the multiplication of the
distance from the mass centers a1; a2 of the front and rear wheels of the car
(r2 D a1a2).

2. The rear suspension should have around 20% higher rate than the front. The
equation r2 D a1a2 makes the car to be considered as two separated uncoupled
mass-spring systems of front and rear suspensions.

In this chapter, we will analytically review the flat ride conditions and provide
design charts to satisfy the required conditions. The nonlinear practical model of
shock absorbers modifies the conditions which were based on linear models.

1.1 Flat Ride Definition

The excitation inputs from the road to a straight moving car will affect the front
wheels first and then, with a time lag, the rear wheels. The general recommendation
was that the natural frequency of the front suspension should be lower than that of
the rear. So, the rear part oscillates faster to catch up with the front to eliminate
pitch and put the car in bounce before the vibrations die out by damping. This is
what Olley called the flat ride tuning [4]. Maurice Olley (1889–1983) established
guidelines, back in the 1930, for designing vehicles with better ride. These were
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derived from experiments with a modified car to allow variation of the pitch mass
moment. Although the measures of ride were strictly subjective, those guidelines are
considered as valid rules of thumb even for modern cars. What is known as Olley’s
flat ride not considering the other prerequisites can be put forward as:

The front suspension should have around 30% lower rate than the rear.

An important prerequisite for flat ride was the uncoupling condition, which was
introduced by Rowell and Guest for the first time in 1923 [4, 9]. Rowell and Guest
used the geometry of a bicycle car model to find the condition which sets the bounce
and pitch centers of the model located on the springs. Having the condition, the front
and rear spring systems of the vehicle can be regarded as two separate one degree-
of-freedom (DOF) systems.

In this study, using analytical methods, we study the flat ride conditions which
have been respected and followed by the car manufacturers’ designers since they
were introduced for the first time. This article will provide a more reliable scientific
and mathematical approach for what are the flat ride design criteria in vehicle
dynamic studies.

1.2 Uncoupling the Car Bicycle Model

Consider the two DOF system in Fig. 1.1. A beam with mass m and mass moment I
about the mass center C is sitting on two springs k1 and k2 to model a car in bounce
and pitch motions. The translational coordinate x of C and the rotational coordinate
� are the usual generalized coordinates that we use to measure the kinematics of
the beam. The equations of motion and the mode shapes are functions of the chosen
coordinates.

The free vibration equations of motion of the system are:

�
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0 I

� � Rx
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�

C
�
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Fig. 1.1 The bicycle model
of a car is a beam with mass
m and mass moment I , sitting
on two springs k1 and k2
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To compare the mode shapes of the system practically, we employ the coordinates
x1 and x2 instead of x and � , as shown in Fig. 2.1. The equations of motion of the
system would then be:
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Let us define the following parameters:

I D mr2 (1.3)

�2
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m
ˇ (1.4)

�2
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l D a1 C a2 (1.9)

and rewrite the equations as
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Setting
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makes the equations decoupled
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Fig. 1.2 The mode shape 1

for ˛ D 1 shows that only the
front suspension is oscillating
and the node is on the rear
suspension
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Fig. 1.3 The mode shape 2

for ˛ D 1 shows that only the
rear suspension is oscillating
and the node is on the front
suspension

The natural frequencies !i and mode shapes ui of the system are
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�
(1.13)
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u2 D
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0

1

�
(1.14)

They show that the nodes of oscillation in the first and second modes are at the rear
and front suspensions, respectively. Figures 1.2 and 1.3 illustrate the mode shapes
of the bicycle car model for ˛ D 1.

The decoupling condition ˛ D 1 yields

r2 D a1a2 (1.15)

which indicates that the pitch radius of gyration, r , must be equal to the multiplica-
tion of the distance of the mass center C from the front and rear axles. Therefore,
by setting ˛ D 1, the nodes of the two modes of vibrations appear to be at the
front and rear axles. As a result, the front wheel excitation will not alter the body
at the rear axle and vice versa. For such a car, the front and rear parts of the car
act independently. Therefore, the decoupling condition ˛ D 1 allows us to break
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y2 y1

k2 k1 c1c2

FrontRear

xfxr

mr mf

Fig. 1.4 Car bicycle model
after decoupling
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Fig. 1.5 Car bicycle model
with damping

the initial two DOF system into two independent one DOF systems as illustrated in
Fig. 1.4, where:

mr D m
a1

l
D m" (1.16)

mf D m
a2

l
D m.1 � "/ (1.17)

" D a1

l
(1.18)

The equations of motion of the independent systems will be:

m.1 � "/ Rx1 C c1 Px1 C k1x1 D k1y1 C c1 Py1 (1.19)

m" Rx2 C c2 Px2 C k2x2 D k2y2 C c2 Py2 (1.20)

The decoupling condition of undamped free system will not necessarily decouple
the general damped system of Fig. 1.5. However, if there is no anti-pitch spring or
anti-pitch damping between the front and rear suspensions, then equations of motion
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2�1�1 D c1

m
ˇ (1.22)

2�2�2 D c2

m
ˇ (1.23)

will be decoupled by ˛ D 1
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The equations of motion of the independent system of Fig. 1.4 may also be
written as

m.1 � "/ Rx1 C c1 Px1 C k1x1 D c1 Py1 C k1y1 (1.25)

m" Rx2 C c2 Px2 C k2x2 D c2 Py2 C k2y2 (1.26)

which are consistent with the decoupled equations (1.24) because of

" D 1 C �

� �2
2

(1.27)

To examine the effect of the decoupling condition and having independent front
and rear model of a car, let us compare the responses of the model of Fig. 1.5 using
(1.21) for different ˛.

Consider a car with the given characteristics in Table 1.1.

Table 1.1 Specification of a
sample car

Specification Nominalvalue

m .kg/ 420

a1 .m/ 1:4

a2 .m/ 1:47

l .m/ 2:87

k1 .N=m/ 10,000
k2 .N=m/ 13,000
c1 .N s=m/ 1,000
c2 .N s=m/ 1,000
ˇ 4:00238

� 1:05

�1 95:2947

�2 123:8832

�1 0:05

�2 0:0384
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Fig. 1.6 Case 1: oscillations of the front of the car with ˛ > 1

Fig. 1.7 Case 1: oscillations of the rear of the car with ˛ > 1

Figures 1.6–1.14 can be used for a comparison to show the effects of uncoupling
the system when the car goes over a step

y1 D 0:1 m y1 D 0:1H

�
t � l

v

�
m (1.28)

where H .x/ is the Heaviside function

H .t � �/ D
�

0 t � �

1 t > �
(1.29)
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Fig. 1.8 Case 1: angular oscillations of the car with ˛ > 1

Fig. 1.9 Case 2: oscillations of the front of the car with ˛ D 1

Each set of three figures are for a value of ˛ which varies from smaller than 1 to 1

and then bigger than 1.

• Case 1: ˛ > 1

˛ D 1:2726 ; r D 1:618 ; Iy D 1100

• Case 2: ˛ D 1

˛ D 1 ; r D 1:434 ; Iy D 864:36

• Case 3: ˛ < 1

˛ D 0:8098 � r D 1:291 � Iy D 700
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Fig. 1.10 Case 2: oscillations of the rear of the car with ˛ D 1

Fig. 1.11 Case 2: angular oscillations of the car with ˛ D 1

Figures 1.6–1.8 depict the oscillations of the front x1, rear x2, and pitch � D
.x2 � x1/ =l for ˛ D 1:2726 > 1. Figures 1.9–1.11 show x1, x2, and � for ˛ D 1,
and Figs. 1.12–1.14 show x1, x2, and � for ˛ D 0:8098 < 1.

Figures 1.6, 1.9, and 1.12 illustrate the oscillations of the front part of the
vehicle after hitting the step for three different values of ˛. Similarly, Figs. 1.7, 1.10,
and 1.13 illustrate the oscillations of the rear part of the vehicle after hitting the step
for three different values of ˛. As it can be seen in Figs. 1.7 and 1.13 oscillations
start with small amplitude, which does not exist in Fig. 1.10. The pitch vibrations
behavior of the car for three different values of ˛ can be compared in Figs. 1.8, 1.11,
and 1.14.
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Fig. 1.12 Case 3: oscillations of the front of the car with ˛ < 1

Fig. 1.13 Case 3: oscillations of the rear of the car with ˛ < 1

The delay in the oscillation of the rear of the vehicle is caused by the time lag
between the front and the rear wheels hitting the step. This time lag is dependent
to the wheelbase of the vehicle and also changes with the traveling speed shown by
� D l

v .
Figure 1.10 shows the oscillation of the rear of a vehicle with ˛ D 1 and

shows that in this case the oscillation of the front wheel, which has already started
� seconds ago, does not affect the oscillation of the rear part. That is a result of
locating the vibration nodes of the vehicle at the rear and front springs, respectively,
the condition for uncoupling.

However, considering Figs. 1.7 and 1.13 for values ˛ > 1 and ˛ < 1,
respectively, the effect of the front oscillation on the rear, is observable in the form
of small amplitude oscillations. The time lag oscillation in Fig. 1.7 starts off in the
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Fig. 1.14 Case 3: angular oscillations of the car with ˛ < 1

form of an upward motion which indicates that the oscillation node of the front
wheel is located behind the rear wheel having ˛ > 1. The condition of the car is
reverse for the values of ˛ < 1 in Fig. 1.13.

The same conclusions arises by comparing the set of figures which illustrate the
pitch motion in the vehicles after hitting the step, Figs. 1.8, 1.11, and 1.14. The angle
between the front and rear of the vehicle has been calculated and plotted by:

� D x2 � x1

l
(1.30)

Smaller pitch motion in Fig. 1.11 for ˛ D 1 makes it obvious that an uncoupled
system provides a more comfortable ride compared to the pitch angle oscillation � ,
in Figs. 1.8 and 1.14.

1.3 No Flat Ride Solution for Linear Suspension

The time lag between the front and rear suspension oscillations is a function of the
wheelbase, l , and speed of the vehicle, v. Soon after the rear wheels have passed
over a step, the vehicle is at the worst condition of pitching. Olley experimentally
determined a recommendation for the optimum frequency ratio of the front and rear
ends of cars. His suggestion for American cars and roads of 1950s was to have the
natural frequency of the front approximately 80% of that of the rear suspension.

To examine Olley’s experimental recommendation and possibly make an analyt-
ical base for flat ride, let us rewrite the equation of motion (1.25) and (1.26) as:

Rx1 C 2�1 Px1 C k1

m.1 � "/
x1 D 2�1 Py1 C k1

m.1 � "/
y1 (1.31)



14 H. Marzbani and R.N. Jazar

Rx2 C 2��1 Px2 C kk1

m"
x2 D 2��1y2 C kk1

m"
y2 (1.32)

where

� D �2

�1

D c1

c2

"

1 � "
(1.33)

k D k2

k1

D k1

k2

"

1 � "
(1.34)

�1 D c1

m.1 � "/
(1.35)

�2 D c2

m"
(1.36)

Parameters k and � are the ratio of the rear/front spring rates and damping ratios,
respectively.

The necessity to achieve a flat ride provides that the rear system must oscillate
faster to catch up with the front system at a reasonable time. At the time both systems
must be at the same amplitude and oscillate together afterwards. Therefore, an ideal
flat ride happens if the frequency of the rear system be higher than the front to
catch up with the oscillation of the front at a certain time and amplitude. Then, the
frequency of the rear must reduce to the value of the front frequency to oscillate in
phase with the front. Furthermore, the damping ratio of the rear must also change
to keep the same amplitude. Such a dual behavior is not achievable with any linear
suspension. Therefore, theoretically, it is impossible to design linear suspensions
to provide a flat ride, as the linearity of the front and rear suspensions keep their
frequency of oscillation constant.

1.4 Near Flat Ride Solution for Linear Suspensions

To design the rear suspension parameters for a given set of front parameters to
achieve a reasonable flat ride condition, we rephrase the problem by introducing a
near flat ride condition. The rear suspension must have proper parameters and higher
frequency to reach the same amplitude as the front suspension at a reasonable time
before the oscillations die out. This brings the vehicle in a flat condition. Then the
oscillation of the system dies out before the pitch mode significantly appears again.
A near flat ride situation is shown in Fig. 1.15, for a car going over a unit step.
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Fig. 1.15 Response of the front and rear suspensions of a near at ride car to a unit step

Solving the equations of motion (1.31) and (1.32) for x1 and x2 for a unit step
input yields

x1 D 1 � e
��1!t
p

1�" .cos

s
1 � �2

1

1 � "
!t C �1q

1 � �2
1

sin

s
1 � �2

1

1 � "
!t/ (1.37)

t � 0

x2 D

8̂
ˆ̂<
ˆ̂̂:

0 t < 0

1 � e���1

p
k
" .t��/.cos

q
k.1��2�2

1 /

"
!.t � �/

C ��1p
1��2�2

1

sin
q

k.1��2�2
1 /

"
!.t � �//

t � 0
(1.38)

where

! D
r

k1

m
(1.39)

� D l

v
(1.40)

As a reasonable catch up time, we search for the conditions such that both systems
reach their third equal peak amplitude at the same time.
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The third peak of x1 happens at the time:

tp1 D 3�
p

1 � "

!

q
1 � �2

1

(1.41)

where its displacement is:

x1 D 1 C exp.
�3��1q

1 � �2
1

/ (1.42)

The third peak of x2 happens at

tp2 D � C
3�

q
k
"

!

q
1 � �2�2

1

(1.43)

where its displacement is

x2 D 1 C exp.
�3���1q
1 � �2�2

1

/: (1.44)

The conditions that x1 and x2 meet after one and a half oscillations are:

x1 D x2 (1.45)

tp1 D tp2 (1.46)

which yield:

1 C exp.
�3��1q
1 � �2

1

/ D 1 C exp.
�3���1q
1 � �2�2

1

/ (1.47)

3�
p

1 � "

!

q
1 � �2

1

D � C
3�

q
k
"

!

q
1 � �2�2

1

: (1.48)

Equation (1.47) is independent of the spring ratio k and can be solved for damping
ratio �

� D 1: (1.49)
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Fig. 1.16 Illustrates the plot of k versus � , for different " from 0:2 to 0:8

It indicates that the third peak of the motion of the front and rear of the car will be
equal provided the damping coefficient of the front and rear suspensions are equal.

Solving (1.48) for spring ratio k yields:

k D Z1

Z2�2 C Z3� C Z4

(1.50)

where

Z1 D �9"�2m.�1 C �2
1 / (1.51)

Z2 D .�2�4
1 � �2�2

1 C 1 � �2
1 /k1 (1.52)

Z3 D 6�m.�2�2
1 � "�2�2

1 � 1 C "/

s
�k1.1 � �2

1 /

m." � 1/
(1.53)

Z4 D �9�2m."�2�2
1 � " C 1 � �2�2

1 / (1.54)

Using a set of nominal values,

� D 1 m D 420 �1 D 0:4 k1 D 10000: (1.55)

Figure 1.16 illustrates the plot of k versus � , for different " from 0:2 to 0:8. Using
this graph, we can determine the value of spring ratio k for a given " D a1=l

and � D l=v. Because for a given car, the values of " and l are fixed, the graph
determines the required k D k2=k1 at any speed v.

Considering the existing designs of normal street vehicles, only a very small
section of the horizontal axis of Fig. 1.16 should be investigated. The wheelbase
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Fig. 1.17 Plots of k versus � for �1 D 0:5 and different " in the domain 0:1 < � < 0:875

for normal street vehicles is usually not less than 2 m or longer than 3.5 m. Let us
assume that the speed of a car which goes over a step and is expected to show a
flat ride, is between 4 and 20 m/s. Therefore, the practical domain of the time lag
between the front and rear wheels would be 0:1 < � < 0:875.

Furthermore, the mass center of street cars are normally in the front half of the
wheelbase in order to provide understeer condition. Considering 0:4 < " < 0:6 will
cover all street and sports cars. Figure 1.17 shows how k varies with � for �1 D 0:5

and different " to provide a near flat ride. For any ", the required stiffness ratio
increases by increasing � . Therefore, the ratio of rear to front stuffiness increases
when the speed of the car decreases. It is because the frequency of the rear part
must be higher to catch up with the oscillations of the front. Figure 1.18 illustrates
the same information in the plane of ."; �/. It shows that for a constant k, how the
mass center of a car should change to provide a near flat ride. The value of " is a
decreasing function of � and therefore, the mass center of a car should get closer
to the front axle when the speed of the car increases. Ideally, the curves in both
Figs. 1.17 and 1.18 must be horizontal to have a constant stiffness ratio to achieve a
near flat ride at any speed. However, not only a flat ride is impossible to achieve, a
near flat ride also is not achievable by linear suspensions.

Figures 1.19–1.26 depict the similar information of Figs. 1.17 and 1.18 for
�1 D 0:4, �1 D 0:3, �1 D 0:2, and �1 D 0:1, respectively.

Let us consider having a vehicle with smart suspension, and the effect of change
of traveling speed of the vehicle on the near flat ride, Figs. 1.18, 1.20, 1.22, 1.24,
and 1.26 can be used as design charts. As an example, the average length of a sedan
vehicle has been taken equal to 2.6 m with a normal weight distribution of a front
differential vehicle 56=44 heavier at the front. Using the given information some
other values can be calculated as: a1 D 1; 144 mm and a2 D 1; 456 mm which
yields to " D 0:44. Assuming that the front suspension of the car has a damping of
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Fig. 1.18 � versus " for different spring rates

Fig. 1.19 Plots of k versus � for �1 D 0:4 and different " in the domain 0:1 < � < 0:875

�1 D 0:4, the diagram in Fig. 1.20 can be used by the smart suspension to provide
near flat ride in different speeds, by switching the spring rate to the required value.
Continuous variation of k is illustrated in Fig. 1.21. The horizontal line in Fig. 1.27
is showing the values that the spring should be switching to as the traveling speed
of the vehicle on the example changes, which is the ideal situation for near flat ride.
To use the same chart for vehicles with passive suspension, a target speed needs to
be chosen by the designer as the ideal speed for the vehicle to have a near flat ride.
The point in Fig. 1.27 is indicating that for a car with passive suspension, with a
wheelbase of 2:4 m, traveling speed of 29 km=h, to get a near flat ride a spring ratio
of k D 1:2 is needed.
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Fig. 1.20 � versus " for different spring rates for � D 0:4

Fig. 1.21 Plots of k versus � for �1 D 0:3 and different " in the domain 0:1 < � < 0:875

1.5 Nonlinear Damper

The force–velocity characteristics of an actual shock absorber can be quite complex
as is shown in Fig. 1.28. Although we may express the complex behavior using
an approximate function, analytic calculation can be quite complicated with little
design information. Furthermore, the representations of the exact shock absorber do
not greatly affect the behavior of the system. The simplest linear viscous damper
model is usually used for linear analytical calculation

FD D cvD; (1.56)

where c is the damping coefficient of the damper.
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Fig. 1.22 � versus " for different spring rates for � D 0:3

Fig. 1.23 Plots of k versus � for �1 D 0:2 and different " in the domain 0:1 < � < 0:875

As seen in Fig. 1.28 the bound and rebound forces of the damper are different, in
other words the force–velocity characteristics diagram is not symmetric. Practically,
a shock absorber compresses much easier than decompression. A reason is that
during rebound in which the damper extends back, it uses up the stored energy in the
spring. A high compression damping prevents to have enough spring compression to
collect enough potential energy. That is why in order to get a more reliable and close
to reality response for analysis on dampers, using bilinear dampers are suggested.
It is similar to a linear damper but with different coefficients for the two directions
[3]. The behavior of such damper models is illustrated in Fig. 1.29
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Fig. 1.24 � versus " for different spring rates for � D 0:2

Fig. 1.25 Plots of k versus � for �1 D 0:1 and different " in the domain 0:1 < � < 0:875

FD D
�

cDEvD Extension
cDCvD Compression

(1.57)

where cDE is the damping coefficient when damper is extended and cDC is the
damping coefficient when the damper is compressed.

An ideal dual behavior damper is one which does not provide any damping
while being compressed and, on the other hand, damps the motion while extending.
Based on this model, the nonlinear damper model’s behavior used for this study
is illustrated in Fig. 1.30. Using the nonlinear damper model and following the
same steps as the previous section, we can compare two systems to determine the
effectiveness of damping on the flat ride.
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Fig. 1.26 � versus " for different spring rates for � D 0:1

Fig. 1.27 Design chart for a smart suspension with a linear damper

v

fFig. 1.28 The force–velocity
characteristics of a real
damper
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v

f

DEc

DCc

Fig. 1.29 Force–velocity
characteristics of a bilinear
damper

v

f

c

reboundbound

Fig. 1.30 Force–velocity
characteristic of an ideal
nonlinear damper model

Equations (1.37) and (1.38) have been used to get the motion of the front and
rear of the vehicle after hitting a unit step. The only difference is that the motion is
investigated in three steps for the front and same for the rear. Ideally, the unit step
moves the ground up in no time and therefore the motion of the system begins when
y D 1 and the suspension is compressed. The first step is right after the wheel hits
the step and the damper starts extending which means the positive side of Fig. 1.30
would be in action. The second step is when the damper starts the compression
phase, and according to the figure the damping coefficient would be equal to zero.
The third step is when the damper starts extending again. Each of (1.37) and (1.38)
should be solved for the three steps separately in order to find the time and amplitude
of the third peak of the motion.

Figure 1.31 illustrates the behavior of the car equipped with a nonlinear damper
when going over a unit step input. Figure 1.32 also illustrates the behavior of the
same car if the damper was linear. Comparison of the behavior of the car for
linear and nonlinear dampers is plotted in Figs. 1.33 and 1.34 for front and rear
suspensions, respectively. The linear damper dissipates energy in both, bound and
rebound cycles, while the nonlinear damper dissipates energy only in rebound cycle.
Therefore, the linear damper is more effective in energy dissipation and damps the
system faster. This fact can be seen in both Figs. 1.33 and 1.34.

To compare the behavior of a car with both cycle linear damper and one cycle
nonlinear damper, we also analyze the opposite cycle nonlinear damper of Fig. 1.35.
The response of the car to the opposite cycle nonlinear damper is illustrated in
Fig. 1.36. Comparison of the linear and nonlinear dampers for the front and rear
suspensions is plotted in Figs. 1.37 and 1.38, respectively.
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Fig. 1.31 Response of the front and rear suspensions of a near flat ride car with ideal nonlinear
damper to a unit step

Fig. 1.32 Response of the front and rear suspensions of a car with linear damper to a unit step

1.6 Near Flat Ride Solution for Ideal, Nonlinear Damper

The conditions that x1 and x2 meet after one and a half oscillations are the same
as (1.45) and (1.46). The equation resulted from x1 D x2 has got � and �1 as
its variables and could be plotted as an explicit function of the variables which
interestingly shows that the value for � D �2=�1 must equal to 1 for any value for
damping coefficient of the front suspension. Therefore, regardless of the value of �1

the rear suspension should have an equal coefficient for the damper. The equation
resulted from tP1 D tp2 generates an equation to determine k D k2=k1. Figure 1.39
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Fig. 1.33 Comparison of the behavior of the front suspensions of the car for linear and nonlinear
dampers

Fig. 1.34 Comparison of the behavior of the rear suspensions of the car for linear and nonlinear
dampers

illustrates the spring ratio k D k2=k1 versus � D l=v, to have near flat ride with
ideal nonlinear damping, for different " D a1=l .

Once again, considering the existing designs street vehicles, only the small
section of 0:1 < � < 0:875 of Fig. 1.39 is applied. The mass center of street cars is
also limited to 0:4 < " < 0:6.

Figure 1.40 shows how k varies with � for �1 D 0:5 and different " to provide
a near flat ride with ideal nonlinear damper. For any ", the required stiffness ratio
increases by increasing � . Therefore, the ratio of rear to front stuffiness increases
when the speed of the car decreases. Figures 1.41–1.44 also provide the same design
graphs for �1 D 0:4, 0:3, 0:2, 0:1, respectively.
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v
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c

reboundbound

Fig. 1.35 Force–velocity
characteristic of an opposite
cycle nonlinear damper
model

Fig. 1.36 Response of the front and rear suspensions of a near flat ride car with ideal nonlinear
damper to a unit step

Using a nonlinear damper for studying Olley’s flat ride tuning shows the same
behavior as a linear damper. So, the same trend as for the linear case can be taken
here. There will be a possibility of using the � versus " diagrams as a design chart.

1.7 The First Investigations

Maurice Olley was one of the first pioneers who introduced and studied the concept
of flat ride in vehicle dynamics. He was an English engineer born in 1889, who
during his life added a lot to the general knowledge of vehicle dynamics and is
counted as one of the great automobile engineers of his era. He is one of the founders
of modern vehicle dynamics. In his early career in the Rolls Royce design office, he
worked under Sir Henry Royce but the majority of his career was spent at Cadillac
in the USA and Vauxhall in England.
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Fig. 1.37 Comparison of the behavior of the front suspensions of the car for linear and opposite
cycle nonlinear dampers

Fig. 1.38 Comparison of the behavior of the rear suspensions of the car for linear and opposite
cycle nonlinear dampers

Olley worked directly for Sir Henry Royce and was in the United States for
some 10 years struggling to get off the ground the manufacture of Rolls-Royce
cars at Springfield, Massachusetts. The financial crash of 1929 put the skids under
the operation. His first task after moving to the Cadillac company in 1930 was
suspension and ride. He introduced the Rolls-Royce type of bump rig and began
a full program of ride development. He studied the oscillation of wheels and tires
and by applying some changes on the rig was soon studying the basic ride motions
of the car. In his paper [6] he published the results taken from his experiments using
the test rig for the first time.
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Fig. 1.39 The value of spring ratio k D k2=k1 versus � D l=v, to have near flat ride with ideal
nonlinear damping, for different " D a1=l

Fig. 1.40 " versus � , for different k for �1 D 0:5 to have near flat ride with ideal nonlinear
damping

He developed a bouncing table rig in General Motors proving grounds, on
which humans were vibrated vertically at different frequencies and amplitudes.
They would have increased the frequency till the person on the table begins to feel
uncomfortable. Using this equipment Olley explained the relation between vertical
acceleration and comfort over a range of frequencies. He generated a curve for
passenger comfort, which is very similar to the current ISO2631 standard.

Olley as well as other investigators in well-established car companies realized
that the pitch and roll modes of the car body are much more uncomfortable than
the bounce mode. The investigators’ effort focused on the suspension stiffness
and damping rates to be experimentally adjusted to provide acceptable vertical
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Fig. 1.41 " versus � , for different k for �1 D 0:4 to have near flat ride with ideal nonlinear
damping

Fig. 1.42 " versus � , for different k for �1 D 0:3 to have near flat ride with ideal nonlinear
damping

vibrations. However, the strategy about roll and pitch modes was to transform them
to bounce. Due to usual geometric symmetry of cars, as well as the symmetric
excitation from the road, roll mode is being excited much less than pitch mode.
Therefore, lots of investigations have been focused on adjustment of the front and
rear suspensions such that pitch mode of vibration transform to the bounce.

In the early 1930s most cars were built with fairly stiff springs at the front and
soft at the rear, with a r2

a1a2
ratio in pitch of about 0:8, where r is the pitch radius

of gyration of the car and a1 and a2 are the distance of the mass center, C , from
the front and rear axles, as shown in Fig. 1.45 [1]. However, based on what Olley
discovered, such a choice was against the mode transfer desire.
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Fig. 1.43 " versus � , for different k for �1 D 0:2 to have near flat ride with ideal nonlinear
damping

Fig. 1.44 " versus � , for different k for �1 D 0:1 to have near flat ride with ideal nonlinear
damping

Besides all the important facts that Olley discovered during his experiments,
the principle known as the flat ride tuning or Olley’s flat ride proved to be more
industry approved and accepted. After his publications [6–8] in which he advocated
this design practice, they became rules of practice.

We can summarize what has been said about ride and comfort in American
passenger cars by Olley as the following:

1. The front spring should be softer than the rear for flat ride tuning. This will
promote bouncing of the body rather than pitching motions at least for a greater
majority of speeds and bump road situations. The front suspension should have
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Fig. 1.45 Bicycle car model used for analyzing vibrations

a 30% lower ride rate than the rear suspension, or the spring center should be at
least 6.5% of the wheelbase behind the center of gravity. Although this does not
explicitly determine the front and rear natural frequencies, since the front-rear
weight distribution on passenger cars is close to 50–50, it will generally assure
that the rear frequency is greater than the front.

2. The ratio r2

a1:a2
normally approaches unity. This reduces vibration interactions

between front and rear because the two suspensions can now be considered as two
separate systems. As a consequence there will be less resonant build-ups on the
road and the pitching frequency will have a magnitude closer to that of bounce.

3. The pitch and bounce frequencies should be close together: the bounce frequency
should be less than 1:2 times the pitch frequency. For higher ratios interference
kicks resulting from the superposition of the two motions. This condition will
be met for modern cars because the dynamic index is near unity with the wheels
located near the forward and rearward extremes of the chassis.

4. Neither frequency should be greater than 1.3 Hz, which means that the effective
static deflection of the vehicle should exceed roughly 6 in.

5. The roll frequency should be approximately equal to the pitch and bounce
frequencies. To minimize roll vibrations the natural frequency in roll needs to
be low just as for the bounce and pitch modes.

Rowell and Guest [9] in 1923 identified the value of r2

a1:a2
being associated with

vehicles in which the front and rear responses were uncoupled. Olley was able to
investigate the issue experimentally and these experiments led him to the belief that
pitching motion was extremely important in the subjective assessment of vehicle
ride comfort. He built the Cadillac k2 rig in 1931 which was a 12 cylinder, 7

passenger Cadillac limousine of the period, fitted with front and rear outriggers
each of which could carry up to 327 kg made up in 27 kg weights. To their surprise,
under these supposedly ideal conditions, they still got an unsatisfactory ride. This
arrangement gave no fixed oscillation centers and the ride had no pattern. However,
by fitting all the weights they found that if the front spring static deflections are some
30% greater than the rear, then the revolutionary flat ride occurs. Olley’s explanation
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was that because the two ends of the car did not cross a given disturbance at the same
instant it was important that the front wheels initiated the slower mode and that the
rear wheels initiated the faster mode. This allowed the body movement at the rear
to catch up the front and so produce the flat ride.

The condition of Flat Ride is expressed in various detailed forms; however, the
main idea states that the front suspension should have a 30% lower ride rate then
the rear. The physical explanation for why this is beneficial in reducing pitch motion
is usually argued based on the time history of events following a vehicle hitting a
bump. First, the front of the vehicle responds “approximately in the well-known
damped oscillation manner.” At some time later, controlled by the wheelbase and
the vehicle speed, the rear responds in similar fashion. The net motion of the vehicle
is then crudely some summation of these two motions which minimizes the vehicle
pitch response [2].

Confirmation of the effectiveness in pitch reduction of the Olley design was
given by Best [1] over a limited range of circumstances. Random road excitation
was applied to a half-car computer model, with identical front and rear excitations,
considering the time delay generated by the wheelbase and vehicle’s speed. Pitch
suppression was associated with the wheelbase filtering effect. Pitch suppression
appeared to be necessarily associated with increases in bounce response, leaving in
unclear whether or not it is a worthwhile goal [10].

Sharp and Pilbeam [11] attempted a more fundamental investigation of the
phenomenon, primarily by calculating frequency response for the half-car over a
wide range of speed and design conditions. At higher speeds, remarkable reductions
in pitch response with only small costs in terms of bounce response were shown.
At low speeds, the situation is reversed. These behavioral features were shown to be
generic insofar as variations in mass center location, pitch inertia and damping level
were concerned, and the implications from the frequency responses were confirmed
by simulations with nonlinear asymmetric suspension damping.

Later on Sharp [10] discussed the rear to front stiffness tuning of the suspension
system of a car, through reference to a half-car pitch plane mathematical model.
He used new results relating to the frequency responses of the bouncing and pitching
motions of the car body to show that the pitch minimization mechanism of Olley’s
flat ride tuning “involves interference between the responses to the front and rear
axle inputs.” He showed that interference with respect to the rotational motion
implies reinforcement with respect to the translational motion, and vice versa. Sharp
concludes almost the same facts mentioned by Best and other researchers before
him, saying that at higher vehicle speeds, Olley tuning is shown to bring advantage
in pitch suppression with a very little disadvantage in terms of body acceleration.
At lower speeds, he continues, not only does the pitch tuning bring large vertical
acceleration penalties but also suspension stiffness implied are impractical from an
attitude control standpoint.

The flat ride problem was revisited by Crolla and King [2]. They generated
vehicle vibration response spectra under random road excitations. Some results
included the wheelbase filter effect, while others did not. Olley and reverse Olley
designs were simulated at speeds of 10, 20, 30, and 40 m/s, with the result that
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Olley design was good in pitch and bad in bounce in all cases. It was confidently
concluded that the rear/front stiffness ratio has virtually no effect on overall levels
of ride comfort.

In 2004, Odhams and Cebon investigated the tuning of a pitch-plane model of a
passenger car with a coupled suspension system and compared it to that of a conven-
tional suspension system, which followed the Rowell and Guest treatment [5]. They
believed that there is a significant benefit from coupling front and rear suspensions;
coupled suspensions with a “Hydrolastic” or “Hydragas” systems, in which the front
and rear suspension struts are connected hydraulically, have proved very effective
in some applications. The concluded that the Olley’s flat ride tuning provides a near
optimum stiffness choice for conventional suspensions for minimizing dynamic tire
forces and is very close to optimal for minimizing horizontal acceleration at the
chest (caused by pitching) but not the vertical acceleration.

Key Symbols

a1 Distance from the front wheel to the C

a2 Distance from the rear wheel to the C

c Damping coefficient
C Mass center
CDC Damping coefficient in compression
CDE Damping coefficient in extension
FD Damping force
I D mr2 mass moment
k D k2=k1

k1 Front spring rate
k2 Rear spring rate
kT Tire stiffness
kf Front spring rate
kr Rear spring rate
k0

F Front ride rate
k0

R Rear ride rate
l Wheelbase
m Mass
m1 Front mass portion
m2 Rear mass portion
q1 D �

k0
F C k0

R

�
=m

q2 D �
a1k

0
F � a2k

0
R

�
=m

q3 D �
a2

1k0
F C a2

2k0
R

�
=I



1 Smart Flat Ride Tuning 35

r Radius of gyration
� Time lag
tp1 Time of the third peak of the front
tp2 Time of the third peak of the rear
u1 First mode shape of the system
u2 Second mode shape of the system
v Velocity of the vehicle
vD Vertical velocity of the damper
x1 Vertical movement of the front wheel
x2 Vertical movement of the rear wheel
y1 Road input to the front wheel
y2 Road input to the rear wheel

Greek
˛ D r2=a1a2 nondimensional parameter
ˇ D l2=a1a2 nondimensional parameter
� Rate to front length ratio
� Pitch angle
" D a1=l nondimensional parameter
�1 Front damping ratio
�2 Rear damping ratio
� D �2=�1 rear to front damping ratio
�b Distance from bounce center to the C

�p Distance from pitch center to the C

!1 First natural frequency of the system
!2 Second natural frequency of the system
�1 D p

k1ˇ=m nondimensional parameter
�2 D p

k2ˇ=m nondimensional parameter

References

1. Best A (2002) Vehicle ride-stages in comprehension. Phys Technol 15(4):205
2. Crolla D, King R (2000) Olley’s “Flat Ride” [revisited]
3. Dixon J (2008) The shock absorber handbook. Wiley, New York
4. Milliken WF, Milliken DL, Olley M (2002) Chassis design. Professional Engineering Publish-

ing, Bury
5. Odhams A, Cebon D (2006) An analysis of ride coupling in automobile suspensions. Proc Inst

Mech Eng D J Automob Eng 220(8):1041–1061
6. Olley M (1934) Independent wheel suspension ‘its whys and wherefores’. Soc Automot Eng J

34(3):73–81
7. Olley M (1938) National influences on American passenger car design. Proc Inst Automob

Eng 32(2):509–572



36 H. Marzbani and R.N. Jazar

8. Olley M (1946) Road manners of the modern car. Proc Inst Automob Eng 41(1):147–182
9. Rowell HS, Guest JJ (1923) Proc Inst Automob Eng 18:455

10. Sharp R (2002) Wheelbase filtering and automobile suspension tuning for minimizing motions
in pitch. Proc Inst Mech Eng D J Automob Eng 216(12):933–946

11. Sharp R, Pilbeam C (1993) Achievability and value of passive suspension design for minimum
pitch response. In: Vehicle Ride and Handling, vol 39, pp 243–259


	Chapter
1 Smart Flat Ride Tuning
	1.1 Flat Ride Definition
	1.2 Uncoupling the Car Bicycle Model
	1.3 No Flat Ride Solution for Linear Suspension
	1.4 Near Flat Ride Solution for Linear Suspensions
	1.5 Nonlinear Damper
	1.6 Near Flat Ride Solution for Ideal, Nonlinear Damper
	1.7 The First Investigations
	References


