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Preface

Besides the idea from the first volume of this book which was focused on various
methods to diagnose the complex behavior of nonlinear dynamic system, this
volume will additionally take an insight into applying different control strategies
to stabilize the complex behavior of the nonlinear dynamic system. The motivation
of this volume is derived from the discussions among the researchers and engineers
taking part in the ASME 2012 and 2011 Congress in the track of Dynamics Systems
and Control, Optimal Approaches in Nonlinear Dynamics, which were organized
by the editors. Processes in industries such as robotics and the aerospace industry
typically have strong nonlinear dynamics. Nonlinear systems give rise to interesting
phenomena such as limit cycle, bifurcation, and chaos. They are all harmful motions
since an ideal system will require holding the set point and not oscillating around
it. Therefore, these behaviors of dynamical systems need to be controlled to be
stabilized. The usual objective of a control theory is to calculate solutions for the
proper corrective action from the controller that result in system stability.

In the role of the editors as well as the chapter contributors of this book, we have
tried to present a collection of chapters showing the theoretically and practically
sound nonlinear approaches and their engineering applications in various areas, in
hoping that this book may provide useful tools and comprehensible examples of
solving, modeling, and simulating the nonlinear systems existing in the real world.
The carefully selected chapters contained in this book reflect recent advances in
nonlinear approaches and their engineering applications. The book intends to feature
in particular the fundamental concepts and approaches of nonlinear science and their
applications in engineering and physics fields. It is anticipated that this book may
help to promote the development of nonlinear science and nonlinear dynamics in
engineering, as well as to stimulate research and applications of nonlinear science
and nonlinear dynamics in physics and engineering practices. It is also expected that
the book will further enhance the comprehension of nonlinear science and stimulate
interactions among scientists and engineers who are interested in nonlinear science
and who find that nonlinearity and complexity of systems play an important role in
their respective fields.

v



vi Preface

In control theory it is sometimes possible to linearize such classes of systems
and apply linear techniques, but in many cases it can be necessary to devise from
scratch theories permitting control of nonlinear systems. Differential geometry has
been widely used as a tool for generalizing well-known linear control concepts to
the nonlinear case, as well as showing the subtleties that make it a more challenging
problem. Nonlinear control is the area of control engineering specifically involved
with systems that are nonlinear, time-variant, or both. Many well-established analy-
sis and design techniques exist for linear time-invariant (LTI) systems; however, one
or both of the controller and the system under control in a general control system
may not be a linear time-invariant system, and so these methods cannot necessarily
be applied directly. Nonlinear control theory studies how to apply existing linear
methods to these more general control systems. Additionally, it provides novel
control methods that cannot be analyzed using linear time-invariant system theory.
A nonlinear controller can have attractive characteristics though it usually requires
more rigorous mathematical analysis to justify its conclusions.

In chaos theory, control of chaos is based on the fact that any chaotic attractor
contains an infinite number of unstable periodic orbits. Control of chaos is the
stabilization of one of these unstable periodic orbits, by means of small system
perturbations. The perturbation must be tiny to avoid significant modification of
the system’s natural dynamics. Several techniques have been devised for chaos
control, and most are developments that require a previous determination of the
unstable periodic orbits of the chaotic system before the controlling algorithm can
be designed.

With the theme of the book, Nonlinear Approaches and Engineering Appli-
cations 2, the book covers interdisciplinary studies on theories and methods of
nonlinear science and their applications in complex systems such as those in
nonlinear dynamics, nanotechnology, fluid dynamics, aerospace structure engineer-
ing, mechatronics engineering, control engineering, ocean engineering, offshore
structure engineering, mechanical engineering, human body dynamics, and material
science. Specifically, by modifying the linear conditions into the nonlinear practical
model of shock absorbers, Chap. 1 analytically reviews the flat ride conditions of
vehicles and provides design charts to satisfy the required conditions. In Chap. 2,
the formulation of tracking mechanism used for a light-tracking system is presented
to maximize the collected energy. Chapter 3 focuses on both diagnosing and
controlling the nonlinear dynamic responses of a fluttering plate excited by a
high-velocity air flow. The approaches presented have research and engineering
application significances in the fields of aerodynamics, nonlinear dynamics, aircraft
design, and design of space vehicles. Chapter 4 presents the development of a
closed-form controller for the tracking control of uncertain real-life multibody
systems, which are in general highly nonlinear and intrinsically hard to be modeled.
In Chap. 5, the robustness of orthogonal eigenstructure control (OEC) to the failure
of the actuators was investigated. It was shown that the control gain was capable
of controlling the systems during an actuator failure, as OEC generates the control
gain by maintaining the closed-loop eigenvectors within the achievable eigenvectors
set. In Chap. 6, the highly nonlinear phenomenon of fluid–structure interaction is
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Preface vii

discussed, including examples on aircraft flutter. Chapter 7 reports on a study that
used computer dynamic simulation to analyze the energy absorption and damage in
a new impact attenuator in both numerical modeling and experiment verification
level. In Chap. 8, nonlinear Vehicle Seat buzz, squeak, and rattle (BSR) noise
are characterized using CAE methodology and then can consequently be partly
controlled by managing the seat structure resonant frequencies and mode shapes.
Chapter 9 introduces a novel approach to calculate a first-order approximation for
point distances from general nonlinear structures. It also proposes an accelerated
sampling method for robust segmentation of multiple structures. Chapter 10 reviews
mathematical models of mechanical and electromechanical parametric amplifiers.

Level of the Book

This book aims at engineers, scientists, researchers, and engineering and physics
students of graduate levels, together with the interested individuals in engineering,
physics, and mathematics. This chapter-book focuses on application of the nonlinear
approaches representing a wide spectrum of disciplines of engineering and science.
Throughout the book, great emphases are placed on engineering applications,
physical meaning of the nonlinear systems, and methodologies of the approaches
in analyzing and solving for the systems. Topics that have been selected are of
high interest in engineering and physics. An attempt has been made to expose the
engineers and researchers to a broad range of practical topics and approaches.

The topics contained in this book are of specific interest to engineers who are
seeking expertise in nonlinear analysis, mathematical modeling of complex systems,
optimization of nonlinear systems, nonclassical engineering problems, and future of
engineering.

The primary audience of this book is the researchers, graduate students and
engineers in mechanical engineering, engineering mechanics, civil engineering,
aerospace engineering, ocean engineering, mathematics, and science disciplines.
In particular, the book can be used as a research book for the graduate students
to enhance their knowledge by taking a graduate course in the areas of nonlinear
science, dynamics, vibration, structure dynamics, and engineering applications of
nonlinear science. It can also be utilized as a guide to the readers’ fulfillment in
practices. The covered topics are also of interest to engineers who are seeking to
expand their expertise in these areas.

Organization of the Book

The main structure of the book consists of two parts of analytical and practical
nonlinearity, including ten chapters. Each of the chapters covers an independent
topic along the line of nonlinear approach and engineering applications of nonlinear

http://dx.doi.org/10.1007/978-1-4614-6877-6_7
http://dx.doi.org/10.1007/978-1-4614-6877-6_8
http://dx.doi.org/10.1007/978-1-4614-6877-6_9
http://dx.doi.org/10.1007/978-1-4614-6877-6_10


viii Preface

science and control theory. The main concepts in nonlinear science and engineering
applications are explained fully with necessary derivatives in detail. The book and
each of the chapters are intended to be organized as essentially self-contained. All
necessary concepts, proofs, mathematical background, solutions, methodologies,
and references are supplied except for some fundamental knowledge well known
in the general fields of engineering and physics. The readers may therefore gain
the main concepts of each chapter with as less as possible the need to refer to the
concepts of the other chapters. Readers may hence start to read one or more chapters
of the book for their own interests.

Method of Presentation

The scope of each chapter is clearly outlined and the governing equations are derived
with an adequate explanation of the procedures. The covered topics are logically and
completely presented without unnecessary overemphasis. The topics are presented
in a book form rather than in the style of a handbook. Tables, charts, equations, and
references are used in abundance. Proofs and derivations are emphasized in such a
way that they can be straightforwardly followed by the readers with fundamental
knowledge of engineering science and university physics. The physical model and
final results provided in the chapters are accompanied with necessary illustrations
and interpretations. Specific information that is required in carrying out the detailed
theoretical concepts and modeling processes has been stressed.

Prerequisites

This book is primarily intended for researchers, engineers, and graduate students, so
the assumption is that the readers are familiar with the fundamentals of dynamics,
calculus, and differential equations, as well as a basic knowledge of linear algebra
and numerical methods. The presented topics are given in a way to establish
as conceptual framework that enables the readers to pursue further advances in
the field. Although the governing equations and modeling methodologies will be
derived with adequate explanations of the procedures, it is assumed that the readers
have a working knowledge of dynamics, university mathematics, and physics
together with theory of linear elasticity.

Bundoora, VIC, Australia Reza N. Jazer
Regina, SK, Canada Liming Dai
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Chapter 1
Smart Flat Ride Tuning

Hormoz Marzbani and Reza N. Jazar

Abstract Flat ride is the condition that the unpleasant pitch oscillation of the
vehicle body turns into more tolerable bounce oscillation, when a car hits a bump
in forward motion. Based on experimental results, Maurice Olley discovered and
introduced two conditions for flat ride:

1. The radius of gyration in pitch should be equal to the multiplication of the
distance from the mass centers a1; a2 of the front and rear wheels of the car
(r2 D a1a2).

2. The rear suspension should have around 20% higher rate than the front. The
equation r2 D a1a2 makes the car to be considered as two separated uncoupled
mass-spring systems of front and rear suspensions.

In this chapter, we will analytically review the flat ride conditions and provide
design charts to satisfy the required conditions. The nonlinear practical model of
shock absorbers modifies the conditions which were based on linear models.

1.1 Flat Ride Definition

The excitation inputs from the road to a straight moving car will affect the front
wheels first and then, with a time lag, the rear wheels. The general recommendation
was that the natural frequency of the front suspension should be lower than that of
the rear. So, the rear part oscillates faster to catch up with the front to eliminate
pitch and put the car in bounce before the vibrations die out by damping. This is
what Olley called the flat ride tuning [4]. Maurice Olley (1889–1983) established
guidelines, back in the 1930, for designing vehicles with better ride. These were

H. Marzbani • R.N. Jazar (�)
School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne,
VIC, Australia
e-mail: hormoz.marzbani@rmit.edu.au; reza.jazar@rmit.edu.au
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4 H. Marzbani and R.N. Jazar

derived from experiments with a modified car to allow variation of the pitch mass
moment. Although the measures of ride were strictly subjective, those guidelines are
considered as valid rules of thumb even for modern cars. What is known as Olley’s
flat ride not considering the other prerequisites can be put forward as:

The front suspension should have around 30% lower rate than the rear.

An important prerequisite for flat ride was the uncoupling condition, which was
introduced by Rowell and Guest for the first time in 1923 [4, 9]. Rowell and Guest
used the geometry of a bicycle car model to find the condition which sets the bounce
and pitch centers of the model located on the springs. Having the condition, the front
and rear spring systems of the vehicle can be regarded as two separate one degree-
of-freedom (DOF) systems.

In this study, using analytical methods, we study the flat ride conditions which
have been respected and followed by the car manufacturers’ designers since they
were introduced for the first time. This article will provide a more reliable scientific
and mathematical approach for what are the flat ride design criteria in vehicle
dynamic studies.

1.2 Uncoupling the Car Bicycle Model

Consider the two DOF system in Fig. 1.1. A beam with mass m and mass moment I
about the mass center C is sitting on two springs k1 and k2 to model a car in bounce
and pitch motions. The translational coordinate x of C and the rotational coordinate
� are the usual generalized coordinates that we use to measure the kinematics of
the beam. The equations of motion and the mode shapes are functions of the chosen
coordinates.

The free vibration equations of motion of the system are:

�
m 0

0 I

� � Rx
R�
�

C
�

k1 C k2 a2k2 � a1k1

a2k2 � a1k1 a2
2k2 C a2

1k1

� �
x

�

�
D 0 (1.1)

a1

k
2

k
1

C
m, I

x

a2

x2 x1

θ
Fig. 1.1 The bicycle model
of a car is a beam with mass
m and mass moment I , sitting
on two springs k1 and k2
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To compare the mode shapes of the system practically, we employ the coordinates
x1 and x2 instead of x and � , as shown in Fig. 2.1. The equations of motion of the
system would then be:

2
664

ma2
2 C I

a1 C a2
2

ma1a2 � I

a1 C a2
2

ma1a2 � I

a1 C a2
2

ma2
1 C I

a1 C a2
2

3
775
� Rx1

Rx2

�
C
�
k1 0

0 k2

� �
x1

x2

�
D 0 (1.2)

Let us define the following parameters:

I D mr2 (1.3)

�2
1 D k1

m
ˇ (1.4)

�2
2 D k2

m
ˇ (1.5)

ˇ D l2

a1a2

(1.6)

˛ D r2

a1a2

(1.7)

� D a2

a1

(1.8)

l D a1 C a2 (1.9)

and rewrite the equations as
"

˛ C � 1 � ˛

1 � ˛ ˛ C 1
�

#� Rx1

Rx2

�
C
�
�2

1 0

0 �2
2

� �
x1

x2

�
D 0 (1.10)

Setting

˛ D 1 (1.11)

makes the equations decoupled

"
˛ C � 0

0 ˛ C 1
�

#� Rx1

Rx2

�
C
�
�2

1 0

0 �2
2

� �
x1

x2

�
D 0 (1.12)
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a1

k2 k1

Cm, I

x

a2

x2 x1

θ

Fig. 1.2 The mode shape 1

for ˛ D 1 shows that only the
front suspension is oscillating
and the node is on the rear
suspension

a1

k2 k1

Cm, I

x

a2

x2 x1

θ

Fig. 1.3 The mode shape 2

for ˛ D 1 shows that only the
rear suspension is oscillating
and the node is on the front
suspension

The natural frequencies !i and mode shapes ui of the system are

!2
1 D 1

� C 1
�2

1 D l

a2

k1

m
u1 D

�
1

0

�
(1.13)

!2
2 D �

� C 1
�2

2 D l

a1

k2

m
u2 D

�
0

1

�
(1.14)

They show that the nodes of oscillation in the first and second modes are at the rear
and front suspensions, respectively. Figures 1.2 and 1.3 illustrate the mode shapes
of the bicycle car model for ˛ D 1.

The decoupling condition ˛ D 1 yields

r2 D a1a2 (1.15)

which indicates that the pitch radius of gyration, r , must be equal to the multiplica-
tion of the distance of the mass center C from the front and rear axles. Therefore,
by setting ˛ D 1, the nodes of the two modes of vibrations appear to be at the
front and rear axles. As a result, the front wheel excitation will not alter the body
at the rear axle and vice versa. For such a car, the front and rear parts of the car
act independently. Therefore, the decoupling condition ˛ D 1 allows us to break
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y2 y1

k2 k1 c1c2

FrontRear

xfxr

mr mf

Fig. 1.4 Car bicycle model
after decoupling

y2 y1

k2 k1 c1c2

FrontRear

x1x2

m

a1a2

C

Fig. 1.5 Car bicycle model
with damping

the initial two DOF system into two independent one DOF systems as illustrated in
Fig. 1.4, where:

mr D m
a1

l
D m" (1.16)

mf D m
a2

l
D m.1 � "/ (1.17)

" D a1

l
(1.18)

The equations of motion of the independent systems will be:

m.1 � "/ Rx1 C c1 Px1 C k1x1 D k1y1 C c1 Py1 (1.19)

m" Rx2 C c2 Px2 C k2x2 D k2y2 C c2 Py2 (1.20)

The decoupling condition of undamped free system will not necessarily decouple
the general damped system of Fig. 1.5. However, if there is no anti-pitch spring or
anti-pitch damping between the front and rear suspensions, then equations of motion

"
˛ C � 1 � ˛

1 � ˛ ˛ C 1
�

#� Rx1

Rx2

�
C
�
2�1�1 0

0 2�2�2

� � Px1

Px2

�
C
�
�2

1 0

0 �2
2

� �
x1

x2

�

D
�
2�1�1 0

0 2�2�2

� � Py1

Py2

�
C
�
�2

1 0

0 �2
2

� �
y1

y2

�
(1.21)
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2�1�1 D c1

m
ˇ (1.22)

2�2�2 D c2

m
ˇ (1.23)

will be decoupled by ˛ D 1

"
˛ C � 0

0 ˛ C 1
�

#� Rx1

Rx2

�
C
�
c1 0

0 c2

� � Px1

Px2

�
C
�
�2

1 0

0 �2
2

� �
x1

x2

�

D
�
2�1�1 0

0 2�2�2

� � Py1

Py2

�
C
�
�2

1 0

0 �2
2

� �
y1

y2

�
(1.24)

The equations of motion of the independent system of Fig. 1.4 may also be
written as

m.1 � "/ Rx1 C c1 Px1 C k1x1 D c1 Py1 C k1y1 (1.25)

m" Rx2 C c2 Px2 C k2x2 D c2 Py2 C k2y2 (1.26)

which are consistent with the decoupled equations (1.24) because of

" D 1 C �

� �2
2

(1.27)

To examine the effect of the decoupling condition and having independent front
and rear model of a car, let us compare the responses of the model of Fig. 1.5 using
(1.21) for different ˛.

Consider a car with the given characteristics in Table 1.1.

Table 1.1 Specification of a
sample car

Specification Nominalvalue

m .kg/ 420

a1 .m/ 1:4

a2 .m/ 1:47

l .m/ 2:87

k1 .N=m/ 10,000
k2 .N=m/ 13,000
c1 .N s=m/ 1,000
c2 .N s=m/ 1,000
ˇ 4:00238

� 1:05

�1 95:2947

�2 123:8832

�1 0:05

�2 0:0384
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Fig. 1.6 Case 1: oscillations of the front of the car with ˛ > 1

Fig. 1.7 Case 1: oscillations of the rear of the car with ˛ > 1

Figures 1.6–1.14 can be used for a comparison to show the effects of uncoupling
the system when the car goes over a step

y1 D 0:1 m y1 D 0:1H

�
t � l

v

�
m (1.28)

where H .x/ is the Heaviside function

H .t � �/ D
�

0 t � �

1 t > �
(1.29)
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Fig. 1.8 Case 1: angular oscillations of the car with ˛ > 1

Fig. 1.9 Case 2: oscillations of the front of the car with ˛ D 1

Each set of three figures are for a value of ˛ which varies from smaller than 1 to 1

and then bigger than 1.

• Case 1: ˛ > 1

˛ D 1:2726 ; r D 1:618 ; Iy D 1100

• Case 2: ˛ D 1

˛ D 1 ; r D 1:434 ; Iy D 864:36

• Case 3: ˛ < 1

˛ D 0:8098 � r D 1:291 � Iy D 700
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Fig. 1.10 Case 2: oscillations of the rear of the car with ˛ D 1

Fig. 1.11 Case 2: angular oscillations of the car with ˛ D 1

Figures 1.6–1.8 depict the oscillations of the front x1, rear x2, and pitch � D
.x2 � x1/ =l for ˛ D 1:2726 > 1. Figures 1.9–1.11 show x1, x2, and � for ˛ D 1,
and Figs. 1.12–1.14 show x1, x2, and � for ˛ D 0:8098 < 1.

Figures 1.6, 1.9, and 1.12 illustrate the oscillations of the front part of the
vehicle after hitting the step for three different values of ˛. Similarly, Figs. 1.7, 1.10,
and 1.13 illustrate the oscillations of the rear part of the vehicle after hitting the step
for three different values of ˛. As it can be seen in Figs. 1.7 and 1.13 oscillations
start with small amplitude, which does not exist in Fig. 1.10. The pitch vibrations
behavior of the car for three different values of ˛ can be compared in Figs. 1.8, 1.11,
and 1.14.
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Fig. 1.12 Case 3: oscillations of the front of the car with ˛ < 1

Fig. 1.13 Case 3: oscillations of the rear of the car with ˛ < 1

The delay in the oscillation of the rear of the vehicle is caused by the time lag
between the front and the rear wheels hitting the step. This time lag is dependent
to the wheelbase of the vehicle and also changes with the traveling speed shown by
� D l

v .
Figure 1.10 shows the oscillation of the rear of a vehicle with ˛ D 1 and

shows that in this case the oscillation of the front wheel, which has already started
� seconds ago, does not affect the oscillation of the rear part. That is a result of
locating the vibration nodes of the vehicle at the rear and front springs, respectively,
the condition for uncoupling.

However, considering Figs. 1.7 and 1.13 for values ˛ > 1 and ˛ < 1,
respectively, the effect of the front oscillation on the rear, is observable in the form
of small amplitude oscillations. The time lag oscillation in Fig. 1.7 starts off in the
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Fig. 1.14 Case 3: angular oscillations of the car with ˛ < 1

form of an upward motion which indicates that the oscillation node of the front
wheel is located behind the rear wheel having ˛ > 1. The condition of the car is
reverse for the values of ˛ < 1 in Fig. 1.13.

The same conclusions arises by comparing the set of figures which illustrate the
pitch motion in the vehicles after hitting the step, Figs. 1.8, 1.11, and 1.14. The angle
between the front and rear of the vehicle has been calculated and plotted by:

� D x2 � x1

l
(1.30)

Smaller pitch motion in Fig. 1.11 for ˛ D 1 makes it obvious that an uncoupled
system provides a more comfortable ride compared to the pitch angle oscillation � ,
in Figs. 1.8 and 1.14.

1.3 No Flat Ride Solution for Linear Suspension

The time lag between the front and rear suspension oscillations is a function of the
wheelbase, l , and speed of the vehicle, v. Soon after the rear wheels have passed
over a step, the vehicle is at the worst condition of pitching. Olley experimentally
determined a recommendation for the optimum frequency ratio of the front and rear
ends of cars. His suggestion for American cars and roads of 1950s was to have the
natural frequency of the front approximately 80% of that of the rear suspension.

To examine Olley’s experimental recommendation and possibly make an analyt-
ical base for flat ride, let us rewrite the equation of motion (1.25) and (1.26) as:

Rx1 C 2�1 Px1 C k1

m.1 � "/
x1 D 2�1 Py1 C k1

m.1 � "/
y1 (1.31)
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Rx2 C 2��1 Px2 C kk1

m"
x2 D 2��1y2 C kk1

m"
y2 (1.32)

where

� D �2

�1

D c1

c2

"

1 � "
(1.33)

k D k2

k1

D k1

k2

"

1 � "
(1.34)

�1 D c1

m.1 � "/
(1.35)

�2 D c2

m"
(1.36)

Parameters k and � are the ratio of the rear/front spring rates and damping ratios,
respectively.

The necessity to achieve a flat ride provides that the rear system must oscillate
faster to catch up with the front system at a reasonable time. At the time both systems
must be at the same amplitude and oscillate together afterwards. Therefore, an ideal
flat ride happens if the frequency of the rear system be higher than the front to
catch up with the oscillation of the front at a certain time and amplitude. Then, the
frequency of the rear must reduce to the value of the front frequency to oscillate in
phase with the front. Furthermore, the damping ratio of the rear must also change
to keep the same amplitude. Such a dual behavior is not achievable with any linear
suspension. Therefore, theoretically, it is impossible to design linear suspensions
to provide a flat ride, as the linearity of the front and rear suspensions keep their
frequency of oscillation constant.

1.4 Near Flat Ride Solution for Linear Suspensions

To design the rear suspension parameters for a given set of front parameters to
achieve a reasonable flat ride condition, we rephrase the problem by introducing a
near flat ride condition. The rear suspension must have proper parameters and higher
frequency to reach the same amplitude as the front suspension at a reasonable time
before the oscillations die out. This brings the vehicle in a flat condition. Then the
oscillation of the system dies out before the pitch mode significantly appears again.
A near flat ride situation is shown in Fig. 1.15, for a car going over a unit step.
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Fig. 1.15 Response of the front and rear suspensions of a near at ride car to a unit step

Solving the equations of motion (1.31) and (1.32) for x1 and x2 for a unit step
input yields

x1 D 1 � e
��1!t
p

1�" .cos

s
1 � �2

1

1 � "
!t C �1q

1 � �2
1

sin

s
1 � �2

1

1 � "
!t/ (1.37)

t � 0

x2 D

8̂
ˆ̂<
ˆ̂̂:

0 t < 0

1 � e���1

p
k
" .t��/.cos

q
k.1��2�2

1 /

"
!.t � �/

C ��1p
1��2�2

1

sin
q

k.1��2�2
1 /

"
!.t � �//

t � 0
(1.38)

where

! D
r

k1

m
(1.39)

� D l

v
(1.40)

As a reasonable catch up time, we search for the conditions such that both systems
reach their third equal peak amplitude at the same time.
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The third peak of x1 happens at the time:

tp1 D 3�
p

1 � "

!

q
1 � �2

1

(1.41)

where its displacement is:

x1 D 1 C exp.
�3��1q

1 � �2
1

/ (1.42)

The third peak of x2 happens at

tp2 D � C
3�

q
k
"

!

q
1 � �2�2

1

(1.43)

where its displacement is

x2 D 1 C exp.
�3���1q
1 � �2�2

1

/: (1.44)

The conditions that x1 and x2 meet after one and a half oscillations are:

x1 D x2 (1.45)

tp1 D tp2 (1.46)

which yield:

1 C exp.
�3��1q
1 � �2

1

/ D 1 C exp.
�3���1q
1 � �2�2

1

/ (1.47)

3�
p

1 � "

!

q
1 � �2

1

D � C
3�

q
k
"

!

q
1 � �2�2

1

: (1.48)

Equation (1.47) is independent of the spring ratio k and can be solved for damping
ratio �

� D 1: (1.49)
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Fig. 1.16 Illustrates the plot of k versus � , for different " from 0:2 to 0:8

It indicates that the third peak of the motion of the front and rear of the car will be
equal provided the damping coefficient of the front and rear suspensions are equal.

Solving (1.48) for spring ratio k yields:

k D Z1

Z2�2 C Z3� C Z4

(1.50)

where

Z1 D �9"�2m.�1 C �2
1 / (1.51)

Z2 D .�2�4
1 � �2�2

1 C 1 � �2
1 /k1 (1.52)

Z3 D 6�m.�2�2
1 � "�2�2

1 � 1 C "/

s
�k1.1 � �2

1 /

m." � 1/
(1.53)

Z4 D �9�2m."�2�2
1 � " C 1 � �2�2

1 / (1.54)

Using a set of nominal values,

� D 1 m D 420 �1 D 0:4 k1 D 10000: (1.55)

Figure 1.16 illustrates the plot of k versus � , for different " from 0:2 to 0:8. Using
this graph, we can determine the value of spring ratio k for a given " D a1=l

and � D l=v. Because for a given car, the values of " and l are fixed, the graph
determines the required k D k2=k1 at any speed v.

Considering the existing designs of normal street vehicles, only a very small
section of the horizontal axis of Fig. 1.16 should be investigated. The wheelbase
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Fig. 1.17 Plots of k versus � for �1 D 0:5 and different " in the domain 0:1 < � < 0:875

for normal street vehicles is usually not less than 2 m or longer than 3.5 m. Let us
assume that the speed of a car which goes over a step and is expected to show a
flat ride, is between 4 and 20 m/s. Therefore, the practical domain of the time lag
between the front and rear wheels would be 0:1 < � < 0:875.

Furthermore, the mass center of street cars are normally in the front half of the
wheelbase in order to provide understeer condition. Considering 0:4 < " < 0:6 will
cover all street and sports cars. Figure 1.17 shows how k varies with � for �1 D 0:5

and different " to provide a near flat ride. For any ", the required stiffness ratio
increases by increasing � . Therefore, the ratio of rear to front stuffiness increases
when the speed of the car decreases. It is because the frequency of the rear part
must be higher to catch up with the oscillations of the front. Figure 1.18 illustrates
the same information in the plane of ."; �/. It shows that for a constant k, how the
mass center of a car should change to provide a near flat ride. The value of " is a
decreasing function of � and therefore, the mass center of a car should get closer
to the front axle when the speed of the car increases. Ideally, the curves in both
Figs. 1.17 and 1.18 must be horizontal to have a constant stiffness ratio to achieve a
near flat ride at any speed. However, not only a flat ride is impossible to achieve, a
near flat ride also is not achievable by linear suspensions.

Figures 1.19–1.26 depict the similar information of Figs. 1.17 and 1.18 for
�1 D 0:4, �1 D 0:3, �1 D 0:2, and �1 D 0:1, respectively.

Let us consider having a vehicle with smart suspension, and the effect of change
of traveling speed of the vehicle on the near flat ride, Figs. 1.18, 1.20, 1.22, 1.24,
and 1.26 can be used as design charts. As an example, the average length of a sedan
vehicle has been taken equal to 2.6 m with a normal weight distribution of a front
differential vehicle 56=44 heavier at the front. Using the given information some
other values can be calculated as: a1 D 1; 144 mm and a2 D 1; 456 mm which
yields to " D 0:44. Assuming that the front suspension of the car has a damping of
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Fig. 1.18 � versus " for different spring rates

Fig. 1.19 Plots of k versus � for �1 D 0:4 and different " in the domain 0:1 < � < 0:875

�1 D 0:4, the diagram in Fig. 1.20 can be used by the smart suspension to provide
near flat ride in different speeds, by switching the spring rate to the required value.
Continuous variation of k is illustrated in Fig. 1.21. The horizontal line in Fig. 1.27
is showing the values that the spring should be switching to as the traveling speed
of the vehicle on the example changes, which is the ideal situation for near flat ride.
To use the same chart for vehicles with passive suspension, a target speed needs to
be chosen by the designer as the ideal speed for the vehicle to have a near flat ride.
The point in Fig. 1.27 is indicating that for a car with passive suspension, with a
wheelbase of 2:4 m, traveling speed of 29 km=h, to get a near flat ride a spring ratio
of k D 1:2 is needed.
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Fig. 1.20 � versus " for different spring rates for � D 0:4

Fig. 1.21 Plots of k versus � for �1 D 0:3 and different " in the domain 0:1 < � < 0:875

1.5 Nonlinear Damper

The force–velocity characteristics of an actual shock absorber can be quite complex
as is shown in Fig. 1.28. Although we may express the complex behavior using
an approximate function, analytic calculation can be quite complicated with little
design information. Furthermore, the representations of the exact shock absorber do
not greatly affect the behavior of the system. The simplest linear viscous damper
model is usually used for linear analytical calculation

FD D cvD; (1.56)

where c is the damping coefficient of the damper.
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Fig. 1.22 � versus " for different spring rates for � D 0:3

Fig. 1.23 Plots of k versus � for �1 D 0:2 and different " in the domain 0:1 < � < 0:875

As seen in Fig. 1.28 the bound and rebound forces of the damper are different, in
other words the force–velocity characteristics diagram is not symmetric. Practically,
a shock absorber compresses much easier than decompression. A reason is that
during rebound in which the damper extends back, it uses up the stored energy in the
spring. A high compression damping prevents to have enough spring compression to
collect enough potential energy. That is why in order to get a more reliable and close
to reality response for analysis on dampers, using bilinear dampers are suggested.
It is similar to a linear damper but with different coefficients for the two directions
[3]. The behavior of such damper models is illustrated in Fig. 1.29
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Fig. 1.24 � versus " for different spring rates for � D 0:2

Fig. 1.25 Plots of k versus � for �1 D 0:1 and different " in the domain 0:1 < � < 0:875

FD D
�

cDEvD Extension
cDCvD Compression

(1.57)

where cDE is the damping coefficient when damper is extended and cDC is the
damping coefficient when the damper is compressed.

An ideal dual behavior damper is one which does not provide any damping
while being compressed and, on the other hand, damps the motion while extending.
Based on this model, the nonlinear damper model’s behavior used for this study
is illustrated in Fig. 1.30. Using the nonlinear damper model and following the
same steps as the previous section, we can compare two systems to determine the
effectiveness of damping on the flat ride.
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Fig. 1.26 � versus " for different spring rates for � D 0:1

Fig. 1.27 Design chart for a smart suspension with a linear damper

v

fFig. 1.28 The force–velocity
characteristics of a real
damper
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v

f

DEc

DCc

Fig. 1.29 Force–velocity
characteristics of a bilinear
damper

v

f

c

reboundbound

Fig. 1.30 Force–velocity
characteristic of an ideal
nonlinear damper model

Equations (1.37) and (1.38) have been used to get the motion of the front and
rear of the vehicle after hitting a unit step. The only difference is that the motion is
investigated in three steps for the front and same for the rear. Ideally, the unit step
moves the ground up in no time and therefore the motion of the system begins when
y D 1 and the suspension is compressed. The first step is right after the wheel hits
the step and the damper starts extending which means the positive side of Fig. 1.30
would be in action. The second step is when the damper starts the compression
phase, and according to the figure the damping coefficient would be equal to zero.
The third step is when the damper starts extending again. Each of (1.37) and (1.38)
should be solved for the three steps separately in order to find the time and amplitude
of the third peak of the motion.

Figure 1.31 illustrates the behavior of the car equipped with a nonlinear damper
when going over a unit step input. Figure 1.32 also illustrates the behavior of the
same car if the damper was linear. Comparison of the behavior of the car for
linear and nonlinear dampers is plotted in Figs. 1.33 and 1.34 for front and rear
suspensions, respectively. The linear damper dissipates energy in both, bound and
rebound cycles, while the nonlinear damper dissipates energy only in rebound cycle.
Therefore, the linear damper is more effective in energy dissipation and damps the
system faster. This fact can be seen in both Figs. 1.33 and 1.34.

To compare the behavior of a car with both cycle linear damper and one cycle
nonlinear damper, we also analyze the opposite cycle nonlinear damper of Fig. 1.35.
The response of the car to the opposite cycle nonlinear damper is illustrated in
Fig. 1.36. Comparison of the linear and nonlinear dampers for the front and rear
suspensions is plotted in Figs. 1.37 and 1.38, respectively.
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Fig. 1.31 Response of the front and rear suspensions of a near flat ride car with ideal nonlinear
damper to a unit step

Fig. 1.32 Response of the front and rear suspensions of a car with linear damper to a unit step

1.6 Near Flat Ride Solution for Ideal, Nonlinear Damper

The conditions that x1 and x2 meet after one and a half oscillations are the same
as (1.45) and (1.46). The equation resulted from x1 D x2 has got � and �1 as
its variables and could be plotted as an explicit function of the variables which
interestingly shows that the value for � D �2=�1 must equal to 1 for any value for
damping coefficient of the front suspension. Therefore, regardless of the value of �1

the rear suspension should have an equal coefficient for the damper. The equation
resulted from tP1 D tp2 generates an equation to determine k D k2=k1. Figure 1.39
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Fig. 1.33 Comparison of the behavior of the front suspensions of the car for linear and nonlinear
dampers

Fig. 1.34 Comparison of the behavior of the rear suspensions of the car for linear and nonlinear
dampers

illustrates the spring ratio k D k2=k1 versus � D l=v, to have near flat ride with
ideal nonlinear damping, for different " D a1=l .

Once again, considering the existing designs street vehicles, only the small
section of 0:1 < � < 0:875 of Fig. 1.39 is applied. The mass center of street cars is
also limited to 0:4 < " < 0:6.

Figure 1.40 shows how k varies with � for �1 D 0:5 and different " to provide
a near flat ride with ideal nonlinear damper. For any ", the required stiffness ratio
increases by increasing � . Therefore, the ratio of rear to front stuffiness increases
when the speed of the car decreases. Figures 1.41–1.44 also provide the same design
graphs for �1 D 0:4, 0:3, 0:2, 0:1, respectively.
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v

f

c

reboundbound

Fig. 1.35 Force–velocity
characteristic of an opposite
cycle nonlinear damper
model

Fig. 1.36 Response of the front and rear suspensions of a near flat ride car with ideal nonlinear
damper to a unit step

Using a nonlinear damper for studying Olley’s flat ride tuning shows the same
behavior as a linear damper. So, the same trend as for the linear case can be taken
here. There will be a possibility of using the � versus " diagrams as a design chart.

1.7 The First Investigations

Maurice Olley was one of the first pioneers who introduced and studied the concept
of flat ride in vehicle dynamics. He was an English engineer born in 1889, who
during his life added a lot to the general knowledge of vehicle dynamics and is
counted as one of the great automobile engineers of his era. He is one of the founders
of modern vehicle dynamics. In his early career in the Rolls Royce design office, he
worked under Sir Henry Royce but the majority of his career was spent at Cadillac
in the USA and Vauxhall in England.
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Fig. 1.37 Comparison of the behavior of the front suspensions of the car for linear and opposite
cycle nonlinear dampers

Fig. 1.38 Comparison of the behavior of the rear suspensions of the car for linear and opposite
cycle nonlinear dampers

Olley worked directly for Sir Henry Royce and was in the United States for
some 10 years struggling to get off the ground the manufacture of Rolls-Royce
cars at Springfield, Massachusetts. The financial crash of 1929 put the skids under
the operation. His first task after moving to the Cadillac company in 1930 was
suspension and ride. He introduced the Rolls-Royce type of bump rig and began
a full program of ride development. He studied the oscillation of wheels and tires
and by applying some changes on the rig was soon studying the basic ride motions
of the car. In his paper [6] he published the results taken from his experiments using
the test rig for the first time.
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Fig. 1.39 The value of spring ratio k D k2=k1 versus � D l=v, to have near flat ride with ideal
nonlinear damping, for different " D a1=l

Fig. 1.40 " versus � , for different k for �1 D 0:5 to have near flat ride with ideal nonlinear
damping

He developed a bouncing table rig in General Motors proving grounds, on
which humans were vibrated vertically at different frequencies and amplitudes.
They would have increased the frequency till the person on the table begins to feel
uncomfortable. Using this equipment Olley explained the relation between vertical
acceleration and comfort over a range of frequencies. He generated a curve for
passenger comfort, which is very similar to the current ISO2631 standard.

Olley as well as other investigators in well-established car companies realized
that the pitch and roll modes of the car body are much more uncomfortable than
the bounce mode. The investigators’ effort focused on the suspension stiffness
and damping rates to be experimentally adjusted to provide acceptable vertical
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Fig. 1.41 " versus � , for different k for �1 D 0:4 to have near flat ride with ideal nonlinear
damping

Fig. 1.42 " versus � , for different k for �1 D 0:3 to have near flat ride with ideal nonlinear
damping

vibrations. However, the strategy about roll and pitch modes was to transform them
to bounce. Due to usual geometric symmetry of cars, as well as the symmetric
excitation from the road, roll mode is being excited much less than pitch mode.
Therefore, lots of investigations have been focused on adjustment of the front and
rear suspensions such that pitch mode of vibration transform to the bounce.

In the early 1930s most cars were built with fairly stiff springs at the front and
soft at the rear, with a r2

a1a2
ratio in pitch of about 0:8, where r is the pitch radius

of gyration of the car and a1 and a2 are the distance of the mass center, C , from
the front and rear axles, as shown in Fig. 1.45 [1]. However, based on what Olley
discovered, such a choice was against the mode transfer desire.
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Fig. 1.43 " versus � , for different k for �1 D 0:2 to have near flat ride with ideal nonlinear
damping

Fig. 1.44 " versus � , for different k for �1 D 0:1 to have near flat ride with ideal nonlinear
damping

Besides all the important facts that Olley discovered during his experiments,
the principle known as the flat ride tuning or Olley’s flat ride proved to be more
industry approved and accepted. After his publications [6–8] in which he advocated
this design practice, they became rules of practice.

We can summarize what has been said about ride and comfort in American
passenger cars by Olley as the following:

1. The front spring should be softer than the rear for flat ride tuning. This will
promote bouncing of the body rather than pitching motions at least for a greater
majority of speeds and bump road situations. The front suspension should have



32 H. Marzbani and R.N. Jazar

a1a2

x

C

m

y2 y1

m1m2

θ

Fig. 1.45 Bicycle car model used for analyzing vibrations

a 30% lower ride rate than the rear suspension, or the spring center should be at
least 6.5% of the wheelbase behind the center of gravity. Although this does not
explicitly determine the front and rear natural frequencies, since the front-rear
weight distribution on passenger cars is close to 50–50, it will generally assure
that the rear frequency is greater than the front.

2. The ratio r2

a1:a2
normally approaches unity. This reduces vibration interactions

between front and rear because the two suspensions can now be considered as two
separate systems. As a consequence there will be less resonant build-ups on the
road and the pitching frequency will have a magnitude closer to that of bounce.

3. The pitch and bounce frequencies should be close together: the bounce frequency
should be less than 1:2 times the pitch frequency. For higher ratios interference
kicks resulting from the superposition of the two motions. This condition will
be met for modern cars because the dynamic index is near unity with the wheels
located near the forward and rearward extremes of the chassis.

4. Neither frequency should be greater than 1.3 Hz, which means that the effective
static deflection of the vehicle should exceed roughly 6 in.

5. The roll frequency should be approximately equal to the pitch and bounce
frequencies. To minimize roll vibrations the natural frequency in roll needs to
be low just as for the bounce and pitch modes.

Rowell and Guest [9] in 1923 identified the value of r2

a1:a2
being associated with

vehicles in which the front and rear responses were uncoupled. Olley was able to
investigate the issue experimentally and these experiments led him to the belief that
pitching motion was extremely important in the subjective assessment of vehicle
ride comfort. He built the Cadillac k2 rig in 1931 which was a 12 cylinder, 7

passenger Cadillac limousine of the period, fitted with front and rear outriggers
each of which could carry up to 327 kg made up in 27 kg weights. To their surprise,
under these supposedly ideal conditions, they still got an unsatisfactory ride. This
arrangement gave no fixed oscillation centers and the ride had no pattern. However,
by fitting all the weights they found that if the front spring static deflections are some
30% greater than the rear, then the revolutionary flat ride occurs. Olley’s explanation
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was that because the two ends of the car did not cross a given disturbance at the same
instant it was important that the front wheels initiated the slower mode and that the
rear wheels initiated the faster mode. This allowed the body movement at the rear
to catch up the front and so produce the flat ride.

The condition of Flat Ride is expressed in various detailed forms; however, the
main idea states that the front suspension should have a 30% lower ride rate then
the rear. The physical explanation for why this is beneficial in reducing pitch motion
is usually argued based on the time history of events following a vehicle hitting a
bump. First, the front of the vehicle responds “approximately in the well-known
damped oscillation manner.” At some time later, controlled by the wheelbase and
the vehicle speed, the rear responds in similar fashion. The net motion of the vehicle
is then crudely some summation of these two motions which minimizes the vehicle
pitch response [2].

Confirmation of the effectiveness in pitch reduction of the Olley design was
given by Best [1] over a limited range of circumstances. Random road excitation
was applied to a half-car computer model, with identical front and rear excitations,
considering the time delay generated by the wheelbase and vehicle’s speed. Pitch
suppression was associated with the wheelbase filtering effect. Pitch suppression
appeared to be necessarily associated with increases in bounce response, leaving in
unclear whether or not it is a worthwhile goal [10].

Sharp and Pilbeam [11] attempted a more fundamental investigation of the
phenomenon, primarily by calculating frequency response for the half-car over a
wide range of speed and design conditions. At higher speeds, remarkable reductions
in pitch response with only small costs in terms of bounce response were shown.
At low speeds, the situation is reversed. These behavioral features were shown to be
generic insofar as variations in mass center location, pitch inertia and damping level
were concerned, and the implications from the frequency responses were confirmed
by simulations with nonlinear asymmetric suspension damping.

Later on Sharp [10] discussed the rear to front stiffness tuning of the suspension
system of a car, through reference to a half-car pitch plane mathematical model.
He used new results relating to the frequency responses of the bouncing and pitching
motions of the car body to show that the pitch minimization mechanism of Olley’s
flat ride tuning “involves interference between the responses to the front and rear
axle inputs.” He showed that interference with respect to the rotational motion
implies reinforcement with respect to the translational motion, and vice versa. Sharp
concludes almost the same facts mentioned by Best and other researchers before
him, saying that at higher vehicle speeds, Olley tuning is shown to bring advantage
in pitch suppression with a very little disadvantage in terms of body acceleration.
At lower speeds, he continues, not only does the pitch tuning bring large vertical
acceleration penalties but also suspension stiffness implied are impractical from an
attitude control standpoint.

The flat ride problem was revisited by Crolla and King [2]. They generated
vehicle vibration response spectra under random road excitations. Some results
included the wheelbase filter effect, while others did not. Olley and reverse Olley
designs were simulated at speeds of 10, 20, 30, and 40 m/s, with the result that
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Olley design was good in pitch and bad in bounce in all cases. It was confidently
concluded that the rear/front stiffness ratio has virtually no effect on overall levels
of ride comfort.

In 2004, Odhams and Cebon investigated the tuning of a pitch-plane model of a
passenger car with a coupled suspension system and compared it to that of a conven-
tional suspension system, which followed the Rowell and Guest treatment [5]. They
believed that there is a significant benefit from coupling front and rear suspensions;
coupled suspensions with a “Hydrolastic” or “Hydragas” systems, in which the front
and rear suspension struts are connected hydraulically, have proved very effective
in some applications. The concluded that the Olley’s flat ride tuning provides a near
optimum stiffness choice for conventional suspensions for minimizing dynamic tire
forces and is very close to optimal for minimizing horizontal acceleration at the
chest (caused by pitching) but not the vertical acceleration.

Key Symbols

a1 Distance from the front wheel to the C

a2 Distance from the rear wheel to the C

c Damping coefficient
C Mass center
CDC Damping coefficient in compression
CDE Damping coefficient in extension
FD Damping force
I D mr2 mass moment
k D k2=k1

k1 Front spring rate
k2 Rear spring rate
kT Tire stiffness
kf Front spring rate
kr Rear spring rate
k0

F Front ride rate
k0

R Rear ride rate
l Wheelbase
m Mass
m1 Front mass portion
m2 Rear mass portion
q1 D �
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r Radius of gyration
� Time lag
tp1 Time of the third peak of the front
tp2 Time of the third peak of the rear
u1 First mode shape of the system
u2 Second mode shape of the system
v Velocity of the vehicle
vD Vertical velocity of the damper
x1 Vertical movement of the front wheel
x2 Vertical movement of the rear wheel
y1 Road input to the front wheel
y2 Road input to the rear wheel

Greek
˛ D r2=a1a2 nondimensional parameter
ˇ D l2=a1a2 nondimensional parameter
� Rate to front length ratio
� Pitch angle
" D a1=l nondimensional parameter
�1 Front damping ratio
�2 Rear damping ratio
� D �2=�1 rear to front damping ratio
�b Distance from bounce center to the C

�p Distance from pitch center to the C

!1 First natural frequency of the system
!2 Second natural frequency of the system
�1 D p

k1ˇ=m nondimensional parameter
�2 D p

k2ˇ=m nondimensional parameter
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Chapter 2
Light-Tracking Kinematics of Mobile Platform

Ahmad Salahuddin Mohd Harithuddin, Pavel M. Trivailo,
and Reza N. Jazar

Abstract The formulation of tracking mechanism used for a light-tracking system
is presented to maximize the collected energy. The solution considers the motion
of the illumination sources and the translational and rotational motion of the light-
receiver/collector. The tracker in consideration consists of two orthogonal rotary
actuators to provide a hemispherical pointing capability. The tracker is assumed to
be mounted on a mobile platform, such as a rover or a robot, which moves on a
given path. The tracker’s function is to change the orientation of the light-collector
to face and receive the maximum incident radiation from multiple light sources. As
the platform carrying the tracker is moving, the lights’ positions and intensity may
vary. This requires the tracker to actively point its payload towards the orientation
that receives maximum light intensity while being in motion. An example of an
indoor robot tracking radiant energy from fluorescent lights in a room is presented
to demonstrate the concept. In addition, the coordinate transformation method using
compound homogeneous transformation matrix is applied in the formula derivation.

2.1 Introduction

The function of a tracking system is to follow the motion of a relatively moving
object, such as a light source, for purposes such as surveillance and energy
reception. The current treatment of light tracking system usually deals with a single
target of interest—tracking the Sun’s motion for solar energy harvesting purposes.
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The equation of motion of the Sun is usually given in ecliptic coordinates [1].
Hence, it is necessary to perform a set of coordinate transformations to program
an Earth-based Sun-tracker to trace its motion. A more complicated example is a
mobile robot exposed to multiple light sources.

An example of a setting with multiple light sources can be found in an indoor
environment where radiance is provided by a combination of artificial and non-
artificial lights (for example, radiance from fluorescent lamps and window lighting).
The present photovoltaic panels are not optimized for extracting electrical power
from indoor radiation into direct current electricity; however, works by Randall
[10] and Sansoni et al. [12] show promises in the development of specialized
photovoltaic cells to be used in Sunless settings. Another interesting multiply-
lighted environment is a mobile robots in the polar regions. A solar-powered robot,
aptly named Cool Robot [8], is used to conduct scientific experiments in the extreme
climate of the South Pole. Exploiting the snowy environment, the solar panels are
designed to generate photovoltaic energy from both the Sun and its snow-reflected
component.

This article approaches the tracking system as a motion kinematics concept with
a focus on the formula used by tracker to follow the target motion. The source can be
from a single or multiple light sources. The tracker is assumed to be working without
any help from a photosensor, i.e. the tracker follows a precalculated translation and
orientation trajectory in order to receive maximum light intensity. In this article, the
derivation of such formula is presented for the application of a ground-fixed solar
tracker and a photovoltaic panels on a rover.

The existing methods for switching coordinates between reference frames use
either spherical trigonometric technique or rotation matrix. In this article, the
coordinate transformation includes both rotation and translation, using the 4 � 4

homogeneous transformation matrix.
To demonstrate the application of the analytical result, the problem of an

illumination tracking photovoltaic panel on a moving platform, under multiple
radiant energy sources is presented. The objective of the two-degree-of-freedom,
dual-axis tracker is to assure that the maximum possible radiant energy intensity
from multiple sources reaches the surface of the photovoltaic panels. To determine
the angular trajectories, i.e. the azimuth and elevation angles of the panel, and the
power usage of the system, the path of the vehicle and the illumination placements
around the environment must be known a priori. The trajectories are determined
such that the panel is oriented towards the direction which receives the most light
intensity. The method for the maximization of electricity production for an indoor
photovoltaic system in artificially lighted environment proposed in those paper is,
at least to the knowledge of the authors, a novelty in the field of the light tracking
system.
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2.2 Previous Work

Formula-based, light-tracking method receives considerable attention especially in
solar energy research as solar panels with tracking capabilities are more efficient
than fixed-panels in harvesting energy from the radiant source. Traditionally, the
equations for the apparent motion of the Sun and the intensity of the Sunray on an
angled surface are described using spherical trigonometry which is mainly based on
the work of astrodynamics [1]. Dealing with trigonometric calculation in technical
computing tools, however, is not as straightforward as compared to working with
matrix and vector operations. The vectorial approach, hence, has got more attention
from researchers and practitioners in describing tracking formulas [9, 11, 13].

The next development to achieve a general Sun-tracking formula is done by Chen
in conjunction with thermal solar energy [2]. They developed a tracking formula
for a heliostat to direct and focus Sunlight onto a fixed target on the Earth. The
formula is developed specifically for a rotation-elevation tracker. In 2006, Chen et
al. derived a more versatile formula that also is applicable for heliostat with any type
of orientation axes [3]. The formula can be used for an arbitrary located target.

Chong and Wong [4] derived a more general formula for the case of solar panels.
Unlike the reflector, the solar panel is required to align its normal axis parallel to the
Sun vector in order to receive maximum radiant energy. The formula is suitable for
the application of azimuth-elevation and tip-tilt trackers.

These developments, however, only deal with tracker a single object, i.e. the
Sun. The trackers in consideration of the authors also are assumed to be fixed on
the Earth-surface frame. This work presents an improvement to the versatility of the
existing formulas by generalizing the light tracking formula for any radiant energy-
harvesting mechanism, including artificial lights in indoor settings. This includes
the consideration of tracking multiple light sources and tracking on a moving
platform for application in rovers and mobile robots. This work also focuses on
the application of compound homogeneous transformation matrix in the problem of
tracking radiant energy.

The type of radiance collector in this study can exist in the form of solar cells and
indoor photovoltaic cells, which application requires the collector to be orientated
towards a light source. For intermediate light receiver application, such as parabolic
reflector or concentrator, the ray-tracing formula presented here can be further
modified to include reflected light analysis.

2.3 Types of Tracker

Trackers can be grouped into classes by the number of the rotational degree-of-
freedom: single axis trackers and dual axes trackers. Both types of trackers can be
grouped in several subclasses by the orientation of the axes.
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Fig. 2.1 Horizontal axis
tracker

Fig. 2.2 Vertical axis tracker

Fig. 2.3 Tilt axis tracker

2.3.1 Single Axis

Figure 2.1 shows a horizontal axis tracker’s structure with a long, rotatable
horizontal tube which is supported on bearing mounted on a frame structure. The
photovoltaic module is installed on the horizontal tube facing upward to track the
elevation of the Sun. A vertical axis tracker in Fig. 2.2 has an axis of rotation that
is vertical to the ground with slanted photovoltaic modules that changes orientation
from east to west to follow the azimuthal motion of the Sun. A tilted axis tracker
shown in Fig. 2.3 has a similar setup to its horizontal counterpart with the tube
slightly tilted several degrees from the ground.
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Fig. 2.4 Tilt-roll dual axis
tracker

Fig. 2.5 Azimuth-elevation
dual axis tracker

2.3.2 Dual Axes

Tilt-roll and azimuth-elevation are the two most commonly used dual axis configura-
tions in solar tracking system. These trackers are free to rotate about two orthogonal
axes, giving full orientation flexibility in tracking the Sun. The tilt-roll tracker has
a configuration where its primary axis of rotation is parallel to the ground and its
secondary axis is orthogonal to the primary axis as shown in Fig. 2.4. The azimuth-
elevation tracker rotates about the azimuth axis, which is parallel to the zenith axis,
as its primary axis and then rotates about the elevation axis, which is parallel to
the ground as shown in Fig. 2.5. With two rotational degree-of-freedom, a dual axes
tracker can track the Sun’s azimuth and elevation angles throughout daytime.

2.4 Illuminance and Light Vectors

To assess the problem quantitatively, the illumination characteristics in the environ-
ment must be calculated before any information can be provided to the tracking
control system. The direction of the brightest illumination with respect to vehicle’s
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position and orientation in the room must be predetermined. Radiant energy sources
for photovoltaic cells can be obtained from the Sun (one single source), its reflected
component (e.g., heliostats, snow), fluorescent tube lights, or window lighting.

2.4.1 Illuminance Computation

The illuminance received by a photovoltaic cells depends on the distance between
the radiant energy source emitter and the receiver. Generally, the illuminance, Es , is
inversely proportional to the square of the distance of the source [10],

Er D I

r2
(2.1)

where I is the light intensity and r is the distance of the receiver from the light
source. The illuminance Er can also be measured as a function of the angle of
incidence between the panel surface and the light direction [10],

E' D I cos ' (2.2)

where ' is the angle of incidence.
In the case of solar illuminance, the distance is not a factor; hence, Eq. (2.2) is

sufficient. For a more general case, we will assume that the irradiance received from
a light source is affected both by the distance between the emitter and the receiver
and the angle of incidence of the incoming light ray:

E D I

r2
cos ': (2.3)

In case of multiple light sources, we need to calculate the resultant of the amount
of the illuminance of light rays from multiple emitters at the photovoltaic panel
as shown in Fig. 2.6. Assuming that there are n emitters and the intensity of each
source is Ii , we combine illuminance from multiple sources by a linear combination.
The unit normal vector of the photovoltaic plane, On, is used to define the pointing
direction of the panel and the unit vector, Ori , represents the light direction from the
ith source as seen from the receiver:

E D
nX
i

Ii

r2
i

cos 'i D
nX
i

Ii

r2
i

On � Ori (2.4)

The objective of an automated tracker is to find the pointing direction such
that the photovoltaic panel receives the maximum possible radiant energy from the
multiple sources, that is, to find a vector On such that E in Eq. (2.4) is maximum.
Such vector On is defined as maximum illuminance vector. Note that, in this work,
Eq. (2.4) does not give the actual illuminance in photometry sense but is used to
provide a method to quantify the illuminance based on the distances and the incident
angles of multiple light sources with respect to the light tracking panel.
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Fig. 2.6 Light vectors described in spherical coordinate system centered at the collector panel

2.4.2 Light Vectors in Spherical Coordinate System

Radiant energy from artificial lights such as fluorescent tubes can be similarly
modeled as a point source or a line source. If the light emitter is modeled as a line
source, the illuminance will vary with the reciprocal of the distance r for a bounded
range ri1 < ri < ri2 .

To express the analytical steps as a general rule, radiant energy from artificial
source is modeled as a light ray coming from a point source.

Since the illuminance depends on the angle of incidence of the incoming light
and the distance of the emitter from the receiver, it is more intuitive to model the
artificial light ray vector using spherical coordinate system as shown in Fig. 2.6. In
spherical coordinate system, a point is specified using the radial distance of that
point from the origin, the polar angle ' measured from the zenith axis, and the
azimuth angle � which is orthogonal to the zenith axis.

2.5 Compound Homogeneous Transformation

In the derivation of tracking formula, it is important to describe the coordinate of the
target (light sources) and the tracker. Both the target and the tracker can be static or
moving. In the case of a Sun energy collector system, the target is moving while the
tracker is usually fixed to the ground. In the case of an indoor robot feeding voltage
or electric current from fluorescent lights, the targets are static while the tracker is
moving. To describe the motion of both the target and the tracker, it is necessary to
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define them in proper coordinate frames, the Earth-centered frame, the Earth-surface
frame and the collector panel frame. The motion of the light ray that is described in
one frame can be transformed to the collector panel frame for tracking purpose.

The previous Sun-tracking formulas [2, 3] are only applicable for a ground-fixed
tracker tracing the Sunlight. The formulas only involve rotation transformation since
there is no translating motion of the tracker itself.

This section is dedicated to the description of the technique used in coordinate
transformation. The technique described here takes into account the offset position
of the tracker from the reference point on the ground which requires a translational
transformation in addition to rotational transformation. This is useful for the
application of photovoltaic-powered rovers and robots.

For single-source tracking purpose, the coordinate transformation of a position
vector r between two frames, A and B , for a fixed tracker generally takes the
form of:

Ar D ARB
Br (2.5)

where R is the rotation matrix that transforms the vector r from B-frame to A-frame.
A tracking collector that is installed on a moving platform (e.g., rovers, robots),

however, requires a coordinate transformation that involves translation of the
platform as well. The coordinate transformation of a position vector r between two
frames, A and B , for a mobile tracker takes the general form of

Ar D ARB
Br C AdB (2.6)

where AdB is the 3-by-1 Cartesian vector denoting the origin of frame B from the
origin of frame A. It represents the distance of the tracker’s center from a fixed
reference point [5].

The rotation matrix and the translation vector in Eq. (2.6) can be combined into
a single 4-by-4 matrix ATB called the homogeneous transformation matrix:

ATB D

0
BB@

r11 r12 r13 d1

r21 r22 r23 d2

r31 r32 r33 d3

0 0 0 1

1
CCA D

�
ARB

AdB

0 1

�
(2.7)

The upper left 3-by-3 submatrix ARB denotes the orientation of a frame B with
respect to the frame A. The upper right 3-by-1 submatrix AdB denotes the position
of the origin of frame B relative to frame A. The lower left 1-by-3 zero matrix
denotes a perspective transformation, and the lower right element is a scaling factor
which in this case is one (no scaling).

Since the homogeneous transformation matrix is a 4-by-4 matrix, a vector needs
to be represented as a 4-by-1 vector for compatibility. The homogeneous coordinate
expression for such vector can be represented by adding the scaling factor 1 as the
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fourth element. Therefore, a vector r D .x y z/T can equally be expressed as a
homogeneous vector as follows

r4�1 D
�

r3�1

1

�
D

0
BB@

x

y

z
1

1
CCA (2.8)

Using the homogeneous transformation matrix and the homogeneous representation
of a vector, Eq. (2.6) can now be rewritten more concisely as

Ar D ARB
Br C AdB

D
�

ARB
AdB

0 1

�
.r4�1/ D

0
BB@

r11 r12 r13 d1

r21 r22 r23 d2

r31 r32 r33 d3

0 0 0 1

1
CCA
0
BB@

x

y

z
1

1
CCA

D ATB
Br (2.9)

More complete references on the properties of homogeneous transformation
matrix can be found in Jazar [6] and Legnani [7]. Three of the important properties
pertaining to the application in this work are reviewed here.

1. Decomposition of Homogeneous Transformation Matrix

The homogeneous transformation matrix ATB can be decomposed to matrix product
of a translation matrix ADB and a rotation matrix ARB :

ATB D ADB
ARB

D

0
BB@

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

1
CCA
0
BB@

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

1
CCA (2.10)

As Eq. (2.10) shows that the order of transformation is done by performing a
pure rotation followed by a pure translation. The product of the matrices is not
interchangeable

ATB D ADB
ARB ¤ ARB

ADB: (2.11)

Corollary of the decomposition rule, the homogeneous transformation matrix can
be modified to function as a pure translation matrix
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ATB D ADB D

0
BB@

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

1
CCA (2.12)

or a pure rotation matrix

ATB D ARB D

0
BB@

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

1
CCA (2.13)

2. Inverse Homogeneous Transformation Matrix

Given the homogeneous transformation matrix from a frame B to a frame A

ATB D
�

ARB
AdB

0 1

�
(2.14)

the homogeneous transformation matrix from the frame A to the frame B can be
obtained by inversing the matrix ATB

BTA D AT �1
B D

�
ARB

AdB

0 1

��1

D
�

ART
B �ART

B
AdB

0 1

�
(2.15)

Unlike rotation matrix in orthogonal frames, the homogeneous transformation
matrix is not orthogonal; hence, its inverse is not equal to its transpose

AT �1
B ¤ AT T

B : (2.16)

3. Compound Homogeneous Transformation Matrix

Transforming body coordinates between more than two frames can be done with
successive homogeneous transformation matrices. For example, if the homogeneous
transformation matrix from frame A to frame B , and another transformation matrix
to from frame B to frame C are

BTA D
�

BRA
BdA

0 1

�
C TB D

�
C RB

C dB

0 1

�
(2.17)

then transformation of body coordinates from frame A to frame C can be completed
with a single homogeneous transformation matrix by multiplying BTA and C TB in
order

C TA D C TB
BTA (2.18)
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2.6 Coordinate Frames and Transformation

The primary objective of tracking is to rotate the collector panel such that its normal
vector On is along the resultant light vector. The three main components in our
tracking system—the light source(s), the tracking collector panel, and the body
that is carrying the tracker—are more conveniently defined with each respective
reference frame. For example, the Sun movement can be modeled in an Earth-
centered frame, while the orientation of the collector panel is more appropriately
defined with a reference frame that is centered on its rotation axes. The coordinate
frames pertaining to these components need to be defined and transformation matrix
is required to transfer geometrical and kinematical information between the frames.

2.6.1 Earth-Centered Frame E

The Sun vector for solar tracking purposes is most conveniently defined in the Earth-
centered frame. Its position vector can be defined in the Earth-centered frame E as
a 3-by-1 vector as

ES D
0
@ cos ı cos !

� cos ı sin !

sin ı

1
A (2.19)

where ı is the declination angle and ! is the hour angle in the Earth-centered
coordinate frame.

2.6.2 Earth-Surface Frame S

To make the S-vector useful, a transformation from the Earth-centered frame E to
the Earth-surface is required. To do this, a frame S is attached at a point OS on the
Earth surface with a distance R0 from the center of the Earth. The xS -axis is always
oriented towards North, the yS -axis points West, and the zS is defined as the zenith
axis. The origin of the frame OS is located at a longitude 	 and latitude 
. The
distance vector S d is then expressed as

S d D
0
@ 0

0

R0

1
A (2.20)
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and the rotation matrix from the E-frame to the S -frame is

S RE D Rz;�Ry;�=2�
Rz;	 D
0
@� cos 	 sin 
 � sin 	 sin 
 cos 


sin 	 � cos 	 0

cos 	 cos 
 sin 	 cos 
 sin 


1
A (2.21)

Therefore, the transformation matrix from the Earth-centered E-frame and to the
Earth-surface S -frame, therefore, is expressed as

STE D
�

S RE
S d

0 1

�
D

0
BB@

� cos 	 sin 
 � sin 	 sin 
 cos 
 0

sin 	 � cos 	 0 0

cos 	 cos 
 sin 	 cos 
 sin 
 R0

0 0 0 1

1
CCA (2.22)

Now, the 4-by-1 Sun vector can be expressed in the Earth-surface frame S as

S S D S TE
ES (2.23)

The distance S d can be assumed to be zero for Sun-tracking purpose. However,
the formula here is treated generally to include satellite tracking where the relative
distance of the satellite with the center of the Earth and the tracker’s position are
important. For solar tracking purpose, R0 can be considered as zero.

2.6.3 Collector-Centered Frame C

The coordinate frame for the collector panel is shown in Fig. 2.7. The collector is
assumed to have an arbitrary orientation with respect to the surface of the Earth.
It is assumed also that the distance between the origin of the collector-centered C -
frame OC and the origin of the Earth-surface S -frame OS is negligible; hence, their
origins are coincident. The zC -axis is defined along the direction of the normal of
the collector plane, and the xC –yC plane is defined as the panel’s surface plane.
Initially, it is assumed that the orientation of the C -frame is parallel to the Earth-
surface S -frame.

1. Tip-Roll Dual Axis Tracker

To point the normal of the collector panel to the light vector, the C -frame is
turned from a coincident orientation with the S -frame about the yC -axis (primary
axis for the tip-tilt configuration) by �˛ degrees and then it is turned about the
xC -axis (secondary axis for the tip-roll configuration) by �ˇ degrees. Since both
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Fig. 2.7 Orientation of the panel-fixed C -frame with respect to the Earth-surface S-frame and the
Earth-centered E-frame for a ground-fixed tracker

frames share the same origin, only rotation matrix is required to transform from the
S -frame to the C -frame:

C RS D Rx;�ˇRy;�˛ D
0
@1 0 0

0 cos ˇ � sin ˇ

0 sin ˇ cos ˇ

1
A
0
@ cos ˛ 0 sin ˛

0 1 0

� sin ˛ 0 cos ˛

1
A

D
0
@ cos ˛ 0 sin ˛

sin ˇ sin ˛ cos ˇ � sin ˇ cos ˛

� cos ˇ sin ˛ sin ˇ cos ˇ cos ˛

1
A (2.24)

Therefore the transformation matrix for a ground-fixed, tip-roll dual axis tracker
becomes

C TS D

0
BB@

cos ˛ 0 sin ˛ 0

sin ˇ sin ˛ cos ˇ � sin ˇ cos ˛ 0

� cos ˇ sin ˛ sin ˇ cos ˇ cos ˛ 0

0 0 0 1

1
CCA (2.25)

2. Azimuth-Elevation Dual Axis Tracker

For azimuth-elevation configuration, the C -frame is turned from a coincident
orientation with the S -frame about its primary zC -axis by �˛ degrees, and then
about its secondary xC -axis by �ˇ degrees. The rotation matrix is required to
transform from the S -frame to the C -frame in the azimuth-elevation configuration
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C RS D Rx;�ˇRz;�˛ D
0
@1 0 0

0 cos ˇ � sin ˇ

0 sin ˇ cos ˇ

1
A
0
@cos ˛ � sin ˛ 0

sin ˛ cos ˛ 0

0 0 1

1
A

D
0
@ cos ˛ � sin ˛ 0

cos ˇ sin ˛ cos ˇ cos ˛ � sin ˇ

sin ˇ sin ˛ sin ˇ cos ˛ cos ˇ

1
A (2.26)

Therefore the transformation matrix for a ground-fixed, azimuth-elevation dual axis
tracker becomes

C TS D

0
BB@

cos ˛ � sin ˛ 0 0

cos ˇ sin ˛ cos ˇ cos ˛ � sin ˇ 0

sin ˇ sin ˛ sin ˇ cos ˛ cos ˇ 0

0 0 0 1

1
CCA (2.27)

The rotation matrices for a tilt-roll and an azimuth-elevation configurations are
presented here. For any other dual axis tracker configuration, Appendix provides
the list of local frame rotation matrices to transform the coordinates from the Earth-
surface frame S to the collector panel frame C .

2.6.4 Moving Platform Body Frame B

In case of mobile trackers where the tracker is installed on a moving platform such
as a vehicle, or a robot, another body-fixed frame needs to be defined to take into
account the translational and rotational motions of the platform. Its origin OB is
assumed to coincide with the origin of the collector-centered C -frame. The distance
of the shared origin from the Earth-surface fixed reference point OS is described by
a vector B d

S d D

0
BB@

dx

dy

0

1

1
CCA (2.28)

as it is moving on the x–y plane only. Figure 2.8 illustrates the coordinate frames.
Assuming the movement of the platform is much less than the radius of the Earth,
the platform can be considered as translationally static while tracking the Sun. For
the case of artificial light tracking, the distance of the collector to the sources of
light is important. For Sun-tracking purpose, the distance vector Bd can practically
be considered zero.
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Fig. 2.8 Orientation of the platform-fixed B-frame and the panel-fixed C -frame with respect to
the Earth-surface S-frame for a mobile tracker

The B-frame’s orientation is assumed to be parallel to the orientation of the
Earth-surface S -frame initially with its xB -axis pointing North, the yB -axis pointing
West, and the zB -axis in the zenith direction. The platform body frame B rotates
about its zB -axis by � degrees. Thus, its transformation matrix is expressed as

BTS D
�

BRS
Bd

0 1

�
D

0
BB@

cos � sin � 0 dx

� sin � cos � 0 dy

0 0 1 0

0 0 0 1

1
CCA (2.29)

Therefore, for a collector-frame C in B in tip-roll configuration, the transformation
matrix from S -frame to C -frame becomes

C TS D C TB
BTS

D

0
BB@

c˛c� c˛s� s˛ dx

sˇ s˛ c� � cˇ s� sˇ s˛ s� C cˇ c� �sˇ c˛ dy

�s˛ cˇ c� � sˇ s� �s˛ cˇ s˛ C sˇ c� cˇ c˛ 0

0 0 0 1

1
CCA (2.30)
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For azimuth-elevation configuration, the transformation matrix from S -frame to C -
frame is

C TS D C TB
BTS

D

0
BB@

cos ˛ C � � sin ˛ C � 0 dx

cos ˇ sin ˛ C � cos ˇ cos ˛ C � � sin ˇ dy

sin ˇ sin ˛ C � sin ˇ cos ˛ C � cos ˇ 0

0 0 0 1

1
CCA (2.31)

2.7 Example

A mobile robot carrying photovoltaic panels is moving across the floor of an indoor
environment which is lit by several artificial lights attached on the ceiling. The
panels orientation is controlled by a light-tracking that points the direction of the
brightest illuminance. As the photovoltaic panel is translating across the room, the
tracker has to actively find the brightest illuminance based on its relative position
with respect to the light sources.

2.7.1 Trajectory Constraint

The indoor environment is assumed to be a room of 20 m in length and 10 m in
width, with the height of a standard office room’s ceiling which is approximately
2.5 m. Six light emitters modelled as point sources are positioned uniformly as
shown in Fig. 2.9.

Fig. 2.9 An indoor environment with six ceiling-fixed light emitters and the path for the mobile
tracker. The duration from the starting to the end point is 20 s



2 Light-Tracking Kinematics of Mobile Platform 53

Fig. 2.10 Dual-axis light
tracker configuration used in
this example

To illustrate the light-tracking motion and the requirement for the directional
control system, a path for the vehicle is defined a priori. The vehicle is to follow the
path at a constant speed while maintaining its direction parallel to the tangent of the
path line.

2.7.2 Dual-Axis Tracker

A conceptual illustration of the dual-axis tracking system is shown in Fig. 2.10.
The mechanism is similar to an azimuth-altitude solar tracker which has its primary
axis vertical to the local, body-frame of the vehicle which is called the azimuth or
the yaw axis, and a secondary axis normal to the primary axis which is referred to
as the elevation or the pitch axis. These two axes intersect at the wrist point. The
orientation of the face of the panel is directed by two independent rotary actuators
which control the yaw angle ˛ and the pitch angle ˇ. The amount of angular
displacements and velocities depends on the panel’s relative position with respect to
the light emitters and the speed of the vehicle.

2.7.3 Reference Frames

We define a global reference frame G that is attached at a fixed reference point in
the room with its X–Y plane describing the floor and the Z-axis pointing towards
the ceiling. The positions of the light emitters and the mobile robot will be referred
to this reference frame. A body-fixed frame, B , is attached to the vehicle which is
moving in the G-frame. The light vectors are calculated in the B-frame in terms of
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Fig. 2.11 Reference frames association for a mobile light-tracker. The vehicle body-fixed B-
frame has a translation distance of d and a rotation angle of � about the global Z-axis. The collector
panel-fixed C -frame shares the same origin as the B-frame

azimuth angle � and elevation angle 	, which would define their angles of incidence
on the vehicle. Another body-frame C is attached to the mobile robot, sharing the
same origin with B and follows the orientation of the vehicle, which is denoted
by the angle � about the zB -axis. The input angles for both axes of the tracker are
defined in this reference frame based on the azimuth and elevation angles expressed
in B . These reference frames are depicted in Fig. 2.11.

The problem can be stated as the following: given the vehicle’s position
and its orientation with respect to a fixed, global reference frame, what are the
angular displacements needed by the rotary actuators of the tracker to orient the
photovoltaic panel to the direction of the brightest illuminance from an arbitrary
panel orientation?

2.7.4 Computing the Illuminance Received by Collector Panel

Equation (2.4) is used as the basis in computing the illuminance received by the
collector panel on the moving robot. The light intensity Ii of each source is assumed
to be of a unit magnitude. Since the collector panel is moving, the illuminance
received E is dependent on the position (distance) and the angle of incident of the
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light sources with respect to the collector panel orientation. The position of the
i th source at time t is recorded as ri .t/ and the pointing direction of the panel is
recorded as n.t/.

A step-by-step procedure for the algorithm is detailed as below:

1. Define the position vector of the light source in its natural frame (Earth-centered
frame E for Sun tracking and the Earth-surface frame S for ground-fixed
artificial light sources). For example, the position of an artificial light in an indoor
environment is defined as a vector r in G.Gr/

Gr D position vector of light source as seen in G (2.32)

2. The body carrying the collector panel is assumed to be translating across the
room on a prescribed path. To find the light position with respect to the body at a
particular position in the G-frame, transform the vector r in the body-fixed frame
B using the homogeneous transformation matrix BTG

Br D BTG
Gr (2.33)

3. Assuming the collector-centered frame C is different from the B-frame, another
transformation is done to express the vector r in the C -frame

C r D C TB
Br D C TB

BTG
Gr (2.34)

4. The vector C r is expressed in the Cartesian coordinates (x; y; z). The vector is
transformed into spherical coordinates (r; �; 	)

C r D
0
@x

y

z

1
A !

0
@r

�

	

1
A (2.35)

5. Define the pointing direction of the collector panel n in terms of a unit vector in
spherical coordinates to reduce the variables from the Cartesian coordinates x,
y, and z to two angle variables as only the direction of the panel is concerned. As
the distance is not of importance, the radial distance can be defined as 1

On D
0
@1

˛

ˇ

1
A (2.36)

6. To find the optimum orientation n that would receive the most illumination from
the light source, Eq. (2.4) is used. Since the variables in this equation are ˛ (yaw
angle) and ˇ (pitch angle) only, a 3D plot of illuminance E vs. ˛ vs. ˇ can be
used to find the best Œ˛�ˇ�� pair that gives the largest E value:
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Fig. 2.12 A three-dimensional plot of illuminance, E vs. azimuth angle, ˛ vs. pitch angle, ˇ. For
Example 1, the collector panel receives the brightest illuminance at the instance t D 9 s when its
azimuth angle is 277ı and its pitch angle is 66ı

Fig. 2.13 A three-dimensional plot of illuminance, E vs. azimuth angle, ˛ vs. pitch angle, ˇ. For
Example 2, the collector panel receives the brightest illuminance at the instance t D 9 s when its
azimuth angle is 274ı and its pitch angle is 55ı

E D
nX
i

1

r2
i

C On � C Ori

Note that E is just a quantification of the intensity of the light received, not
illumination in photometric. Examples of the 3D plot are shown in Figs. 2.12
and 2.13.

7. These steps are repeated for each new point in the prescribed path and the history
of Œ˛�ˇ�� is recorded for every point.
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Fig. 2.14 An indoor environment with a ceiling-fixed light emitter and the path for the mobile
tracker. The duration from the starting to the end point is 20 s

2.7.5 Example 1

Let us consider a simple problem where the room is lit by one artificial light at

point GL D 	
5:0 2:0 2:5


T
as shown in Fig. 2.14. To use this information and

to transform the light vector GL to the collector panel frame, we need to perform
three coordinate transformations: from the G-frame (GL) to the vehicle’s B-frame
(BL) to the collector panel’s C -frame (C L). Following Eq. (2.31), the homogeneous
transformation matrix can be expressed as

C L D C TB
BTG

GT GL

D

0
BB@

cos ˛ C � � sin ˛ C � 0 X

cos ˇ sin ˛ C � cos ˇ cos ˛ C � � sin ˇ Y

sin ˇ sin ˛ C � sin ˇ cos ˛ C � cos ˇ 0

0 0 0 1

1
CCA
0
BB@

5:0

2:0

2:5

1

1
CCA (2.37)

where dx.t/ and dy.t/ are the positions of the vehicle in the G-frame, as shown in
Fig. 2.15, and �.t/ is the vehicle’s orientation with respect to the G-frame, as shown
in Fig. 2.16. These quantities are known as the vehicle’s path is prescribed.

The time histories of the yaw angle ˛.t/ and the pitch angle ˇ.t/ for the tracker
under a single artificial light are shown in Figs. 2.17 and 2.18. Figure 2.12 shows an
example of illuminance received by the collector panel as a function of yaw angle
and pitch angle at time t D 9 s. As shown in Fig. 2.19, the illuminance received by
a dual-axis tracker is significantly higher compared to a non-tracking, zenith-fixed
collector panel.
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Fig. 2.15 Position of the mobile tracker with respect to the global frame in x, y, and z-direction
over time

Fig. 2.16 Orientation of the mobile tracker with respect to the global frame � (degree) vs. time
(second)

2.7.6 Example 2

We assume the tracker is equipped on a moving vehicle under multiple lighting as
shown in Fig. 2.9. The positions of the six lights are:

GL1 D 	
5:0 2:0 2:5


T
GL2 D 	

Œ5:0 2:0 2:5

T

GL3 D 	
Œ10 2:0 2:5


T
GL4 D 	

10 �2 2:5

T
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Fig. 2.17 Yaw angle ˛

(degree) vs. time (second) for
the single light emitter case

Fig. 2.18 Pitch angle ˇ

(degree) vs. time (second) for
the single light emitter case

GL5 D 	
10 2 2:5


T
GL6 D 	

15 �2 2:5

T

As the vehicle is moving across the room, the light intensity received by the collector
panel is varying; therefore, the panel’s orientation cannot be a function of the fixed
positions of the lights. At each discrete point of the vehicle’s path, d, each light
position is calculated and the direction of the brightest illumination is denoted by
On.t/ which maximizes Eq. (2.4)

max Er.t/ D
nX
i

1

r2
i .t/

On.t/ � Ori .t/ (2.38)
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Fig. 2.19 Comparison of the brightness (illumination) received for a fixed panel and a tracking
panel for the single light emitter case

Fig. 2.20 Yaw angle ˛

(degree) vs. time (second) for
the multiple light emitters
case

Prior to finding the vector On.t/ (Step 5), each light vector Gri needs to be rotated to
the collector panel’s frame C

C ri D C TB
BTG

GT Gri

D

0
BB@

cos ˛ C � � sin ˛ C � 0 0

cos ˇ sin ˛ C � cos ˇ cos ˛ C � � sin ˇ 0

sin ˇ sin ˛ C � sin ˇ cos ˛ C � cos ˇ 0

0 0 0 1

1
CCA Gri (2.39)

where dx.t/ and dy.t/ are the known positions of the vehicle in the G-frame
(Fig. 2.15), and �.t/ is the vehicle’s orientation with respect to the G-frame
(Fig. 2.16).
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Fig. 2.21 Pitch angle ˇ

(degree) vs. time (second) for
the multiple light emitters
case

Fig. 2.22 Comparison of the brightness (illumination) received for a fixed panel and a tracking
panel for the multiple light emitters case

The time histories of the yaw angle ˛ and the pitch angle ˇ for the tracker
under multiple lights condition are shown in Figs. 2.20 and 2.21. Figure 2.13 shows
an example of illuminance received by the collector panel as a function of yaw
angle and pitch angle at time t D 9 s. Figure 2.22 shows that the dual-axis tracker
collects significantly more illuminance in the multi-light environment compared to
a fixed-panel.

2.8 Conclusions

The general light-tracking formula for generating power from radiation has been
derived using compound homogeneous transformation method. The newly derived
formula is more general mathematical solution for any dual-axis light tracker
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as it can be applied to trackers on mobile platforms such as rovers and robots.
The formula can also be employed on any conventional Sun-trackers and for
indoor environment implementing orientatable photovoltaic modules. The formula,
however, is limited for platforms moving on a smooth, two-dimensional plane.

The following suggestions may be included in the future studies of tracking
system:

1. A three-dimensional translation motion for the mobile platform for the appli-
cation of rovers in an uneven terrain. The derivation of the formula must take
into account the pitching and rolling motion of the vehicle itself to orient its
photovoltaic panels towards the radiance source.

2. Calculation of the light vector from extraterrestrial objects, such as Mars or
Jupiter, for the application of a lunar rovers.

3. Sun-tracking formula as a function of Earth orbit elements for spacecraft
application.

Appendix: Local Frame Double Rotation

The collector panel frame rotation matrices about local axes is presented in this
appendix. The rotation matrix can be used for any six combination of primary
and secondary axes to transform coordinates from the Earth-surface frame (global
frame) to the collector panel frame (local frame). The angle about the primary axis
is denoted by ˛ and the angle about the secondary axis is denoted by ˇ.

1. Primary: x-axis Secondary: y-axis

Ry;�ˇRx;�˛ D
0
@ cos ˇ sin ˛ sin ˇ cos ˛ sin ˇ

0 cos ˛ � sin ˛

� sin ˇ cos ˇ sin ˛ cos ˛ cos ˇ

1
A (2.40)

2. Primary: x-axis Secondary: z-axis

Rz;�ˇRx;�˛ D
0
@cos ˇ � cos ˛ sin ˇ sin ˛ sin ˇ

sin ˇ cos ˛ cos ˇ � cos ˇ sin ˛

0 sin ˛ cos ˛

1
A (2.41)

3. Primary: y-axis Secondary: x-axis (tip-tilt configuration)

Rx;�ˇRy;�˛ D
0
@ cos ˛ 0 sin ˛

sin ˛ sin ˇ cos ˇ � cos ˛ sin ˇ

� cos ˇ sin ˛ sin ˇ cos ˛ cos ˇ

1
A (2.42)
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4. Primary: y-axis Secondary: z-axis

Rz;�ˇRy;�˛ D
0
@cos ˛ cos ˇ � sin ˇ sin ˛ cos ˇ

cos ˛ sin ˇ cos ˇ sin ˛ sin ˇ

� sin ˛ 0 cos ˛

1
A (2.43)

5. Primary: z-axis Secondary: x-axis (azimuth-elevation configuration)

Rx;�ˇRz;�˛ D
0
@ cos ˛ � sin ˛ 0

cos ˇ sin ˛ cos ˛ cos ˇ � sin ˇ

sin ˛ sin ˇ cos ˛ sin ˇ cos ˇ

1
A (2.44)

6. Primary: z-axis Secondary: y-axis

Ry;�ˇRz;�˛ D
0
@ cos ˛ cos ˇ � cos ˇ sin ˛ sin ˇ

sin ˛ cos ˛ 0

� cos ˛ sin ˇ sin ˛ sin ˇ cos ˇ

1
A (2.45)

Key Symbols

d Translation scalar
d Translation vector
di Element i of d
D Homogeneous translation matrix
ADB Homogeneous translation matrix from B-frame to A-frame
E Total illumination
Er Distance-dependant illuminance
E' Incident angle-dependant illuminance
I; Ii Light intensity
On Normal unit vector to the collector
O Origin point of a coordinate frame
r Distance between target and source of light, position scalar
r Position vector
ri Element i of r
rij Element of row i and column j of matrix R
Ar Vector r expressed in A-frame
Or Direction of light ray with respect to the collector
r; �; 	 Local spherical coordinates
R Rotation transformation matrix
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ARB Rotation transformation matrix from B-frame to A-frame
Rx;˛ Rotation transformation about x-axis with ˛ angle
S Sun vector
T Homogeneous transformation matrix
ATB Homogeneous transformation matrix from B-frame to A-frame
x; y; z Local coordinate axes
X; Y; Z Global coordinate axes

˛ Yaw angle
ˇ Pitch angle
� Orientation of the vehicle body-frame with respect to the global frame
� Azimuth angle
	 Elevation angle
' Angle of incidence
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Chapter 3
Diagnosis and Control of Nonlinear Oscillations
of a Fluttering Plate

Liming Dai, Lu Han, Lin Sun, and Xiaojie Wang

Abstract This chapter focuses on both diagnosing and controlling the nonlinear
dynamic responses of a fluttering plate excited by a high-velocity air flow. Six
modes of the motion are considered for obtaining the numerical solutions of the
system, and the modes are used to investigate the nonlinear dynamic responses of
the fluttering. Due to the different characteristics of the diagnosing methods for
nonlinear systems, Lyapunov Exponent method is employed to detect the system
motion of each mode, while the Periodicity Ratio method is utilized to detect the
behavior of entire system motion subjected to non-periodic excitations generated
by the air flow. A newly developed control strategy, modified FSMC method, is
applied to control the nonlinear oscillatory responses of the system. The approaches
presented in this chapter have research and engineering application significances in
the fields of aerodynamics, nonlinear dynamics, aircraft design, and design of space
vehicles.

3.1 Introduction

Flutter behavior of plates exposed to air flow has been a subject of major interest
and wide research attention because of its exceptional importance in the areas of
aerodynamics, aircraft design, and design of space vehicles. The life expectancy and
survivability of fluttering panels on high supersonic aircraft, for example, depend
substantially on their resistance to the nonlinear fluttering oscillations of the panels
subjected to excitations generated by high-speed air flow.
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Von Karman’s large deflection theory [1] has been employed by most researchers
in the field. The Galerkin method [2, 3] was utilized by Dowell [4, 5] and the latter
studies [6–8]. By the integration over the panel surface, these allow the numerical
integration to a system of nonlinear ordinary differential equations. The dynamic
behaviors, including deflection, stress, and frequency, under 2D and 3D, were
analyzed with respect to various parameters. In a survey reported by Garrick and
Reed [9], an overview of an aircraft flutter in historical retrospective is presented by
the authors. The influence of maneuvering on the nonlinear response of a fluttering
buckled plate on an aircraft has been studied by Sipcic [10], which suggests
amplitude modulation as a possible new mode of transition to chaos. The flutter
phenomenon in aeroelasticity and the mathematical analysis are given by Shubov
[11]. Models of fluid–structure interaction with precise mathematical formulations
available are selected and analytical results are obtained to explain flutter and its
treatments. Due to the high velocity of fluid, thermal effects caused by friction have
to be taken into consideration, which actually makes the problem more complicated.
Enormous work could be found in this area such as [12–16]. Due to the existence
of the effects of the aerodynamic, inertial, and elastic forces, the dynamic behaviors
of the fluttering plate become extremely complicated especially when the speed of
external fluid flow increases. One would expect that it would be of fundamental
importance to know the role of the system parameters related to the different
responses of the system.

Numerous research and great contributions have been made in investigating
the characteristics of fluttering plates by researchers and engineers as mentioned
above. The criteria for distinguishing the characteristics of the systems are crucial.
Techniques providing high efficiency and accuracy in diagnosing and quantifying
different characteristics such as chaos, periodicity, quasiperiodicity, and other
nonlinear characteristics are always demanded. There are several methods available
in the literature for determining the onset of chaotic oscillations and some predictive
and diagnostic criteria for chaos are also reported [17–21]. Power spectral density is
one of such methods that can be used to distinguish chaos from regular behavior
of deterministic systems or generic stationary stochastic behavior [22]. Fractal
Dimensions approach is able to identify the chaotic attractors’ dimension [23–27].
Among all the diagnosing approaches, Lyapunov Exponent approach is probably
the most popular approach [28, 29] due to its efficiency and simplicity. It measures
the sensitivity of a system to initial conditions and therefore classifies the system’s
responses as either convergent or divergent and it is suitable for describing whether
a response of the plate is convergent or divergent. However, Lyapunov Exponents
cannot be used to distinguish quasiperiodicity and non-periodicity of a system.
Periodicity Ratio method is developed Dai and Singh [30]. This approach and can
be used to identify almost all the nonlinear characteristics and to be employed to
plot the periodic–quasiperiodic–chaotic diagram efficiently for nonlinear dynamical
systems.
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In most applications of engineering, the nonlinear or irregular responses of the
beams are desired to be controlled. Numerous control techniques and theories are
available in the field. In 1992, a control theory, namely the theory of sliding modes
control (SMC), was proposed and it has been pointed out that this control theory
is of high efficiency in the control of multidimensional systems operating under
conditions of uncertainties [31]. A decade later, an improved control strategy, which
was developed on the basis of SMC, was developed with implementation of fuzzy
logic theories and named as fuzzy sliding mode control (FSMC). Many researchers
used the strategy and demonstrated the effectiveness of this control strategy in
suppressing the nonlinear response of the system [32–34]. The FSMC strategy was
also used in controlling the chaotic response of a micro mechanical resonator under
electrostatic forces applied at both sides of the resonator, modeled as a beam [35].
In their study, the FSMC strategy demonstrated high efficiency in stabilizing the
vibrations of the targeted system. It should be noticed the existing FSMC strategy
is merely suitable to be applied in the system derived by first-order discretization.
However, for the cases of second or higher order discretization and more reliable
and accurate solutions, the existing FSMC strategy is not applicable. Therefore, a
modified FSMC strategy [36] is developed.

This research is firstly to diagnose the characteristics of a plate subjected to
non-periodic excitations of high-velocity flow with both Lyapunov Exponent (LE)
and Periodicity Ratio (PR) methods. The responses of the fluttering plate are to be
analyzed with considerations of various varying systems parameters. Furthermore,
it would be interesting to apply the control theory to the nonlinear response of
the system to reduce the harm. As figured out by Dowell [4] corresponding to
the parameters selected in the study, 4–6 modes, rather than two modes, should
be employed for quantitative accuracy. Hence, in this section the modified FSMC
will be applied to control and stabilized the chaotic oscillation of the fluttering 2D
plate, which has been described in terms of six modes as mentioned in the previous
section. The main purpose of the present work focuses on the nonlinear influence
of the system and applying control theory such as FSMC to reduce the system
vibrations, where a chaotic case is used as the control example. The knowledge
of detecting and controlling the flutter behavior of a vibrating plate is useful.

3.2 Governing Equation for the Motion of a 2D Plate

Same as Dowell’s research, the fluttering plate considered in this research has
simply supported boundaries, is a flat thin plate with infinite length in the y-direction
and length L in the x-direction. The thickness is negligible in comparing with the
other geometric dimensions of the plate. The panel is subjected to a supersonic
flow over the outside surface with constant velocity U1. Gravity is perpendicular
to the plate. The plate is induced to vibrate along the z-direction due to the loading
generated by the interaction between the high-velocity flow and the plate, which is
dominating and thus of great importance.
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To obtain the governing equations of the motion of a 2D fluttering plate, some
assumptions adopted are presented first as follows:

• The von Karman’s large deflection plate theory is employed;
• The effects of in-plane load and static pressure differential are taken into

consideration;
• The plate is undergoing cylindrical bending but no span-wise bending.

Based on the assumptions above, the governing equation reads [9]:

D
@4w

@x4
� �

Nx C N .a/
x

� @2w

@x2
C �mh

@2w

@t2
C .p � p1/ D p (3.1)

where

Nx D ˛Eh=2L

Z L

0

.@w=@x/2dx

˛ D KL=.KL C Eh/ (3.2)

Following quasi-steady, supersonic theory, we have

p � p1 D 2q

ˇ

�
@w

@x
C
�
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U

@w

@t

�
(3.3)

Applying the nondimensionalization as follows:

� D x=a

� D t
�
D=�mha4

�1=2

W D w=h


 D 2qa3=ˇD

� D �a=�mh

P D pa4=Dh (3.4)

Substituting Eqs. (3.2)–(3.4) into (3.1), the non-dimensionalized governing
equation can be expressed as
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W 00 � RxW 00 C @2W

@�2
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� 1
2 @W
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)
D P (3.5)

For large Mach number, M � 1, the simplified relationship can be applied
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�
M 2 � 2

M 2 � 1

�2
�

ˇ
! �

M
(3.6)

Following the Galerkin Method [37], for simply supported plate, the nondimen-
sional displacement W.�; �/ can be expressed as:

W.�; �/ D
1X

mD1

am.�/ � sin m�� (3.7)

Substituting Eqs. (3.6) and (3.7) into Eq. (3.5), Eq. (3.5) can be rewritten as:

X
am.m�/4 sin m�� C ˛6.1 � �2/ �

"X
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#
D P (3.8)

By multiplying Eq. (3.8) by sin m�� and integrating over the length of the panel,
Eq. (3.8) can be reduced into a set of ordinary differential equations.
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; s D 1; � � � ; 1 (3.9)

Equation (3.9) is comprised of a coupled set of ordinary, nonlinear differential
equations with respect to time. The equations will be numerically solved. It has
been reported by Garrick and Reed [9] that to obtain accurate solutions, at least four
modes must be used. When the in-plane or static pressure loading produces larger
tension in the plate, more modes would be taken into consideration. In this chapter,
under the range of parameters applied, all the calculations are performed using six
modes.
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3.3 Periodicity Ratio Method

It is widely acknowledged that the corresponding Poincare map for a steady state
periodic motion of a dynamic system consists of a finite number of visible points
[30, 38]. The visible points in the Poincare map are then the points overlapping
many points periodically appeared. On the other hand, the points in the Poincare
map of a chaotic case must distribute in an unpredictable manner. This implies that
the overlapping points in the Poincare map of a chaotic response are extremely
minimal. Quasiperiodic response is another type of phenomenon in nonlinear
dynamic systems. A quasiperiodic case may also contain negligibly small number
of overlapping points, though some regularity of the system responses can be
identified. Based on these findings, Dai and Singh [30, 39, 40] proposed an index
named Periodicity Ratio (PR) which counts the ratio of periodic points among all
the points in the Poincare map. The methodology of Periodicity Ratio approach is
based on the measure of periodicity of a response of a nonlinear system. The more
periodic a dynamic system is, the closer the corresponding PR value is to a unit.
When the PR approaches zero, the corresponding system has no periodicity at all
and therefore represents either chaotic or quasiperiodic response of the system. The
most significant advantage of the Periodicity Ratio method is that the PR value can
be used as a single value index in diagnosing the periodicity therefore the behavior
of a dynamic system. Moreover, Periodicity Ratio method reveals the fact that there
are infinite number of fashions of motion in between chaos and periodic responses
for a nonlinear dynamic system.

The Periodicity Ratio is defined as [30]:

� D lim
n!1

NPP

n
(3.10)

where NPP is the number of periodically overlapping points and n is designated as
the total number of all the points in the Poincare map. NPP in Eq. (3.10) can be
calculated by

NPP D 	.1/ C
nX

mD2

.	.m/:P.

m�1Y
j D1

Q.	.j //// (3.11)

where

	.l/ D
nX

iDmCqC1

P.

q�lY
hD0

Q.XiCh � XmClCh//.

lY
kD1

Q.Xi�k � XmCl�k// (3.12)

which represents the number of points periodically overlapping the lth point in the
Poincare map. In the above two equations, q, m, i, and l are all positive integers.
Note that q value in the above equation can be different from one group of points to
another group of points.
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In the above equations, two step functions Q.y/; P.z/ are introduced. The two
step functions are expressible in the form

Q.y/ D
(

1; if y D 0

0; if y ¤ 0
; P.z/ D

(
0; if z D 0

1; if z ¤ 0
(3.13)

In order to describe the visible and overlapping points in a Poincare map,

introduce Xi D
(

xi

Pxi

)
and denote it as a vector of both displacement and velocity.

With this designation, the determination of whether or not a point in the Poincare
map is an overlapping point is based on the judgment described by the following
equations.

Xki D xk � xi

PXki D Pxk � Pxi (3.14)

where k is an integer in the range of 1 � k � j and j represents the finite number of
points (known as visible points) appearing in the Poincare map corresponding to a
dynamic system, and PX is the time derivative of X . Points under consideration are
overlapping points if and only if the following conditions are satisfied.

Xki D 0

PXki D 0 (3.15)

In this case, the way to obtain the points in the Poincare map is to get several
points with same displacements since the fixed time step of the irregular excitation
system is hardly to be captured [20]. Specifically, the peak and bottom value in
every period of the wave form will be collected. If the system finally leads to a
periodic solution, after a long enough period of time, all the points of the Poincare
map will converge to a finite number of individual points which must have the form
fXm; XmC1; : : : ; XmCqg.

Thus, any overlapping point Xp in a Poincare map would be a periodic point, if
and only if the following condition is satisfied:

P.

qX
iD0

fP.

q�lY
hD0

Q.XiCh � XmClCh//.

lY
kD1

Q.Xi�k � XmCl�k//g/ D 1 (3.16)

Once the periodic points are determined completely, the Periodicity Ratio can be
determined accurately.

If the behavior of a system in a steady state is periodic, the points in the
corresponding Poincare map must all be overlapping points. Accordingly, the value
of the Periodicity Ratio, � , should simply be unity. For a chaotic response of a
system, on the other hand, the number of periodic points overlapped should be zero
or insignificant in comparing with n. This is to say, � approaches zero for chaos.
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With the definition of the Periodicity Ratio, � is clearly a quantified description
of periodicity for a dynamic system. This is to state that � indicates quantitatively
how close the response of a dynamic system is to a perfect periodic motion. For
example, a motion with � equals to 0.9 is more close to a periodic motion in
comparing with a motion to which � equals to 0.8. Contrastively, a motion with
� approaching zero will show no periodic behavior, and therefore is a perfectly
nonperiodic motion. When � takes a value such that 0 < � < 1, it implies that
some points in the Poincare map are periodically overlapping points while the others
are not. Nonperiodic cases in between chaos and periodic motions may include
the intermittent chaos in which chaotic motions occur between periods of regular
motion.

It should be noted, however, the expression shown in Eq. (3.10) is theoretical,
as it requires an infinitely large number of n for a perfect measurement of � and
the time range considered must be t 2 Œ0; 1/ such that t will be sufficient for
a perfect � . This implies that the Periodicity Ratio � can be precisely calculated
only in the cases for which the analytical solutions corresponding to the dynamical
systems are available. For most nonlinear dynamic systems, however, the calculation
for the Periodicity Ratio has been done on a numerical basis with the aid of a
computer, as analytical solutions for these systems are not available. As Q.y/;

P.z/ in the equations are step functions, the numerical calculation for ” can be
conveniently carried out. In numerically determining for � , therefore, a sufficiently
large n should be used in performing the actual numerical calculation for � in the
practice of numerical calculation. In computing the Periodicity Ratio, errors caused
by numerical calculation and by the mathematical models of numerical purpose
should also be considered. Furthermore, in numerically calculating for � , all of
the n points must be compared to see whether they are overlapping points or not.
Once a point is counted as an overlapping point, it should not be counted again in
the numerical calculations.

For nonlinear dynamic systems, a motion with Periodicity Ratio equals to zero
may not necessarily be a chaotic motion. By the definition of Periodicity Ratio,
a perfect quasiperiodic motion also has a Periodicity Ratio of zero. In this case,
another technique, Lyapunov Exponent approach can be employed.

3.4 Lyapunov Exponent Spectrum

The definition of Lyapunov Exponent is associated with a measure of the average
rates of expansion and contraction of trajectories surrounding a given trajectory.
They are asymptotic quantities, defined locally in state space, and describe the
exponential rate at which a perturbation to a trajectory of a system grows or decays
with time at a certain location in the state space. They are useful in characterizing the
asymptotic state of an evolution. The spectrum of Lyapunov Exponent has proven
to be one of the practically sound techniques for diagnosing chaotic systems. It is
probably the most widely used index in characterizing the behaviors of nonlinear
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dynamic systems. The approach is based on the important characteristic that chaos
of a nonlinear dynamic system is sensitivity to initial conditions, which counts the
average exponential rates of divergence or convergence of close orbits of a vibrating
object in the phase space of a dynamic system. Wolf et al. [29] gave a powerful
and efficient method for determining Lyapunov Exponents from time series. Rong
et al. [41] investigated the principal resonance of a stochastic Mathieu oscillator
to random parametric excitation and gave the conclusion that the instability of
the stochastic Mathieu system depends on the sign of the maximum Lyapunov
Exponent. Lyapunov Exponent was also used to analyze the numerical characteristic
[42]. It is usually determined by experiments or computer simulations. Nayfeh has
clearly described the definition of Lyapunov Exponent as followings [20].

Let X.t/ such that X.t D 0/ D X0 represent a trajectory of the system governed
by the following n-dimensional autonomous system:

Px D F.xI M/ (3.17)

where the vector x is made up of n state variables, the vector function F describes the
nonlinear evolution of the system, and M represents a vector of control parameters.
Denoting the perturbation provided to X.t/ by y.t/ and assuming it to be small,
an equation after linearization in the disturbance terms can be obtained. The
perturbation is governed by

dy.t/

dt
D Jy.t/ (3.18)

where, in general, J D DxF.x.t/I M/ is a n � n matrix with time dependent
coefficients. If we consider an initial deviation y.0/, its evolution is described by

y.t/ D ˆ.t/y.0/ (3.19)

where ˆ.t/ is the fundamental (transition) matrix solution of Eq. (3.18) associated
with the trajectory X.t/.

For an appropriately chosen y.0/ in Eq. (3.19), the rate of the exponential
expansion or contraction in the direction of y.0/ on the trajectory passing through
X0 is given by

N
i D lim
t!1

1

t
ln.

ky.t/k
ky.0/k / (3.20)

where the symbol kk denotes a vector norm. The asymptotic quantity N
i is then
defined as the Lyapunov Exponent. There are several different methods to calculate
the Lyapunov Exponent, such as the whole Lyapunov Exponent, global and local
Lyapunov Exponent, and Lyapunov Spectrum. The method of whole Lyapunov
Exponent also known as the Maximum Lyapunov Exponent is suitable for the
discrete differential system, whereas the Lyapunov Spectrum is more suitable for
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continuous differential systems [20]. The global Lyapunov exponent, on the other
hand, gives a measure for the total predictability of a system; whereas the Local
Lyapunov Exponent estimates the local predictability around a given point X0 in
phase space.

Specifically, to obtain the Lyapunov spectrum for a continuous dynamical
system, a set of n linearly independent vectors y1; y2; : : : ; yn may form the basis
for the n-dimensional state space. Choosing an initial deviation along each of these
n factors, n Lyapunov Exponent N
i .yi / can be determined. The set of n numbers
N
i .yi / is defined as the Lyapunov spectrum. For system (3.17), n orthonormal initial
vectors yi such that y1 D .1; 0; 0; : : :/; y2 D .0; 1; 0; : : :/; : : : ; yn D .0; 0; 0; : : : ; 1/

can be assigned. For each of these initial vectors, Eqs. (3.17) and (3.18) can be
integrated for a finite time Tf and a set of vectors y1.Tf /; y2.Tf /; : : : ; yn.Tf / can
then be obtained. The new set of vectors is orthonormalized using the Gram-Schmidt
procedure to produce

Oy1 D y1.Tf /y1.Tf /


Oyn D yn.Tf / �Pn�1
iD1 Œyn.Tf /: Oyi � Oyiyn.Tf / �Pn�1
iD1 Œyn.Tf /: Oyi � Oyi

 (3.21)

Subsequently, using X.t D Tf / as an initial condition for Eq. (3.18) and using
each of the Oyi as an initial condition for Eq. (3.19), Eqs. (3.18) and (3.19) can be
integrated again for a finite time and carry out the Gram-Schmidt procedure to obtain
a new set of orthonormal vectors. The norm in the denominator can be denoted
by N k

j . Thus, after repeating the integrations and the processes of Gram-Schmidt
orthonormalization r times, the Lyapunov Exponent can be obtained from

O
i D 1

rTf

rX
kD1

ln N k
j (3.22)

The Lyapunov spectrum can thus be determined.

3.5 Utilizing Lyapunov Exponent and Periodicity Ratio
Methods to Detect the System Motions

From the above description about Lyapunov Exponents, the Jacobi matrix which is
directly related to the expressions of the system equations is required for calculation
in every step. However, the system displacement in Eq. (3.7) cannot be obtained
by this way because the Jacobi matrix would vary with different mode whose
governing equation is stated in Eq. (3.9). And the Jacobi matrix for the whole
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system displacement cannot be combined by the individual matrix under each mode.
Therefore, Lyapunov Exponents could only measure the system behavior at each
mode other than the whole trend, which can disclose certain system properties while
still not enough to diagnose the real system behavior, since the involved modes
are only introduced by the mathematical transformation that in the real model the
behavior under single mode cannot be distinguished from each other. So it is not that
typical to use the behavior under each mode to represent the whole system. In the
meantime, the Periodicity Ratio Method does not have the difficulty to determine
the varied Jacobi matrix since it merely depends on the system solutions, which is
forward straight to be obtained once the system solutions are numerically solved in
this case.

Based on Eq. (3.9), the Jacobi matrix for calculating the Lyapunov Exponents at
each mode (s D 1, 2, 3, 4, 5, 6) is specifically formulized as

J D

2
664

0 0 0

0 0 1

0 �.s�/4 � ˛6
�
1 � �2

� �P
r

a2
r

.r�/2

2

�
.s�/2 � Rx.s�/2 � 1

2

�
�


M

� 1
2

3
775

(3.23)

Several typical motions and their corresponding PR values and LE values are
demonstrated as the following, with figures and descriptions. It should be notice
that the wave form and phase diagram figures for Lyapunov Exponent approach are
corresponding to each and every modes of the six modes of oscillatory responses
of the panel, as needed in determining for all the Lyapunov Exponents. Moreover,
the Lyapunov Exponents of each of the modes are different, i.e., can be positive
representing divergent responses of the panel or negative representing convergent
response of the panel. The PR approach considers the behavior of the plate system
as a whole. In the calculations of the PR approach, the motion in the first 15 s is
discarded to waive the initial effect.

A buckled motion is exhibited in the series figures of Figs. 3.1, 3.2, 3.3, and
3.4. In this case the plate is a stabilized at a position other than at the equilibrium.
Figure 3.1 illustrates the whole system motion in wave form and phase diagram. The
wave forms and phase diagrams for the first three modes are shown in the Figs. 3.2,
3.3, and 3.4. These three modes contribute most to the whole system responses
including displacements and velocities.

The series of figures in Figs. 3.5, 3.6, and 3.7 are showing the sectioning points
for calculating the PR index. The diamonds in Fig. 3.5 are the peak displacements
and the stars in Fig. 3.5 are the bottom displacements. They are both used to
calculate the PR values. Figure 3.6 shows the velocities of corresponding points,
from which it can be seen the velocities of all the collected peak and bottom
points are close to zero. The deviation from the theoretical zero value is due to the
numerical calculation errors. It seems a bit suspicious in Fig. 3.5 that the peak points
and bottom points are always a cluster without clear distinguishment. To test the way
to collect the peak and bottom points of the whole displacement, the displacements
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Fig. 3.1 Wave form and phase diagram of a buckled motion. Rx D �3�2;
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Fig. 3.2 Wave form and phase diagram of a buckled motion at mode 1. Rx D �3�2;
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Fig. 3.4 Wave form and phase diagram of a buckled motion at mode 3. Rx D �3�2;
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of peak and bottom are collected within mode 1 and mode 2 in Figs. 3.6 and 3.7
and verification explains the cluster of peak and bottom points is caused by the
supposition of the motion at different modes.

Figures 3.8, 3.9, 3.10, and 3.11 is about a chaotic case. Figure 3.8 is the whole
system motion in wave form and phase diagram. Figures 3.9, 3.10, and 3.11 are
respectively the wave forms and phase diagrams for the first three modes which
contribute most to the whole system displacement. The corresponding Lyapunov
Exponents are calculated under each mode other than the system whole motion.

Similar as before, in Fig. 3.12, peak points and bottom points are collected for
each period to calculate the PR index of the system whole motion. The diamonds
are the peak displacements and the stars are the bottom displacements.

Figure 3.13 is the whole system motion of a periodic case in wave form and
phase diagram. Different from the buckled and chaotic case which just include
the motion of first three modes, Figs. 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19 are
the wave forms and phase diagrams of each mode of all the six modes. This is
because none of six modes can be neglected for considering the system motion since
all of the displacement is not small. Another reason is to show some incompatible
cases of the results diagnosed by Lyaponov Exponents and Periodicity Ratio.
Again, sectioning points are collected in Fig. 3.20 which includes the diamonds
and the stars representing the peak displacements and the bottom displacements
respectively.
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Fig. 3.17 Wave form and phase diagram of a chaotic motion at mode 4. Rx D �4�2;
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The last case is a stabilized motion case. Figure 3.21 is the whole system motion
in wave form and phase diagram. Same as the buckled and chaotic case which just
includes the motion of first three modes, Figs. 3.22, 3.23, and 3.24 are the wave
forms and phase diagrams of each mode of first three modes of the system motion.
And Fig. 3.25 is about the peak and bottom points in a 2 s time span, the reason for
considering such a small time span is to show the fluctuation of the curve in a very
limited displacement variation range.

From the above illustration of the different motions, several characters of the
behavior of the fluttering plate can be categorized

The diagnosed behavior of the system by LE and PR method most time reach the
compatible conclusions. By PR method, the buckled and flat motions all have
the PR value of 1. Their motions at most separated modes have negative or zero
Lyapunov Exponent which indicates convergence. And chaotic motion has the
expected zero values for the whole system displacement and positive Lyapunov
Exponent which indicates divergence. Both methods are powerful to distinguish
the system behavior, while PR method is much easier to calculate since the
calculation procedure is not affected by the forms of the system.
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Fig. 3.21 Wave form and phase diagram of a flat motion at Rx D �0:8;
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Fig. 3.25 Wave form and phase diagram of a flat motion. Rx D �0:8;
 D 210;PR D 0:9997

For the most stabilized static case like buckled and flat case, the displacement at
first three modes are much larger than the other modes that they are the main
contributors to the whole system displacement. Comparing Figs. 3.5, 3.6, and
3.7 with 3.21, 3.22, 3.23 and 3.24, though both stabilized at last, the flat motion
convergences more quickly than the buckled motion to the equilibrium position.
Therefore, the last three modes can be neglected. For the dynamic system like
periodic and chaotic case, all the six modes need to be included to consider the
system motion.

For the periodic case in Figs. 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19, although
each motion at mode 3 to mode 5 is more like divergent as the maximum
Lyapunov Exponent is a little bit larger than zero; the whole system motion is
diagnosed as periodicity. This is because the supposition effect of the system
motion at several modes may have canceling effect with others. This case exhibits
the advantage of PR method to LE method when the individual diagnosis of the
motion of each mode is not consistent with each other.
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3.6 Control of Nonlinear Oscillations with Modified Fuzzy
Sliding Mode Control Strategy

Equation (3.9) can be expressed as

d 2as

d�2
D �as.s�/4 � ˛12

�
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� "X
r

a2
r

.r�/2

2
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� 
2

(X
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sm
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)
C P 2
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(3.24)

where s D 1; : : : ; 1.
Thus, based on the modified FSMC [36], the control strategy of the 2D fluttering

plate can be derived as
8̂
<
:̂

das1

d�
D as2

das2

d�
D fs .a; �/ C ds .a; �/ C us

8̂<
:̂

dxs1

d�
D xs2

dxs2

d�
D gs .x; �/

(3.25)

where s D 1; : : : ; 1, ds .a; �/ denotes the uncertain external disturbance corre-
sponding to the sth mode, us 2 R denotes the control input corresponding to the
sth mode, a is the column vector of the velocity and acceleration of the s modes
and is given as a D Œa11 a12 a21 a22 � s as1 as2�T , xs1 denotes the reference signal
corresponding to the sth mode, gs .x; �/ denotes the specific expression of dxs2

d�
, x is

the column vector of the velocity and acceleration of the control input corresponding
to the s modes and is given as x D Œx11 x12 x21 x22 � s xs1 xs2�

T , and fs .a; �/

denotes the specific expression of d2as

d�2 and is given below:
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Based on the FSMC ([32, 33]), the control input us is given as

us D ueqs � kfs � ufs (3.27)
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Table 3.1 The fuzzy rule of ufs

ueqs

ufs 1 2/3 1/3 0 �1/3 �2/3 �1

dueqs

d�
1 �1 �1 �1 �1 �2/3 �1 0
2/3 �1 �1 �1 �2/3 �1 0 1/3
1/3 �1 �1 �2/3 �1 0 1/3 2/3
0 �1 �2/3 �1 0 1/3 2/3 1
�1/3 �2/3 �1 0 1/3 2/3 1 1
�2/3 �1 0 1/3 2/3 1 1 1
�1 0 1/3 2/3 1 1 1 1

where ueqs is the equivalent control input corresponding to the sth mode and is
given as

ueqs D � Œ.as2 � xs2/ C �s � .as1 � xs1/� (3.28)

and �s 2 RC; kfs > jas1j is the normalization factor of a corresponding to the sth
mode, and ufs is determined by the fuzzy control rule shown in the Table 3.1.

In this section, the modified FSMC will be applied in controlling and stabilizing
the chaotic motion of the 2D fluttering plate, which has been identified with LE and
PR methods and shown in Figs. 3.8, 3.9, 3.10, and 3.11.

The initial condition is given below:

a11 D 0:01; a21 D 0:01; a31 D 0:01; a41 D 0:01; a51 D 0:01; a61 D 0:01

a12 D 0; a22 D 0; a32 D 0; a42 D 0:; a52 D 0; a62 D 0

The uncertain external disturbance is given below:

d1 .a; �/ D �0:01 sin .a11/ ;

d2 .a; �/ D �0:005 sin .a21/ ;

d3 .a; �/ D �0:001 sin .a31/ ;

d4 .a; �/ D �0:0001 sin .a41/ ;

d5 .a; �/ D �0:00002 sin .a51/ ;

d6 .a; �/ D �0:00001 sin .a61/

The reference signals are given below:

x11 D 0:8 sin .��/ ; x21 D 0:3 sin .��/ ; x31 D 0:03 sin .��/

x41 D 0:005 sin .��/ ; x51 D 0:001 sin .��/ ; x61 D 0:0005 sin .��/
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Fig. 3.26 Wave form and phase diagram of the motion at mode 1 after the modified FSMC applied.
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 D 117

�s and kfs are given below:

�1 D �2 D �3 D �4 D �5 D �6 D 1500

kf1 D kf2 D kf3 D kf4 D kf5 D kf6 D 50

The responses corresponding to the six modes are presented in Figs. 3.32, 3.33,
3.34, 3.35, 3.36, and 3.37. It can be discovered: once the modified FSMC is applied,
the motion of the six modes will be synchronized to the corresponding reference
signals and gradually stabilized.

The control inputs corresponding to the six modes are presented in Figs. 3.32,
3.33, 3.34, 3.35, 3.36, and 3.37 from which it can be learned the control inputs
corresponding to the six modes would vary periodically. Besides, from Figs. 3.26,
3.27, 3.28, 3.29, 3.30, 3.31 and Figs. 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, it can be
found the higher the number of the mode is, the lower the amplitude of the vibration
of the mode will be, and the smaller the control input corresponding to the mode
will be required.

The response of the specific point, which is located at 75% length of the beam, is
presented in Fig. 3.38. It can be discovered once the modified FSMC is applied, the
motion of the six modes will be synchronized and gradually stabilized, and thus the
response of the selected point of the fluttering 2D plate will be stabilized from the
chaotic motion into a periodic motion, amplitude of which will be reduced as well.
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Fig. 3.38 Wave form and phase diagram of the selected point located at the 75% length of the
beam after the application of the modified FSMC
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Key Symbols

D Plate stiffness
E Modulus of elasticity
h Plate thickness
K Spring constant
L Panel length
M Mach number
m Mode number
Nx In-plane force
N

.a/
x Applied in-plane force

p � p1 Aerodynamic pressure
p Static pressure differential across the panel
P pl4 =Dh

Rx N
.a/
x L2 =D

r Mode number
s Mode number
t Time
U1 Flow velocity
W w =h

w Plate deflection
˛ Spring stiffness parameter

ˇ .M 2 � 1/
1=2


 2qa3 =ˇD

� �L =�mh

� Poisson’s ratio
� Air density
�m Plate density

� t.D=�mhl4/
1=2

as1 The displacement corresponding to the sth mode
as2 The velocity corresponding to the sth mode
xs1 The displacement of the reference signal of the sth mode
xs2 The velocity of the reference signal corresponding to the sth mode
a The column vector of the velocity and acceleration of the s modes
fs .a; �/ The expression of the acceleration corresponding to the sth modes
gs .a; �/ The expression of the reference signal acceleration of the sth mode
ds .a; �/ The uncertain external disturbance corresponding to the sth mode
us The control input corresponding to the sth mode
R Real number
ueqs The equivalent control input corresponding to the sth mode
�s A positive real number
kfs The normalization factor of a corresponding to the sth mode
n The number of points in Poincare map
NPP The number of periodically overlapped points in Poincare map
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Q.:/; P.:/ The step functions
� The periodicity ratio
fs.a; �/ The expression of the acceleration corresponding to the sth modes
J The Jacobian matrix
LE. O
/ Lyapunov Exponents
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Chapter 4
A New Approach to the Tracking Control
of Uncertain Nonlinear Multi-body
Mechanical Systems

Firdaus E. Udwadia and Thanapat Wanichanon

Abstract This chapter presents a new approach for the tracking control of uncertain
mechanical systems. Real-life multi-body systems are in general highly nonlinear
and modeling them is intrinsically error prone due to uncertainties related to
both their description and the description of the various forces that they may be
subjected to. As such, in the modeling of such systems one only has in hand the
so-called nominal system—a model based upon our best assessment of the system
and our best assessment of the generalized forces acting on it. Uncertainties that
are time-varying, unknown but bounded, are assumed in this chapter, and a new
approach to the development of a closed-form controller is developed. The approach
uses the concept of a generalized sliding surface. Its closed-form approach can
guarantee, regardless of the uncertainty, that the uncertain system can track a desired
reference trajectory that the nominal system is required to follow. An example of a
simple multi-body system whose description is known only imprecisely is illustrated
showing the simplicity of the approach and its efficacy in tracking the trajectory
of the nominal system. The approach is easily implemented for a wide range of
complex multi-body mechanical systems.

4.1 Introduction

Most real-life complex mechanical systems are only known imprecisely. Uncer-
tainties in the description of such physical systems and in the description of the
generalized forces acting on them are often inescapable. A tracking controller that
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can deal with such uncertainties in the modeling of uncertain nonlinear multi-body
mechanical systems is thus needed. The problem of tracking controls for such
uncertain systems has been actively studied by numerous researchers. [1–7] give a
brief sampling of some of the researchers who have made substantial contributions
in this area.

In this chapter, a new approach is developed to obtaining a closed-form controller
for uncertain multi-body systems. The general procedure used in obtaining this
controller is made up of two steps. We first obtain a controller for a nominal system,
which is the system that refers to our best assessment of a given real-life uncertain
system. This nominal controller can be analytically obtained with the aid of a recent
finding in analytical dynamics, the so-called fundamental equation (Udwadia and
Kalaba [8–10]), to guarantee exact constraint-following for the assumed nominal
system. However, this analytical result is correct only under the assumption that
the modeling of the physical system has no errors and uncertainties. In the second
step, using the trajectory obtained from the nominal system as the tracking signal,
we modify the nominal controller to account for uncertainties in our nominal model.
These uncertainties stem from two main sources—uncertainties in the knowledge of
the physical system and/or uncertainties in the ‘given’ forces applied to the system.
These uncertainties could be time-varying; no further information is assumed in this
work about them, except that they are bounded. The aim is to develop a closed-form
controller that allows the real-life uncertain system to track a prespecified trajectory
for the corresponding nominal system. The generalized concept based on a sliding
surface control is used to design an additional additive controller to compensate
for the uncertainty in the mechanical system. An example of a mechanical system
is provided to demonstrate the efficacy and ease of implementation of the tracking
control methodology.

The general approach that we follow is to view the tracking control problem
in the framework of constrained motion. We view the control requirements as
constraints on the nonlinear dynamical system and obtain closed-form generalized
control forces to satisfy these requirements. In what follows we shall therefore use
the terms ‘requirements’ and ‘constraints,’ interchangeably, as well as the terms
‘control forces’ and ‘constraint forces,’ and the terms ‘controlled system’ and
‘constrained system.’

4.2 On the Dynamics of the Nominal Multi-body Systems

4.2.1 System Description of the Nominal System

We begin by introducing the description of the nominal system, by which we mean
our best assessment of the actual real-life system (whose description is known only
imprecisely). It is useful to conceptualize the description of such a nominal multi-
body system in a three-step procedure [11–15]. We do this in the following way:
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First, we describe the uncontrolled (unconstrained) system in which the coor-
dinates are all assumed independent of each other. The equation of motion of this
system is given, using Lagrange’s equation, by

M.q; t/ Rq D Q.q; Pq; t/; (4.1)

with the initial conditions

q.t D 0/ D q0; Pq.t D 0/ D Pq0; (4.2)

where q is the generalized coordinate n-vector; M > 0 is the n by n mass matrix
which is a function of q and t; and Q is an n-vector, called the ‘given’ force, which
is a known function of q; Pq, and t.

From Eq. (4.1) we find the acceleration of the uncontrolled system given by

a WD M �1.q; t/ Q.q; Pq; t/: (4.3)

Second, we impose a set of control requirements as constraints on this uncon-
trolled system. We suppose that the uncontrolled system is now subjected to the m
sufficiently smooth control requirements given by [13]

' i.q; Pq; t/ D 0; i D 1; 2; : : : ; m; (4.4)

where r � m equations in the equation set (4.4) are functionally independent.
The control constraints described by Eq. (4.4) include all the usual varieties of
holonomic and/or nonholonomic constraints, and then some. The presence of the
control requirements does not permit all the components of the n-vectors q0 and
Pq0 to be independently assigned. We shall assume that the initial conditions (4.2)
satisfy the m control requirements. (If not, the control constraints can be expressed
in an alternative form so that they are asymptotically satisfied [16]; see Sect. 4.2.2).

Differentiating the control requirements (4.4) with respect to time t we obtain the
relation [17]

A.q; Pq; t/ Rq D b.q; Pq; t/; (4.5)

where A is an m by n matrix whose rank is r and b is an m-vector. We note that each
row of A arises by appropriately differentiating one of the m control requirements in
the set given in relation (4.4).

In the third step, the equation of motion of the ‘controlled nominal system’ or the
‘nominal system’ is given by

M.q; t/ Rq D Q.q; Pq; t/ C Qc.q; Pq; t/; (4.6)

where Qc is the control force n-vector that arises to ensure that the control
requirements (4.5) are satisfied. The explicit equation of motion of the nominal
system is given by the fundamental equation [10, 16]

M Rq D Q C AT .AM �1AT /
C

.b � Aa/; (4.7)
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wherein the various quantities have been defined in the previous two steps and
the superscript “C” denotes the Moore–Penrose (MP) inverse of a matrix. In the
above equation, and in what follows, we shall suppress the arguments of the various
quantities unless required for clarity.

We note that Eq. (4.7) is valid: (1) whether or not the control requirements are
holonomic or nonholonomic, (2) whether or not they are nonlinear functions of their
arguments, and (3) whether or not they are functionally dependent.

We also note that from Eq. (4.7) the control force that the uncontrolled system
is subjected to, because of the presence of the control requirements (4.4), can be
explicitly expressed as

Qc.t/ WD Qc.q.t/; Pq.t/; t/ D AT .AM �1AT /
C

.b � Aa/: (4.8)

The control force given in Eq. (4.8) is optimal in the sense that it minimizes the
control cost QcT M �1Qc at each instant of time [16, 17].

We refer to the system described by Eq. (4.7) as the ‘nominal system,’ implying
that (1) it includes our best assessment of the information we have regarding the
system’s parameters, its structure, and the nature of the ‘given’ force n-vector Q
that the system is subjected to, and (2) it exactly satisfies the control requirements
placed on it. Pre-multiplying both sides of Eq. (4.7) with M �1, the acceleration of
the nominal system that satisfies the constraint (4.4) can be expressed as

Rq D a C M �1AT .AM �1AT /
C

.b � Aa/ WD a C M �1Qc.t/; (4.9)

a relation which we shall require later on.
While the methodology presented in this chapter is applicable to general nonlin-

ear, dynamical systems, throughout this chapter we shall illustrate the methodology
by applying it to the simple example of a triple pendulum.

4.2.2 An Example

To demonstrate the applicability of the control methodology, we introduce an
example of a simple multi-body system. We will continue this example all the way
through this chapter. It is straightforward to extend this example to more general
situations.

Consider a planar pendulum consisting of three masses m1, m2, and m3

suspended from massless rods of lengths L1, L2, and L3 moving in the XY-plane
(see Fig. 4.1). The inertial frame of reference is fixed at the point of suspension,
O, of the triple pendulum and the X-axis is taken as the datum for computing
the potential energy of the system. Though simple, the system can exhibit highly
complex dynamics.
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Fig. 4.1 Triple pendulum
with the datum at the origin O

The masses are constrained to move so that the total energy, E.t/, of the system
is required to equal the sum of the energies (kinetic and potential) of only the two
masses m2 and m3, i.e., E.t/ D E2.t/ C E3.t/ where we have denoted Ei .t/ as
the total energy of mass mi . We now develop the closed-form controller for this
nominal system, in which the properties of the system, its structure, and the forces
acting on it are considered to be known.

The three-step approach described in the last subsection is now illustrated.
We begin by writing the equation of the uncontrolled system [corresponding to
Eq. (4.1)] using the generalized coordinate 3-vector q D Œ�1; �2; �3�

T whose
components, in the absence of the above-mentioned energy control requirement,
are independent of one another. Lagrange’s equations then yield the relation

M.qI m1; m2; m3/ Rq D Q.qI m1; m2; m3/ (4.10)

where the elements of the 3 by 3 symmetric matrix M are given by

M11 D .m1 C m2 C m3/L2
1I M12 D .m2 C m3/L1L2 cos.�12/I M13 D m3L1L3 cos.�13/

M22 D .m2 C m3/L2
2I M23 D m3L2L3 cos.�23/I M33 D m3L2

3;

(4.11)

and the elements of the 3-vector Q are given by

Q1 D �.m2 C m3/L1L2
P�2
2 sin.�12/ � m3L1L3

P�2
3 sin.�13/

� .m1 C m2 C m3/gL1 sin �1

Q2 D .m2 C m3/L1L2
P�2
1 sin.�12/ � 2.m2 C m3/L1L2

P�1
P�2 sin.�12/

� m3L2L3
P�2
3 sin.�23/ � .m2 C m3/gL2 sin �2

Q3 D m3L1L3. P�2
1 � 2 P�1

P�3/ sin.�13/ C m3L2L3. P�2
2 � 2 P�2

P�3/ sin.�23/

� m3gL3 sin �3: (4.12)
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In the above, we have denoted �ij D �i � �j , and we explicitly show in Eq.
(4.10) the parameters m1; m2; and m3 which we will later consider to be known
only imprecisely.

Using the X-axis as the datum (see Fig. 4.1), in the second step we describe the
energy control requirement E.t/ D E2.t/CE3.t/ which is equivalent to the relation

E1.t/ D 0; (4.13)

where the energy E1 of mass m1 is given by

E1 D 1

2
m1L

2
1

P�2
1 � m1gL1 cos �1: (4.14)

Since the system may not initially (at time t D 0) satisfy this control require-
ment we modify the control requirement (4.13) using the trajectory stabilization
relation [16],

PE1 C ˛E1 D 0; (4.15)

where ˛.t/ > 0 is a positive function. By Eqs. (4.14) and (4.15) we obtain the
control requirement

A Rq WD 	
L2

1
P�1 0 0


 Rq D �gL1 sin �1
P�1 � ˛.

1

2
L2

1
P�2
1 � gL1 cos �1/ WD b:

(4.16)

We note that the masses mi do not enter this control requirement. For the
final step we use the information from Eqs. (4.10)–(4.12) and (4.16) to obtain the
description of the motion of the controlled nominal system as [see Eq. (4.6)]

M Rq D Q C Qc; (4.17)

where Qc represents the generalized control forces that will be exerted on the
bobs, causing them to move so that at every instant of time the control requirement
(4.16) is satisfied. The determination of these control forces is given by using the
fundamental equation as in [10] [see Eq. (4.8)]

Qc.t/ WD Qc.q; Pq; t/ D AT .AM �1AT /
C

.b � Aa/: (4.18)

Using Eq. (4.18) in Eq. (4.17) and pre-multiplying both sides of the equation
by M �1, we obtain the constrained acceleration of the nominal system as [see
Eq. (4.9)],

Rq D a C M �1AT .AM �1AT /
C

.b � Aa/: (4.19)
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Fig. 4.2 Trajectory of mass m3 in the XY-plane (meter) of the triple pendulum shown for a duration
of 10 s. The trajectory starts at the circle and ends at the square

4.2.3 Numerical Results and Simulations of the Control
Problem

In what follows we shall assume that the real-life planar triple pendulum described
above has masses whose values are only imprecisely known and that our best
assessment of their values is: m1 D 1 kg, m2 D 2 kg, and m3 D 3 kg. Thus,
these are the values of the three masses of our nominal system.

The lengths of the massless rods are L1 D 1 m, L2 D 1:5 m, and L3 D 2 m. At
t D 0, the masses are located with the angles of �1.0/ D 1 rad; �2.0/ D 0 rad; and
�3.0/ D 0 rad with respect to the vertical Y-axis (see Fig. 4.1). The initial velocities
of the three bobs are taken to be P�1.0/ D 0:001 rad=s; P�2.0/ D 0 rad=s; and P�3.0/ D
0 rad=s. We note that these initial conditions do not satisfy the constraint, E1 D 0:

Thus the parameter ˛ in Eq. (4.15) is chosen to be 0:02 kAk4
2 where kAk2 is the L2

norm of the matrix A in Eq. (4.16). The acceleration due to gravity is downwards
and of magnitude g D 9:81 m=s2. Numerical integration throughout this chapter is
done in the Matlab environment, using a variable time step integrator with a relative
error tolerance of 10�8 and an absolute error tolerance of 10�12.

Figure 4.2 plots the trajectory of mass m3 of the triple pendulum in the XY-plane
for a period of 10 s. The start of the trajectory is marked by a circle and its end is
marked by a square, as shown in the figure. From here on throughout this chapter,
the start and the end of all trajectories are indicated likewise. Figure 4.3 shows the
angular responses, in numbers of revolutions (of 360ı), of each of the masses as a
function of time. The energies of the three masses are shown in Fig. 4.4. We see that
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Fig. 4.3 Angular responses of the masses (a) m1, (b) m2, and (c) m3 [no. of revolutions (360ı)]

the total energy (E) is the sum of the energies of mass m2 (E2) and mass m3 (E3),
i.e., E D E2CE3. Figure 4.4a also shows the extent of error in satisfying this control
requirement E1 D 0. The magnitude of this error is seen to be commensurate with
the relative error tolerance used in the numerical integration. In Fig. 4.5, we show
the control force Qc on the nominal system in order to follow the desired control
requirement E.t/ D E2.t/ C E3.t/.

4.3 Description of the Control Approach

Our nominal system, for which we have found an exact controller so far, is our best
assessment of our real-life system. As mentioned before, there are always uncer-
tainties in the description of any real-life dynamical systems. These uncertainties
arise due to our lack of precise knowledge of the system, and/or of the given forces
acting on it. With the conceptualization of the nominal system given in the previous
section, these uncertainties are now assumed to be encapsulated in the elements of
the n by n matrix M and/or the n-vector Q [see Eq. (4.1)].
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Fig. 4.4 Energies in Newtons (a) E1, (b) E2, (c) E3, and (d) E D E2 C E3

4.3.1 Description of the Actual System

We assume that the mass matrix of the uncertain real-life system, which we do not
know exactly, is Ma WD M C ıM > 0, where M > 0 is the n by n nominal mass
matrix, our best estimate of the mass matrix of the actual system, and ıM is the
n by n matrix that characterizes our uncertainty in the mass matrix of the actual
system. The subscript ‘a’ denotes the actual, real-life system whose parameters are
uncertain. Similarly, the ‘given’ force n-vector acting on the real-life system is taken
to be Qa WD QCıQ, where the n-vector Q denotes the ‘given’ force on the nominal
system and ıQ denotes the n-vector of uncertainty in Q.

The equation of motion of the actual unconstrained (uncontrolled) system, whose
description is known only imprecisely, is then given by

Ma. Qq; t/ RQq D Qa. Qq; PQq; t/; (4.20)

where Qq is the generalized coordinate n-vector of the actual system, the n by n matrix
Ma > 0 is the mass matrix of the actual system which is a function of Qq and t, and
the n-vector Qa is the given force acting on the actual system, which is a function
of Qq, PQq, and t. Equation (4.20) is then the description of the ‘actual system’ which is
known only imprecisely, since ıM. Qq; t/ and ıQ. Qq; PQq; t/ are, in general, unknown.



110 F.E. Udwadia and T. Wanichanon

Fig. 4.5 Control forces applied to nominal system to satisfy E D E2 CE3 (Newtons) (a) on mass
m1, (b) on mass m2, (c) on mass m3, and (d) magnitude of control force

Our aim is to control this ‘actual system’ so that it mimics the motion of the
nominal system and thereby satisfies the control requirements (4.4) imposed on the
nominal system. With no exact knowledge of ıM and ıQ, the only control force that
we have at hand to satisfy the control requirement (4.4) is the one we have obtained
for the nominal system—our best estimate of the actual system. We then attempt to
control the actual system so that it satisfies the trajectory requirements given by the
set (4.4), by using this control force Qc, which is explicitly obtained in Eq. (4.8).
Thus, the equation of motion of the actual system, so controlled, becomes

Ma
RQq WD Qa. Qq; PQq; t/ C Qc.t/: (4.21)

Pre-multiplying both sides of Eq. (4.21) by M �1
a , the acceleration of the actual

system is given by

RQq WD M �1
a Qa. Qq; PQq; t/ C M �1

a Qc.t/: (4.22)

We note that Eq. (4.21) involves (1) the description of the actual system given
by Eq. (4.20) whose parameters are only known imperfectly and (2) the control
force Qc.t/ given by Eq. (4.8) which is obtained on the basis of our best estimate
of this actual system, namely, on the basis of the corresponding nominal system.
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By applying this control force to the actual system described by Eq. (4.20), one
obtains a different state ( Qq, PQq) from that obtained for the controlled nominal system
(q; Pq). This causes an error in satisfying our desired control requirements (4.4), and
a corresponding difference between the trajectories of the actual system and the
nominal system.

We note that even if we apply the correct control force to the actual system by
assuming that we have somehow gained precise knowledge of our uncertain system,
so that

Ma Rqa D Qa.qa; Pqa; t/ C AT
a .AaM �1

a AT
a /

C
.ba � Aaaa/; (4.23)

the actual system’s response .qa; Pqa/ will not track the trajectory of the nominal
system (q; Pq), which is our goal.

We note that in Eq. (4.23), qa denotes the generalized coordinate n-vector of the
actual system, which is obtained by using the correct control force that the actual
system is required to be subjected to, so that it satisfies the control requirements
(4.5), namely, Aa.qa; Pqa; t/ Rq D ba.qa; Pqa; t/. In Eq. (4.23), since Ma and Qa are
assumed to be known, aa WD M �1

a Qa:

Pre-multiplying both sides of Eq. (4.23) by M �1
a , the acceleration of the actual

system can be expressed as

Rqa D aa C M �1
a AT

a .AaM �1
a AT

a /
C

.ba � Aaaa/: (4.24)

We illustrate this by continuing our example of the triple pendulum system
considered in Sect. 4.2, with uncertainties in the masses m1, m2, and m3. We assume
that each mass has a random uncertainty of ˙10% with respect to our best estimate
of it, i.e., of its nominal value.

For illustrative purposes, we pick a specific system with ım1 D 0:1; ım2 D
�0:2; ım3 D 0:3 and perform a simulation using Eq. (4.24), with all other parameter
values the same as those prescribed in Sect. 4.2.3. We note that the elements of the
3 by 3 symmetric matrix Ma and of the 3-vector Qa are given in a manner similar to
Eqs. (4.11) and (4.12), respectively. In this case, we have replaced mi in Eqs. (4.11)
and (4.12) with mi D mi C ımi ; i D 1; 2; 3. We note that Aa D A and ba D b,
since our constraint (4.16) does not involve any of the masses mi . The response of
mass m3 over a duration of 10 s is shown in Fig. 4.6b for illustration. We observe
that it is vastly different from that of the corresponding nominal system shown in
Fig. 4.6a over the same duration of time, though both systems satisfy the energy
constraint (4.15).

4.3.2 Description of the Controlled Actual Systems

To compensate for the uncertainty, the control force given by the second member on
the right-hand side of Eq. (4.21), Qc.t/, needs to be modified to compensate for the
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Fig. 4.6 The difference in
the trajectory of mass m3 in
the XY-plane over a period of
10 s for (a) the nominal
system and (b) the actual
system, when the
uncertainties in masses are
prescribed as ım1 D 0.1 kg,
ım2 D �0.2 kg, and
ım3 D 0.3 kg. Both systems
satisfy the energy constraint
(4.15)

fact that it has been calculated on the basis of the nominal system and is now instead
being applied to the actual unknown system. We do this by adding another control
force Qu from a compensating controller, resulting in a new state .qc; Pqc/ (see
Fig. 4.7). We define the difference between qc.t/ and q.t/ as a tracking error signal
e.t/ (see Fig. 4.7). We note that the additional force Qu from the compensating
controller depends on both the state (q; Pq) and the tracking error e. In this chapter,
we develop this additive controller based on a generalization of the notion of sliding
surface control, which is discussed in Sect. 4.5.

The equation of motion of the controlled actual system thus becomes

Ma.qc; t/ Rqc D Qa.qc; Pqc; t/ C Q c.t/ C Q u (4.25)

where qc is the generalized coordinate n-vector of the controlled actual system,
Q c.t/ is the control force given by Eq. (4.8) that is obtained from the corresponding
nominal system and which causes the nominal system to satisfy the constraint (4.5),



4 A New Approach to the Tracking Control of Uncertain Nonlinear: : : 113

Fig. 4.7 The block diagram of the controlled actual system. Note that the compensating controller
uses the mass matrix of the nominal system

and Q u is the additional control force n-vector which we shall develop in closed
form. We now refer to Eq. (4.25) as the description of the ‘controlled actual system,’
or ‘controlled system,’ for short, implying that in addition to the control force Q c.t/

given by Eq. (4.8) and obtained on the basis of the corresponding nominal system,
the system is also subjected to the additional control force Q u. Pre-multiplying both
sides of Eq. (4.25) by M �1

a , the acceleration of this controlled system can then be
expressed as

Rqc D aa C M �1
a Qc.t/ C M �1

a M Ru: (4.26)

Here aa WD M �1
a Qa and Qu WD M Ru, where Ru is the additional generalized

acceleration provided by the additional control forces Q u to compensate for
uncertainties in our knowledge of the actual system.

It is important to note that the mass matrix M in Eq. (4.26) is that of the nominal
system—the only mass matrix we have in hand, since the mass matrix Ma of the
actual real-life system is unknown. Hence, after we obtain a compensating control
acceleration Ru, in order to obtain the control force we need to multiply it with
this mass matrix M , so that Qu D M Ru. However, the generalized acceleration
of the controlled actual system due to the compensating control acceleration Ru is
M �1

a Qu WD M �1
a M Ru which is shown in the last term of Eq. (4.26). And so we

observe that this term M �1
a Qu still contains the mass matrix Ma of the actual
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system, which is uncertain! However, as shown later in the proof of Lyapunov
stability in Sect. 4.5, our control approach will take care of this uncertainty as
well. Furthermore, we note that the n by n mass matrix of the actual system
Ma WD M C ıM > 0 is, in general, a function of qc and t, and the actual ‘given’
force vector of the controlled actual system Qa WD QCıQ is, in general, a function
of qc , Pqc , and t. Before embarking on the determination of Qu, we consider the
uncertainties in the dynamics of the mechanical system next.

4.4 Uncertainties in the Dynamics of Mechanical Systems

Defining the tracking error as

e.t/ D qc.t/ � q.t/ (4.27)

and differentiating Eq. (4.27) twice with respect to time, we get

Re D Rqc � Rq; (4.28)

which upon use of Eqs. (4.9) and (4.26) yields

Re D 	
aa.qc; Pqc; t/ C Ma

�1.qc; t/Qc.t/ C M �1
a M Ru
� 	

a.q; Pq; t/ C M �1.q; t/Qc.t/



D Œaa.qc; Pqc; t/ � a.q; Pq; t/� C 	
Ma

�1.qc; t/ � M �1.q; t/



Qc.t/ C M �1
a M Ru

WD ı Rq C M �1
a M Ru D ı Rq C ŒI � .I � M �1

a M /�Ru WD ı Rq C Ru � NM Ru:

(4.29)

In the above equation, we have defined

NM D I � M �1
a .qc; t/ M.q; t/ D I � .M.qc; t/ C ıM.qc; t//�1 M.q; t/

D I � �
M �1.q; t/ M.qc; t/ C M �1.q; t/ ıM.qc; t/

��1
; (4.30)

and denoted the acceleration ı Rq as

ı Rq.q; Pq; qc; Pqc; t/ D Œaa.qc; Pqc; t/ � a.q; Pq; t/�C	Ma
�1.qc; t/ � M �1.q; t/



Qc.t/;

(4.31)

where aa WD M �1
a Qa, with Ma WD M.qc; t/ C ıM.qc; t/ and Qa WD Q.qc; Pqc; t/ C

ıQ.qc; Pqc; t/:

The aim in this section is to find a suitable bound on ı Rq which we shall use in
the following section to develop a set of additive controllers to compensate for the
uncertainties involved in our knowledge of the actual multi-body system.
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Using Taylor’s expansion, Eq. (4.31) can be expanded as

ı Rq.q; Pq; qc; Pqc; t/ D Ma
�1.q; t/Qa.q; Pq; t/ � M �1.q; t/Q.q; Pq; t/

C Ma
�1.q; t/

2
4 nX

j D1

@Qa;i

@qc;j

ˇ̌
q; Pq;t .qc;j � qj / C

nX
j D1

@Qa;i

@ Pqc;j

ˇ̌
q; Pq;t . Pqc;j � Pqj /

3
5

C
2
4 nX

j D1

@M �1
a;ik

@qc;j

ˇ̌
q;t .qc;j � qj /

3
5
2
4Qa.q; Pq; t/ C

nX
j D1

@Qa;i

@qc;j

ˇ̌
q; Pq;t .qc;j � qj /

C
nX

j D1

@Qa;i

@ Pqc;j

ˇ̌
q; Pq;t . Pqc;j � Pqj /

3
5

C
8<
:Ma

�1.q; t/ C
2
4 nX

j D1

@M �1
a;ik

@qc;j

ˇ̌
q;t .qc;j � qj /

3
5 � M �1.q; t/

9=
;Qc.t/

C H:O:T:; for i D 1; : : : ; n and k D 1; : : : ; n; (4.32)

where H.O.T. denotes higher order terms in .qc � q/ and . Pqc � Pq/.
We note that in Eq. (4.32), Qa;i , qc;j , and qj denote the corresponding ith and

jth components of the n-vectors Qa, qc , and q, respectively. Also M �1
a;ik represents

the (i,k) element of the n by n matrix M �1
a .

The aim is to develop a controller Ru such that the motion of the controlled
actual system closely tracks the motion of the nominal system and thereby satisfies
the control requirements (4.4). We assume for the moment that the compensating
control acceleration Ru is capable of this and causes the trajectory of the controlled
actual system .qc; Pqc/ to sufficiently approximate that of the nominal system so
that .qc; Pqc/ 	 .q; Pq/. Under this assumption, we take the lowest order terms in
Eq. (4.32) and approximate ı Rq as

ı Rq.q; Pq; t/ 	 	
M �1

a .q; t/Qa.q; Pq; t/ � M �1.q; t/Q.q; Pq; t/



C 	
Ma

�1.q; t/ � M �1.q; t/



Qc.t/; (4.33)

and similarly approximate NM as [see Eq. (4.30)]

NM 	 I � �
I C M �1.q; t/ ıM.q; t/

��1
: (4.34)

Since [18]

M �1
a .q; t/ D ŒM.q; t/ C ıM.q; t/��1 D M �1 � M �1.I C ıM M �1/

�1
ıM M �1;

(4.35)

expanding Eq. (4.33) and utilizing Eq. (4.35), we obtain
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ı Rq.t/ 	 �.M C ıM /�1ıM M �1.Q C Qc/ C .M C ıM /�1ıQ; (4.36)

which includes the combined effect of the uncertainties ıM and ıQ. By taking the
norm of relation (4.36), one can obtain an estimate of the bound, �.t/, on kı Rqk as

kı Rq.t/k 	
�.M C ıM /�1ıM M �1.Q C Qc/ C .M C ıM /�1ıQ

 � �.t/;

(4.37)

where �.t/ is a positive function of time.

Remark 1. With the knowledge on the bounds on the uncertainties in the mass
matrix, kıMk, and the given force, kıQk, and the assumption that

M �1ıM
 
 1,

we can also obtain an estimate of a suitable bound on ı Rq as

kı Rq.t/k � �
1 C M �1

 kıMk� M �1
 �M �1

 kQ C Qck kıMk
C kıQk/ � �.t/; (4.38)

where �.t/ is a positive function of time.

The bounds �.t/ both in Eqs. (4.37) and (4.38) depend on our bounds on ıM

and ıQ; which in turn depend on the state of our knowledge (or ignorance) about
the actual system. Both Eqs. (4.37) and (4.38) can be used to get the general form
of kı Rqk and are also applicable to those special situations in which either ıM or ıQ

may be judged to be so negligibly small as to be approximated by zero.
In the simulations that follow in Sect. 4.6, we obtain estimates on the bound

on kı Rqk by using relation (4.37), which appears to provide a close enough
approximation to the norm of ı Rq given in Eq. (4.31).

4.5 Control Designs

Having obtained an estimate of the bound kı Rqk � �.t/, we now develop a
methodology for obtaining a compensating controllers, Ru [see Eq. (4.26)], which
is the generalized sliding surface controller (GSS ).

The aim is to develop a compensating controller that can guarantee the tracking
of the nominal system’s trajectory (to within desired error bounds) despite our
uncertain knowledge of the actual system. The formulation of this controller permits
the use of a large class of control laws that can be adapted to the practical limitations
of the specific compensating controller being used and to the desired measure of
compensation for the uncertainties. The controller can guarantee tracking of the
nominal system’s trajectories in the presence of uncertainties within desired error
bounds. Its tracking responses are shown later in Sect. 4.6.
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Noting Eq. (4.29), the tracking error signal in acceleration can be expressed as

Re D ı Rq C M �1
a M Ru WD ı Rq C Ru � NM Ru: (4.39)

Since the compensating control causes the trajectory of the controlled actual
system .qc; Pqc/ to sufficiently approximate that of the nominal system so that
.qc; Pqc/ 	 .q; Pq/, taking the lowest order terms as before, NM in Eq. (4.30) can
be approximated as NM 	 I � �

I C M �1.q; t/ ıM.q; t/
��1

.We again note that NM

is unknown, since ıM is unknown, and it is embedded in our controller Ru. We shall
show that the uncertain term NM will be taken care of by the proof of Lyapunov
stability.

We now define a sliding surface

s.t/ D k1e.t/ C Pe.t/; (4.40)

where k1 > 0 is an arbitrary small positive number and s is an n-vector. Our aim
is to maneuver the system to the sliding surface s 2 �", whereupon by Eq. (4.40),
ideally speaking when the size of the surface �" is zero, we obtain the relation
Pe D �k1e, whose solution e.t/ D e0 exp.�k1t/ shows that the tracking error e.t/

exponentially reduces to zero along this lower dimensional surface in phase space.
Differentiating Eq. (4.40) with respect to time and using Eq. (4.39), we get

Ps D k1 Pe C Re D k1 Pe C ı Rq C Ru � NM Ru: (4.41)

Since . Pqc � Pq/ can be measured, to cancel the known term k1 Pe D k1. Pqc � Pq/ in
Eq. (4.41), we choose the controller Ru to be of the form

Ru D �k1 Pe.t/ C GSS.t/; (4.42)

so that

Ps D GSS .t/ C ı Rq.t/ � NM.t/ Œ�k1 Pe.t/ C GSS.t/�: (4.43)

We note that kı Rqk � �.t/. Here, we have used the bound �.t/ that is related
to the uncertainties involved in the actual system and that is obtained from relation
(4.37) [or (4.38)]. In what follows we shall denote k�k to mean the infinity norm.

We shall now show that the system can indeed be maneuvered to the sliding
surface s 2 �" when �" is defined as any appropriately small surface around s D 0

whose exact description will be shortly discussed.
We start by considering a function ˇ.t/ such that

ˇ.t/ � n .�.t/ C ˇ0/

˛0

> 0; (4.44)
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where

ˇ0 > k1

 NM.t/
 kPe.t/k and 0 < ˛0 < 1 � n�

 NM.t/
 (4.45)

are any arbitrary positive constants over the time duration over which the control is
applied.

The positive constant � is chosen such that

� � � � 1; (4.46)

where

� WD ksk kf .s/k
sT f .s/

� 1: (4.47)

We note that since � � 1, the choice � D 1 would suffice in Eq. (4.44) when
choosing ˛0. The function f .s/ will be defined shortly.

We now define a control n-vector GSS.t/ so that

GSS .t/ WD ��ˇ.t/f .s/: (4.48)

The ith component, fi .s/, of the n-vector f .s/ is defined as

fi .s/ D g .si ="/ ; i D 1; : : :; n (4.49)

where si is the ith component of the n-vector s, " is defined as any (small)
positive number, and the function g .si ="/ is any arbitrary monotonic increasing
odd continuous function of si on the interval .�1; C1/ that satisfies

kfi .s/k D kg.si ="/k � �.t/ C k1

 NM .t/
 kPe.t/k

�.t/ C ˇ0

; if si is outside the surface �".t/;

(4.50)

where �".t/ is defined as the surface of the n-dimensional cube around the point
s D 0, each of whose sides has a computable length (as show below). We
note that the right-hand side of relation (4.50) is always less than unity since
ˇ0 > k1

 NM.t/
 kPe.t/k, and hence relation (4.50) will always be satisfied when

kf .s/k � 1.

Result 1. The control law

Ru D �k1 Pe.t/ C GSS.t/ D �Œk1 Pe.t/ C �ˇ.t/f .s/� (4.51)

with k1 > 0 and GSS .t/ defined in Eq. (4.48) to Eq. (4.50) will cause s.t/ ! �".
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Proof. Consider the Lyapunov function

V D 1

2
sT s: (4.52)

Differentiating Eq. (4.52) once with respect to time, we get

PV D sT Ps: (4.53)

Substituting Eq. (4.43) in Eq. (4.53), we have

PV D sT .t/GSS .t/ C sT .t/ı Rq.t/ C k1s
T .t/ NM .t/ Pe.t/ � sT NM.t/GSS .t/: (4.54)

Then using Eq. (4.48) in Eq. (4.54), we obtain

PV D ��ˇsT f .s/ C sT ı Rq C k1s
T NM Pe C �ˇsT NM f .s/; (4.55)

so that

PV � ��ˇsT f .s/ C sT
 kı Rqk C k1

sT
  NM

 k Pek C �ˇ
sT

  NM
 kf .s/k :

(4.56)

Then using the relation kı Rqk � �.t/, we obtain

PV � ��ˇsT f .s/ C sT
�.t/ C k1

sT
  NM

 kPek C �ˇ
sT

  NM
 kf .s/k :

(4.57)

Since [see Eqs. (4.46) and (4.47)]

� sT f .s/ � ksk kf .s/k ; (4.58)

relation (4.57) becomes

PV � � sT
�ˇ

ksk
ksT k kf .s/k � �ˇ

 NM
 kf .s/k � �.t/ � k1

 NM
 k Pek

�

� � sT
 �ˇ

�
1

n
� �

 NM
� kf .s/k � �.t/ � k1

 NM
 k Pek

�

D � sT
 �ˇ

n

�
1 � n�

 NM
� kf .s/k � �.t/ � k1

 NM
 kPek

�
;

(4.59)

where the second inequality follows because ksk
ksT k � 1

n
.
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Using Eq. (4.44) in Eq. (4.59), we then have

PV � � sT
 � .�.t/ C ˇ0/

˛0

�
1 � n�

 NM
� kf .s/k � �.t/ � k1

 NM
 kPek

�

� � sT
 	.�.t/ C ˇ0/ kf .s/k � �.t/ � k1

 NM
 k Pek
 ; (4.60)

where the last inequality follows because .1�n�k NMk/

˛0
� 1.

Since by Eq. (4.50), .�.t/ C ˇ0/ kf .s/k��.t/�k1

 NM.t/
 kPe.t/k WD .t/ � 0

outside the surface �".t/, we have

PV � � sT
.t/; outside the surface �".t/; (4.61)

so that the derivative PV is negative, and we have convergence to the closed set
interior to the region enclosed by the surface �". �

Thus for the right-hand side of relation (4.60) to be negative, we require relation
(4.50), namely,

kf .s/k D kg.s="/k � �.t/ C k1

 NM.t/
 kPe.t/k

�.t/ C ˇ0

WD „.t/; (4.62)

where, as noted before, „.t/ < 1. Relation (4.62) then yields

ksk � "g�1 Œ„.t/� : (4.63)

In the region in which ksk satisfies Eq. (4.63), the Lyapunov derivative PV is
negative. This shows us that the controller (4.51) will cause s.t/ to decrease until it
reaches the boundary s 2 �".t/: Further, since „.t/ < 1, and the function g(*) is
a monotonically increasing function, �".t/ is enclosed in an n-dimensional cube of
constant size around the point s D 0, each of whose sides has length

L".t/ D 2"g�1 Œ„.t/� < 2"g�1.1/ WD †: (4.64)

This gives an estimate of the n-dimensional cubical region �" (each of whose
sides is estimated to be of constant length †) to which trajectories of the controlled
actual system will be attracted to.

Noting the fact that ks.t/k is bounded by L"=2 inside the surface �", we now
have an estimate of the error bounds given by

ke.t/k � †

2k1

and kPe.t/k � †; as t ! 1: (4.65)
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Remark 2. Under the proviso
 NM.t/

 kPe.t/k < 1 for t 2 Œ0; T � where Œ0; T � is the
interval over which the control is applied, which is something that we expect, we
then have

L".t/ <	 2"g�1 Œ.�.t/ C k1/ =.�.t/ C ˇ0/� : (4.66)

For ease of implementation, one could choose the function �.t/ to be a constant
by taking it to be the upper bound, �m, so that kı Rq.t/k � �m for t 2 Œ0; T �, where
Œ0; T � is the interval over which the control is applied. Then relation (4.66) becomes

L" <	 2"g�1 Œ.�m C k1/ =.�m C ˇ0/� : (4.67)

One can then, accordingly, obtain an estimate of the error bounds by replacing
† in the expressions in Eq. (4.65) by the expression on the right-hand side of Eq.
(4.67).

Main Result (GSS). The closed-from generalized sliding surface controller for the
uncertain system,

Ma Rqc DQa C Qc.t/ C M Ru D Qa C Qc.t/ � M

�
k1 Pe C n�

�
�.t/ C ˇ0

˛0

�
f .s/

�
;

(4.68)

where:

(1) the control force Qc.t/ is given by Eq. (4.8) and is obtained on the basis of the
nominal system;

(2) k1 > 0 is an arbitrary small positive number;
(3) � can be chosen to be unity, and for the function f .s/ any arbitrary monoton-

ically increasing odd continuous function of s on the interval .�1; C1/ as
described in Eq. (4.49) with kf .s/k � 1 in �" would be sufficient;

(4) kı Rq.t/k < �.t/ where �.t/ is chosen based on the estimate of ı Rq from
Eq. (4.37) [or (4.38)];

(5) ˛0 is a small positive number that satisfies

0 < ˛0 < 1 � n�
 NM.t/

 ; (4.69)

over the time duration over which the control is done; and

(6) under the proviso, and the expectation, that
 NM

 kPek << 1, ˇ0 is chosen
such that

ˇ0 D k1; (4.70)

will cause the actual system to track the trajectory of the nominal system within
the estimated error bounds given by Eq. (4.65).
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Proof Using Eq. (4.28) in Eq. (4.39), we have

Re D Rqc � Rq D ı Rq C M �1
a M Ru; (4.71)

so that

Rqc D Rq C ı Rq C M �1
a M Ru: (4.72)

Consider Eq. (4.31),

ı Rq D .aa � a/ C �
Ma

�1 � M �1
�

Qc.t/

D �
aa C Ma

�1Qc.t/
� � �

a C M �1Qc.t/
�

D aa C Ma
�1Qc.t/ � Rq: (4.73)

In the last equality above, we have used Eq. (4.9).
Substituting Eq. (4.73) in Eq. (4.72), we then get

Rqc D aa C Ma
�1Qc.t/ C M �1

a M Ru: (4.74)

Pre-multiplying both sides of Eq. (4.74) by Ma, we obtain

Ma Rqc D Qa C Qc.t/ C M Ru: (4.75)

Finally, using Result 1 [Eq. (4.51)] and Eq. (4.65), the main result .GSS/ follows.
�

4.6 Numerical Results and Simulations

In this section we continue to illustrate the control methodology in the presence of
uncertainties by considering the same example of the triple pendulum. The approach
is straightforward to apply to other systems. While our nominal system has m1 D
1; m2 D 2; and m3 D 3, there is an uncertainty of ˙10% in each of these values
when describing the actual system.

With imperfect knowledge of the parameters in the system, in order to control the
actual system’s motion so that it tracks the motion of the controlled nominal system
and thereby satisfies the control requirements imposed on the nominal system, we
would have to use the controlled actual system [see Eq. (4.25)]

Ma Rqc D Qa C Qc.t/ C Qu WD Qa C Qc.t/ C M Ru; (4.76)

which contains the additional control force Qu to compensate for our uncertainty
in the knowledge of the actual system. The additional additive controller Ru can be
defined explicitly, using the control law as discussed in Sect. 4.5.
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We next select the structure and parameters for the generalized sliding surface
controller given by Eq. (4.68). We choose

fi .s/ D ˛c.si ="/3; (4.77)

where ˛c; " > 0 and " is a suitable small number. We then obtain in closed
form the generalized sliding surface controller that guarantees to compensate for
uncertainties in the actual system as

Ma Rqc D Qa C Qc.t/ � M

�
k1 Pe C n�

�
�.t/ C ˇ0

˛0

�
˛c.s="/3

�
: (4.78)

We note that with this choice of fi .s/ D ˛c.si ="/3, the region outside the surface
�" is the region outside of the n-dimensional cube around s D 0, each of whose
sides has length L" <	 2"..�m C k1/=˛c.�m C ˇ0//1=3 [see Eq. (4.67)]. In this
region Eq. (4.61) assures us that the controlled actual system (4.78) will cause s.t/

to strictly decrease, until it reaches the boundary s 2 �" and remains inside this
n-box thereafter.

Pre-multiplying both sides of Eq. (4.78) by M �1
a , we obtain the closed-form

equation of motion of the controlled actual system as

Rqc D aa C M �1
a Qc.t/ � M �1

a M

�
k1 Pe C n�

�
�.t/ C ˇ0

˛0

�
˛c.s="/3

�
; (4.79)

which will cause the actual system to track the trajectory of the nominal system,
thereby compensating for the uncertainty in our knowledge of the actual system.

However, while we have no knowledge of the actual parameters, in order to affect
a compensating controller, a suitable bound on the uncertainty in ı Rq is required. We
next estimate �m and �.t/. We note that �m � �.t/, where �.t/ is the bound
on ı Rq [see Eq. (4.37)] in the presence of the ˙10 percent uncertainties in each of
the masses m1, m2, and m3 as described in Sect. 4.3.1. In order to estimate �m

and �.t/, we use Eq. (4.37) and perform a Monte Carlo simulation using 1,014
uniformly distributed, independent samples of the uncertain masses ım1; ım2, and
ım3. The location of the actual masses for each sample is shown in Fig. 4.8 and the
probability density function of kı Rqk (at each instant of time t) that is obtained is
shown in Fig. 4.9.

The mass properties of our actual system, though unknown, lie somewhere inside
the box shown in Fig. 4.8. In order to check the efficacy of our controller in
compensating for our lack of exact knowledge of the actual system, we pick the set
ım1 D 0:1; ım2 D �0:2; and ım3 D 0:3, which is assumed to represent our actual
system. To check the performance of our controller, we perform a simulation using
Eq. (4.79) by choosing �.t/ D �m D 100 for t 2 Œ0; 10� as shown in Fig. 4.9 (red
line) and using the parameters k1 D 10; ˇ0 D k1; ˛c D 2; ˛0 D 0:01; � D 1; and
" D 10�2 to specify our controller. All other parameter values are the same as those
prescribed in Sect. 4.2.3. We note that the chosen set of deviations from the nominal
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Fig. 4.8 The three masses mi ˙ ımi, i D 1,2,3 of the actual system lie somewhere in the box
shown. The figure shows the 1,014 uniformly distributed random points generated from a Monte
Carlo simulation

values (m1 C ım1 D 1:1; m2 C ım2 D 1:8; and m3 C ım3 D 3:3) represents simply
one out of the random triples shown in Fig. 4.8. Also the estimate of �.t/ is not
sensitive to the magnitude of additional control forces Qu in our control approach.

The constrained trajectories of mass m3 in the XY-plane of the nominal, the
controlled, and the actual systems are illustrated in Fig. 4.10. We see that the
controlled system (given by Eq. (4.79) and shown in Fig. 4.10b) tracks the nominal
system (given by Eq. (4.19) and shown in Fig. 4.10a), while the actual system
(given by Eq. (4.24) and shown in Fig. 4.10c) deviates from the desired nominal
system. We note that all three systems satisfy the energy control requirement (4.15).
Figure 4.11 gives an alternative view of the trajectory responses. In this figure, the
trajectories in �1; �2; and �3 of the nominal (solid red line), the actual (solid blue
line), and the controlled (dotted line) systems are shown. As time increases, the
actual system’s response differs from those of the nominal and controlled systems,
while the controlled system tracks the nominal system very well. This illustrates the
performance of the closed-form Eq. (4.79) showing that the controlled actual system
tracks the trajectories prespecified by the nominal system in the presence of the
˙10% uncertainties in masses of the triple pendulum and the control requirement
imposed on it given by Eq. (4.15). Figures 4.12 and 4.13 correspondingly show
the displacement errors (� � �c) and velocity errors ( P� � P�c) between the nominal
system (4.19) and the controlled actual system (4.79). Both figures show that the
tracking errors are small. The errors are seen to be of O(10�5) for the displacement
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Fig. 4.9 Probability density function of kı Rqk at each time t using Eq. (4.37) for the 1,014
simulation points in which the mass have ˙10 % uncertainties

and of O(10�4) for the velocity. We see that these errors are within the estimated
error norms ke.t/k <	 L"=2k1 	 8 � 10�4 and kPe.t/k <	 L" 	 1:6 � 10�2 as
prescribed by Eqs. (4.65) and (4.67), where

L" <	 2"..�m C k1/=˛c.�m C ˇ0//
1=3 	 1:6 � 10�2: (4.80)

We note that the use of the specified smooth cubic function eliminates chattering.
We also note from the numerical simulation of this example that our assumptions
ˇ0 > k1

 NM.t/
 kPe.t/k, 0 < ˛0 < 1 � n�

 NM.t/
, and � sT f .s/ � ksk kf .s/k

always hold.
Pre-multiplying Eq. (4.79) by Ma, we obtain [see Eq. (4.68)]

Ma Rqc D Qa C Qc � M

�
k1 Pe C n�

�
�.t/ C ˇ0

˛0

�
˛c.s="/3

�

WD Qa C Qc C M Ru WD Qa C Qc C Qu: (4.81)

The total control force applied to the actual system is given by QT D Qc C Qu.
Here Qc is the control force obtained from the nominal system, and Qu is the force
applied by the additional compensating controller to compensate for our inexact
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Fig. 4.10 GSS—Trajectory responses (meter) of the mass m3 over a period of 10 s of (a) the
nominal system and (b) the controlled actual system are approximately the same, while (c) the
actual system yields a totally different trajectory when the uncertainties in masses are prescribed
as ım1 D 0.1 kg, ım2 D �0.2 kg, and ım3 D 0.3 kg and the uncertainty’s bound in Eq. (4.79) is
chosen to be ¦D 100
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Fig. 4.11 GSS—Angular responses [no. of revolutions (360ı)] of the masses (a) m1, (b) m2, and
(c) m3. The angular responses of the masses m2 and m3 of the actual system move away from those
of the nominal system as time increases while those of the controlled system track the nominal
system very well
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Fig. 4.12 GSS—Tracking
errors (radians) between the
controlled nominal system
and the controlled actual
system .� � �c/ in
displacement of the masses
(a) m1, (b) m2, and (c) m3

knowledge of the actual system. The control forces QT and Qu on the masses m1,
m2, and m3 of the actual pendulum are shown in Fig. 4.14. The magnitude of the
additional control forces, Qu, applied by the compensating controller GSS is seen
to be small relative to the magnitude of the total control forces, QT .

As mentioned earlier that the estimate of �.t/ is not sensitive to the magnitude of
additional control forces Qu in our control approach, we next consider the previous
example to show that even if we miss-estimate the bound �.t/, for example, five
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Fig. 4.13 GSS—Tracking
errors (rad/s) between the
controlled nominal system
and the controlled actual
system . P� � P�c/ in velocity of
the masses (a) m1, (b) m2,
and (c) m3

times its original value of a 100, i.e., �.t/ D 500 for t 2 Œ0; 10�, the magnitude
of the additional control forces Qu that is obtained by using the generalized sliding
surface controller (4.79) with �.t/ D 500 (see Fig. 4.15d) is still approximately
the same amount as that obtained by using �.t/ D 100 (see Fig. 4.14d). Also the
displacement errors (� ��c) and velocity errors ( P� � P�c) between the nominal system
(4.19) and the controlled actual system (4.79) are approximately in the same order
of magnitudes as can be seen from the comparisons between Figs. 4.12 and 4.16
and between Figs. 4.13 and 4.17, respectively. These show that the equation of the
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Fig. 4.14 GSS—Control forces (Newtons) on the controlled actual system. The solid line shows
the total control force, QT , and the dashed line shows the additional force, Qu, needed to
compensate for uncertainties in the actual system

approximation of the uncertainty’s bound (4.37) is valid to use instead of Eq. (4.31)
in our control design.

The guaranteed errors in tracking in both displacement and velocity from
Figs. 4.12 and 4.13 and the small additional control forces to compensate for
uncertainties from Fig. 4.14 guarantee that the proposed control design is robust
with respect to the uncertainties in modeling systems.

4.7 Conclusion

In this chapter, the set of closed-form controllers for nonlinear uncertain multi-
body systems is developed. This controller is able to guarantee tracking of a
desired reference trajectory, which the nominal system—the best estimate of the
actual real-life situation—is required to follow. Thus, theoretically speaking, the
control requirements placed on the nominal system are thereby followed. The main
contributions of this chapter are as follows:

(1) We obtain the exact closed-form solution to the energy control problem of a
multi-body system. The control force that must be applied to the system because
of the presence of the energy control requirement imposed on the system is
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Fig. 4.15 GSS—Control forces (Newtons) on the controlled actual system when using � D 500.
The solid line shows the total control force, QT , and the dashed line shows the additional force,
Qu, needed to compensate for uncertainties in the actual system

easily obtained. Also, when starting with initial states that do not satisfy this
energy requirement, the error in satisfying it converges to zero exponentially.

(2) The general closed-form equation of motion for uncertain nonlinear multi-
body systems—the so-called controlled actual system—has been developed.
The novelty in the approach developed here is that we first use the fundamental
equation to obtain exact control of the nominal, nonlinear, non-autonomous,
mechanical system. This control, Qc, ensures that the trajectory constraints are
exactly satisfied by the nominal system and that it optimizes the control cost
given by QcT

M �1Qc at each instant of time. Control of the actual system, in
which both the mass matrix and the ‘given’ forces may be imprecisely known,
is then carried out using the concept of the generalized sliding surface control.

(3) The proposed controlled actual system can simultaneously control the states
of the actual system to follow the trajectory that is prespecified by the
control requirements imposed on the nominal system and compensate for the
uncertainty from the imperfect knowledge of the parameters in the actual
system. Thus the proposed control approach is superior to that proposed in many
previous studies.

(4) Based on the concept of a generalization of the sliding surface control, the
compensating controller is developed to work with the proposed controlled
actual system. This leads to the set of closed-form controllers—the generalized
sliding surface controller GSS —which can guarantee tracking of the nominal
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Fig. 4.16 GSS—Tracking
errors (radians) between the
controlled nominal system
and the controlled actual
system .� � �c/ in
displacement of the masses
(a) m1, (b) m2, and (c) m3

system’s trajectory within prescribed error bounds. The descriptions of the
closed-form controllers involve (i) the description of the actual system given
by Ma Rqc D Qa, whose parameters are known only imperfectly; (2) the
control force Qc.t/ given by Eq. (4.8), which is obtained on the basis of our
best estimate of this actual system, namely, on the basis of the corresponding
nominal system; and (3) the additional control forces Qu WD M Ru to compensate
for uncertainties, which depend on the estimate of the uncertainties in ı Rq.
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Fig. 4.17 GSS—Tracking
errors (rad/s) between the
controlled nominal system
and the controlled actual
system . P� � P�c/ in velocity of
the masses (a) m1, (b) m2,
and (c) m3

(5) The quantity ı Rq is not known, but we have an estimate of the uncertainty
involved: kı Rqk � �.t/. The bound �.t/ depends on our bounds on ıM and ıQ;

which in turn depend on the state of our knowledge about the actual system.
(6) Configuration variables subjected to both holonomic and nonholonomic control

requirements, or to a combination of such requirements, are handled in a
uniform manner in the proposed control methodologies.

(7) We have generalized the concept of the sliding surface control by including
control functions fi .s/ that are not necessarily signum or saturation functions
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[19–22]. These control functions and the parameters that define the additive
controller can therefore be chosen depending on a practical consideration of
the control environment, and the extent to which the compensation of the
uncertainties is desired. These parameters can be adjusted so that desired error
bounds can be guaranteed when the uncertain system is required to track the
nominal system. Thus when dealing with large, complex multi-body systems
greater flexibility is afforded. The flexibility in choosing the control functions
becomes more important when practical limitations of the control are specified.
For example, the use of the cubic function in the example considered may
obviate the need for a high-gain controller and would also allow the continuous
control, thereby preventing chattering.

(8) For brevity, we have illustrated through numerical examples uncertainties
that are related to the properties of a simple physical system. However, the
formulation of the proposed control methodology encompasses both general
sources of uncertainties—uncertainties in the description of the physical system
and uncertainties in knowledge of the ‘given’ force applied to the system. The
closed-form controllers developed herein is therefore general enough to be
applicable to complex dynamical system in which both types of uncertainties
may be important.

(9) The control design is evaluated using numerical solution comparisons of the
tracking errors between the nominal and the controlled actual systems. The
results demonstrate that the controller has good transient behaviors and is robust
with respect to the uncertainties in the modeling process. Furthermore, with the
simplicity and accuracy obtained, the control scheme proposed in this chapter
can be implemented for various cases and for even more complex dynamical
problems.

Key Symbols

M The n by n nominal mass matrix
Q The n-vector nominal given force
q The n-vector generalized coordinate of the nominal mechanical system
Pq The n-vector generalized velocity of the nominal mechanical system
a The n-vector unconstrained generalized acceleration of the nominal mechan-

ical system (a D M �1Q)
' The m-vector constraints (holonomic and/or nonholonomic)
A The left-handed side, m by n matrix of constraint equations, see Eq. (4.5)
b The right-handed side, m-vector of constraint equations, see Eq. (4.5)
r The rank of matrix A
Qc The n-vector generalized constraint force
C The Moore–Penrose (MP) inverse of a matrix
g The gravitational acceleration
mi The ith mass of the system
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Li The length of the ith massless rod of the pendulum, see Fig. 4.1
�i The angle between the ith massless rod of the pendulum and the vertical

axis, see Fig. 4.1
Ei The total energy of the mass mi

˛ The arbitrary, nowhere-zero, sufficiently smooth real function of time
Ma The n by n actual mass matrix (Ma D M C ıM )
ıM The n by n matrix that characterizes uncertainties in the actual mass matrix
Qa The n-vector given force of the actual system (Qa D Q C ıQ)
ıQ The n-vector of uncertainties in given force of the actual system
Qq The n-vector generalized coordinate of the actual mechanical system
PQq The n-vector generalized velocity of the actual mechanical system
qa The n-vector generalized coordinate of the actual mechanical system, which

is obtained by using the correct control force that the actual system is
required to be subjected to, because of the control requirements

Pqa The n-vector generalized velocity of the actual mechanical system, which is
obtained by using the correct control force that the actual system is required
to be subjected to, because of the control requirements

aa The n-vector unconstrained generalized acceleration of the actual mechani-
cal system (aa D M �1

a Qa)
Qu The n-vector additional generalized control force that compensates for

uncertainties (Qu D M Ru)
Ru The n-vector additional generalized acceleration to compensate for uncer-

tainties
qc The n-vector generalized coordinate of the controlled actual mechanical

system
Pqc The n-vector generalized velocity of the controlled actual mechanical system
e The tracking error between the controlled actual system’s response and the

nominal system’s response (e D qc � q)
ı Rq The n-vector of uncertainties in acceleration of the actual system
NM The n by n matrix of uncertainties in the compensating controller ( NM 	

I � �
I C M �1ıM

��1
)

� The arbitrary positive function of time that characterizes the bound on ı Rq
(kı Rqk � �.t/)

�m The constant upper bound on the function �.t/

s The n-vector sliding surface
k1 The arbitrary small positive number
�" The surface of the n-dimensional cube around the point s D 0

ˇ0 The arbitrary positive constant (ˇ0 > k1

 NM
 kPek)

� The small positive constant (� D kskkf .s/k
sT f .s/

)
� The arbitrary small positive constant (� � � � 1)
˛0 The arbitrary small positive constant (0 < ˛0 < 1 � n�

 NM
)

ˇ The positive function of time (ˇ.t/ >
n.�Cˇ0/

˛0
)

" The arbitrary small positive constant
˛c The arbitrary positive constant
f .s/ The arbitrary monotonic increasing odd continuous function of s
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Gss The generalized sliding surface controller
V The Lyapunov function
L" The length of each side of the cubical surface �"

QT The n-vector total control force of the mechanical system (QT D Qc C Qu)
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Chapter 5
Robustness of Orthogonal Eigenstructure
Control to Actuators Failure

Mohammad Rastgaar and Nina Mahmoudian

Abstract Orthogonal eigenstructure control (OEC) is a feedback control method
applicable to multi-input multi-output linear systems. While the available control
design methodologies offer a large and complex design space of options that can
often overwhelm a designer, this control method offers a significant simplification
of the design task while still allowing some experience-based design freedom. In this
chapter, the robustness of the method to the failure of the actuators was investigated.
It was shown the control gain was capable of controlling the systems during an
actuator failure, as OEC generates the control gain by maintaining the closed-loop
eigenvectors within the achievable eigenvectors set. A system of lumped masses was
used to explain the method; then, the problem of failed actuators in the vibration
control of a plate was investigated. Finite element analysis was used for modeling
the plate to simulate the dynamic behavior of the system. Five cases were considered
and the suppression of the vibration in a plate with three working actuators was
compared to the performance of a similar control system with a failed actuator. Also,
the behaviors of the system with failed actuators were compared to the systems
that were designed to operate with lesser control actuators. It was shown that the
number of closed-loop eigenvalue pairs that moved from the cluster of the open-
loop poles was equal to the number of working actuators. The closed-loop poles in
all the systems were moved to the vicinity of one specific area, generating a break
frequency with sufficient damping for robust active vibration control.
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5.1 Introduction

OEC was developed to address the need for more robust control method that is
relatively easy to design and implement and allows control engineers to achieve
good performing designs even with little design experience. In this chapter, the
problem of robustness of the vibration control to the failure of actuators was
investigated using OEC, a feedback control method applicable to multi-input multi-
output linear systems. While the available control design methodologies offer a
large and complex design space of options that can often overwhelm a designer,
this control method offers a significant simplification of the design task while
still allowing some experience-based design freedom. This control method needs
neither predefining the locations for the closed-loop poles nor shaping the closed-
loop eigenvectors. The orthogonal eigenstructure control regenerates the open-loop
system and simultaneously finds the vectors that are orthogonal to its eigenvectors.
The determined orthogonal vectors are within the achievable eigenvectors set, so
the error due to the difference between achievable eigenvectors and the desirable
eigenvectors, as is common in eigenstructure assignment methods, is eliminated.
It has been shown that eigenstructure assignment methods are effective for active
vibration cancelation in structures. The methods currently available, however,
depend on the experience of the controller designer, based on the geometry and
dynamics of the structures. In general, there are no unified methods for the
application of eigenstructure assignment with the purpose of vibration cancelation in
structures. Existing methods require apriori definition of the desired eigenstructure
[1]. Identifying the desirable locations for the closed-loop eigenvalues and defining
the desirable closed-loop eigenvectors are not a straightforward task [2]. For large
scale systems it becomes impractical to define a desired closed-loop eigenstructure.
Therefore, the existing methods are not able to be applied to such systems or many
other similar practical engineering structures. Considering that there are no one-to-
one relationship between the elements of closed-loop eigenvectors and the states of
the system, one may define a desirable eigenvector, but not achievable, that does
not satisfy a given design criterion. This may lead to excessive actuation forces
because of improper closed-loop poles. Additionally, the desirable eigenvectors do
not necessarily lie within the space of achievable eigenvectors. The missing piece of
this puzzle is a control method that can systematically lead to a set of desirable, and
obviously achievable, closed-loop eigenvectors that result in a decoupled control
and less sensitive to actuator failure.

Critical issues may arise when the actuator fails in a system. The application of
robustness of control methods to actuator failure by absorbing some of the impacts
on the performance of the control system may prevent a complete failure of the
system and allow for delayed maintenance. Many researchers have investigated
different methods to accommodate actuator failure in a variety of applications.
A method for actuator failure was proposed by Tao et al. as a direct adaptive state
feedback control scheme for linear time-invariant systems [3–5]. Their method was
model based and the failure pattern was simulated such that some of the control
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inputs were stuck at unknown values at unknown time instants. They investigated
the conditions and controller structures for matching system and model states during
actuator failure. Tang et al. proposed a method with a similar concept for multi-
input multi-output nonlinear systems [6]. Fei et al. developed an output feedback
control for output tracking in discrete linear time-invariant systems, with uncertain
failures [7]. Some methods address the failure of actuators by multiple model
design, for example, Chen et al. studied the problem of actuator failure for linear
and nonlinear systems [8]. In this method, all the possible scenarios of the actuator
failure were accumulated and used for both state and output feedback control by
combining the observer design with the adaptation method. Also, a design technique
to prevent stuck actuators was proposed by Chen et al. based on an iterative
learning observer and designing a reconfigurable controller using estimated states to
compensate for the effect of the failed actuators [9]. The optimal control approach
was also used for compensating the effect of failed actuators. Yang et al. studied
a low-cost LQ regulator for discrete-time systems with actuator failure [10]. Seo
et al. considered the actuator failures as disturbance signals of arbitrary values
to the system, and designed a robust and reliable H1 state feedback control for
linear uncertain systems with time-varying norm-bounded parameter uncertainty
[11]. Wang et al. proposed a H1 control for a class of switched nonlinear systems
with actuator failures among a prespecified subset of the situations of the actuators’
failure [12]. They used a multiple-Lyapunov function method to derive a sufficient
condition for the switched nonlinear system to be asymptotically stable with H1
norm bound. Zhao et al. used a linear Matrix Inequality Approach (LMI) for state
feedback control design applied to a class of systems with model uncertainties and
actuators’ failures [13].

The eigenstructure assignment methods have been used to address the problem
of actuator failure and reconfiguring the systems. Liu et al. combined the time-
domain performance specifications provided by eigenstructure assignment and
robust performance specifications in the frequency domain considered by H1
control to develop a joint optimal robust control design [14]. A method for
designing the reconfiguring class of second-order systems has been proposed by
Wang et al. based on the parametric eigenstructure assignment by PD feedback
developed earlier by Duan [15]. This method finds the parametric forms of all the
re-synthesized gain matrices. Zhang et al. proposed an integrated fault detection,
diagnosis, and reconfigurable control scheme based on the interacting multiple
model approach and used an eigenstructure assignment technique for reconfigurable
feedback control law design [16]. Another method based on the eigenstructure
assignment method for reconfiguring the control system to recover the eigenvalues
and eigenvectors of the original closed-loop system has been presented by Jiang
et al. [17]. This method leads to a stable system when full state feedback is
available and, for the output feedback problems, recovers the subsequent dominant
eigenvalues and eigenvectors of the original system. Apkarian et al. used the
eigenstructure assignment with Lyapunov-type constraints to develop a control
method with enhanced LMI characterizations [18].
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OEC was introduced by the authors [19] and was developed further for systems
with non-collocated actuators and sensors [20]. Application of OEC in high degrees
of freedom systems was presented in [21]. The experimental application of this
method for active vibration cancelation using piezoelectric actuators was shown
in [22]. A comparison of OEC with eigenstructure assignment techniques was
discussed in [23].

In this chapter we evaluated the robustness of OEC when used for vibration
cancelation in a plate. First, we defined the orthogonal eigenstructure control.
Then, using a simple lumped mass model, we described how the method provided
the control gain matrix such that both the closed-loop system with working
actuators and the one with the failed actuator have eigenvectors within achievable
eigenvectors set. Finally, we applied the control method to a finite element model
of a plate and investigated the vibration cancelation in the presence of the failed
actuator. Comparisons were made between systems with three working actuators
and systems with two working and one failed actuators. Moreover, a comparison
between the systems with two working and one failed actuators were compared to
the systems that were designed specifically with two actuators.

5.2 Orthogonal Eigenstructure Control

Let’s consider the first order realization of a closed-loop multi-input multi-output
linear system;

Px D Ax C Bu C Ef (5.1)

y D Cx (5.2)

u D Ky (5.3)

where x and Px are the 2n � 1 state vector and its time derivative, A is the 2n � 2n

state matrix, B is a 2n�m input matrix, where m � 2 is the number of the actuators,
E is the disturbance input matrix, f is the disturbance vector with appropriate
dimensions, and u is the input vector of dimension m. Assume the actuators and
sensors are colocated; therefore, the output vector y is m � 1 and the output matrix
C is m�2n. K is m�m feedback gain matrix. The closed-loop equation of motion is

Px D .A C BKC /x C Ef (5.4)

For the closed loop system of Eq. (5.4), the eigenvalue problem is defined as

.A C BKC /	i D 
i 	i i D 1; : : : ; 2n (5.5)
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where 	i and 
i are the closed-loop eigenvectors and eigenvalues of the system,
respectively. Equation (5.5) may be written in matrix form as follows:

ŒA � 
i I jB�

�
	i

KC 	i

�
D 0 i D 1; : : : ; 2n (5.6)

where I is the 2n � 2n identity matrix. Equation (5.6) implies that the vector�
	i

KC 	i

�
spans the null space of the matrix S
i D ŒA � 
i I jB�

2n�.2nCm/
.

Calculating the singular value decomposition of S
i , we may write

S
i D ŒUi �2n�2nŒ†i j02n�m�2n�.2nCm/ŒV
�

i �.2nCm/�.2nCm/ (5.7)

Ui and Vi are the left and right orthonormal matrices, respectively, and V �
i is the

conjugate transpose of the complex matrix Vi . The index i specifies the equations
for the i th operating eigenvalue. In OEC, operating eigenvalue 
i are chosen from
the open-loop eigenvalues set. Substituting operating eigenvalue 
i in Eq. (5.6)
allows for regenerating the open-loop system and systems with eigenvectors almost
orthogonal to the eigenvectors of the regenerated open-loop system simultaneously.
The number of operating eigenvalues is the same as the number of the required
pairs of actuators and sensors m. It has been shown that the m farthest open-
loop eigenvalues from the origin are proper options for the operating eigenvalues
[21]. After partitioning Vi , the second column block of Vi spans the null space of
S
i [24, 25].

ŒVi �.2nCm/�.2nCm/ D
�

ŒV i
11�2n�2n ŒV i

12�2n�m

ŒV i
21�m�2n ŒV i

22�m�m

�
(5.8)

An achievable eigenvector 	a
i of the closed-loop system is any linear combina-

tion of m columns of V i
12 using a coefficient vector ri .

	a
i D V i

12r
i (5.9)

The control gain matrix K is defined as

KC	a
i D V i

22r
i (5.10)

which requires finding the appropriate ri . We define the modal energy correspond-
ing to the i th achievable eigenvector of the closed-loop system:

Ei D ri�V �V i
12r

i (5.11)

Since V i
12 is complex, then V i

12

�
V i

12 is a Hermitian matrix and its eigenvalue
decomposition is
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V i
12

�
V i

12 D NU i ƒi NU i� (5.12)

where Nƒi and NU i are the eigenvalues and eigenvectors matrices of V i
12

�
V i

12.
Similarly, V i

22 is a complex matrix and the eigenvalue decomposition of the
Hermitian matrix V i

22

�
V i

22 is

V i
22

�
V i

22 D NU i
w

Nƒi
w

NU i�
w (5.13)

where Nƒi
w and NU i

w are the eigenvalue and eigenvector matrices of V i
22

�
V i

22. It has
been shown by the authors [24, 26] that the eigenvalues of the Hermitian products
V i

12

�
V i

12 and V i
22

�
V i

22 belong to the Œ0 1� interval. Moreover, it has been shown

that the eigenvectors of V i
22

�
V i

22 and V i
12

�
V i

12 are identical and the summation of
the eigenvalues of V i

12

�
V i

12 and V i
22

�
V i

22 associated with similar eigenvectors are in
unity [24, 26].

Nƒi
w C Nƒi D I (5.14)

NU i D NU i
w (5.15)

Rearranging the Eq. (5.12) implies

NU i�V i
12

�
V i

12
NU i D Nƒi (5.16)

If the eigenvector NU i
J associated with a unity eigenvalue of V i

12

�
V i

12 in Eq. (5.11)
is considered as ri , its modal energy Ei D 1.

NU i�
J V i

12

�
V i

12
NU i
J D 1 (5.17)

That results in

NU i�
J .V i

22

�
V i

22/
NU i
J D 0 (5.18)

Equations (5.17) and (5.18) yield

V i
22

NU i
J D 0 (5.19)

which results in the zero gain matrix

KC	a
i D V i

22r
i D V i

22
NU i

J D 0 (5.20)

which implies that the open-loop system has been regenerated. Therefore, if the
eigenvector NU i

J associated with a unity eigenvalue of V i
12

�
V i

12 is selected as ri , one
can generate the open-loop eigenvectors within the null space of the closed-loop
eigenvectors associated with the operating eigenvalue 
i . In other words, V i

12
NU i
J
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is parallel to the eigenvector corresponding to the open-loop eigenvalue or the
operating eigenvalue. Any other eigenvectors associated with non-unity eigenvalues
of V i

12

�
V i

12 are orthogonal to the eigenvector associated with the unity eigenvalue
of V i

12

�
V i

12. Therefore, a set of closed-loop eigenvectors can be found that are
orthogonal to the open-loop ones. The modal energies associated with the closed-
loop eigenvectors are equal to non-unity eigenvalues of V i

12

�
V i

12. Since all the
non-unity eigenvalues of V i

12

�
V i

12 are small, the modal energies of the modes
associated with the operating eigenvalues become zero or negligible.

V and W are determined by appending the calculated closed-loop eigenvectors
for all the operating eigenvalues

V D 	
V 1

12r
1 � � � V m

12 rm



(5.21)

W D 	
V 1

22r
1 � � � V m

22 rm



(5.22)

The control gain matrix K is

K D W .C V /�1 (5.23)

The state matrix of the closed-loop system is

Ac D A C BKC (5.24)

There are m eigenvectors belong to V i
12

�
V i

12 that can be chosen as ri . Therefore,
there are mm possible closed-loop systems. V i

12

�
V i

12 has one unity eigenvalue and
m � 1 zero or negligible ones. Excluding the regenerated open-loop system, there
are mm � 1 possible closed-loop systems.

Most of the eigenstructure assignment methods use a different approach such as
eigenvector shaping to define a desired eigenvector for the system [	a

i in Eq. (5.10)].
In general, methods that use the pseudo inverse of V i

12 to find the required ri have
limitations because there is always a distance between the desired and controlled
eigenvectors and the controlled eigenvectors will not be identical to the desired ones.
This is not an issue in OEC.

Figure 5.1 shows the open-loop eigenvectors and achievable closed-loop eigen-
vectors of a system with three collocated actuators and sensors. For each open-loop
eigenvector associated with one operating eigenvalue, two orthogonal eigenvectors
can be found within the achievable eigenvectors set. To have a closed-loop system, it
is sufficient to alter just one open-loop eigenvector and replace it with an orthogonal
vector. It results in 33 � 1 D 26 closed-loop systems from which the most desirable
one must be chosen. It has been shown, however, that for a high dimensional
system like a plate, if the operating eigenvalues are chosen as the farthest open-loop
eigenvalues from the origin, all the possible closed-loop system converge [21].

In the next sections, we used the OEC to isolate the vibrations due to the
disturbance in the system with lumped masses. We explained how the failure of one
actuator does not change the behavior of the system, since the reduced gain matrix
still was able to generate a closed-loop system with eigenvalues close those of the
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Orthogonal 
eigenvectors

Achievable 
eigenvectors 
sets

Open-loop 
eigenvectors 
set

Open-loop 
eigenvectors

Fig. 5.1 Schematics of the process of orthogonal eigenstructure control. Open-loop eigenvectors
are the intersections of the open-loop eigenvectors set and the achievable eigenvectors set. The
orthogonal eigenvectors within the achievable eigenvectors set are being substituted as the open-
loop ones

system with working actuators. Also, it was shown that the closed-loop eigenvectors
were within the achievable eigenvectors set. Then, the OEC was applied to a plate
for vibration suppression, and the robustness of the control to the failure of the
actuators was investigated.

5.3 Explanatory Example: System of Lumped Masses

To investigate the effects of failure of one of the actuators during the control of a
system, a simple system of longitudinally vibrating masses was considered. First,
we applied OEC to isolate the left side of the system from vibrating. As shown on
Fig. 5.2, the system consisted of 10 masses which were consecutively connected
by springs and dampers. The force disturbance was considered to be a chirp input
applied to m10. It reached from 0 Hz to 30 Hz in 1 s with magnitude of 500 N. All
masses were 100 kg, and damping coefficients were assumed to be 10 N s m�1. The
stiffnesses of the springs were 2,000 N m�1.

We assumed there were three pairs of collocated actuators and sensors on masses
m6, m7, and m8. For simplicity, all the elements of the B and C matrices were
assumed to be zero except for

B.16; 1/ D B.17; 2/ D B.18; 3/ D �1=100

C.1; 6/ D C.2; 7/ D C.3; 8/ D 1
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Fig. 5.2 Actuation forces for the system with failed actuator

As stated earlier, since there were three actuators and sensors, the operating
eigenvalues were the three greatest open-loop eigenvalues [21]. Knowing that
the complex conjugates of the operating eigenvalues lead to similar results, the
operating eigenvalues were 
1 D -0:4919 C 8:8396i, 
2 D -0:4683 C 8:5692i,
and 
3 D -0:4310 C 8:1246i:

Following the procedure of the OEC, for the first operating eigenvalue 
1, the
product of the complex conjugate of the basis of the null space to the matrix itself
could be written as follows:

V 1�
12 V 1

12 D

2
664

0:4128 -0:3789 0:3143

-0:3789 0:3479 -0:2886

0:3143 -0:2886 0:2394

3
775 D NU 1 Nƒ1 NU 1�

D

2
664

-0:6425 -0:6699 0:3722

0:5898 -0:1222 0:7982

-0:4892 0:7324 0:4736

3
775

„ ƒ‚ …
NU 1

1
NU 1
2

NU 1
3

2
64

1 � � � 0
::: 0

:::

0 � � � 0

3
75
2
664

-0:6425 0:5898 -0:4892

-0:6699 -0:1222 0:7324

0:3722 0:7982 0:4736

3
775

V 1�
22 V 1

22 D

2
664

0:5872 0:3789 -0:3143

0:3789 0:6521 0:2886

-0:3143 0:2886 0:7606

3
775 D NU 1 Nƒ1

w
NU 1�

D

2
664

-0:6425 -0:6699 0:3722

0:5898 -0:1222 0:7982

-0:4892 0:7324 0:4736

3
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Similarly, the second operating eigenvalue 
2 yielded
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V 2�
12 V 2

12 D

2
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0:0464 -0:1275 0:1673

-0:1275 0:3502 -0:4597

0:1673 -0:4597 0:6035
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-0:8861 0:2159 0:4101

0:4104 0:7767 0:4779
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Finally, the third operating eigenvalue 
3 resulted in

V 3�
12 V 3

12 D
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0:6929 -0:2160 -0:4076

-0:2160 0:0673 0:1270

-0:4076 0:1270 0:2399
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-0:8324 0:2253 0:5063

0:2594 -0:6489 0:7153
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V 3�
22 V 3

22 D
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0:3071 0:2160 0:4076
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0:4076 -0:1270 0:7601
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3
775

The coefficient vectors r1 D NU 1
2 , r2 D NU 2

3 , and r3 D NU 3
3 provided the most

desirable vibration suppression that shows a short settling time and very small
overshoot. It implied that

V 1
22r

1 D V 1
22

NU 1
2 D

2
664

0:5876 0:3789 -0:3148

0:3786 0:6521 0:2890

-0:3140 0:2886 0:7602

3
775
2
664

-0:6699

-0:1222

0:7324
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„ ƒ‚ …
NU 1
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D
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-0:6705

-0:1216

0:7318

3
775

V 2
22r

2 D V 2
22

NU 2
1 D

2
664

0:9524 0:1275 -0:1669

0:1306 0:6497 0:4587

-0:1714 0:4598 0:3978

3
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2
664

0:4104

0:7767

0:4779

3
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3

D
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-0:4101

-0:7774

-0:4769
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V 3
22r3 D V 3

22
NU 3

1 D

2
664

0:3085 0:2142 0:4110

0:2155 0:9332 -0:1281

0:4068 -0:1260 0:7582

3
775
2
664

0:5063

0:7153

0:4816

3
775

„ ƒ‚ …
NU 3
3

D

2
664

-0:5073

-0:7150

-0:4810

3
775

W in Eq. (5.22) was determined by combining V 1
22r

1, V 2
22r

2 and V 3
22r

3;

W D

2
664

-0:6705 -0:4101 -0:5073

-0:1216 -0:7774 -0:7150

0:7318 -0:4769 -0:4810

3
775
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Fig. 5.3 Displacement of masses due to a chirp input at m10

The real gain matrix was obtained as

K D W .C V /�1 D 1:0 � 103

2
664

-2:6766 -1:7254 -0:2792

3:3596 -3:0603 0:4400

1:5346 -2:0474 -1:7616

3
775

Figure 5.3 showed the displacement y1�10 of masses m1�10 due to the short
duration chirp disturbance at m10. It shows that the vibration in the isolated region
that includes m1�6 was significantly reduced. The transient region that consists of
m5�7 was located between the isolated and confined region and the masses that were
connected to the control actuators. Both isolation and confinement of the vibration
could be seen on those masses.

The vibration of m6 was reduced while the vibrations of m7�8 were increased
slightly. The vibrational energy was confined to m9�10; therefore, masses in the
confined region had higher amplitudes of vibration.

Figure 5.4 shows the actuation force for the three actuators. The maximum
force at the outer actuator was greater than the other actuators and was 243.64 N.
The maximum actuation forces at the inner and middle actuators were 126.54 and
148.18 N, respectively.

Based on Eq. (5.23), failure of any of the actuators was similar to setting rows of
the gain matrix to zero. For example, if we assumed the outer actuator had failed,
we might set the third row of the control gain matrix to zero. It implied that the
third row of W was all zero, since .C V /�1 could not have zero rows in general.
The intention was to show how setting rows of W to zero after defining the control
gain matrix makes a closed-loop system where its eigenvectors still belonged to the
achievable eigenvectors set.
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Fig. 5.4 Actuation forces due to a chirp input at m10

OEC regenerated the open-loop system using the eigenvectors associated with
zero eigenvalues of V i

22

�
V i

22. For example, for the first operating eigenvalue, we had

ŒV 1
22� NU 1

1 D N
1 NU 1
1

D

2
664

0:5876 0:3789 -0:3148

0:3786 0:6521 0:2890

-0:3140 0:2886 0:7602

3
775
2
664

-0:6425

0:5898

-0:4892

3
775 D .0/

2
664

-0:6425

0:5898

-0:4892

3
775 D

2
4 0

0

0

3
5

If the outer actuator was assumed to have failed, the third row of the ŒV 1
22� was

set to zero and the new matrix was called Œ QV 1
22�.

Œ QV 1
22�

�
Œ QV 1

22� D QU 1 Qƒ1 QU 1�

D

2
664

0:5876 0:3786 0

0:3789 0:6521 0

-0:3148 0:2890 0

3
775

2
664

0:5876 0:3789 -0:3148

0:3786 0:6521 0:2890

0 0 0

3
775

D

2
664

0:4886 0:4695 -0:0756

0:4695 0:5688 0:0692

-0:0756 0:0692 0:1827

3
775

D

2
664

-0:6764 0:3602 0:6425

-0:7366 -0:3310 -0:5898

0:0002 -0:8721 0:4892

3
775
2
664

1 0 0

0 0:24 0

0 0 0

3
775
2
664

-0:6764 -0:7366 0:0002

0:3602 -0:3310 -0:8721

0:6425 -0:5898 0:4892

3
775
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The open-loop system could be regenerated again, since the eigenvectors
associated with zero eigenvalue of V i

22

�
V i

22 and QV i
22

� QV i
22 were identical.

Œ
_

V
1

22�
_

U
1

D
_



1 _

U
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D
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0 0 0

3
775
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-0:4892
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775 D .0/
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0:5898

-0:4892
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775 D

2
4 0

0

0

3
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Previously, we had

ŒV 1
22�

_

U
1

D

2
664

0:5876 0:3789 -0:3148

0:3786 0:6521 0:2890

-0:3140 0:2886 0:7602

3
775
2
664

-0:6425

0:5898

-0:4892

3
775 D

2
4 0

0

0
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It was seen that both V 1
22 and

_

V
1

22 could regenerate the open-loop eigenvector

using the eigenvector associated with zero eigenvalue of V i
22

�
V i

22 and
_

V i
22

� _

V
i

22,
respectively. Similar results for the second and the third operating eigenvalues could
be found. It implied that the system with the failed actuator was still using the
coefficient vectors that generated the closed-loop eigenvectors orthogonal to the
open-loop eigenvectors.

The control gain matrix for the system with the failed actuator was

K D 1:0 � 103

2
664

-1:3211 -0:8670 -0:1340

1:5735 -1:5267 0:1759

0 0 0

3
775

Figure 5.5 shows the displacements of masses of the system due to the chirp
disturbance to m10. Similar to the system with working actuators stated earlier, a
good isolation could be seen at m1�6. Behaviors of the masses in transient and
confined regions were similar to the system with working actuators. Figure 5.6
compares the displacements of m1 in the complete system and the system with
the failed actuator. The time histories of the displacements were slightly different.
A slightly slower decay could be seen in the system with the failed actuator.
Actuation forces of the actuators were shown on Fig. 5.7. Maximum actuation forces
of the inner and middle actuators were 132.18 N and 150.94 N, respectively. The
amount of increase in the actuation forces of the inner and middle actuators were
5.62 N and 2.76 N, respectively.
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Fig. 5.5 Comparison of displacement of masses due to a unit impulse at m10, using reduced gain
matrix for the case with three sensors and two actuators

Fig. 5.6 Comparison of displacement of m1 in the system of lumped masses with working
actuators to the system with one failed actuator due to a chirp disturbance at m10

5.4 Case Study: Isolation of Vibration in a Plate

Figure 5.8 shows the nodes of a finite element model of a plate that is simply
supported at four edges with Young’s modulus of 2.09 � 109 N m�2 and the
Poisson’s ratio is 0.33. It is a square plate, with length of 40 cm, and thickness
of 1 mm. A code was written in Matlab for modeling the plate and solving its
equation of motion. Mindlin plate theory was used to define the displacement field
of the plate; therefore, there were 3 degrees of freedom for each node. Two of the
degrees of freedom were in-plane displacements (u and v directions) and the third
one was the transverse displacement y. Using linear quadrilateral elements, we used
the procedure reported in [27] for calculating the mass and stiffness matrices of each
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Fig. 5.7 Actuation forces for the system with failed actuator

Fig. 5.8 Simply supported plate with 49 nodes and 36 elements

element. The dimensions of global mass and stiffness matrices, were 149 � 149,
since the model had 49 nodes and each had 3 degrees of freedom. Damping matrix
Dd , was assumed to be a linear damping defined as Dd D 0:2M C 0:002Ks after
scaling the mass and stiffness matrices. As a result, the dimension of the state matrix
A for the state space realization of system in Eq. (5.1) was 298 � 298.

The disturbance force applied to the plate was a sine wave with a frequency of
2 kHz and amplitude of 10 N. The disturbance force was applied to the plate at node
27 and was normal to the plate that results in the plate bending.

We consider five cases with different scenarios for the actuators. Case 1 was a
plate with three working actuators, case 2 was similar to case 1 with the middle
actuator failed. Case 3 was similar to case 1 with a failed outer actuator. The control
gains for cases 4 and 5 were designed specifically for two actuators. Case 4 was a
plate with two control actuator at the nodes where working actuators of case 2 are
located. Case 5 also had two actuators at the location of the working actuators of
case 3.

As stated earlier, the operating eigenvalues were the greatest open-loop
eigenvalues of the system, for all the cases the operating eigenvalues were
�24.9799 C 155.743i, �24.9799 C 155.743i, and �24.8108 C 155.2264i. Since
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Fig. 5.9 Case 1, displacements of the nodes of plate due to a 2 kHz sine wave disturbance at node
27. Actuators are on nodes 19, 26, and 33

using complex conjugates of the operating eigenvalues results in similar closed-loop
systems, we only used the operating eigenvalues with positive imaginary parts.

We assumed that there were sensors collocated with the actuators and the signals
from those sensors were used for position feedback. As explained earlier, there were
26 possible closed-loop systems for the systems in cases 1, 2, and 3 with three
actuators and there were three possible closed-loop systems for systems of cases 4
and 5 where two actuators were used.

5.4.1 Case 1: Plate with Three Working Actuators

As shown in earlier studies [21], when the greatest open-loop eigenvalues were
chosen as the operating eigenvalues, all the closed-loop systems would be identical.
Also, all the off-diagonal elements were small in comparison to diagonal elements,
and the control becomes decoupled. In this case the control gain matrices were
converged to the following matrix.

K D 1:0 � 104

2
664

-2:1656 0:0420 0:0267

0:0034 -2:1985 0:0030

-0:0319 -0:0444 -2:2220

3
775

In fact, setting the off-diagonal elements did not change the results noticeably.
Figure 5.9 shows that the suppression of vibrations on different nodes of the plate.
Actuation forces also can be seen on Fig. 5.10. The maximum actuation forces were
0.86 N on nodes 19, 6.60 N on node 26, and 0.86 N on node 33. Because of the
symmetry, the actuation forces of the actuators on nodes 19 and 33 were coincident.
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Fig. 5.10 Case 1, actuation forces at nodes 19 and 33 are identical. The amplitude of the
disturbance is 10 N

Fig. 5.11 Case 1, eigenvalues of the open-loop and closed-loop systems

Figure 5.11 illustrates the distributions of the open-loop and closed-loop poles. It
was seen that three pairs of the closed-loop poles were moved away from the locus
of the open-loop poles.

5.4.2 Case 2: Plate with Two Working Actuators and Failed
Middle Actuator

We assumed that the middle actuator located on node 33 had failed. This resulted
in setting the middle row of the control gain matrix to zero. Figure 5.12 shows
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Fig. 5.12 Case 2, displacements of the nodes of plate due to a 2 kHz sine wave disturbance at
node 27. Working actuators on nodes 19, 26, and failed actuator on node 33

Fig. 5.13 Case 2, actuation forces. The amplitude of the disturbance is 10 N

the displacement of the nodes of the plate. The noticeable difference was the
displacement of node 26, which has a failed actuator. Maximum actuation forces
were shown on Fig. 5.13. The middle actuator had not applied any force to the
system. The maximum actuation force on the actuator on node 19 was 3.94 N and
on the node 33 was 4.12 N. The actuation forces are increased in comparison to
case 1. The slight difference was because the control gain matrix is not symmetric.
The control gain matrix was

K D 1:0 � 104

2
664

-2:1656 0:0420 0:0267

0 0 0

-0:0319 -0:0444 -2:2220

3
775
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Fig. 5.14 Case 2, eigenvalues of the open-loop and closed-loop systems

Figure 5.14 shows the closed-loop and open-loop poles of the system. It was seen
that two closed-loop poles were moved away from the open-loop poles cluster, as
was expected since there were two working actuators. Comparing Figs. 5.14 and
5.11, one finds that the moved closed-loop poles were placed in a similar region.

5.4.3 Case 3: Plate with Two Working Actuators and Failed
Outer Actuator

In this case, we assume that the faulty actuator was located on node 33. Therefore
the control gain matrix was

K D 1:0 � 104

2
664

-2:1656 0:0420 0:0267

0:0034 -2:1985 0:0030

0 0 0

3
775

The displacement shown on Fig. 5.15 shows a good isolation on different nodes
of the plate. The displacement of the node 25; however, was different form case 1,
because of the failed actuator. Time history of the actuation forces was shown in
Fig. 5.16. The maximum actuation force of the actuator on node 19 is 0.72 N and
on node 26 is 7.2 N which was very close to the actuation forces in case 1.

Figure 5.17 shows the displacement of the middle node of the plate for cases 1,
2, and 3. The amplitudes of vibration for all the cases were very close. Vibration
in Case 3 was in phase with the displacement in case 1. In case 2, however, there
was a �=2 phase shift with respect to the response of case 1. This showed a great
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Fig. 5.15 Case 3, displacements of the nodes of plate due to a 2 kHz sine wave disturbance at
node 27. Working actuators on nodes 19, 33, and failed actuator on node 26

Fig. 5.16 Case 3, actuation forces. The amplitude of the disturbance is 10 N

robustness for the OEC to the actuator failure since that failure of each of the
actuators had a local effect in the vicinity of the failed actuator, but the overall
vibration cancelation in the plate had remained significantly intact. Figure 5.18
shows the closed-loop and open-loop poles of the system that indicates two of the
closed-loop poles were moved away from the open-loop poles cluster similar to
cases 1 and 2.
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Fig. 5.17 Displacement of plate’s middle node for cases 1, 2, and 3

Fig. 5.18 Case 3, eigenvalues of the open-loop and closed-loop systems

5.4.4 Case 4: Plate with Two Working Actuators Similar
to Case 2

Case 4 was the control of the vibration in a plate with two working actuators on
nodes 19 and 33. It was similar to case 2 unless there was no failed actuator and the
control gain matrix was

K D 1:0 � 104

"
-2:2027 0:0028

0:0028 -2:2027

#

that was symmetric due to the symmetry of the geometrical symmetry of plate
and the location of the actuators and disturbance. The same property in the gain
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Fig. 5.19 Case 4, displacements of the nodes of plate due to a 2 kHz sine wave disturbance on
node 27, actuators are on nodes 19 and 26

Fig. 5.20 Identical displacements of plate’s middle node for cases 2 and 4

matrix of the case 1 could be seen here. The off-diagonal elements were three
orders of magnitudes smaller than the diagonal elements; therefore, a decoupled
control could be expected. Figure 5.19 shows the displacements of different nodes
on the plate depicting a good isolation throughout the plate similar to earlier cases.
A comparison between the displacements of node 25, the middle point in the plate, is
shown in Fig. 5.20. It was seen that the displacements are identical. The time history
of the actuation forces was shown in Fig. 5.21. The maximum force at the actuators
on nodes 19 and 33 were identically 4.03 N, which was close to the actuation forces
in case 2. The distribution of the eigenvalues of the open-loop and closed-loop
systems was shown in Fig. 5.22. Two of the closed-loop system eigenvalues, similar
to those in case 2, were moved away from the cluster of the open-loop eigenvalues.
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Fig. 5.21 Case 4, actuation forces in actuators on nodes 19 and 33 are identical. The amplitude of
the disturbance is 10 N

Fig. 5.22 Case 4, eigenvalues of the open-loop and closed-loop systems

5.4.5 Case 5: Plate with Two Working Actuators Similar
to Case 3

Case 5 investigated the vibration isolation of the plate using two actuators, which
were placed on nodes 19 and 26, the same locations as the working actuators of the
case 3. The control gain matrix was

K D 1:0 � 104

"
-2:2027 -0:0032

-0:0026 -2:2064

#
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Fig. 5.23 Case 5, displacements of the nodes of plate due to a 2 kHz sine wave disturbance on
node 27, actuators are on nodes 19 and 26

Fig. 5.24 Identical displacement of the plate’s middle node for cases 3 and 5

similar to case 4. Figure 5.23 shows vibration similar to the earlier cases. The
identical behavior of the middle point of the plate in case 3 and 5 was depicted
in Fig. 5.24. Also, the time histories of the actuation forces were shown in Fig. 5.25.
The Maximum actuation forces of the actuators on nodes 19 and 26 were 0.73 N
and 7.16 N, respectively, which was very close to case 3. Similar to earlier cases,
two of the closed-loop eigenvalues were moved away from the open-loop cluster, as
shown in Fig. 5.26.

Comparing the results of the case 2 and 3 to case 1, one could see a reliable
control design when OEC was used. The actuation forces in working actuators in
cases 2 and 3 that contain failed actuators were very close to the forces of the system
with three working actuators. Similar displacement time history could be seen
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Fig. 5.25 Case 5, actuation forces. The amplitude of the disturbance is 10 N

Fig. 5.26 Case 5, eigenvalues of the open-loop and closed-loop systems

throughout the plate except nodes with failed actuators. Moreover, comparing case
4 to 2 and 5 to 3, respectively, shows that there was slight difference between the
system with one failed actuator and the system that was designed for two actuators.
Orthogonal eigenstructure control with three actuators proved to be robust in such a
way that the behavior of the system with one failed and two working actuators were
identical to the behavior of the system that was designed primarily for two actuators.
Table 5.1 shows the closed-loop eigenvalues that were moved away from the locus
of the open-loop eigenvalues. It shows that for all the cases, the poles were placed in
a small region. The rest of the closed-loop eigenvalues were moved slightly on the
locus of the open-loop poles, without noticeable deviation away from the cluster.
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Table 5.1 Moved closed-loop poles in cases 1–5

Pair 1 Pair 2 Pair 3

Case 1 �1.99 ˙ 151.35i �1.43 ˙ 150.17i �2.47 ˙ 150.08i
Case 2 �1.50 ˙ 150.79i �2.46 ˙ 150.13i
Case 3 �1.78 ˙ 148.91i �2.11 ˙ 151.25i
Case 4 �1.56 ˙ 150.95i �2.40 ˙ 150.60i
Case 5 �1.78 ˙ 150.54i �2.11 ˙ 151.19i

5.5 Applicability of OEC

Proper use of design freedom is depended on the experience of the controller
designer. The improper use of the design freedom may cause excessive actuation
forces. OEC reduces those design freedoms that are depended on the designer
experience. It limits the design freedom to vectors orthogonal to the eigenvectors
of the system and allows the controller designer to substitute the eigenvectors with
vectors that are almost orthogonal to them. OEC can systematically determine the
feedback control law with minimal input from a controller designer and is capable
of performing robustly in the presence of a wide variety of disturbances.

OEC eliminates the need for defining the desirable eigenvectors and eigenvalues
of the closed-loop system, which are usually needed by other eigenstructure assign-
ment methods. This significantly reduces the amount of time needed for developing
a new controller for structural control. Orthogonal eigenstructure control is able
to suggest a set of closed-loop systems. OEC reduces the controller development
cycle significantly through a mathematically sound approach that can easily be
implemented to a broad range of systems in practice.

For the cases studies presented in this chapter, the control gains determined by
OEC were almost diagonal that suggests a decoupled control. Therefore the effects
of the failure of an actuator on the performance of the system will be limited. This
makes OEC more readily applicable to real-life applications, by better dealing with
limitations that happen in case of components failure.

5.6 Conclusion

The robustness of the OEC to the actuator failure in vibration cancelation in
a plate was studied in this chapter. First, a simple system of lumped masses
was considered and the effect of failure of an actuator was explained. Then, the
same method was used to describe the effect of the failed actuator in a plate.
Finite element analysis was used to model the plate and the plate response to
force perturbations was simulated. Five cases were considered for the different
scenarios with the actuators of the plate and the results were compared. It was shown
that when the operating eigenvalues were the farthest open-loop eigenvalues from
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the origin, a reliable and almost decoupled control could be achieved. Behaviors of
the systems with failed actuators followed closely the behavior of the system with no
faulty actuators. Moreover, the cancelations of vibration in the systems with failed
actuators were almost identical to the systems that were primarily designed for two
actuators. While there was no need to define the required locations for the closed-
loop poles, few pairs of the closed-loop eigenvalues were moved away from the
locus of the open-loop eigenvalues. The number of pairs of the moved eigenvalues
was equal to the number of the actuators in each case. Since in all the cases the
closed-loop eigenvalues were moved to one specific area, the behaviors of all the
systems were similar and the control was robust to the actuator failure.

Key Symbols

A Open-loop state matrix
Ac Closed-loop state matrix
B Input matrix
C Output matrix
E Disturbance input matrix
Ei Modal energy of i th mode
f Disturbance
I Identity matrix
K Gain matrix
m Number of inputs (actuators/sensors)
N i Matrix that spans the null space of i th mode
n Dimension of second order system
ri Vector of coefficients
S
i Augmented matrix associated with 
i

u Input vector
Ui Left unitary matrix of S
iNU i Eigenvalue matrix of V i�

12 V i
12 and V i�

22 V i
22NU i

w Eigenvalue matrix of V i�
22 V i

22, equals to NU i

NU i
j Eigenvalue of V i�

12 V i
12 associated with non-unity eigenvalues

NU i
J Eigenvalue of V i�

12 V i
12 associated with unity eigenvalue

Vi Right unitary matrix of S
i

V i
12 Upper part of N i

V i
22 Lower part of N i

V Appended matrix of ŒV i
12�r i

W Appended matrix of ŒV i
22�r i

x State vector
Px Time derivative of state vector
y Output vector
	i i th closed-loop eigenvalue
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	a
i Achievable eigenvector of i th mode


i i th operating eigenvalue
N
i

j Eigenvalues of V i�
12 V i

12Nƒi Eigenvalue matrix of V i�
12 V i

12Nƒi
w Eigenvalue matrix of V i�

22 V i
22

†i Matrix of singular values of S
i

* Conjugate transpose symbol
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Chapter 6
Energy Harvesting from Flows Using
Piezoelectric Patches

J.M. McCarthy, A. Deivasigamani, S. Watkins, S.J. John, and F. Coman

Abstract The highly nonlinear phenomenon of fluid–structure interaction is
discussed, including examples drawn from nature and early work on aircraft flutter.
Recent work on extracting the energy in a fluid stream by piezoelectric elements
is reviewed, including some of the underlying physics. Whilst the energy extracted
from fluttering elements is low, it is a subject of interest for powering Ultra-
Low Power (ULP) devices and systems since this method of energy extraction is
thought to offer a quiet alternative to conventional wind turbines. Researchers have
investigated the use of thin piezoelectric patches coupled to a geometrically shaped,
polymeric membrane (via a revolute hinge) which can amplify the bending, strain
and hence power. Such systems respond via flutter induced by resonant bending
instability of the system, or by the utilisation of time-varying external pressure
gradients formed around the system. Key factors that influence performance are
examined, such as critical flutter speed, mass ratio, position of revolute hinge, aspect
ratio and type of piezoelectric material. The chapter concludes with a discussion of
the practical implications of such systems in the future.
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6.1 A Prologue

Fluid–structure interaction (FSI) is all around us, in our everyday lives. Perhaps
you have looked at a flag fluttering in the wind and wondered what is causing
the interesting “rippling” shapes as the wind blows past the flag. Maybe you have
noticed the antenna on your vehicle vibrating rapidly side-to-side when you drive
at a certain speed. You may have even become annoyed when the venetian blinds
in your house rattle when they are closed across an open window! All of these
seemingly trivial events give way to a rich plethora of problems in the scientific and
engineering communities, known as FSIs.

Definition 1. Fluid–structure interactions are physical interactions that take
place whenever a fluid in motion impinges on a solid body, whether rigid
or deformable. The interactions may be one-way, meaning that the resulting
deformations of the solid body (however minuscule) do not significantly
affect the fluid flow; or the interactions may be two-way, meaning that the
solid-body deformations are such that the flow field is affected significantly
enough to instigate a continuing cycle of fluid–structure energy transfer, the
manifestation usually being solid-body vibration.

Let us take the case of the flag flapping in the wind, as an example; though
the motion of the flag seems almost elegant in nature, the underlying physics that
govern that motion are far from simple. Classical observations often attributed the
flag flutter1 to a combination of two events [4]: (1) the Bernárd–von-Kármán vortex
shedding (Fig. 6.1) at the trailing edge of the flag and (2) the Kelvin–Helmholtz
instability problem (Fig. 6.2) of the growth of perturbations along an infinite extent
at the interface of two fluids, moving at different velocities [30].

Upon consideration of the solid boundary, it became clear that Kelvin–Helmholtz
instabilities were not instigating flutter of the flag, since the boundary separates the
shear layers of the working fluid. In flow visualisation work by Jun et al. [26], it
was clearly seen that the vortex shedding from the trailing edge of the filament was
occurring at a much higher frequency than that of the flutter frequency (Fig. 6.3),
obviating the influence of the von-Kármán vortices over the filament flutter.

Flutter investigated in the laboratory (such as the case of flag flutter above)
environment posed new challenges and questions to researchers and stimulated
curiosity: what then, was causing a thin body immersed in a flow to flap, if the
classical observations hypothesised2 were to be rejected? In fact, it is now generally
understood that flutter can be a self-excited phenomenon [42].

1Flutter is a type of FSI, where the solid-body oscillates in the fluid flow, usually with large
deformation amplitudes.
2Namely, the Bernárd–von-Kármán vortex shedding and the Kelvin–Helmholtz instability.
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Fig. 6.1 von-Kármán vortex shedding behind a cylinder at a Reynolds number of 140 (photo by
Sadatoshi Taneda [17])

Fig. 6.2 A depiction of the
Kelvin–Helmholtz instability
between two fluids of
different densities. The shear
layer perturbations can be
seen between the dark and
light fluids [45]

Fig. 6.3 A filament flapping
in a two-dimensional, parallel
flow. The von-Kármán vortex
wake can be seen to be at a
higher frequency than the
flapping of the filament [26]
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Flutter has existed in nature since the beginning of time, but only recently did
engineers and scientists discover that flutter of structures could bring about negative
results. From the time of the advent of flight for example, wing flutter was an
issue—and a deadly one,3 with many cases of pilots and passengers losing their
lives in aircraft that failed structurally due to primary-structure flutter (i.e. wings and
horizontal and vertical stabilisers). The wing flutter issue was formally addressed by
Theodorsen back in 1935 [44] using analytical potential flow methods to determine
the general mechanism of flutter; specifically, how it started and sustained itself.
Theodorsen mathematically considered ideal flow conditions (i.e. incompressible,
inviscid and irrotational) over a conformally mapped aerofoil. He identified two
major components of the potential flow: (1) the non-circulatory velocity potential,
which described the flow and pressure distribution over the aerofoil and (2) the
circulatory velocity potential, arising from the need to describe the vortex shedding
at the trailing edge of the aerofoil.

Another example of flutter bringing about devastating results is the well-known
Tacoma Bridge disaster in 1940. The bridge oscillated with such a large torsional
amplitude that it collapsed. Initially, it was thought that vortex shedding, occurring
at a frequency according to the Strouhal number,4 over the bridge excited a torsional
natural frequency, but the collapse was later found to have occurred because of
aeroelastic flutter [5]. Perhaps a more interesting discovery: in 1995, Huang [24]
investigated palatal flutter as the most probable cause for snoring in humans.

Not all flutter is bad, however. The sound that comes from a wind instrument,
such as a saxophone or clarinet, ensues because the reed in the instrument flutters
in the airflow provided by the person playing the instrument. Fluttering components
in some types of industrial mixing systems actually enhance the mixing process.
Paı̈doussis [34] noted that even in ancient artefacts, flutter was used—one example
being the Aeolian harp, a harp that would be “played” by the wind.

Only recently, has it been suggested that flutter be exploited for energy harvesting
purposes. Until now, flutter (for the most part) had been considered a nuisance
because of its detrimental effect on structures; whether causing catastrophic failure
as in the case of wing flutter, long-term fatigue damage in the case of vibrating
mixing components, or even causing noise levels that are undesirable, as in the case
of a “singing” hydrofoil on a submarine.

In 2008, Dickson [14] conceptualised a piezoelectric “tree”, shown in Fig. 6.4.
The inherent ability of the piezoelectric patch to generate electrical energy when
placed under mechanical strain was a major driving force in the development of this
concept.

Could a tree-like construct, with hundreds of these piezoelectric “leaf-stalks”
possibly be implemented in urban areas in the near future? With all the safety

3One particular catastrophic case of aircraft wing flutter was the Braniff Airlines Flight 542
Lockheed Electra, in 1959. Everyone onboard perished when the airframe failed due to a flutter
mode excited by engine propeller whirl. The crash investigation report was released in 1961 [9].
4The Strouhal number is discussed in more detail in Sect. 6.2.2.
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Fig. 6.4 The piezoelectric
tree concept introduced by
Dickson [14], as an
aesthetically pleasing, safe
alternative to urban-based
wind turbines

concerns, noise and vibration issues [19], and poor cost effectiveness issues
[49, 50] surrounding urban-based wind turbines, there is certainly room for this
technology to flourish. Furthermore, with the current shift to Ultra-Low Power
(ULP) technologies5 in buildings and structures [37], coupled with the global desire
to discover new means of extracting renewable energy, this piezoelectric flutter
system shows promising potential. In the next section, we’ll examine this type of
system, and how it works.

6.2 Piezoelectric Energy Harvesters

Piezoelectric materials have a special property: they are electro-mechanical, which
means that when mechanically strained they are capable of generating an electric
charge. The opposite is true as well—when an electrical current is passed through a
piezoelectric material, it will distort accordingly. This electro-mechanical property
arises from the alignment of the material’s atomic structure. The transduction
direction of energy defines the usage of the piezoelectric material.

5ULP here denotes both ULP consumption devices and ULP generation technologies. Two
examples of ULP consumption devices would be wireless sensor nodes and LED lighting.
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Fig. 6.5 The three-way physics interaction that occurs with a piezoelectric patch fluttering in a
fluid flow

Fluid-Structure
Interaction

Aerodynamics

Structural
Dynamics

Electro-mechanics

Structural
Dynamics

Electric

Fig. 6.6 The coupled physics
fields within the
aero-mechanical–electrical
interaction

6.2.1 Overview of Physics Interactions

In the case of flutter energy harvesters, the input forcing function comes from
the unsteady aerodynamic forces (being imparted by the flowing fluid), causing
mechanical strains of the piezoelectric patch, which translates to an electrical charge
output. The schematic in Fig. 6.5 perhaps more clearly illustrates this three-way,
aero-mechanical–electrical interaction.

Definition 2. Aero-mechanical–electrical interaction is energy transduction
within a system, involving flow kinetic energy, structural strain energy and
electrical energy.

This three-way interaction may be further broken down into coupled fields
(Fig. 6.6), both of which are considered to be nonlinear couplings.

6.2.2 Fluid–Structure Coupling

The FSI interactions are what were discussed generally in Sect. 6.1; in this section,
we look more in-depth at flutter itself, and the different types and classes of flutter.

Movement-Induced Excitation Flutter

The highly nonlinear nature of the fluid–structure coupling makes it so that
analytical treatments become very complex, especially two-way interactions (see
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Definition 1 on p. 170). Naudascher and Rockwell [32, 33] in their work classified
different types of flutter, based on the excitation mechanisms at work. One class
of flutter that was briefly touched on before (Sect. 6.1) was Movement-Induced
Excitation (MIE) type. Herein, the immersed structure will be denoted as a beam.

Definition 3. Movement-Induced Excitation flutter is where flutter of a beam
immersed in a fluid flow is started by the fluid exciting a resonant instability
in the beam, whether bending or torsional.

MIE-type flutter is a self-excited phenomena, meaning that no externally im-
posed forces are required to initiate flutter of the beam. Rather, at a certain flow
speed past the beam, flutter spontaneously occurs. The flow speed at which flutter is
seen to occur is known as the critical flutter speed, or cut-in speed of the flow. There
have been many analytical studies conducted, on understanding the fundamental
principles of this critical flutter speed.

Critical Flutter Speed

Kornecki et al. [27] examined the critical flutter speed and flutter frequency of a
beam for both clamped–clamped, and clamped-free end conditions. Three different
types of theoretical analyses were carried out and compared to experimental
results:

1. Non-circulatory aerodynamic theory
2. Quasi-steady lifting line theory
3. Full unsteady aerodynamic theory

All three theoretical models were found to correlate well with experimental
findings for the flutter frequency of the clamped-free beam. The non-circulatory and
full-unsteady theory compared well against the experimental results for the critical
flutter speed; however, the quasi-steady theory proved inadequate for comparison. It
was concluded that beams clamped at the leading edge and free at the trailing edge
lose their stability by flutter. This analysis was only applicable for parallel flow over
the beam; also, because the theory was for ideal conditions, and only one experiment
was conducted, the authors concluded [27, p. 176]:

The theory of non-circulatory flow is unacceptable on physical grounds. No final con-
clusions can be drawn on the basis of a single experiment. Further work is necessary to
ascertain the effectiveness of the calculation method.

As mentioned before in Sect. 6.1, Huang [24] addressed the issue of flutter in
a similar manner to Kornecki et al. [27], but for the purpose of understanding
and preventing snoring in humans. Linear theory was utilised for characterising
the onset of steady-state fluttering of a beam in a two-dimensional flow, and via
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Fig. 6.7 In vacuo normalised mode shapes plotted for a cantilever beam, where j is the mode
number [24]

experimental corroboration, Huang [24] showed that cantilevered beams lose their
stability via flutter and that the critical flutter speed is strongly dependent on the
length and stiffness of the beam. It was also suggested that the fluttering motion is
a combination of in vacuo mode shapes, mainly the first and second modes. This
suggestion is in part substantiated by simple observation of the fluttering filament in
the work by Jun et al. [26] (Fig. 6.3, p. 171), and comparison with the well-known
mode shapes of a clamped cantilever beam, shown below in Fig. 6.7.

It was also suggested by Hariri et al. [22] that flutter is a combination of
modes. Argentina and Mahadevan [4] extended this idea and showed that either
the fundamental mode or the second mode of vibration may be excited in a uniform
parallel flow, depending on the value of the added mass parameter, more generally
known as the fluid-to-structure mass ratio.

Effect of the Mass Ratio

Definition 4. The mass ratio is a dimensionless parameter, relating the mass
properties of the beam to the mass of the fluid in which it is immersed.

Quantitatively, the mass ratio, �, is calculated as

� D �sh

�f L
; (6.1)

where �s is the beam density, h is the beam thickness, �f is the fluid density, and L

is the beam length. The mass ratio is an important parameter to consider, when
analysing flutter of immersed beams. Yamaguchi et al. [52] analytically treated
the onset of flutter for both a high- and low-mass ratio beam. The governing
assumptions were such that the disturbances of motion were infinitesimally small,
and the contributions of the second- and higher-order modes were neglected.
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The beam geometry was discretised via a mesh and the resulting linear homogenous
system of equations was size 6�N , where N is the number of discretisation points.
The analysis was cumbersome to assemble, since they chose not to represent the
flutter motion of the beam as a superposition of modes (as done previously by
Huang [24]), but rather directly solving for the forces and displacements over time.
Yamaguchi et al. [52] argued that for sufficiently small mass ratios, the deviation
of observed flutter modes from predicted in vacuo mode shapes was significant
and mode superposition gave erroneous results. This agreed with observations by
Watanabe et al. [47] for low mass ratios. Furthermore, the predominance of traveling
waves at relatively low mass ratios was evinced by time-varying pressure forces in
the results, shown in Fig. 6.8.

There was good agreement between these results, and experimental results
published later [51]. They concluded that [51, Conclusion]:

1. For high mass ratios (� > 0:7), the beams yielded motions similar to in vacuo
second mode shapes, and frictional effects were not significant.

2. For medium mass ratios (0:7 > � > 0:05), the beam oscillations were much
different than those of in vacuo mode shapes, the spatial pressure distribution
had more peaks than the mode shapes, and the frictional effects became much
more pronounced. The frequency of oscillations was also increased.

3. For low mass ratios (� < 0:05), the frequency of oscillations nearly became
independent of the mass ratio, and beam motion was chiefly governed by
frictional effects, and [perhaps] fluid added mass effects.

Connell and Yue [11] conducted both a preliminary linear stability analysis
and a thorough numerical analysis of a pinned-free, low-bending stiffness beam
in an inviscid, incompressible, uniform flow. They utilised a Fluid–Structure Direct
Simulation (FSDS), which consisted of a Fluid-Dynamics Simulation (FDS) solver
(used the finite difference approach to directly solve the Navier–Stokes equations;
i.e. a Direct Numerical Simulation [DNS]) and a Structural-Dynamics Simulation
(SDS) solver (employed a nonlinear, arbitrary configuration, second-order finite dif-
ference scheme). Each of the solvers was separately validated against benchmarking
problems and found to perform adequately. Subsequently, the coupled solver was
benchmarked and found to perform satisfactorily. Three distinct regions of flutter
response were identified by Connell and Yue [11]:

1. Fixed point stability.
2. Limit-cycle flapping (LCO).
3. Chaotic flapping.

The differences between each regime may be seen in Fig. 6.9. This result
substantiated the work in Yamaguchi et al. [51], as it was found that the flutter
regime of the beam was directly related to the mass ratio.

As the mass ratio increased, it can be seen from Fig. 6.9 that the time-varying
displacement amplitude transitions from an underdamped behaviour in the fixed
point stability regime, to LCO in the second regime, to stochastic, randomly varying
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Fig. 6.8 Time-varying beam deformation, pressure and vorticity results for a mass ratio of (a) 2.92
and (b) 0.04 [52, Fig. 6]

in the chaotic regime. It is also interesting to note the difference in normalised
cross-stream displacement and velocity power spectrum for each of the plotted mass
ratios, as shown in Fig. 6.10.

Although the mass ratio was varied and bending stiffness kept constant in
Fig. 6.10, there appears to be correlation between these results and the outcomes
presented by Alben and Shelley [1], where the mass ratio was kept constant and
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Fig. 6.9 The normalised trailing edge displacement plotted against the non-dimensional time for
(a) fixed point stability regime with � D 0:025 (- - -), (b) limit-cycle flapping regime with � D 0:1

(—-), and (c) chaotic flapping regime with � D 0:2 (� � � ) [11, Fig. 8]

Fig. 6.10 The normalised power spectrum of the trailing-edge cross-stream displacement (—-)
and velocity (� � �) for the three different mass ratios [11]. (a) � D 0:025, (b) � D 0:1 and
(c) � D 0:2

the bending stiffness varied. In general, for lower mass ratios and lower bending
rigidities there appears a more broadband response of the normalised power of
the system.

Subcritical Bifurcation and Hysteresis

Connell and Yue [11] observed subcritical bifurcation in their FSDS simulations;
that is, based on the initial displacement conditions of the beam, either the stable or
unstable regimes of flutter could be realised. Jun et al. [26] and Watanabe et al. [48]
also detected subcritical bifurcation in their experimental work. This is characteristic
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of hysteresis in the system, and Watanabe et al. [48] indeed found that the critical
flutter speed uc for the beam did not equal the “quenching” speed—the wind speed
at which the beam ceased to flutter (uq). Instead, they found after 30 test specimens
that the quenching speed was related to the critical flutter speed by the approximate
function,

uq D 0:75uc ˙ 0:2: (6.2)

For instance, if at t D 0 the beam is fluttering, then when the flow speed is
reduced, uq ¤ uc because of the initial state of the beam. Similarly, if at t D 0

the trailing-edge displacement y.x; t/ 	 0, then Connell and Yue [11] found that
the fixed point stable regime was realised; for y.x; t/ > 0 at t D 0, they found that
the limit-cycle regime was induced.

Extraneously-Induced Excitation

Another type of flutter that Naudascher and Rockwell [32, 33] classified is
Extraneously-Induced Excitation. This class of flutter has seen greater utilisation in
the area of flutter energy harvesting, despite the requirement for a more complex
and detailed setup.

Definition 5. Extraneously-Induced Excitation flutter is where flutter of the
immersed beam is caused by external, time-varying pressure gradients, such
as those generated by vortex shedding off of a bluff body.

Overview of Vortex Shedding

Unlike MIE-type flutter discussed in Sect. 6.2.2, EIE-type flutter requires a prelimi-
nary understanding of the vortex shedding from bluff bodies, as a primary excitation
mechanism of the beam flutter. The vortex shedding behind bluff bodies has been
studied extensively elsewhere and will not be examined in detail here. Generally,
the objective is to maximise the amplitude of vibrations of the beam via fluid-
forced resonance of the beam. The upstream bluff body sheds vortices at a certain
frequency as governed by the Strouhal number, defined as

St D fD

u
; (6.3)

where f is the vortex shedding frequency, D is the characteristic dimension of the
bluff body (usually a diameter), and u is the fluid flow velocity. These vortices are
advected past and impinge on the beam and, when the shedding frequency matches
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Fig. 6.11 Overview of results showing the experimentally obtained relationship between the
Strouhal and Reynolds number [39, Fig. 3]

a bending natural frequency of the beam, resonance occurs and thus the amplitude
of vibration significantly increases. It should be noted that there has been much
work done on understanding the relationship between the Strouhal number and the
Reynolds number, Re; again, an in-depth overview will not be realised here, but for
the sake of completeness it should be looked at briefly such that flutter evolving
from vortex shedding may also be explicated.

The relationship between the Strouhal and Reynolds6 numbers somewhat re-
sembles a piecewise function, in that there are regions where the Strouhal number
is found to be independent of the Reynolds number, and elsewhere there appears
a nonlinear relationship. Sakamoto and Haniu [39] pointed out that previous
experimental work on vortex shedding from a spherical bluff body varied from
researcher to researcher, and that discontinuities were found in the St vs. Re
relationship. Through a series of flow visualisation and hot-wire experiments, they
examined the Strouhal number for 103 < Re < 104. In Fig. 6.11, a comparison of
their results against many previous results obtained is shown.

6The Reynolds number is a dimensionless number, which is the ratio of the fluid inertial forces to

the viscous forces. Mathematically, it is defined as Re D uD

�
, where u is the flow velocity, d is

the characteristic dimension of the immersed body, and � is the kinematic viscosity of the fluid.
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Fig. 6.12 The experimental setup schematic by Allen and Smits [2, Fig. 1]

It can be seen that for Re > 800, two Strouhal numbers coexist for a given
Re number—a high- and low-frequency mode of vortex shedding. Sakamoto and
Haniu [39, p. 392] concluded that:

: : :this coexistence of modes was due to the periodic fluctuation in the vortex tube formed
by the pulsation of the vortex sheet separated from the surface of the sphere and in the
turbulent wake with progressive wave motion respectively.

That said, there was found to be a higher power content in the lower-frequency
Strouhal number [39, Fig. 5], and thus it is the mode of interest for the purpose of
exciting an immersed beam.

EIE Flutter Energy Harvesting Examples

In 2001, Allen and Smits [2] investigated the concept of an “energy harvesting eel”,
whereby a thin, flexible beam was placed downstream of a vortex-shedding bluff
body. They noted that in order for the vortices to influence the motion of the beam,
the beam must have low bending rigidity, since a rigid splitter plate downstream of a
bluff body was previously found to truncate the vortex sheet formation (see [20,38]).
Allen and Smits [2] used a few different beam materials with different bending
rigidities and differing lengths and conducted a Particle Image Velocimetry (PIV)
flow visualisation investigation to determine the effect of the vortices impinging on
the beam. A schematic of their setup is shown in Fig. 6.12; although the size of the
bluff body D was varied in order to effectively change the Re number, the ratio s=D

was kept constant at unity throughout the experiments.
Taylor et al. [43] conducted a similar investigation, whereby a PVDF-laden beam

was placed behind a bluff body and immersed in a water flow. Experiments in a
water tunnel were carried out to investigate the power output of the beam; however,
most of the focus remained on optimising the electrical sub-system as opposed to
examining the beam flutter characteristics. They calculated a maximum mechanical-
to-electrical energy conversion efficiency of 37 %, given optimum circuit loading
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Fig. 6.13 The piezoelectric flapper array concept proposed by Pobering and Schwesinger [35,
Fig. 5]

conditions and minimal mechanical losses. This connotes that when the electrical
aspect is carefully considered along with the mechanical design, this technology
displays much potential.

Pobering and Schwesinger [35] suggested a realisation of a flapper-harvester
array in rivers and streams, as a replacement for water turbines (Fig. 6.13). They
calculated that the power density of such a device could be up to 68.1 W/m2, and
compared this value to current wind turbine values of around 34 W/m2.

Pobering and Schwesinger [35] accounted more for the structural–electrical
feasibility of the piezoelectric device, rather than the vortex-shedding mechanisms
that excite the system. A simple Rankine vortex model7 was used to describe the
vortices shed from the upstream bluff body of characteristic dimension, D. Mutual
interaction effects between flappers were considered in the analysis but have been
found elsewhere (e.g. [7, 26]) to be significant in terms of flutter frequency and
output power.

Clamping Base Geometry

The leading-edge clamping conditions of the beam also play a major role in
determining the magnitude of the flutter. As discussed previously in the vortex
shedding overview, the maximum amplitude of flutter occurs when the vortex
shedding frequency matched a bending natural frequency of the beam. If the

7A Rankine vortex is one that rotates at a constant angular velocity, !, and has radius rv. The
velocity v for any r < rv is such that v D !r . For r > rv, v decreases exponentially.
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Fig. 6.14 A snapshot of a vortex shedding circular cylinder and flexible beam exhibiting EIE-type
flutter, in CFD/FSI

geometry of the clamping base is significant in size, the vortex shedding off of the
base may actually inhibit flutter by doing one of two things:

1. Delaying the cut-in speed.
2. Destructive interference, or anti-resonance.

Note that evaluation of the clamping base geometry constitutes the case where
s ! 0, as depicted in Fig. 6.12 (p. 182). Work by Deivasigamani et al. [13] showed
that the critical flutter speed of a given beam geometry would be delayed, for off-
design conditions of the base clamping geometry. In that work, it was shown that
the length, or stream-wise dimension of the clamp had little effect on the flutter
characteristics of the beam; the width, or cross-stream dimension of the clamp
caused changes in the critical flutter speed of the beam. An excellent method to
conduct parametric studies in this facet of EIE-type flutter is using a Computational
Fluid Dynamics (CFD)/FSI approach. The two-dimensional Navier–Stokes (N–S)
equations may be readily and quickly solved for many cases of clamping-base-
size to beam-length ratios, and while the results quantitatively may not give a very
accurate solution,8 qualitative flutter motions may be captured and assessed, as is
illustrated in Fig. 6.14.

In addition, the FSI solutions may be extended to interact with a piezoelectric ma-
terial; computational aero-mechanical–electrical interactions. This simply involves
applying piezoelectric material properties to the fluttering beam behind the clamping
base.

8Solving the two-dimensional N–S equations over a circular cylinder, for example, has shown gross
over-prediction of the lift coefficient—even with significant mesh refinement, see Dong et al. [15].
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6.2.3 Structural–Electrical Coupling

The phenomenon of piezoelectricity was first discovered in 1880 by Pierre and
Jacques Curie during their study of the effects of pressure on the generation of
electrical charge by crystals such as quartz, tourmaline and Rochelle salt. The
term “piezoelectricity” was first given by W. Hankel, and the converse effect was
mathematically deduced by Gabriel Lipmann from fundamental thermodynamic
principles. However, piezoelectricity remained as a laboratory phenomenon until
1917, when Paul Langevin and his colleagues designed an ultrasonic submarine
detector, which consisted of a transducer made of thin quartz crystals carefully
glued between two steel plates, and a hydrophone to detect the returned echo. By
emitting a high-frequency chirp from the transducer, and measuring the amount of
time it takes to hear an echo from the sound waves bouncing off an object, one could
calculate the distance to that object [55]. This success opened up the opportunities
for piezoelectric materials in a variety of applications such as ultrasonic transducers,
microphones, and accelerometers.

Piezoelectric Materials

There are a variety of piezoelectric materials in use currently, and the endeavour
of this section is to introduce the reader to a few commonly used piezoelectric
materials.

Early Discoveries

In 1935, Busch and Scherrer discovered piezoelectricity in potassium dihydrogen
phosphate (KDP) and its isomorph. However in 1940–1943, unusually high dielec-
tric properties were found in BaTiO3. After this discovery, modifications of BaTiO3

led to high voltage output.

Lead–Zirconate–Titanate (PZT)

In 1950, it was found that the PZT (Lead–Zirconate–Titanate) system could exhibit
strong piezoelectric effects. Since then, the PZT system containing various additives
has become the dominant piezoelectric ceramic for various applications [10]. A unit
molecular cell of PZT is shown in Fig. 6.15.

PZTs are manufactured in strips and plates of various thicknesses based on the
application. However, these strips have a specific stiffness which restricts its use
for various applications that require flexibility of piezoelectric materials. Moreover,
PZT strips are brittle in nature, and thus do not have the ability to handle large
deformations.
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Fig. 6.15 The structure of a
single PZT molecule [53]

Macro-fibre Composites

In order to overcome the above limitations, several forms of PZT have been devel-
oped for various applications, which are flexible to handle large amounts of strain.
These PZTs are specially manufactured and are called Macro-fibre Composites
(MFC). The MFC consists of rectangular piezo ceramic rods sandwiched between
layers of adhesive, electrodes and polyimide film. The electrodes are attached to
the film in an inter-digitated pattern, which transfers the applied voltage directly to
and from the ribbon-shape rods. This assembly enables in-plane poling, actuation
and sensing in a sealed and durable, ready-to-use package. As a thin, surface-
conformable sheet it may be bonded to various types of structures or embedded in
a composite structure. MFCs are very precisely engineered materials, having high
energy densities and [thus] power outputs. However, they are very expensive due to
the manufacturing complexities involved with the materials.

Polyvinylidene Fluoride (PVDF)

In 1969, strong piezoelectricity was observed in PVDF. Since then, PVDFs are used
for various applications in place of PZTs due to their availability, cost and other
piezoelectric parameters. PVDF has a glass transition temperature (Tg) of about
�35 ıC and is typically 50–60 % crystalline. To give the material its piezoelectric
properties, it is mechanically stretched to orient the molecular chains and then poled
under tension. PVDF exists in several forms: alpha (TGTG0), beta (TTTT), and
gamma (TTTGTTTG0) phases, depending on the chain conformations as trans (T)
or gauche (G) linkages. When poled, PVDF is a ferroelectric polymer, exhibiting
efficient piezoelectric and pyroelectric properties. These characteristics make it
useful in sensor and battery applications [54].

Since PVDFs are polymers, they may be manufactured to be very flexible
compared to MFCs. Thus, PVDFs can be utilised for applications that require
greater flexibility and low stiffness. Also, MFCs are made up of PZT fibres, which
(as mentioned previously) are brittle and do not have the capability to handle large
strains for a large number of cycles.
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Piezoelectric Constitutive Relationships

Piezoelectric effects are classified into two categories, namely, the direct piezoelec-
tric effect and converse piezoelectric effect. Direct piezoelectric effect is the instance
where mechanical strain is converted to electrical charge; the converse piezoelectric
effect is the opposite. Thus, it is essential to understand the mathematical relation-
ship between electrical charge, displacement, mechanical stress and strain.

The electric displacement, D, and electric field strength, E , are related as

D D �E; (6.4)

where � is defined as the electric permittivity. Also, according to Hooke’s law,

S D cT; (6.5)

where S is mechanical strain, T is mechanical stress, and c is compliance (i.e. the
inverse of elastic modulus). Thus, these two equations, which govern the electrical
displacement and mechanical strain, are related in the coupling equations as

fDg D Œd �fT g C Œ��fEg; (6.6)

fSg D Œc�fT g C 	
d t

 fEg; (6.7)

where d is defined as the piezoelectric coupling coefficient [16]. It is important
to note that the terms in Eqs. (6.6) and (6.7) are matrices, since they are direction-
dependent tensors. Thus, the values of electric displacement and strain could change
based on the interaction between the mechanical and electrical behaviour in three
orthogonal directions. The superscript, t , refers to the transposed matrix of d

(indicating the converse piezoelectric effect). Additionally, we see from Eqs. (6.6)
and (6.7) that it is the elastic modulus, electrical permittivity and piezoelectric co-
efficient that determine the ability of a piezoelectric material to convert mechanical
energy into electrical energy and vice versa.

Energy Harvesting from Vibrations

As discussed in Sect. 6.2.3, the electrical charge developed in a piezoelectric
material depends on mechanical strain. In order to harvest energy using piezoelectric
materials, it is important that these materials are subjected to repetitive stress and
strain. Before we look at the different forms of energy harvesting from vibrations
investigated, it is important to understand some basic concepts behind vibrations of
continuous beams.

Euler–Bernoulli Beam Theory

A beam undergoing transverse vibration is governed by the Euler–Bernoulli beam
theory, which is written as
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m
@2y

@t2
C EI

@4y

@x4
D F; (6.8)

where m is the mass per unit length of the beam, EI is the bending stiffness, and
F is the input forcing function. Thus the mechanical stress and strain induced from
these vibrations are given by

T D M z

I
D �zE

@2y

@x2
; (6.9)

S D �z
@2y

@x2
; (6.10)

where M is the bending moment, I is the moment of inertia, and z is the distance
from the neutral axis to the point of interest [46]. It is these stresses and strains
experienced by the piezo that get converted into electrical energy, as governed by
the coupling equations in Eqs. (6.6) and (6.7).

Power Available from Vibrations

The equation of motion for analysing forced vibrations of a lumped parameter
system may be written as

mRz C cPz C kz D �m Ry;

Rz C c

m
Pz C k

m
z D � Ry;

Rz C 2ı!nPz C !2
nz D � Ry; (6.11)

where the over-dots denote the derivative with respect to time, ı D c

2
p

mk
is the

damping ratio, and !n D
q

k
m

is the natural frequency. Let us now examine the
Laplace transform of a function:

L
�
z.t/

� D Z.s/ D
Z 1

0

e�st z.t/dt;

Z.s/ D
�

e�st z.t/

�s

�1

0

�
Z 1

0

e�st Pz.t/
�s

dt;

Z.s/ D
�

z.0/

s

�1

0

C 1

s
L
�Pz.t/�: (6.12)

Now, rearranging terms gives

L
�Pz.t/� D sL

�
z.t/

� � z.0/ D sZ.s/ � z.0/: (6.13)
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Similarly,

L
�Rz.t/� D s2Z.s/ � sZ.s/ � z.0/; (6.14)

L
� Ry.t/

� D s2Y.s/ � sY.s/ � y.0/: (6.15)

Now, substituting Eqs. (6.14) and (6.15) into Eq. (6.11) with initial position at 0
yields

s2Z.s/ C 2ı!nsZ.s/ C !2
nZ.s/ D �s2Y.s/: (6.16)

Rearranging it yields

ˇ̌̌
ˇZ.s/

Y.s/

ˇ̌̌
ˇ D s2

s2 C 2ı!ns C !2
n

;

Z.s/ D s2

s2 C 2ı!ns C !2
n

L
�
Y sin !t

�
: (6.17)

Using the Laplace formula for sine, we have

Z.s/ D Y

�
s2

s2 C 2ı!ns C !2
n

��
!

s2 C !2

�
: (6.18)

Now, applying the inverse Laplace transform by using partial fractions will yield

z.t/ D
�

!
!n

�2

s�
1 �

�
!
!n

�2
�2

C
�

2ı!
!n

�2

Y sin !t � ': (6.19)

Equation (6.19) is the position equation. If we differentiate, we obtain velocity
v as

v D Pz.t/ D
�

!
!n

�2

s�
1 �

�
!
!n

�2
�2

C
�

2ı!
!n

�2

Y!; (6.20)

and differentiating again we obtain the acceleration, a:

a D Rz.t/ D
�

!
!n

�2

s�
1 �

�
!
!n

�2
�2

C
�

2ı!
!n

�2

Y!2: (6.21)
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Note that the maximum values are taken by neglecting the sine and cosine
functions. Therefore, the power in the vibrations is the product of force and
velocity [36]:

P D mRz.t/Pz.t/ D
�

!
!n

�4

Y 2!3m

�
1 �

�
!
!n

�2
�2

C
�

2ı!
!n

�2
: (6.22)

During resonance,

P D Y 2!3m

4ı2
: (6.23)

From the above analysis, three vital aspects of power extraction from vibrations
are observed:

1. Power available from vibrations is directly proportional to the square of its
vibration amplitude.

2. Power available from vibrations is directly proportional to the cube of its
vibration frequency.

3. During resonance, the amplitude is at a maximum, hence the power available is at
a maximum.

Electrical Load Matching

Piezoelectric materials may be electrically modelled as a combination of a capacitor
(from which current is discharged) and a resistor through which the generated
current flows. Thus, this RC internal circuit needs to be matched with optimum
electrical resistance (i.e. electrical load) before it is connected to the electrical
storage device, in order to obtain maximum power. Due to this electrical load
matching, energy harvesting devices have the ability to output more power when
matched to the optimum resistive load.

A simplified theoretical formula to arrive at the optimum electrical load is given
by Eq. (6.24):

RLopt 	 1

!C
; (6.24)

where C is the capacitance of the piezoelectric material. Vibration of these
piezoelectric materials induces an AC voltage, thus the output must be rectified in
order to charge a battery, or to power any electronic devices. A typical circuit layout
for a piezoelectric energy harvester is shown in Fig. 6.16.
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Fig. 6.16 A typical circuit, containing a piezoelectric vibrator [40, Fig. 3]

In order to evaluate the power output from a vibrating piezoelectric element, the
following equation is used:

P D V 2
RMS

RL

; (6.25)

where VRMS is the root-mean-square voltage output from the piezo, and RL is the
load resistance in the energy capture circuit. Given a constant vibration frequency !,
the load resistance may be matched according to the capacitance of the piezoelectric
material (which may be assumed constant). Thus, with the optimum load resistance,
optimum power output is attained. However, given a variable vibration frequency
over time, the load must be actively tuned to match !. As the load resistance is
changed, back-coupling occurs within the piezo element, and the subsequent output
voltage also changes. Active resistance tuning for an autonomous system requires
power input, and it remains to be seen whether the power input outweighs the power
output from a piezo energy harvester. Furthermore, when dealing with flutter energy
harvesters deployed in real-world atmospheric conditions, the vibration (flutter)
frequency is stochastic, because the excitation force originating from the turbulent
wind is stochastic. This will be discussed later on, but for now we concentrate our
attention on a single piezoelectric leaf-stalk element, in order to further understand
the electro-aero-mechanical dynamics.

6.2.4 Analysis of a Single Piezoelectric Leaf-Stalk

The objective with this type of energy harvesting system, and any energy harvesting
system in general, is to generate maximum power. In extending the concept
introduced by Dickson [14] (see Sect. 6.1), Li and Lipson [29] concentrated
on understanding the dynamics of one discrete piezoelectric leaf-stalk system.
They utilised a polyvinylidene-fluoride (PVDF) piezoelectric patch, coupled via
a revolute hinge to a triangular, polymeric “leaf”. They placed this leaf-stalk in a
smooth, parallel flow, and increased the flow speed until the leaf-stalk started to
flutter in Limit-Cycle Oscillations (LCO). Once fluttering, the time-varying strain
on the PVDF element caused an AC voltage to be output.
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Fig. 6.17 The analytical
model for determination of
the hinge effect on the
cantilever beam dynamics

Table 6.1 Beam properties
utilised for the analytical,
computational and
experimental analyses

Property Symbol Value

Stiffness EI 2:70 � 10�4 (N m2)
Beam density �s 995 (kg/m3)
Cross-sectional area A 21 (mm2)
Beam length L 236 (mm)
Beam thickness h 0:35 (mm)
Beam width w 60 (mm)
Mass ratio � 1:19

Effect of a Revolute Hinge on Flutter Dynamics [12]

One main question that remained following the work by Li and Lipson [29] was the
effect of the revolute hinge on the leaf-stalk flutter dynamics. Both Li and Lipson
[29] and Bryant et al. [7] (elsewhere) found that by hinging a second element
to the free end of the piezoelectric beam, the power output increased compared
to a uniform beam case. Li and Lipson [29] suggested that the trailing element
functioned to increase vibration amplitude in two ways:

1. It acted like an added mass to the piezoelectric beam.
2. It augmented the impinging pressure force by adding surface area.

Deivasigamani et al. [12] undertook an analytical, numerical and experimental
investigation into the dynamic effect of a hinge interconnecting two identical beam
elements. The leaf-stalk geometry was not modelled, in order that the hinge’s effect
on the beam dynamics was isolated and identified. The analytical model is shown as
a schematic, in Fig. 6.17, and the beam mechanical and geometric properties used
are listed in Table 6.1.

Analytical Hinged Beam Model

Euler–Bernoulli beam theory was utilised to extract the undamped, free-vibration
natural frequencies of the clamped-hinged-free beam. If Euler–Bernoulli beam
theory is applied for both beam elements 1 and 2, we have
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m
@2y1

@t2
C EI

@4y1

@x4
1

D 0; (6.26)

m
@2y2

@t2
C EI

@4y2

@x4
2

D 0: (6.27)

Refer to Eq. (6.8) for variable definitions. The variable separable method was
then utilised to solve Eqs. (6.26) and (6.27), so that

y1 D Y1.x/T1.t/; (6.28)

y2 D Y2.x/T2.t/; (6.29)

where Yi .x/ is the i th space function and Ti .t/ is the i th time function. The transient
behaviour of the beam was ignored, because the steady-state LCO of the beam were
of interest. Thus, the general solutions of the space functions for both beam elements
become

Y1 D C1 cos ˇx C C2 sin ˇx C C3 cosh ˇx C C4 sinh ˇx; (6.30)

Y2 D C5 cos ˇx C C6 sin ˇx C C7 cosh ˇx C C8 sinh ˇx; (6.31)

where C1;2;:::;8 are constants and ˇ4 D �sA!2

EI
, such that

!i D .ˇi L/2

s
EI

�sAL4
: (6.32)

!i is the i th natural frequency, A is the beam cross-sectional area, and ˇi L D 
i ,
the i th eigenvalue of the system. Should the reader be interested in the remainder
of the eigenvalue extraction process, see Deivasigamani et al. [12]. A comparison of
the hinged-beam natural frequencies was made to the standard natural frequencies
of a clamped-free beam [6], the eigenvalues of which are the roots of Eq. (6.33):

cos.
/ cosh.
/ D �1: (6.33)

A modal natural frequency ratio, Ri , is defined in Eq. (6.34), and plotted in
Fig. 6.18 for the 2nd through 4th modes of vibration. In this analysis, the hinge
non-dimensional position along the beam, denoted by � D x=L, was varied and Ri

subsequently examined. Due to the presence of a hinge, the fundamental (i.e. first)
vibration mode of the beam was a rigid body mode9; thus R1 D 0 for all �, and
hence this mode was ignored

9A mode of vibration with zero strain.
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Fig. 6.18 Analytical Ri as a function of non-dimensional hinge position, �

Ri D !hingei

!uniformi

; (6.34)

where !hingei
is the i th hinged-beam natural frequency and !uniformi

is the i th
uniform-beam natural frequency.

Computational Hinged Beam Model

In order to corroborate the analytical model, a finite element modal analysis was
carried out involving the exact same beam geometry and boundary conditions as
specified in Fig. 6.17 and Table 6.1. The computational model, with the hinge at
� D 0:5, is displayed in Fig. 6.19.

In a modal analysis in ANSYS®, the shifted Block Lanczos algorithm is used by
default [3] to directly extract the eigenvalues and eigenvectors of a structural model
containing rigid-body modes. The interested reader may find details of the algorithm
in Grimes et al. [21]. As with the analytical model, the 2nd through 4th modes were
extracted, as well as the uniform-beam vibration modes. Ri comp was evaluated at
discrete beam hinge locations and compared with the analytical modal solution, as
shown in Fig. 6.20.

The normalised mode shapes for the second vibration mode are shown in
Fig. 6.21 for two hinge position cases: (1) where R2 is maximum at � D 0:2

(Fig. 6.21a) and (2) where R2 is minimum at � D 0:9 (Fig. 6.21b).
The hinge introduced an additional degree of freedom to the system, giving the

beam greater flexibility. When � D 0:2, the hinge did not affect the mode shape
(Fig. 6.21a) greatly, therefore rendering R2 	 1. However, as the hinge was moved
towards the free end, the first beam length increased, permitting greater flexibility;
consequently, R2 decreased. This is because the trailing element became shorter
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Fig. 6.19 The meshed computational model in ANSYS® Mechanical™(Release 13.0)
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Fig. 6.20 Ri comp and Ri comparison

Fig. 6.21 The hinge positions which give (a) maximum R2 (� D 0:2) and (b) minimum R2

(� D 0:9). The undeformed wireframe of each beam is included for reference. Note the axes
orientation



196 J.M. McCarthy et al.

A
A-A

A

Fig. 6.22 Side- and top-view
illustration of the hinge
sewing method

and stiffer compared to the leading element. Also, the hinge was located at a node
of maximum displacement for the case where � D 0:9 (Fig. 6.21b).

Experimental Hinged Beam Testing

The experiments were carried out in similar fashion to Li and Lipson [29]—smooth,
parallel flow conditions. The RMIT University Aeronautical wind tunnel was used
because of the low turbulence intensity (	0.5 %) values achieved. Nine identical
polypropylene beams were fashioned (with mechanical properties listed in Table 6.1
on p. 192), each with one unique hinge position, ranging from � D 0:1 to 0.9.
The revolute hinges were constructed by sewing threads with an “8” pattern at
the top, middle and bottom to couple the beam elements (Fig. 6.22). This hinge
construction technique was chosen as it was the most ideal solution for replicating
a zero-mass hinge, and the “8” pattern ensured that the thread did not loosen during
beam flutter. The effect of the hinge mass on the beam flutter characteristics was
evaluated elsewhere, see McCarthy et al. [31].

A base stand was securely fastened into the wind tunnel test section, and a
steel strip having a height of 600 mm, a stream-wise dimension of 12 mm, and a
transverse dimension of 1.75 mm, was clamped to the base stand at the top, and
bolted to the wind tunnel floor at the bottom. The beams were then clamped at
the leading edge using another shorter steel strip fastened to the longer one, so that
the transverse dimension (the width) of the base clamping system became 3.5 mm.
The effects of the transverse clamping base dimension, in general, were discussed
in Sect. 6.2.2; for the experiments conducted it was found that the clamping width
had negligible influence on the critical flutter speed of the polypropylene beams. For
more details of the experimental setup, see Deivasigamani et al. [12].

In previous work by Argentina and Mahadevan [4], two scaling laws were derived
from a theoretical aeroelastic analysis of a two-dimensional beam fluttering in an
ideal, parallel, potential flow. These scaling laws related the critical flutter speed
and flutter frequency of an immersed beam to simple mechanical and geometric
parameters. Later, these scaling laws were experimentally validated for highly three-
dimensional beams in real-world flows, refer to Deivasigamani et al. [13]. Argentina
and Mahadevan [4] found that the flutter frequency of a beam immersed in a parallel
flow scales as

! �
s

�f u2

�shL
: (6.35)
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Fig. 6.23 R2 and � plotted against �

Also, when the flutter frequency is equated to the lowest flexible mode of
vibration (i.e. ignoring all rigid body modes), Argentina and Mahadevan [4] found
that the critical flutter speed, uc , scales as

uc �
s

Eh3

�f L3
: (6.36)

In previous spectral analyses, workers discovered that maximum power was
contained in the lowest flexible bending mode of vibrations [1, 23]. By Eqs. (6.35)
and (6.36), it may be deduced that the natural frequency of a cantilever beam
is directly related to its critical flutter speed in a parallel flow. Additionally, for
the mass ratio (see Sect. 6.2.2) of the beams used here, it was expected that the
flutter frequency would be approximately equal to the natural frequency, since it
was found previously that unsteady lift effects did not significantly influence flutter
[47]. Therefore, the critical flutter speed each polypropylene beam was evaluated
for � D 0:1–0.9. We define a normalised critical flutter speed as

� D uc hinge

uc uniform

; (6.37)

where uc hinge is the critical flutter velocity of the hinged beam and uc uniform represents
the critical flutter velocity of the uniform beam. The experimental � trend obtained,
along with R2 as a function of �, are displayed in Fig. 6.23.

When the hinge was at � D 0:1, the first beam element was observed to remain
rigid, while the second element fluttered as a uniform hinged-free beam in the wind
tunnel. In the case of the hinge at � D 0:2, virtually no discontinuity was observed at
the hinge position, and the entire system fluttered as a uniform cantilever beam. This
is evidenced from the normalised critical flutter speed value, � 	 0:9 (Fig. 6.23),
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Fig. 6.24 Experimental and computational mode shape comparison for (a) a hinge at � D 0:1 and
(b) a hinge at � D 0:2. Both beams were fluttering in the lowest flexible bending mode, 
2

Fig. 6.25 Experimental and computational mode shape comparison for (a) a hinge at � D 0:5 and
(b) a hinge at � D 0:8. When the hinge was at � D 0:5, flutter was in the 
2 mode. When the hinge
was at � D 0:8, flutter occurred in the 
3 mode

and was elucidated previously in Fig. 6.21a from the mode shape. As the hinge was
shifted towards � D 0:5, the critical flutter speed decreased monotonically. It is
evident from Fig. 6.23 that for 0:1 � � � 0:5, � has the same trend as R2. This
was due to flutter occurring in the lowest flexible bending mode for these hinge
positions, suggesting that the scaling law in Eq. (6.36) indeed holds for these hinge
positions. In Fig. 6.24, images of the mode shapes captured in the wind tunnel, and
the computational mode shapes are compared for � D 0:1 and 0.2.

For � > 0:5, � started to increase and deviate from the R2 trend. For these hinge
positions, it was noticed that the specimens began to flutter in higher-order mode
shapes, and not the lowest flexible bending mode. This phenomenon occurred due
to the relative stiffness and length between the leading and trailing elements. When
the hinge position was beyond � D 0:5, the hinged beam was able to flutter in
higher-order modes because the leading element became longer compared to the
trailing element. In Fig. 6.25, the mode shapes are compared for � D 0:5 and 0.8.

The hinge enhanced system stability by transitioning flutter occurrence into
higher-order modes and thus delaying flutter onset. This transitional behaviour has
been previously observed by Watanabe et al. [47] for both the flutter frequency and
the critical flutter speed, for a varying mass ratio of a uniform beam. Indeed, the
modal flutter transitions are depicted in Fig. 6.26.

It was proved in Sect. 6.2.3 that the power output of a piezoelectric element
is proportional to the vibration amplitude squared and vibration frequency cubed.
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Fig. 6.26 The distinct regions in which the flutter mode changed from 
2 for � � 0:5, to a
transitional combination of modes for 0:5 < � < 0:8, to 
3 for � � 0:8

Placing the hinge near the leading edge of the beam delays flutter onset, causes
lower-frequency and higher-amplitude vibrations; placing the hinge halfway along
the beam gives the lowest cut-in wind speed and largest flutter amplitudes. Finally,
placing the hinge near the trailing edge of the beam gives an increased cut-in wind
speed compared to a hinge at the halfway point; however, the vibration frequencies
are much higher and amplitudes much lower.

Effect of Leaf Geometry on Power Output [31]

In both continuance and furtherance of Li and Lipson’s [29] work, McCarthy et
al. [31] examined the effect of changing the polymeric-leaf geometry on the power
output of the piezo. Li and Lipson [29] evaluated many leaf shapes and found that
a triangularly shaped leaf gave the highest power output, though it was not known
why. The results of their leaf shape analysis are shown in Fig. 6.27.

Once the leaf shape was chosen, no other modifications to the leaf were made
throughout the remainder of their analysis. Thus, the leaf used by Li and Lipson
[29] constituted the baseline leaf design for the parametric analysis conducted by
McCarthy et al. [31]. Two leaf geometric parameters were varied, each one varied
while keeping the other constant: (1) the leaf area with constant aspect ratio and
(2) the leaf aspect ratio with the best-performing leaf area (i.e. the leaf area that
rendered maximum power output). The PVDF piezoelectric stalk was identical to
the one used in Li and Lipson [29].10

10Measurement Specialties, Inc., LDT1-028K/L type.
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Fig. 6.27 The power output evaluated for a range of leaf shapes [29]

Increased Power Output of Triangular Leaf

Smoke-wire flow visualisation is used widely in the fluid mechanics discipline
as a quick and readily available method to determine the flow behaviour around
solid objects. Bryant et al. [8] performed smoke flow visualisation around their
fluttering piezoelectric energy harvester, to determine the behaviour of the trailing-
edge vortices. The geometry of their harvester is shown in Fig. 6.28; note that the
leaf they used was rectangular.

The flow immediately surrounding the harvester—particularly, flow induced
around the leaf—could be the cause of the increased power output for the triangular
leaf. Observe the differences in flow between Bryant et al.’s [8] harvester (Fig. 6.29),
and flow visualisation of a harvester with the same leaf geometry as Li and Lipson
[29] (Fig. 6.30).

The major difference between the rectangular leaf and the triangular leaf is the
presence of out-of-plane cone vortices for the triangular leaf case. These out-of
plane vortices, unlike the in-plane vortices observed in the case of the rectangular
leaf, induce torsion of the leaf—hence, torsion of the piezoelectric stalk. Therefore,
in addition to the cyclic bending stresses, the piezo stalk with the triangular leaf
experiences cyclic torsional stresses as a result of the induced pressure gradients,
caused by the out-of-plane cone vortices.

Leaf Area Parametric Analysis

The leaves used for the experiments were made from 0.35 mm-thick polypropy-
lene, which has an elastic modulus of 1,261 MPa and a density of 995 kg/m3.
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Fig. 6.28 The energy harvester used by Bryant et al. [8]

Fig. 6.29 Smoke flow visualisation of Bryant et al.’s [8] energy harvester

The clamping base and test stand setup in the wind tunnel was similar to the
one utilised for the hinge analysis experiments in Sect. 6.2.4; an image of the
experimental setup used in these tests is shown in Fig. 6.31.

Four leaf areas were chosen; the baseline leaf had an area A D bh=2, and aspect
ratio AR D h=b (b D base and h D height), while three other leaf areas were
selected relative to the baseline leaf area. The aspect ratio was constant at unity.
Table 6.2 displays the leaf dimensions and areas used.

The energy capture circuit used facilitated passive resistance tuning and power
output analysis, for details refer McCarthy et al. [31]. The power output in 0.1-s
intervals (Pi ) was calculated using Eq. (6.25) (p. 191), and the total average power
over a 30-s data acquisition window was calculated as
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Fig. 6.30 Smoke flow visualisation of an energy harvester in the RMIT University Aeronautical
wind tunnel. The blue arrows show the vortex rotation direction

Fig. 6.31 Wind tunnel
experimental setup. Inset:
leaf-stalk close-up [31]

Table 6.2 Dimensions and
areas of four leaves used in
the parametric analysis

Dimensions (b cm � h cm) Area (cm2)

6 � 6 18
8 � 8 (baseline) 32
10 � 10 50
12 � 12 72
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The wind speed testing range was chosen based on average measured urban wind
speeds [41], where this type of technology would potentially be deployed.

In order to determine whether, during the testing, the leaf-stalks were transition-
ing from LCO to chaotic flutter (see Sect. 6.2.2), the output power deviation was
monitored. As mentioned previously, maximum bending energy was found to be in
the LCO flutter, rather than the chaotic flutter—thus it would be undesirable from a
power output perspective for the leaf-stalks to transition to the chaotic flutter regime.
It was observed in the tests that the 6 � 6 and 8 � 8 cm leaf cases did not show signs
of chaotic flutter; however, it may be seen in Fig. 6.32 that the 12 � 12 cm leaf case
fluttered chaotically for the wind speeds greater than 4.0 m/s.

The results for all four leaf areas are shown in Fig. 6.33. Flutter of the 6�6 cm
leaf-stalk was delayed due to the smaller surface area. The smaller leaf presents less
area for the free-stream flow to influence, and thus less pressure force is exerted
on the leaf-stalk for a given wind speed. The 10�10 cm leaf initially showed a
similar trend to that of the two smaller leaf-stalks, but at a wind speed of 6.0 m/s
the power substantially decreased. At this wind speed, the 10�10 cm leaf-stalk had
transitioned into the third flutter regime, where spontaneous snap-through events
were seen to occur throughout the 30-s data collection window. Given further wind
speed increase, the power output increased monotonically for the 10�10 cm leaf-
stalk, but the stochastic nature of the flutter presented larger error and thus prohibited
extrapolation beyond the maximum wind speed of 8.0 m/s.
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Increasing the leaf area while keeping the aspect ratio constant has two geometric
effects: (1) the leaf gets longer and (2) the leaf gets wider. As mentioned previously
in Sect. 6.2.2, it was found that lengthening a beam decreased the critical flutter
speed and flutter frequency. It is also known that a two-dimensional (i.e. infinite
cross-stream dimension) beam is always less stable than a three-dimensional beam
[18]. These two effects may be seen in Figs. 6.32 and 6.33, whereby the larger
leaf-stalks tended to cut-in at the minimum wind speed (though the 12�12 cm leaf-
stalk cut-in earlier than 3 m/s), and the larger leaf-stalks also showed an accelerated
tendency to unstable, chaotic flutter regime where power output is lower.

Leaf Aspect Ratio Parametric Analysis

The 8�8 cm leaf aspect ratio was subsequently varied, because it gave the highest
power output with the lowest deviation. Four aspect ratios were tested: 0.25,
0.86 (equilateral triangle), 1 (baseline) and 4. Geometrically, varying the aspect
ratio means that the length and width of the triangle change inversely, i.e. as the
length increases, the width decreases and vice versa. The power output deviation is
compared for the leaves with aspect ratios 0.25 and 4 in Fig. 6.34. None of the leaf-
stalks transitioned into the third flutter type during the experiments, which suggests
that area quantity—not area distribution, is a factor in determining the flutter regime
of the leaf-stalk for this range of wind speeds. Further flow speed increase would
eventually cause transition to the third flutter type. The power output results for all
four aspect ratios are shown in Fig. 6.35.

The leaf-stalk with an aspect ratio of 4 did not start fluttering until around 5.0 m/s.
This seems contradictory to previous work, which stated that a longer beam should
cut-in sooner. Rather, the critical flutter speed of the leaf-stalk with an aspect ratio
of 4 (i.e. the longest leaf) is the highest among all the other leaf-stalks. This may
indicate that the stabilising effect of a smaller width on the critical flutter speed
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could be more significant than the destabilising effect of increasing length. The
leaf-stalk with an aspect ratio of 0.25 began to flutter prior to reaching the 3.0 m/s
minimum wind speed. It is interesting to note that in Fig. 6.35 the leaf-stalk with
an aspect ratio of 0.25 output approximately constant power over a range of wind
speeds, while the leaf-stalk with an aspect ratio of 4 output power approximately
linearly-increasing for wind speeds from 4.0 to 8.0 m/s. To explain this behaviour,
we examine the geometric and mass properties of a triangle. The triangular leaf is
considered to be two-dimensional, since the thickness 
 .b; h/. The mass moment
of inertia of a thin triangular plate rotating about its base is given as [25]

Ib D mh2

6
; (6.39)
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where m is the leaf mass. As the aspect ratio increases, h increases and hence Ib

about the hinge increases, for a constant area. A consequence of a larger moment
of inertia about the hinge is that more energy is required to initiate flutter of the
system, in addition to the stabilising effect of the smaller width—hence the delayed
flutter onset of the leaf-stalk with an aspect ratio of 4. However, a larger moment
of inertia also means that there is inherently more rotational energy in the system,
which translates to a higher power output.

6.3 Concluding Remarks

Energy harvesters, based on fluttering piezoelectric elements, are still in the
incubation phase of development, with on-going research focused on maximising
their (relatively low) power outputs. A significant issue for such energy harvesting
systems of the future will be their power output compared with conventional wind
generators, which have efficiencies that can typically extract up to 50 % of the
available energy in an unbounded fluid stream (i.e. approaching the theoretical Betz
limit of 59.3 %). Aside from considerations of energy efficiency conversion, other
key considerations that challenge the viability of all systems are to do with return
on investment and include considerations of payback time, reliability in the field
(including under arduous climatic conditions of extreme winds, rain and icing) and
maintenance costs.

Work to date has focused on laboratory-based fluttering element(s) in smooth
fluid streams (usually air) where the element(s) are aligned with the stream
direction. It has been demonstrated that for optimum geometries and spacing the
combined power output of two or more aligned systems can be greater than the
sum of systems in isolation. However if such systems are to be used outdoors it
must be noted that atmospheric winds close to the ground are highly turbulent
and turbulence intensities can be as high as 50 % in built-up areas. Associated
with this turbulence are short-term fluctuations of the approach flow angles which
offer challenges to harvesting systems in terms of local alignment, ultraviolet-based
material degradation and fatigue, but may also offer opportunities to extract turbu-
lent energy that is not present in smooth flow streams. Depending on geographic
location the mean wind direction can vary from 0ı to 360ı, so decisions will have
to be made as to whether such systems are self-aligning with mean wind direction.
Further improvements in energy harvesting may come from local positioning around
buildings where it has been shown that over-speed areas can be found which have
about 50 % increase in flow speeds for a restricted range of approach flow angles
compared with the local atmospheric wind speed [28]. Since the power developed
by energy harvesting systems is highly dependent upon wind speed, and their use
will generally be coupled to powering ULP devices on buildings (e.g. LED lighting
and sensor networks), positioning systems on, or around buildings may find the
earliest in-field applications.
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List of Symbols

A Cross-sectional area
a Acceleration
AR Aspect ratio
b Leaf base length
C Capacitance
c Compliance or damping
C1;2;3;:::;8 Constants in the general solutions of the space functions, Y1 and Y2

D Characteristic dimension of bluff body or electric displacement
d Piezoelectric coupling coefficient

E Electric field strength or elastic modulus

�
1

c

�

EI Bending stiffness
F Input forcing function
f Vortex shedding frequency
h Beam thickness or leaf height
I Moment of inertia
Ib Moment of inertia of an object rotating about its base axis
k Stiffness
L Beam length
L Laplacian operator
M Bending moment
m Mass per unit length of the beam, or mass
N Number of discretisation points
P Power
Pave Average power
Pi Instantaneous power in an i th second interval
RL Load resistance
RLopt Optimum load resistance
r Radius
rv Rankine vortex radius
Re Reynolds number
Ri i th analytical natural frequency ratio
Ri comp i th computational natural frequency ratio
S Mechanical strain
s Distance from beam leading-edge to upstream bluff body, or

Laplacian coordinate
St Strouhal number
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T Mechanical stress
t Time, or when superscript, denotes the transpose of a matrix
Tg Glass transition temperature
Ti .t/ i th time function in variable separable method
u Fluid stream-wise velocity component
uc Critical flutter speed
uq Quenching speed
VRMS Root-mean-square voltage
v Velocity or cross-stream velocity component
w Beam width
x; y; z Cartesian coordinates
xi ; y1; zi i th local coordinates
Yi .x/ i th space function in variable separable method
Y.s/; Z.s/ Laplace transform of a function
z Distance from beam neutral axis to point of interest

Greek Symbols

ˇi
4

q
�sA!2

i =EI

ı Damping ratio
� Electric permittivity
� Non-dimensional hinge position, x=L


 Eigenvalue

i i th mode shape eigenvalue
� Mass ratio
� Kinematic viscosity or normalised critical flutter speed
' Phase difference
�f Fluid density
�s Beam density
! Angular frequency or angular velocity
!n nth natural frequency

Subscripts

i Index
Hinge Hinged beam
Uniform Uniform beam
Comp Computational



6 Energy Harvesting from Flows Using Piezoelectric Patches 209

References

1. Alben S, Shelley MJ (2008) Flapping states of a flag in an inviscid fluid: bistability and the
transition to chaos. Phys Rev Lett 100(7):074,301-1–4

2. Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15(3–4):629–640
3. ANSYS® (2010) Mechanical, Release 13.0. No. Theory Reference: Eigenvalue and Eigenvec-

tor Extraction in Help System, ANSYS, Inc.
4. Argentina M, Mahadevan L (2005) Fluid-flow-induced flutter of a flag. Proc Natl Acad Sci

U S A 102(6):1829–1834
5. Billah K, Scanlan R (1991) Resonance, tacoma narrows bridge failure, and undergraduate

physics textbooks. Am J Phys 59(2):118–124
6. Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold

Company, New York. ISBN: 0-442-20710-7
7. Bryant M, Mahtani R, Garcia E (2011) Synergistic wake interactions in aeroelastic flutter

vibration energy harvester arrays. In: ASME conference on smart materials, adaptive structures
and intelligent systems (SMASIS2011), September 18–September 21. American Society of
Mechanical Engineers, Scottsdale

8. Bryant M, Mahtani RL, Garcia E (2012) Wake synergies enhance performance in aeroelastic
vibration energy harvesting. J Intell Mater Syst Struct 23(10):1131–1141

9. CAB (1961) Aircraft Accident Report—Braniff Airways, Inc., Lockheed Electra N9705C.
Tech. Rep. USCOMM-DC-27267 Airways, Inc., Lockheed Electra N9705C, Civil Aeronautics
Board

10. Cady WG (1964) Piezoelectricity: an introduction to the theory and applications of electrome-
chanical phenomena in crystals. Dover Publications, New York

11. Connell BSH, Yue DKP (2007) Flapping dynamics of a flag in a uniform stream. J Fluid Mech
581:33–67

12. Deivasigamani A, McCarthy J, John S, Watkins S, Coman F, Trivailo P (2012a) Flutter of
cantilevered interconnected beams with variable hinge positions. J Fluids Struct 38:223–237

13. Deivasigamani A, McCarthy J, Watkins S, John S, Coman F (2012) Flow-induced flutter of
slender cantilever high-compliance plates. In: 28th international congress of the aeronautical
sciences (ICAS 2012), Brisbane, September 23–September 28, p 863

14. Dickson R (2008) New concepts in renewable energy. Lulu Enterprises, Inc., Raleigh
15. Dong S, Karniadakis G, Ekmekci A, Rockwell D (2006) A combined direct numerical

simulation-particle image velocimetry study of the turbulent near wake. J Fluid Mech
569:185–207

16. Dragan D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films
and ceramics. Rep Prog Phys 61(9):1267–1324

17. van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stanford
18. Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct

23:904–919
19. Encraft (2009) Final report (warwick microwind trial project). Tech. Rep. http://www.

warwickwindtrials.org.uk/2.html. Viewed 28 Dec 2011
20. Gerrard JH (1966) The mechanics of the formation region of vortices behind bluff bodies.

J Fluid Mech 25:401–413
21. Grimes RG, Lewis JG, Simon HD (1994) A shifted block lanczos algorithm for solving sparse

symmetric generalized eigenproblems. SIAM J Matrix Anal Appl 15(1):228–272
22. Hariri M, John S, Trivailo P (2009) Modelling piezoelectric actuation during structural flutter.

In: ASME conference on smart materials, adaptive structures and intelligent systems (SMA-
SIS2009), vol 1, September 21–September 23. American Society of Mechanical Engineers,
Oxnard, pp 33–43

23. Hobeck J, Inman DJ (2011) Energy harvesting from turbulence-induced vibration in airflow:
artificial piezoelectric grass concept. In: 2011 ASME conference on smart materials, adaptive
structures and intelligent systems (SMASIS2011), September 18–September 21. American
Society of Mechanical Engineers, Scottsdale

http://www.warwickwindtrials.org.uk/2.html
http://www.warwickwindtrials.org.uk/2.html


210 J.M. McCarthy et al.

24. Huang L (1995) Flutter of cantilevered plates in axial flow. J Fluids Struct 9:127–147
25. Industrial Press (2008) Properties of bodies. In: Machinery’s handbook, 28th edn. Industrial

Press Inc., New York, pp 222–245
26. Jun Z, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as

a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839
27. Kornecki A, Dowell EH, O’Brien J (1976) On the aerodynamic instability of two-dimensional

panels in uniform incompressible flow. J Sound Vib 47(2):163–178
28. Ladani R, Watkins S, Ei Wei KL (2012) Flow mapping around a building: with emphasis on

wind turbine siting over building rooftops. J Wind Eng Ind Aerodyn (submitted for publication)
29. Li S, Lipson H (2009) Vertical-stalk flapping-leaf generator for wind energy harvesting. In:

ASME conference on smart materials, adaptive structures and intelligent systems (SMA-
SIS2009), vol 2, September 21–September 23. American Society of Mechanical Engineers,
Oxnard, pp 611–619

30. Lord R (1878) On the instability of jets. Proc Lond Math Soc 10(1):4–13
31. McCarthy J, Deivasigamani A, John S, Watkins S, Coman F (2012) The effect of the

configuration of the amplification device on the power output of a piezoelectric strip. In: ASME
conference on smart materials, adaptive structures and intelligent systems (SMASIS2012),
September 19–September 21. American Society of Mechanical Engineers, Stone Mountain,
p 7951

32. Naudascher E, Rockwell D (1980) Oscillator-model approach to the identification and
assessment of flow-induced vibrations in the system. J Hydraul Res 18:59–82

33. Naudascher E, Rockwell D (1994) Flow-induced vibrations: an engineering guide. A. A.
Balkema, Rotterdam

34. Paı̈doussis M (1998) Fluid–structure interactions—slender structures and axial flow, vol 1.
Elsevier Academic Press, London

35. Pobering S, Schwesinger N (2004) A novel hydropower harvesting device. In: International
conference on MEMS, NANO and smart systems (ICMENS 2004), August 25–August 27.
IEEE Computer Society, Banff, pp 480–485

36. Priya S (2007) Advances in energy harvesting using low profile energy harvesters. J Electroce-
ram 19:165–182

37. Raju M (2008) Energy harvesting: ULP meets energy harvesting. www.ti.com/corp/docs/
landing/cc430/graphics/slyy018 20081031.pdf

38. Roshko A (1954) On the drag and shedding frequency of two-dimensional bluff bodies. Tech.
Rep. 3169, NACA

39. Sakamoto H, Haniu H (1990) A study on vortex shedding from spheres in a uniform flow.
Trans ASME J Fluids Eng 112(4):386–392

40. Shu YC, Lien IC (2006) Analysis of power output for piezoelectric energy harvesting systems.
Smart Mater Struct 15:1499–1512

41. Sustainable Energy Authority Victoria (2003) Victorian wind atlas. Cartographic Material
42. Tang L, Paidoussis MP (2007) On the instability and the post-critical behaviour of two-

dimensional cantilevered flexible plates in axial flow. J Sound Vib 305:97–115
43. Taylor GW, Burns JR, Kammann SM, Powers WB, Welsh TR (2001) The energy harvesting

eel: a small subsurface ocean/river power generator. IEEE J Ocean Eng 26(4):539–547
44. Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter.

Tech. Rep. No. 496, National Advisory Committee for Aeronautics
45. Thorpe S (1971) Experiments on the instability of stratified shear flows: miscible fluids. J Fluid

Mech 46(2):299–319
46. Timoshenko SP (1953) History of strength of materials. McGraw-Hill, New York
47. Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) A theoretical study of paper flutter. J Fluids

Struct 16:543–560
48. Watanabe Y, Suzuki S, Sugihara M, Sueoka Y (2002) An experimental study of paper flutter.

J Fluids Struct 16:529–542
49. Webb A (2007) The viability of domestic wind turbines for urban Melbourne. Tech. Rep.

Alternative Technology Association

www.ti.com/corp/docs/landing/cc430/graphics/slyy018_20081031.pdf
www.ti.com/corp/docs/landing/cc430/graphics/slyy018_20081031.pdf


6 Energy Harvesting from Flows Using Piezoelectric Patches 211

50. Wilson A (2009) The folly of building-integrated wind. http://www.buildinggreen.com/auth/
article.cfm/2009/4/29/The-Folly-of-Building-Integrated-Wind, viewed (2 Jan 2012)

51. Yamaguchi N, Sekiguchi T, Yokota K, Tsujimoto Y (2000) Flutter limits and behaviors of a
flexible thin sheet in high-speed flow—II: experimental results and predicted behaviors for low
mass ratios. ASME J Fluids Eng 122:74–83

52. Yamaguchi N, Yokota K, Tsujimoto Y (2000) Flutter limits and behaviors of a flexible thin
sheet in high-speed flow—I: analytical method for prediction of the sheet behavior. ASME J
Fluids Eng 122:65–73

53. YTC America Inc. (2008) Structure of PZT. JPEG, http://www.ytca.com/lead free
piezoelectric ceramics, viewed (28 Nov 2012)

54. Zhang QM, Bharti V, Kavarnos G, Schwartz M (2002) Poly-vinylidene fluoride (PVDF) and
its copolymers. In: Encyclopedia of smart materials, vols 1–2. Wiley, New York, pp 807–825

55. Zhu X (2009) Piezoelectric materials: structure, properties and applications. Nova Science
Publishers, Inc., New York, pp 1–36

http://www.buildinggreen.com/auth/article.cfm/2009/4/29/The-Folly-of-Building-Integrated-Wind
http://www.buildinggreen.com/auth/article.cfm/2009/4/29/The-Folly-of-Building-Integrated-Wind
http://www.ytca.com/lead_free_piezoelectric_ceramics
http://www.ytca.com/lead_free_piezoelectric_ceramics


Chapter 7
Experimental and Finite Element Nonlinear
Dynamics Analysis of Formula SAE Impact
Attenuator

Toh Yen Pang and Hoy Tristian

Abstract Energy absorption and weight are major concerns in the design of an
impact attenuator. To reduce the costs involved in the design and development of
a new attenuator, it is important to minimise the time spent in the development
and testing phase. The aim of this paper is to report on a study that used computer
dynamic simulation to analyse the energy absorption and damage in a new impact
attenuator. All initial requirements of the new attenuator were set in accordance
with the 2011 Formula SAE rules. In this study, a nonlinear dynamic finite element
was used to simulate an FSAE impact attenuator crash against a rigid barrier.
Geometrical and material nonlinearities were performed using ABAQUS/Explicit
commercial code. The numerical model was verified by experimental tests. Agree-
ment between the numerical simulations and the test results showed that finite
element analysis could be used effectively to predict the energy absorption and
damage performance of an impact attenuator.

7.1 Introduction

As part of the 2011 Formula SAE Regulations, the Rules Committee has added
specific criteria that are mandatory for the participating teams. They must fit impact
attenuators to all competing vehicles at a Formula SAE event [1]. The attenuator is
required by the rules of the competition to be tested with a total of 300 kg vehicle
crashed into a rigid, non-yielding impact barrier at velocity of 7.0 ms�1. The total
energy absorbed by the attenuator must meet or exceed 7,350 J, and the average
deceleration of the vehicle should not to exceed 20 g, with a peak deceleration less
than or equal to 40 g.
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The RMIT Racing team has designed and produced an impact attenuator that is
made of 5083-H321 Aluminium and attached rigidly to the chassis. The material
has mechanical and forming properties and can readily be welded [2], which make
it ideal for this application.

The final design was then subjected to an impact crash to evaluate the damage and
to verify the effectiveness of the structure’s energy absorption. Due to the high costs
and significant time requirements of conducting full-scale physical testing, there is
a further need to develop more refined analytical tools to investigate the ultimate
energy absorption behaviour of the attenuator. For cost reasons, it is important to
reduce the time spent on the development and testing phase. Computer simulation
of tests can significantly reduce the time and cost required involved in finalising
an attenuator design. High-speed computers and commercial finite element method
(FEM) packages facilitate the development of these tools through refined three-
dimensional FEM.

The objective of this paper is to evaluate by FEM the absorbed energy and the
damage to the impact attenuator. The FEM results are compared with experimental
data obtained by means of full-scale testing.

The next section describes the detailed FEM formulation to solve the nonlinearity
of governing equations of motion for the dynamic contact problem. The equations
of motion are integrated using the explicit central difference integration rule. The
penalty method is adopted to enforce the contact constraints and to compute the
contact force in the analysis. The numerical simulation of the impact attenuator and
full-scale impact verification results are discussed in detail in the following section,
followed by conclusion.

7.2 Theoretical Background

7.2.1 Equilibrium Equation for Bodies in Contact

A contact between two deformable bodies is considered here. The dynamic bound-
ary formulation for a system consisting of body with contact can be expressed as:

W inertia C W damp C W int D W ext C W cont (7.1)

where the terms denote the virtual kinetic forces, internal forces, external forces and
contact forces, respectively.

When two elastic-impact bodies at time t are in contact, the principle of virtual
work can be written as [3–5]:

�2Z
�1

 
ıE˛ C ıT˛ C ıC˛ � ıW˛ � ı

contY
˛

!
dt D 0 (7.2)
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Z

V .˛/

�f .V˛/ � ıu.˛/dV C
Z

S
.˛/
�

f

�
S

.˛/
�

�
� ıu.˛/dS (7.6)

The relevant variables above are: �1, �2 denote time instant; ıE˛, ıT˛, ıW˛

are virtual kinetic, internal and external forces, respectively; V denotes a volume
occupied by a part of the body in the current configuration; S denotes the surface

bounding in this volume; � is the material density; f .V˛/ and f

�
S

.˛/
�

�
are the

components of externally applied forces per unit volume and externally applied
surface traction per unit surface area, respectively; � is the Cauchy stress tensor
field, " is its conjugate strain tensor; u is the displacement vector in the body and
ı
Qcont

˛ represents virtual contact work dependent upon the contact force exerted on
the contact surface. Prefix ı designates an arbitrary, virtual and compatible variation.

In a general contact interface, the weak form equality with the active set of
constraints within an increment solution step for Eq. (7.2) can be written as:

2X
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1
CA � ı

contY
˛

D 0 (7.7)

where ı
Qcont

˛ is ‘contact contribution’ associated with the active constraint set and
initial conditions that a user defined.
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7.2.2 Contact Constraints

A variety of numerical methodologies have been proposed in the literature to
deal with the contact constraints [5–9], among them, the enforcement of the
constraints using Lagrange multiplier methods and penalty methods. Lagrange
multiplier methods introduce additional variables (the Lagrange multipliers) to
enforce directly and exactly the contact constraint. Despite the obvious advantage of
the exact enforcement of the constraint condition, the method poses some difficulties
due to the additional effort required to solve the multipliers. The penalty methods
avoid the need for additional variables by introducing an approximation of the
constraint conditions [8, 10], this method was chosen for the study reported here.

In the penalty method, the contribution to the virtual work due to contact can be
written as follows [8]:

ı

contY�
u.˛/I •u.˛/

�
D
Z
Sc

"N NgN ı NgN dAC
Z
Sc

tT � ıgT dA; "N > 0 (7.8)

where ı NgN and ıgT are the variations in gap and tangential displacement, tT is the
tangential stress vector determined from the constitutive law of frictional slip and
"N is the penalty parameter.

7.2.3 Contact Kinematics

When two bodies coming into contact is considered, any contact surface involved in
the problem is assigned as slave or master. The master contact point of the master
surface, S

.1/
c , is at node (1), and the slave contact point of the slave surface, S

.2/
c , is at

node (2) in Fig. 7.1. The normal vector Nn1 is used to define the distance between the
master surface node and the slave node. Nx1 is the deformation of the master surface
and x2 is the deformation of the slave surface.

The gap (gN ) for slave node (2) is defined as the distance between current
position of node x2 and the master surface (S.1/

c ):

gN D �
x2 � Nx1

� � Nn1 (7.9)

The mathematical condition for non-penetration is:

gN � 0 (7.10)
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Fig. 7.1 Geometrical description of contact between two deformable bodies [5]

Fig. 7.2 Contact force versus
normal gap

7.2.4 Normal Contact Constraints

When the penalty method is used to calculate contact force, some interpenetration is
allowed. In this case, the contact force (tN) is expressed as a function of the normal
gap intensity:

tN D "N gN (7.11)

where "N is the normal penalty parameter. Contact takes place when gN D 0 and
tN < 0 (Fig. 7.2). The penalty parameter value can be seen as the stiffness of the
surface to penetration. If there is a gap between the contacting bodies, then the
relation of gN > 0 and tN D 0 holds. This leads to the statements:

gN � 0I tN � 0I tN gN D 0 (7.12)
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Fig. 7.3 Tangential contact
and Coulomb friction
conditions

which are known as the Kuhn–Tucker–Karush condition. Figure 7.2 and Eq. (7.12)
lead to a non-smooth contact law for the normal contact pressure [5].

7.2.5 Tangential Contact Constraints

When the friction is modelled, tangential relative displacement must be considered.
The contacts in tangential directions have two distinctive conditions, i.e. a stick
condition or a slip condition. In the stick condition, two contact bodies stick
to each other; there is no sliding between two bodies occurs and the tangential
relative velocity is equal to zero. When the velocity is zero, the tangential relative
displacement is also zero. Hence, the stick condition can be obtained from [5, 7]:

PgT D 0 , gT D 0 (7.13)

where gT denotes the relative displacement in a tangential direction. Note that in the
stick condition, there is no need to distinguish between the normal and tangential
directions. In this case, the normal gap is closed:

gN D �
x2 � Nx1

� � Nn1 D 0 (7.14)

The sliding condition occurs when there is relative tangential movement between
two contact bodies, and this is classically described by the law of Coulomb, which
takes the form:

ktT k � �crit; kgN k � 0; .ktT k � �crit/ kgT k D 0 (7.15)

where � crit is a threshold of tangential contact traction for tangential slip (shown in
Fig. 7.3). If the frictional model is characterized by Coulomb’s law, then � crit D �tN ,
where � is the sliding friction coefficient. In general, the friction coefficient
depends upon different parameters such as the surface roughness, the relative sliding
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velocity ( PgT ) between the contacting bodies, the contact normal pressure tN , and the
temperature ™ (see [5] for more discussion).

7.2.6 Governing Equation of Equilibrium

The governing matrix notation of Eqs. (7.7) and (7.8) yields:

M Ru.t/ C c Pu.t/ C ŒK C Kc� u.t/ D F ext
�
u.t/

�C F cont
�
u.t/

�
(7.16)

In Eq. (7.16) all quantities are evaluated at the initial conditions, where: ü, Nu and
u are the global vectors of unknown accelerations, velocities and displacements;
Fext and Fcont are the global vectors of external and contact forces resulting from the
definitions of virtual external and contact works; M, c and [K C Kc] are the global
mass, damping and stiffness matrices derived by manipulations with the virtual
inertial, damping and internal works in the same expression.

This equation can be transformed into a first order algebraic differential
equation as:

Ruj.t/ D .M /�1 � �F ext � I
�ˇ̌

.t/
(7.17)

where M is the mass matrix, Fext is the applied load vector and

I D c Pu.t/ C ŒK C Kc� u.t/ C F cont .u/ (7.18)

I is the sum of the damping, nodal internal force vector and the contact forces. The
subscript : : : j(t) denotes the quantity has to be evaluated at time t. The initial values
(at time t D t0) of velocity and acceleration are set to zero unless the user specifies
them.

7.2.7 Explicit Time Integration Schemes

This section presents the explicit time integration solution procedure for predicting
the frictional contact configuration considering both material and geometrical non-
linearities. The explicit dynamics analysis algorithm is based on the implementation
of the central difference scheme together with the diagonal or “lumped” element
mass matrices. The equations of motion for the body and for the acceleration
are integrated through time, using the central difference integration rule [11] that
calculates the change in velocity assuming that the acceleration is constant. This
change in velocity is added to the velocity from the middle of the previous increment
to determine the velocities at the middle of the current increment:
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Puj.tC t
2 / D Puj.t� t

2 / C
�
t j.tCt/ C tj.t/

�
2

Ru.t/ (7.19)

The initial half-step lagging velocity is calculated from the initial velocity, as-
suming the initial acceleration is constant over the lagging half-step. The calculated
velocities will then be added to the displacements at the beginning of the increment
to determine those at the end of the increment [11]:

uj.tCt/ D uj.t/ C tj.tCt/ Puj.tC t
2 / (7.20)

The explicit integration operator is conditionally stable, where the time step is
subjected to a limitation via Eq. (7.17), which requires no iterations and no tangent
stiffness matrix [12].

For nonlinear problems, the computational efficiency of the explicit procedure
is based upon the critical time step of the time incrementation scheme. The critical
time step depends upon:

t D Le

cd

(7.21)

where Le is the element dimension and cd is the dilatational wave speed of the
material.

7.3 Modelling of Impact Attenuator

The commercial FE program, ABAQUS [13], was adopted for modelling of crash
between the attenuator and the rigid barrier as described in the physical experimental
testing. In order to model the crash for this experiment, nonlinear behaviour in
material and geometry was considered.

7.3.1 Geometry Models

The geometry of the crash attenuator is shown in Fig. 7.4, where the smaller circular
cut-outs have diameters of 50 mm and the larger cut-outs have 60 mm. The cut-
outs have also been strategically placed to initiate buckling while also reducing the
structure’s weight. With the cut-outs, it can be predicted that the initial crumple
zone will form closer to the rear of the structure because the moment created during
impact will be greatest in this area, combined with the fact that this cross section
has the largest amount of removed material and, therefore, will carry the highest
stresses during impact.
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Fig. 7.4 Geometry description of the impact attenuator

7.3.2 Material Models

The material used in the structure is commercially available 5083-H321 aluminium
plate. A 4 mm section has been utilized for the base and 3 mm sections for the
protruding sections that undergo deformation. This material features high, corrosive
resistance and is easily welded and provides a light-weight alternative for the racing
setting [2]. The aluminium plate was modelled as an elastic plastic material. It was
expected that work hardening of the material would play a significant role in a real
world model, and so the material’s work-hardening properties would have to be
included in the computational model. The material work hardening is described
by [14]:

�f D K
�
"pl
�n

(7.22)

where Young’s modulus, E D 70.3 GPa, Poisson’s ratio, � D 0.33, initial
yield stress D 315 MPa, constant, K D 550.4 MPa, constant, n D 0.223, den-
sity D 7,833 kg/m3.

7.3.3 Boundary Conditions and Loadings

For this analysis, the impact attenuator was positioned 1 mm away from a discrete
rigid wall. As noted earlier, the test is required to simulate the crash structure’s
effectiveness as if it were attached to a 300 kg vehicle travelling at 7 ms�2. Hence,
the impact attenuator simulates attachment to a chassis of mass 300 kg by using a
point mass, which is located in the centre of the mass of the chassis. The centre of
the point mass was fixed at a reference point, which was coupled to the rear face
of the attenuator that allows even dissipation of the kinetic energy over the model’s
dimensions.
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Fig. 7.5 Mesh convergence studies with course, medium and fine mesh size.

The predefined fields were used to prescribe the initial velocity of the structure
and the mass at 7 ms�1 moving towards the discrete rigid wall. The boundary
conditions of the rigid wall were fixed in all degrees of freedom; the attenuator
and point mass were free to move only in the Z-direction. Symmetric constraints
are imposed on the symmetric plane of the model to reduce the computational time.

7.3.4 Contact Modelling

The surface-to-surface contact approach was used for discretizing the contacting
surfaces between the rigid wall and the attenuator. The penalty contact algorithm
available in ABAQUS/Explicit was used to enforce the contact constraints. The
commonly used Coulomb model that assumes a constant coefficient of friction of
0.45 was used to describe the friction between the contacting surfaces.

7.3.5 Mesh Convergence Study

A mesh convergence study was carried out to choose the appropriate mesh size.
Several mesh sizes of the attenuator were performed (Fig. 7.5) to ensure the mesh
model is accurate enough to produce reliable results for the energy absorption be-
haviour and deformations of the attenuator. The mesh convergence studies showed
that the force-displacement response at the contact point was almost convergent for
mesh size 5 mm. Therefore, it was decided to select a medium mesh size, with
dimensions of 5 mm � 5 mm mesh, for the mesh of the whole structure. With these
considerations, 18,619 elements were used for the attenuator.
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7.4 Experiment Sled Test

The sled apparatus used in the physical test consisted of a steel channel welded
to provide a rigid face to attach the attenuator (Fig. 7.6). This was then bolted to
a thick plate with rear re-enforcements to increase rigidity. The remainder of the
300 kg required for the simulation was added in the form of attachable weights
bolted to the base plate behind the crush zone. An accelerometer was placed behind
the steel plate to capture the deceleration data. A high-speed camera was also used
to capture the deformation of the attenuator during the crash. The physical test was
conducted at the APV Engineering and Testing Services, which is fully accredited
for impact testing. The sled test and attenuator before and after deformation are
shown in Fig. 7.7.

7.5 Results

7.5.1 Time History Plot

Data and high-speed photographs from the physical test were used to verify the
results obtained from the computer simulations. Figure 7.8 shows the comparison
of the simulation results, in terms of acceleration-time curves, with those from
the physical experiments conducted at APV Engineering and Testing Services.

Fig. 7.6 The sled apparatus used in the crash test
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Fig. 7.7 The impact attenuator before and after the crash testing

Fig. 7.8 Experimental (red line) and simulated (blue line) acceleration-time responses of the
attenuator impacts against a rigid barrier

The model response correlated well with the experimental results: the contact
timing, slopes of the loading, and peak accelerations of the attenuator model in
the simulation were consistent with those in the physical tests. However, the model
gave poor results for the unloading phase and folding of the attenuator’s structure
after 0.5 ms when compared with the experimental results. The finite element
predictions for the first and second peak axial crush accelerations were 35 and 15 g;
the corresponding experimental values were 32 and 24 g. The energy absorbed by
impact attenuator model was 12 kJ, compared with 7.4 kJ in the experiment.



7 Experimental and Finite Element Nonlinear Dynamics Analysis... 225

7.5.2 Deformation and Energy Absorption of the Attenuator

Figure 7.9 shows the deformation of the attenuator in the physical test and in the
numerical modelling. When the attenuator made initial contact with the rigid barrier
during the impact test, the flat front face of the aluminium structure caused a small
contact area of the attenuator to be compressed (Fig. 7.9). When the attenuator
continued moving toward the rigid barrier, the material around the circular cut-out
on the bottom surface was highly stressed and compressed (Fig. 7.9), which caused
the bottom face’s material to buckle and deform. Immediately after the bottom
face material collapsed, the top surface started to deform (Fig. 7.9). The attenuator
continued to deform until the whole structure collapsed completely (Fig. 7.9). The
results of FE analysis and experiment were in agreement.

The initial crumple zone is designed to initiate buckling, and the maximum stress
of 450 MPa was observed as in Fig. 7.9. As soon as the material started to buckle,
it caused instability in the neighbouring structure. In this case, the folding collapse
started and spread to the neighbouring structure until it bottomed out (Fig. 7.9).

7.6 Discussion

Nonlinear analyses of the FSAE impact attenuator were carried out with ABAQUS
explicit code, which simultaneously considered two nonlinearities: material non-
linearity (plastic behaviour), and geometric nonlinearity (changing in contact
conditions and large displacements). The dynamic contact between the rigid barrier
and the attenuator was modelled using the surface-to-surface contact interaction.
Self-contact was also included as it is necessary for simulating collapsing structures.

The mesh density applied to the deformable crash structure had a large impact
on the accuracy of the results. A high mesh density or “fine mesh” will provide the
most accurate results but at the expense of large computational costs; a low mesh
density or ‘coarse mesh’ will provide less accurate results but at a relatively low
computational cost. Therefore, a mesh convergence study was conducted to find
an acceptable compromise between the accuracy of the simulations results and the
computational cost.

The attenuator model was validated using physical impact test data. Good
correlations were observed between the simulated and experimental acceleration-
time responses; however, poor results were observed for the unloading phase and
folding of the attenuator’s structure after the first peak. The dynamic finite element
analysis initially predicted a much stiffer behaviour of the attenuator than that
observed by the experiment. As the deformation progressed and the attenuator
underwent significant deformation, the difference between the FE prediction and
the experimentally observed behaviour became more evident (Fig. 7.8). The dis-
crepancies in the results may be attributed to the inaccuracies in the geometry of
the attenuator model. The position and size of the cut-outs varied slightly because
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Fig. 7.9 Deformation and von Mises stress contours of attenuator as compared with physical sled
test
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the computational geometry was a re-creation of the attenuator used in the sled test.
Again, the differences between the physical and computational models were small.

The aluminium plate was modelled during the crushing process as an elastic–
plastic material with work-hardening properties. The aluminium’s plastic material
properties were chosen to conform to the literature [14–17]; hence, it was expected
that the theoretical material properties would be quite different from findings in
previously reported physical experiments [14–17]. Although it is known that the
finite element material properties approximate a real engineering structure [18], they
were deemed acceptable for the purposes of this study. The attenuator model did
crush and collapse in a similar way seen in the physical sled test (Fig. 7.9).

7.7 Summary

The dynamic response of an impact attenuator during the crash test is highly
nonlinear due to the elastic–plastic behaviour of the aluminium material and large
deformation of the structure during contact. A nonlinear dynamic finite element
with a reasonable mesh size was used to estimate the dynamic response and energy
absorption of the attenuator model. The finite element results were verified by
comparing the simulated results with the physical sled test. The simulation and
experimental results agreed on the collapsing behaviour and the buckling location
of the attenuator. However, there were discrepancies between the simulation and
experiment results; hence, further investigations are needed to refine the model in
terms of material definition and geometry description.

Acknowledgements This experiment and design were based on works supported by the RMIT
University 2011 Formula SAE team. The authors would like to thank Daniel Tonini for his
contribution in this study.

List of Symbols

�1, �2 Time instant
ıE˛ Virtual kinetic force
ıT˛ Internal force
ıW˛ External forces
V Volume occupied by a part of the body in the current configuration
S The surface bounding in the volume
� Material density
f .V˛/ Externally applied forces per unit volume

f .S
.˛/
� / Externally applied surface traction per unit surface area

� Cauchy stress tensor field
" Conjugate strain tensor
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u Displacement
ü Accelerations
Nu Velocities
ı
Qcont

˛ Virtual contact work
ı Arbitrary, virtual and compatible variation
ı NgN Variation in gap
ıgT Variation in tangential displacement
gN Gap
gT Relative displacement in a tangential direction
NgT Relative sliding velocity
tT Tangential stress vector
tN Contact force
� crit Threshold of tangential contact traction for tangential slip
©N Penalty parameter
Nn1 Normal vector
Nx1 Deformation of the master surface
X2 Deformation of the slave surface
S.1/

c Master surface
S

.2/
c Slave surface
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Chapter 8
Nonlinear Vehicle Seat BSR Characterization
Using CAE Methodology

M. Tatari, M. Fard, N. Nasrollahzadeh, and M. Mahjoob

Abstract The noise and vibration of a poor automotive seat aggravate the interior
cabin noise and discomfort. The automotive seat structural noise and vibration
is caused by the transmission of the power train or road vibration into the seat.
The characterization of seat structural dynamics behavior in early design phase
assists to effectively improve the NVH quality of the seat. The seat nonlinear buzz,
squeak, and rattle (BSR) noise are the major issues which are directly linked to
the NVH quality of the vehicle. For this purpose, a practical CAE (computer-aided
engineering) concept modeling method is introduced and developed for full BIW
(body-in-white) and seat separately. Here, the seat concept model is employed to
allow designing the seat structure modifications as well as examining the effects of
the modifications on the rattle noise. Comparisons of the results of the simulation
and experiment validate the developed seat CAE model. Three modifications are
proposed to optimize the dynamics of the seat structure to prevent the seat rattle
noise. These modifications are designed to shift or decrease the seat torsion
resonance and vibration level, respectively. The results verified that by modification
the seat structural dynamics, the nonlinear events such as rattle noise and in general
BSR noise can be reduced or controlled accordingly.
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8.1 Introduction

Squeak and rattle in the automobile industry are terminologies to describe short
duration transient noises that are generated by the relative motion or impacts
between vehicle parts. In other words, in general, BSR noise is a high frequency
audible phenomenon resulting from two distinct forms of noise: (a) caused by
friction between elements under forced road excitation (buzzes, squeaks) and
(b) caused by loose or overly flexible elements with the potential for impact with
other elements (rattles). The mechanisms involved in generating squeak and rattle
noise are mainly nonlinear. This nonlinearity and complexity make it very difficult
to simulate in a CAE analysis. Therefore, there are no predictive CAE tools available
in the industry thus far. Most CAE methods focus on preventive tools. Some
researches in the squeak and rattle preventive methods [1, 2] have been established
at Ford in past years. But here, it is shown that there is a strong link between the
structural dynamics and the rattle noise so that the rattle noise can be predicted and
controlled from the structural analysis in early design phase.

The vehicle seat BSR (buzz, squeak, and rattle) noise is one of the major issues
which is directly linked to the NVH (noise, vibration, and harshness) quality of
the vehicle. Predicting and improving the seat BSR noise in early design phase is
still challenging. This is mainly due to the complexity, nonlinearity, and uncertainty
of the impact mechanism at joints contributed to the rattle. Controlling BSR is
becoming essential with the trend toward using lightweight materials combined
with the increase in number of the seat sub-components such as electronic gadgets
[3]. According to a market survey, squeaks and rattles are the third most important
customer concern in cars after 3 months of ownership [4]. Furthermore, upcoming
electric cars will highlight the importance of the BSR issues [5]. BSR is generally
caused by loose or overly flexible elements under excitation. Modern advances in
the vehicle noise and vibration control engineering have reduced the transmission
of the vibration or noise from different sources such as powertrain or road into the
passenger cabin [5]. Predicting and controlling BSR in the early design phase is
important to be investigated (Hagiwara and Ma 1992 [14]). As for rattle simulation,
it includes complicated periodical nonlinear impact and needs a special CAE model
to directly simulate these phenomena [6]. Finite element analysis is almost utilized
in analyzing the vibratory dynamics of these systems, though the full nonlinearity
of the problem with the transient impacts is not accounted for the analysis. In the
above analysis the resonant frequencies and mode shapes from the linear finite
element model are used to extract the local dynamics of the components in terms of
a simple multi-degree of freedom spring mass model. Then, characterization of the
seat dynamics is the based method for predicting and controlling of the BSR noise.

The use of computer-aided engineering can be considered as a useful tool for
BSR detection in the early design phase. However, BSR is not easily evaluated by
CAE methods due to its wide range of causes and the inherent complexity of the
related problems; but those BSR noises that emanating from the structural vibrations
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can easily be identified and controlled. In the past, vehicle product evaluation from
the BSR perspective was so time- and cost consuming, but, nowadays, with the
technological advancement CAE models are the fast tool in the NVH analysis.
Despite the fact that automotive advanced CAE model is developed by detailed
and accurate geometry data, concept model can be created in early design phase
where there is no enough detailed and constrained design data. For accurate NVH
analysis, one needs a fairly simple but reliable concept model to identify and
predict dynamic behavior of the structures. Recently, several methodologies have
been developed for automotives concept modeling [7, 8]. The common objective of
all these methodologies is to enhance functional performances in order to shorten
the vehicle development and time-to-market process. BSR noises can be managed
and controlled by modification of this concept model in virtual domain and then
implemented in practice. The basic idea of this tool is to find the location of seat
resonant frequencies and its corresponding structural mode shapes. Experimental
test setup is designed to measure the seat radiated noise when it goes under vibration
excitation.

This chapter shows that the seat rattle noise can be predicted and controlled
in early design phase by managing the seat structural dynamics. Experiments are
designed to first characterize the seat resonant frequencies/mode-shapes and second
to measure the seat rattle noise. It is shown that the rattles of the seat components
can be reduced by modifying the seat structural dynamics. Such upfront knowledge
about the seat rattle can greatly assist to provide robust solutions for preventing or
controlling the seat rattle in early design phase [5]. The structural dynamics of the
seat is also characterized by using the developed CAE (computer-aided engineering)
model of the seat [9]. The concept modeling method is used for the CAE modeling
of the seat structure [7, 8]. The model is developed to allow us to probe the effects
of seat-structure modifications on the rattle noise. Comparisons of the results of
the simulation and experiment validate the developed CAE model. The experiment
and simulation results show that the seat has two structural resonances in low
frequency range (<50 Hz); one at around 31 Hz, which is the seat torsion and the
other at around 48 Hz, which is the seat fore-aft bending. The noise measurement
result reveals that the seat generates high level of the rattle noise when the seat
excitation vibration is close to the seat structure torsion resonance (31 Hz). We have
further confirmed that the occurrence of the rattle is related to the seat structural
dynamics and it can be controlled by modifying the structure. Three modifications
are proposed by using the seat CAE model. One modification is frequency shifting
by increasing the stiffness of such members. Another modification is done by
sensitivity analysis. Sensitivity analysis indicates which members have an important
role in the torsion mode. Last modification is dynamic damper. The vibration level
is reduced by using this type of damper. It can be concluded that by changing the
seat resonant frequencies, the rattle noise and in general BSR noise can be changed
accordingly. Consequently, for the seat system which has an identifiable structural
dynamics, the BSR noise can be managed and controlled in early design phase by
using the seat CAE model. Furthermore, such early phase modifications of the seat
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structure are more robust than merely tuning the joints associated with BSR. In fact,
the proposed modifications of the structure control the seat resonances and therefore
transfer less vibration into the sub-components which are vulnerable to rattle.

8.2 CAE Simulation and Concept Modeling

In order to create a concept model, the first step is to decide about the layout and
functional components of the structure [10]. Generally, in concept modeling three
major parts should be simplified and modeled.

8.2.1 Beam-Like Structures

The most primary parts are beam-like structures or main members that define
the frame body of the vehicle. Beam-like components are those members that
have small cross sections in comparison with their lengths. Main members of
the BIW such as doorsill, pillars, and the frame of seat structure are modeled
using beam elements. Since the shape of the cross sections is considered similar
to the corresponding sections at the physical model, calculated properties of the
beam elements such as bending and torsional moments of inertia reflect good
approximation in accordance with real members. The cross section of 1D elements
is created approximately like real members by accounting the effect of all shell
elements (outer skin and inner reinforcements) involving beam-like structures.
Concept and advanced model of a beam-like structure is shown in Fig. 8.1.

Beam-Like Structure Cross Section Properties

In order to compute the cross section properties, at first we need centroid coordinate.
Then moment of inertia about the centroid axes will be calculated. This moment
will be transformed to the global centroid coordinate set using coordinate axes

Fig. 8.1 Detailed model (left) and concept model of a selected beam (right)
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Fig. 8.2 Selected beam cross section and needed geometrical data to calculate its properties

rotation laws. Finally the transmission law is employed to compute each moment of
inertia separately. The mentioned procedures are conducted in MATLAB software.
In this section these properties are derived with parametric formula for arbitrary
cross section depicted in Fig. 8.2.

• Centroid coordinate:

YO D
P Yi1CYi2

2
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tili
(8.1)
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2
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(8.2)

• Specify local coordinate axes and their angles to global coordinate axes:
• Cross section area calculation and ith section moment of inertia:
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Fig. 8.3 Beam-like structures modeling using standard profiles in the library of finite element
software

Fig. 8.4 Sample standard
cross section
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• The contribution of ith section moment of inertia about centroid:
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Standard Cross Sections Deficiency

Although previous researches didn’t mention to the selection procedure of the beam-
like cross sections, it is not easy to have a standard section that satisfies all the
properties of original one. In other words, it’s only possible for members like
Fig. 8.3 that has a standard cross section. Usually we need to neglect one cross
section property (product moment of inertia); because of symmetrical geometry
this property is equal to zero. For a special case and make it clear to you, using
a rectangular profile with thickness t (Fig. 8.4), three principal properties of a cross
section (I; J; A) will be calculated. For this reason the Eq. (8.11) must have real
answers (t 
 b, h).
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Though the calculation of the moment of inertia in accordance with the above
equation is possible, considering the torsional moment of inertia in this equation
makes it more complicated. For beams with arbitrary cross sections, calculation of
the moment of inertia in accordance with Eqs. (8.12) and (8.13) will be complicated.
Furthermore, if you can compute that, it is rare to find standard cross section that
satisfies all calculated properties. One reason is that torsional moment of inertia (and
warping function) heavily depends on the shape of cross section. Above materials
show deficiencies of standard cross sections and make clear advantages of arbitrary
cross sections.
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In Eq. (8.12) ® .y; z/ is warping function that can be computed based on the
elasticity theory from the differential equation (8.13). nz and ny are normal unit
vector of the beam cross section.
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8.2.2 Joints Modeling

Joints are in secondary order of importance and they connect beam-like structure
to each other. Panels are other major components that perfect the layout of the
structure. In NVH concept modeling analysis, preparing the concept joints is a
critical issue. Usually, model reduction methods (static or dynamic) are exploited
to reduce the FE model computation time and cost. According to the characteristics
of the model and analysis requirements, an appropriate model reduction method
[11] such as Guyan, CMS, and SEREP has to be selected. Then the large FE model
is condensed in a few degrees of freedom by the method specified transformation
matrix (TC) according to Eqs. (8.14)–(8.16), where subscripts A is representative
of all DOFs, subscripts i stands for the DOFs that are going to be omitted, and
subscripts b are those that will be kept after model reduction [10]. Since the concept
joints connect the concept beam-like structures (1D beam elements) to each other in
their terminal nodes, the detailed joints are condensed into a reduced description of
the stiffness and mass matrices at the boundary nodes.
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Fig. 8.5 Steps of reducing detail model joint to concept condensed joint in order to connect beam
elements
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ŒMC � D ŒTC �T ŒMA� ŒTC � (8.16)

Here, both Guyan [11] and CMS1 [12] model reduction are tested for reducing
and generating concept joints; the results for both have a little discrepancy in low
frequency range. Therefore, as the aim of the concept modeling is focusing on
global modes of the structure that are usually below 100 Hz, Guyan method is
used to prepare concept joints. Neglecting the inertia effects in calculating reduced
model, Guyan method is also called static condensation. Equation (8.17) is the
general form of the static finite element model, in which the internal and boundary
DOFs are reordered to make the calculation process straightforward. Then by a little
manipulation on block rows of this equation [11], the Guyan condensation matrix
(TG) can be extracted according to Eq. (8.18).
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The procedures of converting advanced joint model to concept joints are
illustrated in Fig. 8.5.

1Component mode synthesis.
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Table 8.1 The effects of the important panels on the BIW torsional stiffness
(W/O denotes “without”)

W/O roof
panel

W/O front
windshield

W/O rear
windshield

Final concept
model

Torsion resonant
frequency

36.21 Hz 39.99 Hz 44.04 Hz 48.82 Hz

Fig. 8.6 The detailed or advanced (left) and the concept model (right) for the front windshield

8.2.3 Panels Modeling

Although most of the panels have a decisive role on the automotive structural
dynamics at high frequencies (>100 Hz), efficacy of the special panels such as the
roof and the platform tunnel in vehicle body cannot be neglected. In other words,
BIW structural mode shapes and resonance frequencies are directly linked to such
panels [13]. Table 8.1 investigates the influence of the roof panel, front windshield,
and rear windshield in the first torsion mode of BIW.

The concept panels are simply created using shell elements (2D elements) by
some principal nodes of the real panel provided that the shape of the panel is
approximately kept. Figure 8.6 depicts the concept panels of the front windshield of
the BIW. Finally the attachment of panels and beams is conducted by interpolation
and rigid elements (e.g., RBE2 and RBE3 in NASTRAN [14]).

8.2.4 BIW Concept Modeling

In order to construct the BIW concept model, 45 different beam properties with
similar cross section properties (correspond to advanced CAE model) are created.
The main members of the platform, engine compartment, front and rear bumper
reinforcements, pillars, rail roofs, etc. are modeled with 1D elements.

In addition, by taking advantages of the Guying reduction, 20 concept joints
(DMIG Superelements) are employed to make developed BIW concept model as
similar and reliable as possible to the advanced CAE model. Moreover, panels
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Fig. 8.7 BIW concept model

Fig. 8.8 The vehicle seat used in this research (a), the main frame of the seat structure (b), and its
CAE concept model (c)

such as roof, platform tunnel, front windshield, and rear glass are simply created
with rough enough 2D shell elements and added to concept beam and joints. It is
important to note that RBE2 and RBE3 elements have been used to combine beams
and shell elements in the BIW concept modeling. Figure 8.7 demonstrates the BIW
concept model.

8.2.5 The Seat Concept Modeling

A selected vehicle seat (Fig. 8.8) is modeled by using above FE methods and
CAE techniques. The model of the seat must be correlated with its corresponding
test data and it will be used instead of the seat. In other words, the model is
developed to characterize the major seat structural dynamic behaviors such as
resonant frequencies and corresponding mode shapes [14].
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Fig. 8.9 The standard (left) and nonstandard (right) sample cross section in the seat structure
modeling

Fig. 8.10 The real (left) and modeled joint (right)

The cross sections of 1D elements include both standard and nonstandard cross
section and are calculated approximately like real members by accounting the effect
of all shell elements involving beam-like structures. The samples of these cross
sections are shown in Fig. 8.9.

The main joint of the seat structure and its model (with detailed) are illustrated
in Fig. 8.10.

Seat rails and structure are attached to each other using interpolation elements
(RBE in Nastran). This is mainly due to that, when we use node to node connection,
seat structure stiffness is increased dramatically. Figure 8.11 shows this attachment
in detail.

It is important to note that 2D elements have been employed to model the concept
joint. Steel properties have been used in modeling as listed in Table 8.2.
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Fig. 8.11 Physical and finite element model of the seat, rails and structure conjunction is
conducted via RBE element

Table 8.2 Steel properties in
concept model

Young modulus 210 MPa
Poisson’s ratio 0.3
Density 7.9 � 10�6 kg/mm3

Table 8.3 Information of the advanced and concept model for the seat structure

Advanced model information Numbers Concept model information Numbers

2D shell element 10792 1D beam element 554
1D beam element 50 Interpolation and rigid element 36
Concentrated mass 20 Concentrated mass 24
Spot weld element 360 Super element 2
Weight 7.120 kg Weight 7.156 kg
Solution time 3 min Solution time 20 s

Taking all the above-mentioned materials about concept modeling into consid-
eration, a concept model for the seat structure is derived. The seat members such
as back rest, side members are simplified using beam modeling approximation. In
addition, by taking advantages of the Guyan reduction, two concept joints (DMIG
Superelements) are employed to make developed seat concept model as easy and
reliable as possible. Weight of the structure is about 7,156 g. The seat structure
and its concept model are demonstrated in Fig. 8.8. As a result of the seat concept
model Table 8.3 represents all its characteristics and compares it with the advanced
seat model.

Weight of the complete seat is 13,150 g. Therefore we need to add the cushion
weight, 5,994 g, to the whole seat structure as the nonstructural mass. The whole
seat is shown in Fig. 8.8 (left). In the next step, model validating will be conducted
using experimental modal analysis (EMA).
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8.3 Characterization of the Seat Dynamics

8.3.1 Experimental Modal Testing

Experimental modal analysis is utilized to characterize the seat structural resonant
frequencies and its corresponding mode shapes. Impact hammer test, which is a
common method in modal testing, was used to extract the seat structural resonances
and mode shapes. The modal test setup consisted of a hammer, charge amplifier,
three axial accelerometers, and data logger. The seat structure was suspended from
bungee cords (elastic ropes) to allow the seat system to be nearly free in six axes.
Therefore, the seat modal characteristics were measured in the free–free boundary
condition. The mounting of the accelerometers to the different parts of the seat frame
was done using adhesive wax [9]. To obtain proper mode shapes, thirteen points of
the seat frame were measured. Test setup for the seat modal test is demonstrated in
Fig. 8.12.

Fixture Dynamics

A fixture is generally used for this type of testing. The seat modal characteristics
can be easily affected by the fixture structural properties. Therefore, modal analysis

Fig. 8.12 Test setup to
obtain modal characteristic of
the seat
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Fig. 8.13 Fixture finite element model (left), first mode shape at 93.8 Hz (middle) and second
mode shape at 166.4 Hz (right)

of the fixture is conducted using HyperWorks and Nastran software. Figure 8.13
shows the first and second mode shapes of the fixture at its corresponding natural
frequencies. The first and second natural frequencies are 93.8 and 166.4 Hz,
respectively. Cabin input excitations due to road inputs usually occur at frequencies
up to 40 Hz because the tires and suspension act as low-pass filters [5].

As we will show, the fixture resonance frequencies are completely far from the
seat natural frequencies. In other words, it is concluded that the fixture structure
does not have a major effect on the seat.

8.3.2 Simulation and Experimental Results

Due to the fact that NVH performance is investigated through dynamic response
behavior for the structures, the validation of the developed NVH concept model
is conducted in dynamic domain by taking their eigenvalues and eigenvectors
into consideration. To put it in another way, fundamental resonance frequencies
and mode shapes are considered as dynamic indicators and compared between
advanced CAE model and concept model. Three criteria of natural frequency, MAC
(modal assurance criteria), and frequency response function (FRF) have been used
to validate the developed seat concept model. For example, the first torsion mode
shape of the seat happened in 31 Hz for the experiment which has a less than 3 %
error with concept model of the seat. Figure 8.14 illustrates this mode shape for the
seat concept model and experimental test.

Following the comparison of the experiment and simulation results, the values
of the resonant frequencies and the values of MAC (modal Assurance Criteria)
[15] have been compared (Table 8.4) between the experiment and the simulation.
Taking the above-mentioned materials into consideration, the natural frequencies
error percent ( %) and MAC of the concept and advanced models are computed



8 Nonlinear Vehicle Seat BSR Characterization Using CAE Methodology 245

Fig. 8.14 Seat structural
dynamics: torsion modes
(top) and bending modes
(bottom) from simulation
(left) and experiment (right)
are similar

Table 8.4 Comparison of the seat resonant frequencies and corresponding mode shapes
between the experiment and simulation

Mode number
Resonance of
experimental test (Hz)

Resonance of concept
models (Hz) Error ()% MAC

1 31 31 2.9 0.96
2 47.2 48 1.6 0.91

to validate the developed NVH concept model. The MAC index between similar
modes of two models is calculated by Eq. (8.19), in which 'A and 'C are the matrix
of eigenvectors for the experimental results and concept model, respectively, and
superscript T denotes the transpose of a vector. The eigenvectors are constructed by
using main structure nodes in the test and corresponding nodes in the concept model
(a total of thirteen nodes).

MACA;C jk D .fˆAgT
k fˆC gk/

2

.fˆAgT
k fˆAgk fˆC gT

k fˆC gk/
(8.19)

A MAC value equal to unity indicates a 100 % similarity between the vibration
mode shape obtained from the simulation and that of obtained from the experiment.
The MAC values, in the Table 8.4, for the two seat torsion and fore-aft bending
modes are found to be above 0.9, which indicates a good consistency between
the modes of the developed model and the test data. Comparison of the values of
torsion and fore-aft bending resonant frequencies indicates very low discrepancies
( < 3 %). Table 8.5 demonstrates the high accuracy of this concept modeling
method for BIW.

To further validate the developed model, the inertance FRFs are compared,
between the test data and corresponding simulation data, when the seat is excited
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Table 8.5 Dynamic results (mode shape and natural frequency) of the BIW concept and
advanced models

Mode number
Resonance of
advanced model (Hz)

Resonance of concept
model (Hz) Error ()% MAC

1 35.48 34.75 2.06 0.95
2 41.36 41.98 1.50 0.97
3 45.75 45.46 0.63 0.85
4 48.88 48.11 1.60 0.71
5 50.07 50.04 0.06 0.88

Fig. 8.15 Comparison of the inertance FRF at point “X” between the simulation and experiment
(right). The measurement point “X” is also illustrated (left)

at one specified point on its frame (Fig. 8.15). Note that, here, the inertance FRF
indicates the FRF which its output is measured at input point or its input and output
points are same. The input and output are both measured at point “X” that is shown
in Fig. 8.15. The similarity between the FRF graphs from the test and simulation
(Fig. 8.15) further validates the developed model.

8.4 Rattle Noise Mechanism and Causes

In this section, an analytical expression that provides a measure of rattle frequency
and intensity, referred to as the “rattle factor,” is derived for the simple lumped
mass mechanical model depicted in Fig. 8.16. There is some level of preload in the
spring that tries to preserve contact in the face of the internal forcing caused by the
base motion, z(t) [16]. The “rattle factor” measure will subsequently be generalized
to more complex structures such as different components of the seat. The system
shown in Fig. 8.16 is excited by random input and is undergoing intermittent rattle,
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Fig. 8.16 Generic rattle
mechanism excited by
random input

there are (often relatively short) bursts of activity, during which the system is
trying to re-achieve its original rest state, separated by spans of relatively quiescent
behavior. A measure of rattle, the average frequency between events, is defined.
Considering the average of the durations T i

b , the rattle factor is defined to be:

R D 1

EŒT i
b �

D 1

expected event time
(8.20)

where E[x] is the expected value of x. A small value of R (rattle factor) cor-
responds to infrequent rattle events of short duration. Moreover, smaller values
of R correspond to rattle of less severity. Therefore in nonlinear engineering
structure achieving to the minimum value of R is desired. Note that this measure
is used simply because of the difficulties in computing analytical expressions for
information about the details of the settle-out events.

8.4.1 BSR Causes

We can divide the main causes of the BSR noises into four major groups as follows.

Manufacturing Issue

Dimensional control is an important factor in a manufacturing process. It determines
part-to-part variation and clearance between two parts. An insufficient clearance is
one of the major causes of squeak and rattle problems in the automotive parts.

Assembly Issues

Parts are assembled together using many fasteners, screws, bolts, and seals.
Improper assembling of these parts (e.g., insufficient clamp load) or missing parts
always causes squeak and rattle problems.
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Material Compatibility Issues

In the case of not frictionally compatible contact squeak problems tend to develop.
Temperature sensitive materials are extremely exposed to squeak generation.

Non-robustness of Local Part Design

Automotive OEM companies use many local parts (e.g., fasteners and latch and
striker) designed and developed by suppliers. Squeak and rattle propensity is heavily
relied on the design and installation of these parts.

8.4.2 Noise Measurement

The effectiveness of the seat structural properties on the noise generation will be
presented. There are four different types of vibration in use for BSR lab tests:
random vibration (sometimes called PSD control since the target is a power spectral
density level as a function of frequency), sinusoidal (sine) vibration, sine-on-random
(SineOnRandom), and time history replication (often called road loads in the vehicle
industry) [16]. Here, the seat is excited by sinusoidal input (between 10 and 80 Hz)
and the generated noise is measured at four different points using microphones.
The noise measurement system consisted of microphone, electromagnetic shaker,
amplifier, data logger.

Here is a brief summary of what was done to seat that came to the BSR detection:

1. Suspend seat from the fixture (via elastic ropes)
2. Create realistic vibration having vertical, longitudinal, and pitch motions and also

lateral and roll motions
3. Use ultra-quiet electro-magnetic exciters to reproduce sinusoidal signal to find

BSR issues
4. Record microphone measurements and quantify noises against an evolving

pass/fail criterion
5. Find and fix root causes of excessive noise
6. Use a disciplined process to feedback findings and undertake corrective actions

Background noise was retained below 36 dBA at the running condition of the
vibration shaker. The temperature and humidity were kept at 22.5 ıC and 35 %,
which was reported to cause dimensional variation in the components, especially
those containing elastomers. Test setup for noise measurement and four selected
points are illustrated in Fig. 8.17.
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Fig. 8.17 Test setup and four selected points for measuring the sound pressure level

8.4.3 Noise Source Identification

The radiated sound pressure levels (SPLs) are measured when the seat is under the
excitation, at four points, which has already been named “a” to “d” in Fig. 8.17.
The results show that when the excitation frequency approaches to the seat torsion
resonant frequency (31 Hz), the components of the seat near the seat belt buckle start
rattling [17]. Accordingly, comparison of the SPLs measured by four microphones
indicates that the microphone #c, shown in Fig. 8.17, received higher SPL than the
other three microphones. Figure 8.18 compares the SPLs obtained from the four
microphones when the seat is excited by a single sine input with 31 Hz frequency
(equal to the seat torsion resonance). As it is observed, the rattle causes higher
noise level (here 70 dB SPL) mainly at frequencies below 2,500 Hz. Note that even
the seat is excited by a single sine vibration, the rattle noise can be occurred in a
wide frequency range. Furthermore, the rattle noise is also functions of additional
physical properties such as the contact surface and materials of the rattling parts [4].

By decreasing or increasing the excitation frequency from 31 to 25 Hz or 35 Hz,
the rattle noise is also considerably decreased (Figs. 8.19 and 8.20). In other words,
a wide band rattle noise is seen when the seat is excited at its resonance frequency.
This confirms that the occurrence of the seat subcomponents rattle is linked to the
seat resonant frequency, so that by changing the excitation frequency away from the
seat structural resonance, the rattle noise can be controlled.
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Fig. 8.18 SPL at four selected points when the seat excited at its 31 Hz resonant frequency

Fig. 8.19 SPL at four selected points when the seat excited at its 25 Hz resonant frequency

According to the measured data and their analysis, the major source of the seat
noise was identified as region around c-point (seat belt) in seat structure. A wide
band rattle noise is seen when the seat is excited at its resonance frequency. It is
important to note that when the seat is excited at its resonance frequency and critical
point, the rattle noise level will be increased (Fig. 8.21).
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Fig. 8.20 SPL at four selected points when the seat excited at its 35 Hz resonant frequency

Fig. 8.21 Comparison of the seat radiated SPLs when excitation frequency is equal to resonance
frequency (31 Hz) with those of neighboring frequencies (25 and 35 Hz)

8.5 Seat Structure Optimization

As explained in the previous section, seat structure has a large contribution on the
noise generation because of the structural deficiencies. Two main sources of the
disturbance in the vehicle are engine and road input. The idle engine vibration has
frequency range 10 up to 33 Hz. On the other hand, tires and suspension system act
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Fig. 8.22 Frequency response function (FRF) graph for point “X” shows first resonance frequency
is increased about 3 Hz when it has stiffener backrest

as low-pass filters. Therefore, the first resonance frequency, torsion mode at 31 Hz,
must be shifted or its vibration level be reduced. For this purpose, we propose three
methods based on the developed CAE concept model.

8.5.1 Stiffness Variation

Stiffness directly affects dynamical properties of the structures. The young modulus
of one seatback member (shown in Fig. 8.22) is changed from 2.1 � 108 to
2.1 � 1010 N/mm3. The first resonance frequency is shifted to 34.57 Hz by stiffness
variation method. Although this cannot be easily implemented in real, the computed
FRF in Fig. 8.22 shows influence of the backrest stiffness on the first torsion
resonance.

8.5.2 Sensitivity Analysis

Sensitivity analysis can be conducted to identify the effects of beam properties
such as area and moments of inertia of the cross section in predefined NVH
characteristics. For example here, the natural frequency of the first torsion mode
for the seat-only structure is selected and the effects of seat components parameters
are calculated when they are increased 20 % in their values. The components of
the seat and the results of the sensitivity analysis are presented in Fig. 8.23 and
Table 8.6, respectively. The results reveal that the property of the seatback beam is
generally more effective than the other parts. After member 3, the cross sections of
the 1, 2, and 6 members have an important role on the first torsion mode. Therefore,
the cross sections have been changed and are listed in Table 8.7. After reducing the
cross sections in accordance with Table 8.7, the weight of the seat decreased about
540 g and first natural frequency increased to 33.3 Hz.

New cross sections are listed in Table 8.7.
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Fig. 8.23 Seat component
number considered for
sensitivity analysis

Fig. 8.24 Resonance frequencies that increased by reducing some cross sections according to
Table 8.7

Fig. 8.25 Frequency response function (FRF) indicates reduced vibration level around first torsion
mode after employing the D/Damper (D/Damper denotes Dynamic damper)
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Table 8.6 The sensitivity of the first seat torsion mode to different
seat components is shown in Fig. 8.23

Component number A I1 I2 I12 J

1 �0.51 0 0.006 0 0.067
2 �0.51 0.014 0.006 0 0
3 �2.28 1.13 0.58 0 1.37
4 �0.31 0.004 0.086 0 0.27
5 �0.4 0.016 0.04 �0.02 0.35
6 �0.51 0.017 0.82 0 1.75
7 �0.16 0.03 0.14 0 0.008

Table 8.7 Original and new cross sections with their component number

Component number Original cross section (mm2) New cross section (mm2)

1 240 200
2 117 80
3 144 90
6 127 90

8.5.3 Dynamic Damper

Dynamic damper is a combination of the mass and spring that can be attached to
the structures and divide one resonance into two resonances with lower vibration
level. In the seat structure, dynamic damper reduced the vibration level about 12 dB.
Dynamic damper mass was 1 kg and its stiffness was calculated using Eq. (8.21).

r
k

m
D 31:9 H z D 31:9 � 2 � �

�
rad

s

�
mD1 Kg! k 	 40

kN

m
(8.21)

It can be seen from the above figure that dynamic damper decreased the vibration
level (12 dB) and divided the frequency 31.9 Hz into two frequencies of 27.2 and
34.6 Hz.

8.6 Summary and Outlook

A method is presented for the seat concept modeling to predict the dynamic behavior
of the seat. In the early vehicle design phase, without access to any detailed data, it
is required to develop a concept CAE model based on the initial design information
and predecessor seat data. In this study, the members of the seat structure are
modeled and approximated using beam elements. Also, for shortening the solution
time, the Guyan reduction is used to condense detailed joints properties in their
boundary nodes to connect concept beams. Dynamic comparison between model
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and experiment is performed to confirm the validity of the developed NVH concept
model. The value of resonance frequencies and MAC showed that these concept
models reflect good enough correlation with the experimental test in low frequency
range (below 60 Hz).

The automotive seat modal test results show that seat has major structural
mode shapes in low frequency range. These fundamental mode shapes can cause
transmitting a high level of vibration to the car occupant, especially when these seat
modes occur at frequencies near the engine input frequencies. These vibrations at
low frequency range can easily produce annoying BSR noise in the vehicle cabin.
Therefore, controlling the BSR noise needs to focus on the seat structural dynamics
and characterize its characteristics.

A noise measurement technique was used to automatically detect the potential
source regions of BSR on the seat subject to sinusoidal signal excitation with 5 Hz
discrepancy between 10 and 80 Hz. After measuring the sound pressure level, the
main source of seat rattle is identified. When the input frequency changed from 25
or 35 Hz to 31 Hz, the first seat structural mode was excited and it caused to produce
rattle noise. The most important characteristics of the identified source mechanisms
included relative movements such as impact induced phenomena, and slip–stick
between two parts in the frequency range from 300 to 1,200 Hz. Rattles were found
to be more dominant than squeaks.

Seat structure has a large contribution on the noise generation because of the
structural vibration and generally low frequency forces (below 40 Hz) translate
from the road to the seat through the tires and suspensions. Therefore, for BSR
noise reduction, structural mode must be controlled. As a solution, the first seat
resonance frequency (31.9 Hz) must be shifted up or its vibration level be reduced.
Three different methods were proposed. These methods are: increasing the seatback
stiffness, sensitivity analysis and using mass damper. As the experimental test
shows, these solutions can effectively reduce seat rattle noise from the structure.
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Chapter 9
Parametric Segmentation of Nonlinear
Structures in Visual Data: An Accelerated
Sampling Approach

Reza Hoseinnezhad and Alireza Bab-Hadiashar

Abstract In many image processing applications, identification of nonlinear
structures in image data is of particular interest. Examples include fitting multiple
ellipse patterns to image data, estimation and segmentation of multiple motions in
subsequent images in video, and fitting nonlinear patterns to cell images for cancer
detection in biomedical applications. This chapter introduces a novel approach
to calculate a first order approximation for point distances from general nonlinear
structures. We also propose an accelerated sampling method for robust segmentation
of multiple structures. Our sampling method is substantially faster than random
sampling used in the well-known RANSAC method as it effectively makes use
of the spatial proximity of the points belonging to each structure. A fast high-
breakdown robust estimator called Accelerated-LKS (A-LKS) is devised using
the accelerated search to minimize the kth order statistics of squared distances.
A number of experiments on homography estimation problems are presented. Those
experiments include cases with up to eight different motions and we benchmark
the performance of the proposed estimator in comparison with a number of state-
of-the-art robust estimators. We also show the result of applying A-LKS to solve
ellipse fitting and motion segmentation in practical applications.

9.1 Introduction

Fitting nonlinear models to image data is a common yet challenging task in
many image processing applications. Examples include machine perception of
surrounding environment by 3-D range data segmentation using planes, cylindrical
and spherical object models [1–11], ellipse fitting in various applications (such
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as gait periodicity detection [12], landmark localization in neuroimages [13], skin
colour [14] and nuclear buds [15] detection, gestational age estimation in ultrasound
images [16]) and detection and fitting of nonlinear motion models to a dataset of
point matches (that may include erroneous mismatches) in 3-D reconstruction and
motion tracking applications [17–24].

When we fit one or more instances of a model to a set of data points, each instance
is called a structure. To estimate the parameters of one of those structures, a common
approach is to define a measure of goodness that captures the distance from each
data point to the multi-dimensional manifold defined by a hypothesized model (a
structure with hypothesized parameters). The best model parameters are then found
via analysis of the distances for various hypotheses. In presence of outliers (data
points not belonging to any structure) a robust estimation scheme is often used to
ensure that the outcome is not biased by the influence of those outliers [25].

In the computer vision literature, definition of appropriate distances and finding
nonlinear robust fitting solutions have been studied for different applications [26].
This chapter presents an attempt to move away from application-dependent metrics
and introduces a generic and universally applicable distance measure. The proposed
measure is intended to suit common robust fitting methods in a general nonlinear
fitting and segmentation scenario. We also propose a new method for parametric
segmentation of multiple nonlinear structures with significantly faster rate of
convergence compared with current existing methods.

The rest of this chapter is organized as follows. The problem of multi-structure
nonlinear detection and segmentation is stated in Sect. 9.2, with examples presented
in the context of ellipse, homography and fundamental matrix fitting. The common
approach to solve the problem is to turn it into an optimization problem as discussed
in Sect. 9.3. The optimization cost function is usually formulated in terms of
distances. Section 9.4 outlines the concept of geometric distance followed by our
proposed universally applicable measure for geometric distance. Our proposed
accelerated sampling method is then presented in Sect. 9.5 where we detail the cost
function optimization part of A-LKS and the analysis of the proposed sampling
method. Simulation results are presented in Sect. 9.6. Section 9.7 concludes the
chapter.

9.2 Problem Statement

To formulate the problem, we start by assuming that n measurements are given as
a set of data points denoted by fxign

iD1. Each measurement xi represents an exact
value xi0 perturbed by noise,

xi D xi0 C ei (9.1)

where ei is a sample of Gaussian white noise with the noise power �2,

ei � N .0; �2/:
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There are an unknown number of structures, each containing some data points to
which a parametric nonlinear model is fitted. The model is the same for all structures
but each structure has different parameters. The model is denoted by the general
form,

g.x0; ‚; ˛/ D 0 (9.2)

where x0 is the exact data locations, ‚ D Œ�1 � � � �p�> is the parameter vector and
˛ is a scalar parameter.

In general, parameters can be scaled by an arbitrary constant and there are only p

degrees of freedom in choosing those parameter values. However, most applications
involve models with linear parameters as:

g.x0; ‚; ˛/ D �1f1.x0/ C � � � C �pfp.x0/ C ˛ D 0 (9.3)

in which the parameters are constrained by following conditions to guarantee the
uniqueness of their values,

˛ > 0 and jj‚jj D 1: (9.4)

The general problem in this framework is to find the number of such structures in
the data, estimate their parameters, and segment the data between those structures.
For every structure, data points that belong to that structure are called inliers and
the rest of data points are called outliers. Of those, the ones that belong to another
structure in that data set are called pseudo outliers and the rest are called gross
outliers. To show the application of this general framework, a number of common
special cases are presented in the following section.

9.2.1 Ellipse Fitting

In a two-dimensional image space, the data points are the coordinates of pixels
in the image. The problem is to find the number of ellipses that can be fitted to
the ensemble of the given pixels. This problem is a common part of many pattern
recognition tasks in AI and robotic applications. Each ellipse has its own ‚ and ˛

parameters and is defined by the following nonlinear formula:

�1x
2
1 C �2x1x2 C �3x

2
2 C �4x1 C �5x2 C ˛ D 0 (9.5)

where x D Œx1 x2�> denotes the coordinates of a pixel on the ellipse (one of the data
points). In order to guarantee that the above conic section is an ellipse, we need to
enforce the constraint �2

2 � 4�1�3 < 0 in addition to the constraints given in (9.4).
In this case the parameter space is five-dimensional (p D 5), i.e. five pairs of point
coordinates .x1; x2/ are sufficient to specify a possible parameter estimate. Such a
solution is called a model candidate.
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A circle fitting problem is a special case of ellipse fitting, in which circular
patterns are the instances of fitting the following model

�1.x
2
1 C x2

2/ C �2x1 C �3x2 C ˛ D 0: (9.6)

We note that both the circle and ellipse equations follow the general form of (9.3)
where the parameter space has three to five degrees of freedom.

9.2.2 Homography Estimation

When a planar object undergoes a general motion in the 3-D space, its motion can be
modelled by a homography model [26]. Assume two images, called the pre-motion
and post-motion images, taken before and after the motion occurs. Consider a pixel
.x1; x2/ in the pre-motion image matching the pixel .x0

1; x0
2/ in the post-motion

image. The homography model is then parametrized by a 3 � 3 matrix denoted
by H in such a way that:

!

2
4x0

1

x0
2

1

3
5 D H

2
4x1

x2

1

3
5 (9.7)

where ! is the (unknown) scale of perspective projection. Eliminating ! from the
system of equations (9.7) leads to the following simultaneous nonlinear equations:

h11x1 C h12x2 C h13 � h31x1x0
1 � h32x2x

0
1 � h33x

0
1 D 0

h21x1 C h22x2 C h23 � h31x1x0
2 � h32x2x

0
2 � h33x

0
2 D 0

(9.8)

in which h
ij

denotes the i -by-j element of the homography matrix H . We note that
each of the two equations in (9.8) is in the general form of (9.3). There are nine
elements in the homography matrix, including eight independent ones (considering
the scale). Each matching pair of pixels, Œx1 x2 x0

1 x0
2�>, results in two equations.

Therefore, a model candidate is given by p D 4 pairs of matching pixels.

9.2.3 Fundamental Matrix

When a non-planar object undergoes a general motion in the 3-D space, its matching
pixels in the pre-motion and post-motion images do not satisfy the homography
model (9.7) [26]. A more general model for such motions is called the fundamental
matrix model. In this model, the motion is fully parametrized by a 3�3 fundamental
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matrix denoted by F which is of rank 2, and for which, every pair of matching pixels
.x1; x2/; .x0

1; x0
2/ in the pre-motion and post-motion images satisfies the following

equation:

Œx0
1 x0

2 1� F Œx1 x2 1�> D 0: (9.9)

This model can be rewritten in the general form of (9.3) as:

�1x1x0
1 C�2x2x

0
1 C�3x

0
1 C�4x1x

0
2 C�5x2x0

2 C�6x0
2 C�7x1 C�8x2 C˛ D 0 (9.10)

where the parameters f�ig8
iD1 and ˛ are the elements of the fundamental matrix:

F D
2
4 �1 �2 �3

�4 �5 �6

�7 �8 ˛

3
5 : (9.11)

Disregarding the rank-2 constraint, fundamental matrix estimation involves
estimating 8 independent parameters, and the dimension of data and parameter
spaces is p D 8. The rank-2 constraint is usually imposed by finding the closest
rank-2 matrix to the estimated fundamental matrix as follows. Given the putative
rank-3 estimated matrix, the smallest (in magnitude) singular value of this matrix
is replaced with zero and the rank-2 matrix is reconstructed using the singular
vectors of original rank-3 matrix.

9.3 Parametric Segmentation

Most of the methods developed for solving the problem stated in Sect. 9.2 are
sequential solutions [26]. The parameters of a single structure are estimated, its
inliers are segmented and removed from the dataset, and the estimation, segmen-
tation and removal steps are repeated until only gross outliers are remained in the
dataset.

The first step (parameter estimation) is commonly implemented using a robust
estimation routine that is tolerant to outliers. In multi-structure segmentation
scenario, a small ratio of data points would necessarily belong to each single
structure. Therefore, high breakdown robust estimators (tolerant to large ratios of
outliers) need to be employed. Such estimators usually employ an optimization
search at their core, exploring the parameter space for the winning model candidate
.‚�; ˛�/ that minimizes a cost function C.‚�; ˛�/.

The most common approach to define meaningful cost functions is to express
the cost as a function of the distances fdign

iD1 of the data samples fxign
iD1 from

the p-dimensional manifold defined by the equation g.x; ‚; ˛/ D 0. The location
and shape of this manifold in the data space depends on the values chosen for the
parameters, and so does every distance di .



262 R. Hoseinnezhad and A. Bab-Hadiashar

The cost function of the least squares estimator is simply the sum of all the
squared distances:

CLS.‚; ˛/ D
nX

iD1

Œdi .‚; ˛/�2 : (9.12)

The rationale behind this choice of cost function is that the best parameter value is
intuitively the one corresponding to the manifold that is closest to the data points.
Minimization of this cost function would of course be meaningful only when all
the data points are around a single structure, i.e. when there are no pseudo or
gross outliers. However, in presence of multiple structures and gross outliers, an
alternative cost function is needed.

The problem of devising meaningful cost functions for robust estimation in
presence of large ratios of outliers has been visited in many papers and numerous
cost functions have been devised for various applications [1–3, 6–10]. One of the
simplest and most effective cost functions is the least kth order statistics function
used in the adaptive least kth order statistics (ALKS) estimator [2], and defined as:

CLKS.‚; ˛/ D dkWn.‚; ˛/ (9.13)

where dkWn.‚; ˛/ is the kth order statistics of the distances (kth smallest distance
out of n distances). Minimizing this cost function would result in a fit that is closest
to k data points no matter where other data points are, i.e. the estimator is tolerant
to outliers even if they include n � k points of the whole dataset.

In practice, the minimum size of a structure that would be of interest in a
particular application is known. For instance, in an ellipse fitting problem, an
absolute minimum of the number of points on a structure is p D 5 although we may
have a minimum size of k D 10 or even k D 20 points. In a range segmentation
application, we may be only interested in cylindrical structures for which at least
k D 30 range measurements are segmented as inliers. In a motion segmentation
application, we may be only looking for motions that contain at least k D 20 pairs
of matching pixels from our dataset.

The above-mentioned practical necessity justifies and determines the input
parameter k in the LKS cost function. In order to perform robust segmentation,
two important questions need to be addressed:

1. What would be a practically meaningful definition for the distance of a point
from a nonlinear manifold?

2. What is an accurate and computationally efficient way to search the parameter
space for the minimum point of a given cost function?

We will address these two questions in following sections.
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9.4 Geometric Distance

The most commonly distance measure, used for parametric data segmentation in
imaging applications, is the geometric distance, i.e. the minimum Euclidean distance
of a point in the data space from the points on the manifold corresponding to the
nonlinear structure. Formulas of geometric distance have been separately derived
for different applications. Here, we present a unified approach to compute a first-
order approximation of the geometric distance for a nonlinear manifold.

Let us start from the simple case of segmentation of nonlinear structures in a
two-dimensional data space. Figure 9.1 shows an instance of the geometric distance
of a measurement point .x1; x2/ from a general manifold defined by the nonlinear
equation (9.2). By definition, for a given structure, inlier and outlier data points are
identified based on how large their distances are from that structure. Appropriately,
the cost function of a robust estimator should intrinsically return large values for
large distances even if those are not calculated accurately. More precisely, a distance
formula is required to be more accurate for the points closer to the structure (with
smaller distances) compared to ones that are much further away.

Consider a point P.xP
1 ; xP

2 / in a small distance d from the manifold given by
the equation g.x1; x2; �; ˛/ D 0. We denote the closest point on the manifold to the
point P , by Q.x

Q
1 ; x

Q
2 /. The equation of the line passing through the point Q and

tangent to the manifold is given by:

@g

@x1

ˇ̌
ˇ
Q

.x1 � x
Q
1 / C @g

@x2

ˇ̌
ˇ
Q

.x2 � x
Q
2 / D 0 (9.14)

and the distance of the point P.xP
1 ; xP

2 / from this lines is given by:

d D

ˇ̌̌
ˇ @g

@x1

ˇ̌
Q

.xP
1 � x

Q
1 / C @g

@x2

ˇ̌
Q

.xP
2 � x

Q
2 /

ˇ̌̌
ˇr�

@g

@x1

ˇ̌
Q

�2 C
�

@g

@x2

ˇ̌
Q

�2
: (9.15)

Fig. 9.1 A 2D representation
of the geometric distance
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To simplify the computation of the above distance, we note that the numerator
is the first-order Taylor’s series approximation to g.xP

1 ; xP
2 ; �; ˛/ and in the

denominator, with first-order approximation, we replace the partial derivative terms
with partial derivatives at the point P ,

d D
ˇ̌
g.xP

1 ; xP
2 ; �; ˛/

ˇ̌
r�

@g

@x1

ˇ̌
P

�2 C
�

@g

@x2

ˇ̌
P

�2
: (9.16)

In a general case involving m-dimensional data points, a similar approach can
be followed.1 The equation of the hyperplane that is tangent to the structure defined
by (9.2) is given by:

rg

ˇ̌̌
ˇ
Q

� .x � xQ/ D 0 (9.17)

and the geometric distance is:

d D

ˇ̌
ˇ̌rgjQ � .xP � xQ/

ˇ̌
ˇ̌

ˇ̌ˇ̌rgjQ
ˇ̌ˇ̌ (9.18)

where jj � jj denotes the 2-norm. The numerator can be first-order approximated by
g.xP ; ‚; ˛/ and the denominator by

ˇ̌ˇ̌rgjQ
ˇ̌ˇ̌

, i.e.

d D
ˇ̌
g.xP ; ‚; ˛/

ˇ̌
ˇ̌ˇ̌rgjP

ˇ̌ˇ̌ : (9.19)

In ellipse fitting with models formulated by (9.5), the geometric distance is:

d.x1; x2; ‚; ˛/ D j�1x
2
1 C �2x1x2 C �3x

2
2 C �4x1 C �5x2 C ˛jp

.2�1x1 C �2x2 C �4/2 C .�2x2 C 2�3x2 C �5/2
: (9.20)

In homography estimation, using the model given by the two manifolds in Eq. (9.8),
for each pair of matching pixels, .x1; x2/ and .x0

1; x0
2/, two distances can be

calculated, each corresponding to one manifold:

1It is important to note that the dimension of data space is not always equal to the dimension of the
parameter space denoted by p in this chapter. More precisely, p is the minimum number of data
points that can specify a unique model candidate, which is not necessarily equal to the dimension of
the data points. For instance in the fundamental estimation problem, each data point includes a pair
of matching pixels and the dimension of each data point is 4, but the dimension of the parameter
space is 8.
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d1 D jh11x1 C h12x2 C h13 � h31x1x0
1 � h32x2x

0
1 � h33x

0
1jp

.h11 � h31x
0
1/2 C .h12 � h32x

0
1/

2 C .h31x1 C h32x2 C h33/
2

(9.21)

d2 D jh21x1 C h22x2 C h23 � h31x1x0
2 � h32x2x

0
2 � h33x

0
2jp

.h21 � h31x
0
2/2 C .h22 � h32x

0
2/

2 C .h31x1 C h32x2 C h33/
2
: (9.22)

The two distances can be combined into one scalar in different ways. One way is to
consider the smaller among the two as the distance. A common choice is the root
mean square of the two distances,

d D
q

d 2
1 C d 2

2 : (9.23)

In fundamental matrix estimation, the geometric distance is directly found by
applying (9.19) to the model (9.10),
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: (9.24)

where

r D Œx0
1 x0

2 1� F Œx1 x2 1�>: (9.25)

This distance is referred to as Sampson distance in the computer vision literature.

9.5 Optimization

As it was mentioned in Sect. 9.3, robust parametric segmentation solutions usually
involve solving an optimization problem. The parameter space is searched for
the minimum point of a cost function that is usually formulated as a func-
tion of distances of the data points from a hypothesized model candidate. In a
p-dimensional parameter space, an ensemble of p data points (termed a “p-tuple”
in the literature [3]) corresponds with a candidate model. One possible approach to
solve the optimization problem is an exhaustive search of the sample space in which
the cost function is computed for the model candidates corresponding to all possible
p-tuples. Having n data points, such a search would involve examining

Nexhaustive D C p
n D nŠ

pŠ.n � p/Š
(9.26)

p-tuples which is a huge number for practical data size n.
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A common approach that was initially introduced as part of the Random Sample
Consensus (RANSAC) [27] method in about three decades ago is random sampling.
In this search method, a number of randomly selected p-tuples are examined and the
one that results in the smallest cost is chosen as the model candidate. If the number
of the p-tuples randomly selected is N , then with a probability of:

Psuccess D 1 � 	
1 � .1 � �0/p


N
(9.27)

at least one of them is a good p-tuple (i.e. all its samples belong to the inlier
structure), where �0 is the ratio of outliers. Thus, for a given success probability
Psuccess, at least:

N D
�

log.1 � Psuccess/

log.1 � .1 � �0/p/

�
(9.28)

p-tuples should be randomly examined where d:e means rounding up to the next
integer.

When the ratio of inliers to each structure is small, the number of random
p-tuples given by (9.28) is substantial and the computational load of segmentation is
too high for real-time (or near real-time) applications [28–30]. For instance, in case
of having eight homography motions with almost equal number of matching points
and 10% mismatches, at least 28,748 random 4-tuples are required to ensure 99%
success probability. The computational cost is higher in case of general motions
modelled by eight fundamental matrices, requiring at least 20,191,937 random
8-tuples.

In this chapter, we introduce a method to accelerate the sampling. Our proposed
approach specially useful when the points belonging to each structure are not sparse
but spatially close to each other. This method can be used to optimize the cost
function of many estimators, and it requires far less random p-tuples (compared to
random sampling) in case of parametric segmentation of multiple structures. Using
our optimization search to minimize the kth order statistics of squared distances, we
develop a new estimator called Accelerated Least kth order Statistics (A-LKS). Our
experiments show that in terms of estimation error, A-LKS performs similar to the
state of the art in high breakdown robust estimators, but it runs substantially faster
when segmentation of several structures is involved.

9.5.1 Related Work

Tordoff and Murray [31] have tackled the computational cost issues of random
sampling by devising a guided sampling technique in which the p-tuples are ran-
domly chosen using a Monte-Carlo method according to the matching probabilities.
In another effort, the “preemptive RANSAC” suggested by Nister [32] preemptively
prioritizes a large number of random p-tuples and depending on the available time,
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the cost function is computed and compared for a portion of them. However, in the
examples presented by Tordoff and Murray[31] and Nister[32] to benchmark the
performance of their methods, the number of p-tuples required to obtain accurate
fits is still close to the theoretical number given by Eq. (9.28).

Alternative approaches to random sampling include the gradient-based search
over a Grassman manifold in the p-dimensional space of parameter vectors
implemented within pbM-estimator [33], and an iterative search based on
reweighted least-squares used in High Breakdown M-estimator (HBM) [29, 30].
In cases involving multiple motions, the iterative search within both pbM and HBM
need to be repeated for a number of times each starting from a random p-tuple. The
number of repetitions needs to be tuned off-line by trial-and-error.

A number of modified versions of RANSAC have also appeared in the literature.
Some recent examples include LO-RANSAC [34], randomized RANSAC [35] and
BEEM [36]. These methods follow RANSAC in that they assume the availability
of a scale (or error threshold) to determine the inliers for each hypothetical fit.
Such a threshold is not always available. For instance, in motion estimation, the
scale of noise mainly depends on the point matching techniques utilized to find
corresponding points. In this chapter, we are interested only in estimators that work
without any knowledge of the scale of measurement noise. Indeed, in many such
estimators, the scale is either estimated within the estimation procedure or can be
separately calculated upon its completion.

Our accelerated sampling method requires a small number of random samples—
far less than the theoretical number given by Eq. (9.28). The search process does
not need the scale of noise or any other threshold to determine inliers. Indeed, a
theoretical stopping criterion is formulated and used to determine the minimum
required number of p-tuples for a given success probability.

9.5.2 Accelerated Search

With recent increases in the reliability and sophistication of data measurement
methods and equipment, the chances of having widely erroneous measurement data
have substantially decreased. As such, in most image processing applications, a very
large portion of measurement data are simply usable data. In robust segmentation
framework this means that the ratio of gross outliers is small while the ratio of
pseudo outliers is large particularly in challenging scenarios when several structures
exist in a dataset.

The main reason for the large number of random samples is that in Eq. (9.28)
many p-tuples include points from different structures and are simply discarded
because they are not good samples. Our sampling method starts from the premise
that there are some information in those p-tuples that can be utilized to effectively
direct the search toward the optimum point of the cost function.

The fit given by a so-called bad sample is usually made up of points belonging
to different structures. When we segment the data points that are inlier to a bad fit,
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they would actually be the union of subsets of inliers to several structures. We would
expect each of such subsets of inlier data points to be spatially close to each other
and could be separated from others.

The flowchart of the proposed accelerated sampling algorithm is shown in
Fig. 9.2. The algorithm comprises two levels of nested random sampling. First,
n1 random p-tuples are chosen. Each p-tuple corresponds to a parameter estimate
for which an inlier–outlier dichotomy is conducted. The inliers are then clustered
into separate groups of data points and the largest group is found. If the group
contains sufficient data points, then in the inner level of random sampling, n2

random p-tuples are selected from the points in the group. The total number of
random samples will be no more than N D n1n2.

For a given n1 and n2, the probability of having at least one “good” p-tuple
can be computed as follows. Each of the n1 random p-tuples in the first round of
sampling contains p inliers or pseudo outliers (belonging to different structures)
with a probability of .1 � �/p where � is the ratio of gross outliers.2 Such a p-tuple
corresponds to a fit for which an inlier–outlier dichotomy can be calculated. The
inliers to the fit are clustered into groups and the largest group is selected for a
second round of random sampling. If at most nocc structures can be simultaneously
occluding each other, and in the worst scenario they contain an equal number
of points in the data (the smallest possible ratio of inliers), each of the n2

random samples selected in the second round will be a good sample (with all
points belonging to one structure) with a probability of .1=nocc/

p . Therefore, the
probability of having at least one good sample in the second round is given by:

P2 D 1 �
�
1 �

�
1

nocc

�p�n2

: (9.29)

The overall success probability is then given by:

Psuccess D 1 � Œ1 � .1 � �/pP2�
n1

D 1 �
�
1 � .1 � �/p

�
1 �

�
1 �

�
1

nocc

�p�n2
��n1

(9.30)

and for a given n2 and success probability, the minimum number of random samples
required to be examined throughout the search is:

N D n2 n1

D n2

2
6666

log.1 � Psuccess/

log
�
1 � .1 � �/p

n
1 �

h
1 �

�
1

nocc

�in2
o�
3
7777

: (9.31)

2It is important to note that � is the ratio of gross outliers and in the presence of several structures, it
is far less than �0 in Eqs. (9.27) and (9.28) which equals the sum of gross and pseudo outlier ratios.
In the presence of nobj structures with an equal number of inliers, �0 D � C.1��/.1�1=nobj/. For
instance, if � D 5% of data are gross outliers and there are nobj D 8 structures, we have �0 D 88%:
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Input: Data points 

Choose a random p-tuple
from the data

Inlier-outlier dichotomy

Cluster the inliers 

Pick the largest cluster 

Choose a random p-tuple
from the cluster

Compute and save the cost
of the p-tuple

Repeat for n2 times

Select the best p-tuple

Estimate the parameters
and segment the inliers  

Repeat for n1 times 

Fig. 9.2 The proposed
accelerated sampling
algorithm

In order to demonstrate the reduction of number of samples compared to the
traditional random sampling, we have plotted the number of samples given by (9.31)
versus the ratio of gross outliers (mismatches in case of motion segmentation),
compared with the number of random samples required by RANSAC-based meth-
ods given by (9.28) for several number of motions. Figure 9.3a, b shows the plots for
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Fig. 9.3 Comparison of the number of random samples required by our guided search compared
to theoretical number of random samples as used by a RANSAC-type estimator for cases involving
estimation of various numbers of (a) homography motions (b) fundamental matrix motions

homography (p D 4) and fundamental matrix (p D 8) estimation. In both cases, it
is assumed that no more than two moving objects can occlude each other (nocc D 2).
Noting the logarithmic scale on vertical axes, the plots show drastic reductions in
the number of random samples, especially in cases where numerous motions are
involved.

Remark 1. The above results are independent of the clustering technique used in
the method, and any of the modern clustering methods can be employed. In our
simulations we have used the Mean Shift method [37]. The mean shift algorithm is
a nonparametric clustering technique which does not require prior knowledge of the
number of clusters and does not constrain the shape of the clusters.

Remark 2. As it was mentioned before, only a sufficiently large group of points
are subjected to a second round of sampling and if no such group results from
clustering, the optimization procedure simply skips to process the next p-tuple of
the first round of random sampling. In practice, a minimum size for the structure is
assumed available (denoted by kmin) and a group is considered sufficiently large if
it contains at least kmin data points.

Remark 3. In deriving the formulas (9.30) and (9.31), we have assumed that for
any of the n1 random samples that contains no gross outliers, clustering of the
inliers to the fit returned by the p-tuple will result in at least one sufficiently large
group. It is noted that for some random samples that include marginal points on
the edge of structures, this condition may not be satisfied, but we believe that such
marginal points constitute a small fraction of points. Indeed, the inaccuracy can
be compensated for by treating such points like gross outliers via increasing the
ratio � in Eq. (9.31). It is important to note that in practice, the actual ratio of gross
outliers is small and despite the above-mentioned addition, a relatively small � will
be practically sufficient in most applications.
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9.6 Simulation Results

To realize a high breakdown robust estimation scheme, we have used the proposed
accelerated sampling method to optimize the kth order statistics of squared dis-
tances. We call the complete estimator as Accelerated Least kth order Statistics or
A-LKS for short. In a number of experiments, we have compared the performance of
A-LKS with MSSE [3], Adaptive Scale Sample Consensus (ASSC) estimator [38]
and High-Breakdown M-estimator (HBM) [29].

To obtain an inlier–outlier dichotomy for a given parameter estimate, we have
employed the specific routine suggested by Bab-Hadiashar and Suter within the
Modified Selective Scale Estimator (MSSE) [3]. The procedure is described as
follows. Having a set of distances d1; : : : ; dn, the distances are sorted in ascending
order and the following unbiased scale estimates are computed:

O�k D
"

kX
iD1

d 2
i Wn=.k � p/

#1=2

I k D kmin; : : : ; n (9.32)

where kmin is a known lower bound for the number of points in a single structure and
di Wn denotes the i th sorted distance. Then the smallest index k

0

is found for which
d.k

0C1/Wn > 4 O�k
0 . Finally, an inlier–outlier dichotomy is obtained by labelling all the

points associated with distances fd1Wn; : : : ; dk
0 Wng as inliers and the rest as outliers.

This segmentation method has been chosen because it has been shown to have the
best performance in terms of consistency [39] and finite sample bias [40].

Our first set of simulations involve segmentation of 4–8 homography motions.
Each simulation includes 100 runs, each involving randomly generated homography
motions for 4–8 objects which appear as squares in image 1 and evolve to a generally
irregular quadrilateral in image 2. For each motion, 100 correct matches are found
and the pixel coordinates are synthetically corrupted with noise. Those points as
well as a total of 50 random mismatches are taken as measurements. A sample of
the measurements generated in an experiment involving six motions is shown in
Fig. 9.4a.

In each simulation, the measurements are processed by a robust motion
segmentation method and two quantities are recorded: the processing time taken
by the method for segmentation of the first motion, and the number of matches
computed for that motion. The number of samples for each method and number
of motions are averaged over the 100 runs, and the results shown in Fig. 9.4b. It
is observed that in terms of segmentation accuracy, the performance of A-LKS is
similar to other methods examined in the experiments.

Figure 9.4c shows the average computation times for each method plotted versus
the number of motions involved. It is observed that the computation time of
A-LKS (the number of required random samples) does not vary with the number of
motions. The computation times of other estimators substantially increase with the
number of motions because the outlier ratio �0 in Eq. (9.28) increases. Quantitatively,
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Fig. 9.4 (a) A sample of synthetic data generated in the experiment. The blue points in the squares
move to red points. The black points marked with “asterisk” and “open circle” symbols represent
the mismatches in images 1 and 2, respectively. (b) Average number of segmented inliers to the
first estimated motion returned by the examined techniques. For A-LKS, the error bars are also
shown. (c) Average computation times required to segment the first motion

the computation time of A-LKS is observed to be 10–1,000 times faster than
other methods. The computation advantage gained via using A-LKS is especially
substantial when numerous motions exist.

We have also examined the performance of the proposed method for segmenting
multiple homographies using real data experiments. In the first experiment, shown
in Fig. 9.5a, b, two images include three moving books. In the second experiment,
shown in Fig. 9.5c, d, two images of the national library of Belarus at Minsk from
two different perspectives include four moving planar surfaces. Using the well-
known SIFT method [41], we first found a number of matching pixels between
the corresponding images (shown by red crosses in Fig. 9.5a, c) and then used those
points as data points for the A-LKS to estimate the parameters of, and segment based
on the estimated motions. The results are shown in Fig. 9.5b, d which demonstrate
that different motions in those experimented are correctly segmented.

We have also examined A-LKS in practical applications where circular or elliptic
patterns need to be segmented and their parameters estimated. As it was mentioned
in Sect. 9.2, the input image needs to be first processed and its edges detected.
The outcome of edge detection is a black and white (binary) image and the pixels
forming the edges are used as data points to segment the elliptic or circular patterns.
An example is shown in Fig. 9.6a where a road image is taken by a camera mounted
on an autonomous car, and various signs need to be detected and followed by the
car. The sign in the image is the “one-way” sign and the first step in its detection is
the detection of its elliptic perimeter. Figure 9.6b shows the binary image generated
by the Canny edge detection method and the ellipse pattern detected and segmented
by the A-LKS is highlighted by red dots.

Figure 9.6c, d demonstrates another example of ellipse fitting in a biomedical
application where in a grey scale image of blood cells, the cells are needed to be
segmented before statistics of their characteristics (e.g. radius) can be evaluated.
The results of circle segmentation using the A-LKS are shown in Fig. 9.6d.
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Fig. 9.5 Results of homography estimation: (a, b) Three books are placed on a table, an image is
taken, then they are moved and the second image is taken. Matching pixels between the two images
are found (red crosses in image (a)) and used as data points to find the homographies and segment
them. (c, d) Two different images of the national library of Belarus from two angles. Different
planar surfaces on the building undergo different homography motions which are segmented as
shown in different cross colours in (d)

9.7 Conclusions

This chapter presented the general problem of parametric segmentation of multiple
nonlinear structures existing in visual data. We introduced a unified formula for
the distance of a data point from any model candidate. We also presented a new
accelerated method for searching the parameter space for best model candidates
that minimize a cost function. Our simulations showed that our method can segment
several nonlinear structures in various applications with accuracies comparable to
the state of the art; however, the speed of our method if far greater. This significant
increase in the speed of computation makes our method an ideal candidate for
computer vision applications where several nonlinear patterns need to be segmented
and parametrically estimated in real time.
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Fig. 9.6 (a) A road image taken by a camera mounted on an autonomous car which needs to detect
and follow the road signs. (b) The binary image produced via applying Canny edge detection to
the road image. The elliptic perimeter of the road sign has been detected and segmented by A-LKS
and is highlighted in red in the image. (c) An image of blood cells. In a biomedical application, we
need to know some statistics of the blood cells such as their number or distribution of their radii
(d) The blood cells are segmented by A-LKS
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Chapter 10
Parametric Resonance: Application on Low
Noise Mechanical and Electromechanical
Amplifiers

Naser Nasrolahzadeh, Mohammad Fard, and Milad Tatari

Abstract Due to the growing demand for low noise signal amplification, develop-
ing mechanical and electromechanical parametric amplifiers is a topic of interest.
Parametric amplification in mechanical domain refers to the method for amplifying
the dynamic response of a mechanical sensor by modulating system parameters
such as effective stiffness. Most of the studies in this regard have been focused
on truncating equation of motion such that only linear terms remain. In this chapter,
mathematical models of mechanical and electromechanical parametric amplifiers
in the literature are reviewed. Then, the effect of nonlinearity is investigated by
including a cubic nonlinearity on the governing equation of a classical degenerate
parametric amplifier. To this end, the method of multiple scales (perturbation)
has been utilized to calculate steady state solution of the nonlinear Mathieu-
type equation. In addition, by determining the nature of singular points, stability
analysis over the steady state response is performed. All the frequency response
curves demonstrate a Duffing-like trend near the primary resonance of the system;
however, the number of stable solutions changes with the parameters of the system.
Furthermore, performance metrics of the system is analyzed in the presence of
nonlinearity. The findings indicate that even very small nonlinearity term can
dramatically decrease system performance as well as changing the relative phase
in which maximum gain occurs.
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10.1 Introduction

Parametric resonance occurs in mechanical systems with external excitation when
parameters of the system are at certain values. Mathematically, the equations of
motion for these systems are considered as the equation with time-dependence
coefficients. In the mechanical context, this means stiffness, mass, or force is
changing periodically. In fact, the word “parametric” refers to parameter-dependent
behavior of the system [1]. Therefore, in these systems resonances are directly
connected to certain values of the parameters. It seems that Faraday [2] was the
first researcher who observed parametric resonance. According to his studies, a
vertically oscillating fluid with forcing frequency close to the natural frequencies
of the system generates horizontal waves. A pendulum with oscillating support
can be considered as a classical example of parametric resonance, where the
equation of motion leads to the Mathieu [3] equation in its linear form. A great
majority of studies in this regard have been conducted to model parametrically
excited systems [4, 5]. This has been done on various cases including, swing, ship,
pendulum and structures. In addition, controlling the vibration of the system due
to parametric resonance is another subject that has a long history. For instance,
Oueini and Nayfeh [6] suggested a nonlinear feedback law to control the first
mode vibrations of a cantilever beam that is under principal parametric excitation.
Vibration suppression of a cantilever beam when it is excited externally as well
as parametrically was investigated by Eissa and Amer [7]. Similarly, they used a
control law based on cubic velocity feedback to deal with the problem of vibration
suppression. Although the resonance phenomenon is usually considered as a threat
in mechanical applications, the concept can be utilized as an effective tool to develop
mechanical and electromechanical parametric amplifiers. Parametric amplification
is a well-established concept in the field of electrical engineering and has been
widely implemented; however, the technique has not received enough attention in
mechanical engineering context.

In mechanical and electromechanical applications, parametric amplification
refers to the method for amplifying the dynamic response of a mechanical sensor
by modulating system parameters, including mass, stiffness, and damping [8]. In
this approach, a system parameter such as spring constant that is effective in the
vibration behavior of the sensor is controlled by parametric pumping to amplify
the response amplitude of the system which is directly excited. Basically, there
are two types of parametric amplifiers; degenerate and nondegenerate amplifiers.
The former refers to those systems where the pumping frequency is tuned at twice
of the direct excitation signal. The latter is used for the system when pumping
signal is locked at frequencies that are different from twice of the direct signal. In
addition, frequency of the direct excitation should be sufficiently close to the values
that cause resonance response. It is worth mentioning that in a nonlinear system,
the resonance response exists at the natural frequency of the system as well as its
harmonics (e.g., sub-harmonics and super harmonics). Parametrically excited beams
are very good cases in point to study parametric amplification in mechanical and
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Fig. 10.1 Parametrically excited microbeams in a mass sensing device [10]

electromechanical sensors. In fact, microbeams are the most important element in
almost all MEMS (Fig. 10.1). Jazar et al. [9] reviewed all important forces that affect
the dynamic behavior of microbeams in MEMS and then formulated the equation
of motion of the microbeam. Actually, the outcome of this study is the most general
mathematical model for microbeams in MEMS. The model considers all attributes
and therefore is somewhat complicated. However, this model can be simplified in
different application when some terms are ignorable or a special case is going to be
studied.

Classically, mechanical measurements are firstly converted to electrical signals
by means of transducers and then the signal is electrically amplified. However, in
some cases such as atomic force microscopy it is required to amplify the mechanical
motion to improve the detection sensitivity. In fact, mechanical parametric ampli-
fication is mainly functional when the inherently noisy electrical amplifiers affect
the measurement accuracy [11]. Therefore, in order to accomplish low noise signal
amplification, various studies have been recently conducted on this topic to develop
mechanical and electromechanical resonators, especially in MEMS/NEMS [8, 9,
11–17]. In different reported works in the literature, parametric amplification has
been effectively implemented when the mechanical spring constant is modulated
at twice the resonance frequency by external electrostatic forces [11, 18] or
mechanical pumping [19]. Rugar and Grutter [11] were among the first researchers
who study the parametric amplification in mechanical domain. They investigated
noise squeezing as well as low noise amplification in a micro-cantilever beam.
All other works in this regard are based on this study, where parametric amplifiers
were investigated for torsional micro-resonators [16, 20], coupled micro-resonators
[13], electric force microscope [21], and micro-cantilevers [8, 19]. Rhoads et al.
[22] analytically and experimentally studied a macro-scale cantilever beam as a
pure mechanical amplifier. In this degenerate amplifier, the base excitation was
considered at transverse as well as axial directions. The analysis of this model
is investigated by truncating the governing equation of motion of the system
such that only linear terms remain. While the above-mentioned cases are fairly
well understood in the linear domain, the impact of nonlinearities on different
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parametric amplifiers has recently drawn many researchers attention [23]. Although
in the linear analysis, the response of the system shows great performance and
boundless gain for the amplifier, in a practical situation, as it was observed in
experimental test of a macro-scale cantilever beam [22], the growth of the response
is limited. This discrepancy between linear analysis and experimental results can
be a result of inherit nonlinearities in the system that are not considered in the
linearized equation of motion. Jazar et al. [9, 17] studied the dynamic behavior of
an electrically actuated microcantilever. The study analyzes the steady state motion
of the microcantilever with and w/o initial polarization and for linear and nonlinear
condition (e.g., small and large vibration amplitude).

The main aim of this chapter is studying the behavior of the mechanical and
electromechanical parametric amplifiers. Therefore, some mathematical models
of mechanical and electromechanical parametric amplifiers in the literature are
reviewed. To accomplish the analysis of these mathematical models, it is firstly
required to acquire the necessary background about perturbation method. Therefore,
the method of multiple scales is reviewed by solving a nonlinear forced oscillator as
well as the Mathieu equation. Then, the nonlinear model of a classical degenerate
parametric amplifier is introduced and the method of multiple scales is utilized
to deal with the problem. In the next step, the stability analysis of the system is
investigated. After that, in the results and discussion section, the outcomes of the
perturbation solution are demonstrated and described; finally conclusion section will
close the chapter.

10.2 Analytical Modeling of Mechanical
and Electromechanical Parametric Amplifiers

In this section, the modeling process of some conducted studies regarding mechan-
ical and electromechanical parametric amplifiers is briefly reported. In the scope
of MEMS amplifiers, usually, the effective stiffness of the resonator is modulated
electrostatically in such a way that parametric excitation arises. However, in
macroscale cases base excitation can be used for this purpose. Therefore, reviewing
some studies will help to get involved with the subject as well as understanding its
applications.

Jazar et al. [9] have defined all important forces that affect the dynamic behavior
of microbeams in MEMS and then formulated the equation of motion of the
microbeam. According to this conducted study the general non-dimensionalized
equation of motion of the microbeam is as following:

RY C
�
� C a6

r
1Cr2

� PY C
�
1 C b3 � a7

r
1Cr2

�
Y C ˛Y 3

C a4Y 2 PY C a5 .1 � Y / Y D 1

.1�Y /2 Œ.� C 
/ C 2
p

2�
 sin .r�/ � 
 cos .2r�/�

(10.1)
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Fig. 10.2 Schematic of electrically actuated microcantilever [9]

where Y stands for the lateral motion, � represents time, ai are constant that
can be calculated from the geometry and properties of the beam, b3 and ˛ are
the terms for initial stretch and nonlinear stiffness, r D !

!1
, � and 
 are,

respectively, representatives of the polarization (vp) and modulating (v) voltages
in nondimensenalized form (Fig. 10.2).

This equation considers the most important forces that affect the dynamic
behavior of the electrically actuated microbeam. These are inertia, rigidity, elec-
trostatic, viscous, internal tension, squeeze film, and thermal forces. Enthusiastic
readers can find detailed procedure to extract the general equation of motion
(10.1) in [9]. There are some other less important forces such as fringing, van der
Waals, and Casimir that are in secondary level in comparison with the considered
forces. Moreover, the equation can be pruned to (10.2) if one neglects squeeze-
film fa6

r
1Cr2

PY C a7
r

1Cr2 Y g, thermal forces fa4Y
2 PY C a5 .1 � Y / Y g, and initial

stretch.

RY C � PY C Y C ˛Y 3 D 1

.1 � Y /2
..� C 
/ C 2

p
2�
 sin .r�/ � 
 cos .2r�/

(10.2)

Assuming no polarization voltage, the governing equation is more simplified as
following:

RY C � PY C Y C ˛Y 3 D 1

.1 � Y /2
.
 � 
 cos .2r�/ (10.3)

By expanding the electrostatic term in series form as (10.4), the complexity of
this equation of motion can be reduced.

1

.1 � Y /2
D 1 C 2Y C 3Y 2 C 4Y 3 C 5Y 4 C : : : (10.4)

A simple linear analysis requires expansion of the series up to O.Y 2/ provided
that the term ˛Y 3 is also neglected from the left-hand side. On the other hand,
in nonlinear analysis, due to the third order term of Y in the left-hand side, it
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Fig. 10.3 The block diagram of an electromechanical parametric amplifier. Cantilever resonator
is pumped by electrostatic force of the capacitor plate and the piezoelectric bimorph is used for the
direct excitation [11]

is reasonable to expand the series term up to O.Y 4/. However, many researchers
have neglected nonlinear terms of the electrostatic force while they have considered
the cubic nonlinearity for stiffness of the microbeam. Although this assumption
reduces the accuracy of the model, but gives a straightforward nonlinear Mathieu-
type equation that eases investigation of the dynamic behavior of the system. In
this condition, the microbeam is simply modeled as a mass, varying stiffness, and
damper system.

Rugar and Grutter [11] were among the first researchers who mentioned the
parametric amplification in mechanical domain. In the accomplished work by
them according to Fig. 10.3, the silicon microbeam is pumped electrically and a
piezoelectric bimorph is used for the direct excitation. The parametric modulation
is carried out by means of a capacitor with time-varying voltage V .t/ on it. Thus,
the effective stiffness of the beam is expressed as follows:

k.t/ D k0 C kp.t/ and k.p/ D @Fe

@x
D 1

2

@2C

@x2
.V .t//2 (10.5)

where Fe represents electrostatic force, C stands for the electrode-cantilever capac-
itance, and x is the displacement of the beam.

The equation of motion of the cantilever beam was considered as a single degree
of freedom mass, damper, and time-varying stiffness oscillator as follows:

m Rx C m!0

Q
Px C �

k0 C kp.t/
�

x D F.t/ (10.6)
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Fig. 10.4 An in-plane parametrically excited oscillator. In this micrograph S indicates the folded
beam springs, C demonstrates the two sets of interdigitated comb finger banks, B shows on the
backbone, and N exhibits non-interdigitated comb fingers [18]

where F .t/ D F0 cos.!0t C 	/ is the direct excitation signal, kp.t/ D k sin 2!0t,
Q is the quality factor of resonance, x is the cantilever displacement, and ¨0 is the
unforced resonance frequency of the cantilever beam, that is ¨0

2 D k
m . Expressing

the damping factor c as m¨0

Q is conventional because the right condition for the
occurrence of parametric resonance can be intuitively understood [10]. Generally
speaking, increasing quality factor broadens the region of instability.

Zhang et al. [18] investigated an in-plane parametrically excited mass sensor
with electrostatic force as the driving force. Figure 10.4 depicts a scanning electron
micrograph of the oscillator. As it can be seen, there are two sets of parallel
interdigitated comb finger banks on either end of the backbone and two sets of
non-interdigitated comb fingers on each side. Applying a time-varying voltage to
the non-interdigitated fingers as pumping signal leads to modulation of the stiffness
of the system and parametric resonance.

In order to derive equation of motion of the sensor, similar to the previous case,
a simple mass, spring, and damper system was considered as follows:

m Rx C c Px C Fk.x/ D Fe .t; x/ (10.7)

Fk.x/ D k1x C k2x
3 (10.8)

Fe .x; t/ D � �kr1x C kr2x
3
�

VA
2.1 C cos.!t// (10.9)
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Fig. 10.5 An out-of-plane electromechanical microbeam oscillator. Three Schottky electrodes at
clamped points for parametric pumping (gate 1), resonance detection (gate 2), and direct excitation
(gate 3) [12]

where the letter k is used for the mechanical stiffness and kr represents electrostatic
stiffness. Finally they have reported the following non-dimensional expression for
the normalized equation of motion of the sensor.

x00 C �x0 C .ˇ C 2ı cos .2�//x C .ı3 C ı0
3 cos .2�//x3 D 0 (10.10)

Here, prime stands for derivative with respect to £. Note all the Greek letters
coefficient in this nonlinear Mathieu equation are of small order (e.g., O.©/), but the
“ that is O.1/.

Mahboob et al. [12] investigated a electromechanical oscillator as it is shown in
Fig. 10.5. As it is observed, the resonator is a clamped–clamped microbeam with
Schottky contacted two-dimensional electron systems (2DES) in clamped points.
In this parametric amplifier, the stiffness modulating transducer is integrated into
the mechanical element that can reduce the size of the resonator. The excitation
of the oscillator is accomplished when an AC voltage is applied between the top
gate and the 2DES. In fact, the piezoelectric effect leads to bending of the beam
and resonance at the frequency of the applied voltage which is compatible with the
fundamental mode of the beam.

In this case also the electromechanical resonator has been simplified as a mass,
damper, and time-varying spring system. Thus, similar to the previous works, the
governing equation of this parametric amplifier is reported to be as:



10 Parametric Resonance: Application on Low Noise Mechanical. . . 285

Fig. 10.6 A base excited
cantilever beam as a
macroscale mechanical
parametric amplifiers [22]

Rx C !0

Q
Px C !0

2
�
1 C p

2C 
 sin.2!0t/
�

x D � sin.!0t C 	/ (10.11)

where the
p

2Cœ sin.2¨0t/ is pumping signal that is implemented from gate 1 (see
Fig. 10.5), the ˜ sin.¨0tC	/ is direct excitation signal via gate 3 that arises primary
resonance of the beam.

Rhoads et al. [22] studied the macroscale mechanical parametric amplifiers in
the case of a base excited cantilever beam. In this degenerate amplifier, the base
excitation, according to Eq. (10.12), was considered at transverse (vp) as well as
axial (up) directions (Fig. 10.6).

This is carried out by installing the cantilever beam on a shaker that generates
two sinusoidal signals as follows:

xp D A cos .�t C ˆ/ C B cos .2�t/ (10.12)

up D xp sin ˛; vp D xp cos ˛ (10.13)

where the signal with frequency � is used for direct excitation and the signal with
frequency 2! is used for parametric pumping. By using energy method that can be
found in detail in [22] the governing equation of motion of the system for the first
mode is reported as:

Rz C 2"�Pz C .1 C "
2�
2 cos .2�t/ C "
1�

2 cos .�t C ˆ//z

D "�1�
2 cos .�t C ˆ/ C "�2�

2 cos .2�t/ (10.14)
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As evident, this equation of motion is also similar to other reviewed cases in
which stiffness of the mechanical resonator is modulated by a pumping signal.
Therefore, the study of a general equation of motion similar to (10.6), (10.10),
(10.11), and (10.14) might be useful to understand the effects of different parameters
of the system on the behavior of mechanical and electromechanical parametric
amplifiers. In the next sections, the general form of a classical degenerate parametric
amplifier will be investigated.

10.3 Mathematical Background

In this section, prerequisite math to deal with governing equations of mechanical
parametric amplifiers are introduced. For the sake of investigating these systems,
one needs to have an appropriate knowledge about solving weakly nonlinear
oscillators via perturbation techniques. There are various perturbation methods
including Poincare, multiple scale, averaging and harmonic balance. These methods
are vastly applied on oscillating systems in order to solve their nonlinear equations
of motion. There is no denying that the perturbation method is useful in the case of
weak nonlinearity and the resulting analytical solution is an approximation around
the corresponding linear system. Due to popularity of the method of multiple scales
in comparison with others, we review its basic concepts to solve weakly nonlinear
equations. The enthusiastic readers can acquire deep understanding of perturbation
technique by studying perturbation methods by Nayfeh [24].

10.3.1 The Method of Multiple Scales

The main idea of this method is that the expansion of the response is the function
of multiple independent variables. This is carried out by introducing fast-scale and
slow-scale variables and treating them as independent variables. It is carried out by
letting:

Tn D ©nt for n D 0; 1; 2; : : : (10.15)

Here, T0 is a fast time scale and T1 is a slow time scale describing variation in
the response of the system. Thus, the derivative with respect to t can be expressed
in the new scales by using partial derivatives as follow:

d

dt
D dT0

dt

@

@T0

C ©
dT1

dt

@

@T1

C : : : D D0 C ©D1 C : : : (10.16)
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where DkD @
@Tk

, subsequently we have:

d2

dt2
D D0

2 C 2©D0D1 C : : : (10.17)

Now, one can express the response (x) in the form of new variables according to

x .t; ©/ D x .T0; T1; : : : ; Tn; ©/ D
nX

iD0

©ix .T0; T1; : : : ; Tn/ C O.©nC1/ (10.18)

It is worth mentioning that the number of independent variables is corresponding
to the expansion order. In other words, when we expand the response to O.©3/, the
T0; T1 and T2 time scales are required.

In order to use the method of multiple scale for solving equations of motion such
as (10.11), it might be a wise decision to start with a directly excited oscillating
systems. It is mainly because one needs to understand the different resonance cases
that can be occurred in a nonlinear oscillating system under direct excitation (e.g.,
primary resonance, sub-harmonic and super harmonic cases). Then, we can apply
the method on a simple parametrically excited system to solve the Mathieu equation.
Due to the time-varying coefficient of the mathematical model regarding parametric
amplifiers, this could be a useful step to acquire the required insight into their
Mathieu-type nature. Finally, the combined excitation that arises in the degenerate
parametric amplifiers can be easily managed.

10.3.2 Direct Excitation for System with Cubic Nonlinearity

Forced vibration of an oscillating system with governing equation such as (10.19) is
investigated. This can be the representative of a slightly damped motion of a particle
that is attached to a spring with hardening nonlinearity. For the sake of simplicity,
the natural frequency of the system is considered to be unity.

Rx C x C 2©� Px C ©˛x3 D ©� cos �t (10.19)

By expressing approximate solution of the system in different time scales
according to the multiple scales method and expanding the response to the order
of O.©2/, we have:

x .t; ©/ D x0 .T0; T1/ C ©x1 .T0; T1/ C O.©2/ (10.20)

Now, by applying new variables time derivatives and separating the terms of
the resultant equation in accordance with their orders, one can obtain following
equations for O.1/ and O.©/.
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O.1/ W D2
0x0 C x0 D 0 (10.21)

O ."/ W D2
0x1 C x1 D �2D0D1x0 � ˛x3

0 � 2�x0 C � cos .�T0/ (10.22)

The solution of Eq. (10.21) can be expressed as:

x0 D 1

2
A .T1/ eiT0 C cc: (10.23)

where A .T1/ is a complex-valued quantity and cc. stands for complex conjugate
of the first term. By using the above expression for x0 in the second equation,
the undetermined function A .T1/ is obtained. This can be accomplished when
the expressions which produce secular term in Eq. (10.22) are put equal to zero.
The process of eliminating secular terms depends on the frequency of the direct
excitation. Up until now, we have not assumed the excitation frequency to be equal
to a predefined value. This value is important for solving the above perturbation
problem because different values for � lead to different responses. In fact, in a
nonlinear system, the resonance response exists at the natural frequency of the
system as well as its harmonics. Generally speaking, there are three cases that may
occur:

• Primary Resonance Case: it refers to the situation when excitation frequency is
near to the natural frequency of the system (� Š !).

• Sub-Harmonic Resonance Cases: it arises when excitation frequency is near the
integer multiples of the natural frequency (� Š n! and n D 2; 3; : : :).

• Super-Harmonic Resonance Cases: it is opposite concept to the previous case and
occurs when the frequency of the driving excitation is close to an integer fraction
of the natural frequency (Š !

n and n D 2; 3; : : :).

It is worth mentioning that as the nonlinearity of the system grows to higher or-
ders, the effects of sub-harmonic and super-harmonic cases will be more noticeable.
In this place, the solution is progressed for the case of primary resonance. Therefore,
by substituting x0 in Eq. (10.22) as well as assuming � D 1 C ©¢ , where ¢ D O.1/,
we will have:

D2
0x1 C x1 D f�.2i

�
A

0 C �A
�

C 3˛A2 NA/ exp .iT0/ � ˛A3 exp .3iT0/

C �

2
exp .i .T0 C ¢T1//g C cc (10.24)

where prime denotes the derivative with respect to T1 (e.g., A0 D D1A) and NA is
complex conjugate of A. The secular term is eliminated when the terms that are the
coefficient of exp .iT0/ are put equal to zero, thus:

2i
�
A0 C �A

�C 3˛A2 NA C �

2
exp .i¢T1/ D 0 (10.25)
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Now by expressing A in polar form as

A D 1

2
a .T1/ ei“.T1/ (10.26)

where a and “ are real values; by substituting it into Eq. (10.25), one can separate
real and imaginary parts that lead to a set of differential equation as follows:

a0 D �a� C �

2
sin .�T1 � ˇ/ (10.27)

aˇ0 D 3˛

8
a3 � �

2
cos .�T1 � ˇ/ (10.28)

Finally, the first approximate solution can be expressed as x0 C O.©/, in which
the a and “ are calculated from steady state solution of Eqs. (10.27) and (10.28).

10.3.3 Parametric Excitation of Linear Systems

We will apply the method of multiple scales on the Mathieu equation where natural
frequency is a time-varying parameter according to Eq. (10.29). This parametrically
excited linear oscillator can simulate small amplitude oscillations of a swing whose
natural frequency is varying periodically in time.

Rx C �
¨2 C ©œcosnt

�
x D 0 (10.29)

The Mathieu equation is very interesting for researchers [1, 14, 25] because
an instability phenomenon occurs when natural frequency of the system (!) and
frequency of the excitation (n) are tuned at certain values. Here, we consider a
special case that is n D 2. In this case when ¨2 ¤ m2; m D 1; 2; 3, the equilibrium
x D 0 is stable near © D 0; however, for some cases when ¨2 Š k2, the solution
is unstable [1, 4]. In this place, the case m D 1 that leads to ¨2 D 1 C ©¢ when
¢ D O.1/ is studied. This is mainly because we will investigate the degenerate
parametric amplifiers in the next section. It is important to recall that in these types
of amplifiers, the frequency of the parametric excitation is tuned at twice of the
natural frequency of the system that is so-called principal resonance case of the
system. Thus, Eq. (10.30) is solved by the method of multiple scales in order to
discuss about ¢ and © parameters for which the instability phenomenon arises.

Rx C .1 C ©¢ C ©œ cos 2t/ x D 0 (10.30)

By expanding the response to the order of O.©2/, we have:

x .t; ©/ D x0 .T0; T1/ C ©x1 .T0; T1/ C O.©2/ (10.31)
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By substituting (10.31) into (10.30) and separating the terms of O.1/ and O.©/,
one can obtain:

D2
0x0 C x0 D 0 (10.32)

D2
0x1 C x1 D �2D0D1x0 � .� C 
 cos .2T0// x0 (10.33)

The solution of Eq. (10.32) is:

x0 D 1

2
A .T1/ eiT0 C cc: (10.34)

In this step, by using this solution in the second equation and expressing the
cosine term in its exponential form, we find:

D2
0x1 C x1 D f�iA

0

exp .iT0/ � 1

2
A� exp .iT0/

� A

4

 exp .3iT0/ �

NA
4

œ exp fi .T0/g C cc (10.35)

The solution for x1 is periodic when the secular terms are eliminated from the
above equation, which implies that:

�iA
0 � A

2
� �

NA
4

œ D 0 (10.36)

Now by expressing A D a C ib and substituting it into Eq. (10.36), one can
separate real and imaginary parts that lead to a set of differential equation as follows:

a0 D
�

��

2
C 


4

�
b (10.37)

b0 D
�

�

2
C 


4

�
a (10.38)

The solutions of this set of equation are proportional to e.	sT1/, where s D
1
2

q

2

4
� �2. Hence, we find that solution is unstable or periodic solution does not

exist when j¢ j < 
=2.

10.3.4 The Mathieu Equation with Viscous Damping

Since there is always an amount of damping in the mechanical systems, a small
viscous damping term can be considered in the Mathieu equation as:
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Rx C ©—Px C .1 C ©¢ C ©œ cos 2t/ x D 0 (10.39)

If the solving procedure is repeated for this case, one finds that the following
terms that produce secular terms should be eliminated:

�iA0 � A

2
� �

NA
4

œ � i
A

2
— D 0 (10.40)

Similar to the last case, if we take A D a C ib, then

a0 D ��

2
a C

�



4
� �

2

�
b (10.41)

b0 D
�




4
C �

2

�
a � �

2
b (10.42)

This leads to s D � �

2
� 1

2

q

2

4
� �2 that is the zeros of the characteristics

equation; the characteristics equation is calculated from:

ˇ̌̌
ˇ̌
ˇ̌

s C �

2
�


4
C �

2

�


4
� �

2
s C �

2

ˇ̌̌
ˇ̌
ˇ̌ D 0 (10.43)

Thus, the trivial solution is stable when — > 0 and œ2 < 4
�
—2 C ¢2

�
. As evident,

when the damping term is omitted that leads to previous condition for undamped
system. The critical condition (œ D 2

p
—2 C ¢2) demonstrates the curve in the .¢; œ/

plane that separate stable and unstable solutions; Fig. 10.7 depicts the instability
bounds with and without damping in the .¢; œ/ plane for different values of damping.
As it can be seen, when 0 < � < 


2
, the instability region has been shifted up, and

for — > 

2

the instability domain does not appear.

10.4 System Model

According to governing equations of motion for reviewed mechanical and elec-
tromechanical parametric amplifiers in Sect. 10.2, the general form of governing
equation for a linear degenerate amplifier may be expressed as Eq. (10.44).

Rz C 2©—Pz C z C ©œ cos .2�t/ z D ©˜ cos .�t C ˆ/ (10.44)

where z represents the mechanical resonators displacement, 
 is the pumping
signal amplitude, — considered for linear dissipation effects, � and � represent
direct excitation signal amplitude and frequency, t represents non-dimensional time
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variable, ˆ stands for relative phase parameter which is necessary for amplifier
tuning. This simple equation is a good case in point to investigate the effects of
different parameters in the response and performance of the different parametric
amplifiers.

Similarly, nonlinear parametric amplifiers can be studied by this equation pro-
vided that compatible term of nonlinearity to be added to the linear equation. Since
the cubic nonlinearity is a typical nonlinear term in mechanical cases, especially
structural vibrations, the basic equation is amended by a cubic nonlinear term as Eq.
(10.45), where ’ is a parameter for highlighting the order of effective nonlinearity in
the system. In addition, for the sake of simplification of the analysis and according
to the conducted studies [18], each of nonlinearity, dissipation, and excitation terms
has been considered to be O .©/. It is indisputable that perturbation method has
proved its effectiveness for these forms of equation. It should be noted that this
problem is investigated in [23] by the method of averaging. Here, similar to previous
cases in this chapter, the method of multiple scales is used to deal with the problem.
Furthermore, the stability analysis of the steady state solution is studied.

Rz C 2©—Pz C z C ©œ cos .2�t/ z C ©’z3 D ©˜ cos .�t C ˆ/ (10.45)

10.4.1 Perturbation Solution

By expanding z as the following expression and substituting it into Eq. (10.45), one
can obtain Eqs. (10.47) and (10.48) for terms with same order.

z .T0; T1/ D Z0 .T0; T1/ C ©Z1 .T0; T1/ C : : : (10.46)

O.1/ W D2
0Z0 C Z0 D 0 (10.47)
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O ."/ W D2
0Z1 C Z1 D �2D0D1Z0 � 
Z0 cos .2�T0/

� ˛Z3
0 � 2�Z0 C � cos .�T0 C ˆ/ (10.48)

The solution of Eq. (10.42) can be expressed as:

Z0 D 1

2
A .T1/ eiT0 C cc (10.49)

where A .T1/ is a complex quantity and cc. stands for complex conjugate of the first
term. In addition, for the sake of investigating system behavior around its natural
frequency, a detuning parameter .¢/ is defined, and direct excitation frequency is
considered to be � D 1C ©¢ . By taking this measure the frequency response curves
of the system can be extracted. These curves are very useful for demonstrating
response variation with parameters of the system. With this in mind and substituting
(10.49) into Eq. (10.48), one can find the expressions which produce secular terms
are eliminated if:

�2i
	
A0 C �A


 � 1

2

 NAei2�T1 � 3˛A2 NA C 1

2
�ei.�T1Cˆ/ D 0 (10.50)

Consider A .T1/ in polar form as (10.51) in order to manage Eq. (10.50).

A D 1

2
a .T1/ ei“.T1/ (10.51)

where a and “ are real-valued quantities. Substituting (10.51) into Eq. (10.50), one
can separate real and imaginary parts; then, a little manipulation over two equations
yields:

a0 D �1

4

a sin 2 .�T1 � ˇ/ � a� C 1

2
� sin .�T1 � ˇ C ˆ/ (10.52)

aˇ0 D 1

4

a cos 2 .�T1 � ˇ/ C 3˛

8
a3 � 1

2
� cos .�T1 � ˇ C ˆ/ (10.53)

Next, by letting � D �T1 � ˇ, Eqs. (10.52) and (10.53) will be transformed into
an autonomous system, the results can be expressed as:

a0 D �1

4

a sin 2� � a� C 1

2
� sin .� C ˆ/ (10.54)

a� 0 D a� � 1

4

a cos 2� � 3˛

8
a3 C 1

2
� cos .� C ˆ/ (10.55)

With Eqs. (10.54) and (10.55) in hand, the steady state solution for the system
of interest can be obtained by setting .a0; � 0/ D .0; 0/. Generally, one may find a
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closed form expression solution for pumping off (i.e., 
 D 0) situation in parametric
amplifiers; however, steady state solution of the considered degenerate amplifier
when 
 ¤ 0 should be evaluated numerically.

10.4.2 Stability Analysis

In order to study the stability of steady state motion, one can impose a small
perturbation to steady state solution and investigate the results by determining the
nature of singular points [4]; therefore, we let,

a D a0 C a1 (10.56)

� D �0 C �1 (10.57)

where a0 & �0 represent the singular point and a1 & �1 are small perturbations over
them. By substituting given expression for a & � into Eqs. (10.54) and (10.55) and
knowing that a0 & �0 satisfy steady state solution as well as neglecting nonlinear
terms, the following equations can be obtained.

a0
1 D �

�
� C 1

4

 sin 2�0

�
a1 C

�
1

2
� cos .�0 C ˆ/ � 1

2

a0 cos 2�0

�
�1 (10.58)

� 0
1 D �

�
3

4
˛a0 C �

2a0
2

cos .�0 C ˆ/

�
a1 C

�
1

2

 sin 2�0 � �

2a0

sin .�0 C ˆ/

�
�1

(10.59)

These equations can be demonstrated in matrix form such that,

�
a0

1

� 0
1

�
D
�

T1 T2

T3 T4

� �
a1

�1

�
(10.60)

where

T1 D �
�

� C 1

4

 sin 2�0

�
(10.61)

T2 D
�

1

2
� cos .�0 C ˆ/ � 1

2

a0 cos 2�0

�
(10.62)

T3 D �
�

3

4
˛a0 C �

2a0
2

cos .�0 C ˆ/

�
(10.63)

T4 D
�

1

2

 sin 2�0 � �

2a0

sin .�0 C ˆ/

�
(10.64)
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As it is clear, the stability of the steady state motion of an expression like fX 0g D
ŒA� fXg depends on the eigenvalues of the A matrix; thus, by evaluating eigenvalues
(s) for the T matrix in (10.60), the nature of singular points will be revealed. Hence,
one needs to solve the following determinant:

ˇ̌
ˇ̌̌ s C � C 1

4

 sin 2�0 � 1

2
� cos .�0 C ˆ/ C 1

2

a0 cos 2�0

3
4
˛a0 C �

2a0
2 cos .�0 C ˆ/ s � 1

2

 sin 2�0 C �

2a0
sin .�0 C ˆ/

ˇ̌
ˇ̌̌ D 0 (10.65)

s2 � .T1 C T4/ s C .T1T4 � T2T3/ D 0 (10.66)

s D .T1 C T4/ ˙
q

.T1 C T4/
2 � 4 .T1T4 � T2T3/

2
(10.67)

According to the above equation, the steady state motion is unstable if
.T1 C T4/ > 0 or .T1T4 � T2T3/ < 0. Having been calculated from (10.67)
for a specific singular point, a complex s with negative real part means a stable
solution (e.g., Stable focus); otherwise the steady state solution is unstable (e.g.,
Saddle point).

Similar to all linear parametrically excited systems, wedge of instability appears
for the unforced linear equation of motion of the system. To extract this wedge of
instability near principal resonance case, one needs to investigate Eq. (10.68).

Rz C 2©—Pz C z C ©œ cos .2�t/ z D 0 (10.68)

By repeating the procedure of solving according to the method of multiple scales,
one finds two equations that are identical to Eqs. (10.54) and (10.55), but in which
’ and ˜ are put equal to zero. As it is clear, in this condition trivial solution will
be appeared, and stability analysis of the trivial solution will reveal the bounds of
instability. In fact, in the case of Eq. (10.68) the secular terms are eliminated as
long as:

�2i
	
A0 C �A


 � 1

2

 NAei2�T1 D 0 (10.69)

Considering

A D 1

2
.p � iq/ei�T1 (10.70)

where p and q are real. By substituting (10.70) into Eq. (10.69) and separating real
and imaginary parts, one obtains:

p0 D ��p C
�

�� � 


4

�
q (10.71)

q0 D
�

� � 


4

�
p � �q (10.72)



296 N. Nasrolahzadeh et al.

Calculating eigenvalues of the coefficient matrix of these set of equations
leads to:

s D �� �
r


2

16
� �2 (10.73)

That implies the trivial solution is stable if:

œ2 < 16.—2 C ¢2/ (10.74)

10.5 Results and Discussion

10.5.1 Frequency Response Curves

In the first place, the steady state solution of the linear system (’ D 0) is
calculated for different parameters of the system. As it can be seen in Fig. 10.8,
amplitude of the system is grown by increasing the effects of pumping signal, and
it becomes boundless when the pumping signal violates linear stability threshold
(œ D 4

p
—2 C ¢2). Figure 10.9 demonstrates the effects of damping and direct

excitation on the amplitude of the amplifier. As it is expected, by increasing the
direct excitation, the response of the system is magnified; and more damping reduces
the amplitude of the amplifier.
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There is no denying that for nonlinear system many stable and unstable solutions
can exist. Therefore, to investigate the nature of this solution, the phase portraits of
the system have been numerically calculated by solving Eqs. (10.54) and (10.55)
with different initial values for a & � . Figure 10.10 shows the phase plane diagrams
for 3 different pumping signals when the detuning parameter is 0.1 (� D 0:1). As
it can be observed the number of stable and unstable solutions varies for different
pumping amplitudes. While for 
 D 0:035 there are two stable and one unstable
solution, one can see three stable and two unstable solution for the 
 D 0:055

and 0.09. For example consider phase plane diagram that has been illustrated in
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Fig. 10.11 Phase plan diagrams of the system for different parameters. (a) ¢ D 0:05; œ D 0:035,
(b) ¢ D 0:05; œ D 0:055, (c) ¢ D 0:05; œ D 0:09, (d) ¢ D 0:01; œ D 0:035, (e) ¢ D 0:01; œ D
0:055 and (f) ¢ D 0:01; œ D 0:09

Fig. 10.10, by tracking the solution routes in the phase plane diagrams, one can
find three stable foci which are the feasible steady state solutions, one of the stable
solutions has very small amplitude while two others have large amplitude. These
stable solutions are almost identical in amplitude, but they have different phase.

Figure 10.11 depicts the phase portrait with same pumping signals when detuning
parameter is 0.05 and 0.01. Again, there is no equal number of stable and unstable
solutions for different pumping signals as well as detuning parameters. In order to
investigate this phenomenon, it is a good idea to plot frequency response curves
of the system for different pumping signals to have all steady state solution in a
frequency range.

When both a0 & � 0 are considered equal to zero in (10.54) and (10.55), the
steady state solutions for the system of interest can be extracted. Figures 10.12,
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Fig. 10.13 Amplitude and phase frequency response in steady state mode when pumping ampli-
tude is slightly above its parametric instability threshold (ˆ D �  
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10.13, and 10.14 depict the amplitude and phase of the steady state solution for
different parameters of the system. As expected, due to the cubic nonlinearity, the
frequency response curves demonstrate a Duffing-like trend near their resonance
frequency that is ¢ D 0. Note that frequency response curves have been calculated
for three different conditions. In the first place, the steady state solutions are
obtained when parameters are set in such a way that pumping amplitude is under
principal resonance instability threshold, that is œ D 4

p
—2 C ¢2. Then, by keeping

other parameter in their previous values, the pumping signal is magnified slightly
and well above the instability threshold.

As it can be observed from Fig. 10.12 for under instability threshold condition
(i.e., œ < 4� when ¢ D 0/, the steady state solution has three branches in a
frequency band that means different steady state solutions in frequency response
regime. By evaluating corresponding eigenvalues for the solutions, it is revealed
that the upper and lower branches are stable solutions for this region and the
middle branch is unstable steady state solution that cannot be achieved in the
reality. Furthermore, Figs. 10.13 and 10.14 show that when the pumping amplitude
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is slightly and far above instability threshold, the frequency response solutions
have five distinct branches. Therefore, they can represent five different steady state
solutions; however, the stability analysis for these conditions leads to three stable
solutions which are feasible and two unstable stationary points. As it is clear from
Figs. 10.13 and 10.14, over a wide frequency range the amplitude of two upper
stable branches is almost equal, while they have completely different phase. The
other interesting phenomena about steady state solution with parameters above
instability threshold is that the higher the pumping signal amplitude, the wider
frequency range to have three stable solutions.

Figures 10.15 and 10.16 show the effects of nonlinear term in the amplitude of
the steady state solution. As it can be seen, by increasing the order of nonlinear
term, the amplitude of the amplifier is decreased, regardless of variation of pumping
signal. It also leads to smaller frequency range for five steady state solutions when
the pumping signal is above the linear stability threshold (Fig. 10.16).

10.5.2 System Performance Metrics

An important parameter for evaluating system performance is the gain of the para-
metric amplifier which is defined according to Eq. (10.75). Parametric amplifier’s
gain is the ratio of the steady state amplitude with pumping signal to amplitude
without pumping signal. In order to study the effects of different parameters on
performance of the amplifier, the gain of the system can be evaluated by changing
parameters. To this end, a specific parameter of the system such as relative phase
(ˆ) can be considered as variable, then by keeping other parameters as constant
values, the gain is extracted. This procedure can be managed for all parameters of
the system, including pumping, damping, nonlinearity, and detuning.
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Firstly, the gain is calculated for linear system to examine the effects of
parameters such as damping and relative excitation phase. Figure 10.17 illustrates
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the effects of pumping signal and damping on the gain of the system. It is clear from
this figure that the gain becomes boundless when the pumping signal reaches to
instability threshold. Moreover, as it can be observed, damping term does not have
an effective impact on gain, but with higher damping, the pumping signal should
and can be more increased to result in a better gain. Figure 10.18 shows the effects
of relative phase excitation (ˆ) on gain of the linear system for different pumping
signal. According to the graphs of Fig. 10.18, the excitation phase can change the
gain of the system in different orders. Although the excitation phase is not such
important parameter in small pumping levels, it has a great role to play when the
amplitude of pumping signal is large enough and close to instability threshold. This
outcome can be discussed from another point of view, in which the pumping signal
is kept constant and the damping parameter is varied. In fact, when the damping
decreases, the required pumping signal for high gain value that arises near instability
threshold reduces. Figure 10.19 demonstrates the results for this case.

In the second place, the effect of nonlinearity is examined on system perfor-
mance; Fig. 10.20 shows the gain of the amplifier for nonlinearity with different
orders. Calculated gains indicate that the more the level of nonlinearity, the less
the effectiveness of the amplifier. Undoubtedly, as it can be seen from the results,
even very small nonlinearity term can dramatically decrease system performance;
therefore, analysis results with linear approximation may significantly be different
for an even slightly nonlinear system. In addition, the finding reveals that nonlinear
amplifiers can work well over instability threshold constraint which was previously
predicted for linear systems. Furthermore, there is no denying that as long as
pumping amplitude is strong enough, large gains still can be acquired.
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Fig. 10.18 The effects of pumping signal and relative phase excitation on the gain of the linear
system (relative phase is important when the pumping signal amplitude is large enough)
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Fig. 10.19 The effects of damping and relative phase excitation on the gain of the linear system
(relative phase is important when the pumping signal amplitude is close to instability threshold)

The impact of relative phase is also examined for different nonlinearity orders.
According to Fig. 10.21, the more the order of nonlinearity, the more distortion
occurs in the gain of the amplifier. In fact, the nonlinearity term change the
phase in which maximum gain occurs that is due to the imposed asymmetry on
the gain versus relative phase axis diagram. In addition, investigation of different
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Fig. 10.21 Gain vs. relative phase for different nonlinearity orders (as the order of nonlinearity
increases, much distortion arises)

detuning parameter for system performance has revealed small changes in system
performance. According to Fig. 10.22, in low pumping signal amplitude region
(e.g., 
 < 0:04/, small positive detuning from resonance frequency leads to higher
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Fig. 10.22 Gain vs. pumping signal (small improvement on system performance by tuning ¢)

system gain. In contrast, in high pumping signal amplitudes (e.g., 
 D 0:08/, the
outcome from slight negative detuning provides better performance than working at
resonance frequency (� D 0).

10.6 Conclusion

Governing equations of motion for mechanical and electromechanical parametric
amplifiers in the literature were reviewed. According to them, a general equation
of motion for a nonlinear classical degenerate parametric amplifier was considered.
The study of the parametric amplifier with a cubic nonlinearity was accomplished
by means of the method of multiple scales. The stability analysis for the steady state
motion of the nonlinear degenerate parametric amplifier as well as trivial solution
of the unforced linear system was conducted. All the steady state solutions demon-
strated a Duffing-like behavior in their frequency response curves. In addition,
the stable solution branches were switched to three when pumping amplitude was
increased over the instability threshold constraint for the unforced linear system.
Furthermore, the effects of nonlinearity, relative phase, pumping signal amplitude,
and detuning parameters were investigated on system performance. The findings
indicate that even very small nonlinearity term can dramatically decrease system
performance as well as changing the relative phase in which maximum gain occurs.
The paper attempted to show that nonlinear amplifiers are stable and can be realized
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when there is no alternative to avoid working in nonlinear range; nevertheless,
nonlinearities limit the maximum gains of parametric amplifiers compared with
classical linear amplifiers.

Key Symbols

m Mass
k Stiffness
c Damping
Q Quality factor
t, � Time
x, z, y Lateral displacement of the resonator
V Excitation voltage
Fe Electrostatic force
r Dimensionless excitation frequency
¨i i-th resonance frequency

 Pumping signal amplitude
� Direct excitation amplitude
ˆ Relative phase of direct excitation
— Linear dissipation
’ Coefficient of cubic nonlinearity for stiffness
� Frequency of the direct excitation
¢ Detuning parameter
a Amplitude of amplifier response
” Phase of amplifier response
© Small positive value
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