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Abstract In practice one may not have always smooth data. When bulk of the
data are smooth but the complete data set apparently contains a few contaminated
observations or outliers, one encounters difficulties to choose an inference technique
because of the fact that the traditional inference techniques developed for smooth
data analysis may no longer provide unbiased and consistent estimates for the
desired parameters such as regression parameters in linear or generalized linear
models (GLMs) setup. In this paper, we first briefly review some of the widely
used bias corrected techniques in linear model setup. But, as opposed to the linear
models in normal or other continuous exponential family based variables, the
robust inference for discrete data in the GLMs setup, such as for count and binary
data, is, however, not adequately discussed in the literature. The advantages and
drawbacks of an existing outliers resistant Mallow’s type quasi-likelihood (MQL)
estimation approach in GLMs setup are reviewed in brief. We then discuss a
recently proposed fully standardized MQL (FSMQL) approach that provides almost
unbiased estimates ensuring its higher consistency performance. One encounters
further challenges when the data in GLMs setup are repeatedly collected over a
period of time. This is mainly because one then requires to modify the FSMQL
type estimation approaches such that the modified approach also accommodates the
correlation structure of the repeated data. A recently proposed robust generalized
QL (RGQL) approach is reviewed for the purpose.

1 Introduction

In a regression setup, the responses whether linear, count, or binary, are generated as
a function of certain suitable covariates. If bulk of the responses appear to be close
to the mean function of the responses with a few remaining responses appearing
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at a significant distance from the mean function, then these latter few responses
are considered to be potential outliers. In general these outliers occur because of
the corresponding covariates which may be contaminated in some ways, and they
are referred to as the mean shifted outliers. In some situations, a response may be
considered as an outlier because of its inflated variance as compared to the bulk of
the responses. It is of main interest to understand the regression model appropriate
for bulk of the good responses. But the use of few outlying responses may distort
the inference for the bulk of the responses. There are at least two ways this inference
problem has been tackled in the literature.

First, it is attempted to detect the outliers and exclude them for the overall
inference. For some justifications on this, one may be referred to Hampel et al.
(1986, Sect. 1.4) among others. For the purpose, many researchers have discussed
the so-called maximum studentized residual (MSR) and maximum normed residual
(MNR) tests for detection of outliers in a linear regression setup for independent
data. For example, one may refer to the work of Srikantan (1961), Stefansky (1971,
1972), Tietjen et al. (1973), Prescott (1975), Lund (1975), Bailey (1977), Johnson
and Prescott (1975), Ellenberg (1973, 1976), Cook and Prescott (1981), Doornbos
(1981), and Beckman and Cook (1983, Sect. 4), among others. The powers of
these two statistics in detecting outliers may also be affected by the ways the
parameters of the regression models are estimated. For a discussion on this, see, for
example, a relatively recent work by Sutradhar et al. (2007). In second approach, a
robust weighted distance function is constructed such that the suspected outliers
get smaller weights. Next the distance function is minimized for the estimation
of the regression effects. Some of the existing widely used robust procedures are:
Minimax estimation, M-estimation, L-estimation, and R-estimation. For details on
these procedures, see, for example, Hampel et al. (1986), Rousseeuw and Leroy
(1987), and Huber (2004), and the references therein.

In the independent setup, some authors such as Cantoni and Ronchetti (2001),
among others, have suggested a Mallow’s type quasi-likelihood (MQL) robust
estimation approach to obtain a consistent estimate for the regression effects
involved in the model. For the MQL construction, they use the Huber’s robust
function but did not use the inverse of the variance of such a function to make
the MQL standardized. Recently, Bari and Sutradhar (2010a) have improved this
estimating equation and introduced a fully standardized MQL (FSMQL) estimating
equation that provides regression estimates with smaller bias. In this paper, we
review these MQL and FSMQL approaches for the estimation of the regression
effects involved in generalized linear models (GLMs), for example for binary and
count data.

Also, there have been some studies using QL or generalized estimating equations
(GEE) approaches for robust regression estimation in the longitudinal setup. For
example, Preisser and Qaqish (1999) have used a resistant GEE (REGEE) approach,
which was improved by Cantoni (2004) (see also Sinha 2006 for a random effects
approach) by using a semi-standardized MQL (SSMQL; see also Bari and Sutradhar
2010b) approach. In the second part of the paper, we review these approaches
including the robust GQL (RGQL) approach discussed by Bari and Sutradhar
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(2010b) and point out their advantages and drawbacks. Both count and binary
longitudinal models are considered.

2 Robust Inference in Regression Models
in Independent Setup

2.1 Inference for Linear Models

There exists a vast literature for robust inference in linear models for independent
data in the presence of one or more outliers. See, for example, Rousseeuw and Leroy
(1987), Huber (2004, Chap. 7), and a relatively recent paper by Sutradhar et al.
(2007). These studies mainly deal with outliers in normal responses. For simplicity
consider a simple linear regression model

y = Xβ + ε, (1)

where y = (y1, . . . ,yi, . . . ,yK)
′ is a K × 1 response vector, X is known design matrix

of order K × p, β is a p× 1 vector of unknown parameters, and ε is an K × 1 error
variable distributed as ε ∼ N(0,σ2IK), IK being the K × n identity matrix. Usually,
each observation in a realization (y,X) contributes to the evaluation of the regression
coefficient β . The contribution of one observation, however, may be discordant
to the point of sensibly determining the value of a regression parameter. Such an
observation is said to be an outlier. To see how an outlier can perturb the linear
model (1), two types of outliers are generally considered. They are (a) mean shifted
outliers, also referred to as the additive outliers, and (b) variance inflated outliers,
also referred to as the innovative or multiplicative outliers.

To construct an additive outlier model, one can perturb the linear model (1) and
write

y = Xβ + ε̃, (2)

where ε̃ = (ε̃1, . . . , ε̃i, . . . , ε̃K)
′ is related to ε in (1) as

ε̃ j =

⎧
⎨

⎩

ε j + δ1, for j = i

ε j, for j �= i,
(3)

where for |δ1|> 0, yi = x′iβ + ε̃i is certainly a discordant observation when compared
to the other K − 1 observations. It is clear from (1) and (3) that

ε̃ ∼ N(δ ,σ2IK),
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where

δ = [01′i−1,δ1,01′K−i]
′.

To construct a variance inflated outlier model, one can perturb the model (1) as

y = Xβ + ε∗, (4)

where ε∗ = (ε∗1 , . . . ,ε∗i , . . . ,ε∗K)′ is related to ε in (1) as

ε∗j =

⎧
⎨

⎩

ε j/
√

ω , for j = i

ε j, for j �= i,
(5)

where for ω → 0, the ith observation yi will have large variance leading this
observation to be an outlier. It is clear from (1) and (5) that

ε∗ ∼ N(0,Vω = σ2diag[1′i−1,1/ω ,1′K−i]).

Thus, under model (2), bulk (K − 1) of the error variables follow N(0,σ2)
distribution and 1 follows N(δ1,σ2). This is equivalent to say that the ε̃i in model
(2) are independent, identically distributed with the common underlying distribution

F(ε̃) = (1− 1
K
)Φ

(
ε̃ − 0

σ

)

+
1
K

Φ
(

ε̃ − δ1

σ

)

,

(Huber 2004, Example 1.1) where Φ(·) is the standard normal cumulative. Simi-
larly, one may say that ε∗i under model (4) are independent, identically distributed
with common underlying distribution

F(ε∗) = (1− 1
K
)Φ

(
ε∗ − 0

σ

)

+
1
K

Φ
(

ε∗ − 0
σ/

√
ω

)

.

2.1.1 Robust Estimation of Regression Effects

It is understandable that the ordinary least square (LS) estimator

β̂LS = [X ′X ]−1X ′y (6)

is biased for β under model (2)–(3) and will be unbiased but inefficient under model
(4)–(5). There exist various robust approaches for the consistent estimation of β
irrespective of the underlying model whether it is (2)–(3) or (4)–(5). Here we briefly
describe two of the approaches, for example.



Robust Inference Progress from Independent to Longitudinal Setup 189

Huber’s Robust Weights Based Iterative Re-weighted Least Square Approach

This estimate is obtained via an iterative re-weighted least squares (RWLS) method
(Street et al. 1988). For p components of β , in this approach one solves the robust
weights based estimating equation

K

∑
j=1

ξ jx ju(y j − x′jβ ) = 0, u = 1 . . . , p, (7)

where x ju is the uth component of the x j vector, and

ξ j =
ψ(r j)

r j
, (8)

with ψ(r j) as the Huber’s bounded function of r j given by

ψ(z) = max [−a,min(z,a)] , with a = 1.25,

where r j = (y j − x′jβ ∗
r(0))/s̃ for j = 1, . . . ,n, with β ∗

r(0) as an initial robust estimate

of β which may be obtained by minimizing the L1 distance ∑K
j=1 |y j − x′jβ |, and s̃

as a robust estimate of σ given by

s̃ = Median
{

largest K-p+1 of the
|y j − x′jβ ∗

r(0)|
0.6745

}
.

Note that if r j = 0, one uses ξ j = 1. The solution to (7) may then be obtained as

β ∗
r(1) = (X ′ΩX)−1X ′Ωy, (9)

where Ω = diag[ξ1, . . . ,ξK ]. This β ∗
r(1) replaces β ∗

r(0) and provides us with a new
start and new weights for an improved estimate of β to be obtained by (9). This
cycle of iterations continues until convergence. Let the final solution be denoted by
β̂r(1).

An Alternative Weights Based Iterative RWLS Approach

Rousseeuw and Leroy (1987, Chap. 5) suggest a least median of squares (LSM)
approach where the scale parameter to compute the residual is estimated using
robust weights different than Huber’s weights used in the last section. In fact
one can use the iterative least square approach discussed in the last section by
replacing Huber’s weights with these new weights suggested by Rousseeuw and
Leroy (1987, p. 202). See, for example, Sutradhar et al. (2007) for a comparison
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between RWLS approaches using Huber’s and Rousseeuw and Leroy weights. To
be specific, Rousseeuw and Leroy robust weights are defined as

w̃ j =

⎧
⎨

⎩

1, if |d j(β ∗
r(0))

/s̃0| ≤ 2.5

0, otherwise,
(10)

where d j(β ∗
r(0))

= y j − x′jβ ∗
r(0) and s̃0 is given by

s̃0 = 1.4826(1+ 5/(K− p))
√

Median d2
j(β ∗

r(0))
.

These robust weights in (10) are then used to compute an Ω̃ matrix as

Ω̃ = diag[w̃1, . . . , w̃ j , . . . , w̃K ],

which is then used to obtain a first step improved robust estimate for β as

β ∗∗
r(1) = (X ′Ω̃X)−1X ′Ω̃y. (11)

The cycle of iterations continues until convergence. Let this final RWLS estimate
be denoted by β̂r(2).

2.1.2 Robust Estimation of Variance Component

Note that in the linear model setup, the LS estimate of σ2 is obtained by computing
the residual sum of squares based on the least square estimate of β . That is, σ̂2

ls =

∑K
j=1(y j − x′jβ̂ls)

2/(K − p). Under the linear model in the presence of outliers, one

may obtain LS estimate of σ2 simply by replacing β̂ls with β̂r(1) or β̂r(2) obtained in
the last section. Thus the LS estimator for σ2 has the formula

σ̃2
ls(1) =

K

∑
j=1

(y j − x′jβ̂r(1))
2/(K − p), (12)

or

σ̃2
ls(2) =

K

∑
j=1

(y j − x′jβ̂r(2))
2/(K − p). (13)

Huber’s Robust Weights Based Iterative RWLS Estimator for σ2

Following Street et al. (1988), one obtains this estimator as
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σ̂2
r(1) =

K

∑
j=1

ξ j

[
y j − x′jβ̂ls

]2/( K

∑
j=1

ξ j − tr{(X ′Ω 2X)(X ′ΩX)−1}
)
, (14)

where ξ j ( j = 1, . . . ,K) is the jth robust weight to protect the estimate against
possible outliers, and Ω = diag(ξ1, . . . ,ξ j , . . . ,ξK). To be specific, ξ j is defined as
ξ j = ψ(r j)/r j with r j = (y j − x′β̂ls)/s∗, where

s∗ = Median

{

largest K-p+1 of the
|y j − x′jβ̂ls|

0.6745

}

.

Note that the ψ function involved in ξ j in (14) is the same Huber’s robust function
used in (8).

Rosseeuw and Leroy Weights Based Robust Estimator for σ2

This robust estimator is computed following Rousseeuw and Leroy (1987, p. 202,
Eq. (1.5)). More specifically, in this approach, robust weights are defined as

wj =

⎧
⎨

⎩

1, if |d j(β̂ls)
/s0| ≤ 2.5

0, otherwise,

where d j(β̂ls)
= y j − x′jβ̂ls and s0 is given by

s0 = 1.4826(1+ 5/(K− p))
√

Median d2
j(β̂ls)

.

Next, these weights are exploited to compute the estimator, say σ̂2
r(2), as

σ̂2
r(2) =

( K

∑
j=1

wjd
2
j(β̂ls)

)/( K

∑
j=1

wj − p
)
. (15)

2.1.3 Finite Sample Performance of the Robust Estimators:
An Illustration

Sutradhar et al. (2007) conducted a simulation study to examine the performance of
the robust methods as compared to the LS method in estimating the parameters in a
linear model when the data contain a few variance inflated outliers. Here, we refer
to some of the results of this study, for example. Consider a linear model with p = 2
covariates so that β = (β1,β2)

′. For the associated K × 2 design matrix X , consider
their design configuration:
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Fig. 1 Mean squared error (MSE) of β̂ls,1 (LS estimator of β1), β̂r(1),1 (first robust estimator of

β2), and β̂r(2),1 (second robust estimator of β1)

D2 : x1 = 1,x2 = 0,all other x(s) at 0.5.

With regard to the sample size, consider K(≡ n) = 6,8,10, and 20 to exam-
ine the effect of small as well as moderately large samples on the estimation.
Furthermore, select two locations for the possible outlier, namely locations at
i = 2 and 3 for K = 6; i = 2 and 4 for K = 8; i = 2 and 6 for K = 10; and
i = 2 and 11 for K = 20. Also, without any loss of generality, choose σ2 = 1,
β1 = 1, and β2 = 0.5. For variance inflation, eight values of ωi, namely ωi =
0.001,0.005,0.01,0.05,0.10,0.25,0.50,and 1.0, were considered. Note that ωi =
1.0 represents the case where the data do not contain any outliers, whereas a small
value of ωi indicates that yi is generated with a large variance implying that yi can be
an influential outlier. The data were simulated 10,000 times. Under each simulation,
the LS estimate of β and σ2 were obtained, which are denoted by β̂ls = (β̂ls,1, β̂ls,2)

′
and σ̂2

ls, respectively. As far as the robust estimation of β and σ2 is concerned,
these parameters were estimated by using two robust approaches. More specifically,
β̂r(1) = (β̂r(1),1, β̂r(1),2)

′ is obtained by using (9), β̂r(2) = (β̂r(2),1, β̂r(2),2)
′ is obtained

by using (11), and similarly σ̃2
r(1) and σ̃2

r(2) are obtained from (14) and (15), respec-
tively. The mean squared errors (MSEs) of these estimators based on 10,000 simu-
lations are displayed in Figs. 1–3, for the estimates of β1,β2, and σ2, respectively.
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Fig. 2 Mean squared error (MSE) of β̂ls,2 (LS estimator of β2), β̂r(1),2 (first robust estimator of

β2), and β̂r(2),2 (second robust estimator of β2)

In summary, the results of this simulation study indicate that in the presence of
a variance inflated outlier, the second robust approach performs worse as compared
to the first robust and LS methods in estimating β1 and β2. In estimating σ2, the LS
method performs very poorly when compared with the robust methods.

2.2 Robust Estimation in GLM Setup For Independent
Discrete Data

As opposed to the linear models in normal or other continuous exponential family
based variables, the robust inference for discrete data in the GLMs setup, such as
for count and binary data, is, however, not adequately discussed in the literature. For
i = 1, . . . ,K, let yi be a discrete response, such as count or binary, collected from the
ith individual, and xi = (xi1, . . . ,xiu, . . . ,xip)

′ be the corresponding p-dimensional
observed covariate vector. Note that when the data contain a single outlier, any of
the K responses y1, . . . ,yi, . . . ,yK can be that outlier. Now, in the spirit of the mean
shifted linear outlier model (2)–(3), suppose that we consider y j, j �= i, i = 1, . . . ,K,
for example, to be the outlier because of the covariate for the jth individual, namely
x j is contaminated. Note that if x̃i = (x̃i1, . . . , x̃iu, . . . , x̃ip)

′ denotes the p-dimensional
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Fig. 3 Mean squared error (MSE) of σ̂ 2
ls (LS estimator of σ 2), σ̃ 2

r(1) (first robust estimator of σ 2),

and σ̃ 2
r(2) (second robust estimator of σ 2)

uncontaminated covariate vector corresponding to yi for all i = 1, . . . ,K, then for a
positive vector δ , the observed covariates {xi} may be related to the uncontaminated
covariates {x̃i} as

x j = x̃ j + δ ,

but xi = x̃i, for i �= j, i = 1, . . . ,K. (16)

It is of primary interest to estimate β = (β1, . . . ,βu, . . . ,βp)
′, the effects of uncon-

taminated covariates x̃i on the response yi. But, as not all the x̃i’s are observed, one
cannot use them to estimate β , instead the observed contaminated xi’s are used,
which causes bias and hence inconsistency in the estimators.

2.2.1 Understanding Outliers in Count and Binary Data

K Count Observations with a Single Outlier

First assume that in the absence of outliers, y1, . . . ,yi, . . . ,yK are generated following
the Poisson density P(Yi = yi) = [exp(−μi)μyi

i ]/yi!, with μi = exp(x̃′iβ ) with x̃i =
(x̃i1, x̃i2)

′. Suppose that the values of these two covariates arise from
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x̃i1
iid∼ N(0.5,0.25) and x̃i2

iid∼ N(0.5,0.5),

respectively, for all i = 1, . . . ,K. Suppose that j is the index for the outlying
observation that takes a value between 1 and K.

Now, to consider y j as an outlying value, that is, to have a data set of size K with
one outlier, one may then shift the values of x̃ j1 and x̃ j2 as

x j1 = x̃ j1 + δ and x j2 = x̃ j2 + δ , δ > 0,

respectively, but retain xi1 = x̃i1 and xi2 = x̃i2, for all i �= j. As far as the shifting
is concerned, suppose that δ = 2.0. Thus, y1, . . . ,yK refer to a sample of K count
observations with y j as the single outlier.

K Binary Observations with a Single Outlier

Note that the existing literature (Copas 1988, p. 226; Carroll and Pederson 1993;
Sinha 2004) does not provide a clear definition for the outliers in binary data.
Remark that Cantoni and Ronchetti (2001) have suggested a practically useful MQL
robust inference technique for independent data subject to outliers in GLM setup.
However even though GLMs include count and binary models, since the concordant
counts (bulk of the observations of similar nature) in the Poisson case and the
concordant success numbers in the binomial case can be exploited in a similar way
to recognize any possible outliers in the respective data sets, Cantoni and Ronchetti’s
(2001) definitions of outliers are appropriate only for the Poisson and binomial
cases. Thus, even though binary is a special case of the binomial setup, Cantoni and
Rochetti’s (2001) robust inference development does not appear to be appropriate
for the binary data. In view of these difficulties with regard to the robust inferences
for the binary case, Bari and Sutradhar (2010a) have provided a new definition for
the outliers for the binary data. More specifically, they dealt with one and two sided
outliers in the binary data. For convenience these definitions are summarized as
follows.

One sided outlier For

Pr[Yi = 1] = E[Yi] = μi =
exp(x′iβ )

1+ exp(x′iβ )
,

and

psb = max{μi}, plb = min{μi},

suppose that the bulk (K − 1) of the binary observations occur with small
probabilities such that

Pr[Yi = 1] =

⎧
⎨

⎩

≤ psb for i �= j, i = 1, . . . ,K,

> psb for i = j,
(17)
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or, with large probabilities such that

Pr[Yi = 1] =

⎧
⎨

⎩

≥ plb for i �= j, i = 1, . . . ,K,

< plb for i = j,
(18)

Here the binary y j, whether 1 or 0, satisfying (17) is referred to as an upper
sided outlier or satisfying (18) is referred to as a lower sided outlier, whereas
the remaining K − 1 responses denoted by yi for i �= j constitute a group of
“concordant” observations.

Two sided outlier It may happen in practice that probabilities for the bulk of the
observations lie in the range psb ≤ P(Yi = 1)≤ plb, leading to a situation where
one may encounter a two sided outlier. To be specific, y j = 0 or 1 will be an
outlier if either P(Yj = 1)> plb or P(Yj = 1)< psb.

Generation of K binary observations with an outlier We now illustrate the gen-
eration of K binary observations including one outlier. For the purpose one
may first generate K binary responses y1, . . . ,yi, . . . ,yK assuming that they do
not contain any outliers. To be specific, generate these K “good” responses
following the binary logistic model P(Yi = 1) = [exp(x̃′iβ )]/[1+ exp(x̃′iβ )], with
two covariates so that x̃i = (x̃i1, x̃i2)

′ and β = (β1,β2)
′. As far as the covariate

values are concerned, similar to the Poisson case, consider two covariates x̃i1 and
x̃i2 as

x̃i1
iid∼ N(−1.0,0.25) and x̃i2

iid∼ N(−1.0,0.5),

respectively, for i = 1, . . . ,K.

Next, to create an outlier y j where j can take any value between 1 and K, change
the corresponding covariate values x̃ j1 and x̃ j2 as

x j1 = x̃ j1 + δ1 and x j2 = x̃ j2 + δ2, δ1,δ2 > 0,

respectively. Note that for large positive δ1 and δ2, these modified covariates will
be increased in magnitude yielding larger probability for y j = 1. One may then treat
y j as an outlier. For convenience, suppose that one uses δ1 = 3.0 and δ2 = 4.0. As
far as the remaining covariates are concerned, they are kept unchanged. That is, for
i �= j (i = 1, . . . ,K), consider xi1 = x̃i1 and xi2 = x̃i2.

2.2.2 Naive and Existing Robust QL Estimation Approaches

Naive QL (NQL) Estimation of β

Had there been no outliers, one could have obtained the consistent estimate of β by
solving the well-known QL (quasi-likelihood) estimating equation
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K

∑
i=1

[
∂ μ̃i

∂β
V−1(μ̃i)(yi − μ̃i)

]

= 0, (19)

(see Wedderburn 1974; McCullagh and Nelder 1989; Heyde 1997) where, for
example, μ̃i = E[Yi] = exp(x̃′iβ ) and V (μ̃i) = var[Yi] = μ̃i for Poisson count data;
and μ̃i =E[Yi] = exp(x̃′iβ )/[1+exp(x̃′iβ )] andV (μ̃i)= var[Yi] = μ̃i(1− μ̃i) for binary
data. But, as the uncontaminated x̃i’s are unobserved, it is not possible to use (19)
for the estimation of β . Now suppose that following (19) but by using the observed
covariates {xi}, one writes the naive quasi-likelihood (NQL) estimating equation for
β given by

K

∑
i=1

[
∂ μi

∂β
V−1(μi)(yi − μi)

]

= 0, (20)

where, for example, μi = exp(x′iβ ) and V (μi) = μi for Poisson count data; and μi =
exp(x′iβ )/[1+exp(x′iβ )] and V (μi) = μi(1−μi) for binary data. Since β is the effect
of x̃i on yi for all i = 1, . . . ,K, it then follows that the quasi-likelihood estimator
obtained from (20) will be biased and hence inconsistent for β .

Partly Standardized Mallows Type QL (PSMQL) Estimation of β

As a remedy to the inconsistency of the quasi-likelihood estimator obtained from
(20), Cantoni and Ronchetti (2001) (see also references therein), among others, have
suggested a Mallow’s type quasi-likelihood (MQL) robust estimation approach to
obtain a consistent estimate for the regression effects β . For the purpose, for ri =

yi−μi√
V (μi)

, they first define the Huber robust function as

ψc(ri) =

⎧
⎨

⎩

ri, |ri| ≤ c,

c sign(ri), |ri|> c,
(21)

where c is referred to as the so-called tuning constant. This robust function is then
used to construct the MQL estimating equation given by

K

∑
i=1

[

w(xi)
∂ μi

∂β
V− 1

2 (μi)ψc(ri)− a(β )
]

= 0, (22)

where a(β ) = 1
K ∑K

i=1 w(xi)
∂ μi
∂β V− 1

2 (μi)E[ψc(ri)], with μi = E(Yi), V (μi) = var(Yi),
and w(xi) = 1 for the binomial data as in Huber’s linear regression case, but
w(xi) =

√
(1− hi) for the Poisson data, where hi is the ith diagonal element of the

hat matrix H = X(X ′X)−1X ′, with X = (x1, . . . ,xi, . . . ,xK)
′ being the K× p covariate

matrix.
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Note that in order to minimize the robust distance function ψc(ri), the MQL
estimating (22) was constructed by using the variance V (μi) = var(Yi) as a weight
function and ∂ μi

∂β as a gradient function, whereas a proper estimating equation should

use var(ψc(ri)) and ∂ψc(ri)
∂β as the weight and gradient functions, respectively. One

may therefore refer to the estimating (22) as a partly standardized MQL (PSMQL)
estimating equation. This PSMQL estimating (22) provides regression estimates
with smaller bias than the traditional maximum likelihood or NQL estimating (20).
But, as discussed in Bari and Sutradhar (2010a), this improvement does not appear
to be significant enough to recommend the use of the PSMQL estimation approach.
Moreover, this PSMQL approach is not suitable for inferences in binary regression
models.

FSMQL Estimation of β

As an improvement over the PSMQL estimation, Bari and Sutradhar (2010a) have
proposed a FSMQL estimation approach where the regression effects β is obtained
by solving the FSMQL estimating equation

K

∑
i=1

[

w(xi)
∂

∂β

{

ψc(ri)− 1
K

K

∑
i=1

E (ψc(ri))

}

{var (ψc(ri))}−1

×
{

ψc(ri)− 1
K

K

∑
i=1

E (ψc(ri))

}]

= 0. (23)

Note that this FSMQL estimating (23) is constructed by replacing the “working”
variance and gradient functions V (μi) and ∂ μi

∂β in (22), with the true variance and

gradient functions var(ψc(ri)) and ∂ψc(ri)
∂β , respectively. Also, w(xi) =

√
(1− hi) is

used in both binary and Poisson cases. Furthermore, the specific formulas for the
true weight function var(ψc(ri)) and the gradient function ∂ψc(ri)

∂β for the count and
binary cases are available from Bari and Sutradhar (2010a, Sects. 2.1 and 2.2).

Bari and Sutradhar (2010a) also considered another version of the FSMQL
estimating (23), which was developed by using the deviance ψc(ri)− E(ψc(ri))
instead of ψc(ri)− 1

K ∑K
i=1 E(ψc(ri)). This alternative FSMQL estimating equation

has the form

K

∑
i=1

[

w(xi)
∂

∂β
{ψc(ri)−E (ψc(ri))}{var (ψc(ri))}−1 {ψc(ri)−E (ψc(ri))}

]

= 0.

(24)

For convenience, one may refer to (23) and (24) as the FSMQL1 and FSMQL2

estimating equations, respectively.
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Robust Function and Properties for Count Data

For the count data, consider the Huber robust function ψc(ri) as in (21). The
expectation and variance of this function are available from Cantoni and Ronchetti
(2001, Appendix A, p. 1028). The gradient of the robust function and its expectation
may then be computed as follows (see also Bari and Sutradhar 2010a, Appendix):

∂ψc(ri)

∂β
=

⎧
⎨

⎩

− μi

V
1
2 (μi)

xi, |ri| ≤ c,

0, |ri|> c,
(25)

and

∂E(ψc(ri))

∂β
= −c

[
∂

∂β
FYi(i2)+

∂
∂β

FYi(i1)

]

+
μi

V
1
2 (μi)

[{

xiP(Yi = i1)+
∂

∂β
P(Yi = i1)

}

−
{

xiP(Yi = i2)+
∂

∂β
P(Yi = i2)

}]

, (26)

where

∂
∂β

P(Yi = i1) = P(Yi = i1)(i1 − μi)xi,
∂

∂β
P(Yi = i2) = P(Yi = i2)(i2 − μi)xi,

∂
∂β

FYi(i1) =
i1

∑
j=0

∂
∂β

P(Yi = j), and
∂

∂β
FYi(i2) =

i2

∑
j=0

∂
∂β

P(Yi = j).

Robust Function and Properties for Binary Data

(a) Robust function in the presence of one sided outlier

Suppose that the bulk of the binary observations occur with small probabilities. In
this case, the robust function ψc(ri) (i = 1, . . . ,n) may be defined as

ψc(ri) =

⎧
⎪⎪⎨

⎪⎪⎩

yi−μi

V
1
2 (μi)

, P(Yi = 1)≤ psb, i �= j, i = 1, . . . ,K,

yi−μ(c1)
i

V (c1)
1
2 (μ(c1)

i )

, P(Yi = 1)> psb, i = j,
(27)

where μi =
exp(x′iβ )

1+exp(x′iβ )
, V (μi) = μi(1− μi) for all i = 1, . . . ,K, and psb = max{μi},

i �= j, is a bound for all K − 1 small probabilities.
Note that as opposed to the case given in (27), if the bulk of the binary

observations occur with large probabilities, then the robust function ψc(ri) (i =
1, . . . ,K) is defined as
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ψc(ri) =

⎧
⎪⎪⎨

⎪⎪⎩

yi−μi

V
1
2 (μi)

, P(Yi = 1)≥ plb, i �= j, i = 1, . . . ,K,

yi−μ(c2)
i

V (c2)
1
2 (μ(c2)

i )

, P(Yi = 1)< plb, i = j,
(28)

where plb = min{μi}, i �= j, is a bound for all K − 1 large probabilities.

(b) Robust function in the presence of two sided outlier

In this case, the robust function ψc(ri) (i = 1, . . . ,K) may be defined as

ψc(ri) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yi−μ(c1)
i

V (c1)
1
2 (μ(c1)

i )

, P(Yi = 1)> plb, i = j,

yi−μi

V
1
2 (μi)

, psb ≤ P(Yi = 1)≤ plb, i �= j, i = 1, . . . ,K,

yi−μ(c2)
i

V (c2)
1
2 (μ(c2)

i )

, P(Yi = 1)< psb, i = j,

(29)

where μ (c1)
j and V (c1)(μ (c1)

j ) are defined as in (27), whereas μ (c2)
j and V (c2)(μ (c2)

j )
are defined as in (28).

(b(i)) Basic properties of the robust function ψc(ri): Binary case

It is convenient to write these properties for the two sided outlier case. The results for
the one sided outlier may be obtained as a special case. The expectation, variance,
and gradient of the robust function in the presence of a two sided outlier are available
from Bari and Sutradhar (2010a, Appendix). For convenience, these properties are
summarized as follows.

Let ψc(ri) denote the robust function defined as in (29). The expectation and
variance of ψc(ri) are given by

E(ψc(ri)) =
μi − μ (c1)

i

V (c1)
1
2 (μ (c1)

i )
P1 +

μi − μ (c2)
i

V (c2)
1
2 (μ (c2)

i )
P3, (30)

and

var(ψc(ri)) =
(1−2μ(c1)

i )μi +μ(c1)
i

2

V (c1)(μ(c1)
i )

P1 +P2 +
(1−2μ(c2)

i )μi +μ(c2)
i

2

V (c2)(μ(c2)
i )

P3 − [E(ψc(ri))]
2 ,

(31)

where P1, P2, and P3 are the probabilities for a binary observation to satisfy the
conditions P(Yi = 1)> plb, psb ≤ P(Yi = 1)≤ plb, and P(Yi = 1)< psb, respectively.
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In practice, the probabilities P1, P2, and P3 may be computed from the data by using
the sample proportions given by, for example,

P1 =
Number of observations satisfying P(Yi = 1)> plb

Total observation (K)
.

The gradient of the robust function ψc(ri) [defined in (29)] and its expectation
are given by

∂ψc(ri)

∂β
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, P(Yi = 1)> plb, i = j,

−μi(1−μi)xi

V
1
2 (μi)

, psb ≤ P(Yi = 1)≤ plb, i �= j, i = 1, . . . ,K,

0, P(Yi = 1)< psb, i = j,

(32)

and

∂E(ψc(ri))

∂β
=

(1− μi)μixi

V (c1)
1
2 (μ (c1)

i )
P1 +

(1− μi)μixi

V (c2)
1
2 (μ (c2)

i )
P3. (33)

To illustrate the finite sample based relative performance of the competitive
robust approaches, namely PSMQL (22), FSMQL1 (23), and FSMQL2 (24) ap-
proaches, we refer to some of the simulation results from Bari and Sutradhar
(2010a). In the presence of a single outlier, the count and binary data were generated
as in Sect. 2.2.1. With K = 60 observations including an outlier, the relative bias
(RB) of an estimator, for example, for βk (k = 1, . . . , p) given by

RB (β̂k) =
|β̂k −βk|
s.e. (β̂k)

× 100, (34)

were computed based 1,000 simulations. The results are shown in Table 1.

Table 1 (For count and binary data with one outlier) Simulated means (SM), simulated standard
errors (SSE), and relative biases (RB) of the PSMQL, FSMQL1, and FSMQL2 estimates of the
regression parameters β1 = 1.0 and β2 = 0.5, for sample size 60 and selected values of the tuning
constant c = 1.4 under the Poisson model, and tuning constant μc1 = 0.9 under the binary model,
in the presence of one outlier

Estimation method

PSMQL FSMQL1 FSMQL2

Model K Tuning constant Statistic β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

Count 60 c = 1.4 SM 0.507 0.600 0.899 0.517 0.893 0.488
SSE 0.206 0.188 0.307 0.239 0.279 0.210
RB 240 53 33 7 38 6

Binary 60 μc1 = 0.9 SM 1.161 0.194 0.994 0.503 1.003 0.486
SSE 0.777 0.760 0.782 0.777 0.779 0.764
RB 21 40 1 0 0 2
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The results of the table show that both fully standardized robust procedures
FSMQL1 and FSMQL2 perform much better in estimating β as compared to the
existing PSMQL robust approach.

3 Robust Inference in Longitudinal Setup

3.1 Existing GEE Approaches for Robust Inferences

Let μi(xi) = E(Yi) = (μi1, . . . ,μit , . . . ,μiT )
′ denote the mean, and Σi(xi,ρ) : T × T

be the true covariance matrix of the response vector yi where xi represents all
true covariates, i.e., xi ≡ xi1, . . . ,xit , . . . ,xiT . For convenience, the covariance matrix

Σi(xi,ρ) is often expressed as Σi(xi,ρ) = A
1
2
i Ci(ρ)A

1
2
i , where Ai = diag[σi11, . . . ,σitt ,

. . . ,σiT T ] and Ci(ρ) is the correlation matrix for repeated binary or count data.
Note that if the longitudinal data do not contain any outliers, then one may obtain
consistent and highly efficient estimate of β by solving the GQL estimating equation

K

∑
i=1

[
∂ μ ′

i (xi)

∂β
Σ−1

i (xi, ρ̂)(yi − μi(xi))

]

= 0, (35)

(see Sutradhar 2003) where ρ̂ is a suitable consistent, for example, a moment
estimate of ρ .

Note that in practice it may, however, happen that a small percentage such as 1%
of longitudinal observations are suspected to be outliers. Suppose that m of the KT
responses are referred to as the outliers when their corresponding covariates are
shifted by an amount δ , δ being a real valued vector. For convenience, we denote
the new set of covariates as

x̃it =

⎧
⎪⎨

⎪⎩

xit for (i, t) �≡ (i′, t ′)

xit + δ for (i, t)≡ (i′, t ′)
,

and use these observed covariates x̃it for the estimation of β . It is, therefore, clear
that since β is the effect of the true covariate xit on yit , the solution of the observed
covariates x̃i based naive GQL (NGQL) estimating equation

K

∑
i=1

[
∂ μ ′

i (x̃i)

∂β
Σ−1

i (x̃i, ρ̂)(yi − μi(x̃i))

]

= 0, (36)

will produce biased and hence inconsistent estimate for β . To overcome this incon-
sistency problem, Preisser and Qaqish (1999), among others, have proposed to solve
a resistant generalized quasi-likelihood estimating equation (REGEE) given by
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K

∑
i=1

[
∂ μ ′

i (x̃i)

∂β
V−1

i (x̃i,α)(ψ∗
i − ci)

]

= 0, (37)

where ψ∗
i is a down-weighting function, ci = E(ψ∗

i ), and Vi(x̃i,α) is a “working”
covariance matrix (Liang and Zeger 1986). Note that the REGEE in (37) does not
appear to be a proper weighted estimating equation. This is because, first, Vi(x̃i,α)
is only a substitute of Σi(x̃i,ρ) matrix, whereas in the presence of outliers, one needs
to use Ω ∗

i = var(ψ∗
i ) in order to obtain efficient regression estimates. Secondly, the

REGEE (37) uses ∂ μ ′
i (x̃i)

∂β as the gradient function, whereas the consistency of the
estimates may depend on the proper gradient function constructed by taking the
derivative of the ψ∗

i − ci function with respect to β .
Cantoni (2004) has provided an improvement over the REGEE by introducing

the proper gradient function in the estimating equation. To be specific, as compared
to Preisser and Qaqish (1999) (see also Eq. (36)), Cantoni (2004) constructed an
improved resistant generalized estimating equation (IREGEE) given by

K

∑
i=1

[

E

{
∂ (ψ∗

i − ci)

∂β ′

}′
V−1

i (x̃i,α)(ψ∗
i − ci)

]

= 0, (38)

where E
[

∂ (ψ∗
i −ci)

∂β ′
]

is a proper gradient of the robust function ψ∗
i − ci, with

E

[
∂ (ψ∗

i − ci)

∂β ′

]

= E

[
∂ (ψ∗

i − ci)

∂ μ ′
i (x̃i)

]
∂ μi

∂β ′ = Γi
∂ μi

∂β ′ .

Note that the estimating (38) still uses a “working” covariance matrix Vi(x̃i,α),
whereas an efficient estimating equation (Sutradhar and Das 1999) should use the
proper covariance matrix of the robust function, namely Ω ∗

i = var(ψ∗
i ). Further,

similar to Cantoni (2004), Sinha (2006) has attempted to develop certain robust
inferences to deal with outliers in the longitudinal data. But, Sinha (2006) has
modeled the longitudinal correlations through random effects, which, therefore
addresses a different problem than longitudinal data problems.

Recently, Bari and Sutradhar (2010b) has proposed an auto-correlation class
based robust GQL (RGQL) approach for inferences in binary and count panel
data models in the presence of outliers. This RGQL approach produces consistent
and highly efficient regression estimates, and it is a generalization of the FSMQL
approach for independent data to the longitudinal setup. The RGQL approach is
summarized in the next section.

3.2 RGQL Approach for Robust Inferences
in Longitudinal Setup

Note that when the covariates are stationary, that is, time independent, one may
develop a general auto-correlation class based robust GQL estimation approach.



204 B.C. Sutradhar

Bari and Sutradhar (2010b) have considered non-stationary covariates and exploited
the most likely AR(1) type correlation structures for both count and binary data.
These correlation structures are discussed in detail in Sutradhar (2010), see also
Sutradhar (2011). For convenience we summarize these correlation structures as
follows.

Recall that xit = (xit1, . . . ,xitu, . . . ,xit p)
′ is the p× 1 vector of covariates corre-

sponding to yit when the data do not contain any outliers, and β denote the effects
of the covariate xit on yit . The AR(1) correlation models for repeated responses
yi1, . . . ,yit , . . . ,yiT based on the uncontaminated covariates xi1, . . . ,xit , . . . ,xiT , for
binary and count data are given below.

AR(1) model for repeated binary data

For μit =
exp(x′it β )

1+exp(x′it β )
, for all t = 1, . . . ,T , the AR(1) model for the binary data may

be written as

yi1 ∼ bin(μi1) and

yit |yi,t−1 ∼ bin[μit +ρ(yi,t−1 − μi,t−1)], (39)

(Zeger et al. 1985; Qaqish 2003) where ρ is a correlation index parameter. The
binary AR(1) model (39) has the auto-correlation structure given by

corr(Yiu,Yit) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ t−u
[

σiuu
σitt

]1/2
, for u < t

ρu−t
[

σitt
σiuu

]1/2
, for u > t

, (40)

where σiuu = μiu(1−μiu), for example, is the variance of yiu. Note that ρ parameter
in (39)–(40) must satisfy the range restriction

max

[

− μit

1− μi,t−1
,−1− μit

μi,t−1

]

≤ ρ ≤ min

[
1− μit

1− μi,t−1
,

μit

μi,t−1

]

. (41)

AR(1) model for repeated count data

As opposed to the binary AR(1) model (39), the AR(1) model for the count data is
defined as

yi1 ∼ Poisson(μi1)

yit = ρ ∗ yi,t−1 + dit , t = 2, . . . ,T, (42)

(see McKenzie 1988; Sutradhar 2003), where yi,t−1 ∼ Poisson(μi,t−1) and dit ∼
Poisson(μit − ρμi,t−1), with μit = E(Yit) = exp(x′itβ ). In (42), dit and yi,t−1 are
assumed to be independent. Also, for given count yi,t−1,
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ρ ∗ yi,t−1 =
yi,t−1

∑
j=1

b j(ρ),

where b j(ρ) stands for a binary variable with P[b j(ρ) = 1] = ρ and P[b j(ρ) = 0] =
1−ρ . The AR(1) model (42) for count data has the auto-correlation structure given
by

corr(Yiu,Yit ) = ρ t−u
√

μiu

μit
, (43)

with ρ satisfying the range restriction

0 < ρ < min

[

1,
μit

μi,t−1

]

, t = 2, · · · ,T. (44)

3.2.1 RGQL Estimating Equation

For ξi = [ψc(ri1), . . . ,ψc(rit), . . . ,ψc(riT )]
′, its expectation λi is available from

Cantoni and Ronchetti (2001) for the count data, and from Sect. 2.2.2 for the binary
case. Recall from (38) that based on “working” covariance of the responses (Liang
and Zeger 1986), Cantoni (2004) has suggested an IREGEE approach for estimating
β in the presence of outliers. One may obtain consistent β estimate by solving a
slightly different equation than (38) given by

K

∑
i=1

[

Wi
∂

∂β

{

ξi −K−1
K

∑
i=1

λi

}′
V−1

i (α)

{

ξi −K−1
K

∑
i=1

λi

}]

= 0, (45)

where Wi = diag[wi1, . . . ,wit , . . . ,wiT ] is the T × T covariate dependent diagonal
weight matrix so that covariates corresponding to the outlying response yield less
weight for the corresponding robust function. To be specific, the t-th diagonal
element of the Wi matrix is computed as wit =

√
1− hitt , hitt being the t-th diagonal

element of the hat matrix Hi = X̃i(X̃ ′
i X̃i)

−1X̃ ′
i with X̃i = [x̃i1, . . . , x̃it , . . . , x̃iT ]

′. See,
for example, Cantoni and Ronchetti (2001). Also in (45), Vi(α) = cov(Yi) =

A
1
2
i R(α)A

1
2
i is a “working” covariance matrix of yi, with R(α) as the associated

“working” correlation matrix. Note that there are twofold problems with this
estimating equation. First, for efficiency increase, it would have been appropriate
to use cov(ξi) = cov[ψc(ri1), . . . ,ψc(rit), . . . ,ψc(riT )] as the weight matrix instead
of the true covariance matrix Σi(α) = cov(Yi). Secondly, Cantoni (2004) did not
even use Σi, rather has used a “working” covariance matrix Vi(α) = cov(Yi).

To overcome this inefficiency problem encountered by Cantoni’s approach, Bari
and Sutradhar (2010b) have suggested a robust function based GQL (RGQL)
estimating equation for β as



206 B.C. Sutradhar

K

∑
i=1

[

Wi
∂

∂β

{

ξi −K−1
K

∑
i=1

λi

}′
Ω−1

i

{

ξi −K−1
K

∑
i=1

λi

}]

= 0, (46)

where

Ωi = cov(ξi) = (ωiut), (47)

with

ωiut = E [ψc(riu)ψc(rit )]−{E(ψc(riu))E(ψc(rit))} , (48)

where, as mentioned above, the formulas for E[ψc(rit )] are available for both count
and binary data.

Computation of Ωi for the Binary Data

Note that the computation of the product moment E [ψc(riu)ψc(rit)] in (48) is
manageable for the binary case, but it is extremely difficult for the count data. For
example, suppose that yit , t = 1, . . . ,T , used in the robust functions ψc(rit ), follow

an AR(1) type correlation structure given by (40), where μit =
exp(x′it β )

1+exp(x′itβ )
and ρ

is a correlation index parameter. Next, suppose that the binary data contain two
sided outliers. One may then follow (29) and compute all nine combinations for the
product term ψc(riu)ψc(rit ) and compute the expectations of all these nine terms,
and derive the formulas as

E [ψc(riu)ψc(rit)] = ρ t−uσiuuaiut +[E(ψc(riu))E(ψc(rit))] , (49)

where

aiut =
P2

1√

σ (c1)
itt σ (c1)

iuu

+P1P2

⎡

⎣
1

√

σitt σ
(c1)
iuu

+
1

√

σ (c1)
itt σiuu

⎤

⎦

+ P1P3

⎡

⎣
1

√

σ (c2)
itt σ (c1)

iuu

+
1

√

σ (c1)
itt σ (c2)

iuu

⎤

⎦+P2P3

⎡

⎣
1

√

σ (c2)
itt σiuu

+
1

√

σitt σ
(c2)
iuu

⎤

⎦

+
P2

2√
σitt σiuu

+
P2

3√

σ (c2)
itt σ (c2)

iuu

,

for u < t. We may then easily compute ωiut by using (49) and (48).
Further note that for the one sided outlier case, the E [ψc(riu)ψc(rit )] can be

obtained from (49) as follows. For the one sided down-weighting function ψc(rit)
given in (28), one may compute the expectation of ψc(riu)ψc(rit ) from (49) by
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changing the limits obtained by replacing plb with 0. Similarly, the product moment
based on the down-weighting function ψc(rit ) given in (27), can be obtained from
(49) by changing the limits obtained by replacing psb with 1.

Under the AR(1) binary correlation structure (40), the outlier based moment
estimation formula for ρ derived from (49), is given by

ρ̂M =

∑K
i=1 ∑T−1

u=1 [ψc(riu)−E(ψc(riu))][ψc(ri,u+1)−E(ψc(ri,u+1))]wiuwi,u+1
K(T−1)

∑K
i=1 ∑T

u=1[ψc(riu)−E(ψc(riu))]
2/var[ψc(riu)]

KT

∑K
i=1 ∑T−1

u=1 σiuuaiut wiuwi,u+1
K(T−1)

. (50)

Alternatively, for any lag 1 dependent [irrespective of the correlation structure such
as AR(1) or MA(1)] binary or count data with possible outliers, the lag 1 correlation
index parameter ρ may be estimated as

ρ̂M =

∑K
i=1 ∑T−1

u=1 [ψc(riu)wiu−ξ̄u,w][ψc(ri,u+1)wi,u+1−ξ̄u+1,w]

K(T−1)

∑K
i=1 ∑T

u=1[ψc(riu)wiu−ξ̄u,w]2

KT

, (51)

where ξ̄t,w = 1
K ∑K

i=1 ψc(rit)wit .

Computation of Ωi for Count Data

Note that as opposed to the binary case, the construction of the Ωi matrix is difficult
for the count data case. One may, however, alternatively compute this Ωi matrix by
using the general formula

cov(ξi) = Ωi = A
1
2
iξCiξ A

1
2
iξ , (52)

where Aiξ = [var(ψc(ri1)), . . . ,var(ψc(rit)), . . . ,var(ψc(riT ))] and Ciξ = (ciξ ,ut),
with ciξ ,ut = corr[ψc(riu),ψc(rit)] for u, t = 1, . . . ,T . For (52), the formulas for
var[ψc(rit)] for the binary data are given in Sect. 2.2.2, and for the count data
they are available from Cantoni and Ronchetti (2001, Appendix). As far as the
computation of the Ciξ matrix is concerned, one may approximate this matrix by a
constant matrix C∗

ξ , say, by pretending that the covariates are stationary even though
they are non-stationary (i.e., time dependent). Under this assumption, the (u, t)th
component of the constant matrix C∗

ξ may be computed as

C∗
ξ = (c∗ξ ,ut),



208 B.C. Sutradhar

where

c∗ξ ,ut =
1
K ∑K

i=1[ψc(riu)− ξ̄u][ψc(rit)− ξ̄t ]
√

1
K ∑K

i=1[ψc(riu)− ξ̄u]2
1
K ∑K

i=1[ψc(rit )− ξ̄t ]2
, (53)

with ξ̄t =
1
K ∑K

i=1 ψc(rit ), for all t = 1, . . . ,T .
Note that the REGEE approach encounters convergence problems and also this

approach produces regression estimates with much larger relative biases than the
RGQL approach. See, for example, the finite sample relative performance of the
RGQL and REGEE approaches shown through intensive simulation studies reported
in Bari and Sutradhar (2010b).
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