
Response-Dependent Sampling with Clustered
and Longitudinal Data

Michael A. McIsaac and Richard J. Cook

Abstract Prospective cohort studies typically involve repeated assessment of
individuals to determine whether they have a particular health condition. The usual
goal in such studies is to relate the presence of the condition to disease markers or
exposure variables. Disease markers are often too difficult or costly to measure for
all individuals in a sample. In such settings, two- and multi-phase sampling designs
are routinely adopted to enable researchers to select individuals on whom these
expensive markers are to be assessed. In this article we review the rationale and
format of two-phase sampling designs in retrospective and cross-sectional studies.
We then develop frameworks for multi-phase designs in the context of studies with
clustered or longitudinal responses. Model-based and semi-parametric methods are
discussed for estimation and inference.

1 Introduction

Two-phase sampling designs have proven useful in epidemiology for ensuring
efficient use of resources when estimating the effect of expensive or otherwise
difficult to measure exposure variables on a response. Under such designs, a
regression model is often specified with a binary response indicating disease status
and a covariate vector recording the exposure variable of interest along with possible
auxiliary covariates. The first phase of sampling generates data on the response and
auxiliary covariates. A sub-sample of these individuals is chosen at a second phase
of sampling, and the expensive exposure variable is measured for these individuals.
Viewed as a whole, the full sample features missing exposure data in individuals
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selected in phase I but not selected in the phase II sub-sample, with the missing data
mechanism determined by the nature of the phase-II sampling probabilities.

There is a wide range of statistical approaches for regression with incomplete
covariate data, including methods based on maximum likelihood (Lawless et al.
1999), mean score equations (Reilly and Pepe 1995; Reilly 1996), inverse proba-
bility weighted estimating functions, and augmented inverse probability weighted
estimating functions (Robins et al. 1994; Tsiatis 2006). These approaches differ
in the nature of the assumptions required and the extent to which data from
individuals with incomplete exposure data are utilized. Maximum likelihood, while
potentially optimally efficient, requires one to model the distribution of the exposure
variable given any auxiliary variables, and misspecification of this model can lead
to an inconsistent estimator (Horton and Laird 2001). The mean score method
involves specification of unbiased estimating functions by nonparametrically esti-
mating the conditional distribution of the exposure variable given the response and
auxiliary variables based on the phase-II sample (Reilly and Pepe 1995). In their
simplest form, inverse probability weighted estimating equations restrict attention
to individuals in the phase-II sample and hence do not require modelling of the
covariate distribution. The resulting estimates are consistent provided the weights
are correctly specified, but they are typically less efficient than maximum likelihood
estimates (Lawless et al. 1999). Augmented inverse probability weighted estimating
equations aim to improve efficiency by exploiting information in the individuals
who only provide information in the phase-I sample (Robins et al. 1994; Tsiatis
2006).

When planning studies, the challenge is to specify the phase-II selection model
which will lead to the most efficient estimators of the parameters of interest; this
is typically the coefficient of the exposure variable. To do this one must adopt a
response model and a framework for inference which accommodate the incomplete
exposure data. Factors influencing the choice of the framework for inference include
the kinds of assumptions one is willing to make, the degree of importance placed
on robustness, and efficiency. Given any particular framework, the asymptotic
distribution of the resulting estimators is then required to inform the design (i.e.
specification of the phase-II sampling probabilities).

Much of the work to date on two-phase designs involves univariate outcomes
reflecting disease status. The purpose of this article is to consider statistical issues
in two-phase designs with more complex disease outcomes, motivated by our
involvement in the following two studies.

Example 1 (A Study of Genetic Risk in Psoriatic Arthritis). The Centre for Prog-
nosis Studies in the Rheumatic Diseases maintains a clinical registry of patients at
the Toronto Western Hospital with psoriatic arthritis. Patients have been recruited
and followed since its inception in 1976 and it is now the largest cohort of patients
with PsA in the world. Upon entry to the clinic patients undergo a detailed clinical
and radiological examination and provide serum samples which are subsequently
stored. Follow-up clinical and radiological assessments are scheduled annually
and biannually, respectively, in order to track changes in joint damage. Disease
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progression can be modelled in a number of ways including the development
of newly damaged joints (Sutradhar and Cook, 2009), the involvement of new
types of joints (Tolusso and Cook 2009; Chandran et al. 2010), and the onset of
a particular condition. These approaches, however, involve composite outcomes
because they aggregate information over multiple joints. We consider analyses
based on models for the onset of damage in the sacroiliac (SI) joints, which
signals the onset of spondyloarthritis. Damage of the SI joints is determined by
radiological examination with the extent of damage in each joint graded using a
standardized scale (Rahman et al. 1998). Serum biomarkers and genetic factors can
play important roles in identifying patients at high risk for developing psoriatic
spondyloarthritis (Rahman et al. 1998), and as a consequence, biomarker studies
are of considerable importance.

We consider data from patients from the first assessment at which serum samples
are taken which can be used for genetic testing. We restrict attention to individuals
who have not experienced damage in their sacroiliac joints as of this assessment and
a clustered (paired) response is based on the onset of damage in the left and right
sacroiliac joints between the baseline and a follow-up assessment. The candidate
genetic risk factor in this setting is the human leukocyte antigen B27, a factor
known to be associated with progression of other diseases involving connective
tissue and joints, and the auxiliary variable is a marker of inflammation called C-
reactive protein (CRP) (del Rincon et al. 2003). Genetic typing is costly and it is
desirable to carry this out for a subset of individuals in the cohort.

Example 2 (The Canadian Longitudinal Study of Aging). The Canadian Longitudi-
nal Study on Aging (CLSA) involves the establishment of a pan-Canadian cohort
to enable estimation of the incidence rates of several chronic diseases and to study
associated risk factors. It involves 50,000 individuals aged 45 to 85 years old who
are to be followed for 20 years or until the time of death. All participants in the
CLSA will provide some information to the study, while a subset of 30,000 will be
chosen for additional, in-depth examination. This sub-cohort will undergo a more
intensive clinical examination, provide imaging data, and give biological specimens
every three years; specimens will be stored in biobanks in a controlled environment
to facilitate subsequent testing. Thus the biobank will serve as a valuable resource
for affiliated investigators to study risk factors predictive of disease onset and
progression. Samples will be too expensive to process for all 30,000 individuals
in the cohort undergoing intensive follow-up, so it will be of central importance
to determine how individuals should be selected for testing of stored specimens
(Raina et al. 2009). We therefore explore the extension of the two-phase sampling
problem to longitudinal data. Since interest lies in the onset of disease, we focus on
transitional models and formulate the exposure effects on transition probabilities.
We study various designs for sampling and analysis to investigate how optimal
selection procedures can be derived at a particular time point given the available
partial histories. Specifically, we examine the improved precision in estimation
that can result when more information is used in deriving optimal selection
probabilities.
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The remainder of this article is organized as follows. Notation is defined and the
format of two-phase response-dependent sampling schemes is described in Sect. 2.
In Sect. 3 we consider the setting of clustered responses with cluster-level exposure
and auxiliary variables. Marginal models (Liang and Zeger 1986) are adopted in
this setting with analysis frameworks based on maximum likelihood, mean score
estimating functions, and inverse probability weighted pseudolikelihood. In Sect. 4
we give a framework for two-phase designs in longitudinal studies where interest
lies in modelling the effect of an exposure variable on the onset of disease under a
first-order Markov model. Asymptotic theory and optimal designs are provided for
each setting. Concluding remarks and topics for further research are given in Sect. 5.

2 Response-dependent Sampling with Correlated Data

2.1 Notation and Study Design

Two-phase sampling has been widely used to enhance precision of estimators of
key parameters with resource constraints (Chatterjee et al. 2003; Pickles et al. 1995;
Whittemore and Halpern 1997). This sampling framework is particularly appealing
whenever the measurement of a covariate of central importance incurs considerable
cost relative to the cost of associated auxiliary variables. Two-phase sampling
involves the collection of outcome and inexpensive auxiliary data in a large phase-I
sample, which is exploited to determine how individuals should be selected into a
phase-II subsample for measurement of the expensive covariate (Reilly and Pepe
1995; Zhao et al. 2009). The efficiency gain that comes from such a two-phase
sampling framework depends on the parameter of interest, the method of analysis,
and the way in which the phase-I data are exploited in the design of the phase-II
selection probabilities (Reilly 1996).

We begin with a discussion of likelihood-based inference which requires full
model specification but enables optimal efficiency. To cover the case of clustered
and longitudinal data simultaneously, we adopt a general formulation whereby
Yi = (Yi1, . . . ,YiK)

′ denotes a K × 1 response vector for individual i; we let Xi and
Vi denote the expensive exposure variable and the auxiliary variable, respectively.
Let f (Yi|Xi,Vi;β ) denote the conditional joint density or mass function for Yi given
(Xi,Vi) indexed by a p × 1 parameter β . Let g(Xi|Vi;α) denote the conditional
distribution of Xi|Vi indexed by a q× 1 parameter α and let the r × 1 parameter γ
index the marginal distribution of V . The random variables are governed by the joint
model f (Y,X ,V ;β ,α,γ) = f (Y |X ,V ;β )g(X |V ;α)h(V ;γ), but (α,γ) are nuisance
parameters which are routinely eliminated by conditioning on (X ,V ) when data are
complete.

In a two-phase study, {(Yi,Vi), i = 1,2, . . . ,N} are observed for all N individuals
selected in the phase-I sample and Xi is observed in the n individuals selected for
inclusion in the phase-II sample. If Ri = I(Xi is observed ), then selection into the
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phase-II sample is governed by the phase-II selection probabilities π(Y,V ;δ ) =
P(R = 1|Y,V ;δ ), where δ indexes this distribution. Note that within this two-phase
sampling framework, we consider missingness by design, so we can be confident
that data are missing at random (MAR)—i.e. P(R= 1|Y,X ,V ;δ ) = P(R= 1|Y,V ;δ )
(Little and Rubin 2002). If the phase-II selection probabilities do not exploit the
phase-I data—i.e. P(R = 1|Y,V ;δ ) = P(R= 1;δ )—then individuals are selected for
the phase-II sample by simple random sampling and the expensive exposure variable
will be missing completely at random (MCAR). Phase-two selection probabilities
which exploit phase-I data can result in more efficient estimators.

2.2 Methods of Analysis

A variety of frameworks are available for the analyses of clustered data (Neuhaus
1992). Mixed-effect models (Laird and Ware 1982; Stiratelli et al. 1984) are
effective when one wishes to assess the effects of within-cluster covariates. These
models account for the dependence of responses within clusters by introducing
unobservable, cluster-specific latent variables. When one wishes to explore the
effects of cluster-level covariates on marginal means, analyses are often more
naturally carried out via population-average approaches which may involve full
model specification (Heagerty and Zeger 2000; Heagerty 2002); first order gener-
alized estimating equations can also be adopted (Liang and Zeger 1986) or second
order generalized estimating equations could be used, the latter being most often
considered for clustered binary responses (Prentice 1988; Zhao and Prentice 1990).
Autoregressive models are appropriate when response data arise serially and it is of
interest to determine how changes occur over time (Zeng and Cook 2007; Sutradhar
2008). These methods of analyses can be extended in different ways to account for
data which are incomplete (Lawless et al. 1999; Robins et al. 1995; Troxel et al.
1997).

We consider three likelihood-based methods for estimation of regression coef-
ficients in marginal mean models and conditional means when covariate data are
incomplete due to a MAR mechanism.

2.2.1 Maximum Likelihood

The full likelihood for these data is

LF(β ,α,γ,δ ) =
N

∏
i=1

[
f (Yi,Xi,Vi;β ,α,γ) P(Ri = 1|Yi,Vi;δ )

]Ri

× [
f (Yi,Vi;β ,α,γ) P(Ri = 0|Yi,Vi;δ )

]1−Ri .

One may restrict attention to the partial likelihood
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L(β ,α,γ) =
N

∏
i=1

[
f (Yi,Xi,Vi;β ,α,γ)

]Ri
[

f (Yi,Vi;β ,α,γ)
]1−Ri

provided δ is functionally independent of (β ′,α ′,γ ′)′. In the special case that data
are complete, orthogonality of the parameters enables focus on the partial likelihood

L(β ) =
N

∏
i=1

f (Yi|Xi,Vi;β ) (1)

(Breslow and Chatterjee 1999; Lawless et al. 1999). More generally however, if Xi

is not observed for some clusters and the missing data mechanism is MAR, then the
observed data partial likelihood is

L(θ ) =
N

∏
i=1

[
f (Yi|Xi,Vi;β )g(Xi|Vi;α)

]Ri
[

EX |V
{

f (Yi|X,Vi;β )
}
]1−Ri

, (2)

where it can be seen that estimation of the parameters of interest, β , must occur
jointly with the estimation of the nuisance parameter α in θ = (β ′,α ′)′.

Parameter estimates can be found by maximizing the likelihood in (2) directly,
or by implementing an EM algorithm (Dempster et al. 1977) and iteratively
maximizing the complete-data likelihood

Lc(θ ) =
N

∏
i=1

[ f (Yi|Xi,Vi;β )g(Xi|Vi;α)]Ri [ f (Yi|Xi,Vi;β )g(Xi|Vi;α)]1−Ri (3)

(Little and Rubin 2002). The expectation step involves computing Q(θ ;θ k) =
EX |Y,V [logLc(θ );θ k], where θ k is the estimate of θ at the kth iterations and
EX |Y,V [logLc(θ );θ k] is

N

∑
i=1

{
Ri [log f (Yi|Xi,Vi;β )+ log g(Xi|Vi;α)]

+ (1−Ri)
[
EX |Y,V {log f (Yi|X ,Vi;β );θ k}+EX |Y,V{log g(X |Vi;α);θ k}

]}
.

The maximization step yields updated estimates θ (k+1) obtained by solving

∂Q(θ ;θ k)

∂β
=

N

∑
i=1

{
RiUβ (Yi|Xi,Vi)+ (1−Ri)EX |Y,V [Uβ (Yi|X ,Vi);θ k]

}
= 0 (4)

and

∂Q(θ ;θ k)

∂α
=

N

∑
i=1

{
RiUα(Xi|Vi)+ (1−Ri)EX |Y,V [Uα(X |Vi);θ k]

}
= 0,

whereUα(Xi|Vi)= ∂ logg(Xi|Vi;α)/∂α , and Uβ (Yi|Xi,Vi)= ∂ log f (Yi|Xi,Vi;β )/∂β .
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Note that this method simultaneously estimates β and α and hence if X |V
is not correctly modelled, estimates of β will be inconsistent. We therefore
consider alternative methods of analysis which, while motivated by the likelihood
approach, do not require specification of the model for X |V . These pseudolikelihood
approaches are potentially less efficient, but can provide consistent estimators of β
without making any model assumptions about the covariate distributions.

2.2.2 The Mean Score Method

Each step in the iterative EM procedure involves using (4) to update β by estimating
the conditional expectation of the pseudoscore function Uβ (Y |X ,V) for individuals
with incomplete data. This expectation can alternatively be estimated empirically in
a single step (Lawless et al. 1999) rendering the so-called mean score equation of
Reilly and Pepe (1995):

U(β ) =
N

∑
i=1

{
RiUβ (Yi|Xi,Vi)+ (1−Ri)ÊX |Y,V [Uβ (Yi|X ,Vi)]

}
= 0. (5)

The problem then reduces to obtaining a robust nonparametric estimate of g(X |Y,V)
in order to compute ÊX |Y,V (·). When data are MAR and (Y,V ) is discrete, the
conditional distribution can be consistently estimated nonparametrically using the
phase-II sample since g(X |Y,V,R = 1) = g(X |Y,V ).

2.2.3 Weighted Pseudolikelihood

Recall that with complete data on all individuals we would want to maximize the
likelihood function (1) or, equivalently, solve the score equations

U(β ) =
N

∑
i=1

Uβ (Yi|Xi,Vi) =
N

∑
i=1

∂ log f (Yi|Xi,Vi;β )/∂β = 0. (6)

When the data are incomplete, rather than making auxiliary distributional as-
sumptions, we may wish to restrict attention to individuals who provide complete
information. Such complete-case estimators often induce bias when data are not
MCAR (Little and Rubin 2002), but if contributions to (6) are weighted by the
inverse of the probability Xi is observed, the resultant estimators will be consistent
(Lawless et al. 1999; Robins et al. 1994). That is, we can maximize the weighted
log-pseudolikelihood or, equivalently, solve the weighted pseudoscore equations

U(β ) =
N

∑
i=1

Ui(β ) =
N

∑
i=1

Ri

π(Yi,Vi;δ )
Uβ (Yi|Xi,Vi) = 0. (7)
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Solving U(β ) = 0 yields a consistent estimator of β since (7) is an unbiased
estimating function. To see this, we take the expectation of a single term in the sum
and drop the subscript i for convenience to get

EY |X ,V

[
ER|Y,X{R}
π(Y,V ;δ )

Uβ (Y |X ,V )

]
= EY |X ,V

[
Uβ (Y |X ,V)

]
= 0 ,

since R ⊥ X |(Y,V ) if X is MAR and Uβ (Y |X ,V ) is an unbiased estimating function.
We now turn our attention to the particular problems of optimal two-phase design

with clustered and longitudinal data and restrict attention to the case of binary
responses.

3 Response-dependent Sampling with Clustered Binary Data

3.1 The Response Model for Clustered Data

Let Yi = (Yi1,Yi2)
′ denote the bivariate binary response for cluster i, and let Xi

and Vi be the univariate expensive and auxiliary covariates, respectively, defined
at the cluster level (i.e. all subjects in a given cluster have the same values of these
covariates). In the context of the study from the University of Toronto Psoriatic
Arthritis Clinic, the responses correspond to the status of the left and right sacroiliac
joints. The expensive covariate represents the human leukocyte antigen (HLA)
marker B27 and the auxiliary variable is the inexpensive marker of inflammation,
CRP, measured at the baseline visit. We consider a regression model for the marginal
mean and let μi j = E[Yi j|Xi,Vi] = P(Yi j = 1|Xi,Vi). Specifically we adopt the logistic
model

logit μi j = β0 +βxXi +βvVi, (8)

where the covariates are assumed to have a common affect on both responses. We
adopt the model of Lipsitz et al. (1991) and so account for the association between
Yi1 and Yi2 given (Xi,Vi) via a common conditional odds ratio. That is, we let μikl =
P(Yi1 = k,Yi2 = l|Xi,Vi;β ), where β = (β0,βx,βv,ψ)′, with

ψ =
P(Yi1 = 1,Yi2 = 1|Xi,Vi)/P(Yi1 = 0,Yi2 = 1|Xi,Vi)

P(Yi1 = 1,Yi2 = 0|Xi,Vi)/P(Yi1 = 0,Yi2 = 0|Xi,Vi)
=

μi11/μi01

μi10/μi00

the odds of subunit 1 in cluster i responding given Xi and Vi when subunit 2 responds,
versus the respective odds when subunit 2 doesn’t respond, Then

P(Yi1 = 1,Yi2 = 1|Xi,Vi;β ) =

{
ci−[c2

i −4ψ(ψ−1)μi1μi2]
1/2

2(ψ−1) if ψ �= 1

μi1μi2 if ψ = 1,
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where ci = 1− (1−ψ)(μi1 + μi2). The marginal means and the odds ratio com-
pletely specify the bivariate distribution of the clustered binary responses. We
consider binary covariates X and V which arise so that

logit P(Xi = 1|Vi;α) = α0 +αvVi

and

logit P(Vi = 1;γ) = γ.

The discrete nature of the covariates (X ,V ) means there is no issue of misspecifica-
tion in this part of the model.

3.2 The Selection Model

We specify the second-phase sampling design for these bivariate data through the
choice of selection parameters δ in the probabilities π(Yi,Vi;δ ) =P(Ri = 1|Yi,Vi;δ ),
where we consider the selection model

logit π(Yi,Vi;δ ) = δ0+δ1Yi1+δ2Yi2+δ3Vi+δ4Yi1Yi2+δ5Yi1Vi+δ6Yi2Vi+δ7Yi1Yi2Vi.

Note that since the covariate V and the responses Y1 and Y2 are binary, the use of
this saturated selection model is equivalent to specifying stratum-specific sampling
probabilities which indicate the selection probabilities that should be used within
each of the eight strata defined by the phase-I data (Y1,Y2,V ).

3.3 Mean Score Method with Discrete Phase-One Data

When both Y and V are discrete variables and g(X |Y,V )= g(X |Y,V,R= 1), a natural
estimate of the conditional distribution g(X |Y,V) is

ĝ(X |Y,V ) =
n(1)X ,Y,V

n(1)Y,V

,

where n(1)Y,X ,V = ∑i:Ri=1 I(Yi =Y,Xi = X ,Vi =V ) and n(1)Y,V = ∑i:Ri=1 I(Yi =Y,Vi =V ).
The conditional expectation of the pseudoscore is then estimated as

ÊX |Y,V [Uβ (Yj|X ,Vj)] = ∑
x

Uβ (Yj|X ,Vj)
n(1)Yj ,X ,Vj

n(1)Yj ,Vj
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so

∑
j:R j=0

ÊX |Y,V [Uβ (Yj|X ,Vj)] = ∑
i:Ri=1

Uβ (Yj|Xi,Vj)
n(0)Yj ,Vj

n(1)Yj ,Vj

,

where n(0)Y,V = ∑i:Ri=0 I(Yi = Y,Vi = V ). Therefore the mean score estimating equa-
tions (5) reduce to

U(β ) =
N

∑
i=1

Ri

(

1+
n(0)Yi,Vi

n(1)Yi,Vi

)

Uβ (Yi|Xi,Vi) = 0,

which can be seen to be a weighted pseudolikelihood approach (7) where the
selection probabilities are estimated empirically using

π(Y,V ; δ̂ ) =

(

1+
n(0)Y,V

n(1)Y,V

)−1

=
∑i I(Ri = 1,Yi = Y,Vi =V )

∑i I(Yi = Y,Vi =V )

(Lawless et al. 1999; Zhao 2005). The weighted pseudolikelihood approach will re-
main consistent if known weights are replaced with consistently estimated weights,
as is done here with the mean score method. In fact, it is often advantageous to
utilize estimated weights even when the true weights are known since the estimation
of weights in (5) incorporates information from all individuals available at the first
phase of sampling, while (7) only considers the completely observed individuals
selected at phase two; therefore, this mean score approach will generally be more
efficient than the weighted pseudolikelihood approach that incorporates the known
selection probabilities (Lawless et al. 1999; Robins et al. 1994).

3.4 Frameworks for Analysis and Design Criteria

Different designs can exploit phase-I data in different ways. The different second-
phase sampling designs will result in different levels of efficiency of the resultant
estimators, and the optimal designs will depend on the chosen method of analysis.
We consider five sampling designs: simple random sampling, balanced sampling,
optimal maximum likelihood sampling, optimal weighted pseudolikelihood sam-
pling, and optimal mean score sampling. These designs (which are described in
more depth below) require different amounts of information at phase-I. Simple
random sampling ignores all phase-I data. Balanced sampling designs require only
the size of the phase-I strata. The optimal designs are derived to minimize the
asymptotic variance of the estimator of βx and they require knowledge of the
parameter values at the design stage. In practice, these parameter values would be
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unknown; however, it would be possible to base these optimal design derivations on
initial parameter estimates found using a small pilot study. This process has been
shown to work well in several settings (Reilly and Pepe 1995; Reilly 1996; Pepe
et al. 1994; Whittemore and Halpern 1997).

We consider the problem where N, the size of the phase-I sample is fixed and
budgetary constraints require that the expected number of individuals selected at
phase-II, P(R = 1)∗N, is also fixed. Optimal designs aim to minimize the variance
of the estimator of βx subject to this budgetary constraint. We consider Bernoulli
sampling (Lawless et al. 1999) wherein all N individuals are observed at phase-I and
selection decisions for inclusion in phase-II are made independently and according
to pre-specified selection probabilities π(Y,V ;δ ).

Truly optimal designs are not always feasible as they may sometimes result in
selection probabilities that exceed one (Reilly and Pepe 1995) and may degenerate
and result in selection probabilities that are near zero for some strata (Breslow and
Cain 1988). In general, small selection probabilities are problematic as they may
preclude testing of certain interactions, and both the mean score method and the
weighted pseudolikelihood require selection probabilities be bounded away from
zero. We, therefore, constrain all of our selection probabilities to be in the range
(0.05,1). As in Reilly and Pepe (1995), when optimal selection probabilities fall
outside of this range, we fix the offending selection probability at the boundary
and optimize the remaining selection probabilities. The balanced design can suffer
from a similar problem in that a truly balanced design can often require selection
probabilities that are larger than 1 in smaller strata. In this situation, we fix the
offending selection probabilities at 1 and select the remaining individuals in a
balanced way from the other strata.

3.4.1 Simple Random Sampling

Simple random sampling uses phase-II selection probabilities that are the same
for all individuals irrespective of their phase-I data: i.e. π(Y,V ;δ ) = PR for some
constant PR. The data that arise from this design are MCAR. This naive sampling
scheme does not exploit information available in the phase-I data and so it will be
used as a baseline to assess the efficiency gains of more sophisticated designs.

3.4.2 Balanced Sampling

Breslow and Cain (1988) and Breslow and Chatterjee (1999) advocate a balanced
sampling design. Phase-I data are used to stratify the sample, and the phase-II
sample is chosen to contain the same number of individuals from each stratum. This
design is not optimally efficient but is thought to offer a “reasonable compromise
between the competing demands of efficiency and the need to check model
assumptions” (Breslow and Chatterjee 1999).
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It is not always clear how the phase-I data should be used to stratify the sample.
For the clustered data problem, we will consider two balanced sampling designs. In
the first balanced sampling design, the phase-I sample will be divided into the eight
classes defined by all possible values of (Y1,Y2,V ). However, since we are defining
efficiency in terms of the variance of the estimator of βx, and (8) assumes a common
effect of X on either response, it may be more in the spirit of the balanced design
to sample equally from the six strata defined by (Y1 +Y2,V ); therefore, we also
consider this second balanced design when analysing the clustered data. Note that
in our asymptotic calculations, these designs are based on expected phase-I stratum
sizes, which come from having knowledge of the true parameters at the design stage.

3.4.3 Optimal Likelihood Sampling

If θ̂ is the estimator of θ = (α ′,β ′)′ which maximizes (2) and is estimated from data
obtained with phase-II selection probabilities defined by δ , then asymptotically

√
N(θ̂ −θ )∼ N(0,I −1

θ ;δ Γθ ;δI −1
θ ;δ ),

where Iθ ;δ = E
[− ∂Si(θ )/∂θ ′], Γθ ;δ = E

[
Si(θ )S′i(θ )

]
and Si(θ ) is the score

function corresponding to the observed-data likelihood in (2). We say that this
estimator has asymptotic variance I −1

θ ;δ , since Iθ ;δ =Γθ ;δ (Cox and Hinkley 1974).
The expected information is affected by the choice of the phase-II selection

parameter, δ , so optimal maximum likelihood designs, π(Y,V ;δ opt), can be found
for any specified θ . This is done here by numerically identifying the phase-II
selection probabilities that minimize the asymptotic variance of the maximum
likelihood estimator of βx subject to the budgetary constraints. The budget limits
how many individuals can be sampled in the second phase; we set

P(R = 1) = ∑
Y,V

π(Y,V ;δ )P(Y,V ) = PR (9)

so that given the size of the phase-I sample, N, the expected phase-II sample size
is fixed at N ·PR, for some prespecified sampling fraction PR. This sampling design
will be optimally efficient for maximum likelihood estimation of βx whenever the
covariate model and the parameters used in the design are correctly specified, as
they are in the asymptotic calculations in the next section.

3.4.4 Optimal Mean Score Sampling

Reilly and Pepe (1995) show that the mean score estimator is asymptotically normal
with an asymptotic variance that can be written as

I −1
β +I −1

β Ωβ ;δ I −1
β ,
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where

Iβ = E
[− ∂Uβ (Y |X ,V )/∂β ′],

and

Ωβ ;δ = ∑
Y,V

P(Y,V )[π(Y,V ;δ )−1 − 1] · varX |Y,V [Uβ (Y |X ,V )],

with varX |Y,V [Uβ (Y |X ,V )] given by

{
EX |Y,V

[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]−EX |Y,V

[
Uβ (Y |X ,V )

]
EX |Y,V

[
U ′

β (Y |X ,V)
]}

.

Therefore, the optimal second-phase selection probabilities, which give the
greatest precision in estimating βx subject to the budgetary constraint (9), can be
written as

π(Y,V ;δ opt) =
PR
{
I −1

β varX |Y,V [Uβ (Y |X ,V )]I −1
β

}1/2
[k,k]

∑Y,V P(Y,V )
{
I −1

β varX |Y,V [Uβ (Y |X ,V )]I −1
β

}1/2
[k,k]

,

where
{

A
}
[k,k] refers to the entry of the asymptotic variance matrix corresponding

to βx (Pepe et al. 1994; Reilly and Pepe 1995; Reilly 1996).

3.4.5 Optimal Weighted Pseudolikelihood Sampling

Asymptotically, the weighted pseudolikelihood estimator, β̃ , is distributed as

√
N(β̃ −β )∼ N(0,I −1

β Γβ ;δ I −1
β ),

where

Γβ ;δ = E

[
Ri

π(Y,V ;δ )2 Uβ (Y |X ,V )U ′
β (Y |X ,V )

]

(Lawless et al. 1999; Robins et al. 1994). The asymptotic variance of the weighted
pseudolikelihood estimator, I −1

β Γβ ;δ I −1
β , can be written explicitly as a function

of the selection probabilities by noting that Iβ is functionally independent of δ , and

Γβ ;δ = ∑
Y,V

P(Y,V )π(Y,V ;δ )−1EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
.

Therefore, as in Reilly and Pepe (1995), a Lagrange multiplier approach can
be taken to minimize the asymptotic variance matrix entry corresponding to the
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estimator of βx subject the budgetary constraint in (9). These optimal second-phase
selection probabilities are

π(Y,V ;δ opt) =
PR
{
I −1

β EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
I −1

β
}1/2
[k,k]

∑Y,V P(Y,V )
{
I −1

β EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
I −1

β
}1/2
[k,k]

,

where again
{

A
}
[k,k] refers to the entry of the asymptotic variance matrix corre-

sponding to βx.

3.5 Asymptotic Relative Efficiencies

In order to assess the efficiency gain that can result from exploiting available
auxiliary data in the selection of individuals for measurement of expensive covariate
information, balanced and optimal phase-II sampling designs were derived for a
range of parameter values. The asymptotic efficiencies of the estimators resulting
from these designs were calculated relative to the asymptotic efficiency of a simple
random sampling design. We considered the three methods of analysis: maximizing
the observed data likelihood (ML), the mean score method (MS), and maximizing
the weighted pseudolikelihood (WP). For each of these methods of analysis we
considered four designs: simple random sampling (SRS), balanced sampling over
all eight strata defined by (Y1,Y2,V ) (BAL 8), balanced sampling over the six strata
defined by (Y1 +Y2,V ) (BAL 6), and the sampling design which is asymptotically
optimal for precise estimation of βx with the given method of analysis (OPT).

The efficiency of each design D was calculated relative to simple random
sampling through

REx(D,A) =
asvarD(β̂ A

x )

asvarSRS(β̂ A
x )

, (10)

where, for example, asvarBAL8(β̂ ML
x ) represents the asymptotic variance of the

estimator of βx that comes from using ML analysis with the BAL 8 design. We
also consider the relative efficiency of the designs for estimating the effect of the
auxiliary variable βv and ψ . Note that the “optimal” design will not necessarily be
efficient for estimation of parameters other than βx, although Reilly (1996) reported
that in their examples optimal designs for one parameter “achieved an improvement
in the precision of almost all parameters”.

The asymptotic relative efficiencies of the different sampling designs is presented
in Figs. 1, 2, and 3, for estimation of βx, βv, and ψ , respectively. The relative
efficiencies are presented for a range of values of the association parameter ψ while
the other parameters were chosen so that E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] =
0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25). The fourth panel in each of
these figures presents the asymptotic variance of the estimators that result from
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Fig. 1 Asymptotic efficiency of estimators of βx under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

using SRS. Therefore, each of the first three panels within Figs. 1–3 leads to
a comparison of efficiency amongst phase-II sampling designs for the specified
method of analysis, while the fourth panel allows for a comparison of efficiency
between methods of analysis.

It can be seen that the optimal design allows for a great increase in the efficiency
of estimation of βx; implementing an optimal phase-II sampling strategy can result
in efficiency gains of 30–50 % over SRS, depending on the method of analysis
(Fig. 1). In fact, for all methods of analysis, the optimal design results in more
efficient estimators than SRS for all parameters, not just βx (Figs. 1–3). This is
similar to that which was reported by Reilly (1996), where optimizing for efficient
estimation of one parameter led to efficiency gains everywhere.

The balanced designs sometimes result in efficiency gains and sometimes result
in a loss of efficiency. In the estimation of ψ using WP analysis (Fig. 3, panel 3),
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Fig. 2 Asymptotic efficiency of estimators of βv under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

the balanced designs are both more efficient than the optimal design. However, for
estimation of βx (Fig. 1), a balanced design can be seen to be much less efficient than
the naive SRS for both MS and WP analysis. The BAL 6 design is generally more
efficient than the BAL 8 design, but neither design is consistently more efficient
than SRS.

Estimators of βx from SRS designs are very similar for ML, MS, and WP analysis
(Fig. 1, panel 4), but use of WP is very inefficient for estimation of the other
parameters (Figs. 2 and 3, panel 4).

It can also be seen that there is little difference amongst the designs for estimating
ψ or βv when using ML or MS (Figs. 2 and 3, panels 1 and 2). However, SRS is
severely inefficient for estimating these parameters with WP analysis (Figs. 2 and 3,
panel 3). So, the efficiency of estimators of ψ and βv using WP analysis is greatly
affected by the choice of sampling design, but even with the most efficient phase-II
sampling design, WP estimators will still be less efficient than ML or MS estimators.
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Fig. 3 Asymptotic efficiency of estimators of ψ under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

4 Response-dependent Sampling with Longitudinal
Binary Data

4.1 The Response Model for Longitudinal Data

Here we consider the analysis of binary data arising from a longitudinal study where
the binary response variable is measured at baseline and at each of two prespecified
follow-up timepoints. We assume that Yi0 = 0 and denote the response vector for
individual i as Yi = (Yi0,Yi1,Yi2)

′. We again consider binary covariates Xi and Vi,
where Vi is known for all individuals at time 0, but Xi will only be collected for
individuals selected into a phase-II sample. This setting is a simplified version
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of the kind of data collected in the CLSA when interest lies in estimating the
effect of a risk factor for the onset of a disease. Here Yik indicates the presence
of disease at the assessment k, k = 1,2, and interest lies in the effect of covariates
on P(Yik = 1|Yi,k−1 = 0), the probability of disease developing between the (k−1)st
and kth assessments, where we assume an irreversible disease process with P(Yik =
0|Yi,k−1 = 1) = 0. Specifically, here it is of interest to examine how the change in
disease status (e.g. onset of diabetes) is affected by a time-invariant and expensive
binary covariate Xi (e.g. a genetic factor), after accounting for an available baseline
auxiliary covariate Vi.

We again consider analyses through maximization of the observed data likeli-
hood (ML), the mean score method (MS), and weighted pseudolikelihoods (WP).
For these data, we are not interested in estimating marginal parameters as in (8),
rather we are primarily interested in the transitional effect of the covariate X in the
response model

logit P(Yik = 1|Yi,k−1 = 0,Xi,Vi;β ) = β0 +β1I(k = 2)+βxXi +βvVi, k = 1,2.

Due to the irreversible nature of the disease process, the joint response model on
which the likelihood methods are based is

P(Yi|Xi,Vi;β ) = I(Yi,1 = 1)P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )I(Yi,1 = 0)I(Yi,2 = 0)

× [1−P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )][1−P(Yi,2 = 1|Yi,1 = 0,Xi,Vi;β )]

× I(Yi,1 = 0)I(Yi,2 = 1)[1−P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )]

× P(Yi,2 = 1|Yi,1 = 0,Xi,Vi;β ).

4.2 The Selection Model

Here we consider balanced and optimal designs for the selection of a phase-II
sample at each of the three timepoints. This allows us to examine how the efficiency
of designs is affected by the amount of auxiliary information available at phase-I for
choosing the phase-II sample. Note that simple random sampling is not affected by
the time at which the phase-II sample is chosen as this design does not exploit the
data available at phase-I.

The selection model at time t can be expressed as P(Ri = 1|Yi1, . . . ,Yit ,Vi;δ (t)). At
each progressive timepoint, more phase-I information is available for exploitation
in deriving efficient phase-II selection probabilities. At timepoint 0, the phase-I
sample can be divided into two strata based on the available information on V ,
so π(Y,V ;δ (0)) = π(V ;δ (0)); at timepoint 1, the phase-I sample can be stratified
into four classes based on the available information on V and Y1, so π(Y,V ;δ (0)) =
π(Y1,V ;δ (0)); at timpoint 2, the phase-I sample can be stratified into six classes
based on the available information on V , Y1, and Y2, where it is known that
P(Y2 = 0|Y1 = 1) = 0.
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Simple random sampling is the same at each timepoint, but the efficiency of
the balanced and optimal designs will be affected by the amount of information
available at phase-I. Therefore, for this study of transitional effects, we consider
7 designs for each method of analysis: simple random sampling (SRS), balanced
sampling using the phase-I data available at each timepoint (call these BAL 0, BAL
1, and BAL 2 at timepoints 0, 1, and 2, respectively) and the sampling designs which
are optimal for estimating βx given the specified method of analysis and the data that
are available at the time of selection (call these OPT 0, OPT 1, and OPT 2). We will
again present the efficiencies of the designs relative to simple random sampling, as
calculated in (10).

The asymptotic variances and optimal designs can be found as in the previous
section; however, summations are no longer over strata defined by (Y1,Y2,V ), but
rather over strata defined by the data that are available at the time of selection.
This decrease in phase-I data essentially places added constraints on the optimal
sampling designs derived in the previous section; for example, at timepoint 0, when
only V is available for phase-II sampling decisions, then π(Y,V ;δ ) = π(V ;δ ) for
all Y = (Y1,Y2) ∈ {(0,0),(0,1),(1,1)}.

4.3 Asymptotic Relative Efficiencies

We derived optimal designs for a range of values of PR, which defines the budgetary
constraint in (9). Other parameters were chosen so that E[Y1] = 0.2;E[Y2] =
0.4;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25). The
relative efficiencies of the different sampling designs is presented in Figs. 4, 5,
and 6, for ML analysis, MS analysis, and WP analysis, respectively. We consider
the relative efficiency of each of the considered designs for estimating β0, β1, βx,
and βv.

As expected, the optimal sampling design offered large efficiency gains over
simple random and balanced designs when estimating βx. As before, these optimal
designs also added efficiency to the estimation of other parameters (Figs. 4, 5,
and 6). Having more information at the time of sampling increased the efficiency
of the optimal design for the estimation of all parameters. However BAL 2, the
balanced design at timepoint 2, was generally less efficient than BAL 1, the balanced
design which was based only on the auxiliary information available at timepoint 1.
This indicates that, as was seen in the comparison of BAL 6 and BAL 8 in the
previous section, having more phase-I information does not necessarily improve the
efficiency of balanced designs.

The asymptotic variance of the ML and MS estimators under SRS was very
similar; however, the optimal design offered a greater increase in efficiency for the
ML estimator of βx than for the MS estimator (Figs. 4 and 5, panel 3). The balanced
designs were often less efficient than the naive simple random sampling approach to
gathering data for estimation of βx (Figs. 4, 5, and 6). The use of a balanced design
appears to be particularly inefficient when analysis is to be carried out through the
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Fig. 4 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using maximum likelihood analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the ML estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 9.86,12.99,33.00, and 16.58

mean score method or the weighted pseudolikelihood (Figs. 5 and 6). Note that
as the sampling fraction increases, smaller strata are selected in their entirety by
the balanced designs (the selection probabilities must be capped at 1, as discussed
previously); this accounts of the lack of smoothness in the change in asymptotic
efficiency of the balanced designs. Some lack of smoothness can also be seen in the
plot of the optimal ML designs; this occurs because these optimal ML designs are
found numerically.

5 Discussion

To our knowledge this article was among the first to study the two-phase sampling
designs involving clustered or longitudinal data. Given the increased interest in
studies involving cross-sectionally clustered data and the recent trend towards the
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Fig. 5 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using the mean score method for analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the MS estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 9.86,12.99,33.00, and 16.58

design of massive cohort studies of health and disease, the insights that result from
this work are important.

For the setting of clustered data, the first decision to make is typically on the
method of analysis and there are a variety of frameworks one can adopt. We
restricted attention to bivariate response data and marginal models for characterizing
the effects of exposure. In this setting, maximum likelihood and the mean-score
methods can be more efficient than weighted pseudolikelihood for estimation of
the exposure effect (with maximum likelihood generally being the superior of the
two) but this comes at the expense of making assumptions and modelling the
covariate distribution. Interestingly, the three analysis methods have approximately
the same efficiency when using simple random sampling. When covariates change
within clusters an alternative model formulation could be based on random effects
models. To our knowledge, there has been no work on two-phase designs within the
framework of random effect models for clustered data and this is an area of current
interest.
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Fig. 6 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using a weighted pseudolikelihood analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the WP estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 17.37,25.97,33.00, and 33.00

We have adopted a very simple response model with a binary X and binary auxil-
iary variable. When the exposure variable is continuous, a robust implementation of
the mean score method may be more appealing, and weighted pseudolikelihood
would also have more appeal since no modelling of exposure is required. In
ongoing work (not reported here) we found that optimal designs based on maximum
likelihood analyses may be more sensitive to small changes in the parameters used
at the design stage than optimal mean score designs. So, if models for exposure
variable are difficult to formulate with confidence, the robustness of the mean
score and weighted pseudolikelihood approaches may be more appealing. When
the auxiliary variable is continuous, discretizing seems the most practical approach
to addressing the curse of dimensionality and this has been recommended by several
authors (Lawless et al. 1999).

When comparing the effect of different frameworks for analysis and design, it
is interesting to note that the conclusions about optimality bear only on the criteria
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adopted for the optimal design. The intercept, effect of the auxiliary variable and
association parameters do not necessarily behave in the same way.

The pragmatic approach of using balanced sampling designs as a compromise
between robustness and efficiency does not yield clear and consistent recommen-
dations; the resulting estimators sometimes perform well and sometimes perform
poorly. It is therefore unclear what auxiliary information should be considered when
implementing a balanced design in the more complex settings we consider here.

There are several directions of future research that are natural to consider. We
focus on clusters of size two because of interest in the two sacroilliac joints among
patients with psoriatic arthritis. However, clusters can naturally be much larger as
would be the case if all joints were to be modelled. Dealing with larger cluster sizes
is in principle straightforward but may suggest the use of second-order generalized
estimating functions rather than likelihood analyses. One may elect to retain the
robustness of a first order analysis by refraining from higher order assumptions, or
invoke fourth moment assumptions to try to optimize efficiency at the expense of
robustness in the estimating equation framework.

We have also restricted attention to a first order Markov model in the longitudinal
context with only three assessments. Longer term follow-up, as is planned for the
Canadian Longitudinal Study in Aging (Raina et al. 2009), raises questions about
the need for more elaborate response models, the need for greater collapsing of
strata, and issues surrounding time-varying covariates. These and other issues are
subject to further research.

Acknowledgements Michael McIsaac’s research was supported by an Alexander Graham Bell
Canada Graduate Scholarship from the Natural Sciences and Engineering Research Council of
Canada (NSERC) and Discovery Grants to Richard Cook from NSERC (RGPIN 155849) and
the Canadian Institutes for Health Research (FRN 13887). Richard Cook is a Canada Research
Chair in Statistical Methods for Health Research. The authors thank Dr. Dafna Gladman and Dr.
Vinod Chandran for collaboration and helpful discussions regarding the research at the Centre
for Prognosis Studies in Rheumatic Disease at the University of Toronto. The authors gratefully
acknowledge the careful review and comments from a referee and Dr. Brajendra Sutradhar.

References

Breslow, N.E., Cain, K.C.: Logistic regression for two-stage case-control data. Biometrika. 75(1),
11–20 (1988)

Breslow, N.E., Chatterjee, N.: Design and analysis of two-phase studies with binary outcome
applied to wilms tumour prognosis. Appl. Stat. 48(4), 457–468 (1999)

Chandran, V., Tolusso, D.C., Cook, R.J., Gladman, D.D.: Risk factors for axial inflammatory
arthritis in patients with psoriatic arthritis. J. Rheumatol. 37(4), 809–815 (2010)

Chatterjee, N., Chen, Y., Breslow, N.E.: A pseudoscore estimator for regression problems with
two-phase sampling. J. Am. Stat. Assoc. 98(461), 158–168 (2003)

Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman & Hall, London (1974)
del Rincon, I., Williams, K., Stern, M.P., Freeman, G.L., O’Leary, D.H., Escalante, A.: Association

between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and
healthy subjects. Arthritis Rheum. 48(7), 1833–1840 (2003)



180 M.A. McIsaac and R.J. Cook

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

Heagerty, P.J., Zeger, S.L.: Marginalized multilevel models and likelihood inference. Stat. Sci. 15,
1–26 (2000)

Heagerty, P.J.: Marginalized transition models and likeliood inference for longitudinal categorical
data. Biometrics 58(2), 342–351 (2002).

Horton, N.J., Laird, N.M.: Maximum likelihood analysis of logistic regression models with
incomplete covariate data and auxiliary information. Biometrics 57, 34–42 (2001).

Lawless, J.F., Kalbfleisch, J.D., Wild, C.J.: Semiparametric methods for response-selective and
missing data problems in eegression. J. Roy. Stat. Soc. B 61(2), 413–438 (1999)

Laird, N., Ware, J.H.: Random-effects models for longitudinal data. Biometrics 38(4), 963–974
(1982)

Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika
73(1), 13–22 (1986)

Lipsitz, S.R., Laird, N.M., Harrington, D.P.: Generalized estimating equations for correlated binary
data: using the odds ratio as a measure of association. Biometrika 78(1), 153–160 (1991)

Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data, 2nd edn. Wiley, New York (2002)
Neuhaus, J.M.: Statistical methods for longitudinal and clustered designs with binary responses.

Stat. Meth. Med. Res. 1, 249–273 (1992)
Pepe, M.S., Reilly, M., Fleming, T.R.: Auxiliary outcome data and the mean-score method. J. Stat.

Plann. Infer. 42, 137–160 (1994)
Pickles, A., Dunn, G., Vazquez-Barquero, J.L.: Screening for stratification in two-phase (“two-

stage”) epidemiological surveys. Stat. Meth. Med. Res. 4, 73–89 (1995)
Prentice, R.L.: Correlated binary regression with covariates specific to each binary observation.

Biometrics 44(4), 1033–1048 (1988)
Rahman, P., Gladman, D.D., Cook, R.J., Zhou, Y., Young, G., Salonen, D.: Radiological assessment

in psoriatic arthritis. Rheumatology 37(7), 760–765 (1998)
Raina, P.S, Wolfson, C., Kirkland, S.A., Griffith, L.E., Oremus, M., Patterson, C., Tuokko, H.,

Penning, M., Balion, C.M., Hogan, D., Wister, A., Payette, H., Shannon, H., Brazil, K.: The
Canadian longitudinal study on aging (CLSA). Can. J. Aging 28(3), 221–229 (2009)

Reilly, M.: Optimal sampling strategies for two phase studies. Am. J. Epidemiol. 143, 92–100
(1996)

Reilly, M., Pepe, M.S.: A mean score method for missing and auxiliary covariate data in regression
models. Biometrika 82(2), 299–314 (1995)

Robins, J.M., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some regressors
are not always observed. J. Am. Stat. Assoc. 89(427), 846–866 (1994)

Robins, J.M., Rotnitzky, A., Zhao, L.P.: Analysis of semiparametric regression models for repeated
outcomes in the presence of Missing Data. J. Am. Stat. Assoc. 90(429), 106–121 (1995)

Stiratelli, R., Laird, N., Ware, J.H.: Random-effects models for serial observations with binary
response. Biometrics 40(4), 961–971 (1984)

Sutradhar, B.C.: On auto-regression type dynamic mixed models for binary panel data. Metron
66(2), 209–221 (2008)

Sutradhar, R., Cook, R.J.: A bivariate mover-stayer model for interval-censored recurrent event
data: application to joint damage in rheumatology. Comm. Stat. Theor. Meth. 18, 3389–3405
(2009)

Tolusso, D.C., Cook, R.J.: Robust estimation of state occupancy probabilities for interval-censored
multistate data: an application involving spondylitis in psoriatic arthritis. Comm. Stat. Theor.
Meth. 38(18), 3307–3325 (2009)

Troxel, A.B., Lipsitz, S.R., Brennan, T.A.: Weighted estimating equations with nonignorable
nonresponse data. Biometrics 53(3), 857–869 (1997)

Tsiatis, A.A.: Semiparametric Theory and Missing Data. Springer, New York (2006)
Whittemore, A.S., Halpern, J.: Multi-stage sampling in genetic epidemiology. Stat. Med. 16, 153–

167 (1997)



Response-Dependent Sampling with Clustered and Longitudinal Data 181

Zeng, L., Cook, R.J.: Transition models for multivariate longitudinal binary data. J. Am. Stat.
Assoc. 102, 211–223 (2007)

Zhao, L.P., Prentice, R.L.: Correlated binary regression using a quadratic exponential model.
Biometrika 77(3), 642–648 (1990)

Zhao, Y.: Design and efficient estimation in regression analysis with missing data in two-phase
studies. PhD thesis, University of Waterloo (2005)

Zhao, Y., Lawless, J.F., McLeish, D.L.: Likelihood methods for pegression models with expensive
variables missing by design. Biom. J. 51(1), 123–136 (2009)


	Response-Dependent Sampling with Clustered and Longitudinal Data
	1 Introduction
	2 Response-dependent Sampling with Correlated Data
	2.1 Notation and Study Design
	2.2 Methods of Analysis
	2.2.1 Maximum Likelihood
	2.2.2 The Mean Score Method
	2.2.3 Weighted Pseudolikelihood


	3 Response-dependent Sampling with Clustered Binary Data
	3.1 The Response Model for Clustered Data
	3.2 The Selection Model
	3.3 Mean Score Method with Discrete Phase-One Data
	3.4 Frameworks for Analysis and Design Criteria
	3.4.1 Simple Random Sampling
	3.4.2 Balanced Sampling
	3.4.3 Optimal Likelihood Sampling
	3.4.4 Optimal Mean Score Sampling
	3.4.5 Optimal Weighted Pseudolikelihood Sampling

	3.5 Asymptotic Relative Efficiencies

	4 Response-dependent Sampling with Longitudinal Binary Data
	4.1 The Response Model for Longitudinal Data
	4.2 The Selection Model
	4.3 Asymptotic Relative Efficiencies

	5 Discussion
	References


