
Innovative Applications of Shared Random
Parameter Models for Analyzing Longitudinal
Data Subject to Dropout

Paul S. Albert, Rajeshwari Sundaram, and Alexander C. McLain

Abstract Shared random parameter (SRP) models provide a framework for analyz-
ing longitudinal data with missingness. We discuss the basic framework and review
the most relevant literature for the case of a single outcome followed longitudinally.
We discuss estimation approaches, including an approximate approach which is
relatively simple to implement. We then discuss three applications of this framework
in novel settings. First, we show how SRP models can be used to make inference
about pooled or batched longitudinal data subject to non-ignorable dropout. Second,
we show how one of the estimation approaches can be extended for estimating
high dimensional longitudinal data subject to dropout. Third, we show how to use
jointly model complex menstrual cycle length data and time to pregnancy in order to
study the evolution of menstrual cycle length accounting for non-ignorable dropout
due to becoming pregnant and to develop a predictor of time-to-pregnancy from
repeated menstrual cycle length measurements. These three examples demonstrate
the richness of this class of models in applications.

1 Introduction

Modeling longitudinal data subject to missingness has been an active area of
research in the last few decades. The missing-data mechanism is said to be
missing completely at random if the probability of missing is independent of
both the observed and unobserved data. Further, the mechanism is not missing
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at random (NMAR) if the probability of missingness depends on the unobserved
data (Rubin 1976; Little and Rubin 1987). It is well known that naive methods
that do not account for NMAR can lead to biased estimation. The use of shared
(random) parameter models has been been one approach that accounts for non-
random missing data. In this formulation, a model for the longitudinal response
measurements is linked with a model for the missing-data mechanism through a
set of random effects that are shared between the two processes. Wu and Carroll
(1988) proposed a model whereby the response process, which was modeled with
a linear mixed model with a random intercept and slope was linked with the
censoring process by including an individual’s random slope as a covariate in a
probit model for the censoring process. When the probit regression coefficient for
the random slope is not zero, there is a dependence between the response and
missing-data processes. Failure to account for this dependence can lead to biased
estimation of important model parameters. Shared-parameter models (Follmann
and Wu 1995) induce a type of non-randomly missing-data mechanism that has
been called “informative missingness” (Wu and Carroll 1988). For a review and
comparison with other methods, see Little (1995), Hogan and Laird (1997), and
Vonesh et al. (2006). More recently Molenberghs et al. (2012) have discussed a
fundamental non-identifiability of shared random effects models. Specifically, these
models make non-verifiable assumptions about data not seen and there are multiple
models in a wide class that can equally explain the observed data. Thus, shared
random parameter (SRP) models make implicit assumptions that need to be justified
from on a scientific basis and cannot be completely verified empirically.

This article discusses some applications of SRPs to some interesting novel
applications. In Sect. 2, we set up the general model formulation and show how this
mechanism induces a special type of nonignorable missingness. We also discuss
both a full maximum-likelihood approach and conditional approach for parameter
estimation that is easier to implement. We discuss some examples where a single
longitudinal measurement is subject to non-ignorable dropout. Section 3 shows an
example of batched laboratory data and how a SRP model can be used to account
for the apparent non-ignorable missingness. In Sect. 4 we provide an example of the
joint modeling of multiple or high dimensional longitudinal biomarker and time-to-
event data. Section 5 shows an example of jointly modeling complex menstrual
cycle data and time-to-pregnancy using a SRP approach. Lastly, we present a
discussion in Sect. 6.

2 Model Formulation and Estimation

Let Yi = (Yi1,Yi2, . . . ,YiJ)
′ be a vector of longitudinal outcomes for the ith subject

(i = 1,2, . . . , I) observed on J occasions t1, t2, . . ., tJ , and let Ri = (Ri1,Ri2, . . . ,RiJ)
′

be a vector of random variables reflecting the missing data status (e.g., Ri j = 0
denoting a missed visit). Further, let bi = (bi1,bi2, . . . ,biL)

′ be an L-element vector
of random effects for the ith subject which can be shared between the response and
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missing data mechanism. We assume that bi is multivariate normal with mean vector
0 and covariance matrix Σb. Covariates Xi j are also measured which can influence
both Yi j and Ri j.

The joint distribution of Yi,Ri,bi can be written as

f (yi,ri,bi) = g(yi|bi,ri)m(ri|bi)h(bi).

We make the assumption that conditional on the random effects, the responses do
not depend on the missing data status, thus g(yi|bi,ri) = g(yi|bi). Furthermore, the
elements of Yi are conditionally independent given bi. By conditional independence,
the density for the response vector Yi conditional on bi, g(yi|bi) can be decomposed
into the product of the densities for the observed and unobserved values of Yi.
Namely, g(yi|bi) = g(yo

i |bi)g(ym
i |bi), where yo

i and ym
i are vectors of observed and

missing data responses, respectively, for the ith subject. The density of the observed
random variables can be expressed as

f (yo
i ,ri) =

∫
ym

∫
b

f (yo
i ,y

m
i ,ri)dbdym

i

=

∫
ym

∫
b

g(yo
i |bi)g(y

m
i |bi)m(ri|bi)h(bi)dbdym

i

=

∫
b

g(yo
i |bi)m(ri|bi)h(bi)

{∫
ym

i

g(ym
i |b)dym

i

}
dbi

=

∫
b

g(yo
i |bi)m(ri|bi)h(bi)dbi. (1)

Although the conditional independence of Yi|bi is easy to verify when there is
no missing data, it is difficult to verify for SRP models. Serial correlation could
be incorporated (conditional on the random effects) using autoregressive or lagged
responses (see, Zeger and Qaqish 1988; Albert 2000; Sutradhar and Mallick 2010).
These lag-response modeling components can be formulated with the addition
of a shared random effect that links the response and missing data mechanism
together. Alternatively, Albert et al. (2002) link together the response and missing
data mechanism with a shared latent process where the subject-specific random
effect b is replaced by a random process bi = (bi1,bi2, . . . ,biJ)

′. They consider a
random process that follows a continuous-time exponential correlation structure
since observations are not equally spaced. Although the shared latent processes
model is an attractive approach, it requires computationally intensive techniques
such as Monte-Carlo EM for parameter estimation. In the remainder of this article,
we focus on the SRP rather than the shared latent process model.

Tsiaits and Davidian (2004) provide a concise discussion of how the joint density
is obtained for the case where missingness is monotone (i.e., patients only drop out
of the study) and measured in continuous time.

The choice of a density function g depends on the type of longitudinal response
data being analyzed. For Gaussian longitudinal data, g can be specified as a Gaussian
distribution, and the model formulation can be specified as a linear mixed model
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(Laird and Ware 1982). A simple linear mixed model which can be used as an
illustration is

Yi j|Xi,bi = β0 +β1Xi + bi + εi j, (2)

where Xi is a subject-specific covariate such as treatment group, bi is a random
effect which is often assumed normally distributed, and εi j is an error term
which is assumed normally distributed. Alternatively, for discrete or dichoto-
mous longitudinal responses, g can be formulated as a generalized linear mixed
model (Follmann and Wu 1995; Ten Have et al. 1998; Albert and Follmann
2000).

The choice of the density for the missing data indicators, m, depends on the type
of missing data being incorporated. When missing data is a discrete time to dropout,
a monotone missing data mechanism, then a geometric distribution is often used for
m (Mori et al. 1994). For example, the probability of dropping out is

Φ−1{P(Ri j = 0|Ri j = 1)}= α0 +αXi +θbi. (3)

Various authors have proposed shared random effects models for the case in
which dropout is a continuous event time (Schluchter 1992; Schluchter et al.
2001; DeGruttola and Tu 1994; Tsiatis et al. 1995; Wulfson and Tsiatis 1997;
Tsiatis and Davidian 2001; Vonesh et al. 2006). When missing data includes only
intermittently missed observations without dropout, then the product of Bernoulli
densities across each of the potential observations may be a suitable density function
for g. Alternatively, when multiple types of missing data such as both intermittent
missingness and dropout need to be incorporated, a multinomial density function
for g can be incorporated (Albert et al. 2002).

The shared random effects model accounts for a MNAR data mechanism, which
can be seen with the following argument. Suppressing the index i for notational
simplicity, suppose that the random effect b is a scalar with R j indicating whether
Yj is observed. MAR implies that the conditional density of R j given the complete
data Y does not depend on Y m, while a MNAR implies that this conditional density
depends on Y m. The conditional density of R j given Y = (Y o,Y m) is

f (r j |ym,yo) =

∫
g(r j|b)g(ym,yo|b)h(b)db∫

g(ym,yo|b)h(b)db∫
g(r j|b)h(b|yo,ym)db.

A MNAR data mechanism follows since the conditional density depends on ym and
since h(b|yo,ym) depends on ym. It is interesting to note that for models (2) and (3)
when the residual variance is very small, error is very small, h(r j|ym,yo)≈ h(r j|yo)
since h(b|ym,yo) ≈ h(b|yo). In this situation, the missing data mechanism will be
close to MAR, so simply fitting a likelihood-based model for yo will result in valid
inference.



Analyzing Longitudinal Data Subject to Dropout 143

Albert and Follmann (2007) discuss various SRP modeling formulation for
analyzing binary longitudinal data with applications to an opiates clinical trial.

There are various approaches for parameter estimation. First, maximization of
the likelihood L = Π I

i=1 f (yo
i ,ri), where f is given by (1) can be used to obtain

the maximum-likelihood estimates (MLEs). Maximizing the likelihood may be
computationally intensive since it involves integrating over the random effects
distribution. For a high dimensional random effects distribution, this involves the
numerically difficult evaluation of a high dimensional integral. Approaches such as
Monte-Carlo EM or Laplace approximations of the likelihood (Gao 2004) may be
good alternatives to direct evaluation of the integral. Fortunately, many applications
involve only one or two shared random effects where the integral can be evaluated
more straightforwardly with Gaussian quadrature, adaptive Gaussian quadrature, or
other numerical integration techniques. Various statistical software packages can be
used to fit these models including procedures in SAS and specialized code in R.

An alternative approach for parameter estimation, which conditions on Ri, has
been proposed (Wu and Carroll 1988; Follmann and Wu 1995; Albert and Follmann
2000). In developing this approach, first note that the joint distribution of (Y o

i ,Ri,bi)
can be re-written as

f (yo
i ,ri,bi) = f (yo

i ,bi|ri)m(ri)
= f (yo

i |bi,ri)h(bi|ri)m(ri)
= g(yo

i |bi)h(bi|ri)m(ri).

Thus, the conditional likelihood for yo
i |ri is given by L = Π I

i=1

∫
g(yo

i |bi)h(bi|ri)dbi.
Note that this approximate conditional model can be directly viewed as a pattern
mixture model as

f (yo,r) =
∫

g(yo|b)h(b|r)db m(r)

= p(y|r)m(r),

Little (1993).
For illustration, we can estimate the treatment effect β1 in the non-random

dropout model (2) and (3) by noting that bi|di can be approximated by a normal
distribution with mean ω0 +ω1di. The conditional model can then be characterized
by a linear mixed model of the form Yi j = β ∗

0 +ω1di +β ∗
1 + bi + εi j. An important

point is that the parameters of this model are conditional on the dropout time di and
are easily interpretable. What is of interest are inferences on the marginal distribu-
tion of Yi j. To estimate β1 in model (2), we need to marginalize over the dropout time
distribution. Specifically, E(Y |x) = E(E(Y |d,x)) = β ∗

0 + β ∗
1 x +ω1E(d|x), where

E(d|x) is the conditional distribution of dropout given the covariate x. We can
estimate this conditional distribution in a two group comparison with Ê(d|x) = dx.
Thus, β1 = E(Y |x = 1)−E(Y |x = 0) = β ∗

1 +ω1(d1 − d0). Variance estimation for
the MLE approach can be obtained through standard asymptotic techniques (i.e.,
inverting the observed Fisher information matrix). For the conditional modeling
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approach, the simplest approach is to perform a bootstrap procedure (Efron and
Tibshirani 1993) where all measurements on a chosen individual are sampled with
replacement.

3 An Analysis of Longitudinal Batched Gaussian Data
Subject to Non-random Dropout

Due to cost or feasibility, longitudinal data may be measured in pools or batches
whereby samples are combined or averaged across individuals at a given time point.
In these studies, interest may be on comparing the longitudinal measurements across
groups. A complicating factor may be that subjects are subject to dropout from the
study. An example of this type of data structure is a large mouse study examining
the effect of an experimental antioxidant on the weight profiles over time in mice.
It was suspected that animals receiving the treatment would reach a lower adult
weight than control animals and that the decline in weight among treated animals
would be less than that for control animals. Ninety-five genetically identical animals
were enrolled into the treatment and control groups, respectively (190 total animals).
Within a group, five animals were placed in each of the 19 cages at birth. Due to the
difficulty in repeatedly weighting each animal separately, the average weight per
cage was recorded at approximately bi-weekly intervals over the life span of the
animals (2–3 years). At each follow-up time, average batch weight was measured as
the total batch weight divided by the number of animals alive in that batch.

Albert and Shih (2011) proposed a SRP model for each of the two groups
separately. Initially, we present the model when individual longitudinal data are
observed and then develop the model for batched longitudinal data. Denote Yi j as
the jth longitudinal observation at time t j for the ith subject. As described in Sect. 2,
for a dropout process where an individual dies between the (d − 1)th and the dth
time point, Ri1 = Ri2 = . . . = Rid−1 = 1 and Rid = 0. The dropout time for the ith
subject is denoted as di.

We assume a linear mixed model in each group of the form

Yi j = β0 +β1t j + b0i+ b1it j + εi j, (4)

where bi = (b0i,b1i)∼ N(0,Σb) and εi j ∼ N(0,σ2
ε ) is independent of bi. Further, we

denote

Σb =

(
σ2

b0 σb0b1

σb0b1 σ2
b1

)
.

Model (4) can be made more general by including a change point or additional
polynomial functions of time to the fixed and random effects. Similar to (2)
and (3), the dropout mechanism can be modeled with a geometric distribution in
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which, conditional on the random intercept b0i and random slope b1i, Ri j|(Ri j−1 =
1,b0i,b1i) is Bernoulli with probability

P(Ri j = 0|Ri j−1 = 1,bi0,b1i) = Φ(α(t j)+θ1b0i +θ2b1i), (5)

where α(t j) is a function of follow-up time t j. As discussed in Sect. 2, incorporating
SRPs between the response and dropout process induces a non-ignorable dropout
mechanism.

For the longitudinal animal study, interest is on estimating changes in the
longitudinal process over time while accounting for potential informative dropout.
For batched samples, we do not observe the actual Yi j, but rather the average
measurement in each batch. At the beginning of the study, subjects are placed into
batches, and these batches are maintained throughout. Since subjects are dying over
time and the batch structure is maintained, there may be very few subjects in a batch
as the study draws to an end. Define Bl j as the set of subjects who are alive in the
lth batch at the jth time point. Define nl j as the number of subjects contained in
Bl j. Further, define Xl j =

1
nl j

∑
i∈Bl j

yi j, where in each group, l = 1,2, . . . ,L, and where

L is the number of batches in that group. Animals are grouped into batches of five
animals that are repeatedly weighed in the same cage. In this study, there are 19
batches in each group (L = 19 in each of the two groups).

When individual longitudinal measurements Yi j’s are observed, maximum-
likelihood estimation is relatively simple as described earlier in Sect. 2. Estimation
is much more difficult when longitudinal measurements are collected in batches. In
principle, we can obtain MLEs of the parameters in model (4)–(5), denoted by η ,
by directly maximizing the joint likelihood, where the individual contribution of the
likelihood for the lth batch is

L(Xl ,dl;η) =
∫

bl

f (Xl |bl) f (dl |bl) f (bl)dbl , (6)

where Xl = (Xl1,Xl2, . . . ,XlJl )
′, Jl is the last observed time-point immediately before

the last subject in the lth batch dies (nl j = 0 for j > Jl) and bl and dl are a vectors
of all the random effects and dropout times, respectively, for individuals in the lth
batch. In the application considered here, bl is a vector contain ten random effects
and dl is a vector containing the dropout times for a batch size of five mice per cage.
In (6), f (Xl |bl) = Π Jl

j=1 f (Xl j |bl), where f (Xl j |bl) is a univariate normal density

with mean given by β0 +β1t j +
1

nl j
∑

i∈Bl j

(b0i + b1it j) (see (4)) and variance σ2
ε /nl j.

Further, f (bi) is a multivariate normal with block diagonal matrix (under an ordering
where random effects on the same subjects are grouped together) and f (dl |bl) is the
product of geometric probabilities.

One approach to maximize the likelihood is to use the E–M algorithm. In the
E-step we compute the expected value of the complete-data log likelihood (the
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log-likelihood we would have if we observed bl) given the observed data Xl and
dl , and in the M-step, we maximize the resulting expectation. Specifically,

maxη

L

∑
l=1

E[logL(Xl ,bi,dl;η)|Xl ,dl ]), (7)

where η is a vector of all parameters of the shared parameter model and logL(Xl ,bl ,
dl;η) is the log of the complete data likelihood for the lth batch. The standard
E–M algorithm is implemented by iterating between an E- and an M-step, whereby
the expectation in (7) is evaluated in the E-step and the parameters are updated
through the maximization of (7) in the M-step. Unfortunately, the E-step is difficult
to implement in closed form. As an alternative Albert and Shih (2011) proposed
a Monte-Carlo (MC) EM algorithm where the E-step is evaluated using the
Metropolis–Hastings algorithm; the details are included in this paper.

Although the shared parameter modeling approach is feasible, it can be compu-
tational intensive due to the Monte-Carlo Sampling. An alternative approach that
is simpler to implement for the practitioner is the conditional model discussed in
Sect. 2. The conditional approach can easily be adapted for approximate parameter
estimation for the shared random effects model with batched longitudinal data.

The approximate conditional model approach discussed for unbatched longitu-
dinal data can be applied to the batched data (i.e., observing Xl j’s rather than Yi j’s).
Since Yi|di in (4) is multivariate normal, Xl |dl is also multivariate normal. Denote

Σc =

(
σ2

c0 σc0c1

σc0c1 σ2
c1

)
.

The conditional distribution of Xl |dl is multivariate normal with means and covari-
ance matrix given by

E(Xl j|dl) = ω0 +ω1t j +ω2 ∑
i∈Bl j

di/nl j +ω3 ∑
i∈Bl j

dit j/nl j, (8)

Cov(Xl j,Xl j′ |dl) =
min(nl j,nl j′)

nl jnl j′
(σ2

c0 + t jt j′σ2
c1 +(t j + t j′)σc0c1), (9)

for j �= j′, and

Var(Xl j|dl) =
1

nl j
(σ2

c0 + t2
j σ2

c1 + 2t jσc0c1 +σ2
ε ). (10)

The multivariate normal likelihood with mean and variance given by (8)–
(10) can be maximized using a quasi-Newton Raphson algorithm. This has been
implemented in R using the optimum function. Once the MLEs of the conditional
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model are computed, inference about the average intercept and slope can be
performed by marginalizing over the dropout times. Similar to what was described
for un-batched longitudinal data in Sect. 2, the average intercept and slope can be
estimated by ω̂o + ω̂2d1 and ω̂1 + ω̂3d2, respectively. Similar to variance estimation
for the SRP model, standard errors for the estimated mean intercept and slope can
be estimated using the bootstrap by re-sampling cage-specific data.

We examined the statistical properties of the maximum-likelihood and the
approximate conditional approach using simulations. First, we simulated data
according to the SRP model (4) and (5) and fit the correctly specified SRP model,
the approximate conditional model (APM), and an ignorable model (IM) that simply
fit (4) without regard to the dropout process. Data are simulated under model (4)
and (5) with σb0 = σb1 = σε = 1, σb0b1 = 0, α(t j) = −1, θ1 = θ2 = 0.25, and an
intercept and slope of 0 and 1, respectively. The average estimated slopes under
the SRP model, ACM, and the IM were 0.99 (SD = 0.12), 1.07 (0.11), and 0.83
(0.08), respectively. Not surprisingly, the SRP model is unbiased under the correct
specification and the IM is highly biased. The ACM is approximately unbiased
which is consistent with our previous theoretical discussions. Second, we simulated
data according to the ACM. In this case, the ACM is unbiased, but both the SRP
model and IM are severely biased. These simulations suggest that the ACM model
may be more robust (under different model formulations) than the SRP model.

A detailed analysis of these data is presented in Albert and Shih (2011). We will
summarize the analysis here. Scientific interest was on estimating and comparing the
weight in animals at full growth (15 months) and subsequently the decline in weight
in older age (slope) between the treatment group (an agent called Tempol) and a
control group. Table 1 shows estimates and standard errors for the IM (simply fit the
longitudinal model and discard the relationship between the two processes), SRP,
and conditional approximation approaches. All methods show that Tempol treated
animals have a statistically significant lower early adult weight (intercept) and a
slower decline in weight into later adulthood (slope) as compared with genetically
identical control animals.

4 Jointly Modeling Multivariate Longitudinal Measurements
and Discrete Time-to-Event Data

An exciting area in biomedical research is investigating the relationship between
biomarker measurements and time-to-event. For example, developing a predictor of
the risk of pre-term birth from biomarker data is an important goal in obstetrical
medicine. SRP models that link the two processes provides a nice way to do this.
Unfortunately, this is problematic in relatively high dimensions.

Denote Y1i=(Y1i1,Y1i2, . . . ,Y1iJi)
′, Y2i=(Y2i1,Y2i2, . . . ,Y2iJi)

′, . . .YPi=(YPi1,YPi2,. . . ,
YPiJi)

′ as the P biomarkers measured repeatedly at j = 1,2, ..,Ji time points.
Further, define Y ∗

pi = (Y ∗
pi1,Y

∗
pi2, . . . ,Y

∗
piJi

)′ as the longitudinal measurements without
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Table 1 Batched mouse data example

Method Parameters Est. tempol Est. control

Ignorable Intercept 28.1 38.4
(0.24) (0.76)

Slope −1.81 −2.47
(0.19) (0.28)

Shared random parameter Intercept 27.9 36.9
(0.24) (0.42)

Slope −1.87 −2.20
(0.17) (0.20)

Conditional Intercept 27.9 38.3
(0.23) 0.72)

Slope −1.48 −2.36
(0.19) (0.31)

The shared random parameter model and conditional model estimates of intercept and slope in the
Tempol and control groups. Estimates are presented with standard errors in ( ). Standard errors were
estimated using 250 samples of a non-parametric bootstrap

measurement error for the pth biomarker and Y ∗
i = (Y ∗

1i,Y
∗
2i, . . . ,Y

∗
Pi). We consider a

joint model for multivariate longitudinal and discrete time-to-event data in which
the discrete event time distribution is modeled as a linear function of previous
true values of the biomarkers without measurement error on the probit scale.
Specifically,

P(Ri j = 0|Ri j−1 = 1;X∗
i ) = Φ(α0 j +

P

∑
p=1

αpY ∗
pi( j−1)), (11)

where i = 1,2, . . . , I, j = 1,2, . . . ,Ji, Ri0 is taken as 1, α0 j governs the baseline
discrete event time distribution and αp measures the effect of the pth biomarker
(p = 1,2, . . . ,P) at time t j−1 on survival at time t j.

The longitudinal data is modeled assuming that the fixed and random effect
trajectories are linear. Specifically, the multivariate longitudinal biomarkers can be
modeled as

Ypi j = Y ∗
pi j + εpi j, (12)

where

Y ∗
pi j = βp0 +βp1t j + γpi0 + γpi1t j, (13)

where βp0 and βp1 are the fixed effect intercept and slope for the pth biomarker, and
γpi0 and γpi1 are the random effect intercept and slope for the pth biomarker on the
ith individual. Denote
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β = (β10,β11,β20,β21, . . . ,βP0,βP1)
′

and

bi = (b1i0,b1i1,b2i0,b2i1, . . .bPi0,bPi1)
′.

We assume that bi is normally distributed with mean 0 and variance Σb, where Σb is a
2P×2P dimensional variance matrix and εpi j are independent error terms which are
assumed to be normally distributed with mean 0 and variance σ2

pε (p = 1,2, . . . ,P).
Albert and Shih (2010b) proposed a two-stage regression calibration approach

for estimation, which can be described as follows. In the first stage, multivariate
linear mixed models can be used to model the longitudinal data. In the second
stage, the time-to-event model is estimated by replacing the random effects with
corresponding empirical Bayes estimates. There are three problems with directly
applying this approach. First, estimation in the first stage is complicated by the
fact that simply fitting multivariate linear mixed models results in bias due to
informative dropout; this is demonstrated by Albert and Shih (2010a) for the case
of P = 1. Second, parameter estimation for multivariate linear mixed models can
be computationally difficult when the number of longitudinal measurements (P) is
even moderately large. Third, calibration error in the empirical Bayes estimation
needs to be accounted for in the time-to-event model. The proposed approach will
deal with all three of these problems.

The bias from informative dropout is a result of differential follow-up whereby
the longitudinal process is related to the length of follow-up. That is, in (13), patients
with large values of Y ∗

pi j are more likely to have an early event when αp > 0
for p = 1,2, . . . ,P. There would be no bias if all J follow-up measurements were
observed on all patients. As proposed by Albert and Shih (2010a) for univariate
longitudinal data, we can avoid this bias by generating complete data from the
conditional distribution of Yi = (Y1i,Y2i, . . . ,YPi) given di, denoted as Yi|di. Since
Yi|di under model (11–12) does not have a tractable form, we propose a simple
approximation for this conditional distribution. The distribution of Yi|di can be
expressed as

P(Yi|di) =
∫

h(Yi|bi,di)g(bi|di)dbi. (14)

Since di and the values of Yi are conditional independent given bi, h(Yi|bi,di) =
h(Yi|bi), where h(Yi|bi) = Π P

p=1h(Ypi|bpi0,bpi1). The distribution of Yi|di can be
expressed as a multivariate linear mixed model if we approximate g(bi|di) by a
normal distribution. Under the assumption that g(bi|di) is normally distributed with
mean μdi = (μ01di ,μ11di , μ02di ,μ12di , . . ., μ0Pdi ,μ1Pdi)

′ and variance Σ∗
bdi

, and by
re-arranging mean structure parameters in the integrand of (14) so that the random
effects have mean zero, Yi|di corresponds to the following multivariate linear mixed
model
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Ypi j|(di,b
∗
ip0di

,b∗ip1di
) = β ∗

p0di
+β ∗

p1di
t j + b∗ip0di

+ b∗ip1di
t j + ε∗pi j, (15)

where i = 1,2, . . . , I, j = 1,2, . . . ,Ji, and p = 1,2, . . . ,P. The parameters β ∗
p0di

and β ∗
p1di

are intercept and slope parameters for the pth longitudinal measure-
ment and for patients who have an event time at time di or who are censored
at time tJ . In addition, the associated random effects b∗idi

= (b∗i10di
,b∗i11di

,b∗i20di
,

b∗i21di
, . . . ,b∗iP0di

,b∗iP1di
)′ are multivariate normal with mean 0 and variance Σ∗

bdi
, and

the residuals ε∗pi j are assumed to have an independent normal distribution with mean
zero and variance σ∗2

ε p . Thus, this conditional model involves estimating separate
fixed effect intercept and slope parameters for each potential event-time and for
subjects who are censored at time tJ . Likewise, separate random effects distributions
are estimated for each of these discrete time points. For example, the intercept and
slope fixed-effect parameters for the pth biomarker for those patients who have
an event at time di = t3 is β ∗

p0t3
and β ∗

p1t3
, respectively. Further, the intercept and

slope random effects for all P biomarkers on those patients who have an event
at time di = t3, b∗it3 , is multivariate normal with mean 0 and variance Σ∗

bt3
. A

similar approximation has been proposed by Albert and Shih (2010a) for univariate
longitudinal data (P = 1).

Recall that by generating complete data from (15) we are able to avoid the
bias due to informative dropout. However, when P is large, direct estimation of
model (15) is difficult since the number of elements in b∗idi

grows exponentially
with P. For example, the dimension of the variance matrix Σ∗

bdi
is 2P by 2P for

P longitudinal biomarkers. Fieuws and Verbeke (2005) proposed estimating the
parameters of multivariate linear mixed models by formulating bivariate linear
mixed models on all possible pairwise combinations of longitudinal measurements.
In the simplest approach, they proposed fitting bivariate linear mixed models
on all

(P
2

)
combinations of longitudinal biomarkers and averaging “overlapping”

or duplicate parameter estimates. Thus, we estimate the parameters in the fully
specified model (15) by fitting

(P
2

)
bivariate longitudinal models that only include

pairs of longitudinal markers. Fitting these bivariate models is computationally
feasible since only four correlated random effects are contained in each model.
(i.e., Σ∗

bdi
is a four-by-four dimensional matrix for each discrete event-time di.)

Duplicate estimates of fixed effects and random-effect variances from all pair-
wise bivariate models are averaged to obtain final parameter estimates of the
fully specified model (15). For example, when P = 4 there are (P − 1) = 3
estimates of β ∗

p0di
, β ∗

p1di
, σ∗2

ε p for the pth longitudinal biomarker that need to be
averaged.

Model (15) is then used to construct complete longitudinal pseudo data sets
which in turn are used to estimate the mean of the posterior distribution of an indi-
vidual’s random effects given the data. Specifically, multiple complete longitudinal
data sets can be constructed by simulating Ypi j values from the approximation to
the distribution of Yi|di given by (15) where the parameters are replaced by their
estimated values. Since the simulated data sets have complete follow-up on each
individual, the bias in estimating the posterior mean of bi caused by informative
dropout will be much reduced.
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The posterior mean of distribution bi given the data can be estimated by fitting
(11)–(13) to the generated complete longitudinal pseudo data. However, similar to
fitting the conditional model (15), fitting model (11)–(13) is difficult due to the high
dimension of Σb. Thus, we again use the pairwise estimation approach of Fieuws
and Verbeke (2005), whereby we estimate the parameters of (2)–(3) by fitting all
pairwise bivariate models and averaging duplicate parameter estimates to obtain
final parameter estimates. For each generated complete longitudinal pseudo data
set, the estimate of the posterior mean, denoted as b̂i= (b̂1i0, b̂1i1, . . . , b̂Pi0, b̂Pi1)

′ can
be calculated as

b̂i = ΣbZ′
iV

−1
i (Xi −Ziβ̂ ), (16)

where Zi is a PJ × 2P design matrix corresponding to the fixed and random effects
in (11)–(13), where Zi = diag(A′,A′, . . . ,A′)︸ ︷︷ ︸

P Times

,

A =

(
1 1 . . . 1
t1 t2 . . . tJ

)
,

and Vi is the variance of Xi. Estimates of Y ∗
pi j, denoted as Ŷ ∗

pi j, are obtained by

substituting (β̂p0, β̂p1, b̂pi0, b̂pi1) for (βp0,βp1,bpi0,bpi1) in (13).
To account for the measurement error in using b̂i as compared with using bi in

(11), we note that

P(Ri j = 0|Ri( j−1) = 1;Ŷ ∗
i ) = Φ

( α0 j +
P
∑

p=1
αpŶ ∗

pi j

√
1+Var

{ P
∑

p=1
αp(Ŷ ∗

pi j −Y ∗
pi j)

}
)
, (17)

where Var
{

∑P
p=1 ωp(Ŷ ∗

pi( j−1)−Y ∗
pi( j−1))

}
= C′

i jVar(b̂i − bi)Ci j , Ci j = (ω1,ω1t j−1,

ω2,ω2t j−1 , . . . ,ωp,ωpt j−1), Var(b̂i − bi) = Σb −ΣbZ′
i{V−1

i −V−1
i ZiQZ′

iV
−1
i }ZiΣb,

and where Q = ∑I
i=1(Z

′
iV

−1
i Zi)

−1 (Laird and Ware 1982). Expression (17) follows
from the fact that E[Φ(a+V)] = Φ

[
(a+ μ)/

√
1+ τ2

]
, where V ∼ N(μ ,τ2).

In the second stage, α0 j ( j = 1,2, . . . ,J) and αp (p= 1,2, . . . ,P) can be estimated
by maximizing the likelihood

L =
I

∏
i=1

[ Ji

∏
j=1

{1−P(Ri j = 0|Ri( j−1) = 1;Ŷ ∗
i )}

]
P(Ri(Ji+1) = 0|RiJi = 1;Ŷ ∗

i )
Ji<J, (18)

where P(Ri j = 0|Ri( j−1) = 1,Ŷ ∗
i ) is given by (17). Thus, we propose the following

algorithm for estimating α0 j and αp (p = 1,2, . . . ,P).
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1. Estimate the parameters of model (15) by fitting
(P

2

)
bivariate models to each of

the pairwise combinations of longitudinal measurements and averaging duplicate
parameter estimates. The bivariate models can be fit in R using code presented in
Doran and Lockwood (2006).

2. Simulate complete longitudinal pseudo measurements (i.e., Ypi j for p= 1,2, . . . ,P,
i = 1,2, . . . , I, j = 1,2, . . . ,J) from model (15) with model parameters estimated
from step 1.

3. Estimate the parameters in model (12)–(13) without regard to the event time
distribution from complete longitudinal pseudo measurements (simulated in
step 2) by fitting all possible

(P
2

)
bivariate longitudinal models and averaging

duplicate model parameter estimates.
4. Calculate b̂i using (7) and Ŷ ∗

pi j using (13) with bi replaced by b̂i and β being

replaced by β̂ estimated in step 3.
5. Estimate α0 j ( j = 1,2, ..,J) and αp (p = 1,2, . . . ,P) using (17) and (18).
6. Repeat steps 2 to 5 M times and average α̂0 j and α̂p to get final estimates.

We choose M = 10 in the simulations and data analysis since this was shown
to be sufficiently large for univariate longitudinal modeling discussed in Albert
and Shih (2010a). Asymptotic standard errors of α̂0 j and α̂p cannot be used for
inference since they fail to account for the missing data uncertainty in our procedure.
The bootstrap (Efron and Tibshirani 1993) can be used for valid standard error
estimation.

This approach is most useful in situations where the number of longitudinal
measurements is very large (e.g., panels of cytokine measurements followed
longitudinally). For computational simplicity, we focus on a simulated example
where three biomarkers are measured longitudinally at five time points on 300
individuals. Table 2 shows the results of these simulations. The results show that
simply using the observed longitudinal data will result in severely biased estimation.
The proposed approach results in unbiased estimation for the parameters of the joint
model. The table also includes estimates for the situation in which we observe the
biomarkers without measurement error (only possible to do in simulations). This
strawman case simply shows us that we could do better in terms of efficiency if the
biomarkers could be assessed with less measurement error.

Table 2 Simulation shows estimates for a method that uses the true values of the markers without
measurement error (NoME), the proposed method (Proposed), and an approach that uses the
observed biomarkers (Observed)

Parameters True values NoME Proposed Observed

α0 −1.75 −1.77 (0.115) −1.76 (0.180) −1.37 (0.089)
α1 0.40 0.408 (0.060) 0.405(0.089) 0.221(0.042)
α2 0 0.00 (0.058) 0.00(0.0.077) 0.001(0.042)
α3 0.40 0.405 (0.062) 0.400(0.0.092) 0.229(0.043)

We simulate according to (11)–(13) with α0 j = α0 for all j and with stated values of α1, α2, and
α3. Remaining values are given in Table 1 of Albert and Shih (2010b)
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5 Jointly Modeling of Menstrual Cycle Length
and Time-to-Pregnancy

An important scientific problem in reproductive epidemiology is both to char-
acterize the menstrual cycle patterns in women who are attempting pregnancy
and to develop predictive models for time-to-pregnancy. A SRP model that links
together the complex menstrual cycle pattern with time-to-pregnancy is important
for valid statistical analysis in both problems. Specifically, when interest focuses on
characterizing longitudinal changes in the menstrual cycle, it is important to account
for the dependence between the two processes since failure to do so results in
informative dropout in the longitudinal process. Further, incorporating dependence
between the two processes is important for developing a flexible class of prediction
models of time-to-pregnancy.

The menstrual cycle pattern is complex since it is well known to be long
tailed with a proportion of cycles being unusually long while a majority appear
within normal ranges. Various authors (e.g., Guo et al. 2006 and references within)
have proposed two component mixture models with one component reflecting a
distribution with a long right tail and the other reflecting a normal distribution.
McLain et al. (2012) propose a class a mixture model with a normal distribution
for “normal” cycles and a long tailed distribution (reflecting the possibility of both
extremely long and short irregular cycles). Further, McLain et al. introduce random
effects which are shared between the two models as well as with a discrete time
survival model characterizing time-to-pregnancy.

For illustration, we present a simplified version of McLain et al.’s modeling
approach without external covariates. The menstrual cycle is modeled as a mixture
of two components. First, for normal cycles

YN,i j = μi + εN,i j (19)

= β0 + bN,i + εN,i j, εN,i j ∼ N(0,σ2
i ),

where σ2
i = σ2

0 exp(b+ bS,i). For abnormal cycles, the following representation is
assumed

YA,i j = β0 + bA,i+ εA,i j, εA,i j ∼ EVD(0,η), (20)

where EVD(0,η) denotes an extreme-value type I distribution with location 0 and
scale η . Further, for implementation it was assumed that bA,i j = εbN,i j , that the
between subject heterogeneity is a scalar shift between the normal and abnormal
cycles. The distribution of the menstrual cycle length Yi j is completed through the
specification of the mixture, Yi j = gi jYN,i j +(1− gi j)YA,i j, where gi j is an indicator
that the ith women’s jth cycle is normal, and p = P(gi j = 1). Finally, time-to-
pregnancy is specified with a discrete-time survival model as in (5) and (11) with a
different link function,
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P(Ri j = 0|Ri j−1 = 1,bN,i,bS,i) = 1− exp(−Vi j exp(ω +φμbA,i +φσ bS,i)), (21)

where Vi j is an indicator of whether the ith subject had sexual intercourse during
the fertile window (period in which they can conceive) during the jth cycle. The
parameters φμ and φσ characterize the dependence between time-to-pregnancy
and the mean structure and variance structure (among normal cycles), respec-
tively. Negative values of these parameters characterize positive associations be-
tween the two processes in terms of mean and variance of the longitudinal
process.

Parameter estimation was conducted by maximizing the joint likelihood as
described in their manuscript. The major complication was evaluating the bi-variate
integral in the joint likelihood (integrating over the bi-variate random effects).
McLain et al. used Gaussian quadrature (Abramowitz and Stegun 1972) for this
numerical integration.

McLain et al. (2012) fit this model to interesting time-to-pregnancy cohort data.
Of interest is that they found estimates of φμ which were positive and estimates
of φσ which were negative (φσ estimates were significantly different from zero),
reflecting that women with shorter cycles and more normal cycle variability had a
longer time to pregnancy.

6 Discussion

This paper presents a summary of methodology and approaches for using SRP
models to analyze longitudinal data subject to missingness. The basic approach
which started with Wu and Carroll (1988) has been expanded in many directions. In
this paper we reviewed some of these expansions focusing on making inference in
batched or pooled longitudinal data subject to missingness, joint modeling of high
dimensional longitudinal data and time-to-event data, and in the joint modeling of
time-to-pregnancy and complex menstrual cycle patterns.

We discuss both a direct maximum-likelihood approaches and approximating
approaches for fitting SRP models. The direct modeling approaches, although
feasible for univariate longitudinal responses, can be very computationally intensive
for either batched or high-dimensional longitudinal data. In fact, direct maximum-
likelihood approach would be infeasible for joint modeling of high-dimensional and
time-to-event data with all known approaches. The approximate conditional model,
although not ideal in certain cases, provides a feasible solution to this difficult
problem.

Most SRP models assume that the random effects are normally distributed.
Various authors have investigated the robustness of inferences for different settings.
Davidian et al. have shown that for a joint model of longitudinal and survival
inferences on joint model parameters are relatively insensitive to random effects
misspecification, particularly when the number of longitudinal measurements is
relatively large.
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Selection models where the non-ignorable missing data mechanism is incorpo-
rated by modeling the probability of missing as a direct function of the missed
observation had it been observed are alternatives to SRP models. Pattern mixture
modeling, another commonly used technique for analyzing longitudinal data with
missingness, is one where we condition on the missing data pattern and make
inference marginalized over the missing data pattern. In spirt, the pattern mixture
model is the similar to the conditional model which is proposed as an approximation
to the SRP model.

We recommend that model adequacy be examined in traditional ways such as the
examination of residuals and fitted values as well as through goodness of fit tests.
However, as pointed out by Molenberghs et al. (2012), SRP models (as well as other
models for missing data) require assumptions about underlying mechanism that are
impossible to fully verify empirically. Knowledge about the subject at hand needs
to be incorporated in model development for proper inference.
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