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Abstract It is well known that in the complete longitudinal setup, the so-called
working correlation-based generalized estimating equations (GEE) approach may
yield less efficient regression estimates as compared to the independence assumption-
based method of moments and quasi-likelihood (QL) estimates. In the incomplete
longitudinal setup, there exist some studies indicating that the use of the same
“working” correlation-based GEE approach may provide inconsistent regression
estimates especially when the longitudinal responses are at risk of being missing
at random (MAR). In this paper, we revisit this inconsistency issue under a longitu-
dinal binary model and empirically examine the relative performance of the existing
weighted (by inverse probability weights for the missing indicator) GEE (WGEE),
a fully standardized GQL (FSGQL) and conditional GQL (CGQL) approaches. In
the comparative study, we consider both stationary and non-stationary covariates, as
well as various degrees of missingness and longitudinal correlation in the data.

1 Introduction

Consider a longitudinal binary data setup where yit is the Bernoulli response for
the i-th (i = 1, · · · ,K) individual at the t-th time point (t = 1, · · · ,T ) and xit =
(xit1, · · · ,xitu, · · · ,xit p)

′
is the associated p-dimensional covariate vector. When the

longitudinal data are complete (that is, there are no missing responses from any
of the individuals in the study), an estimating approach such as generalized quasi-
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likelihood (GQL) can be used to obtain an estimate of the regression parameter
vector, β , that is both consistent and efficient, provided that the correlation structure
associated with the repeated binary responses is known (see Sutradhar 2003).
In order to describe the longitudinal correlation in the data, it seems reasonable
to assume deterioration in the association between observations on the same
individuals that are further apart in time. Thus, to achieve this, we let ρ be a
longitudinal correlation parameter and consider a conditional linear binary dynamic
(CLBD) model proposed by Zeger et al. (1985) (see also Qaqish 2003), which is
given by

P(Yi1 = 1) = μi1, and

P(Yit = 1 | yi,t−1) = μit +ρ(yi,t−1 − μi,t−1) = λi,t|t−1(β ,ρ) = λit , for t = 2, · · · ,T
(1)

with μit = exp(x
′
itβ )/[1+ exp(x

′
itβ )] for t = 1, · · · ,T . According to model (1), the

marginal means and variances of yit are

E(Yit) = μit (2)

and

Var(Yit) = σi,tt = μit(1− μit), (3)

while the correlations between Yit and Yi,t+l for l = 1, · · · ,T −1, t = 1, · · · ,T − l are
given by

corr(Yit ,Yi,t+l) = ρ l
[

σi,tt

σi,t+l,t+l

]1/2

. (4)

The means, variances, and covariances defined by (2) through (4) are nonstationary,
since they are all functions of time-dependent covariates {xit}. However, if the σi,tt

are not extremely different, the correlations given by (4) assume a behavior that
is analogous to an autoregressive process of order one, AR(1). Under the present
model, the correlation parameter ρ must satisfy the range restriction

max

[
− μit

1− μi,t−1
,−1− μit

μi,t−1

]
≤ ρ ≤ min

[
1− μit

1− μi,t−1
,

μit

μi,t−1

]
. (5)

Suppose that we let μi and Σi(ρ) represent the mean vector and the covariance
matrix of the complete data vectorYi, where μi =(μi1, · · · ,μit , · · · ,μiT )

′
and Σi(ρ)=

A1/2
i Ci(ρ)A

1/2
i . Here, Ci(ρ) is the T ×T correlation matrix based on (4), and Ai =

diag(σi,11, · · · , σi,tt , · · · ,σi,T T ). An estimator for β that is both consistent and highly
efficient can be obtained by solving the GQL estimating equation
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K

∑
i=1

∂ μ ′
i

∂β
[Σi(ρ)]−1(yi − μi) = 0, (6)

(Sutradhar 2003).
In practice, it is typically the case that some of the responses associated with

each of a number of individuals in the study may be missing. To acknowledge
this phenomenon during the data collection process, we introduce an indicator
variable Rit , that takes on a value of one if Yit is observed, and zero otherwise. For
purposes of our investigation here, we adopt the not-so-unreasonable assumption
that all individuals provide a response at the first time point, so that Ri1 = 1 for
all i = 1, · · · ,K. We also assume monotonic missingness, suggesting that the Rit

satisfy the inequality Ri1 ≥ Ri2 ≥ ·· · ≥ Rit ≥ ·· · ≥ RiT . Thus, if responses are no
longer observed for the i-th individual after the j-th time point, for this individual
we would have available yit for t = 1, · · · ,Ti = j.

Regarding the missing data mechanism, at this time we distinguish between
responses that are missing completely at random, MCAR, and those that are missing
at random, MAR (see Fitzmaurice et al. 1996; Paik 1997; Rubin 1976). When the
responses are MCAR, the indicator variable Rit reflecting the presence or absence
of Yit does not depend on the previous responses Yi1, · · · ,Yi,t−1. In this instance, if
we define Ri = diag(Ri1, · · · ,RiT ) and incorporate this matrix into the estimating
equation given by (6) to yield

K

∑
i=1

∂ μ ′
i

∂β
[Σi(ρ)]−1Ri(yi − μi) = 0, (7)

it is still possible to obtain an unbiased estimator for β that will be consistent
and efficient. Note that Σi(ρ) is a T × T matrix with appropriate variance and
covariance entries in the first Ti rows and Ti columns and zeroes in the last T −Ti

rows and columns. On the other hand, when the missing data mechanism for the
responses is assumed to be MAR (implying that Rit does depend on the previous
responses Yi1, · · · ,Yi,t−1), it can be shown that E[Rit(Yit −μit)] �= 0. In this situation,
the estimator for β based on (7) will be biased and inconsistent. Upon realizing this
to be the case, many studies have attempted to correct for this problem by using a
modified inverse probability-weighted distance function

w−1
it {Hi,t−1(y);α} [Rit(Yit − μit)] , (8)

where Hi,t−1(y) ≡ Hi,t−1 = (Yi1, · · · ,Yi,t−1), so that the expectation of (8) is zero.
Following Robins et al. (1995), for data that are MAR, we can write the proba-
bility weight wit {Hi,t−1(y);α} = wit as a function of past responses as follows.
Specifically, imagine that the probability that the i-th individual responds at the
j-th time point depends on the past lag q responses, where q ≤ j − 1. Letting
gi j(yi, j−1, · · · ,yi, j−q;α) represent this probability, we can write gi j(yi, j−1, · · · ,yi, j−q;
α) = P(Ri j = 1 | Ri1 = 1, · · · ,Ri, j−1 = 1;yi, j−1, · · · ,yi, j−q), which can be modeled as
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gi j(yi, j−1, · · · ,yi, j−q;α) =
exp(1+∑q

l=1 αlyi, j−l)

1+ exp(1+∑q
l=1 αlyi, j−l)

, (9)

where αl is a parameter that reflects the dependence of Ri j on yi, j−l for all l =
1, · · · ,q. Robins et al. (1995) set

wit = P(Rit = 1,Ri,t−1 = 1, · · · ,Ri1 = 1 | Hi,t−1)

= P(Rit = 1 | Ri,t−1 = · · ·= Ri1 = 1;Hi,t−1)×
P(Ri,t−1 = 1 | Ri,t−2 = · · ·= Ri1 = 1;Hi,t−2)×
·· ·×P(Ri2 = 1 | Ri1 = 1;Hi1)P(Ri1 = 1)

=
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;α). (10)

Since monotonic missingness is assumed

E [RitYit | Hi,t−1] = P [Ri1 = 1,Ri2 = 1, · · · ,Rit = 1;Yit = 1 | Hi,t−1] , (11)

or, alternatively

E [RitYit | Hi,t−1] = P(Ri1 = 1)P [Ri2 = 1 | Ri1 = 1;Hi1] · · ·
P [Rit = 1 | Ri1 = 1,Ri2 = 1, · · · ,Ri,t−1 = 1;Hi,t−1]

P [Yit = 1 | Hi,t−1] . (12)

Using model (1) and gi j(yi, j−1, · · · ,yi, j−q;α) given in (9), (12) becomes

E [RitYit | Hi,t−1] =
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;α)λit

= wit λit , (13)

which implies that

E

[
RitYit

wit
| Hi,t−1

]
= λit , (14)

thus giving

EHi,t−1E

[
RitYit

wit
| Hi,t−1

]
= EHi,t−1 [λit ] = μit . (15)

Similarly
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EHi,t−1 E

[
Rit μit

wit
| Hi,t−1

]
= μit , (16)

suggesting that combining (15) and (16) yields

EHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= 0. (17)

This unconditional unbiasedness property of the weighted distance or estimating

function
[

Rit(Yit−μit)
wit

]
motivated many researchers to write a weighted generalized

estimating equation (WGEE) and solve it for the β involved in those μit . The
WGEE, first developed by Robins et al. (1995), is reproduced in brief, in Sect. 2.1.
Note that to construct the WGEE, Robins et al. (1995) suggested the specification of
a user-selected covariance matrix of {(Yit − μit), t = 1, . . . ,Ti} by pretending that as
though the data were complete. Recently, Sutradhar and Mallick (2010) have found
that this widely used WGEE approach produces highly biased regression estimates,
indicating consistency break down. In this paper, specifically in Sect. 3, we carry
out an extensive simulation study considering various degrees of missingness and
examine further the inconsistency problem encountered by the WGEE approach.

In Sect. 2.2, we consider a simpler version of a fully standardized GQL (FSGQL)
approach discussed by Sutradhar (2013, Sect. 3.2.4) by constructing the weight

matrix, that is, unconditional covariance matrix of {
[

Rit(Yit−μit)
wit

]
, t = 1, . . . ,Ti} using

longitudinal independence (i.e.,ρ = 0). We will refer to this as the FSGQL(I)
approach. In the simulation study in Sect. 3, we examine the relative performance
of this FSGQL(I) approach with the existing WGEE as well as WGEE(I) (indepen-
dence assumption-based WGEE) approach.

Further note that if the correlation model for the complete data were
known through λit in (14), one could exploit the conditional distance function[

Rit(Yit−λit)
wit

| Hi,t−1

]
to construct a conditional-weighted GQL (CWGQL) estimating

equation and solve such an equation to obtain consistent regression estimates. We
discuss this approach in Sect. 2.3 and include it in the simulation study in Sect. 3 to
examine its performance as compared to the aforementioned approaches.

2 Estimation

2.1 WGEE Approach

Robins et al. (1995, Eq. (10), p. 109) used the result in (17) to propose the WGEE

K

∑
i=1

∂ μ ′
i

∂β
[Vi(α∗)]−1 Δi(yi − μi) = 0, (18)
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(see also Paik 1997, Eq. (1), p. 1321) where Δi = diag(δi1,δi2, · · · ,δiT ) with δit =
Rit/wit{Hi,t−1(y);α}= Rit/wit . The quantity Vi(α∗) is a working covariance matrix
of Yi (see Liang and Zeger 1986) that is used in an effort to increase the efficiency
of the estimates. Of note is the fact while Robins et al. (1995) suggested a WGEE,
they did not account for the missingness in the data when specifying Vi(α∗); they
simply based their working covariance matrix on the complete data formulae. For
this reason, this WGEE approach may be referred to as a partially standardized GEE
(PSGEE) approach. See the previous article by Sutradhar (2013) in this chapter for
details on the use of PSGEE. Note that a user-selected covariance matrix based on
complete data that ignores the missing mechanism leads the WGEE to be unstable,
in particular, when the proportion of missing data is high, causing breakdown in
estimation, i.e., breakdown in consistency. However, this inconsistency issue has
not been adequately addressed in the literature including the studies by Robins
et al. (1995), Paik (1997), Rotnitzky et al. (1998) and Birmingham et al. (2003).
One of the main reasons is that none of the studies used any stochastic correlation
structure in conjunction with the missing mechanism to model the binary data in the
incomplete longitudinal setup.

In this paper, in order to investigate the effect on the estimates of the regression
parameter vector, we propose to replace the working covariance matrix Vi(α∗)
in (18) with a proper unconditional covariance matrix that accommodates the
missingness in the data. The proposed approach is presented in the next section.

2.2 FSGQL Approach

The unconditional unbiasedness property in (17), that is,

EHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= EHi,t−1E [δit(Yit − μit) | Hi,t−1] = 0

motivates one to develop a FSGQL estimating equation for β , which requires the
computation of the unconditional variance of δit(Yit −μit). Thus, for all t = 1, . . . ,Ti,
we now compute the unconditional covariance matrix, namely

cov[Δi(yi − μi)] = Σ∗
i (β ,ρ ,α), (say),

by using the formula

Σ∗
i (β ,ρ ,γ) = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+covHi(y)[E {Δi(Yi − μi(β ))} |Hi(y)],

where Hi(y) denotes the history of responses. For computational details under
any specified correlation model, we refer to the previous article by Sutradhar
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(2013, Sect. 3.2.4). For the binary AR(1) model in (1), the elements of the Ti ×Ti

unconditional covariance matrix Σ∗
i (β ,ρ ,α) are given by

cov[δiu(yiu − μiu),δit(yit − μit)]

≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ∗
i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)+ρ(1− 2μit)(yi,t−1 − μi,t−1)},(for t = 2, . . . ,Ti)

σ∗i,ut = ρρ t−1−uμiu(1− μiu), (for u = 1 < t)

σ∗
i,ut = ρ2ρ t−uμi(u−1)(1− μi(u−1)), (for 1 < u < t). (19)

Note that the formulas in (19) under the present AR(1) binary model may
be verified directly. For example, we compute the t-th diagonal element of the
Σ∗

i (β ,ρ ,α) matrix as follows. Since δit = Rit/wit{Hi,t−1(y);α} = Rit/wit , we can
write

Var

[
Rit(Yit − μit)

wit

]
= VarHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]

+EHi,t−1Var

[
Rit(Yit − μit)

wit
| Hi,t−1

]
, (20)

where

VarHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= VarHi,t−1

[
1

wit
wit(λit − μit)

]

= EHi,t−1

[
(λit − μit)

2] (21)

since
[
EHi,t−1(λit − μit)

]2
= 0, and

EHi,t−1Var

[
Rit(Yit − μit)

wit
| Hi,t−1

]

= EHi,t−1

[
1

wit
(1−wit)

{
λit(1−λit)+ (λit − μit)

2}+λit(1−λit)

]

= EHi,t−1

[
1

wit
λi(1−λit)+

1
wit

(λit − μit)
2 − (λit − μit)

2
]

(22)

Substituting (21) and (22) into (20) gives

Var

[
Rit(Yit − μit)

wit

]
= μit(1− μit)EHi,t−1

(
1

wit

)
+ρ(1− 2μit)×

[
EHi,t−1

(
Yi,t−1

wit

)
− μi,t−1EHi,t−1

(
1

wit

)]
(23)
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since λit = μit + ρ(yi,t−1 − μi,t−1) by (1). The conditional expectations given the
response history, Hi,t−1, in (23) are evaluated as follows:

EHi,t−1

(
1

wit

)
= ∑

yi1,yi2,··· ,yi,t−1

1
wit

μyi1
i1 (1− μi1)

1−yi1
t−1

∏
j=2

(λi j)
yi j (1−λi j)

1−yi j (24)

and

EHi,t−1

(
Yi,t−1

wit

)
= ∑

yi1,yi2,··· ,yi,t−1

(
yi,t−1

wit

)
μyi1

i1 (1− μi1)
1−yi1

t−1

∏
j=2

(λi j)
yi j (1−λi j)

1−yi j

(25)

2.2.1 FSGQL(I) Approach

Note that in a complete longitudinal setup, one may obtain consistent regression
estimates even if longitudinal correlations are ignored in developing the estimating
equation but such estimates may not be efficient (Sutradhar 2011, Chap. 7). By
this token, to obtain consistent regression estimates in the incomplete longitudinal
setup, we may still use the independence assumption (i.e., use ρ = 0) but the
missing mechanism must be accommodated to formulate the covariance matrix for
the construction of the estimating equation. Thus, for simplicity, we now consider
a specialized version of the FSGQL approach, namely FSGQL(I) approach, where
the GQL estimating equation is developed by using the independence assumption
(ρ = 0)-based covariance matrix. More specifically, under this approach, the covari-
ance matrix Σ∗

i (β ,ρ = 0,α) has the form

Σ∗
i (β ,ρ = 0,α)

≡

⎧⎪⎪⎨
⎪⎪⎩

σ∗
i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)}],(for t = 2, . . . ,Ti)

σ∗i,ut = 0, (for u �= t), (26)

where EHi(y)[w
−1
it ] is computed by (24).

Now by replacing the “working” covariance matrix Vi(α∗) in the WGEE given in
(18) with Σ∗

i (β ,ρ = 0,α), one may obtain the FSGQL(I) estimate for β by solving
the estimating equation

K

∑
i=1

∂ μ ′
i

∂beta
[Σ∗

i (β ,ρ = 0,α)]−1 Δi(yi − μi) = 0. (27)
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2.3 CWGQL Approach

Note that instead of using the distance function with unconditional zero mean,
one may like to exploit the distance function with zero mean conditionally. This
is possible only when the expectation of the binary response conditional on the past
history is known. In this case, by replacing μit with λit in (17), one may construct
the distance function which has mean zero conditional on the past history, that is,

E

[
Rit(Yit −λit(β ,ρ))

wit
| Hi,t−1

]
= 0, (28)

where for binary AR(1) model, for example, the conditional mean has the form

λit(β ,ρ) = μit +ρ(yi,t−1 − μi,t−1), (29)

for t = 2, . . . ,T .
Suppose that

λi(β ,ρ) = [λi1(β ),λi2(Hi,1(y),β ,ρ), . . . ,λiTi(Hi,Ti−1(y),β ,ρ)]′

with λi1(β ) = μi1(β ). To develop a GQL-type estimating equation in the conditional
approach, one minimizes the distance function

K

∑
i=1

[{Δi(yi −λi(β ,ρ))}′{cov(Δi(yi −λi(β ,ρ)))|Hi(y)}−1{Δi(yi −λi(β ,ρ))}′]
(30)

with respect to β , the parameter of interest. Given the history, let the conditional
covariance matrix {cov(Δi(yi − λi(β ,ρ)))|Hi(y)} be denoted by Σich(β ,ρ). Then
assuming that β and ρ in Σich(β ,ρ) are known, minimizing the quadratic distance
function (30) with respect to β is equivalent to solving the equation

K

∑
i=1

∂ [E{Δiλi(β ,ρ)|Hi(y)}′]
∂β

Σ−1
ich (β ,ρ){Δi(yi −λi(β ,ρ))}

=
K

∑
i=1

∂λ ′
i (β ,ρ)
∂β

Σ−1
ich (β ,ρ){Δi(yi −λi(β ,ρ))}= 0. (31)

Computational formula for Σich(β ,ρ ,γ)

For convenience, we first write

Δi = W−1
i Ri, with

Wi = diag[wi1,wi2, . . . ,wiTi ], and Ri = diag[Ri1, . . . ,RiTi ].
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It then follows that

Σich(β ,ρ) = cov[{Δi(yi −λi(β ,ρ))}|Hi(y)]

= W−1
i cov[{Ri(yi −λi(β ,ρ))}|Hi(y)]W

−1
i . (32)

Now to compute the covariance matrix in (32), we write

Ri(yi −λi(β ,ρ)) = [Ri1(yi1 −λi1), . . . ,Rit(yit −λit), . . . ,RiTi(yiTi −λiTi)]
′.

It then follows that for u < t, for example,

cov[{Riu(yiu −λiu),Rit(yit −λit)}|Hi,t−1(y)] = 0, (33)

and for t = 1, . . . ,Ti,

var[Rit(yit −λit)|Hi,t−1(y)] = var[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]

+ E2[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]+ var[Rit |Hi,t−1(y)]E
2[(yit −λit)|Hi,t−1(y)]

= wit(1−wit)σic,tt +w2
itσic,tt

= witσic,tt , (34)

where σic,tt is the conditional variance of yit given the history. For example, in the
binary case, σic,tt = λit(1−λit).

2.3.1 CWGQL Estimating Equation

Now by substituting (34) and (33) into (32), one obtains

Σich(β ,ρ) =W−1
i WiΣicW

−1
i =W−1

i Σic, (35)

where Σic = diag[σic,11, . . . ,σic,TiTi ]. Consequently, when this formula for Σich from
(35) is applied to the conditional GQL (CGQL) estimating equation in (31), one
obtains

K

∑
i=1

∂λ ′
i (β ,ρ)
∂β

Σ−1
ic (β ,ρ)Wi{Δi(yi −λi(β ,ρ))}= 0, (36)

which is unaffected by the missing MAR mechanism. This is not surprising, as con-
ditional on the history, Rit and yit are independent. However, this fully conditional
approach requires the modeling of the conditional means of the responses, which is
equivalent to modeling the correlation structure.
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2.3.2 Conditional Likelihood Estimation

In fact when conditional inference is used, one can obtain likelihood estimates for
β and ρ by maximizing the exact likelihood function under the condition that Yit

and Rit are independent given the history. This is easier for the analysis of longi-
tudinal binary data as compared to the longitudinal analysis for count data subject
to MAR.

Since the Rit ’s satisfy the monotonic restriction given in Sect. 1, and because Rit

and Yit are independent conditional on the history under the MAR mechanism, the
likelihood function for the ith individual may be expressed as

Li(β ,ρ ,α) = fi1(yi1) fi2|1{(yi2,ri2 = 1)|ri1 = 1,yi1} . . .
× fiTi |Ti−1

{(yiTi ,riTi = 1)|ri1 = 1,ri2 = 1, . . . ,ri(Ti−1) = 1,Hi,t−1(y)}
= μyi1

i1 [1− μi1]
1−yi1Π Ti

t=1[{git}{λ yit
it (1−λit)

1−yit}], (37)

where, by (9),

git(α) = P[(Rit = 1)|ri1 = 1, . . . ,ri,t−1 = 1,Hi,t−1(y)] =
exp(1+αyi,t−1)

1+ exp(1+αyi,t−1)
.

3 Simulation Study

3.1 Comparison Between WGEE (AR(1)), WGEE(I)
and FSGQL(I) Approaches: Multinomial Distribution
Based Joint Generation of R and y

In this section, we describe and report the results of a simulation study that centers
on a comparison of the WGEE approach of Robins et al. (1995) for estimating
the regression parameter vector with the proposed FSGQL approach. Recall that
the WGEE in (18) was constructed by using a “working” covariance matrix

Vi(α∗) = A
1
2
i R∗

i (α∗)A
1
2
i , of the response vector yi. Note that this weight matrix

was chosen ignoring the missing mechanism. Furthermore, there is no guideline
to choose the “working” correlation matrix R∗

i (α∗). In the simulation study, we will
consider a non-stationary longitudinal binary AR(1) model with true correlation
structure Ci(ρ) given by (4), for the responses subject to MAR. To examine the
performance of the WGEE approach (18), we choose the best possible stationary
AR(1) correlation form, namely,

R∗
i (α∗) = (r∗ut(α∗)) = (α∗|t−u|),
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as compared to using MA(1) and EQC-based “working” correlation matrices. We
will refer to this WGEE as the WGEE(AR(1)). Also we will consider the simplest
version of the WGEE approach, namely WGEE(I), which is obtained based on the
independence assumption by using α∗ = 0 in the “working” correlation matrix
R∗

i (α∗). These two versions of the WGEE approach will be compared with the
FSGQL(I) approach in (27) which was constructed by accommodating missing
mechanism but by using longitudinal independence assumption, i.e., ρ = 0 or
Ci(ρ) = ITi . For simplicity, in the present simulation study, we do not consider the
true complete covariance matrix Σ∗

i (β ,ρ ,α)-based FSGQL approach in (19).

3.1.1 Joint Generation of (R and y) Incomplete Binary Data: Multinomial
Distribution Based

In order to generate an incomplete longitudinal binary data set subject to MAR, we
follow the approach of Sutradhar and Mallick (2010). Specifically, the procedure
initially assumes that every individual provides a response at time t = 1. Thus,
since Ri1 = 1 for all i = 1, · · · ,K, a binary response yi1 is generated with marginal
probability μi1. Subsequently, yit is only observed for the i-th individual (i =
1, · · · ,K) at time t (t = 2, · · · ,T ) when Rit = 1 conditional on having observed
the previous t − 1 responses for that individual; in other words, conditional on
Ri1 = 1, · · · ,Ri,t−1 = 1. Therefore, at time t (t = 2, · · · ,T ), both Yit and Rit are
random variables conditional on the observed history up to time t − 1, and, as such,
one of the following three events occurs:

E1 : [Rit = 1,Yit = 1 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] ,

E2 : [Rit = 1,Yit = 0 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] ,

or E3 : [Rit = 0 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] , which implies that yit

is not observed.
Let zits = 1 for any s = 1,2,3 indicate that Es has occurred. Then, for l �= s,

zitl = 0, and it must be the case that ∑3
s=1 zits = 1. Let pits = P(zits = 1) for s= 1,2,3.

If we set q = 1 in (9), and use the resulting equation in conjunction with model (1),
the pits may be expressed as

pit1 = P(zit1 = 1) = P [Rit = 1,Yit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

pit2 = P(zit2 = 1) = P [Rit = 1,Yit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

and

pit3 = P(zit3 = 1) = P [Rit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

which can be written as
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pit1 = P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]P [Yit = 1 | Hi,t−1(y)]

= git(yi,t−1;α)λit , (38)

pit2 = P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]P [Yit = 0 | Hi,t−1(y)]

= git(yi,t−1;α)(1−λit), (39)

and

pit3 = P [Rit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] = 1− git(yi,t−1;α), (40)

where

git(yi,t−1;α) = exp(1+αyi,t−1)/[1+ exp(1+αyi,t−1)]. (41)

Thus, Sutradhar and Mallick (2010) summarize the data generation routine for the
i-th individual, i = 1, · · · ,K, as follows:

1. Generate yi1 from a Bernoulli distribution with parameter μi1.
2. For any t > 1, the values of zits for s = 1,2,3 are realized according to the

multinomial probability distribution

P(zit1,zit2,zit3) =
1!

zit1!zit2!zit3!
pzit1

it1 pzit2
it2 pzit3

it3

with ∑3
s=1 zits = 1. For zits = 1, allocate the response yit following Es.

3. If zits = 1, stop generating yit for this individual; otherwise repeat steps (1) and
(2) for t ≤ T .

3.1.2 Comparison Under Various Designs

Regarding the simulation study, for each of four designs, we set K = 100 and
T = 4 and performed 1,000 replications. We considered three different values
of longitudinal correlation parameter, setting ρ = 0.2, 0.5, and 0.8 in turn. In
order to investigate the effect of the degree of missingness on the estimates of
the regression parameter vector, for Δi = diag(δi1,δi2, · · · ,δiT ) in (18) with δit =
Rit/wit{Hi,t−1(y);α} = Rit/wit , we set wit = ∏t

j=1 gi j(yi, j−1;α) according to (10)
with q = 1. We then studied two levels for α , namely α = 1, and α = −3 (We
assume throughout the simulation study that both ρ and α are known; hence, we
do not concern ourselves with estimating these quantities). Note that, according to
(41), P[Rit = 0 | yi,t−1 = 1] = 0.12 and P[Rit = 0 | yi,t−1 = 0] = 0.27 for α = 1, while
P[Rit = 0 | yi,t−1 = 1] = 0.88 and P[Rit = 0 | yi,t−1 = 0] = 0.27 for α = −3. Thus,
when α =−3, the rate of missingness is extremely high, as expected.
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Table 1 (Based on data using joint generation approach) Simulated means (SM) and standard
errors (SSE) based on 1,000 simulations for β = 0.5 and selected values of ρ and α , selected
design

WGEE(AR(1)) WGEE(I) FSGQL(I)

Design α ρ Statistic β̂ # β̂ # β̂ #

No −3 0.2 SM 0.574 231 0.471 174 0.501 1,000
covariate SSE 0.284 0.293 0.196

0.5 SM 0.551 361 0.250 233 0.502 1,000
SSE 0.295 0.311 0.204

0.8 SM 0.556 500 −0.052 345 0.503 1,000
SSE 0.270 0.286 0.219

1 0.2 SM 0.478 1,000 0.502 1,000 0.501 1,000
SSE 0.144 0.146 0.141

0.5 SM 0.434 1,000 0.503 1,000 0.504 1,000
SSE 0.164 0.172 0.169

0.8 SM 0.372 1,000 0.499 1,000 0.500 1,000
SSE 0.190 0.206 0.200

p = 1 −3 0.2 SM 0.503 440 0.514 383 0.499 1,000
stationary SSE 0.348 0.358 0.292

0.5 SM 0.504 593 0.508 464 0.521 999
SSE 0.351 0.380 0.294

0.8 SM 0.509 663 0.518 559 0.529 999
SSE 0.361 0.408 0.325

1 0.2 SM 0.500 1,000 0.501 1,000 0.500 1,000
SSE 0.190 0.192 0.185

0.5 SM 0.496 1,000 0.499 1,000 0.498 1,000
SSE 0.234 0.241 0.233

0.8 SM 0.516 1,000 0.514 1,000 0.515 1,000
SSE 0.271 0.291 0.282

Note that # refers to the number of simulations where convergence is achieved

Initially, we compared the WGEE(I) and FSGQL(I) approaches using a sta-
tionary design that essentially contained no covariates. For this design, we simply
had a single β1 = 0.5, while the associated xit1 = 1 for all i = 1, · · · ,100 and
t = 1, · · · ,4. Table 1 presents the means and standard errors of the WGEE and
FSGQL(I) estimates over the 1,000 replications for each of the six combinations
of ρ and α . The number of replications that converged is also reported. When
the degree of missingness is not overly severe (α = 1), there is little difference
in the WGEE(I) and FSGQL(I) estimates. Both approaches produce essentially
unbiased estimates, and all replications converge. However, when the degree of
missingness is more pronounced (α =−3), the WGEE(I) estimates are significantly
biased. In addition, regardless of the value of ρ , more than half of the replications
did not converge. On the other hand, the FSGQL(I) estimates are still unbiased,
and all replications continue to converge. We investigated the WGEE approach
further by considering an AR(1) type “working” correlation structure instead of
an independence assumption-based “working” correlation matrix. This WGEE
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Table 3 (Based on data using conditional approach) Simulated means (SM) and standard errors
(SSE) based on 1,000 simulations for β = 0.5 and selected values of ρ and α , selected design

WGEE(AR(1)) WGEE(I) FSGQL(I)

Design α ρ Statistic β̂ # β̂ # β̂ #

No −3 0.2 SM – 0 0.565 912 0.495 1,000
covariate SSE – 0.238 0.200

0.5 SM – 0 0.550 910 0.495 1,000
SSE – 0.250 0.206

0.8 SM – 0 0.523 907 0.495 1,000
SSE – 0.261 0.218

1 0.2 SM 0.402 6 0.471 1,000 0.495 1,000
SSE 0.293 0.151 0.139

0.5 SM 0.323 4 0.478 1,000 0.505 1,000
SSE 0.374 0.170 0.166

0.8 SM 0.391 4 0.466 1,000 0.493 1,000
SSE 0.201 0.199 0.205

p = 1 −3 0.2 SM 0.472 415 0.479 375 0.497 998
stationary SSE 0.585 0.598 0.275

0.5 SM 0.511 571 0.528 458 0.505 999
SSE 0.621 0.647 0.287

0.8 SM 0.489 696 0.503 574 0.515 1,000
SSE 0.606 0.643 0.330

1 0.2 SM 0.498 1,000 0.499 1,000 0.499 1,000
SSE 0.537 0.538 0.198

0.5 SM 0.513 1,000 0.512 1,000 0.509 1,000
SSE 0.568 0.571 0.245

0.8 SM 0.509 1,000 0.514 1,000 0.514 1,000
SSE 0.579 0.595 0.290

Note that # refers to the number of simulations where convergence is achieved

approach is referred to as the WGEE(AR(1)) approach. Specifically, we set Vi(α∗)=
A1/2

i R∗
i (α∗)A1/2

i , where R∗
i (α∗) is a T ×T correlation matrix with corr(Yit ,Yi,t+l) =

α∗l and Ai = diag(σi,11, · · · ,σi,tt , · · · ,σi,TiTi ,0, · · · ,0) with σi,tt = μit(1− μit). To
avoid estimation of α∗ we have used α∗ = ρ . The results obtained for each of the
six combinations of ρ and α (the missing dependence parameter) are also presented
in Table 1. For α = −3, the WGEE(AR(1)) estimates based on an AR(1) type
structure are significantly better than those based on independence, and the number
of replications that converged is also notably higher. Nonetheless, the independent
FSGQL(I) estimates are still noticeably better than either of the WGEE estimates.
Also of note is the fact that the WGEE(AR(1)) estimates based on the AR(1)
structure for α = 1 are outperformed by their independent covariance structure
counterparts.

We also considered a stationary design consisting of one covariate with asso-
ciated parameter β1 = 0.5. Specifically, for all t = 1, · · · ,4, we set xit1 = −1 for
i = 1, · · · ,K/4, xit1 = 0 for i = (K/4)+ 1, · · · ,3K/4, and xit1 = 1 for i = (3K/4)+
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1, · · · ,K. The simulation results associated with this design are presented in Table 1
for each combination of ρ and α . When α = 1, the performance of WGEE(AR(1)),
WGEE(I) and FSGQL(I) are very similar. It is also important to note that when
α =−3, despite the fact that the average estimates for the regression parameters are
better for WGEE under relatively higher longitudinal correlations of ρ = 0.5 and 0.8,
the estimated standard errors are significantly smaller for the proposed FSGQL(I)
technique. In addition, WGEE experiences convergence problems on a significant
number of simulation replications; when an independent covariance structure is
assumed, convergence rates ranged between 40% and 60%, approximately, and were
only slightly better when an AR(1) structure was specified.

Two designs consisting of two covariates with associated regression parameters
β1 = β2 = 0.5 were also studied; one consisted of two stationary covariates, the other
of nonstationary ones. For the design consisting of two stationary covariates, we set
xit1 = 1 for all i = 1, · · · ,100 and t = 1, · · · ,4 as in the design with no covariate,
and xit2 according to the values specified for the single covariate design described
above. The two covariates in the nonstationary design were set as follows:

xit1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 , for i = 1, · · · , K

4 ; t = 1,2

0, for i = 1, · · · , K
4 ; t = 3,4

− 1
2 , for i = K

4 + 1, · · · , 3K
4 ; t = 1

0, for i = K
4 + 1, · · · , 3K

4 ; t = 2,3
1
2 , for i = K

4 + 1, · · · , 3K
4 ; t = 4

t
2T , for i = 3K

4 + 1, · · · ,K; t = 1, · · · ,4

and

xit2 =

⎧⎪⎪⎨
⎪⎪⎩

t−2.5
2T , for i = 1, · · · , K

2 ; t = 1, · · · ,4
0, for i = K

2 + 1, · · · ,K; t = 1,2
1
2 , for i = K

2 + 1, · · · ,K; t = 3,4

The results for both the stationary and non-stationary two-covariate designs are
presented in Table 2. For both designs, when α = 1, the performance of WGEE(I)
under an independent covariance structure and FSGQL(I) is very similar. The
estimates obtained using WGEE(AR(1)) with an AR(1) structure appear to be
biased. When α =−3, and there is a significantly higher degree of missingness, the
estimates obtained under WGEE are biased regardless of the assumed covariance
structure and the level of longitudinal correlation; this is particularly the case in the
nonstationary design. Also of note is the fact that the convergence rates under the
WGEE approach are very poor, with the majority under 5% for the nonstationary
design.
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3.2 Comparison of WGEE(AR(1)), WGEE(I), and FSGQL(I)
Approaches: Generating R and y conditionally

Because Rit and yit are independent conditional on the history Hi,t−1(y), instead of
generating them by using a multinomial distribution discussed in Sect. 3.1.1, one
may generate them by using a conditional approach as follows:

1. Generate yi1 from bin(μi1) for all i, i = 1, . . . ,K.
2. For i-th individual, generate Ri2 from bin(gi2), where git is given by (9) for

t = 2, . . . ,T .
3. If Ri2 = 0, consider Ri j = 0 and stop generating yi j ( j = 2, · · · ,T ).
4. If Ri2 = 1, generate yi2 from bin(λi2), where λit is the mean of Yit conditional on

yi,t−1 for t = 2, . . . ,T , as given by (1).
5. Repeat from step 2 for j = 3, · · · ,T .

The estimates for the same designs are obtained as in Sect. 3.1.2, and the
simulation results are reported in Tables 3 and 4. The results are similar to those
of Tables 1 and 2, except that WGEE approaches appear to encounter more
convergence problems especially when proportion of missing values is large.

3.3 Performance of CWGQL Approach: Multinomial
Distribution-Based Joint Generation of R and y

As opposed to the marginal approach where the unconditional mean function μit(β )
is modeled, in the longitudinal setup it is more appropriate to model the conditional
regression (mean) function. When complete longitudinal binary data follow an
AR(1)-type correlation model, as pointed out in (1), the conditional regression
function may be modeled as

λit(β ,ρ) = μit +ρ(yi,t−1 − μi,t−1), for t = 2, . . . ,T.

Furthermore, as pointed out in (28), because in the incomplete longitudinal setup
with MAR mechanism one finds

E

[
Rit(Yit −λit(β ,ρ))

wit
| Hi,t−1

]
= 0,

the regression parameter β in μit(β ) modeled through λit(β ,ρ) can be estimated
by solving the CWGQL estimating (36). For the same design parameters used in
Sect. 3.1.2 for Tables 1 and 2, by generating incomplete data using the multinomial
distribution discussed in Sect. 3.1.1, we have obtained the CWGQL estimates for β
under different scenarios as for the results shown in Tables 1 and 2. The CWGQL
estimates along with their standard errors are reported in Tables 5 and 6.
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Table 5 (Based on data
using joint generation
approach) Simulated means
(SM) and standard errors
(SSE) for CWGQL approach
with β = 0.5 and selected
values of ρ and α , based on
1,000 simulations

No covariate p = 1 (stationary)

α ρ Statistic β̂ # β̂ #

−3 0.2 SM 0.505 1,000 0.494 1,000
SSE 0.178 0.247

0.5 SM 0.505 1,000 0.509 1,000
SSE 0.188 0.256

0.8 SM 0.507 1,000 0.517 1,000
SSE 0.204 0.291

1 0.2 SM 0.500 1,000 0.499 1,000
SSE 0.138 0.183

0.5 SM 0.501 1,000 0.493 1,000
SSE 0.158 0.224

0.8 SM 0.497 1,000 0.514 1,000
SSE 0.183 0.265

Note that # refers to the number of simulations where conver-
gence is achieved

Table 6 (Based on data using joint generation approach) Simulated means (SM) and standard
errors (SSE) for CWGQL approach with β1 = β2 = 0.5 and selected values of ρ and α , based on
1,000 simulations

Stationary covariates Nonstationary covariates

α ρ Statistic β̂1 β̂2 # β̂1 β̂2 #

−3 0.2 SM 0.522 0.513 1,000 0.517 0.515 789
SSE 0.185 0.260 0.429 0.992

0.5 SM 0.516 0.510 1,000 0.507 0.645 770
SSE 0.201 0.278 0.410 0.903

0.8 SM 0.506 0.508 1,000 0.497 0.730 597
SSE 0.203 0.298 0.370 0.837

1 0.2 SM 0.501 0.507 1,000 0.503 0.503 1,000
SSE 0.133 0.193 0.372 0.581

0.5 SM 0.498 0.500 1,000 0.502 0.471 901
SSE 0.160 0.232 0.350 0.515

0.8 SM 0.506 0.509 1,000 0.449 0.423 302
SSE 0.195 0.281 0.254 0.455

Note that # refers to the number of simulations where convergence is achieved

In order to examine the relative performance of the CWGQL approach with
those of WGEE(AR(1)), WGEE(I), and FSGQL(I), it is sufficient to compare
the CWGQL approach with the FSGQL(I) approach only. This is because it
was found from the results in Tables 1 and 2 that the WGEE approaches may
encounter serious convergence problems (showing consistency breakdown) and also
may produce highly biased estimates, where the FSGQL(I) approach, in general,
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does not encounter such convergence problems and produces almost unbiased
estimates even if a large proportion of values are missing. Now as compared
to the FSGQL(I) approach, the CWGQL approach appears to produce slightly
more efficient estimates than the FSGQL(I) approach. For example, when α = 1
(moderate missing) and ρ = 0.5, in the no-covariate case, the FSGQL(I) approach
(Table 1) produces an average estimate of β = 0.5 as 0.504 with standard error
0.169, whereas the CWGQL approach (Table 5) produces β estimate as 0.501 with
standard error 0.158. Similarly when ρ = 0.8 and α = −3 (high missing), in the
stationary one-covariate case, FSGQL(I) produces an estimate with standard error
0.325 as compared to 0.291 for CWGQL. Similar results are found for the stationary
two-covariate case. Also in these stationary cases, the CWGQL approach does not
encounter any convergence problems even if the proportion of missing is high. In the
non-stationary cases however, the CWGQL approach encounters some convergence
problems when the proportion of missing is high, but the problem is less serious
than the WGEE and WGEE(I) approaches.

4 Conclusion and Discussion

It was found that the existing WGEE (Robins et al. 1995) and WGEE(I) approaches
in general encounter convergence problems when the proportion of missing is
high, and the WGEE approach may produce highly biased estimates even when
the proportion of missing is moderate or low. These results agree with the recent
study reported by Sutradhar and Mallick (2010). The WGEE(I) approach, however,
produces almost unbiased estimates and consequently this approach produces
consistent estimates when the proportion of missing is moderate or low. However, it
can be inefficient. The proposed FSGQL(I) approach does not appear to encounter
any serious convergence problems even when the proportion of missing is high and
the covariates are non-stationary. Also, it produces unbiased estimates similar to
the WGEE(I) approach but with smaller standard errors, showing that FSGQL(I)
is more efficient as expected than the WGEE(I) approach. Thus even with high
proportion of missing, one may reliably use the proposed FSGQL(I) approach for
regression estimation whether the covariates are stationary or time dependent. The
general FSGQL approach is supposed to increase the efficiency as compared to
the FSGQL(I) approach when correlations are large, but this will be studied in the
future.

We have also reported some results on the performance of a conditional
estimating equation, namely CWGQL estimating equation approach. This approach
was found to produce regression estimates with more efficiency than the FSGQL(I)
approach. However as compared to the FSGQL(I) approach it encounters conver-
gence problems when covariates are time dependent and the proportion of missing
is high. However, it experiences less convergence problems than the WGEE(I)
approach.
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