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Abstract In the independent setup with multivariate responses, the data become
incomplete when partial responses, such as responses on some variables as opposed
to all variables, are available from some individuals. The main challenge here is
obtaining valid inferences such as unbiased and consistent estimates of mean param-
eters of all response variables by using available responses. Typically, unbalanced
correlation matrices are formed and moments or likelihood analysis based on the
available responses are employed for such inferences. Various imputation tech-
niques also have been used. In the longitudinal setup, when a univariate response is
repeatedly collected from an individual, these repeated responses become correlated
and the responses form a multivariate distribution. In this setup, it may happen
that a portion of responses are not available from some individuals under study.
These non-responses may be monotonic or intermittent. Also the response may be
missing following a mechanism such as missing completely at random (MCAR),
missing at random (MAR), or missing non-ignorably. In a longitudinal regression
setup, the covariates may also be missing, but typically they are known for all
time periods. Obtaining unbiased and consistent regression estimates specially
when longitudinal responses are missing following MAR or ignorable mechanism
becomes a challenge. This happens because one requires to accommodate both
longitudinal correlations and missing mechanism to develop a proper inference tool.
Over the last three decades some progress has been made toward this mainly by
taking partial care of missing mechanism in developing estimation techniques. But
overall, they fall short and may still produce biased and hence inconsistent estimates.
The purpose of this paper is to outline these perspectives in a comprehensive manner
so that real progress and challenges are understood in order to develop proper
inference techniques.
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1 Introduction

Missing data analysis in the independent setup with multivariate responses has a
long history. For example, for an early work, we refer to Lord (1995) who consid-
ered a set of incomplete trivariate normal responses collected from K independent
individuals. But all components of all three variables were not available from the K
individuals. To estimate the mean parameters consistently, instead of dropping out
the individuals with incomplete information, Lord (1995) has utilized the available
information and constructed unbalanced (bivariate and trivariate) probability func-
tions for individuals toward writing a likelihood function for the desired inference.
Note that this technique for consistent estimation of the parameters and other similar
inferences by using incomplete data have been used by many researchers over the
last six decades. See, for example, Mehta and Gurland (1973), Morrison (1973),
Naik (1975), Little (1988), and Krishnamoorthy and Pannala (1999), among others.

In the independent setup, techniques of imputation and multiple imputation
(Rubin 1976; Rubin and Schenker 1986; Meng 1994) have also been widely used.
Some authors such as Paik (1997) used this imputation technique in repeated
measure (longitudinal) setup. The imputation at a given time point is done mainly
by averaging over the responses of other individuals at that time who has the same
covariates history as that of the individual concerned. Once the missing values are
estimated, they are used as data with necessary adjustments to construct complete
data based estimating equations for the desired parameters.

In a univariate longitudinal response setup, when T repeated measures are
taken they become correlated and hence they jointly follow a T -dimensional
multivariate distribution. However, unlike in the Gaussian setup for linear data,
the multivariate distributions for repeated binary and count data become complex
or impractical. However if a portion of individuals do not provide responses
for all T time points, then adopting likelihood approach by blending missing
mechanism and correlation structure of the repeated data would naturally become
extremely complicated or impossible. As a remedy, either imputation or estimating
equation approaches became popular which, however, work well if the missing
data occur following the simplest MCAR mechanism. When the missing data
occur following the MAR mechanism, writing a proper estimating equation by
accommodating both longitudinal correlations and missing mechanism becomes
difficult. Robins et al. (1995) proposed an inverse probability weights based
generalized estimating equations (WGEE) approach as an extension of the GEE
approach proposed by Liang and Zeger (1986) to the incomplete setup. Remark
that as demonstrated by Sutradhar and Das (1999) and Sutradhar (2010), for
example, the GEE approach can produce less efficient regression estimates than the
well-known simpler moments or quasi-likelihood (QL) estimates, in the complete
data setup. Thus, to be realistic, there is no reason how WGEE approach can
be more efficient in the incomplete longitudinal setup as compared to simpler
moments and QL estimates. In fact in the incomplete longitudinal setup, the WGEE
approach constructed based on working correlations as opposed to the use of
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MAR based correlation matrix may yield biased and hence inconsistent regression
estimates (Sutradhar and Mallick 2010). Further remark that this inconsistency
issue was, however, not adequately addressed in the literature including the studies
by Robins et al. (1995), Paik (1997), Rotnitzky et al. (1998), and Birmingham
et al. (2003). One of the main reasons is this that none of the studies used
any stochastic correlation structure in conjunction with the missing mechanism
to model the longitudinal count and binary data in the incomplete longitudinal
setup. Details on this inconsistency problem are given in Sect. 3, whereas in
Sect. 2 we provide a detailed discussion on missing data analysis in independent
setup.

Without realizing the aforementioned inconsistency problems that can be caused
because of the use of working correlations in the estimating equations under the
MAR based longitudinal setup, some authors such as Wang (1999) and Rotnitzky
et al. (1998) used similar estimating equations approach in non-ignorable missing
mechanism-based incomplete longitudinal setup. Some authors such as Troxel et al.
(1998) (see also Troxel et al. 1997) and Ibrahim et al. (2001) (see also Ibrahim
et al. 1999) have used random effects based generalized linear mixed model to
accommodate the longitudinal correlations and certain binary logistic models to
generate the non-ignorable mechanism based response indicator variables. In gen-
eral expectation-maximization (EM) techniques are used to estimate the likelihood
based parameters. These approaches appear to encounter similar difficulties as
the existing MAR based approaches in generating first the response indicator
and then the responses so that underlying longitudinal correlation structure is
satisfied. Thus the inference validity of these approaches is not yet established.
This problem becomes more complicated when longitudinal correlations are not
generated through random effects and writing a likelihood such as for repeated count
data becomes impossible. For clarity, in this paper we discuss in detail the successes
and challenges with the inferences for MAR based incomplete longitudinal models
only. The non-ignorable missing data based longitudinal analysis will therefore be
beyond the scope of the paper.

2 Missing Data Analysis in Independent Setup

Missing data analysis in the independent setup with multivariate responses has
a long history. For example, for an early work, we refer to Lord (1995) who
considered a set of incomplete trivariate normal responses collected from K
independent individuals. To be specific, suppose that y = (y1,y2,y3)

′ represents a
trivariate response, but all components of y were not available from K individuals.
Suppose that y3 was recorded from all K individuals, and either y1 or y2 was
recorded for all individuals, but not both. For j = 1, . . . ,3, let Kj denote the number
of individuals having the response y j. It then follows that

K1 +K2 = K, K3 = K.
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Further suppose that the K1 individuals for whom y1 is recorded will be denoted
collectively as group 1 (G1); and the K2 individuals with y2 will be denoted as
group 2 (G2). Now because y1 and y2 are correlated, it is obvious that the data for G2

contain some information relevant for estimating the parameters of variable y1, and
that the data for G1 contain some information relevant for estimating the parameters
of y2. The problem is to use the available data as efficiently as possible for estimating
the parameters concerned. Denote the distribution of y = [y1, y2, y3]

′ as

y ∼ N(μ ,Σ),

with μ = [μ1,μ2,μ3]
′ and

Σ =

⎛
⎜⎜⎜⎜⎝

σ11 ρ12[σ11σ22]
1
2 ρ13[σ11σ33]

1
2

σ22 ρ23[σ22σ33]
1
2

σ33

⎞
⎟⎟⎟⎟⎠
.

Note that in this setup, there are no data available to estimate ρ12. For the likelihood
estimation of all the other parameters, define

ȳ∗1 =
1

K1

K1

∑
i=1

y1i, ȳ∗2 =
1

K2

K2

∑
i=1

y2i, ȳ3 =
1
K

K

∑
i=1

y3i, ȳ∗3 =
1

K1

K1

∑
i=1

y3i, ȳ∗∗3 =
1

K2

K2

∑
i=1

y3i

s∗11 =
1

K1

K1

∑
i=1

[y1i − ȳ∗1]
2, s∗22 =

1
K2

K2

∑
i=1

[y2i − ȳ∗2]
2, s33 =

1
K

K

∑
i=1

[y3i − ȳ3]
2,

s∗33 =
1

K1

K1

∑
i=1

[y3i − ȳ∗3]
2, s∗∗33 =

1
K2

K2

∑
i=1

[y3i − ȳ∗∗3 ]2

r13 =
1

K1

K1

∑
i=1

[(y1i − ȳ∗1)(y3i − ȳ∗3)]/[s
∗
11s∗33]

1
2 ,

r23 =
1

K2

K2

∑
i=1

[(y2i − ȳ∗2)(y3i − ȳ∗∗3 )]/[s∗22s∗∗33]
1
2 . (1)

The maximum likelihood estimators for the means are then given by

μ̂1 = ȳ∗1 − b13[ȳ
∗
3 − ȳ3], μ̂2 = ȳ∗2 − b23[ȳ

∗∗
3 − ȳ3], and μ̂3 = ȳ3, (2)

where

b13 = r13
s∗11

s∗33
, and b23 = r23

s∗22

s∗∗33
.
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These estimators in (2) are unbiased and consistent for μ1, μ2, and μ3, respectively.
The remaining parameters may also be estimated similarly (Lord 1995).

Note that the aforementioned technique for consistent estimation of the pa-
rameters and for other similar inferences by using incomplete data has been
subsequently used by many researchers over the last six decades. See, for ex-
ample, Mehta and Gurland (1973), Morrison (1973), Naik (1975), Little (1988),
and Krishnamoorthy and Pannala (1999), among others. This idea of making
inferences about the underlying model parameters such that the missing data
(assuming a small proportion of missing) may not to any major extent negatively
influence the inferences has also been extended to the analysis of incomplete
repeated measure data. For example, one may refer to Little (1995), Robins
et al. (1995), and Paik (1997), as some of the early studies. This inference
procedure for incomplete longitudinal data is discussed in detail in the next
section.

In the independent setup, techniques of imputation and multiple imputation
(Rubin 1976; Rubin and Schenker 1986; Meng 1994) have also been widely used.
Later on some authors also used this imputation technique in repeated measure
(longitudinal) setup. For example, here we illustrate an imputation formula from
Paik (1997) in repeated measure setup. The imputation at a given time point
is done mainly by averaging over the responses of other individuals at that
time who has the same covariates history as that of the individual concerned.
Once the missing values are estimated, they are used as data with necessary
adjustments to construct complete data based estimating equations for the desired
parameters.

In a univariate longitudinal response setup, when T repeated measures are taken
they become correlated and hence they jointly follow a T -dimensional multivariate
distribution. Now suppose that Ti responses are observed for the ith (i = 1, . . . ,K)
individual. So, one requires to impute T − Ti missing values which may be done
following Paik (1997), for example. Interestingly, a unified recursive relation can be
developed as follows to obtain the imputed value ỹi,Ti+ki at time point Ti + ki for all
ki = 1, . . . ,T −Ti. For this, first define

ỹ(0)j,Ti+ki
= y j,Ti+ki (3)

for the jth individual where j �= i, j = 1, . . . ,K. Also, let DiTi denote the covariate
history up to time point Ti for the ith individual, and

D∗
i,Ti+ki

= (xi,Ti+1, . . . ,xi,Ti+ki)

is the covariate information for the ith individual from time Ti + 1 up to Ti + ki

for ki = 1, . . . ,T −Ti. Further let, r jw = 1,or,0, for example, indicates the response
status of the jth individual at wth time. One may then obtain ỹi,Ti+ki by computing

ỹ(ki)
i,Ti+ki

, that is, ỹi,Ti+ki ≡ ỹ(ki)
i,Ti+ki

, where
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ỹ(ki)
i,Ti+ki

=

[
K

∑
j=1

ỹ(0)j,Ti+ki
Π ki

u=1r j,Ti+uI(D jTi = DiTi ,D
∗
j,Ti+ki

= D∗
i,Ti+ki

)

+
ki−1

∑
mi=1

K

∑
j=1

ỹ(mi)
j,Ti+ki

Π ki
u=ki−(mi−1)(1− r j,Ti+u)

× Π ki−mi
u=1 r j,Ti+uI(D jTi = DiTi ,D

∗
j,Ti+ki

= D∗
i,Ti+ki

)
]

×
[

K

∑
j=1

r j,Ti+1I(D jTi = DiTi ,D
∗
j,Ti+ki

= D∗
i,Ti+ki

)

]−1

. (4)

Note that ỹi.Ti+ki ≡ ỹ(ki)
i,Ti+ki

is an unbiased estimate of μi,Ti+ki as the individuals used
to impute the missing value of the ith subject has the same covariate history up to
time point Ti + ki, unlike the covariate history up to time point Ti (Paik 1997).

3 Missing Data Models in Longitudinal Setup

Let Yit be the potential response from the ith (i = 1, . . . ,K) individual at time point
t which may or may not be observed, and xit = (xit1, . . . ,xit p)

′ be the corresponding
p-dimensional covariate vector which is assumed to be available for all times
t = 1, . . . ,T . In this setup, K is large (K → ∞) and T is small such as 3 or 4.
Suppose that β = (β1, . . . ,βp)

′ denote the effect of xit on yit . Irrespective of the
situation whether Yit is observed or not, it is appropriate in the longitudinal setup
to assume that the repeated responses follow a correlation model with known
functional forms for the mean and the variance, but the correlation structure may be
unknown. Recall that in the independent setup, Lord (1995) considered multivariate
responses having a correlation structure and incompleteness arose because of
missing information on some response variables, whereas in the present longitudinal
setup, repeated responses from an individual form a multivariate response with
a suitable mean, variance, and correlation structures, but it remains a possibility
that one individual may not provide responses for the whole duration of the study.
As indicated in the last section, suppose that for the ith (i = 1, . . . ,K) individual
Ti responses (1 < Ti ≤ T ) are collected. Also suppose that the remaining T − Ti

potential responses are missing and the non-missing responses occur in a monotonic
pattern.

As far as the mean, variance, and correlation structure of the potential responses
are concerned, it is convenient to define them for the complete data. Let yi

c =
(yi1, · · · ,yit , · · · ,yiT )

′ and Xi
c = (xi1, · · · ,xit , · · · ,xiT )

′
denote the T × 1 complete

outcome vector and T × p covariate matrix, respectively, for the i-th (i = 1, · · · ,K)
individual over T successive points in time. Also, let
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E(Yi
c|xi

c) = μi
c(β ) = (μi1(β ), · · · ,μit(β ), · · · ,μiT (β ))

′
(5)

where μit(β ) = h−1(ηit ) with ηit = x
′
itβ , h being a suitable link function. For

example, for linear models, a linear link function is used so that μit(β ) = x′itβ ;
whereas for the binary data a logistic link function is commonly used so that
μit(β ) = exp(ηit)/[1+ exp(ηit)], and for count data a log linear link function is
used so that μit(β ) = exp(ηit). Further let

Σ c
i (β ,ρ) = Ac

i
1
2 (β )C̃i(ρ ,xc

i )A
c
i

1
2 (β ) (6)

be the true covariance matrix of yc
i , where Ac

i (β ) = diag[σi11(β ), · · · ,σitt (β ), · · · ,
σiT T (β )] with σitt (β ) = var(Yit), and C̃i(ρ ,xc

i ) is the correlation matrix for the
ith individual with ρ as a suitable vector of correlation parameters, for example,
ρ ≡ (ρ1, . . . ,ρ�, . . . ,ρT−1)

′, where ρ� is known to be the lag � auto-correlation.
Note that when covariates are time dependent, the true correlation matrix is free
from time-dependent covariates in linear longitudinal setup, but it depends on the
time-dependent covariates through Xc

i in the discrete longitudinal setup (Sutradhar
2010). In the stationary case, that is, when covariates are time independent, we
will denote the correlation matrix by C̃(ρ) in the complete longitudinal setup, and
similar to Sutradhar (2010, 2011), this matrix satisfies the auto-correlation structure
given by

C̃(ρ) =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦
, (7)

where for � = 1, . . . ,T , ρ� is known to be the �th lag auto-correlation. Note that
when this correlation structure (7) will be used in the incomplete longitudinal setup,
it would be denoted by C̃i(ρ) as it will be constructed for Ti available responses.

As far as the missing mechanism is concerned, it is customary to assume that a
longitudinal response may be missing completely at random (MCAR), or missing at
random (MAR), or the missing can be non-ignorable. Under the MCAR mechanism,
the missing-ness does not depend on any present, past, or future responses. Under
the MAR mechanism, the missing-ness depends only on the past responses but not
on the present or future responses, whereas under the non-ignorable mechanism
the missing-ness depends on the past, present, and future possible responses. In
notation, let Rit be a response indicator variable at time t (t = 1, · · · ,T ) for the i-th
(i = 1, · · · ,K) individual, so that

Rit =

{
1, if Yit is observed

0, otherwise.
(8)
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Note that all individuals provide the responses at the first time point t = 1. Thus, we
set Ri1 = 1 with P(Ri1 = 1) = 1.0 for all i = 1, · · · ,K. Further we assume that the
response indicators satisfy the monotonic relationship

Ri1 ≥ Ri2 ≥ ·· · ≥ Rit ≥ ·· · ≥ RiT . (9)

Next suppose that rit denote the observed value for Rit . For t = 2, . . . ,T, one may
then describe the aforementioned three missing mechanisms as

MCAR Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1) = Pr(Rit = 1 | ri,t−1 = 1)

MAR Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1)

= Pr(Rit = 1 | yi1, · · · ,yi,t−1,xi,ri,t−1 = 1)

Non-ignorable Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1)

= Pr(Rit = 1 | yi1, · · · ,yi,t−1,yit , . . . ,yiT ,xi,ri,t−1 = 1)

(Little and Rubin 1987; Laird 1988; Fitzmaurice et al. 1996). Furthermore, it
follows under the monotonic missing pattern (9) that Pr(Rit = 1|yc

i ,xi,ri,t−1 = 0)= 0
irrespective of the missing mechanism. Note that the inferences based on the non-
ignorable missing mechanism may be quite complicated, and we do not include this
complicated mechanism in the current paper.

3.1 Inferences When Longitudinal Responses Are Subject to
MCAR

When the longitudinal responses are MCAR, Rit does not depend on the past,
present, or future responses. In such a situation, Rit and Yit are independent, implying
that

E[Rit(Yit − μit(β ))] = E[Rit ]E[Yit − μit(β )] = 0, (10)

because E[Yit −μit(β )] = 0. It is then clear that the inference for β involved in μit(β )
is not affected by the MCAR mechanism. Thus, one may estimate the regression
effects β consistently and efficiently by solving the GQL estimating equation

K

∑
i=1

∂ μ ′
i (β )

∂β
Σ−1

i (β , ρ̂)(yi − μi(β )) = 0, (11)

where for Ti-dimensional observed response vector yi = (yi1, . . . ,yiTi)
′,

μi(β ) = E[Yi] = (μi1(β ), · · · ,μit(β ), · · · ,μiTi(β ))
′

Σi(β , ρ̂) = A1/2
i (β )C̃i(ρ ,xi)A

1/2
i (β ),
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with Ai(β ) = diag(σi,11(β ), · · · ,σi,tt (β ), · · · ,σi,TiTi(β )), where σi,tt (β ) = var[Yit ].
Note that the incomplete data based estimating equation (11) can be written in
terms of pretended complete data. To be specific, by using the available responses
yi = (yi1, . . . ,yiTi)

′ corresponding to the known response indicators

Rc
i = rc

i =

[
ITi 0
0 0,

]

one may write the GQL estimating equation (11) under the MCAR mechanism as

K

∑
i=1

∂ μc
i
′
(β )

∂β

[
{I− rc

i }+ rc
i Σ c

i (β , ρ̂)r
c
i
′]−1

rc
i (y

c
i − μc

i (β )) = 0, (12)

where yc
i = (y

′
i,y

′
im)

′
with yim representing the T −Ti dimensional missing responses

which are unobserved but for the computational purpose in the present approach
one can use it as a zero vector, for convenience, without any loss of generality.
Let β̂GQL,MCAR denote the solution of (11) or (12). This estimator is asymptotically
unbiased and hence consistent for β .

Note that the computation of C̃i(ρ̂ ,xi) matrix in (11) in general, i.e., when co-
variates are time dependent, depends on the specific correlation structure (Sutradhar
2010). In stationary cases as well as in linear longitudinal model setup, one may,
however, compute the stationary correlation matrix C̃i(ρ̂), by first computing a
larger C̃(ρ̂) matrix for �= 1, . . . ,T − 1, and then using the desired part of this large
matrix for t = 1, . . . ,Ti. Turning back to the computation for the larger matrix with
dimension T = max1≤i≤KTi for Ti ≥ 2, we exploit the observed response indicator
rit given by

rit =

{
1 if t ≤ Ti

0 if Ti < t ≤ T.

for all t = 1, . . . ,T . For known β and σitt , the �th lag correlation estimate ρ̂� for the
larger C̃(ρ̂) matrix may be computed as

ρ̂� =

∑K
i=1 ∑T−�

t=1 rit ri,t+�[
(

yit−x′it β
σitt

)(
yi,t+�−x′it,t+�β

σi,t+�,t+�

)
]/∑K

i=1 ∑T−�
t=1 rit ri,t+�

∑K
i=1 ∑T

t=1 rit [
yit−x′it β

σitt
]2/∑K

i=1 rit

, (13)

(cf. Sneddon and Sutradhar 2004, eqn. (16)) for � = 1, . . . ,T − 1. Note that as this
estimator contains β̂GQL,MCAR, both (11) and (13) have to be computed iteratively
until convergence.

Further note that in the existing GEE approach, instead of (11), one solves the
estimating equation

K

∑
i=1

∂ μ ′
i (β )

∂β
V−1

i (β , α̂)(yi − μi(β )) = 0, (14)
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[Liang and Zeger 1986] where Vi(β , α̂) = A1/2
i (β )Qi(α)A1/2

i (β ), with Qi(α) as
the Ti × Ti “working” correlation matrix of yi. It is, however, known that this
GEE approach may sometimes encounter consistency breakdown (Crowder 1995)
because of the difficulty in estimating the “working” correlation or covariance
structure, leading to the failure of estimation of β or the non-convergence of β
estimator to β . Furthermore, even if GEE β estimate becomes consistent, it may
produce inefficient estimate than simpler independence assumption based moment
or quasi-likelihood (QL) estimate (Sutradhar and Das 1999; Sutradhar 2011). Thus,
one should be clear from these points that the GEE approach even if corrected
for missing mechanism may encounter similar consistency and inefficiency in
estimating the regression parameters.

We also remark that even though the non-response probability is not affected
by the past history under the MCAR mechanism, the respective efficiency of GQL
and GEE estimators will decrease if Ti is very small as compared to the attempted
complete duration T , that is, if T −Ti is large. As far as the value of Ti is concerned,
it depends on the probability, P[Rit = 1] which in general decreases due to the
monotonic condition (9). This is because under this monotonic property (9) and
following MCAR mechanism, one writes

Pr[Rit = 1] ≡ Pr[Ri1 = 1,Ri2 = 1, . . . ,Rit = 1]

= Π t
j=2P[Ri j = 1], (15)

which gets smaller as t gets larger, implying that Ti can be small as compared to T
if P[Ri j = 1] is far away down from 1 such as P[Ri j = 1] = 0.90, say.

3.2 Inferences When Longitudinal Responses
Are Subject to MAR

Unlike in the MCAR case, Rit and yit are not independent under the MAR
mechanism. That is

E[Rit(Yit − μit(β ))] �= 0 under MAR. (16)

This is because

E [Rit(Yit − μit(β )) | Hi,t−1(y)]

= EYit E [Rit(Yit − μit(β )) | Yit ,Hi,t−1(y)]

= EYit [{(Yit − μit(β ))|Hi,t−1(y)}E{Rit |Yit ,Hi,t−1(y)}]
= EYit [{(Yit − μit(β ))|Hi,t−1(y)}E{Rit |Hi,t−1(y)}] (17)

as Rit does not depend on Yit by the definition of MAR.
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Next due to the monotonic property (9) of the response indicators

E [Rit | Hi,t−1(y)]

= P [Ri1 = 1,Ri2 = 1, · · · ,Ri,t−1 = 1,Rit = 1|Hi,t−1(y)]

= P(Ri1 = 1)P [Ri2 = 1 | Ri1 = 1;Hi1(y)] · · ·
× P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]

=
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;γ)

= wit{Hi,t−1(y);γ}, (18)

and

EYit [(Yit − μit(β ))|Hi,t−1(y)] = (λit(Hi,t−1(y),β ,ρ)− μit(β )), (19)

where λit(Hi,t−1(y),β ,ρ) is the conditional mean of Yit . In (18), one may, for
example, use gi j(γ) as

gi j(γ) = Pr[(Ri j = 1)|Ri1 = 1, . . . ,Ri, j−1 = 1,Hi, j−1(y)]

=
exp(1+ γyi, j−1)

1+ exp(1+ γyi, j−1)
. (20)

Now because both wit{Hi,t−1(y);γ} and λit(Hi,t−1(y),β ,ρ) are functions of the
past history of responses Hi,t−1(y), and because

EHi,t−1(y)[λit(Hi,t−1(y),β ,ρ)− μit(β )] = 0, (21)

it then follows from (17), by (18) and (19), that

E[Rit(Yit − μit(β ))] = EHi,t−1(y)E [Rit(Yit − μit(β )) | Hi,t−1(y)] �= 0, (22)

unless wit{Hi,t−1(y);γ} is a constant free of Hi,t−1(y), which is, however, impossible
under MAR missing mechanism as opposed to the MCAR mechanism. Thus,
E[Rit{Yit − μit(β )}] �= 0.

3.2.1 Existing Partially Standardized GEE Estimation for Longitudinal
Data Subject to MAR

Note, however, that

E

{
Rit

wit{Hi,t−1(y);γ} (Yit − μit(β ))
}

= EHi,t−1(y) [(λit(Hi,t−1(y),β ,ρ)− μit(β ))] = 0. (23)
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Now suppose that

Δi = diag[δi1,δi2, · · · ,δiTi ] with δit = Rit/wit{Hi,t−1(y);γ}

implying that E[Δi|Hi(y)] = ITi , and where Hi(y) is used to denote appropriate
past history showing that the response indicators are generated based on observed
responses only.

By observing the unconditional expectation property from (23), in the spirit of
GEE [Liang and Zeger 1986], Robins et al. (1995, eqn. (10), p. 109) proposed a
conditional inverse weights based PSGEE for the estimation of β which has the
form

K

∑
i=1

∂EHi(y)E[{Δiμi(β )}′|Hi(y)]

∂β
V−1

i (α̂){Δi(yi − μi(β ))|Hi(y)}

=
K

∑
i=1

∂{μi(β )}′
∂β

V−1
i (α̂){Δi(yi − μi(β ))} = 0, (24)

(see also Paik 1997, eqn. (1), p. 1321). Note that we refer to the GEE in (23) as
a partly or partially standardized GEE (PSGEE) because Vi(α) = ˆcov(Yi) used in
this GEE is a partial weight matrix which ignores the missing mechanism, whereas
cov[Δi(yi − μi(β ))] would be a full weight matrix.

Note that over the last decade many researchers have used this PSWGEE
approach for studying various aspects of longitudinal data subject to non-response.
See, for example, the studies by Rotnitzky et al. (1998), Preisser et al. (2002), and
Birmingham et al. (2003), among others. However, even if the MAR mechanism is
accommodated to develop an unbiased estimating function Δi(yi −μi(β )) (for 0) to
construct the fully standardized GEE (FSGEE), the consistency of the estimator of
β may break down (see Crowder 1995 for complete longitudinal models) because of
the use of “working” covariance matrix Vi(α), whereas the true covariance matrix
for yi is given by cov[Yi] = Σi(ρ). This can happen for those cases where α is not
estimable. To be more clear, Vi(α) is simply a “working” covariance matrix of yi,
whereas a proper estimating equation must use the correct variance (or its consistent
estimate) matrix of {Δi(yi − μi(β ))}.

To understand the roles of both missing mechanism and longitudinal correlation
structure in constructing a proper estimating equation, we now provide following
three estimating equations for β . The difficulties and/or advantages encountered by
these equations are also indicated.

3.2.2 Partially Standardized GQL (PSGQL) Estimation for Longitudinal
Data Subject to MAR

When Vi(α) matrix in (24) is replaced with the true Ti × Ti covariance matrix of
the available responses, that is, Σi(ρ) = cov[Yi], one obtains the PSGQL estimating
equation given by
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K

∑
i=1

∂{μi(β )}′
∂β

Σ−1
i (ρ̂){Δi(yi − μi(β ))} = 0, (25)

which also may produce biased and hence inconsistent estimate. This is because
Σi(ρ) may still be very different than the covariance matrix of the actual variable
{Δi(yi − μi(β ))}. Thus, if the proportion of missing values is more, one may not
get convergent solution to the estimating equation (25) and the consistency for β
would break down (Crowder 1995). The convergence problems encountered by (24)
would naturally be more severe as even in the complete data case Vi(α) may not be
estimable.

3.2.3 Partially Standardized Conditional GQL (PSCGQL) Estimation
for Longitudinal Data Subject to MAR

Suppose that one uses conditional (on history) variance

cov{Δi(Yi − μi(β ))}|Hi(y) = Σ∗
ich(Hi(y),β ,ρ ,γ), (26)

to construct the estimating equation. Then following (25), one may write the
PSCGQL estimating equation given by

K

∑
i=1

∂{μi(β )}′
∂β

Σ∗
ich

−1(Hi(y),β ,ρ ,γ){Δi(yi − μi(β ))} = 0 (27)

It is, however, seen that

Σ∗
ich

−1(Hi(y),β ,ρ ,γ)[Δi(Yi − μi(β ))]

→ Σ∗
ich

−1(Hi(y),β ,ρ ,γ)E[{Δi(Yi − μi(β ))}|Hi(y)]

= Σ∗
ich

−1(Hi(y),β ,ρ ,γ)[λi(Hi(y))− μi(β )] (28)

But,

EHi(y)

[
∂{μi(β )}′

∂β
Σ∗

ich
−1(Hi(y),β ,ρ ,γ)

× [λi(Hi(y))− μi(β )]] �= 0, (29)

even though

EHi(y)[λi(Hi(y))− μi(β )] = 0.

Thus, the PSCGQL estimating equation (27) is not an unbiased equation for 0, and
may produce bias estimate.
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Computational formula for Σ∗
ich(β ,ρ ,γ)

For convenience, we first write

Δi = W−1
i Ri, with

Wi = diag[wi1,wi2, . . . ,wiTi ], and Ri = diag[Ri1, . . . ,RiTi ].

It then follows that

Σ∗
ich(β ,ρ) = cov[{Δi{(yi − μi(β ))}}|Hi(y)]

= W−1
i cov[{Ri(yi − μi(β ))}|Hi(y)]W

−1
i . (30)

Now to compute the covariance matrix in the middle term in the right-hand side
of (30), we first re-express Ri(yi − μi(β )) as

Ri(yi − μi(β )) = [Ri1(yi1 − μi1), . . . ,Rit(yit − μit), . . . ,RiTi(yiTi − μiTi)]
′,

and compute the variances for its components as

var[{Ri1(yi1 − μi1)}|yi1] = 0, (31)

because Ri1 = 1 always and yi1 is random . In the Poisson case σi,11 = μi1 and in the
binary case σi,11 = μi1(1− μi1), with appropriate formula for μi1 in a given case.
Next for t = 2, . . . ,Ti,

var[Rit(yit − μit)|Hi,t−1(y)] = var[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]

+ E2[Rit |Hi,t−1(y)]var[(yit)|Hi,t−1(y)]+ var[Rit |Hi,t−1(y)]E
2[(yit − μit)|Hi,t−1(y)]

= wit (1−wit)σic,tt +w2
itσic,tt +wit(1−wit){λit − μit}2

= wit [σic,tt +(λit − μit)
2]−w2

it(λit − μit)
2, (32)

where, given the history, λit and σic,tt are the conditional mean and variance of yit ,
respectively.

Furthermore, all pairwise covariances conditional on the history Hi,t−1(y) may
be computed as follows. For u < t,

cov[{Riu(yiu − μiu),Rit (yit − μit)}|Hi,t−1(y)]

= E[{RiuRit(yiu − μiu)(yit − μit)}|Hi,t−1(y)]−E[{Riu(yiu − μiu)}|Hi,t−1(y)]

× E[{Rit(yit − μit)}|Hi,t−1(y)]

= (yiu − μiu)E[{Rit(yit − μit)}|Hi,t−1(y)]− [wiu(yiu − μiu)][wit(λit − μit)]

= [(yiu − μiu)(1−wiu)][wit (λit − μit)] (33)
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3.2.4 A Fully Standardized GQL (FSGQL) Approach

All three estimating equations, namely PSGEE (24), PSGQL (25), and PSCGQL
(27) may produce bias estimates, PSGEE being the worst. The reasons for the
poor performance of PSGEE are two fold. This is because it completely ignores
the missing mechanism and uses a working correlation matrix to accommodate the
longitudinal nature of the available data. As opposed to the PSGEE approach, PS-
GQL approach uses the true correlation structure under a class of auto-correlations
but similar to the PSGEE approach it also ignores the missing mechanism. As far
as the PSCGQL approach it uses a correct conditional covariance matrix which
accommodates both missing mechanism and correlation structure. However, the
resulting estimating equation may not unbiased for zero as the history of the
responses involved in covariance matrix make a weighted distance function which
is not unbiased.

To remedy the aforementioned problems, it is therefore important to use the
correct covariance matrix or its consistent estimate to construct the weight matrix
by accommodating both missing mechanism and longitudinal correlations of the
repeated data. For this to happen, because the distance function is unconditionally
unbiased for zero, i.e.,

EHi(y)E[{Δi(Yi − μi(β ))}|Hi(y)] = 0,

one must use the unconditional covariance matrix of {Δi(Yi − μi(β ))} to compute
the incomplete longitudinal weight matrix, for the construction of a desired unbiased
estimating equation. Let Σ∗

i (β ,ρ ,γ) denote this unconditional covariance matrix
which is computed by using the formula

Σ∗
i (β ,ρ ,γ) = cov{Δi(Yi − μi(β ))} = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+ covHi(y)[E {Δi(Yi − μi(β ))}|Hi(y)]. (34)

In the spirit of Sutradhar (2003), we propose the FSGQL estimating equation for β
given by

K

∑
i=1

∂EHi(y)E[{Δiμi(β )}′|Hi(y)]

∂β
[cov{Δi(yi − μi)}]−1{Δi(yi − μi(β ))}

=
K

∑
i=1

∂ μ ′
i

∂β
[Σ∗

i (β ,ρ ,γ)]
−1{Δi(yi − μi(β ))} = 0, (35)

where Σ∗
i (β ,ρ ,γ) is yet to be computed. This estimating equation is solved

iteratively by using
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β̂FSGQL(m+ 1) = β̂FSGQL(m)+

[
K

∑
i=1

∂ μ ′
i (β )

∂β
[Σ∗

i (β ,ρ ,γ)]
−1 ∂ μi(β )

∂β ′

]−1

m

×
[

K

∑
i=1

∂ μ ′
i

∂β
[Σ∗

i (β ,ρ ,γ)]
−1Δi(yi − μi(β ))

]

m

(36)

Computation of Σ∗
i (β ,ρ ,γ) = cov[Δi(yi − μi)]

Rewrite (34) as

Σ∗
i (β ,ρ ,γ) = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+ covHi(y)[E {Δi(Yi − μi(β ))}|Hi(y)]

= EHi(y)[Σ
∗
ich(β ,ρ)]+ covHi(y)[Eich(β ,ρ)], (37)

where Σ∗
ich(β ,ρ) is constructed by (30) by using the formulas from (31) to (33), and

Eich(β ,ρ) has the form Eich(β ,ρ) = [(yi1 − μi1),(λi2 − μi2), . . . ,(λiTi − μiTi)]
′.

It then follows that the components of the Ti×Ti unconditional covariance matrix
Σ∗

i (β ,ρ ,γ) are given by

cov[δiu(yiu −μiu),δit(yit −μit )] (38)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

varyi1(yi1 −μi1) = σi11 for u=t=1

EHi(y)[w
−1
it {σic,tt +(λit −μit )

2}− (λit −μit )
2]+EHi(y)(λit −μit )

2, for u=t=2,. . .

EHi(y)[(yi1 −μi1)(λit −μit)] for u=1,t=2,. . .

EHi(y)[(w
−1
iu −1){(yiu −μiu)(λit −μit)}]

+EHi(y)[(λiu −μiu)(λit −μit)], for u=2,. . . ; u < t

(a). Example of Σ∗
i (β ,ρ ,γ) under linear longitudinal models with T = 2

Note that Ri1 = ri1 = 1 always. But Ri2 can be 1 or 0 and under MAR, its probability
depends on yi1. Consider

Pr[Ri1 = 1] = gi1 = wi1 = 1.0

P[Ri2 = 1|ri1 = 1,yi1] = gi2(γ) =
exp{1+ γyi1}

1+ exp{1+ γyi1} (39)

by (20), yielding
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wi2 = E[Ri2|Hi1(y)] = P[Ri1 = 1,Ri2 = 1|Hi1(y)]

= P[Ri1 = 1]P[Ri2 = 1|Hi1(y)] = gi1gi2(yi1),

(see also (18)). With regard to the longitudinal model for potential responses yi1,yi2,
along with their non-stationary (time dependent covariates), consider the model as:

yit ∼ (x′itβ ,
σ2

1−ρ2 ), corr(Yit ,Yi,t+�) = ρ�. (40)

Assuming normal distribution, one may write

E[Yit |Hi,t−1] = x′itβ +[cov(yit ,yi,t−�)][var(yi,t−�)]
−1(yi,t−�− x′i,t−�β )

= x′itβ +[
σ2ρ�

1−ρ2 ] = x′itβ +ρ�[yi,t−�− x′i,t−�β ]. (41)

When the response yit depends on its immediate history, the conditional mean has
the formula

E[Yit |yi,t−1] = λit = x′itβ +ρ(yi,t−1 − x′i,t−1β ),

implying that the unconditional mean is given by μit = E[Yit ] = x′itβ , which is the
same as the mean in (40), as expected.

Now following (38), we provide the elements of the 2× 2 matrix Σ∗
i (β ,ρ ,γ) as

σ∗
i11 =

σ2

1−ρ2

σ∗
i12 = σ∗

i21 = ρvar[Yi1 − xi11β ] = ρ
σ2

1−ρ2

σ∗
i22 = Eyi1 [w

−1
i2 {var(Yi2|yi1)+ (λi2 − μi2)

2}]

= Eyi1 [{1+
1

exp(1+ γyi1)
}{σ2 +ρ2(yi1 − xi11β )2}]

=
σ2

1−ρ2 +σ2E1 +ρ2E2, (42)

where

E1 =

∫
[

1
exp(1+ γyi1)

]gN(yi1)dyi1, and

E2 =
∫
[
{yi1 − xi11β}2

exp(1+ γyi1)
]gN(yi1)dyi1,
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gN(yi1) being the normal (say) density of yi1. Thus, Σ∗
i (β ,ρ ,γ) has the formula

Σ∗
i (β ,ρ ,γ) =

σ2

1−ρ2

[
1 ρ
ρ {1+(1−ρ2)E1 +

ρ2(1−ρ2)

σ 2 E2}

]
, (43)

Note that in the complete longitudinal case wi2 would be 1 and σ∗
i22 would reduce

to σ 2

1−ρ2 , leading to

Σ∗
i (β ,ρ ,γ) = Σi(β ,ρ) =

σ2

1−ρ2

[
1 ρ
ρ 1

]
, (44)

which is free from β in this linear model case, and the PSGEE (24) uses a “working”
version of (44), namely

Vi(α) =
σ2

1−ρ2

[
1 α
α 1

]
, (45)

whereas the FSGQL estimating equation (35) would use Σ∗
i (β ,ρ ,γ) from (43). This

shows the effect of missing mechanism in the construction of the weight matrix for
the estimating equation.

(b). Example of Σ∗
i (β ,ρ ,γ) under binary longitudinal AR(1) model with T = 2

Consider a binary AR(1) model with

λit = E[Yit |yi,t−1] = μit +ρ(yi,t−1 − μi,t−1), t = 2, . . . ,T, (46)

where μit =
exp(x′it β )

1+exp(x′it β )
, for all t = 1, . . . ,T .

Now considering yi1 as fixed, by using (31)–(33) we first compute the history-
dependent conditional covariance matrix Σich(β ,ρ) = cov[{Δi(yi − μi)}|Hi(y)] as:

var[δi1(yi1 − μi1)] = 0

var[{δi2(yi2 − μi2)}|yi1] =
1

wi2
[λi2(1−λi2)+ρ2(yi1 − μi1)

2]−ρ2(yi1 − μi1)
2

cov[{δi1(yi1 − μi1),δi2(yi2 − μi2)}|yi1] = 0, (47)

yielding

EHi(y)[Σich(β ,ρ)] (48)

=

⎧⎪⎪⎨
⎪⎪⎩

Eyi1 [σich,11] = Eyi1 [0] = 0

Eyi1 [σich,22] = Eyi1 [
1

wi2
[λi2(1−λi2)+ρ2(yi1 − μi1)

2]−ρ2(yi1 − μi1)
2]

Eyi1 [σich,12] = Eyi1 [0] = 0
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Next because

Eich(β ,ρ) = E{Δi(yi − μi)}|Hi(y)] = [(yi1 − μi1),(λi2 − μi2)]
′,

one obtains

covHi(y)[Eich(β ,ρ)] (49)

=

⎧⎪⎪⎨
⎪⎪⎩

varyi1 [yi1 − μi1] = μi1[1− μi1]

covyi1 [(yi1 − μi1),(λi2 − μi2)] = ρvaryi1 [yi1 − μi1] = ρμi1[1− μi1]

varyi1 [λi2 − μi2] = varyi1 [ρ(yi1 − μi1)] = ρ2[μi1(1− μi1)].

By combining (48) and (49), it follows from (38) that the 2× 2 unconditional
covariance matrix Σ∗

i (β ,ρ ,γ) has the form

var[δi1(yi1 − μi1)] = μi1[1− μi1]

var[δi2(yi2 − μi2)] = Eyi1 [
1

wi2
{λi2(1−λi2)+ρ2(yi1 − μi1)

2}]

= [μi2(1− μi2)]E[w
−1
i2 ] (50)

+ρ(1− 2μi2)E[w
−1
i2 (yi1 − μi1)]

= [μi2(1− μi2)]E1y +ρ(1− 2μi2)[E2y − μi1E1y]

cov[δi1(yi1 − μi1),δi2(yi2 − μi2)] = ρ [μi1{1− μi1}], (51)

where

E1y = E[w−1
i2 ] = {1+ exp(−1)+ μi1 exp(−1)(exp(−γ)− 1)}

E2y = E[
yi1

wi2
] = μi1{1+ exp(−γ − 1)}.

General formula for Σ∗
i (β ,ρ ,γ) under the binary AR(1) model

In general, it follows from (38) that the elements of the Ti × Ti unconditional
covariance matrix Σ∗

i (β ,ρ ,γ) under AR(1) binary model are given by

cov[δiu(yiu − μiu),δit (yit − μit)] (52)

≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ∗
i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)+ρ(1− 2μit)(yi,t−1 − μi,t−1)},(for t = 2, . . . ,Ti)

σ∗i,ut = ρρ t−1−uμiu(1− μiu), (for u = 1 < t)

σ∗
i,ut = ρ2ρ t−uμi(u−1)(1− μi(u−1)), (for 1 < u < t).
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3.3 An Empirical Illustration

First, to illustrate the performance of the existing PSGEE (24) approach, we refer
to some of the simulation results reported by Sutradhar and Mallick (2010). It was
shown that this approach may produce highly biased and hence inconsistent regres-
sion estimates. In fact these authors also demonstrated that PSGEE(I) (independence
assumption based) approach produces less biased estimates than any “working”
correlation structures based PSGEE approaches. For example, we consider here
their simulation design chosen as

Simulation Design

K = 100, T = 4, p = 2, q = 1, γ = 4, ρ = 0.4,0.8, β1 = β2 = 0 along with two
time-dependent covariates:

xit1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 for i = 1, · · · , K

4 ; t = 1,2

0 for i = 1, · · · , K
4 ; t = 3,4

− 1
2 for i = K

4 + 1, · · · , 3K
4 ; t = 1

0 for i = K
4 + 1, · · · , 3K

4 ; t = 2,3
1
2 for i = K

4 + 1, · · · , 3K
4 ; t = 4

t
2T for i = 3K

4 + 1, · · · ,K; t = 1, · · · ,4

and

xit2 =

⎧⎪⎪⎨
⎪⎪⎩

t−2.5
2T for i = 1, · · · , K

2 ; t = 1, · · · ,4
0 for i = K

2 + 1, · · · ,K; t = 1,2
1
2 for i = K

2 + 1, · · · ,K; t = 3,4

Details on the MAR based incomplete binary data generation, one may be
referred to Sutradhar and Mallick (2010, Sect. 2.1). Based on 1,000 simulations, the
PSGEE estimates obtained from (24) and PSGEE (I) obtained from (24) by using
zero correlation are displayed in Table 1.

These results show that the PSGEE estimates for β1 = 0 and β2 = 0 are highly
biased. For example, when ρ = 0.8, the estimates of β1 and β2 are −0.213 and
−0.553, respectively. These estimates are inconsistent and unacceptable. Note that
these biases are caused by the wrong correlation matrix used to construct the PSGEE
(24), whereas this PSGEE provides almost unbiased estimates when data are treated
to be independent even if truly they are not so. However the standard errors of
the PSGEE(I) estimates appear to be large and hence it may provide inefficient
estimates. In fact when the proportion of missing values is large, the PSGEE(I)
will also encounter estimation breakdown or it will produce biased estimates. This
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Table 1 Simulated means (SMs), simulated standard errors (SSEs), and simulated mean squared
errors (SMSEs) for “working” correlations based PSGEE (24) estimates, when the incomplete
longitudinal responses were generated based on MAR mechanism (20) with γ = 4.0 and a
longitudinal AR(1) correlation structure with correlation index parameter ρ ; β1 = β2 = 0; based
on 1,000 simulations

Estimation approach

PSGEE(AR(1)) PSGEE (I)

ρ Statistic β̂1 β̂2 ρ̂ β̂1 β̂2

0.4 SM −0.076 −0.224 0.404 0.015 0.015
SSE 0.361 0.544 0.062 0.384 0.587
SMSE 0.136 0.346 0.004 0.148 0.344

0.8 SM −0.213 −0.553 0.802 0.007 0.017
SSE 0.257 0.381 0.038 0.378 0.614
SMSE 0.112 0.450 0.001 0.143 0.377

is verified by a simulation study reported by Mallick et al. (2013). The reason
for this inconsistency encountered by PSGEE and PSGEE(I) is the failure of
accommodating MAR mechanism in the covariance matrix used as the longitudinal
weights.

As a remedy to this inconsistency, we have developed a FSGQL (35) estimating
equation by accommodating both MAR mechanism and longitudinal correlation
structure in constructing the weight matrix Σ∗

i (β ,ρ ,γ). This FSGQL equation would
provide consistent and efficient regression estimates. For simplicity, Mallick et al.
(2013) have demonstrated through a simulation study that FSGQL(I) approach
by using ρ = 0 in Σ∗

i (β ,ρ = 0,γ) produces almost unbiased estimates with
small variances. This provides a guidance that ignoring missing mechanism in
constructing the weight matrix would provide detrimental results, whereas ignoring
longitudinal correlations does not appear to cause any significant loss.
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