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Abstract We study measurement error in the simplest dynamic panel data model
without covariates. We start by investigating the first-order effects, on the most
commonly used estimator, of the presence of measurement error. As was to be
expected, measurement error renders this estimator inconsistent. However, with
a slight adaptation, the estimator can be made consistent. This approach to
consistent estimation is ad hoc and we next develop a systematic approach to
consistent estimation. We show how to obtain the most efficient estimator from
this class of consistent estimators. We illustrate our findings through an empirical
example.

1 Introduction

In econometrics, the analysis of panel data is a rapidly expanding research area.
Frequently, the models formulated are dynamic models in the sense that the
lagged dependent variables is among the regressors. Especially the linear dynamic
panel data model (LDPDM) is hugely popular. This model typically has both
the lagged dependent variable and an individual effect on the right-hand side.
Its estimation is not entirely straightforward since the least-squares estimator is
inconsistent.
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Consistent estimation of the LDPDM has inspired many researchers, and the
number of publications on the topic is still growing. The leading idea is to transform
the model equation into first differences over time, and next use the twice lagged-
dependent variable as an instrumental variable (IV). Under the crucial assumption
that the error term is not correlated over time, it is easy to see that this approach gives
a consistent estimator of the regression coefficient. The idea is due to Anderson and
Hsiao (1981, 1982). Arellano and Bond (1991) pointed out that all preceding values
of the dependent variable, not just the directly preceding one, can be used as IVs,
leading to more IVs and smaller asymptotic variance, if there are more than three
periods. The estimator due to Arellano and Bond (1991) has found application on a
very large scale.

Little attention has been paid to issues around measurement error in the LDPDM.
This comes not entirely as a surprise, as the situation for the much simpler static
model is not vastly more favorable. But at least, there is a line of literature for the
static model. The pioneering contribution there is Griliches and Hausman (1986).
Much of the literature for the static model is reviewed by Meijer et al. (2012), where
also a number of new ways are described for consistent estimation.

As to the literature on the LDPDM with measurement error, an early contribution
is Wansbeek and Kapteyn (1992). For the model without exogenous regressors, they
derive the probability limit of the within estimator and the OLS estimator after
first-differencing the model and suggest to use the result to construct a consistent
estimator of the autoregressive parameter. In an empirical study on income dynam-
ics, Antman and McKenzie (2007) consider a dynamic panel data model where the
current value depends on a cubic function of the lagged value. Their estimator is
based on outside information on the reliability of the income variable, that is, on the
ratio of the true variance and the observed variance. Chen et al. (2008), in their study
of the dynamics of students’ test scores, construct consistent estimators through IVs
derived from within the model, adapting an approach due to Altonji and Siow (1987)
to the dynamic case. Komunjer and Ng (2011) consider a VARX model with all
variables contaminated by measurement error and exploit the dynamics of the model
for consistent estimation. Biørn (2012) presents a thorough treatment of the topic,
with IVs based on the absence of correlation between regressors and disturbances
for some combinations of time indices.

In this paper we contribute to the literature on the LDPDM with measurement
error in two ways. In the first place we derive, in Sect. 2, the effect of measurement
error on the Arellano–Bond (AB) estimator. For the simple case of a panel with
three waves, we investigate the inconsistency of this estimator in the presence
of measurement error. We provide some interpretation and further elaboration in
Sect. 3. Next, we move over to consistent estimation. In Sect. 4 we consider a wide
class of estimators that are consistent, and in Sect. 5, we study efficiency within
this class. An illustrative example is given in Sect. 6. In Sect. 7 we make some
concluding remarks.
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2 The Effect of Measurement Error

In this section we consider the simplest possible LDPDM and investigate the effect
of measurement error when it is estimated in the usual way. The model is represented
by the following two equations,

ηnt = γηn,t−1 +αn + εnt (1)

ynt = ηnt + vnt , (2)

for n = 1, . . . ,N and t = 1, . . . ,T . In this model, ηnt is an unobserved variable,
according to (1) subject to an autoregressive process of order one. The error term
in (1) consists of two components, a time-constant one, αn, and a time-varying one,
εnt . The link between the unobserved variable ηnt and the observed variable ynt is
given by the measurement equation (2), where vnt represents the measurement error.
All variables have mean zero over n, possibly after demeaning per time period thus
accounting for fixed time effects. The parameter of interest in the autocorrelation
parameter γ . We restrict ourselves to the case where −1 < γ < 1.

It is assumed that αn, εnt , and vnt are uncorrelated over n. Moreover, εnt and
vnt are assumed uncorrelated over t. This is quite a simplification but, somewhat
surprisingly, these assumptions are commonly made. The various error terms are
taken homoskedastic, with means zero and variances σ2

α , σ2
ε , and σ2

v , respectively.
As is usual in econometrics, these parameters, in particular the absolute or relative
measurement error variance, are taken to be unknown. Finally, it is assumed that
the process has been going on since minus infinity, and −1 < γ < 1, so that the
distributions of all variables are stationary.

We take N to be large relative to T and hence, in our asymptotic results, keep T
fixed and let N go to infinity. So our perspective is cross-sectional. For a time-series
perspective on measurement error, see Aigner et al. (1984, Sect. 6) and Buonaccorsi
(2010, Chap. 12).

Even if ηnt would be observed, estimation of (1) is not straightforward as (1)
implies that αn is correlated with ηnτ for all τ , including the case τ = t−1. So, since
ηn,t−1 is the regressor, the regression model (1) has an error term that is correlated
with the regressor. Hence least squares gives an inconsistent result for the parameter
of interest, γ .

The Anderson–Hsiao (AH) estimator (Anderson and Hsiao 1981, 1982) first
transforms (1) into first differences over time, and next uses ηn,t−2 as an IV. Under
the crucial assumption that εnt is not correlated over time, it is easy to see that
this approach gives a consistent estimator of γ . The Arellano–Bond (AB) estimator
(Arellano and Bond 1991) is a generalization that uses all preceding values of the
dependent variable, not just the directly preceding one, as IVs, leading to more
instruments and smaller asymptotic variance, if the number of observed periods is
larger than three. In the derivations in this section we restrict ourselves, for reasons
of tractability and emphasis on the essentials, to three periods, so our estimator is
the AH estimator.
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This is all about the case where ηnt is observed and not clouded by measurement
error. If there is measurement error, so if (2) enters the stage, the consistency of
the AH estimator is at peril. We now have measurement error twice in the model.
It evidently enters both the dependent variable and the regressor. As is well known
from the measurement error literature, measurement error in the dependent variable
does not affect consistency, but measurement error in a regressor does, in most cases
in the form of a bias towards zero of the estimator. Here the measurement error
in both variables comes from the same source, that is, from (2), and the effect of
measurement error is not straightforward.

In order to gain insight into the effect of measurement error on the AH estimator,
we transform the model into first differences over time and substitute out the
unobserved variable η from the model. This gives us

ynt − yn,t−1 = γ(yn,t−1 − yn,t−2)+ unt , (3)

where the error term unt is defined as

unt ≡ (εnt − εn,t−1)+ (vnt − vn,t−1)− γ(vn,t−1 − vn,t−2).

The AH estimator of γ is obtained by estimating (3) with yn,t−2 as the IV. In the
presence of measurement error this estimator is not consistent, because the IV is not
valid as it is not orthogonal to the error term in (3):

E(yn,t−2unt) = E{(ηn,t−2 + vn,t−2)[(εnt − εn,t−1)

+(vnt − vn,t−1)− γ(vn,t−1 − vn,t−2)]}
= γσ2

v .

In order to derive the probability limit of the AH estimator, we first notice that,
through repeated substitution, the unobserved variable can be expressed as

ηnt =
αn

1− γ
+

∞

∑
s=0

γsεn,t−s. (4)

Hence

E(ηntηn,t−τ) =
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 . (5)

Consequently,

ωτ ≡ E(yntyn,t−τ)

=
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 + I(τ = 0)σ2

v , (6)
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↑

Fig. 1 Probability limit of
the Anderson–Hsiao
estimator with λ = 1

2

where I(·) is the indicator function, which is 1 if its argument is true and 0 otherwise.
The AH estimator is given by

γ̂ =
1
N ∑n yn,t−2(ynt − yn,t−1)

1
N ∑n yn,t−2(yn,t−1 − yn,t−2)

.

Let λ ≡ σ2
v /σ2

ε be the ratio of the measurement error variance to the equation error
variance. Under weak assumptions, the probability limit of the AH estimator is

γ∗ ≡ plimN→∞γ̂

=
ω2 −ω1

ω1 −ω0

=
(γ2 − γ) 1

1−γ2

(γ − 1) 1
1−γ2 −λ

=
γ

1+(1+ γ)λ
. (7)

This result is depicted in Fig. 1. Clearly, measurement error causes the estimator to
be biased towards zero. The bias towards zero is a well-known phenomenon from
the literature on measurement error in a single cross-section.

The figure is made for the case of λ = 1
2 , so σ2

v = 1
2 σ2

ε . With decreasing
measurement error, so with decreasing λ , the hyperbola will become closer to the
45◦ line. It is also striking how asymmetric the biasing effect is: the bias is much
larger for positive values of γ (which are arguably more likely in most applications)
than for negative values, both absolutely and in a relative sense.
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3 Interpretation and Elaboration

Another view of the result (7) can be obtained as follows. Due to the stationarity and
the absence of serial correlation in the measurement errors, and with Δ denoting the
first-difference operator, we have

E∑
n

yn,t−2(ynt − yn,t−1) = E∑
n

ηn,t−2(ηnt −ηn,t−1)

= γ E∑
n

ηn,t−2(ηn,t−1 −ηn,t−2)

= − 1
2 γ ∑

n
(ηn,t−1 −ηn,t−2)

2

= − 1
2 γσ2

Δη

and

E∑
n

yn,t−2(yn,t−1 − yn,t−2) = −1
2

E(yn,t−1 − yn,t−2)
2

= − 1
2 σ2

Δy.

We thus obtain

γ∗ =
σ2

Δη

σ2
Δy

γ.

The bias factor is the “reliability” of Δy as a proxy for Δη . The situation closely
resembles the situation in the classical measurement error model for a single cross-
section, where the same result holds but then in levels, not differences. Also, in that
case the reliability does not mathematically depend on γ , because it is the reliability
of the exogenous variable. In the LDPDM, it depends on γ , causing the curvature
depicted in Fig. 1.

As mentioned above, the AH estimator is a special instance of the AB estimator.
Nowadays, researchers often use the “systems” generalized method-of-moments
(GMM) estimator (Arellano and Bover 1995; Blundell and Bond 1998), which
combines the building blocks of the AB estimator with those that can be derived
when the correlation between ynt and the individual effect αn does not depend on t.
Usually, the systems GMM estimator greatly outperforms the AB estimator. In the
present setup we have from (4) that

E(yntαn) =
σ2

α
1− γ

, (8)

establishing this equicorrelation here. It can be used to estimate γ in a way that in
a sense is the mirror image of AB. There, previous values of y are used as IV for a
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model in first differences. Here, we keep the model in levels but use previous values
of y in first-difference form as IV. Then

γ̃ =
1
N ∑n(yn,t−1 − yn,t−2)ynt

1
N ∑n(yn,t−1 − yn,t−2)yn,t−1

p−→ ω1 −ω2

ω0 −ω1

= γ∗.

Thus, the inconsistency is the same as with the AH estimator.
So, with measurement error, we encounter the inconsistency issue well known

from the cross-sectional case. A major difference, though, is that the latter case, in
its simplest form of linearity, normality, and independence of observations (LIN),
results in an identification problem that precludes the existence of a consistent
estimator (e.g., Wansbeek and Meijer 2000, p. 79). In the LDPDM, LIN does not
apply and the situation is more favorable. In fact, a consistent estimator is easily
found; instead of using yn,t−2 as an IV, we can use yn,t−3 (assuming T > 3). (Bond
et al. 2001, make the same observation.) We call this estimator the Anderson–Hsiao
lagged (AHL) estimator. Its probability limit is

plimN→∞γ̂AHL =
plimN→∞

1
N ∑n yn,t−3(ynt − yn,t−1)

plimN→∞
1
N ∑n yn,t−3(yn,t−1 − yn,t−2)

=
ω3 −ω2

ω2 −ω1

=
(γ3 − γ2) 1

1−γ2

(γ2 − γ) 1
1−γ2

= γ.

So AHL is a consistent estimator, due to the assumed lack of correlation over time
of the measurement error. Analogously, the Arellano–Bond lagged (ABL) estimator
is obtained by removing yn,t−2 from the list of IVs of the Arellano–Bond estimator,
which is also a consistent estimator in our setup. Arellano and Bond (1991) mention
this estimator in the context of autocorrelation resulting from a moving average
process in the errors, so it serves a dual purpose.

This approach to consistent estimation is of course somewhat ad hoc. Moreover,
it breaks down when the measurement errors are autocorrelated. To gain some
insight here, we assume that the measurement errors are subject to an autoregressive
process of order one, AR(1), so

vnt = ρvn,t−1 +wnt ,

with wnt white noise with variance σ2
w. Instead of (6), we now have
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ωτ =
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 +ρτ σ2

w

1−ρ2 .

With λ redefined as λ ≡ σ2
w/σ2

ε , the probability limit of the AH estimator now
becomes

γ∗ =
(γ2 − γ) σ 2

ε
1−γ2 +(ρ2 −ρ) σ 2

w
1−ρ2

(γ − 1) σ 2
ε

1−γ2 +(ρ − 1) σ 2
w

1−ρ2

=
γ(1+ρ)+ρ(1+ γ)λ
(1+ρ)+ (1+ γ)λ

.

So the effect of measurement error is now more complicated. The measurement
error in the dependent variable, which in the classical case has no effect on the
estimator of the regression coefficient, now plays a role due to its correlation with
the measurement error in the regressor. The estimator is consistent (γ∗ = γ) if ρ = γ
or λ = 0. The estimator has a positive bias if ρ > γ and a negative bias if ρ < γ . In
the most likely case that 0 < ρ < γ , we see the usual attenuation bias towards zero.
Note that we can write γ∗ = φγ +(1−φ)ρ , with

φ =

σ 2
ε

1+γ
σ 2

ε
1+γ +

σ 2
w

1+ρ

,

so γ∗ is a weighted average of γ and ρ . Although the weights themselves depend on
γ and ρ , they are always between 0 and 1.

Using a similar derivation, it follows that the AHL estimator, or in general using
previous values of y as an IV, does not yield a consistent estimator anymore. We
now turn to a more systematic approach to consistent estimation, for general values
of T . We first investigate what consistency implies and derive a class of consistent
estimators. We next consider issues of optimality.

4 Consistent Estimation

Our approach to consistent estimation extends Wansbeek and Bekker (1996) by
taking measurement error into account. They derive an instrumental variable that
is linear in the values of the dependent variable across time and that results in
an IV estimator that has minimal asymptotic variance. Harris and Mátyás (2000)
extend this approach to include exogenous regressors. They compare the estimator
thus defined with the Arellano–Bond estimator and some estimators based on Ahn
and Schmidt (1995) and find that Wansbeek and Bekker’s estimator “generally
outperformed all other estimators when T was moderate in all of the situations that
an applied researcher might encounter” [italics in original]. We adapt the Wansbeek
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and Bekker (1996) approach also in another way, in that we assume stationarity
throughout.

We now turn to the model and derive our estimator. For general T , it is convenient
to move over to matrix notation. With observations ynt , n = 1, . . . ,N, t = 0, . . .T , we
define

yn ≡

⎛
⎜⎝

yn1
...

ynT

⎞
⎟⎠ yn,−1 ≡

⎛
⎜⎝

yn0
...

yn,T−1

⎞
⎟⎠ yn,+ ≡

⎛
⎜⎝

yn0
...

ynT

⎞
⎟⎠ .

For η , v, and ε , we use analogous notation. Note that the number of observed periods
is T + 1 now, as opposed to the T used before. The model can now be written as

ηn = γηn,−1 +αnιT + εn, (9)

where ιT is a T -vector of ones, and εn ∼ (0,σ2
ε IT ). The measurement equation is

yn = ηn + vn, (10)

with

vn = ρvn,−1 +wn,

where wn ∼ (0,σ2
wIT ), thus allowing for measurement errors correlated over time

according to an AR(1) process.
One way to estimate the model parameters consistently is through GMM.

From (5) we obtain

Ση ≡ E(ηn,+η ′
n,+)

=
σ2

α
(1− γ)2 ιT+1ι ′T+1 +

σ2
ε

1− γ2Vγ ,

where Vγ is the AR(1) correlation matrix of order (T + 1)× (T + 1), that is, the
matrix whose (t,s)th element is γ |t−s|. So the second-order implication of the model
for the observations, taking the measurement error into account, is

Σy ≡ E(yn,+y′n,+)

= E
(
(ηn,++ vn,+)(ηn,++ vn,+)

′) (11)

= Ση +
σ2

w

1−ρ2Vρ

=
σ2

α
(1− γ)2 ιT+1ι ′T+1 +

σ2
ε

1− γ2Vγ +
σ2

w

1−ρ2Vρ . (12)
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From this, an essential identification problem with the model is immediately clear.
The model is locally identified but not globally. The parameter set (σ2

ε ,γ) can be
interchanged with the parameter set (σ2

w,ρ) as they play a symmetric role in Σy,
and the data do not provide sufficient information to tell which is which. Hence we
restrict ourselves to the case where the measurement error has no autocorrelation
and have ρ = 0 from now on.

The GMM estimator of the parameters is obtained by minimizing the distance
between

σy ≡ vech Σy,

the vector containing the non-redundant elements of Σy, and its sample counterpart

sy ≡ vech Sy,

where Sy ≡ ∑yn,+y′n,+/N. For an appropriate choice of the weight matrix in
the distance function, the GMM estimator is asymptotically efficient among all
estimators based on Sy.

A drawback of the GMM estimator in this case is that it will be cumbersome to
compute as Σy depends on the parameter of interest, γ , in a highly nonlinear way.
Hence we consider a simpler way to obtain a consistent estimator, focusing on γ .
The price for this simplicity is that this estimator does not exploit all the structure
imposed by the model on Σy and hence will be asymptotically inefficient.

As a start, we eliminate ηn from the model by substitution from (10) into (9) to
obtain

yn = γyn,−1 +υn (13)

υn ≡ αnιT + εn + vn − γvn,−1. (14)

We consider IV estimation of γ . As an IV, we consider a general linear function of
yn,+ of the form A′yn,+ for some (T + 1)×T -matrix A. Below we will also use the
form

a ≡ vec A.

Given A, our IV estimator of γ is

γ̂ =
∑n y′n,+Ayn

∑n y′n,+Ayn,−1

= γ +
∑n y′n,+Aυn

∑n y′n,+Ayn,−1
. (15)

We now investigate the conditions under which this estimator exists and, if so, if it
is consistent. In order to do so, we need the following notation. Let C′

0 ≡ (IT ,0T )
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and let C′
1, . . . ,C

′
T be a series of matrices of order T × (T +1), where C′

1 ≡ (0T , IT ),
in C′

2 the ones are moved one position to the right, and so on, ending with C′
T , which

is zero, except for its (1,T + 1) element. For example, for T = 3, we have

C′
0 =

⎛
⎝

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠; C′

1 =

⎛
⎝

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎠; C′

2 =

⎛
⎝

0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎠; C′

3 =

⎛
⎝

0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎠.

Next, let

C ≡ (vec C0, . . . ,vec CT ).

We now consider the requirements that A has to satisfy.
In the first place, A should be such that γ̂ exists. More precisely, the expression

for γ̂ should be meaningful in the sense that neither numerator nor denominator is
identically equal to zero. For example, if T = 2 and

A1 =

⎛
⎝

0 0
0 1

−1 0

⎞
⎠ and A2 =

⎛
⎝

0 1
−1 0

0 0

⎞
⎠

we have y′n,+A1yn = 0 and y′n,+A2yn,−1 = 0. To exclude such cases, consider

yn,+⊗ yn,+ = DT+1(yn,+ ⊗̄ yn,+),

where the bar over the Kronecker product indicates the omission of duplicate
elements. The duplication matrix DT+1, of order (T + 1)2 × (T + 1)(T + 2)/2
restores them (see, e.g., Magnus and Neudecker 1986). Next, let

Fτ ≡ (C′
τ ⊗ IT+1)DT+1, τ = 0,1,

and note that

sy =
1
N ∑

n
(yn,+ ⊗̄ yn,+).

Using yn,−1 =C′
0yn,+ and yn =C′

1yn,+, we can now write the estimator of γ as

γ̂ =
a′ ∑n(yn ⊗ yn,+)

a′ ∑n(yn,−1 ⊗ yn,+)

=
a′(C′

1 ⊗ IT+1)DT+1 ∑n(yn,+ ⊗̄ yn,+)

a′(C′
0 ⊗ IT+1)DT+1 ∑n(yn,+ ⊗̄ yn,+)

=
a′F1sy

a′F0sy
. (16)
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So for a meaningful estimator, we should have both F ′
0a 	= 0 and F ′

1a 	= 0.
We next turn to consistency. From (14) and (15) we see that it requires

0 = E
(
y′n,+Aυn

)

= E
(
αny′n,+AιT

)
+ tr

(
E
[
(εn + vn − γvn,−1)y

′
n,+

]
A
)
, (17)

where tr indicates the trace. First, we have the equicorrelation property from (8),

E(αnyn,+) = c · ιT+1

with c = σ2
α/(1− γ). So one requirement for consistency is ι ′T+1AιT = 0 or

ι ′T (T+1)a = 0. (18)

Since

E(εny′n,+) = σ2
ε

T

∑
τ=1

γτ−1C′
τ , E(vny′n,+) = σ2

v C′
1, E(vn,−1y′n,+) = σ2

v C′
0, (19)

we conclude from (17) and (19) that consistency is obtained when we let A be such
that tr(C′

t A) = 0 or (vecCt)
′a = 0 for t = 0, . . . ,T . This means that a should satisfy

C′a = 0T+1. (20)

Any estimator of the form (16) that satisfies (18), (20), and the existence conditions
is consistent.

5 Efficient Estimation

To find an estimator that is not only consistent but also asymptotically efficient we
have to distinguish between two kinds of efficiency, which we may label as local
and global. We call γ̂ locally efficient if it is in the class of estimators defined
by γ̂ , with a properly restricted. A globally efficient estimator is as efficient as
the GMM estimator discussed at the beginning of the previous section. There
we saw that GMM on the covariance matrix was a daunting task. This task is
greatly simplified when we already have estimators that are consistent without
any further optimality qualities. We can then adapt these estimators such that
we get asymptotically efficient estimators in just a single step. This approach is
called linearized GMM (see, e.g., Wansbeek and Meijer 2000, Sect. 9.3). It requires
initial consistent estimators not just of γ but also of the other model parameters,
σ2

α , σ2
ε , and σ2

v . Given a consistent estimator of γ , such estimators can be easily
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constructed by employing some appropriately chosen moment conditions implied
by the structure of Σy.

We now turn to local efficiency. To that end we write the restrictions on a, which
are all linear, in the condensed form a = Qb, where Q is full column rank, and b
can be chosen freely, subject to the numerator and denominator of γ̂ not becoming
identically zero. So we now have

γ̂ =
a′ ∑n(yn ⊗ yn,+)

a′∑n(yn,−1 ⊗ yn,+)

=
b′Q′F1sy

b′Q′F0sy
.

With

Ψy ≡ plimN→∞
1
N ∑

n

[
(yn,+ ⊗̄ yn,+− sy)(yn,+ ⊗̄ yn,+− sy)

′] ,

we obtain

AVar(γ̂) =
b′Φyb

(b′Q′F0σy)2 , (21)

where Φy ≡Q′F1ΨyF ′
1Q. If Φy were nonsingular, we could use the Cauchy–Schwarz

inequality to derive the lower bound (σ ′
yF ′

0QΦ−1
y Q′F0σy)

−1 of the asymptotic
variance, with equality for b = Φ−1

y Q′F0σy. Hence, (16) would become

γ̂ =
b̂′Q′F1sy

b̂′Q′F0sy

=
s′yF ′

0QΦ̂−1
y Q′F1sy

s′yF ′
0QΦ̂−1

y Q′F0sy
,

where b̂ denotes b with sample counterparts for Ψy and σy substituted. Unfortu-
nately, however, it turns out that Φy is singular, and it is not immediately clear
whether there exists a feasible optimal estimator, and if so, what this estimator
would be. We leave this problem for future research. However, from the analysis
here, an appealing consistent estimator is obtained by replacing the regular inverse
with the Moore–Penrose generalized inverse. Thus, we propose the estimator

γ̂MP ≡
s′yF ′

0QΦ̂+
y Q′F1sy

s′yF ′
0QΦ̂+

y Q′F0sy

=
s′yF ′

0Q(Q′F1Ψ̂yF ′
1Q)+Q′F1sy

s′yF ′
0Q(Q′F1Ψ̂yF ′

1Q)+Q′F0sy
, (22)
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and we call this the Moore–Penrose (MP) estimator. Its asymptotic variance can be
estimated by the sample counterpart of (21), that is

ÂVar(γ̂MP) =
1

s′yF ′
0Q(Q′F1Ψ̂yF ′

1Q)+Q′F0sy
.

6 Illustrative Example

To illustrate the application of these estimators, we study the persistence in
household wealth in the Health and Retirement Study (HRS; Juster and Suzman
1995). The HRS started in 1992 with a sample of individuals born in 1931–1941
and their spouses and interviewed them biennially afterward. Over time, additional
cohorts have been added. We select all individuals who participated in all ten waves
from 1992 to 2010 and who were either single across all waves or married to the
same spouse across all waves. (We treat cohabitation the same as marriage, as is
common in HRS analyses.) Because wealth is reported at the household level, we
select only one respondent per household. This leaves us with a sample of 2,668
households.

We use the RAND version of the HRS, version L (St. Clair et al. 2011), including
the imputations, and study total household wealth excluding the second home
(HwATOTA), because information about the second home is not available in all
waves. We compute the inverse hyperbolic sine transform of this variable and then
subtract the wave-specific average, which captures macro effects and age effects. We
then estimate the simple LDPDM for this transformed variable. We computed the
standard Anderson–Hsiao estimator (by 2SLS), the Arellano-Bond estimator (using
two-step GMM), the consistent “lagged” versions of these introduced earlier (AHL
and ABL), and the MP estimator.

Table 1 shows the results. We clearly see the attenuation in the AH and AB
estimators. Unfortunately, the standard errors increase substantially for the AHL
and ABL estimators, compared to the AH and AB estimators. Meijer and Wansbeek
(2000) showed this phenomenon for a cross-sectional regression model, but here it
is even more dramatic. The MP estimate is close to the AH estimate, but its standard
error is much smaller, though still almost four times as large as the standard errors
of the (inconsistent) AH and AB estimators. Nevertheless, the MP estimate is highly

Table 1 Estimates of γ for transformed household wealth in the HRS

AH AB AHL ABL MP

γ̂ 0.107∗∗∗ 0.119∗∗∗ 0.424 0.264∗ 0.417∗∗∗

(s.e.) (0.022) (0.020) (0.224) (0.112) (0.078)

AH Anderson–Hsiao, AB Arellano–Bond, AHL Anderson–Hsiao lagged, ABL Arellano–Bond
lagged, MP Moore–Penrose estimator (22)
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001
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significant and indicates a much stronger persistence in household wealth than we
would conclude from the standard AH and AB estimators.

7 Discussion

Measurement error is a common problem in economic data, and this may have
especially grave consequences in dynamic models. We study this and show the
inconsistency of standard estimators for dynamic panel data models. We then
develop a characterization of a class of consistent estimators and study efficiency
within this class. Based on efficiency considerations, we propose an estimator, the
Moore–Penrose (MP) estimator that has attractive statistical properties, although we
have not been able to conclude whether it is the most efficient estimator in its class.

We apply the theory to the study of persistence of household wealth. We show
that the attenuation bias of estimators that do not take measurement error into
account can be quite large, and that our proposed estimator is much more efficient
than two consistent estimators that are ad-hoc adaptations of the Anderson–Hsiao
and Arellano–Bond estimators.

The results here are still quite limited. The set of model specifications needs
to be expanded. Adding exogenous covariates is relatively straightforward, and
weakly exogenous covariates can also be accommodated without much trouble. Our
derivations thus far assume homoskedasticity, which is too strong in many economic
applications. Relaxing this assumption adds restrictions that the estimator must
satisfy, but does not conceptually change much. As indicated by Arellano and Bond
(1991), a moving average process of the errors can be accommodated by dropping
the first few lags of the dependent variable. Within our framework, this translates
into additional linear restrictions. Although in the example, our estimator appears
to work well, further efficiency gains may be obtained by GMM estimation based
on (12). Fan et al. (2012) pursue such an approach for the static panel data model
with measurement error and obtain even better results with a generalized quasi-
likelihood-based estimator. We leave the development of the specifics to further
research.
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