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Abstract Many time series contain measurement (often sampling) error and the
problem of assessing the impacts of such errors and accounting for them has been
receiving increasing attention of late. This paper provides a survey of this problem
with an emphasis on estimating the coefficients of the underlying dynamic model,
primarily in the context of fitting linear and nonlinear autoregressive models. An
overview is provided of the biases induced by ignoring the measurement error and
of methods that have been proposed to correct for it, and remaining inferential
challenges are outlined.

1 Introduction

Measurement error is a commonly occurring problem and is especially prominent in
many time series, where the variable of interest often has to be estimated rather than
observed exactly. There is a fairly diverse statistical literature which has addressed
the problem of measurement error in time series as well as a burgeoning ecological
literature, where the problem of modeling population dynamics in the presence of
the so-called observation error has garnered considerable attention. Included among
the many papers addressing this problem with real data are ones that account for
errors in series involving population abundances of waterfowl (Lillegard et al. 2008;
Saether et al. 2008; Viljugrein et al. 2005), voles (Stenseth et al. 2003), grouse (Ives
et al. 2003) as well as labor force statistics (Pfeffermann et al. (1998), retail sales
(Bell and Wilcox 1993), the number of households in Canada (Feder 2001), and
disease rates (Burr and Chowell 2006).

The main ingredients here are a dynamic model for the true (but unobserved)
values and a measurement error model. The time series of interest is denoted by
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{Yt , t = 1, . . . ,T}, where Yt is random and t indexes time. The realized true value at
time t is denoted by yt . Measurement error occurs where instead of yt we observe
the outcome of Wt , where Wt is an estimator or general index of yt . A particular
point of emphasis in our coverage is to allow the behavior of the measurement error
to depend on the underlying true value and/or sampling effort, as commonly occurs
in practice.

The two main questions are 1. What happens if we ignore the measurement
error? and 2. How can we correct for the measurement error? Of course, there are
many possible objectives of a time series analysis and we need to limit our scope.
The primary focus in this paper is on estimation of the parameters in the dynamic
model, autoregressive models in particular. This is a logical first step as these
parameters provide the building blocks for other objectives including forecasting
or estimating probabilities about the process in the future. Also, in many of the
ecological problems we discuss the estimation of the coefficients of the underlying
dynamic process is the main thing of interest (and for this reason our discussion has
a heavy ecological orientation to it).

Because of space limitations, there are a number of important related problems
that we mostly ignore. These include repeated sample surveys where the main ob-
jective is updated estimation of the current true value, predicting and/or filtering in
the presence of measurement error (e.g., Berliner (1991); Tripodis and Buonaccorsi
(2009)), direct estimation of trends, model identification and problems where there
are other variables in addition to the dynamic model. There are many examples of
the latter; see, e.g., Ives et al. (2003), De Valpine and Hilborn (2005), and references
therein for access to an extensive fisheries literature, Burr and Chowell (2006) in
fitting SIR model to disease dynamics and Schmid et al. (1994).

Within the above stated focus, the objective is to provide a broad survey of
modeling considerations, the effects of, and ways to correct for, measurement error
and some of the challenges in carrying out estimation and inference. The intent is
not to look at any particular model in great detail, although we do illustrate some
key concepts with linear autoregressive models and the Ricker model and present a
few new results. Dynamic models for the true values and measurement error models
are discussed in Sects. 2.1 and 2.2, respectively. This is followed by a discussion
about the performance of naive analyses that ignore measurement error in Sect. 3
and then a survey of correction methods in Sect. 4. Concluding remarks appear in
Sect. 5.

2 Models

2.1 Dynamic Models for True Values

There is of course a very rich class of dynamic models that can be used for time
series. As noted in the introduction the main interest here is in autoregressive
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Table 1 Some dynamic
models Name Model

AR(p) Yt = φ0 +φ1yt−1 + . . .+φpyt−p + εt

Ricker Yt = φ0 + yt−1 +φ1eyt−1 + εt

Beaverton-Holt Yt = yt−1 + log(φ0)− log(1+φ1nt−1)+ εt

Theta-logistic Yt = yt−1 +φ0 +(φ1nt−1)
θ + εt

Logistic Yt = yt−1 +φ0 + log(1− eyt−1)+ εt .

models with E(Yt |yt−1) = m(yt−1,�) and V (Yt |yt−1) = v(yt−1,�,� ), where yt−1 =
(. . . .,yt−2,yt−1) indicates past values and � contains additional variance parameters.
Alternatively we can write Yt |yt−1 = m(yt−1,�)+ εt , where E(εt) = 0 and V (εt ) =
v(yt−1,�,� ).

We allow the mean function to be linear or nonlinear in Y with some examples
given in Table 1. All of these models, with the last four being nonlinear in Y ,
arise in population ecology with Yt = log(Nt) where Nt is abundance, or density,
at time t. The εt is typically taken to be normal with mean 0 and V (εt) = σ2,
referred to as process error. There are, of course, numerous other models that can
be considered that we won’t discuss in any detail. For example, as noted briefly
later, measurement error has received some attention in an autoregressive integrated
moving average (ARIMA) and basic structural models (BSMs) used to model labor
variables, medical indices, and other variables over time. Another important model
in the economics literature is to extend the linear autoregressive model in Table 1
to allow conditional heteroscedasticity in the process errors; the so-called ARCH
model.

With Yt = log(Nt) where Nt is a count or scaled count, the usual assumption
on εt may not be appropriate and an alternate nonlinear models arise by working
explicitly if we work with Nt . These lead to another set of mean-variance models.
(It is worth noting that one can only move directly from a model for Nt |nt−1 to one
for Yt |yt−1 in certain special cases, e.g., when δt is log-normal.) For example with
the Ricker model, Nt = nt−1e(φ0+φ1nt−1)δt . If we assume δt has mean 1 and constant
variance σ2

δ , then E(Nt |nt−1) = m(nt−1,�) = nt−1e(φ0+φ1nt−1) and V (Nt |nt−1) =

m(nt−1,�)
2σ2

δ . For the multiplicative version of the AR(1) model we might just

work with E(Nt |nt−1) = eφ0nφ1
t−1. In general, if Nt |nt−1 is distributed Poisson, then

V (Nt |nt−1) = E(Nt |nt−1). For a full discussion of fitting dynamic models with
count data, possibly with the inclusion of time varying covariates, see Mallick and
Sutradhar (2008).

Turning to the linear AR(p) models we will assume the model is stationary (e.g.,
Box et al. 1994, Chap. 3), which for AR(1) model means |φ1| < 1. In general
for stationary models we denote E(Yt) = μY and V (Yt) = σ2

Y , both constant in
t, and Cov(Yt ,Yt+k) = γk, a function only of the lag k. In the population ecology
literature the AR models are referred to as the Gompertz model. There, based on the
multiplicative versions for the AR(1) and AR(2), the primary objective is estimation
of φ1 and/or φ2, usually interpreted as measures of density dependence and delayed
density dependence, respectively; see Stenseth et al. (2003); Solow (2001), and
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references therein. The AR(p) models can also be extended to multivariate autore-
gressive (MAR) models (also called vector autoregressive models or VAR); see Ives
et al. (2003) and Aigner et al. (1984), both which accommodate measurement error.

All of the models in Table 1 have the random walk model Yt = yt−1 + μ + εt

as a special case. If the εt ’s are assumed to be independent and identically
distributed (iid) with mean 0 and variance σ2, this is a moving average of order
1, which is non-stationary. In the ecological context, once again with Y = log(N),
it represents a density independent model and is commonly used in population
viability analysis and related trend analysis (Morris and Doak (2002)). There is a
fairly large literature on measurement error in this problem. While there are some
methodological connections to our discussion here we will not discuss it in detail
both for space reasons and the fact that with the difference there is no dynamic piece
left. See Buonaccorsi and Staudenmayer (2009) for a comprehensive treatment and
references.

For likelihood-based approaches, the joint density of Y1, . . . ,YT is denoted
f (y;�,� ), with the term density applying for either the continuous or discrete case.
For conditional likelihood approaches, assuming an autoregressive model (see Box
et al. (1994, Chap. 7) for extension) suppose the distribution of Yt |yt−1 depends on
the past p values. Then partition y into y′ = (y∗′1 ,y

∗′
2 ), where y∗1 = (y1, . . . ,yp)

′ and
y∗2 = (yp+1, . . . ,yT )

′. The conditional density of Y∗
2 given y∗1 is

f2(y∗2;�,� ,y∗1) =
T

∏
t=p+1

f (yt |yt−1,�,� ), (1)

where f (yt |yt−1,�,� ) is the density of Yt given yt−1. Here, y∗1 is treated as fixed.
Notice that we can also write f (y;�,� ) =

∫
y∗1

f2(y∗2;�,� ,y∗1) f (y∗1)dy∗1, where

f (y∗1) is the density of Y∗
1, which can depend on some parameters (suppressed in the

notation). If the Y ’s are discrete, then integration is replaced by summation above.

2.2 Measurement Error Models

The measurement error model describes the conditional behavior of the observable
random variables W = (W1, . . . ,WT )

′ given y = (y1, . . . ,yT )
′. Given the huge

number of sampling methods that can be used to estimate the yt’s, there are
many measurement error models that can be entertained here. The bulk of the
literature assumes that the measurement errors are conditionally uncorrelated and,
frequently, additive. The assumption of conditionally uncorrelated measurement
errors is reasonable when there is independent sampling at each time point. There
are settings, however, where some common sampling units occur over time, leading
to correlated measurement errors. This can occur, for example, in biological and
climatological monitoring and is also a key feature in large national repeated sample
surveys which use block resampling, where fairly general dynamic models have
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been used for the measurement error itself; see, for example, Pfeffermann et al.
(1998); Feder (2001), and references therein.

The conditional mean and covariance are E(W|y) and Cov(W|y), which usually
depend on unknown parameters, contained in � . A more convenient representation
is

W = y+u, E(u|y) = Bc, and Cov(u|y) =Cov(W|y) = ˙uc. (2)

The B′
c = (θ1c, . . . ,θT c) contains conditional biases, while ˙uc is the conditional

covariance matrix. The c here is a reminder that these are conditional on y and
this conditional behavior could be a function of the underlying true values or
sampling effort/design. This is elaborated on in more detail below when discussing
the measurement error variances.

The frequently used additive model assumes E(W|y) = y or E(u|y) = 0, but
models with bias have been considered including constant bias, E(Wt |yt) = yt +� ,
and proportional bias, E(Wt |yt) = θyt . The constant bias model arises in various
ways. For example, if N̂t is the estimated abundance at time t, Wt = log(N̂t),
Yt = log(Nt), and E(N̂t |nt) = ant with constant coefficient of variation, then
E(Wt |yt) = yt + θ , exactly or approximately (see Buonaccorsi et al. 2006). Often,
a constant bias term can be easily absorbed. The proportional bias model arises
from Poisson-type sampling where yt is abundance, Wt is a count, adjusted for
sampling effort, and θ is an unknown representing “catchability”; e.g., Stenseth
et al. (2003). There are certainly even richer bias models that can be considered.
For example, in calibrating aerial counts W versus ground counts Y of waterfowl,

Lillegard et al. (2008) build a model where W 1/2
t ∼ N(θ0 + θ1y1/2

t ,τ2), leading to

E(Wt |yt) = τ2 +θ 2
0 + 2θ0θ1y1/2

t +θ 2
1 y2

t .
Much of our coverage is around settings assuming conditionally uncorrelated

measurement errors with

Cov(W|y) = ˙uc = diag(σ2
u1c, . . . ,σ

2
uT c), (3)

a diagonal matrix with (t, t) element V (Wt |yt) = σ2
utc. Note that this allows for

heteroscedastic measurement errors where the conditional variance, σ2
utc, possibly

depending on yt , or on sampling effort, although the functional nature of that
dependence need not be specified. The unconditional (over random Y ) variance is
denoted by σ2

ut . Suppose, for example, that σ2
utc = h(yt ,�) and there is additive error

or constant bias. Then, unconditionally, σ2
ut = V (ut) = E[V (ut |Yt)]+V [E(ut |Yt)] =

E[h(Yt ,�)]. An important point here is that if the conditional variance only changes
over t as a result of yt and the process is stationary, then h(Yt ,�) is stationary
and unconditionally σ2

ut = σ2
u . Hence, we can have conditional heteroscedasticity

but unconditional homoscedasticity. As noted above, however, the conditional and
unconditional variance may also change as a function of sampling effort.

For assessing the properties of naive estimators and corrected estimators under
the additive model and (3) we assume that
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LimT→∞
∑T

t=1 σ2
ut

T
= σ2

u (4)

exists, where the limit is in probability if σ2
utc depends on Yt .

Returning to the general setting, the unconditional moments of the observable W
are given by E(W) = E[E(W|Y))] and Cov(W) = E[Cov(W|Y))]+Cov[E(W|Y)].
For additive measurement error this becomes E(W) = E(Y)(= μ1 under stationar-
ity) and Cov(W) = E[˙uc]+Cov[Y] = ˙u +˙Y .

For likelihood methods W|y is assumed to have density f (w|y,�), where �

includes any measurement error parameters. When � is a parameter vector of fixed
length (e.g., σ2

u , or (θ0,θ1,τ2) in the model of Lillegard et al. (2008)) there is no
difficulty in interpreting and using this density in standard fashion. The handling
of � is more delicate if we allow the conditional measurement error parameters
to change over time in some unspecified manner. For example, if we assume
Wt |yt ∼ N(yt ,σ2

utc) where no structure is given to σ2
utc, then � = (σ2

u1c, . . . ,σ2
uT c)

′,
which increases in size with T . Further, if σ2

utc involves yt , then unconditionally �

is random. There are two densities for W that will be used later,

fW (w;φ ,σ ,�) =

∫

y
f (w|y,�) f (y;�,� )dy (5)

and

f ∗W (w;φ ,σ ,�,y∗1) =
∫

y∗2
f (w|y,�) f2(y∗2;�,� ,y∗1)dy∗2, (6)

where the second conditions on y∗1 with f2(y∗2;�,� ,y∗1) as given in (1). As before,
integrals are replaced by sums for the discrete case.

3 Performance of Naive Estimators

An important question, especially in the absence of any specific information about
the measurement error, is the performance of the so-called naive analyses, which
ignore the measurement error and treat Wt as if it is Yt . Based on what we know from
regression models it is not surprising that the measurement error will lead to biases
in estimated coefficients as well as in the process variance parameters. However, we
will see that obtaining analytical expressions for asymptotic or approximate biases
is generally difficult here.

Of course the first question to ask here is “which naive analysis?”, since there are
a plethora of approaches to estimation in time series. For stationary normal models,
maximum likelihood (ML) and (more recently) restricted maximum likelihood
(REML) are the most popular. Conditional maximum likelihood (CML), which
maximizes L(�,� ,y∗1|y) arising from (1), is another choice. This drops making
an assumption about the marginal distribution of Y∗

1 and usually leads to easier
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Table 2 Selected papers assessing the performance of naive estimators via simulation

Author(s) Dynamic Model ME Model Method

Solow (1998) Logistic Poisson LS
De Valpine and Hastings (2002) Ricker and N(0,σ 2

u ) ML
De Valpine (2002) Beaverton-Holt ′′ ′′ ′′ ′′

SB (2005) AR(1) N(0,σ 2
utc) ML

Lele (2006) AR(1) Poisson ML
Hovestadt and Nowicki (2008) Modified Ricker N(0,σ 2

u ) LS
Barker and Sibly (2008) theta-logistic N(0,σ 2

u ) LS
Ives et al. (2010) ARMA N(0,σ 2

u ) REML
Resendes (2011) Ricker N(0,σ 2

u ) LS

computing. For a normal autoregressive model with the εt assumed iid N(0,σ2) this
leads to least squares, where �̂CLS minimizes ∑T

t=p+1(yt −m(yt−1,�))
2, and p is the

number of previous y terms in the m function. Obviously if m(yt−1,�) is linear in the
φ ’s, then this leads to simple least squares. More generally these lead to nonlinear
least squares with estimating equations of the form

t

∑
t=p+1

(yt −m(yt−1,�))Δ(yt−1,�) = 0, (7)

where the jth element of the Δ(yt−1,�) is ∂m(yt1 ,�)/∂φ j. Similar estimating
equations can arise from conditional maximum likelihood in other situations. For
example, if Yt |yt−1 is assumed to be Poisson with mean eφ0+φ1log(yt−1), then CML
leads to (7) with Δ(yt−1,�)

′ = [1, log(yt−1)].
A number of general strategies have been tried to investigate the performance of

naive estimators in the presences of measurement error. These include:

1. Use an explicit expression for the estimators, e.g., �̂ = g(W)), and determine the
limiting or approximate properties analytically. This is mainly used for the linear
autoregressive models, discussed in the next section.

2. View the naive estimators as solutions to estimating equations S(W,�,� ) = 0.
In this case the naive estimators (under some conditions) will converge to �∗ and
� ∗ which satisfy E�,� [S(W,�∗,� ∗)]/T → 0.

3. Find an “induced” model, or an approximation, for the behavior of Wt |wt−1. If
this is in the same class as the original with � and � replaced by φ∗ and � ∗, then
the naive methods are consistent (or approximately consistent) for φ∗ and � ∗.

4. Simulate the performance of the naive estimators. While it is difficult to gain a
good understanding of the nature of the biases from simulations alone, this is
often the only option. Even when analytical asymptotic properties are available,
as in linear AR models, simulations are needed to assess “small” sample
behavior; see the next section. Table 2 summarizes some of the papers that have
utilized simulation. SB (2005) refers to Staudenmayer and Buonaccorsi (2005),
an abbreviation used throughout.
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Table 3 Simulation means for naive least squares estimators from the Ricker model with εt ∼
N(0,σ 2) with K = 100 and σ = 0.2. From Resendes (2011), with permission

True φ0

0.2 0.75 1.5 2.4 2.6 σ 2
u

φ̂0 0.413 0.822 1.444 2.381 2.575 0.05
0.593 0.939 1.266 2.206 2.427 0.2
0.729 0.975 1.182 1.988 2.231 0.3
0.813 0.983 1.053 1.628 1.855 0.5

K̂ 97.537 100.093 100.007 100.188 100.035 0.05
94.771 102.044 102.324 101.516 101.668 0.2
96.631 104.456 104.028 102.375 104.261 0.3
100.686 113.058 113.294 111.585 112.367 0.5

σ̂ 0.202 0.206 0.205 0.226 0.231 0.05
0.301 0.291 0.294 0.456 0.536 0.2
0.387 0.371 0.379 0.617 0.720 0.3
0.586 0.566 0.573 0.906 1.069 0.5

While methods 2 and 3 have proved fruitful in many regression problems (see
Carroll et al. (2006) and Buonaccorsi (2010)) they are less useful in dynamic
situations. A simple example that illustrates the shortcomings of method 3 is the
linear AR(p) model with additive normal measurement error with constant variance.
This leads to an induced model which is an Autoregressive Moving Average
(ARMA) (p,p) (see Sect. 4.2.1), so the problem is one of model misspecification.
Method 2, an approach first used in regression contexts by Stefanski (1985),
is the only recourse for assessing bias analytically when the estimators do not
have a closed form. Expanding the estimating equations leads to �∗ ≈ � −
(LimT→∞ ∑t E[Ṡ(Wt ,�)]/T )−1Limt→T ∑t E(S(Wt ,�))/T , assuming the limits exist
and where Ṡ denotes partial derivatives with respect to the parameters. The problem
here is finding the expected values and limits. The best potential for this method
is with using conditional ML/LS approaches leading to estimating equations as
given in (7), but even there, the analysis is not straightforward. To illustrate we
consider the Ricker model, which was investigated by Resendes (2011). Although
nonlinear in Y , it is linear in the parameters, leading to simple linear least squares.
Defining, Dt = Wt+1 −Wt and Ct = eWt SDC = ∑T−1

t=1 (Dt − D̄)(Ct − C̄)/T and
SCC = ∑T−1

t=1 (Ct − C̄)2/T , then the naive estimators of φ1 is φ̂1,naive = SDC/SCC and
asymptotically φ̂1,naive ⇒ LimE(SDC)/LimE(SCC), provided the two limits exists.
We faced two problems here; the first in finding the expected values involving
nonlinear functions, the second in determining whether the sums converge, and
to what. If the process is assumed stationary, then these limits generally exist
but one needs to determine the stationary moments for the two series involved.
Resendes (2011) examined the biases of the naive estimators in the Ricker model
extensively, both via simulation and via the estimating equation just described
(on both additive and multiplicative scales). While clean final expressions for the
approximate biases proved elusive, his approximations did show how the direction
of the bias can change with the values of the parameters. This is also seen in his
simulations, a very small portion of which appear in Table 3 and highlight his main
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conclusions. These are based on parameter values similar to those in De Valpine and
Hastings (2002) but with some larger measurement error variances. The magnitude
and direction of the biases depend heavily on φ0 with naive estimators of φ0 tending
to be overestimates at small φ0 and underestimates as φ0 increases. The same thing
happens for the naive estimator of the carrying capacity K = −φ0/φ1 (the Ricker
model can be parameterized instead in terms of φ0 and K), but it is less sensitive to
the measurement error than naive estimators of φ0 are. It also shows overestimation
of σ , although modest at small measurement error variances.

3.1 Linear Autoregressive Models

Here we summarize and illustrate some results for the stationary linear AR models
under the additive error model with (2). This is one of the simpler settings, allowing
exactly analytical bias expressions, and is useful for illustrating some key points. We
concentrate on the coefficients, but it also can be shown that σ2 is overestimated.
The standard method of analysis here is traditionally maximum likelihood, but
there is increasing support for the use of REML given that it reduces small sample
bias (e.g., Cheang and Reinsel (2000)), REML estimators for the AR(1) model
can be easily obtained using most mixed models software. SB (2005) extended
earlier work and developed a general expression for the limiting values of the Yule-
Walker (YW) estimates allowing changing measurement error variances and under
the assumption in (4). For the AR(1) model this leads to φ̂1,naive ⇒ κφ1, where ⇒
denotes convergence in probability and

κ = σ2
Y/(σ

2
Y +σ2

u ). (8)

This shows asymptotic attenuation (bias towards 0) in the estimator of φ1. If, as in
ecological applications, the focus is on β1 = φ1 − 1, then β̂1,naive ⇒ κβ1 +(κ − 1),
which is greater than β1 if β1 <−1 but less than β1 if β1 >−1.

For the AR(2), we have

(
φ̂1,naive

φ̂2,naive

)

⇒
(
(κρ1 −κ2ρ1ρ2)/(1−κ2ρ2

1 )

(κρ2 −κ2ρ2
1 )/(1−κ2ρ2

1 )

)

,

where ρ j = γ j/σ2
X for j = 1 and 2 with γ1 = (φ1σ2

X )/(1−φ2) and γ2 = (φ2
1 +φ2 −

φ2
2 )σ

2
X/(1− φ2). This leads to some more interesting results, as the bias in either

element of �̂naive can be either attenuating or accentuating (larger in absolute value),
depending on both the amount of measurement error and the other parameters.

It is well known that YW and ML/REML estimators have the same asymptotic
properties without measurement error. With measurement error the asymptotic
properties of the ML (equivalently REML) can be examined through their associated
estimating equations, see the Appendix. This leads to the same asymptotic behavior
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Table 4 Performance of maximum likelihood (ML), Yule-Walker (YW), and restricted maximum
likelihood (REML) estimators of φ1, using true and mismeasured values in the AR(1) model. φ ∗

1 =
κφ1 = limiting value of naive estimator

True (using Y ) Naive (using W )

φ1 σ 2
u n YW ML REML φ ∗

1 YW ML REML

0.2 0.15 10 0.023 0.029 0.176 0.169 0.006 0.009 0.152
0.2 0.15 30 0.140 0.146 0.187 0.169 0.116 0.120 0.161
0.2 0.15 50 0.161 0.164 0.188 0.169 0.136 0.139 0.163
0.2 0.15 100 0.179 0.180 0.192 0.169 0.149 0.150 0.162
0.2 0.6 10 0.031 0.040 0.185 0.116 −0.022 −0.020 0.120
0.2 0.6 30 0.151 0.157 0.199 0.116 0.074 0.077 0.116
0.2 0.6 50 0.171 0.174 0.198 0.116 0.090 0.092 0.115
0.2 0.6 100 0.185 0.187 0.199 0.116 0.101 0.102 0.113
0.8 0.15 10 0.356 0.435 0.623 0.749 0.290 0.354 0.536
0.8 0.15 30 0.648 0.686 0.750 0.749 0.586 0.619 0.681
0.8 0.15 50 0.710 0.731 0.768 0.749 0.650 0.669 0.705
0.8 0.15 100 0.756 0.765 0.783 0.749 0.701 0.709 0.727
0.8 0.6 10 0.357 0.444 0.641 0.630 0.195 0.235 0.410
0.8 0.6 30 0.652 0.689 0.753 0.630 0.463 0.487 0.542
0.8 0.6 50 0.709 0.729 0.766 0.630 0.526 0.540 0.572
0.8 0.6 100 0.756 0.766 0.785 0.630 0.574 0.582 0.598

as the YW estimators when ˙u = σ2
u I. Note that the ˙u is the unconditional

covariance of u and can have conditional heteroscedasticity arising through Yt ; see
the discussion in Sect. 2.2.

One question is how useful the bias expressions are for “small” samples. Even
without measurement error, the issue of bias in small samples is an important
one with time series. To illustrate data was generated from the AR(1) model with
Yt = φ1Yt−1 + εt and Wt = yt + ut , where the εt are iid N(0,σ2) and the εt are
iid N(0,σ2

u ). The process variance was held to σ2 = .8, while φ1 = .2, .5, or .8
and σ2

u = .15, .4 and .8. The case with φ1 = .5 and σ2
u = .15 is based roughly

on an analysis of mouse dynamics given in Buonaccorsi (2010, Chap. 12). For
each combination 1,000 simulations were run and YW, ML, and REML estimators
obtained, using the true Y ’s and the error prone W ’s. Partial results appear in Table 4.
The analysis with true values is given for two reasons. First it shows the clear
superiority of REML to ML estimation, especially at small sample sizes, with the
ML only being modestly better than the YW estimator. Notice that even using true
values all of the estimators are attenuated towards zero, sometimes dramatically
with n = 10. Second it gives a baseline to compare the performance of the naive
estimators to. The measurement error leads to further attenuation, increasing in σ2

u ,
as it should. The REML estimator obviously provides some extra protection against
measurement error compared to ML and YW, especially at small sample sizes.
The variable φ∗

1 is the limiting value of the naive estimator (whether YW, ML, or
REML). The asymptotic bias associated with this limiting value can be significantly
off compared to the simulated bias, sometimes even with samples of size 50.
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4 Correcting for Measurement Error

There are three general contexts within which measurement error corrections are
carried out. 1. Using only the observed W1, . . . ,WT ; 2. Using the observed W ’s and
estimated measurement error parameters leading to pseudo-methods. 3. Using richer
data than just Wt ’ from each time point t. We first comment on each of these three.

1. Unlike many other measurement error problems it has been shown that with
some assumptions on the measurement error (e.g., that the errors are independent
with mean 0 and common variance) all of the parameters can be identified (and
estimated) from the W data alone for a variety of dynamic models; see, e.g.,
some of the references in Sect. 4.2.1 and Aigner et al. (1984). The majority of
the work on correcting for measurement error in dynamic settings has attacked
the problem from this perspective. In the likelihood context these are state-space
models and the approach is standard in principle but can face computational
challenges as discussed later. The shortcoming of this approach is the potential
restrictive nature of the measurement error model and the fact that identifiability
does not guarantee good estimators. However, without any information about the
measurement error process the only option is to use this approach to estimate the
dynamic and measurement error parameters simultaneously.

2. There is often data that allows for estimating the measurement error parameters,
contained in �̂ , say. This may include estimated variances as well as biases
and/or correlations if they are part of the model. With additive uncorrelated
measurement errors, allowing changing variance over time then �̂ contains an
estimate of measurement error variances, σ̂2

ut , at each time point t, typically
arising from the same data that produces Wt . The pseudo-methods set � = �̂

and then estimate the parameters in the dynamic model. While it seems natural
to exploit estimates about the measurement error parameters, this strategy has
been seriously underutilized. Note that �̂ may be of fixed size or contain separate
estimates at each time point, depending on the assumed structure of �; see
the discussion in Sect. 2.2. We subsume under pseudo-methods approaches that
simply assume that the measurement error parameters are known. The difference
between viewing �̂ as estimated or known and fixed will come in trying to
account for uncertainty �̂; see Sects. 4.1 and 4.2.2.

3. The third approach has some richer “data,” denoted Qt , at time t with a model
for Qt given yt . The simplest example is where Qt contains replicate measures
of yt ; e.g, Wong et al. (2001); Dennis et al. (2010), and Knape et al. (2011).
The analyses here connect to the previous two approaches. If Qt |yt depends on a
finite collection of parameters � , then this is like approach 1 but with Wt replaced
by Qt . Or, the richer data can be used to first estimate the measurement error
parameters, in which case this reduces to a pseudo-method. In some cases those
two strategies concur. With these connections we won’t mention this method
in detail in the later sections.We do note that one advantage of using the full
Qt is that the uncertainty from estimating the measurement error parameters is
accounted for. It does, however, require that � be fixed and that a distribution is
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Table 5 Selected papers correcting for measurement error

Methods using W only

Author(s) Model for Y ME Model Method
De Valpine and Hilborn (2005) General,AR(1), N(0,σ 2

u ) ML
De Valpine and Hastings (2002) Ricker and
De Valpine (2002) Beaverton-Holt
Calder et al. (2003) Gen Gen Bayesian
Clark and Bjornstad (2004) Gen Gen Bayesian
SB (2005) AR(1) N(0,σ 2

u ) ML/ARMA
AR(p) (0,σ 2

ut) modified YW
Wang et al. (2006) RW, AR(1), AR(2) N(0,σ 2

u ) ML
Dennis et al. (2006) RW, AR(1) N(0,σ 2

u ) ML/REML
Lele (2006) Gen Gen ComML
Knape (2008) AR(1) N(0,σ 2

u ) ML
Ponciano et al. (2009) Gen Gen ML
Knape et al. (2011) AR(1) varied ML

Pseudo-methods
Solow (1998) “logistic” Poisson SIMEX
Williams et al. (2003) AR(1)+ trend N(0,σ 2

ut) ML
Ives et al. (2003) MAR(1) N(0,σ 2

u ) ML
Clark and Bjornstad (2004) Gen (0,σ 2

ut) Bayesian
SB (2005) AR(p) (0,σ 2

ut) CEE/ML
Wang (2007) Theta-logistic N(0,σ 2

u ) ML/Bayesian
Lillegard et al. (2008) MAR(1) (* below) Bayesian
Ives et al. (2010) ARMA N(0,σ 2

u ) ML/REML
Dennis et al. (2010) AR(1) N(0,σ 2

u )(reps) REML
Knape et al. (2011) AR(1) varied ML
Resendes (2011) Ricker varied SIMEX, MEE

∗√(Wt )∼ N(a+b
√

exp(Yt ),σ 2
u )

specified for the within time data. In many applications the within time sampling
can be very complex and the results will be reduced to Wt and σ̂2

ut , leading us
back to the pseudo-methods.

Table 5 contains a partial listing of papers addressing connection techniques,
many containing simulations evaluating the methods. A number of these will be
referred to in the later discussion, along with additional papers.

Within each of the three contexts described above, moment-based, maximum
likelihood, and Bayesian methods are all options. The pseudo-methods also open
the door for other methods including Simex, modifying the estimating equations
and what is known as “regression calibration” all of which have received limited, or
no, attention, in dynamic settings. Our survey below is categorized by the correction
technique (moment, likelihood, Simex, etc.) with the last subsection addressing the
use of bootstrapping.
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4.1 Moment Methods

Moment-based corrections are for the most part limited to linear problems including
the random walk model and linear autoregressive models, which we concentrate
on here. Working only with the Wt ’s, if the measurement error is additive and
conditionally uncorrelated but with possibly changing variances, modified Yule-
Walker estimators for � are available. These take advantage of the fact that the lag
covariances, which involve the φ ’s, are estimated consistently; see Walker (1960);
Sakai et al. (1979); Chanda (1996), and comments in SB (2005). While these
estimators are consistent and robust to changing measurement error variances, in
practice they are often very ill behaved even for moderate sample sizes and cannot
be recommended.

For a pseudo approach with uncorrelated additive measurement errors, but
possibly unequal variances, define

� =

⎛

⎜
⎝

γ0 . . . γp−1
...

. . .
...

γp−1 . . . γ0

⎞

⎟
⎠ and � =

⎡

⎣
γ1

. . .

γp

⎤

⎦ ,

where γk is the lag k covariance and γ0 = σ2
Y . SB (2005) proposed the simple

estimator �̂CEE = (�̂W − σ̂2
u I)−1�̂W , where �̂W and �̂W are naive estimates of

� and � using the sample variances and covariances of the observed Wt ’s and
σ̂2

u = ∑T
t=1 σ̂2

ut/T. The estimator can be viewed as arising from either correcting the
naive estimating equations so they have mean 0 (hence CEE for corrected estimating
equation) or from a simple correction based on the fact that the sample variance of
the observed Wt’s estimates σ2

Y + σ2
u . They show that �̂CEE is consistent as long

as (4) holds and in addition σ̂2
u converges in probability to σ2

u . They also establish
asymptotic normality and provide the asymptotic covariance of �̂CEE but only under
certain assumptions. An extension of their result is the following:

Proposition 1. Let G1 = ∂ �̂CEE/∂ �̂W |∗, G2 = ∂ �̂CEE/∂ σ̂2
u |∗, (with |∗ denoting

evaluation at γ̂W j = γW j and σ̂2
u = σ2

u ), X′
t = [W 2

t ,WtWt+1, . . . ,WtWt+p], and
X̄ = ∑t Xt/T . Assuming the following limits exist, Q1 = LimCov(X̄)T , Q12 =
LimCov(X̄, σ̂2

u )T and Q22 = LimV (σ̂2
u )T , then the asymptotic/approximate covari-

ance of �̂CEE is

ACov(�̂CEE) = (G1Q1G1 ++G1Q12G′
2 +G′

1Q′
12G2)/T +G2G′

2V (σ̂2
u ). (9)

The first term G1Q1G1/T = CK , say, is the approximate covariance of �̂CEE if
the σ̂2

ut ’s are treated as known. The terms involved in (9) get complicated, as
does estimation of them. We omit details (given in Buonaccorsi and Staudenmayer
(2012)) but the general result is useful for highlighting the difficulty in accounting
for the uncertainty in the measurement error parameters by needing to handle
the terms involving σ̂2

ut . The problem simplifies considerably when the σ̂2
ut ’s are
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assumed independent of the Wt’s, as would hold if the Wt and σ̂2
ut arise from using

normal replicate measures at time t. In this case ACov(�̂CEE) = CK +G2G′
2V (σ̂2

u )
(where Ck was defined above) so only η4 = ∑t E(u4

t )/T (= 3σ4
ut if ut is normal) and

V (σ̂2
u ) and estimates of them are needed. To illustrate (see SB (2005)), for the AR(1)

model, the approximate variance of φ̂1,CEE is

1
T

[
(1−φ2

1 )(2−κ)
κ

+
(1−φ2

1 )(∑t σ4
ut/T )+φ2

1 η4

σ2
Y

]

+
φ2

1 V (σ̂2
u )

σ2
Y

,

where κ is given in (8).
More broadly, the challenge is to accommodate the case where the conditional

variance (or higher moments) of ut |yt may depend on yt . Unconditionally this
leads to the σ̂2

ut ’s being correlated with the Wt ’s and expressions and estimates
for Q1 and Q12 are needed. It appears impossible to do this robustly using just
the Wt and σ̂2

ut in the most general setting, without some assumptions on the
measurement error variances. Buonaccorsi and Staudenmayer (2012) develop a
strategy for estimating the covariance matrix under the assumptions that either i) the
sampling effort is constant so the heteroscedasticity arises through the Yt only or ii)
the measurement error variance is inversely proportional to known sampling effort.
The methodology used considers the joint series (Wt , σ̂2

ut) and exploits time series
methods for estimating covariance structures robustly using consistent estimators of
the spectral density of a multivariate stationary process (e.g., the modified Bartlett
kernel estimator); see, e.g., Fuller (1996, Chap. 7).

4.2 Likelihood Methods

Likelihood and related Bayesian methods have dominated the correction ap-
proaches. There are two-likelihoods of interest, the full and conditional likelihoods
L(�,� ,�|w) = f (w|�,� ,�) and L∗(�,� ,�,y∗1|w) = f ∗(w|�,� ,�,y∗1), based on
the densities in (5) and (6), respectively. For stationary normal linear models, an
alternative is to use the REML likelihood in place of L(�,� ,�|w).

4.2.1 Using W Values Only

Assuming � is of fixed size, these methods maximize either the full or conditional
likelihood, or their REML versions. Of course, they are only used when all of the
parameters are identifiable. This is a classical state-space formulation and there is
a fairly large literature on fitting these models, whether linear or nonlinear using
maximum likelihood, and in a few cases, REML. While this is straightforward in
principle, there are a number of challenges in using these techniques, including
needing to dealing with local maxima and/or the maximum occurring on the
boundary of the parameter space and, general difficulty in computing the likelihood



Measurement Error in Dynamic Models 67

function and an associated covariance matrix of the estimates for use in inference.
However, as discussed below, there have been recent advances tackling some of the
computational challenges.

Normal linear stationary models: Assuming u|y ∼ N(0,˙u) where ˙u depends
on a fixed number of parameters, the full likelihood approach can be used based
on W ∼ N(μ1,˙Y +˙u). (It is important to note that if the measurement error
variances (or covariances if present) are changing with y, then even if u is
conditionally normal and unconditionally Cov(u) = ˙u, W = Y+u is not normal
since it involves mixtures of normals with changing variances. This same comment
applies for the pseudo likelihood methods in the next section.) Often ˙u is taken to
be σ2

u I, while ˙y is a function of the parameters, depending on the specific model for
the true values. Computational methods here typically use the Kalman filter or some
variation on it; see, e.g., Harvey (1990), Brockwell and Davis (2002), Ives et al.
(2010, 2003) and, for the AR(1) models, Dennis et al. (2006) and Knape (2008).
These last two papers touch on the important problem that even in the simple AR(1)
model there may be issues with local maxima and/or the maximum occurring on
the boundary. Knape (2008) also zeros in more on the fact that, not surprisingly,
it can be difficult to separate the process error variance and the measurement error
variance. These models can also be cast as mixed models which may employ other
computational techniques (e.g., the EM algorithm and modifications of it), although
only the AR(1) model is typically available in canned mixed model routines (e.g,
proc Mixed in SAS and lmm in R).

For normal autoregressive (and more generally ARMA models) there is another
quick and easy option. If the model for true values is ARMA(p,p) and the
measurement error model is an MA(q) process (q = 0 corresponding to ut’s being
iid N(0,σ2

u )), then it is well known that the model for W is an ARMA(p,p + q)
and the autoregressive parameters are unchanged (Box et al. 1994, Sect. A4.3, Ives
et al. 2010). This means we could estimate the autoregressive coefficients in � by
simply fitting an ARMA(p,q) model. This is the hybrid approach of Wong and
Miller (1990) used in an ARIMA setting. For the AR(p) models with measurement
errors being iid N(0,σ2

u ), this means we can estimate the autoregressive coefficients
in simply fitting an ARMA(p, p) model. In the case of p = 1 this yields the ML
estimator of �1 and using results on fitting ARMA models (see Brockwell and Davis
(2002)) an exact, but somewhat complicated, expression for the asymptotic variance
of φ̂1,ML can be obtained; see SB (2005). When p > 1 this does not yield the ML
estimate for �, since there are restrictions involving the moving average parameters.
There is an older literature that attacked this problem by first fitting the ARMA
model and then bringing in the restrictions in various ways to get approximate MLEs
(e.g., Lee and Shin (1997); Pagano (1974)).

General Models. The computational challenges are more severe for nonlinear
models both in the integration required to obtain the likelihood, and in getting
the information matrix or other quantities for use in inference. Note that the
full likelihood function L(�,� ,�|w) also requires specifying a marginal distri-
bution for Y1, while in working with the conditional likelihood y∗1 is treated as
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another parameter. This would seem to argue more for the use of the conditional
approach. For overviews and references, see De Valpine and Hastings (2002), De
Valpine (2002), De Valpine and Hilborn (2005), and Wang (2007) (who assumes the
measurement error parameters are known but the basic algorithms are the same).
Recently, some new methods have been developed to try and overcome some of
the computational challenges. These include the Monte Carlo Kernel Likelihood
(MCKL) (De Valpine (2004)), a method called data cloning, which borrows from
Bayesian computing (Lele et al. (2007); Ponciano et al. (2009)) and composite
maximum likelihood estimation (ComML) (Lele 2006).

4.2.2 Pseudo Likelihood Methods

The pseudo ML estimates maximize either L(�,� , �̂ |w) or L2(�,� , �̂,y∗1|w), or
an REML modified version, where �̂ contains estimated, or assumed known,
measurement error parameters. These methods also have a long history of use in
modeling with repeated samples surveys where the true values are ARIMA (and
special cases thereof) or follow a basic structural model (BSM) and the sampling
error also may follow a dynamic model (AR, MA, etc.), which is first estimated
and then held fixed. See Bell and Wilcox (1993); Koons and Foutz (1990); Wong
and Miller (1990); Miazaki and Dorea (1993); Lee and Shin (1997); Feder (2001),
and references therein. Many pseudo-approaches treat stationary normal models
assuming W ∼ N(μ1,˙Y + ˆ̇u), but see the caution in the previous section about
non-normality of W if the measurement error covariance change with Yt .

For the most part, the pseudo-likelihood approaches face the same computational
demands as the non-pseudo-likelihood methods. An added challenge lies in finding
the covariance matrix for the estimated dynamic parameters which accounts for
uncertainty in �̂ . To illustrate, let ω ′ = (�′,� ′) for the collection of dynamic
parameters and I(!) the corresponding information matrix, with submatrices Iφ , etc.
If �̂ is treated as fixed, the asymptotic covariance matrix of !̂ML is I(!)−1, leading
to an asymptotic covariance matrix of �̂ML of Acov(�̂ML,K) = (Iφ − Iφ ,σ I−1

σ I′φ ,σ )
−1,

K for known. This covariance can be estimated in standard fashion, computational
issues aside.

What about accounting for the uncertainty in �̂ , say with covariance ˙θ̂ ? This
part has been essentially ignored, an exception being SB (2005). If � is of fixed
dimension and �̂ is consistent and asymptotically normal with covariance matrix
˙θ̂ , then as shown by Parke (1986), often

Acov(!̂ML) = I(!)−1 + I(!)−1Iω,θ ˙θ̂ I′ω,θ I(!)−1. (10)

Hence, Acov(�̂ML) = Acov(�̂ML,K)+Q, where Q is the upper left p× p block of
the second matrix in (10) and p is the size of �. If θ̂ = σ̂2

u , then ˙θ̂ is the exact or
approximate variance of σ̂2

u . SB (2005) used this result for the AR(1) model with
additive constant measurement error variance and compared the asymptotic variance
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of the pseudo-MLE and that of the CEE estimator in Sect. 4.1. As expected, under
normality the pseudo-MLE is more efficient but in many cases the moment-based
CEE did not lose much and in finite sample simulations the performances were
similar.

The expression in (10) depends on �̂ being asymptotically uncorrelated with
!̂ (if computed at the true �). This certainly holds if �̂ is independent of W.
Besides possibly violating these conditions on �̂ , we also need to worry about the
case where the pseudo method uses the individual measurement error parameters
(e.g., the σ̂2

ut’s) and not a simple function of them, such as the mean, so �̂

increases in dimension as T increases. Suppose that �̂ can be written as solving
equations S2(�) = 0 and the ! arises from solving S1(!, �̂) = 0; e.g, score
equations. Note that both S1 and S2 depend on random quantities which have been
suppressed in the notation. Use of a standard first order expansion of the estimating
equations and results on the inverse of a partitioned matrix lead to an approxi-
mate covariance matrix: Cov(!̂)≈ Acov(!̂ML,K)+H−1

11 H12˙
�̂

H′
12H−1′

11 −P, where
H11 = E(∂S1(!,�)/∂!), H12 = E(∂S1(!,�)/∂�), H22 = E(∂S2(�)/∂�), C12 =
E(S1S′

2), and P = H−1
11 (H12H−1

22 C′
12 +C12H−1

22 H′
12)H

−1
11 . This is a bit daunting and

we are faced with many of the same issues faced in using the CEE estimator in
the linear autoregressive models; see Sect. 4.1. This is a case where bootstrapping
will help. Also, the approximate covariance above comes from simply using a first
order approximation to the estimating equations. Work remains to be done, however,
to carefully examine asymptotics in this setting where the size of �̂ is increasing
with T . Notice that treating the asymptotics for the CEE estimator was easier since
only the average estimated measurement variance was used.

4.3 Bayesian Methods

Bayesian methods begin with the same structure as the likelihood methods above but
utilize priors for the parameters (�,� , and �) and base inferences on the posterior
distribution of the parameters with the main focus being on estimating �. The
formulas are standard so we won’t repeat them here. Some of the computational
challenges are similar to those in the likelihood setting, but there are some
formulations that can be easily fit using Winbugs (see, e.g., Bolker (2008, Section
11.6.2) and Viljugrein et al. (2005)) General discussion of the Bayesian approach
can be found in Calder et al. (2003); Clark and Bjornstad (2004); Wang (2007), and
Jungbacker and Koopman (2007). Viljugrein et al. (2005) use a pseudo-approach
by using estimated measurement error variances from each point in time. Clark
and Bjornstad (2004) is notable for its treatment of unequal measurement error
variances by incorporating different priors on each of the σ2

utc to reflect the amount
of information about them. Additional applications of the Bayesian method can be
found in Stenseth et al. (2003); Saether et al. (2008), and Lillegard et al. (2008),
among others.
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4.4 SIMEX, MEE, and RC

Here we briefly discuss three other correction methods, Simex (simulation-
extrapolation), modifying estimating equations and regression calibration, all of
which have been successful in treating standard regression settings; see Carroll
et al. (2006) and Buonaccorsi (2010) for background and details. All of three use
information about the measurement error parameters and are designed to both ease
the computational burden and, more importantly, relax some of the distributional
assumptions underlying likelihood and Bayesian techniques.

SIMEX. Originally due to Stefanski and Cook (1995), it has been used mainly
with additive measurement error but can also accommodate multiplicative errors
(e.g, Solow (1998); Resendes (2011)). Briefly it proceeds by simulating different
amounts of additional measurement error to the observed W ’s, estimating the mean
behavior of the naive approach at each of these levels of measurement error (by
simulating multiple samples at that level of measurement error), then fitting a curve
relating the mean behavior to the level of measurement error and projecting back
to the case of no measurement error. It has seen some, but rather, limited use
in dynamic settings; see Solow (1998); Ellner et al. (2002), and Bolker (2008,
Chap. 11). While certainly not bullet proof, Simex has proven itself to perform quite
well across a variety of regression models. Its great advantage is the need to only
have to be able to fit the naive estimator. Getting analytical standard errors is more
challenging and has not been examined in dynamic contexts. This is another place
where the bootstrap will come in handy. Resendes (2011) evaluated the performance
of SIMEX in fitting the Ricker model via simulation and obtained bootstrap standard
errors and confidence intervals. He found that except for large (and unreasonable)
levels of measurement error, SIMEX was quite successful in removing bias and
bootstrap-based inferences performed fairly well. One problem with SIMEX in
combination with the bootstrap was the huge number of fits that need to be done.
This was easy for the version of the Ricker model that leads to linear least squares
but was more problematic when needing to use root finding methods for solving
nonlinear equations for the multiplicative version.

Modified estimating equations. This is closely related to finding corrected scores
and is also motivated by minimizing distributional assumptions. The idea is to
use the estimated measurement error parameters and try to modify the naive
estimating equations so the corrected equations have asymptotic mean 0. For
linear autoregressive models modifying the Yule-Walker equation leads to the CEE
estimator while under normality modifying the score equations leads to pseudo-
ML estimators. For many other cases however, it is difficult to implement this
method for the same reasons associated with using the estimating equations to
assess bias (Sect. 3), although approximate corrections can be found for least
squares-type estimators. An advantage of an explicit set of corrected estimating
equations is the ability to build off of them to get analytical expressions for the
approximate covariance matrix of the estimators. While a promising approach in
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general, an extensive investigation into its use for the Ricker model (the easiest of
the “nonlinear” models) by Resendes (2011) found that the resulting estimator could
be erratic, was outperformed by SIMEX and it was difficult to get good standard
errors, either analytically or via the bootstrap. Further fine-tuning of the correction
term might alleviate some of these issues.

Regression calibration. Finally we briefly speculate on regression calibration, an
extremely popular method in regression contexts, which has not yet explored at all
in the dynamic contexts. For an autoregressive model, consider

E(Wt |Wt−1) = E[E(Wt |Wt−1,Yt−1] = E[E(Wt |Yt−1|Wt−1)]

= E[m(�,Yt−1)|Wt−1]≈ m(�,E(Yt−1|Wt−1)),

where the approximation is exact if the model is linear in the Y ’s. (The last step
of running the expectation through the m function is what motivated RC methods
in regression.) This suggests finding an estimate Ŷt−1 of E(Yt−1|Wt−1) and then
estimating � by regressing Wt on Ŷt−1. Notice that this is not the same as running
the usual naive analysis but replacing Wt with Ŷt since we are leaving Wt as is when
it is the “outcome” but modifying “predictors” by using Ŷt−1 in place of Wt−1.
For normal stationary models and using estimated best linear predictors, it can be
shown that this leads essentially to the CEE estimator in Sect. 4.1. A fruitful line of
future work would be to examine the procedure above for nonlinear but stationary
models and also to consider modifications to handle non-stationary models without
an explicit expression for E(Yt) and V (Yt) which enter the best linear predictor of Yt .

4.5 Bootstrapping

The preceding discussions provide a number of reasons why the bootstrap will
be useful, both for getting standard errors and for assessing bias. The parametric
bootstrap, based on an assumed distribution for both the measurement errors and the
true values is relatively easy to implement. For an autoregressive model depending
on the past p values, for each bootstrap sample b (= 1 to B), we can set yb1 =
(yb1, . . . ,ybp)

′, where yb j =Wj for j = 1 to p. We would then generate (sequentially)
Ybt = m(�̂,yb,t−1)+ ebt , where ebt is based on the distribution of εt with estimated
parameters. Measurement error is then added to generate Wb from yb according
to the estimated model for W|y. If a pseudo-method is being used and we want to
account for uncertainty from estimating the measurement error parameters, then we
also would generate �̂b, based on a distributional assumption. For each bootstrap
sample, the corrected estimators are obtained and standard bootstrap inferences
obtained using the B bootstrap values.

Notice that we need to resample from the dynamic model explicitly. (There are
some methods that bootstrap via block resampling, e.g., but these are of limited
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value with short series and their use needs to be carefully considered if there are
measurement errors present with changing properties over time). The difficulty
in using a nonparametric bootstrap is getting an estimate of the process error
distribution; i.e., the distribution of the εt . To see the problem suppose we knew
the dynamic parameters exactly and examine residuals rt = Wt − m(�,Wt−1) =
Yt + ut − m(�,Yt−1) + (m(�,Yt−1)− m(�,Wt−1) = εt + ut + εt + (m(�,Yt−1)−
m(�,Wt−1). This is contaminated by the measurement errors and some type of
“unmixing” (related to deconvolution) is needed to get a nonparametric estimate
of the distribution of εt . This is not an easy problem and is especially challenging
with short series. The problem is even more difficult if the last term is nonlinear in
Y and exacerbated further, of course, when an estimated �̂ is used. There is no work
on unmixing in this particular context and so the nonparametric bootstrap remains
undeveloped here, as it still does for many regression problems with measurement
error.

5 Discussion

The main goal here was a broad overview of modeling and methodological issues
when accounting for measurement error in fitting dynamic models. Much of the
work in this area has tended to focus on likelihood methods involving distributional
assumptions under fairly limited measurement error models. While these may
provide good approximations in some settings, in general methods that drop the
distributional assumptions and/or allow for richer measurement error models are
often required; as are methods that explicitly exploit estimated measurement error
parameters, which may be changing with time. While some important strides
have been made in addressing these problems, the only problem with a somewhat
complete solution is for additive errors in the linear autoregressive models. Of
course one question still to be answered thoroughly is whether using the estimated
measurement error parameters always improves the situation. More generally, a
number of possible approaches to correcting for measurement error were described
in Sect. 4. While a few papers have compared a couple of techniques (e.g.,
SB (2005) and Resendes (2011)) the majority of papers assess the performance
of a single method often in comparison with a naive approach which ignores
measurement error. A more comprehensive understanding of the pros and cons
of the different methods is still needed. Future work is needed to explore the
performance and robustness of the various procedures under a variety of assump-
tions; in particular the robustness of likelihood-based methods to distributional
violations.

We identified a number of other problems that need further attention. One is in
the treatment of nonlinear models without distributional assumptions. This turns out
to be a challenge both for assessing bias and correcting for measurement error, even
with fairly simple measurement error models; see Sects. 3 and 4.4 and Resendes
(2011). Simex in combination with the bootstrap appears to be the best option here,
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but as noted in Sect. 4.4 currently only the parametric bootstrap is available. The
development of the nonparametric bootstrap would be helpful, although this will
be very difficult with short series. Modifying the estimating equations does not
seem all that promising here, but the regression calibration approach is worthy of
investigation.

Two other areas needing attention, even when working under distributional
assumptions, are allowing for richer measurement error models (such as letting the
measurement error variance be different at each point in time) and accounting from
uncertainty from the estimated measurement error parameters. The latter is of added
difficulty when the number of estimated measurement error parameters is changing
in time. In that context some avenues worth pursuing are just using the average
measurement error variance for each t (there is theoretical justification for this if
the process is stationary and the variance is changing as just a function of Yt) or
smoothing the variances in some way.

Lastly we note that in addition to other problems put aside for space reasons in the
introduction, there is the problem of simultaneously fitting models to multiple series.
This is an important topic where the use of series from many different locations
which exploit the spatial structure or other assumptions about common dynamic
parameters can help with the ever present problem of short series. There has been
some work on measurement error in these contexts (e.g., Lillegard et al. (2008),
Ives et al. (2003)), but a number of the issues raised above in treating a single series
remain of interest.

Appendix

Assessing bias via estimating equations. Suppose Y ∼ N(μ1,˙Y ). The estimating
equations for the ML estimators of the parameters in ˙Y (say ψ1, . . . ,ψJ) can be
written McCulloch et al. (2008, p. 165) as tr(˙−1

Y G j)− (y−μ1)′˙−1
Y G j˙

−1
Y (y−

μ1) = 0, for j = 1 to J, where J is the number of parameters in ˙Y and G j =
∂˙Y/∂ψ j. Replacing y with W and taking the expected value, but denoting the
arguments of the estimating equations denoted with a ∗ leads to an expected value
of the jth estimating equation of E j = tr(˙ ∗−1

Y G∗
j)− tr(˙ ∗−1

Y G∗
j˙

∗−1
Y ˙W ). If we

can find Σ∗
Y of the same form as ˙Y so that each E j is 0, then the naive estimators

of the parameters in ˙Y are consistent for the parameters in ˙ ∗
Y . Obviously E j

is 0 if ˙ ∗
Y = ˙W but this only provides the asymptotic bias immediately if ˙W

is of the same form as ˙Y . If the measurement errors are additive with constant
(unconditional) variance σ2

u , then ˙W = ˙Y + σ2
u I, and we can take ˙ ∗

Y = ˙W .
This means the naive estimator or σ2

Y asymptotically estimates σ2
Y +σ2

u while the
naive estimators of the off-diagonal covariance terms in Y are correct and the ML
estimators are asymptotically like the YW estimators.

Allowing unequal unconditional variances (as can occur with changing sampling
effort) ˙W =˙Y +Diag(σ2

u1, . . . ,σ
2
uT ) the question, which we have not investigated,

is whether E j → 0 as T increases if we take ˙ ∗
Y =˙Y +σ2

u , where σ2
u =∑T

t=1 σ2
ut/T .
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