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Abstract In a generalized linear models (GLMs) setup, when scalar responses
along with multidimensional covariates are collected from a selected sample of
independent individuals, there are situations where it is realized that the observed
covariates differ from the corresponding true covariates by some measurement error,
but it is of interest to find the regression effects of the true covariates on the scalar
responses. Further it may happen that the true covariates may be fixed but unknown
or they may be random. It is understandable that when observed covariates are
used for either likelihood or quasi-likelihood-based inferences, the naive regression
estimates would be biased and hence inconsistent for the true regression parameters.
Over the last three decades there have been a significant number of studies dealing
with this bias correction problem for the regression estimation due to the presence of
measurement error. In general these bias correction inferences are relatively easier
for the linear and count response models, whereas the inferences are complex for the
logistic binary models. In the first part of the paper, we review some of the widely
used bias correction inferences in the GLMs setup and highlight their advantages
and drawbacks where appropriate. As opposed to the independent setup, the bias
correction inferences for clustered (longitudinal) data are, however, not adequately
addressed in the literature. To be a bit more specific, some attention has been given
to deal with bias correction in linear longitudinal setup (also called panel data setup)
only. Bias corrected generalized method of moments (BCGMM) and bias corrected
generalized quasi-likelihood (BCGQL) approaches are introduced and discussed. In
the second part of this paper, we review these BCGMM and BCGQL approaches
along with their advantages and drawbacks. The bias correction inferences for
count and binary data are, however, more complex, because of the fact that apart
from the mean functions, the variance and covariance functions of the clustered
responses also involve time-dependent covariates. This makes the bias correction
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difficult. However, following some recent works, in the second part of the paper,
we also discuss a BCGQL approach for longitudinal models for count data subject
to measurement error in covariates. Developing a similar bias correction approach
for longitudinal binary data appears to be difficult and it requires further in-depth
investigations.

1 Introduction

When responses along with covariates are collected from a group of independent
individuals in a generalized linear model (GLM) setup, in some practical situ-
ations the observed covariates may be subject to measurement errors differing
from the true covariates values. These imprecise observed covariates, when used
directly, the standard statistical methods such as likelihood and quasi-likelihood
methods yield biased and hence inconsistent regression estimates. Bias corrected
estimation for the regression effects involved in generalized linear measurement-
error models (GLMEMs) with normal measurement errors in covariates has been
studied extensively in the literature. See, for example, Fuller (1987), Carroll et al.
(2006), and Buonaccorsi (2010), and the references therein. In general, this type
of bias correction is studied under two scenarios. First, if for a sample of observed
responses and covariates, namely, {(yi,xi)(i = 1, . . . ,K)}, the true covariates {zi}
are independent and identically distributed random vectors from some unknown
distribution, a structural error-in-variables model is obtained; second if {zi} are
unknown constants, a functional error-in-variables model is obtained (Kendall and
Stuart 1979, Chap. 29; Stefanski and Carroll 1987; also known as Berkson error
model). Note that the second scenario is more challenging technically because
unknown fixed {zi} makes a large set of parameters and direct estimation or
prediction of each of them may be impossible, specially when K is large.

For discussions on structural models, especially for inferences, in addition
to the aforementioned references, namely, Fuller (1987), Carroll et al. (2006),
and Buonaccorsi (2010), one may consult, for example, an instrumental variable
technique to obtain bias corrected estimates for regression parameters in GLMs,
studied by Buzas and Stefanski (1996a) (see also Stefanski and Buzas 1995; Buzas
and Stefanski 1996b; Amemiya 1990; Carroll and Stefanski 1990), among others.
In this paper, we, however, mainly deal with functional models, and among many
existing studies based on such functional models, we, for example, refer to Stefanski
and Carroll (1985), Stefanski (1985), Armstrong (1985), Stefanski and Carroll
(1987), Carroll and Stefanski (1990), Nakamura (1990), Carroll and Wand (1991),
Liang and Liu (1991), Stefanski (2000), and Carroll et al. (2006). Some of these
studies address measurement error problems in various complicated situations such
as when the data also contain outliers, and regression function is partly specified.
But, they are confined to the independent setup.

As opposed to the independent setup, not much attention is given to the measure-
ment error models for longitudinal count and binary data. Sutradhar and Rao (1996)
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have developed a bias correction approach as an extension of Stefanski (1985) for
the longitudinal binary data with covariates subject to measurement errors. To be
specific, these authors have used a small measurement error variance asymptotic
approach to achieve the bias correction, which works well if the measurement error
variance is small or moderately large. Wang et al. (1996) considered a measurement
error model in a generalized linear regression setup where covariates are replicated
and the measurement errors for replicated covariates are assumed to be correlated
with a stationary correlation structure such as Gaussian auto-regressive of order 1
(AR(1)) structure. As far as the responses are concerned, they were assumed to be
independent, collected at a cross-sectional level from a large number of independent
individuals. Thus this study does not address the measurement error problems
in the longitudinal setup where responses are collected repeatedly from a large
number of independent individuals. With regard to the correlations for the repeated
responses, there, however, exit some studies for continuous responses subject to
measurement error, in time series setup. For example, we refer to the study by
Staudenmayer and Buonaccorsi (2005), where time series responses are assumed
to follow the Gaussian auto-regressive order 1 (AR(1)) correlation process subject
to measurement error. But, these studies are not applicable to the longitudinal setup,
especially for discrete longitudinal data such as for repeated count and binary data
with covariates subject to measurement error.

In this paper, first we review some of the widely used inference approaches
in the GLMs setup for independent responses, for the estimation of the re-
gression effects on such responses when associated covariates are subject to
mainly functional measurement error. The structural measurement error models
are discussed in Sect. 2.1.2. The advantages and drawbacks of each approach are
highlighted.

As pointed out above, the measurement error analysis is not so developed in
the longitudinal setup specially for binary and count data. For linear longitudi-
nal measurement error models, there exist some studies with concentration on
econometric data analysis. For example, Wansbeek (2001) (see also Wansbeek
and Meijer 2000) considered a measurement error model for linear panel data,
where on top of the fixed true covariates zi, some of the other covariates are
strictly exogenous. To be more specific, Wansbeek (2001) developed necessary
moment conditions to form bias corrected method of moments (BCMM) estimating
equations in order to obtain consistent generalized method of moments (GMM) es-
timates for the regression parameters involved including the effect of the exogenous
covariates. More recently, Xiao et al. (2007) studied the efficiency properties of
the BCGMM (bias corrected generalized method of moments) approach considered
by Wansbeek (2001). Note that the derivation of the efficient BCGMM estimators
by Xiao et al. (2007) may be considered as the generalization of the GMM
approach of Hansen (1982) to the measurement error models. In studying the
efficiency of the BCGMM approach, Xiao et al. (2007), however, assumed that
the model errors εi1, . . . ,εiTi are independent to each other. Also they assume
that the measurement errors collected over times are serially correlated. Recently
Fan et al. (2012) have developed a bias corrected generalized quasi-likelihood
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(BCGQL) approach that produces more efficient estimates than the BCGMM
approach.

As far as the measurement error models for longitudinal count and binary data
are concerned, in developing a bias correction method, one has to accommodate
both longitudinal correlations of the repeated responses and the measurement
errors in covariates. Recently, Sutradhar et al. (2012) have developed a BCGQL
approach so that the BCGQL estimating function is unbiased for the GQL estimating
function involving the true covariates. They then solved the BCGQL estimating
equation to obtain bias corrected regression estimates. These estimates are also
efficient. We describe this BCGQL approach in brief from Sutradhar et al. (2012).
As opposed to the small measurement error variance-based estimating equation
approach (Sutradhar and Rao 1996), developing a similar BCGQL estimating
equation for regression effects involved in longitudinal binary data models does not
appear to be easy. This would require further in-depth investigations.

2 Measurement Error Analysis in Independent Setup

For i = 1, . . . ,K, let Yi denote the binary or count response variable for the ith
individual and xi = (xi1, . . . ,xip)

′ be the associated p-dimensional covariate vector
subject to normal measurement errors. Let zi = (zi1, . . . ,zip)

′ be the unobserved true
covariate vector which may be fixed constant or random and β be the regression
effect of zi on yi. For discrete responses, such as for count and binary data, by using
exponential family density for yi given zi, the GLMEM is written as

f (yi;zi) = exp[{yiθi(zi)− a(θi(zi))}+ b(yi)] (1)

xi = zi + δvi with vi ∼ Np(0,Λ = diag[σ2
1 , . . . ,σ

2
p ]), (2)

where θi(zi) = h(z′iβ ), with a(·),b(·), and h(·) being known functional form,
yielding the first and second derivatives, a′(θi(zi)) and a′′(θi(zi)), as the mean
and variance of yi, respectively; vi is a random measurement error vector and δ 2

is a scalar parameter. Note that if for a sample (yi,xi)(i = 1, . . . ,K) the covariates
{zi} are unknown constants, a functional error-in-variables model (also known as
Berkson error model) is obtained; if {zi} are independent and identically distributed
random vectors from some unknown distribution, a structural error-in-variables
model is obtained (Kendall and Stuart 1979, Chap. 29; Stefanski and Carroll
1987).

Under the functional model, Nakamura (1990) has proposed a corrected score
(CS) estimation approach, where for given zi, the log likelihood function for β is
written by (1) as

�(β ;y,z) =
K

∑
i=1

[{yiθi(zi)− a(θi(zi))}+ b(yi)],
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and observed covariates xi-based corrected log likelihood function �∗(β ;y,x) is
written such that Ex[�

∗(β ;y,x)] = �(β ;y,z). The corrected score estimate of β , say
β̂CS, is then obtained by solving the corrected score equation

U∗(β ;y,x) =
∂�∗(β ;y,x)

∂β
= 0. (3)

This corrected score approach provides closed form estimating equation for β for
the Poisson regression model, but, the binary logistic regression model does not
yield a corrected score function which is a limitation to this approach.

Stefanski and Carroll (1987) proposed a method based on conditional scores
(CNS). In this approach, unbiased score equations are obtained by condition-
ing on certain parameter-dependent sufficient statistics for the true covariates
z, and the authors have developed the approach in both functional and struc-
tural setups. The conditional score equations have a closed form for GLMs
such as for normal, Poisson, and binary logistic models. Obtaining a closed
form unbiased equation for logistic regression parameter by this conditional ap-
proach is an advantage over the direct corrected score approach (Nakamura
1990) which does not yield corrected score function. To elaborate a little more
on the conditional score approach, consider, for example, the functional ver-
sion of the logistic measurement error model with scalar predictor zi so that
the measurement error vi in (2) follows N1(0,σ2

1 ) (Stefanski 2000, Sect. 4.1).
For convenience, consider δ = 1 in (2). In this case, the density of (yi;xi) is
given by

f (yi,xi;β ,zi) = [
exp(z′iβ )

1+ exp(z′iβ )
]yi [

1
1+ exp(z′iβ )

]1−yi
1

σ1
φ(

xi − zi

σ1
),

where φ(.) is the standard normal density function. The estimation of β also
requires the estimation of the nuisance parameters zi or some functions of zi’s
for i = 1, . . . ,K. However, Stefanski and Carroll (1987) have demonstrated that
the parameter-dependent statistic λi = xi + yiσ2

1 β is sufficient for unknown zi in
the sense that the conditional distribution of (yi,xi) given λi does not depend on
the nuisance parameter zi. This fact was exploited to obtain unbiased estimating
equation for β using either conditional likelihood method or mean variance function
models (based on conditional density of yi given λi) and quasi-likelihood methods.
For the scalar regression parameter β , the unbiased estimating equation has the form
(Sutradhar and Rao 1996, Eq. (2.10))

K

∑
i=1

(λi −σ2
1 β )(yi − p̃i) = 0, (4)

where p̃i = F [{λi−(σ2
1/2)β}β ] with F(t) = 1/[1+exp(−t)]. Let β̂CNS denote the

solution of (4) for β .
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In structural error-in-variables setup, there exists an instrumental variable tech-
nique to obtain bias corrected estimates for regression parameters in GLMs. For
this, for example, we refer to Buzas and Stefanski (1996a) (see also Stefanski and
Buzas 1995; Buzas and Stefanski 1996a; Amemiya 1990; Fuller 1987). We do not
discuss about this technique any further in this paper as our purpose is to deal with
functional models as opposed to the structural models.

Note that as in the absence of measurement errors, regression parameters in-
volved in GLMs such as for count and binary models, may be estimated consistently
and efficiently by using the first two moments-based quasi-likelihood (QL) approach
(Wedderburn 1974), there has been a considerable attention to modify the naive
QL (NQL) approach (that directly uses observed covariates ignoring measurement
errors) in order to accommodate measurement errors in covariates and obtain bias
corrected QL (BCQL) estimates. Some of these BCQL approaches are developed
for both structural and functional models, some are developed for the functional
models and others are more appropriate for structural models only. Stefanski (1985)
proposed a small measurement error variance-based BCQL approach for structural
models, Carroll and Stefanski (1990) have used a similar small measurement error
variance-based QL approach which is developed to accommodate either of the
structural or functional models or both. Liang and Liu (1991) have discussed a
BCQL approach for structural model, which was later on generalized by Wang
et al. (1996) to accommodate correlated replicates in covariates. Sutradhar and
Rao (1996) have used Stefanski’s (1985) small measurement error-based BCQL
approach for the longitudinal binary data, independent setup being a special case,
under functional model only. In the next section, we provide a brief review of
some of these existing simpler BCQL approaches which are suitable for functional
models.

In Sect. 2.1, we provide an alternative BCQL approach which yields the same
corrected regression estimates as the corrected score estimates (Nakamura 1990) for
the Poisson model in functional setup. In the binary case, the proposed alternative
approach provides a first order approximate BCQL regression estimates.

2.1 BCQL Estimation

Note that if zi were known, then one would have obtained a consistent estimator of
β by solving the so-called quasi-likelihood (QL) estimating equation

K

∑
i=1

[
∂a′(θi(zi))

∂β
(yi − a′(θi(zi)))

a′′(θi(zi))
] =

K

∑
i=1

ψi(yi,zi,β ) = 0 (5)

(Wedderburn 1974), where for θi(zi) = h(z′iβ ), both a′(θi(zi)) and a′′(θi(zi)) are
functions of β . For example, for the Poisson and binary data h(·) = 1, and

a′(θi(zi)) = exp(z′iβ ) for the Poisson data, and a′(θi(zi)) =
exp(z′iβ )

1+exp(z′iβ )
for the binary
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data. Thus, for both Poisson and binary models, the QL estimating (5) reduces to
∑K

i=1 zi(yi − a′(z′iβ )) = 0, where a′(z′iβ ) = μiz is the mean of yi. Note that this QL
estimating equation is also a likelihood estimating equation. However, because the
true covariate zi is not observed, one cannot use the estimating (5) for the estimation
of β .

2.1.1 Small Measurement Error Variance-Based QL (SVQL) Approach

Suppose that by replacing zi with xi in (5), one constructs a NQL estimating
equation, namely

K

∑
i=1

ψi(yi,xi,β ) =
K

∑
i=1

wi[yi − a′(h(x′iβ ))]h
′(x′iβ )xi

=
K

∑
i=1

gi(x
′
iβ )xi = 0, (6)

which is the naive version of the Eq. (10) in Stefanski (1985, 588), where wixi =
∂a′(h(x′iβ ))/∂β

a′′(h(x′iβ ))
. Let β̂ be the solution of this NQL estimating (6). But, because the

NQL estimating function in the left-hand side of (6) is a function of xix′i and because
xi = zi + δvi with E[xix′i] = ziz′i + δ 2Λ in the functional setup, β̂ obtained from (6)
cannot converge to β , it rather converges to a different parameter say β (δΛ). Thus,
the naive estimator β̂ is biased and hence inconsistent for β . As a remedy, assuming
that δ is small, by expanding the expected function

Ex

K

∑
i=1

ψi(yi,xi,β ) = Ex

K

∑
i=1

gi(x
′
iβ )xi =

K

∑
i=1

ψ∗
i (yi,zi,β (δΛ)), (say), (7)

about δ = 0, and then equating the expanded function to zero followed by replacing
zi with xi and β with β̂ , Stefanski (1985) obtained a SVQL estimator of β as a
function of δ as

β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
K

∑
i=1

g′i(x
′
iβ̂ )xix

′
i

]−1

×
[

K

∑
i=1

g′′i (x
′
iβ̂ )β̂ ′Λβ̂ xi + 2g′i(x

′
iβ̂)Λβ̂

]
, (8)

where g′i(ηi) =
∂gi(ηi)

∂ηi
, and similarly g′′i (ηi) =

∂ 2gi(ηi)

∂η2
i

. Note that because in the

present independent setup, the mean and variance functions-based QL estimating (5)
is the same as the likelihood estimating equation based on GLM (1), Stefanski’s
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(1985) small variance-based bias correction to naive likelihood estimates is quite
flexible. See also Whittemore and Keller (1988) for a similar QL-based modification
to the NQL or likelihood estimates. Armstrong (1985) (see also Schafer 1987)
also has used QL approach but solved for bias corrected estimates numerically
as opposed to obtaining SVQL estimates. Based on small δ 2 approach, Carroll
and Stefanski (1990) have developed an approximate SVQL approach in a general
framework which can accommodate either structural or functional model or both.
In this paper, we, however, concentrate on the functional model only.

Note that as in the count data case gi(x′iβ ) = yi − μix = yi − exp(x′iβ ), the SVQL
estimator of β by (8) has the formula

Poisson case: β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
−

K

∑
i=1

μ̂ixxix
′
i

]−1

×
[

K

∑
i=1

(−1)μ̂ixβ̂ ′Λβ̂ xi − 2μ̂ixΛβ̂

]
, (9)

where μ̂ix = exp(x′iβ̂). Similarly, for the binary data case with μ̂ix = p̂ix =

exp(x′iβ̂ )/[1+ exp(x′iβ̂ )], the SVQL estimator of β has the formula

Binary case: β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
−

K

∑
i=1

p̂ixxix
′
i

]−1

×
[

K

∑
i=1

p̂ixq̂ix{1− q̂ix}β̂ ′Λβ̂ xi − 2 p̂ixq̂ixΛβ̂

]
, (10)

(see also Sutradhar and Rao 1996, Eq. (2.2), p. 181), where q̂ix = 1− p̂ix.

2.1.2 Conditional QL (CNQL) Estimation

In structural setup, there exists a QL approach, developed conditional on xi. Let the
true covariate vector zi be a stochastic variable, distributed as

zi ∼ Np(m,V ).

Next because xi = zi + δvi by (2), it then follows that conditional on zi, xi has the
conditional normal distribution

xi|zi ∼ Np(zi,δ 2Λ).

Unconditionally xi has the normal distribution given by
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xi ∼ Np[E(zi), E(δ 2Λ)+ var(zi)]

≡ Np[m,δ 2Λ +V ].

Furthermore,

cov(xi,zi) = Ez[cov((xi,zi)|zi)]+ covz[E(xi|zi),E(zi|zi)]

= covz[zi,zi] =V.

It then follows that zi and xi have the 2p-dimensional joint normal distribution given
as ⎛

⎝ zi

xi

⎞
⎠∼ N2p

⎡
⎣
⎛
⎝m

m

⎞
⎠ ,

⎛
⎝V V

V δ 2Λ +V

⎞
⎠
⎤
⎦ , (11)

yielding the conditional distribution of zi given xi as

zi|xi ∼ Np[m+V(δ 2Λ +V)−1(xi −m), V −V (δ 2Λ +V)−1V ]

≡ Np[{Ip −V (δ 2Λ +V)−1}m

+V (δ 2Λ +V)−1xi, {Ip −V(δ 2Λ +V)−1}V ]

≡ Np[ηz|x, V11.2]. (12)

The CNQL estimate of β , say β̂CNQL is then obtained by solving the QL estimating
equation

K

∑
i=1

∂{E[Yi|xi]}
∂β

[var(Yi|xi)]
−1(yi −E[Yi|xi]) = 0, (13)

(Liang and Liu 1991, Eq. (4.11), p. 51), where by applying (12), the conditional
expectation and covariance matrix may be computed by using the formulas

E[Yi|xi] = Ezi|xi
[Yi|zi] = Ezi|xi

[a′(z′iβ )],

var[Yi|xi] = Ezi|xi
[var(Yi|zi)]+ varzi|xi

[E(Yi|zi)]

= Ezi|xi
[a′′(z′iβ )]+ varzi|xi

[a′(z′iβ )].

Note that in this structural setup, Wang et al. (1996) have used a naive mean and
variance-based QL approach where QL estimating equation for β is constructed by
replacing the observed covariate vector xi with its mean obtained from a repeated
sampling. In fact this type of repeated samples is usually employed to estimate the
measurement error variances. Their approximate QL estimating equation has the
form



12 B.C. Sutradhar

K

∑
i=1

[
∂{a′(x′iβ )}

∂β
[a′′(x′iβ )]

−1(yi − a′(x′iβ ))
]
|xi=x̃i

= 0,

where x̃i is the mean computed from the replicates of xi. The relative performance
of this approximate QL approach with other existing approaches is, however, not
known.

Turning back to the functional setup, the CNQL estimating (12) may be modified
by using fixed zi and its relationship to xi given in (2), that is, xi = zi + δvi. It
follows in this case that one may still solve the CNQL (12) for β , but the conditional
expectation and variance are computed as

E[Yi|xi] = Evi [{a′(z′iβ )}|zi=xi−δvi
]

var[Yi|xi] = Evi [{a′′(z′iβ )}|zi=xi−δvi
]+ varvi [{a′(z′iβ )}|zi=xi−δvi

], (14)

where vi ∼ Np[0,Λ = diag(σ2
1 , . . . ,σ2

u , . . . ,σ2
p)].

2.1.3 An Approximate BCQL Approach Using Corrected Estimating
Function

We propose a bias correction approach along the lines of Nakamura (1990).
The difference between Nakamura’s and our approach is that Nakamura (1990)
developed a corrected score function �∗(β ;y,x) such that its expectation is the true
but unknown score function, that is, Ex[�

∗(β ;y,x)] = �(β ;y,z), and then solved the
corrected score (3) for β , whereas in our approach we develop a corrected quasi-
likelihood function, say Q∗(y,x,β ), such that

Ex[Q
∗(y,x,β )] = ψ(y,z,β ), (15)

where by (5), ψ(y,z,β ) = ∑K
i=1 ψi(yi,zi,β ) is the true QL function in unknown

covariates zi, and solve the corrected QL equation, that is, Q∗(β ,y,x) = 0 for β .
Also, this bias correction approach is different than the SVQL approach of Stefanski
(1985) as it does not require any small variance assumption to hold.

Poisson Regression Model

If the true covariates zi were known, then for the Poisson regression model it follows
from (5) that the QL estimating equation would have the form

ψ(y,z,β ) =
K

∑
i=1

ψi(yi,zi,β ) =
K

∑
i=1

zi(yi − μiz) = 0, (16)
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with μiz = exp(z′iβ ). For the purpose of developing a corrected QL function
Q∗(β ,y,x), by replacing zi with xi, we first write the NQL estimating equation as

Q(y,x,β ) =
K

∑
i=1

Qi(yi,xi,β ) =
K

∑
i=1

xi(yi − μix) = 0, (17)

where μix = exp(x′iβ ). Under the measurement error model (2), that is, when xi =
zi + δvi, it is clear that NQL function Q(y,x,β ) is not unbiased for the true QL
function ψ(y,z,β ). That is,

Ex[Q(y,x,β )] = Ex

K

∑
i=1

xi(yi − μix) �= ψ(y,z,β ) =
K

∑
i=1

zi(yi − μiz).

Note, however, that under the Gaussian measurement error model (2), that is
when xi ∼ Np(zi,δ 2Λ), one obtains Ex[exp(x′iβ )|zi] = exp(z′iβ + ξ ) = μiz exp(ξ ),
where ξ = δ 2

2 β ′Λβ , yielding

Exμix exp(−ξ ) = μiz. (18)

Further it may be shown that Ex[xi exp(x′iβ )|zi] = [zi +δ 2Λβ ]μiz exp(ξ ) (Nakamura
1990), yielding

Ex[xiμix exp(−ξ )] = ziμiz + δ 2Λβ μiz. (19)

Now by using (18), it follows from (19) that

Ex[{xi − δ 2Λβ}μix exp(−ξ )] = ziμiz. (20)

Consequently, one obtains the BCQL function

Q∗(y,x,β ) =
K

∑
i=1

[xiyi −{(xi − δ 2Λβ )μix exp(−ξ )}] (21)

which satisfies

Ex[Q
∗(y,x,β )] =

K

∑
i=1

zi(yi − μiz), (22)

yielding the BCQL estimating equation for β in the Poisson model as

K

∑
i=1

[xiyi −{(xi− δ 2Λβ )μix exp(−ξ )}] = 0. (23)
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We denote the solution of (23) by β̂BCQL. This estimator is consistent for β .
Remark that this BCQL estimating (23) is the same as the corrected score equation
derived by Nakamura (1990, Sect. 4.3). Thus, in the Poisson measurement model
setup, the BCQL approach provides the same regression estimate as the bias
corrected likelihood approach.

Binary Regression Model

In the binary regression case, the true but unknown mean function is given by μiz =
exp(z′iβ )/[1+ exp(z′iβ )], whereas in the Poisson case μiz = exp(z′iβ ). This makes it
difficult to find a corrected QL function Q̃(y,x,β ) such that

Ex[Q̃(y,x,β )] =
K

∑
i=1

zi[yi − exp(z′iβ )
1+ exp(z′iβ )

] = ψ̃(y,z,β ) (24)

in the binary case. However, a softer, that is, a first order approximate BCQL
(SBCQL) estimating function may be developed as follows. We denote this
SBCQL function as Q̃S(y,x,β ) which will be approximately unbiased for ψ̃(y,z,β ),
that is,

Ex[Q̃S(y,x,β )]� ψ̃(y,z,β ).

Recall from (18) and (20) that

Ex[exp(x′iβ − ξ )] = exp(z′iβ ), (25)

Ex[{xi − δ 2Λβ}exp(x′iβ − ξ )] = zi exp(z′iβ ), (26)

where ξ = δ 2

2 β ′Λβ . It then follows that

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
� zi exp(z′iβ )

1+ exp(z′iβ )
. (27)

Next because the true QL function has the form

ψ̃(y,z,β ) =
K

∑
i=1

ziyi −
K

∑
i=1

[
zi exp(z′iβ )

1+ exp(z′iβ )
],

by using (27), one may write a softer BCQL (SBCQL) estimating equation as

K

∑
i=1

[
xiyi − {xi − δ 2Λβ}exp(x′iβ − ξ )

1+ exp(x′iβ − ξ )

]
= 0. (28)



Measurement Error Analysis from Independent to Longitudinal Setup 15

We denote the solution of the SBCQL estimating (28) by β̂SBCQL. Note that this
estimator may still be biased and on a more serious note it may not even converge to
β . This is because the expectation shown in (27) may differ to a great extent from the
actual expectation. However exploiting a better approximation for the expectation
as follows may remove the convergence problem and also may yield estimates with
smaller bias.

For the purpose, rewrite the expectation in (27) as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
� zi exp(z′iβ )

1+ exp(z′iβ )
=

μWz,N

μWz,D

, (29)

and improve the expectation as follows. To be specific, we first compute an improved
expectation as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
= Ex

[
Wx,N

Wx,D

]

� μWz,N

μWz,D

− ˆcov[Wx,N ,Wx,D]

μ̂2
Wz,D

+
μ̂Wz,N

μ̂3
Wz,D

ˆvar[Wx,D], (30)

where we use

μ̂Wz,N =
1
K

K

∑
i=1

[{xi − δ 2Λβ}exp(x′iβ − ξ )]

μ̂Wz,D =
1
K

K

∑
i=1

[1+ exp(x′iβ − ξ )]

ˆvar[Wx,D] =
1
K

K

∑
i=1

[1+ exp(x′iβ − ξ )]2 − μ̂2
Wz,D

ˆcov[Wx,N ,Wx,D] =
1
K

K

∑
i=1

[{(xi − δ 2Λβ )exp(x′iβ − ξ )}{1+ exp(x′iβ − ξ )}]
− μ̂Wz,N μ̂Wz,D (31)

We then rewrite (30) as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

+ tc

]
=

μWz,N

μWz,D

, (32)

where

tc =
ˆcov[Wx,N ,Wx,D]

μ̂2
Wz,D

− μ̂Wz,N

μ̂3
Wz,D

ˆvar[Wx,D].
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Thus, instead of (28), we now solve the improved SBCQL estimating equation
given by

K

∑
i=1

[
xiyi − {xi − δ 2Λβ}exp(x′iβ − ξ )

1+ exp(x′iβ − ξ )
− tc

]
= 0. (33)

3 Measurement Error Analysis in Longitudinal Setup

With regard to the correlations for the repeated responses, not much attention
is paid to model such correlations, where the associated covariates are subject
to measurement error. However, in time series setup, there exist some studies
for continuous responses subject to measurement error. For example, we refer to
the study by Staudenmayer and Buonaccorsi (2005), where time series responses
are assumed to follow the Gaussian auto-regressive order 1 (AR(1)) correlation
process subject to measurement errors. But, these studies are not applicable to the
longitudinal setup, especially for discrete longitudinal data such as for repeated
count data with covariates subject to measurement error.

In longitudinal setup, both repeated responses and measurement errors in
covariates are likely to be correlated. Because the repeated measurement errors
usually share a common instrument/machine/individual effect, in this study we
assume that this type of errors follow a familial correlation structure such as
mixed model-based equi-correlation structure. As far as the repeated responses are
concerned, it is likely that they will follow a dynamic relationship causing certain
auto-correlations among them as time effects. Thus, similar to Sutradhar (2011),
in this study we assume that the repeated responses will follow a general class of
auto-correlation structures. It is, however, known that the repeated linear, count, and
binary data exhibit similar but different auto-correlation structures especially when
the covariates are time dependent (nonstationary). For this reason, in this section,
we deal with the measurement error models for these three types of response data
separately and discuss them in sequence in the following three subsections.

3.1 Linear Auto-correlation Models with Measurement Error
in Covariates

In this section, we consider functional error-in-variables models for continuous
(linear) panel data. Let

yit = z′itβ +wiγ∗i + εit , for t = 1, . . . ,Ti,

xit = zit + vit , (34)
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represent such a measurement error model, where yit denotes a continuous response
for the ith (i = 1, . . . ,K) individual recorded at time t (t = 1, . . . ,Ti) with 2 ≤ Ti ≤
T , zit = (zit1 . . . ,zitu, . . . ,zit p)

′ be the p × 1 true but unobserved time-dependent
covariate vector, β = (β1, . . . ,βu, . . . ,βp)

′ be the p × 1 vector of regression pa-

rameters, γ∗i is the ith individual random effect with γ∗i
iid∼(0,σ2

γ ), and wi is a
known additional covariate for the ith individual on top of the fixed covariates zit .
Furthermore, εit in (34) is the model error such that marginally εit∼(0,σ2

ε ), but
jointly εi1, . . . ,εit , . . . ,εiTi follow a serially correlated such as AR(1) (auto-regressive
order 1) or MA(1) (moving average order 1) process. Furthermore, in (34),

xit = (xit1 . . . ,xitu, . . . ,xit p)
′, and vit = (vit1 . . . ,vitu, . . . ,vit p)

′,

with

vitu ∼ (0,σ2
u ), for u = 1, . . . , p

at any time point t = 1, . . . ,Ti. Here, as in Sect. 1, σ2
u is known as the mea-

surement error variance for the uth covariate. Because the measurement errors
vi1u, . . . ,vitu, . . . ,viTiu for measuring the same uth covariate values at different times
are likely to be correlated due to a common instrumental random effect mi|u, (say),
we consider

vitu = mi|u + aitu, for t = 1, . . . ,Ti (35)

and assume that mi|u
iid∼(0, σ̃2

u ) and aitu
iid∼(0,σ2

a ), and mi|u and aitu are independent. It
is then clear from (35) that the variance of vitu and the correlation between visu and
vitu are given by

var(vitu) = σ2
u = σ̃2

u +σ2
a , and corr(visu,vitu) = φu =

σ̃2
u

σ̃2
u +σ2

a
, (36)

for all s �= t,s, t = 1, . . . ,Ti.
By writing Zi=[zi(1), . . . ,zi(u), . . . ,zi(p)] : Ti×p,with zi(u)=(zi1u, . . . ,zitu, . . . ,ziTiu)

′;
Xi=[xi(1), . . . ,xi(u), . . . ,xi(p)] : Ti × p,with xi(u) = (xi1u, . . . ,xitu, . . . ,xiTiu)

′; and Vi =
[vi(1), . . . ,vi(u), . . . ,vi(p)] : Ti× p,with vi(u) = (vi1u, . . . ,vitu, . . . ,viTiu)

′, and expressing
the measurement error model (34) in matrix notation as

yi = Ziβ + 1Tiwiγ∗i + εi (37)

Xi = Zi +Vi (38)

with yi = (yi1, . . . ,yiTi)
′, εi = (εi1, . . . ,εiTi )

′, and 1Ti as the Ti-dimensional unit vector,
one can first write the so-called naive MM (NMM) estimating equation for β as
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ψ∗ =
K

∑
i=1

X ′
i (yi −Xiβ ) = 0, (39)

but its solution would produce biased and hence inconsistent estimate for β , because
Ex|y[∑K

i=1 X ′
i (yi − Xiβ )] �= ∑K

i=1 Z′
i(yi − Ziβ ), due to the fact that in the present

measurement error setup E[V ′
i Vi] �= 0 even though E[Vi] = 0. As a remedy, by

exploiting

E[V ′
i Vi] = Tidiag[σ̃2

1 +σ2
a , . . . , σ̃

2
u +σ2

a , . . . , σ̃
2
p +σ2

a ]

= Tidiag[σ2
1 , . . . ,σ2

u , . . . ,σ2
p ]

= TiΛ(σ2
1 , . . . ,σ

2
u , . . . ,σ

2
p),(say) (40)

that is,

E[X ′
i Xi] = Z′

iZi +E[V ′
i Vi] = Z′

iZi +TiΛ(σ2
1 , . . . ,σ

2
u , . . . ,σ

2
p),

one may obtain a BCMM estimator for β by solving the BCMM estimating equation

ψ(x,y;β ,σ2
1 , . . . ,σ

2
p) =

K

∑
i=1

X ′
i yi − [

K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}]β

=
K

∑
i=1

ψi(xi,yi;β ,σ2
1 , . . . ,σ

2
p) (41)

(Griliches and Hausman 1986) yielding the BCMM estimator as

β̂BCMM =

[
K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}

]−1 K

∑
i=1

X ′
i yi. (42)

This BCMM estimator is consistent for β but can be inefficient.
Recently, some authors such as Wansbeek (2001) (see also Wansbeek and

Meijer 2000) considered a slightly different model than (37)–(38) by also involving
certain strictly exogenous explanatory variables (in addition to Zi) and by absorbing
the random effects γ∗i into the error vector εi that avoids the estimation of
the variance component of the random effects σ2

γ . Wansbeek (2001) developed
necessary moment conditions to form BCMM estimating equations in order to
obtain consistent GMM estimates for the regression parameters involved including
the effect of the exogenous covariates. More recently, Xiao et al. (2007) studied
the efficiency properties of the BCGMM approach considered by Wansbeek (2001).
Note that the derivation of the efficient BCGMM estimators by Xiao et al. (2007)
may be considered as the generalization of the GMM approach of Hansen (1982)
to the measurement error models. In studying the efficiency of the BCGMM
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approach, Xiao et al. (2007), however, assumed that the model errors εi1, . . . ,εiTi

are independent to each other. Also they assume that the measurement errors
vi1u, . . . ,viTiu in (38) (see also (34)) are serially correlated.

More recently, by treating the model errors εi1, . . . ,εiTi as serially correlated with
a general auto-correlation structure

Ci(ρ) =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρTi−1

ρ1 1 ρ1 · · · ρTi−2
...

...
...

...
ρTi−1 ρTi−2 ρTi−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ , (43)

(Sutradhar 2003) and by considering a more practical familial type equi-correlation
structure (36) for the measurement errors, that is,

E[vi(u)v
′
i(u)] = σ2

u [φu1Ti1
′
Ti
+(1−φ)ITi], (44)

Fan et al. (2012) compared the efficiency of the BCGMM estimator with a new
BCGQL (also referred to as BCGLS) approach, the latter being more efficient.
These two approaches are briefly described in the following two sub-sections.

3.1.1 BCGMM Estimation for Regression Effects

Note that the BCMM estimating (41) is an unbiased estimating equation because of
the fact that

EyEx|yψ(x,y;β ,σ2
1 , . . . ,σ2

p) =
K

∑
i=1

EyiExi|yi
ψi(xi,yi;β ,σ2

1 , . . . ,σ2
p) = 0.

Consequently, the BCMM estimator for β in (42) was obtained by solving

ψ(x,y;β ,σ2
1 , . . . ,σ

2
p) = 0,

but this estimator can be inefficient. As a remedy, following Hansen (1982) (see also
Xiao et al. 2007, Eq. (2.4)), Fan et al. (2012) discuss a BCGMM approach, where
one estimates β by minimizing the quadratic form

Q = ψ ′Cψ (45)

for a suitable p × p, positive definite matrix C, with C = [cov(ψ)]−1 as an
optimal choice. In (45), ψ is an unbiased moment function given by (41). Note
that since the computation of the cov(ψ) matrix requires the formulas for the
third and fourth order moments of {xitu} as well, one cannot compute such a
covariance matrix provided the measurement error distributions for the model (34)
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are known. However, as argued in the independent setup, it is reasonable for many
practical situations that measurement errors are normally distributed. As far as their
covariance structure is concerned we assume that they follow the structure in (36).
Based on this normality assumption for the measurement error, we reexpress the
C matrix in (45) as CN and obtain the BCGMM estimator for β by solving the
estimating equation

∂ψ ′

∂β
CNψ = 0, (46)

where by (41)

∂ψ ′

∂β
= [

K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}].

It then follows that the solution of (46), i.e., the BCGMM estimator of β is given by

β̂BCGMM =

[
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1
[

∂ψ ′

∂β
CN

K

∑
i=1

X ′
i yi

]
, (47)

with its variance as

var(β̂BCGMM) =

[
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1

×
[

∂ψ ′

∂β
CN

K

∑
i=1

var(X ′
i yi)CN

∂ψ
∂β

][
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1

. (48)

Construction of CN Matrix

Note that CN = [var(ψ)]−1 under the assumption that the measurement errors {vitu}
and hence observed covariates {xitu} are normally distributed. For the purpose, we
first compute var(ψ) as follows where ψ is given as in (41):

var(ψ) = var[
K

∑
i=1

X ′
i yi −{

K

∑
i=1

X ′
i Xi}β ]

=
K

∑
i=1

[var{X ′
i yi −X ′

i Xiβ}]

=
K

∑
i=1

[var{X ′
i yi}+ var{X ′

i Xiβ}− 2cov{X ′
i yi,X

′
i Xiβ}], (49)
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which, in addition to the formulas for the covariance matrix of yi, requires the
formulas for all possible second, third, and fourth order moments of {xitu}.
The following two lemmas will be useful in computing the covariance matrices
in (49).

Lemma 3.1. Under the measurement error model (34)–(37), let var(Yi) = Σi =
w2

i σ2
γ JTi +σ2

ε Ri = (σi�m) denote the Ti×Ti covariance matrix of the response vector
yi, where JTi is the Ti × Ti unit matrix and Ri = (ρi�m) is the Ti × Ti correlation
matrix for the components of εi such as for AR(1) process ρi�m = ρ |�−m|, ρ being the
correlation index parameter. It then follows that

σi�m = cov[Yi�,Yim] =

⎧⎨
⎩

σ∗
i

2 for �= m = 1, . . . ,Ti

σ∗
i

2[θi +(1−θi)ρi�m] for � �= m,
(50)

where σ∗
i

2 = w2
i σ2

γ +σ2
ε , and θi =

w2
i σ 2

γ
w2

i σ 2
γ +σ 2

ε
.

Lemma 3.2. Let Δi(u) = (δi(uu)�m) denote the Ti × Ti covariance matrix of xi(u) =
(xi1u, . . . ,xitu, . . . ,xiTiu)

′, where by (36)

cov[xi�u,ximu] = δi(uu)�m =

⎧⎨
⎩

σ2
u = σ̃2

u +σ2
a for �= m = 1, . . . ,Ti

σ̃2
u = φuσ2

u for � �= m.
(51)

Under the assumption that vi(u) or xi(u) in (38) follows the Ti-dimensional normal
distribution with covariance matrix Δi(u) as in Lemma 3.2, the third and fourth order
corrected product moments for the components of xi(u) are given by

ηi�mt = E [(xi�u − zi�u)(ximu − zimu)(xitu − zitu)] = 0, (52)

and

ξi�mst = E [(xi�u − zi�u)(ximu − zimu)(xisu − zisu)(xitu − zitu)]

= δi(uu)�mδi(uu)st + δi(uu)�sδi(uu)mt + δi(uu)�tδi(uu)ms, (53)

respectively.
By applying the Lemmas 3.1 and 3.2, one may compute the covariance matrices

in (49). For example, by writing the p× 1 vector X ′
i yi as X ′

i yi = [∑Ti
t=1 xit1yit , . . . ,

∑Ti
t=1 xituyit , . . . ,∑Ti

t=1 xit pyit ]
′, one may compute its p× p covariance matrix as

var[X ′
i yi] =

⎧⎨
⎩

var[∑Ti
t=1 xituyit ] for u = 1, . . . , p

cov[∑Ti
t=1 xituyit ,∑Ti

t=1 xitryit ] for u �= r, u,r = 1, . . . , p,
(54)
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where

var[
Ti

∑
t=1

xituyit ] = varyEx[
Ti

∑
t=1

xituyit |y]+Eyvarx[
Ti

∑
t=1

xituyit |y]

= vary[
Ti

∑
t=1

zituyit ]+Ey[
Ti

∑
t=1

Ti

∑
m=1

δi(uu)tmyit yim]

=
Ti

∑
t=1

Ti

∑
m=1

zituzimuσitm

+
Ti

∑
t=1

Ti

∑
m=1

δi(uu)tm[σitm +β ′zit z
′
imβ ] (55)

and

cov[
Ti

∑
t=1

xituyit ,
Ti

∑
t=1

xitryit ] = covy[Ex{
Ti

∑
t=1

xituyit |y},Ex{
Ti

∑
t=1

xitryit |y}]

+ Eycovx[{
Ti

∑
t=1

xituyit ,
Ti

∑
t=1

xitryit}|y]

= covy[
Ti

∑
t=1

zituyit ,
Ti

∑
t=1

zitryit ]+Ey[
Ti

∑
t=1

Ti

∑
m=1

yit yimδi(ur)tm|y]

=
Ti

∑
t=1

Ti

∑
m=1

zituzimuσitm, (56)

because two covariates (u �= r) are always independent, i.e., δi(ur)tm = 0 irrespective
of the time points of their measurements. The remaining two covariance matrices
in (49) may be computed similarly.

3.1.2 BCGQL Estimation for Regression Effects

In this approach, by pretending that the model (37)–(38) does not contain any
measurement error, we first write the naive generalized quasi-likelihood (NGQL)
estimating equation

Ψ∗ =
K

∑
i=1

X ′
i Σ−1

i [yi −Xiβ ] = 0, (57)
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where Σi is the covariance matrix of yi. Note that the estimating function Ψ∗ is
similar but different than the MM estimating function ψ∗ given in (39). The solution
of (57) yields an NGQL estimator for β as

β̂NGQL =

[
K

∑
i=1

X ′
i Σ−1

i Xi

]−1 K

∑
i=1

X ′
i Σ−1

i yi, (58)

which is also familiar as the generalized least squares (GLS) estimator for β . Note
that this NGQL estimator β̂NGQL = β̂GLS is not consistent for β . This is because,
Ψ∗ in (57) is not an unbiased function under the true model (37)–(38), that is,
E(Ψ∗) �= 0.

Now to obtain an unbiased and hence consistent estimator for β , it is necessary
to consider an unbiased GQL function under the present model. This would be
a generalization of finding the moment conditions for MM studied by Wansbeek
(2001) to the actual correlation setup for the panel data.

In order to obtain an unbiased function from the Ψ∗
i function in (57), we first

note that in probability (→p), X ′
i Σ−1

i Xi converges as

X ′
i Σ−1

i Xi →p [Z′
iΣ−1

i Zi + diag{tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))}], (59)

where for u = 1, . . . , p, Δi(u) is given in Lemma 3.2 (see also (36)). Now by
using (59), we may modify (57) to obtain an unbiased estimating function given by

Ψ =
K

∑
i=1

X ′
i Σ−1

i yi − [
K

∑
i=1

{X ′
i Σ−1

i Xi

− diag[tr(Σ−1
i Δi(1)), . . . , . . . , tr(Σ−1

i Δi(p))]}]β , (60)

that is, E[Ψ ] = 0 under the model (37)–(38). Consequently, for known measurement
error variances, it is now clear from (60) that one may obtain the BCGQL estimator
given by

β̂BCGQL =

[
K

∑
i=1

{X ′
i Σ−1

i Xi

− diag[tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))]}
]−1

K

∑
i=1

X ′
i Σ−1

i yi, (61)

which is consistent for β . Also, this BCGQL estimator would be more efficient than
the BCMM estimator given in (42). This is because, unlike the BCMM estimator,
the BCGQL estimator is constructed by using the covariance matrix Σi of yi as the
weight matrix in the estimating equation. In fact, in view of the comparative results
for GQL and GMM estimators in the linear panel data setup (Rao et al. 2012),
this BCGQL estimator (61) may also be more efficient than the BCGMM estimator
obtained in (47).
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Note that the asymptotic variance of β̂BCGQL may be estimated as follows. By
writing

Pi,x = X ′
i Σ−1

i Xi − diag[tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))],

and because

EyEx|y[X ′
i Σ−1

i yi] = [Z′
iΣ

−1
i Zi]β

is estimated by Pi,xβ , one obtains a moment estimator of var[β̂BCGQL] as

ˆvar[β̂BCGQL] = [
K

∑
i=1

Pi,x]
−1

K

∑
i=1

[X ′
i Σ−1

i yi −Pi,xβ̂BCGQL]

× [X ′
i Σ−1

i yi −Pi,xβ̂BCGQL]
′[

K

∑
i=1

Pi,x]
−1. (62)

A Two-Stage BCGQL (BCGQL2) Estimation of β

Instead of solving the first stage estimating (60) for BCGQL estimator, similar to the
BCGMM estimation (46), Fan et al. (2012) have solved the second stage estimating
equation

K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN Ψi

]
= 0, (63)

where, for Ψ = ∑K
i=1Ψi (60), with Ψi = X ′

i Σ−1
i yi −Pi,xβ ,

DiN = cov[Ψi]

under the assumption of multivariate normality for the random covariates xi(u) =
[xi1u, . . . ,xitu, . . . ,xiTiu]

′. It then follows that the solution of (63), i.e., the two stage
BCGQL BCGQL2 estimator of β is given by

β̂BCGQL2 =

[
K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1 K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN X ′
i Σ−1

i yi

]
, (64)

with its variance as

var[β̂BCGQL2] =

[
K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1 K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN var(X ′
i Σ−1

i yi)D
−1
iN

∂Ψi

∂β ′

]

×
[

K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1

, (65)
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where var(X ′
i Σ−1

i yi) may be computed similar to that of var(X ′
i yi) in (54). Further,

the covariance matrix DiN can be computed in the fashion similar to that of CN in
Sect. 3.1.1.

3.2 Longitudinal Count Data Models with Measurement Error
in Covariates

When compared to the linear measurement error model for correlated data (34),
in the present case, one has to deal with a correlation model for repeated count
data yi1, . . . ,yit , . . . ,yiT , where yit marginally, as in Sect. 2.1.3, follows a count data
distribution such as Poisson distribution with mean μiz = exp(z′it β ). However, as far
as the measurement errors are concerned, they arise through the same relationship
xit = zit + vit , as in the correlated linear model setup.

For the correlation structure for count data, we consider a practically important
AR(1) model following Sutradhar (2010) (see also Sutradhar 2011). The model is
written such that conditional on the true covariate vector zit , the marginal means and
variances satisfy the Poisson distribution-based relationship

E(Yit |zit) = var(Yit |zit) = μiz,t = exp(z′itβ ), (66)

for all t = 1, . . . ,T . Note that these two moments are nonstationary as they depend on
the time-dependent covariates zit . As far as the AR(1) correlations among repeated
counts are concerned, they arise from the following dynamic relationships:

yi1 ∼ Poi(μiz,1)

yit = ρ ∗ yi,t−1 + dit =

yi,t−1

∑
j=1

b j(ρ)+ dit , t = 2, . . . ,T, (67)

where for given counts yi,t−1 at time point t − 1, ∑
yi,t−1
j=1 b j(ρ) denotes the sum of

yi,t−1 independent binary values with Pr[b j(ρ) = 1] = ρ and Pr[b j(ρ) = 0] = 1−ρ ,
ρ being the longitudinal correlation index parameter. Now under the assumptions
that yi,t−1 ∼ Poi(μiz,t−1), dit ∼ Poi(μiz,t − ρμiz,t−1), for t = 2, . . . ,T , and dit and
yi,t−1 are independent, it follows from (67) that yir and yit have nonstationary lag
t − r correlations given by

corr(Yir,Yit) = ciz,rt =

⎧⎨
⎩

ρ t−r[μiz,rμ−1
iz,t ]

1
2 , for r < t

ρ r−t [μiz,t μ−1
ir,t ]

1
2 , for r > t.

(68)

Note that the lag correlations given by (68) are nonstationary by nature as they
depend on the time-dependent variances through the covariates zit and ziu, whereas
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in the stationary case when zit = ziu for all u �= t, they reduce to ρ t−u, a Gaussian-
type AR(1) correlation structure satisfying (43). Further note that because E[Yit ] =
μiz,t = exp(z′itβ ) by (67), the regression parameters vector β measures the effects
of zit on yit for all t = 1, . . . ,T . But in the present setup, zit ’s are unobservable,
and hence they cannot be used to estimate β . Instead, one must use the observed
covariates xit , which are, however, subject to measurement error explained through
the relationship

xit = zit + vit ,

with vit = (vit1, . . . ,vitu, . . . ,vit p)
′ satisfying the following assumptions:

1. vit ∼ N(0,Λ = diag[σ2
1 , . . . ,σ2

u , . . . ,σ2
p ]) for all t = 1, . . . ,T .

2. Also,

corr[viru,vitm] =

⎧⎨
⎩

φu, for m = u;r �= t,r, t = 1, . . . ,T

0, for m �= u;r, t = 1, . . . ,T .

These two assumptions imply that the uth covariate has the measurement error vari-
ance σ2

u for u= 1, . . . , p, at a given time t for all t = 1, . . . ,T . Also, the covariate val-
ues for the same uth covariate recorded at two different times r and t are equally cor-
related with correlation φu for all r �= t. This correlation assumption is similar to that
of the time-dependent covariates considered by Wang et al. (1996). One may also
consider other correlation structures such as AR(1) among the repeated values for
the same covariate. More specifically, the above assumptions is equivalent to writing

⎛
⎝ xir

xit

⎞
⎠∼ N2p

⎡
⎣
⎛
⎝ zir

zit

⎞
⎠ ,

⎛
⎝Λ Λφ

Λφ Λ

⎞
⎠
⎤
⎦ , (69)

where Λφ = cov(vir,v′it) = diag[φ1σ2
1 , . . . ,φuσ2

u , . . . ,φpσ2
p ].

3.2.1 Bias Corrected GQL Estimation

Suppose that by using the observed covariates one writes a NGQL estimating
equation given by

K

∑
i=1

∂ μ ′
ix

∂β
Σ−1

ix (yi − μix) = 0, (70)

where

μix,t = μiz,t |zit=xit
, and Σix = (σix,rt ) = Σiz|z=x

= ([ciz,rt
√

μiz,rμiz,t ]|zit=xit
).
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But, this NGQL estimating (70) will yield biased and hence inconsistent estimate
for β . This is because the NGQL estimating function in the left-hand side of the (70)
is not unbiased for the true covariates-based GQL estimating function. That is,

Ex

[
K

∑
i=1

∂ μ ′
ix

∂β
Σ−1

ix (yi − μix)

]
�=

K

∑
i=1

∂ μ ′
iz

∂β
Σ−1

iz (yi − μiz). (71)

Recently, Sutradhar et al. (2012) have proposed a bias correction to the NGQL
estimating function and developed a BCGQL estimating function which is unbiased

for the true covariates-based estimating function ∑K
i=1

∂ μ ′
iz

∂β Σ−1
iz (yi − μiz). This

provides the BCGQL estimating equation as

gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y) =
K

∑
i=1

[{M1φ X ′
i −M1φ B1φ (β ⊗ 1′T )}

× {A
1
2
ixQ̃ix(ρ)A

− 1
2

ix }yi −{M2φX ′
i −M2φ B2φ (β ⊗ 1′T )}

× {A
1
2
ixQ̃ix(ρ)A

− 1
2

ix }μix

]
= 0, (72)

where yi = (yi1, . . . ,yit , . . . ,yiT )
′ is the T × 1 vector of repeated count responses,

with its mean μix = exp(x′itβ ) in observed covariates; X ′
i =(xi1, . . . ,xit , . . . ,xiT ) is the

p×T observed covariates matrix; Aix = diag[μix,1, . . . ,μix,t , . . . ,μix,T ]; 1′T =(1 . . . ,1)
is the 1×T vector of unity, ⊗ denotes the well-known Kronecker or direct product,
so that β ⊗1′T is the p×T matrix containing β = (β1 . . . ,βp)

′ in each column of the
matrix; and

B1φ =
1
2
(Λ −Λφ ),B2φ =

1
2
(Λ +Λφ ),

M1φ = diag[m1, . . . ,m1] : p× p;M2φ = diag[m2, . . . ,m2] : p× p,

with

m1 = exp{−1
4

β ′(Λ −Λφ )β}, and m2 = exp{−1
4

β ′(Λ +Λφ )β}.

Furthermore, in (72), Q̃ix(ρ) = C̃−1
ix (ρ), with Cix(ρ) = (c̃ix,rt ) as an unbiased

correlation matrix for the AR(1) correlation matrix in true covariates, namely
Ciz(ρ) = (ciz,rt). The formula for the (r, t)-th element of the unbiased correlation
matrix is given by

c̃ix,rt = ρ t−r[exp(xir − xit)
′ β
2
− 1

4
β ′(Λ −Λφ )β ] (73)

satisfying
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Ex[c̃ix,rt ] = ciz,rt = ρ t−r{μiz,r/μiz,t} 1
2 . (74)

We reexpress the BCGQL estimating (72) as

gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y) =
K

∑
i=1

[Di1(x)yi −Di2(x)μix] = 0, (75)

where Di1(x) and Di2(x) are p× T matrix functions of observed covariates. Let
β̂BCGQL be the solution of (73). Now conditional on the observed covariates xi,
solving this equation for β is equivalent to use the iterative equation,

β̂BCGQL(r+ 1) = β̂BCGQL(r) −
[
{Êy(

∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)
∂β ′ )}−1

×
K

∑
i=1

{Di1(x)yi −Di2(x)μix}
]

β̂BCGQL(r)

, (76)

where β̂BCGQL(r) denote the β estimate at the r-th iteration. Note that under the true
model involving covariates zi,

yi ∼ [μiz,Σiz = (σitm)] ,

where for t < m, σitm = cov(yit , yim) = (ρm−t μiz,t), and y1, . . . ,yi, . . . ,yK are T -
dimensional independent vectors. Thus, under some mild moment conditions, by
using Lindeberg-Feller central limit theorem (Amemiya 1985, Theorem 3.3.6, p.
92), it follows from (76) that as K → ∞, β̂BCGQL ∼ Np(β ,V ∗), where

V ∗ =

[
Êy(

∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)
∂β ′ )

]−1 K

∑
i=1

Di1(x)ΣizD
′
i1(x)

×
[

Êy(
∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)

∂β ′ )

]−1

, (77)

which may be consistently estimated by using the moment estimate for Σiz in (77).
For this moment estimate, when ρ is known, one estimates the (t,m)th element
(t < m) of this matrix by using

σ̂itm = ρm−t μ̂iz,t = ρm−t μix,t = ρm−t [exp(x′it β − 1
2

β ′Λβ )]|β=β̂BCGQL
.

3.2.2 A Simulation-Based Numerical Illustration

We consider two (p = 2) covariates with measurement error variances σ2
1 and σ2

2 ,
respectively. It is expected that these measurement error variances are small in
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practice. We, however, consider them ranging from 0.1 to 0.3 for σ2
1 ; and from 0.1

to 0.8 for σ2
2 . Note that these ranges are quite large, whereas in the independence

(ρ = 0.0) setup and for one covariate case (p = 1), Nakamura (1990) examined
the performance of the bias corrected score estimator for σ2

1 up to 0.1. We have
also included the independence case but for larger measurement error variances as
compared to that of Nakamura (1990).

The main purpose of this section is to illustrate the performance of the proposed
BCGQL estimator obtained from (72) (see also (76)) when AR(1) count responses
are generated with some positive correlation index, where the covariates are subject
to measurement error with variances σ2

1 and σ2
2 for the two covariate case. We

consider ρ = 0.5. As mentioned above we also include the independence case
(ρ = 0.0). In all these cases, we first show that if measurement errors are not
adjusted, the so-called NGQL approach (70) produces highly biased estimates and
the correction by using BCGQL approach performs well.
We consider 500 simulations and generate correlated count data following the AR(1)
Poisson model (67)–(68) for K = 100 individuals over a period of T = 4 time points.
The true covariates zit1 and zit2 were generated as

zit1
iid∼ N(0,1), and zit2

iid∼ χ2
4 − 4√

8

with their effects β1 = 0.3 and β2 = 0.1, respectively, on the repeated response
yit . Note that even though the true covariates zitu are generated following the
standard normal and standardized χ2 distribution, these values are treated as fixed
under all simulations. Further note that these true covariates are unobserved in the
present setup, instead xit1 and xit2 are observed. We generate the observed covariates
following the relationship

xitu = zitu + vitu, u = 1, . . . , p,

where vitu’s are generated by using a random effect model given by

vitu = ku + eitu, with ku
iid∼ N(0,σ∗

u
2) and eitu

iid∼ N(0,σ∗
e

2), (78)

yielding

var(vitu) = σ∗
u

2 +σ∗
e

2 = σ2
u

corr(vitu,viru) =
σ∗

u
2

σ∗
u

2 +σ∗
e

2 = φu, (79)

where σ2
u is the measurement error variance for the uth (u = 1,2). Notice that φu

represents the equi-correlations among the repeated values of the same covariate.
Thus, φu = 1 would represent the situation where covariate values are same over
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Table 1 Simulated regression estimates, and their standard errors (SSEs), with true
regression parameters β1 = 0.3, β2 = 0.1, under AR(1) count data model for selected
response correlation ρ , measurement error variances σ 2

1 , σ 2
2 , with K = 100; T = 4; and

measurement error correlations φ1 and φ2; and true covariate values Z1 ∼ N(0,1) and

Z2 ∼ χ2
4−4√

8

Estimates

NGQL BCGQL
ρ φ1 φ2 σ 2

1 σ 2
2 β̂1 β̂2 β̂1 β̂2

0.0 1.0 1.0 0.1 0.3 0.2683 0.0849 0.3025 0.1026
(0.0501) (0.0380) (0.0583) (0.0448)

0.3 0.3 0.2274 0.0800 0.3052 0.1033
(0.0462) (0.0383) (0.0680) (0.0468)

0.3 0.8 0.2221 0.0652 0.3068 0.1052
(0.0450) (0.0338) (0.0701) (0.0525)

0.5 1.0 1.0 0.1 0.3 0.2688 0.0900 0.3036 0.1085
(0.0689) (0.0535) (0.0803) (0.0634)

0.3 0.3 0.2286 0.0854 0.3069 0.1099
(0.0640) (0.0536) (0.0920) (0.0662)

0.3 0.8 0.2232 0.0707 0.3100 0.1138
(0.0623) (0.0493) (0.0979) (0.0786)

0.0 0.25 0.50 0.1 0.3 0.2680 0.0842 0.2772 0.0914
(0.0502) (0.0372) (0.0523) (0.0401)

0.3 0.3 0.2270 0.0793 0.2435 0.0871
(0.0461) (0.0372) (0.0499) (0.0402)

0.3 0.8 0.2218 0.0643 0.2404 0.0779
(0.0450) (0.0329) (0.0495) (0.0392)

0.5 0.25 0.50 0.1 0.3 0.2338 0.0751 0.2800 0.1050
(0.0617) (0.0484) (0.0764) (0.0652)

0.3 0.3 0.1687 0.0683 0.2525 0.1148
(0.0521) (0.0476) (0.0943) (0.1065)

0.3 0.8 0.1642 0.0492 0.2488 0.1097
(0.0506) (0.0406) (0.1314) (0.1579)

time and in this case we consider xitu = ku, which yields corr(xitu,xiru) = φu = 1.0.
But it does not mean though responses are same, rather responses follow the AR(1)
correlation structure. In the simulation study, we, however, consider both situations
where φu = 1.0 for u = 1,2, in one situation; and in the other situation φ1 = 0.25
and φ2 = 0.5.

The simulated estimates along with their standard errors are presented in Table 1
for all selected values of the parameters. As expected, the NGQL estimates appear to
be highly biased. For example, when φ1 = φ2 = 1.0, the response correlation index
is 0.5, and measure error variances are σ2

1 = 0.3, σ2
2 = 0.8, the NGQL approach

produces the estimates of β1 = 0.3 and β2 = 0.1 as 0.22 and 0.07, whereas the
BCGQL approach yields almost unbiased estimates as 0.31 and 0.11, respectively.
When φ1 = 0.25 and φ2 = 0.5, for this set of large measurement error variances,
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the NGQL approach produces useless estimates, 0.16 for β1 = 0.30, and 0.05 for
β2 = 0.10. In this case, BCGQL approach still appears to produce reasonably good
estimates, 0.25 for β1 = 0.30, and 0.11 for β2 = 0.10. The BCGQL estimates for
β2 appears to be unbiased in all selected situations. As far as the independence case
ρ = 0.0 is concerned, the BCGQL approach works similarly to the correlation case
with ρ = 0.5.

Acknowledgment The author fondly acknowledges the stimulating discussion by the audience of
the symposium and wishes to thank for their comments and suggestions.

References

Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge (1985)
Amemiya, Y.: Two-stage instrumental variable estimator for the non-linear errors-in-variables

model. J. Econom. 44, 311–332 (1990)
Armstrong, B.: Measurement error in the generalized linear model. Comm. Stat. Simulat. Comput.

14, 529–544 (1985)
Buonaccorsi, J.P.: Measurement Error: Models, Methods, and Applications. Chapman and

Hall/CRC, London (2010)
Buzas, J.S., Stefanski, L.A.: Instrumental variable estimation in generalized linear measurement

error models. J. Am. Stat. Assoc. 91, 999–1006 (1996a)
Buzas, J.S., Stefanski, L.A.: Instrumental variable estimation in a probit measurement error model.

J. Stat. Plann. Infer. 44, 47–62 (1996b)
Carroll, R.J., Ruppert, D., Stefanski, L., Crainiceanunn, C.M.: Measurement Error in Nonlinear

Models–A Modern Perspective. Chapman & Hall/CRC, London (2006)
Carroll, R.J., Stefanski, L.A.: Approximate quasi-likelihood estimation in models with surrogate

predictors. J. Am. Stat. Assoc. 85, 652–663 (1990)
Carroll, R.J., Wand, M.P.: Semiparametric estimation in logistic measurement error models. J. R.

Stat. Soc. B 53, 573–585 (1991)
Fan, Z., Sutradhar, B., Rao, R.P.: Bias corrected generalised method of moments and generalised

quasi-likelihood inferences in linear models for panel data with measurement error. Sankhya B
74, 126–148 (2012)

Fuller, W.A.: Measurement Error Models. Wiley, New York (1987)
Griliches, Z., Hausman, J.A.: Errors in variables in panel data. J. Econometrics 32, 93–118 (1986)
Hansen, L.-P.: Large-sample properties of generalized method of moment estimators. Economet-

rica 50, 1029–1054 (1982)
Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, vol. 2. Griffin, London (1979)
Liang, K.-Y., Liu, X.: Estimating equations in generalized linear models with measurement error.

In: Godambe, V.P. (ed.) Estimating Functions, pp. 47–63. Oxford University Press, New York
(1991)

Nakamura, T.: Corrected score function for errors-in-variables models: methodology and applica-
tion to generalized linear models. Biometrika 77, 127–137 (1990)

Rao, R.P., Sutradhar, B.C., Pandit, V.N.: GMM versus GQL inferences in linear dynamic panel
data models. Braz. J. Probab. Stat. 26, 167–177 (2012)

Schafer, D.W.: Covariate measurement errors in generalized linear models. Biometrika 74, 385–
391 (1987)

Stefanski, L.A.: The effects of measurement error on parameter estimation. Biometrika 72, 583–
592 (1985)

Stefanski, L.A.: Measurement error models. J. Am. Stat. Assoc. 95, 1353–1358 (2000)



32 B.C. Sutradhar

Stefanski, L.A., Buzas, J.S.: Instrumental variable estimation in binary regression measurement
error variables. J. Am. Stat. Assoc. 87, 87–90 (1995)

Stefanski, L.A., Carroll, R.J.: Covariate measurement error in logistic regression. Ann. Stat. 13,
1335–1351 (1985)

Stefanski, L.A., Carroll, R.J.: Conditional scores and optimal scores for generalized linear
measurement-error models. Biometrika 74, 703–716 (1987)

Staudenmayer, J., Buonaccorsi, J.P.: Measurement error in linear autoregressive models. J. Am.
Stat. Assoc. 100, 841–852 (2005)

Sutradhar, B.C.: An review on regression models for discrete longitudinal responses. Stat. Sci. 18,
377–393 (2003)

Sutradhar, B.C.: Inferences in generalized linear longitudinal mixed models. Can. J. Stat. 38, 174–
196 (2010)

Sutradhar, B.C.: Dynamic Mixed Models for Familial Longitudinal Data. Springer, New York
(2011)

Sutradhar, B.C., Rao, J.N.K.: Estimation of regression parameters in generalized linear models for
cluster correlated data with measurement error. Can. J. Stat. 24, 177–192 (1996)

Sutradhar, B.C., Rao, R.P., Chowdhury, R.I.: Inferences for longitudinal count data with measure-
ment error in covariates. Technical Report, Department of Mathematics and Statistics, Memorial
University, Canada (2012)

Wang, N., Carroll, R.J., Liang, K.-Y.: Quasilikelihood estimation in measurement error models
with correlated replicates. Biometrics 52, 401–411 (1996)

Wansbeek, T.J.: GMM estimation in panel data models with measurement error. J. Econometrics
104, 259–268 (2001)

Wansbeek, T.J., Meijer, E.: Measurement Error and Latent Variables in Econometrics. North-
Holland, Amsterdam (2000)

Wedderburn, R.: Quasilikelihood functions, generalized linear models, and the Gauss-Newton
method. Biometrika 61, 439–447 (1974)

Whittemore, A.S., Keller, J.B.: Approximations for regression with covariate measurement error.
J. Am. Stat. Assoc. 83, 1057–1066 (1988)

Xiao, Z., Shao, J, Xu, R., Palta, M.: Efficiency of GMM estimation in panel data models with
measurement error. Sankhya 69, 101–118 (2007)


	Measurement Error Analysis from Independent to Longitudinal Setup
	1 Introduction
	2 Measurement Error Analysis in Independent Setup
	2.1 BCQL Estimation
	2.1.1 Small Measurement Error Variance-Based QL (SVQL) Approach
	2.1.2 Conditional QL (CNQL) Estimation
	2.1.3 An Approximate BCQL Approach Using Corrected Estimating Function


	3 Measurement Error Analysis in Longitudinal Setup
	3.1 Linear Auto-correlation Models with Measurement Error in Covariates
	3.1.1 BCGMM Estimation for Regression Effects
	3.1.2 BCGQL Estimation for Regression Effects

	3.2 Longitudinal Count Data Models with Measurement Error in Covariates
	3.2.1 Bias Corrected GQL Estimation
	3.2.2 A Simulation-Based Numerical Illustration


	References


