Chapter 3
Testing of Growth Curves with Cubic
Smoothing Splines

Tapio Nummi and Nicholas Mesue

Abstract In this paper we present a novel method for testing growth curves when
the analysis is based on spline functions. The new method is based on the use
of a spline approximation. For the approximated spline model an exact F-test is
developed. This method also applies under a certain type of correlation structures
that are especially important in the analysis of repeated measures and growth data.
We tested this method on the glucose data of Zerbe (J Am Stat Assoc 74:215-221,
1979) and also investigated it by simulation experiments. The new method proved
to be a very powerful modeling and testing tool especially in situations, where the
growth curve may not be easy to approximate using simple parametric models.

3.1 Introduction

Longitudinal research has an important role in various fields of science, for example
in medicine, economics, social sciences, and engineering. The aim is to analyze
the change caused, e.g., by growth, degradation, maturation, and ageing when
individuals are followed over time or according to some other ordered sequence
of measurements. In this paper the focus is on complete and balanced data. One
of the most important statistical models for these data is the growth curve model
of Potthoff and Roy (1964). The early development of this model was mainly
based on the unstructured MANOVA assumption of the covariance matrix of
independent random vectors (e.g., Khatri 1966 and Grizzle and Allen 1969). Later,
however, more attention has been paid to modeling the covariance matrix by using
parsimonious covariance structures (see, e.g., Azzalini 1987, Lee 1988 and Nummi
1997). For excellent reviews of the growth curve model we refer to the books by
Kshirsagar and Smith (1995) and Pan and Fang (2002).
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Our approach is to use cubic smoothing splines to model the mean growth
curve. As is very well known cubic smoothing splines are very flexible curves
with interesting mathematical properties (see, e.g., Green and Silverman 1994). For
an up-to-date summary of recent methods of smoothing splines and nonparametric
regression we refer to Wu and Zhang (2006). Approximate inference with smooth-
ing splines have been studied, e.g., in Eubank and Spiegelman (1990), Schimek
(2000), and Cantoni and Hastie (2002). In their simulation study Liu and Wang
(2004) compared six testing statistics. Nummi et al. (2011) provided a test of a
regression model against spline alternative for correlated data. The main focus in
these studies have been on testing the order of the polynomial model against a
spline alternative. However, testing if two or more splines are equal would be very
important in many applications. Nummi and Koskela (2008) introduced some results
for the estimation and rough testing of growth curves when the analysis is based on
spline functions. However, very little research about testing equality of smoothing
splines, especially for correlated data, has been carried out so far. In this paper
we focus on testing if the progression in time is equal over the set of correlated
observations.

In Sect. 3.2 we introduce the basic growth model and its estimation using cubic
smoothing splines. In Sect. 3.3 a spline approximation is introduced and a test for
mean curves is developed. In Sect. 3.4 a computational example of Glucose data is
presented and the method is also investigated by simulation experiments.

3.2 Basic Spline Growth Model and Some Properties

One of the most important statistical models for balanced complete multivariate
repeated measures data is the GMANOVA (Generalized Multivariate Analysis of
Variance Model) of Potthoff and Roy (1964). The model is often also refered to as
the growth curve model. This model can be written as

Y = TBA' +E, 3.1)

where Y = (y1,¥2,...,¥») is the matrix of independent response vectors, T is a
q % p within-individual design matrix, A is an n x m between-individual design
matrix, B is an unknown p X m parameter matrix to be estimated, and E is a
q x n matrix of random errors. It is assumed that the columns ey, ..., e, of E are
independently normally distributed as e; ~ N(0,X), i = 1,...,n. In the original
model formulation ¥ was assumed to be an unstructured covariance matrix and
the analyses were mainly based on the methods developed for linear models and
multivariate analysis.

Often when analyzing growth data the true growth function is more or less
unknown and there may not be any theoretical justification for any specific
parametric form of the curve. Parametric models are then used for descriptive
purposes rather than interpretative to summarize the information of development
profile. A natural first choice in such situations is a low order polynomial curve.
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However, in many cases these models may fail to reveal important features of the
growth process and more complicated models are therefore also needed.

Our approach is to use the cubic smoothing splines to model the mean growth
curve. As is very well known cubic smoothing splines are very flexible curves
with interesting mathematical properties (see, e.g., Green and Silverman 1994). We
can write the model (3.1) in a slightly more general form as (see also Nummi and
Koskela 2008)

Y = GA' +E, (3.2)
where G = (g1,...,8n,) is the matrix of smooth mean growth curves in time
points #1, 1, ...,%;. We assume that the covariance matrix ¥ takes certain type of

parsimonious structure ¥ = o?R(6) with covariance parameters . In sequel we
refer to this model as the spline growth model (SGM). The growth curve model of
Potthoff and Roy (1964) is now the special case G = TB. The smooth solution for
G can be obtained by minimizing the penalized least squares (PLS) criterion

0 = t[(Y — GYH(Y — G) + «G’KG], (3.3)

where we denote G = GA’ ,H = R7!, and K is the so-called roughness matrix
arising from the common roughness penalty RP = f g"”? and « is a fixed smoothing
parameter. For cubic smoothing splines the roughness matrix is

K=VA~'V, (3.4)

where the nonzero elements of banded ¢ x (¢ — 2) and (¢ — 2) X (¢ — 2) matrices
V and A, respectively, are

1 1 1
V = —, V = — [ — — ], V = 35
ke = g0 Vi (hk + hk+1) k+2.k e (3.5)
and
h hy +h
Aijsr = Mgk = kgl, Ay = % (3.6)

where h; = xj41—x;,j =1,2,...,(¢q—1),andk =1,2,...,(¢g —2). Itcan be
shown that Q can be rewritten in an alternative form

0 = tu[{G — (H+ «K)"'HY}Y(H + ¢K){G — (H+ «K)"'HY} +¢]. (3.7
where ¢ is a constant and (H + «K) is a positive definite matrix. The function Q

is minimized for given & and H when G = (H + oK)~ 'HY. This gives the spline
estimator

G = (H+aK) 'HYAA'A) . (3.8)
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However, the covariance matrix H may not be known and therefore the estimator
(3.8) maybe difficult to use in practical situations. Fortunately, it can be shown that
in certain important special cases the general spline estimator (3.8) simplifies to
simple linear functions of the original observations Y. One obvious condition for
such kind of simplification is

KR =K (3.9
and since now K = KH the spline estimators G can be simplified as
G=(I+aK)'YA(A'A)™' =SYAA'A)"", (3.10)

where the smoother matrix is S = (I + «K)™!. Covariance matrices satisfying the
condition (3.9) have been studied in Nummi and Koskela (2008) and Nummi et al.
(2011). Some important special cases of these structures useful for growth data are
R=LR=1I+ 0511’, R=1I+ crfl,XX’ and R = I 4+ XDX/, where X = (1,x)
and x is a vector of ¢ measuring times.

If we apply the result vec(ABC) = (C’ ® A)vec(B), where the vec operation
rearranges the columns of a matrix underneath each other, we can write the basic
model (3.2) in a vector form

y=@A®I)e

where y = vec(Y) and g = vec(G). If the spline estimates are written in vector
form we have

g=[(AA) A’ ® Sly
and the smoother of the whole data is
y = (P, ®S)y = S.y, (3.11)

where we denote P, = A(A’A)"'A’ and S« = (P, ® S). The effective degrees of
freedom of the smoother can now be given as

edf, = tr(Sy) = tr(P, ® S) = tr(P,)tr(S) = m x edf, (3.12)

where edf = tr(S) is the effective degrees of freedom of the smoother S. It is further
easy to see that the generalized cross-validation criteria for choosing the smoothing
parameter « take the form

- qu—‘bﬁ - )71‘]2

GCV(a) = q ’_’mx -
_ edf \2
(1 —2xedh)

, (3.13)

where y; and y; are individual elements of the observed and smoothed vectors y and
y, respectively.
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3.3 Testing of Mean Curves

It is very well known that exact tests may be difficult to develop when making
statistical inference based on smoothing splines. Our interest in this study focuses
on testing if the progression in time is the same in treatment groups considered. In
this study an exact test based on spline approximations for testing growth curves is
developed.

3.3.1 Spline Approximation

It has been demonstrated by Nummi et al. (2011) that the approximation discussed
in this paper is quite good for relatively smooth data. More detailed consideration
of spline approximations can be found, e.g., in Hastie (1996). In a general case
the smoother matrix S is not a projection matrix and therefore certain results, e.g.
in testing, developed for general linear models are not directly applicable. Our
approach is to utilize an approximation for the smoother matrix S with the properties
of a projection matrix. As discussed by Hastie (1996) the smoother matrix can be
written as

S =MI+aA)"'M, (3.14)

where M is the matrix of ¢ orthogonal eigenvectors of K and A is a diagonal matrix
of corresponding g eigenvalues. It is easily seen that K and S share the same set

of eigenvectors my, my, ..., m, and the eigenvalues are connected such that the
eigenvalues of S are y = 1/(1 + aA). In sequel we assume that eigenvectors
m;,my, ..., my are ordered according to the eigenvalues of S. It is well known

that the sequence of eigenvectors appears to increase in complexity like a sequence
of orthogonal polynomials. The first two eigenvalues of S are always 1. We can
set m; = 1//n and my = t,, where t, = (t —71)/S;, 7 is the mean and
S = /> ]_,(t —1)* is the square root of the sum of squares of the time
points 71, ..., f,;. Therefore the first two eigenvectors m; and m; span the subspace
corresponding to the straight line model. In the mixed model formulation of the
spline solution (e.g. Verbyla et al. 1999) this corresponds to the fixed part of the
model. It is also easily observed that if the value of the smoothing parameter o
increases the fit approaches the straight line model and the fitted line (fixed part) is
not influenced by any specific choice of .
Clearly, one obvious approximation of the spline fit (3.10) is the spline model

G=P,YA(A'A)", (3.15)

where P,, = MM, and M, contains the ¢(< g) first eigenvectors of M. This
corresponds to minimizing the least squares (LS) criteria

Q' =t(Y-G)(Y-G), (3.16)
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where G = GA'’. Note that the smoother matrix S and the smoothing parameter
need not be computed here. However, the number of eigenvectors ¢ from K used in
the approximation needs to be estimated. This is easily done by, for example, using
a modified generalized cross-validation criteria

é YLy = wil

* —_—
GCV7(c) = q_mr (3.17)
nq
where y; is now computed using the formula (3.11) with S replaced by P,,.
3.3.2 Constructing a Test for Mean Spline Curves
First, consider the set of fitted spline curves
Y=GA. (3.18)
As discussed in the previous section we may use the approximation
Y = GA’ = ML.QA/, (3.19)

where we denoted 2 = M/, YA(A’A)~". All the relevant information for testing
mean profiles is now in the matrix fZ, which can now be considered to be an unbiased
estimate of the unknown parameter matrix of the statistical model E(Y) = M. QA’.
Therefore in sequel we confine in testing linear hypothesis of the form

H() :CQD = 0,

where C and D are known v x ¢ and m x g matrices with ranks v and g, respectively.
Since vec(ABC) = (C' ® A)vec(2), the vector form of Hj is given by

Hy: (D' ®D)w =0,
where w = vec(R2). If we take the vector form of Q, we get
@ = vee(Q) = [(A’'A)T'A’ ® M.]y. (3.20)
It is now easily seen that the covariance matrix of @ is
Var(®) = o*[(A’A)™! ® M, RM,]. (3.21)
If we denote Var(D’ ® C)® = W, it is then obvious that under the null hypothesis

W 2D’ @ C)d ~ Nyg(0,1)
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and
0720, =d'DRCHW (D' ® C)d ~ 13,

By using the results tr(AZ'BZC) = (vec Z)'(CA ® B)vec Z, it is further easy to
see that O, can be rewritten as

0. = tr{[D'(A’A)"'D] "} [CQD] [CM,RM,.C'] " [CD]. (3.22)

If 02 is estimated by

1
6= ——uYI-P,)Y, (3.23)
n(g—c)

it can be shown that n(g — ¢) x 62 ~ Xﬁ (¢—c) @nd since Q.+ and 62 are independent
testing can be based on the F-ratio. Then under the null hypothesis

Ox«/vg

F ===
52

~ Flvg,n(qg —¢c)]. (3.24)

Testing can then be based on the quantiles of the F-distribution. However, in
practical situations the matrix R contains unknown parameters that need to be
estimated and therefore the distribution of F' in general case is only approximate.
However, if we are only interested in progression in time we can drop the first
eigenvector m; corresponding to the constant term in the approximation model
(see Sect. 3.3.1). Therefore we can take C = [0, 1], and if we assume the uniform
covariance model R = d211’ + I, it can be shown that

CM,RM..C' = C{d% ¢, +I}C' =1, (3.25)
where e; = (1,0,...,0)". Therefore the term Q. simplifies to
0. = t[CQD){[D'(A’A)~' D]~ [CHDY, (3.26)

which does not contain unknown parameters of the covariance matrix and therefore
for this special case the distribution of the F-statistic is exact. This is an important
result since the uniform covariance model is quite common and a good approxi-
mation in many situations. The F'-test proposed here provides means to test if the
progression in time is the same over treatment groups when the models are based on
spline curves. Following the same kind of considerations it would be easy to develop
an exact F'-statistic to test if the progression around the fitted straight line (the so-
called random part in mixed model formulation) is the same over treatment groups
with the more general assumption of linear correlation structure R = XDX' + 1.
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3.4 Computational Examples
3.4.1 Standard Glucose Tolerance Test

As the first computational example we consider the glucose data of Zerbe (1979).
In these data glucose tolerance tests were administered to 13 control and 20 obese
patients. Plasma inorganic phosphate measurements determined from blood samples
drawn 0, 0.5, 1, 1.5, 2, 3, 4, and 5h after standard oral glucose dose were taken.
The curves plotted for the control and obese patients are plotted in Fig. 3.1. In
Fig. 3.1, two features of the plotted curves are quite obvious. First, there is a
considerable variation in patient’s individual levels. Secondly, the functional form
of the dependency of plasma inorganic phosphate and time is quite complicated and
possibly different for control and obese patients. In Zerbe (1979) a polynomial of
degree of 4 was used to model this relationship.

To set up the spline growth model the between-individual design matrix A was

first defined. For 13 control patients the rows of A are (1,0), i = 1,..., 13 and for
Control patients Obese patients
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© — © —
3 3
> >
€ £
@ © @ ©
T T
N N
Q. Q.
(7] (7]
o [e]
< ey
o < | [
Q ©
C C
®© ®©
> >
o o
c c
‘© © ‘©
€ €
(%] (7]
K <
o o
[aVE Al —
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Time in hours Time in hours

Fig. 3.1 Plasma inorganic phosphate measurements for control and obese patients
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20 obese patients the rows of A are (0, 1), i = 14,...,33. The minimum value of
GCV = 0.4484152 is obtained at « = 0.09410597. This gives the total effective
degrees of freedom ed fi. = 9.310273. The fitted curves are plotted in Fig. 3.1. It can
be observed that the fitted spline curves very nicely depict the mean performance of
measurements in both groups.

To test if the progression in time is the same in both groups we first determined
the dimension ¢ needed in the spline approximation. Minimizing the modified
generalized cross-validation criterion gives ¢ = 5. To test the null hypothesis
we took

C=[01] and D=]1,-1].
Next we calculated the estimate CS2D. This yields
CQD = (0.74897422, —0.03613939, 0.46201190, 0.54998030)'

and the residual variance estimate for this setup is 6> = 0.09408348. For the
covariance matrix R we assumed the uniform correlation model and therefore the
exact version of the test statistics can be used. Then the value of Q. is given as

0. = t[CD]{[D'(A’A)~'D] ! [COD] = 8.494923

and the value of the test statistics is then

Q./vg _ 8.494923/4

F = — =
62 0.09408343

= 22.57283.

If this is compared to the critical value Fy95(4,99) = 2.447, the null hypothesis
of equal progression in mean plasma inorganic phosphate for control and obese
patients is clearly rejected.

3.4.2 A Simulation Study

In order to demonstrate the advances of the methodology presented we conducted a
simulation study. In this study two models were tested

y=1+05x1t+e¢, (3.27)
y=1+4+0.5x%x1t+a xcos(0.47t) + €, (3.28)
with ¢ = 1,...,10 and independent random errors €; ~ N(0, 1). The coefficient

a takes the values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. The first group of growth
curves consists of 100 random vectors generated from model 3.27 and the second
consists of 100 random vectors generated from model 3.28. So, for each value
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Fig. 3.2 Proportion of the rejections in 1,000 repetitions under models (3.27) and (3.28)

of a these two sets of growth curves were generated. The mean growth curves
are then tested against the null hypothesis that the progression in time is the same
in both groups. Two methods were utilized. The spline testing method presented
in this paper and the second method utilized here was the basic parametric least
squares fit of the third degree polynomial model. The power was estimated with
the significance level 0.05 by counting the percentage of rejections in the 1,000
repetitions.

The results are shown in Fig. 3.2. Clearly, the spline test presented in this paper
performed better than the test based on the least squares fit of the third degree
polynomial. This is obviously due to the fact that the fit provided by the splines
better depicts the peculiarities of the unknown growth function.

3.5 Concluding Remarks

Traditional analyses of growth curves are often based on simple parametric curves,
which may not satisfactorily depict all the features of the growth process during
the testing period. The method presented in this paper is based on cubic smoothing
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splines, which provides a very flexible modeling tool for the analysis. However, very
little research on the statistical inference (especially testing) of cubic smoothing
splines for correlated data has been carried out. The novel test presented in this
paper seems to provide a good alternative, especially when more accurate modeling
of growth process is required.
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