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Abstract Embedded devices need both an efficient and a secure implementation of
cryptographic primitives. In this chapter we show how common signal processing
techniques are used in order to achieve both objectives. Regarding efficiency, we
first give an example of accelerating hash function primitives using the retiming
transformation, a well known technique to improve signal processing applications.
Second, we outline the use of some special features of DSP processors and
techniques earlier developed for efficient implementations of public-key algorithms.
Regarding the secure implementations we outline the concept of side channel attacks
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and show how a multitude of techniques for preprocessing the data are used in
such scenarios. Finally, we talk about fuzzy secrets and point out the use of DSP
techniques for an important role in cryptography—a key derivation.

1 Introduction

The implementation of cryptographic and security applications has adapted
techniques more than expected from the architectures, design methods and tools
of signal processing systems. When implementing cryptographic applications on
embedded devices, in hardware, software or a combination of both, there are two
optimization goals. The first request is one of efficiency: the implementations
should be efficient in area, time, power consumption etc. This is very similar to
the implementation of signal processing applications. The other requirement is one
of a secure implementation. Implementations should not leak information. Signal
processing techniques are used for both. As research progresses, signal processing
and cryptography find more overlaps.

In this chapter, an overview is given of the use of signal processing techniques
as they are used for efficient implementations as well as used for the analysis of
secure implementations. The techniques that are used for efficient implementations
in particular, are discussed in more detail in [62] and [35].

Section 2 gives an overview of efficient implementations for both secret-key
and public-key. It describes techniques borrowed from fast filter implementations
to optimize the implementation of hash functions. It also describes implementations
of public-key on DSP processors. Section 3 focuses on secure implementations and
the signal processing techniques used in analysis. Section 4 discusses the usage of
signal processing techniques for fuzzy secrets. Section 5 gives the conclusion and
describes some new trends.

2 Efficient Implementation

2.1 Secret-Key Algorithms and Implementations

2.1.1 Cryptographic Hash Functions and Implementations

A cryptographic hash function is a deterministic algorithm that takes input strings—
M of arbitrary length and returns short fixed-length strings, so called message
digests—Hash(M), and it is required to satisfy the following cryptographic
properties:

1. Preimage resistance: It must be infeasible to find any preimage, M, for a given
hash output, H, such that H= Hash(M).
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Fig. 1 MD6 DFG—critical path

2. Second preimage resistance: It must be infeasible to find another preimage, M1,
for a given input, M0, such that Hash(M0)= Hash(M1).

3. Collision resistance: It must be infeasible to find two different inputs of the same
hash output, M0 and M1, such that Hash(M0)= Hash(M1).

To be useful in applications such as Digital Signature Algorithm and message
authentications, the performance becomes an important factor since inputs are easily
large. To obtain architectures with a better performance, a design methodology is
developed in [47] based on theoretically proven signal processing techniques [61].
Here we illustrate this methodology with the example of MD6, which was one of
the SHA-3 candidates1 [16]. Parhi and Chen [62] provide more detailed analysis of
the common DSP techniques used in this example.

First, we derive a DFG (Data Flow Graph) of MD6 as shown in Fig. 1. This DFG
represents one iteration of the algorithm, where the square nodes are registers and
each register is paired with an algorithmic delay (D) so that the register values can
be updated on each cycle. The circle nodes are functional nodes where∧ denotes the
bitwise “AND” operator,⊕: the bitwise “XOR” operator,� b: left-shifted by b bits
(zero shifting in), and� b: right-shifted by b bits (zero shifting in). Si is constant,
but changes from round to round. Each round is composed of 13 iterations and the
number of rounds depends on the algorithm parameters.

The critical path delay can be measured as the maximum delay among any two
consecutive algorithmic delays (D’s), which for MD6 consists of 6 XOR delays as
shown in Fig. 1 (indicated by an arrow with a dotted line). Before applying some
techniques to minimize the critical path delay, we first need to know how much we
can achieve. This can be done by analyzing the iteration bound of a DFG, which
defines a theoretical lower bound of the achievable critical path delay as defined by
the following equation:

T∞ = max
l∈L

{
tl
wl

}
=

4×Delay(⊕)+Delay(∧)
18

(1)

1SHA-3 competition, organized by the National Institute of Standards and Technology (NIST), is
a worldwide competition for the development of a new hash standard.
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Fig. 2 MD6 DFG—retiming transformation

where tl is the loop calculation time, wl is the number of algorithmic delays in the l-
th loop, and L is the set of all possible loops. The iteration bound of MD6 is defined
with the loop indicated by a thick dotted line in Fig. 1.

In order to achieve a critical path delay as the iteration bound, it requires the
unfolding transformation with the factor of the un-canceled denominator, which
is 18 in this case. This introduces an overhead by duplicating the functional
nodes (18 times duplication). Therefore, we choose not to perform the unfolding
transformation but perform retiming transformation only. The achievable critical
path delay only with the retiming transformation can be defined as follows:

�T∞�=
⌈

4×Delay(⊕)+Delay(∧)
18

⌉
= Prop(⊕) (2)

�·� is the maximum part when 4×Delay(⊕)+Delay(∧) is evenly distributed
into 18 parts. Since it is assumed that a functional node can not be split into
multiple parts in the iteration bound analysis,⊕ cannot be further split. By retiming
transformations, we replace the algorithmic delays (D’s) in order to reduce the
critical path delay. Some of the algorithmic delays between registers (including
those in the abbreviated area) can be moved to proper positions as shown in
Fig. 2 where the new critical path delay is Prop(⊕). The details about retiming
transformations and implementation issues can be found in [47, 61]. It shows that
techniques which were originally developed for improving the throughput of digital
filters with feedback can be also applied to hash function implementations. For more
information about hardware design for cryptographic hash function we refer the
reader to [48].

In the light of the running SHA-3 competition, an extensive hardware evaluation
of the competing algorithms has been performed by the research community. One
of the examples is the work of Sharif et al. [68], which specifically explores the
influence of the embedded FPGA resources (such as DSP units) on hardware
performance of the five SHA-3 finalists. Due to the presence of addition operation in
their compression functions, two out of five candidates as well as the current SHA-
2 standard benefit from using the DSP units. Since addition is a relatively simple
operation, the benefit is more reflected in reducing the usage of other resources
rather than increasing the overall throughput.
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2.2 Public-Key Algorithms and Implementations

2.2.1 Efficient Modular Multiplication

Public-key cryptography (PKC), a concept introduced by Diffie and Hellman [18]
in the mid 1970s, has gained its popularity together with the rapid evolution of
today’s digital communication systems. The best-known public-key cryptosystems
are based on factoring i.e. RSA [66] and on the discrete logarithm problem
in a large prime field (Diffie-Hellman, ElGamal, Schnorr, DSA) [53] or on an
elliptic/hyperelliptic curve (ECC/HECC) [42, 43, 56]. Based on the hardness of the
underlying mathematical problem, PKC usually deals with large numbers ranging
from a few hundreds to a few thousands of bits in size. Consequently, the efficient
implementations of the PKC primitives has always been a challenge.

An efficient implementation of the mentioned cryptosystems highly depends on
the efficient implementation of modular arithmetic. Namely, modular multiplication
forms the basis of modular exponentiation which is the core operation of the RSA
cryptosystem. It is also present in many other cryptographic algorithms including
those based on ECC and HECC. In particular, if one uses projective coordinates for
ECC/HECC, modular multiplication remains the most time consuming operation
for ECC. Hence, an efficient implementation of PKC relies on efficient modular
multiplication.

Two algorithms for modular multiplication, namely Barrett [8] and Montgomery
[57] algorithms are widely used today. Both algorithms avoid multiple-precision
divisions, the operation that is considered to be expensive, especially in hardware.
Implemented on a first generation of DSP produced by Texas Instruments (TMS
32010), the Barrett’s algorithm is one of the famous examples in the area of signal
processing for cryptography. The properties of a DSP such as fast multiply and
accumulate (MAC) operation and a fast microprocessor on a single chip seemed to
be an ideal combination for the proposed algorithm. Furthermore, additional speed-
ups were obtained by taking advantage of a feature of the TMS320 DSP which
allowed auto increment and decrement of data pointers during MAC operations.
This ensured the data fetching for free. The original Barrett reduction algorithms is
given in Algorithm 1.

Algorithm 1 Barrett modular reduction
Input: A = (A2n−1 . . .A0)2, M = (Mn−1 . . .M0)2 where Mn−1 	= 0, μ =

⌊
22n/M

⌋
.

Output: R = A mod M.

Q̂⇐
⌊⌊ A

2n−1

⌋
μ

2n+1

⌋
R⇐ A mod 2n+1− Q̂M mod 2n+1

while R≥M do
R⇐ R−M

end while
return R.
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Algorithm 2 Montgomery modular reduction
Input: A = (A2n−1 . . .A0)2, M = (Mn−1 . . .M0)2, r = 2n where gcd(M,2) = 1, M′ =−M−1 mod r.
Output: T = Ar−1 mod M.

S⇐ (A mod r)M′ mod r
T ⇐ (A+SM)/r
if T ≥M then

T ⇐ T −M
end if
return T .

Montgomery’s algorithm is the most commonly used reduction algorithm,
nowadays. It is widely used to speed up the modular multiplications and squarings
required during the exponentiation process. The Montgomery reduction algorithm
computes T = A · r−1 mod M, given A < M2 and r such that gcd(r,M) = 1. Even
though the algorithm works with any r, relatively prime to M, r is very often
chosen to be a power of 2. In that case, the Montgomery algorithm performs integer
divisions by a power of 2, which is an intrinsically fast operation on both general-
purpose and specialized processors. The algorithm is given in Algorithm 2.

There is a number of publications reporting the implementations of Mont-
gomery’s algorithm on a DSP. One of the first reported results was a work of Michael
Wiener who had developed a general software implementation of RSA on the
Motorola DSP56000 that achieved 10.2 Kbps for 512-bit modular exponentiation
with the Chinese remainder theorem (CRT) [11]. Dusse and Kaliski have published
an RSA implementation on the same chip achieving 11.6 Kbps for 512-bit modular
exponentiation with the CRT [20]. They adopted the Montgomery’s algorithm by
reducing the number of shift operations. Since on many processors the “high part”
and the “low part” of accumulators are separately addressable, the shift operations
have to be performed with move instructions. This was also true for the DSP56000
and the idea of reducing the number of shifts turned out to be a very good approach.
Itoh et al. proposed a fast implementation method of Montgomery multiplication
on a DSP TMS320C6201 [38]. This DSP operates eight function units in parallel
achieving a performance of 11.7 ms for 1024-bit RSA signing (87.5 Kbps). In 2004,
Großschädl et al. [30] analyzed the performance of Montgomery multiplication on
the MIPS32 4Km and the ARM 946E-S processors. In particular, they explored the
suitability of the DSP architectural enhancements to speed up multiple-precision
modular multiplication. Recently, Gastaldo et al. [25] have published an enhanced
Montgomery multiplication algorithm, a variant of the finely integrated product
scanning (FIPS) algorithm, that is targeted to digital signal processors. More about
various approaches for implementing Montgomery’s algorithm on a DSP can be
found in [44].
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2.2.2 Implementations of Public-Key Algorithms

There are several implementations reported in the literature describing efficient
PK cryptosystems on DSP architectures, mainly relying on the algorithm of
Montgomery. For RSA cryptosystems, modular multiplication is practically the
only required operation. As it is commonly implemented as a sequence of repeated
squarings and multiplications, some authors explored possible speed-ups that can
be achieved for a dedicated squaring. Krishnamurthy et al. proposed a new method
for the Montgomery squaring reduction especially suited for DSP processors. The
new method restructures the loop in the squaring reduction and when implemented
on the TI TMS320C6201 DSP platform results in speed-ups of 10–15 % compared
to the previous work in [38]. The results are obtained by removing the redundancy
of previous proposals and by maximizing the feature of pipelining as much as the
platform permits.

Guajardo et al. [31] described a strategy for an efficient implementation of
ECC over GF(p) on the 16-bit TI MSP430x33x family. This family of devices is
commonly used for ultra-low power applications such as electronic meters for gas,
water and electricity and also for sensor systems that collect analogue signals. The
signal are converted to digital ones before being transmitted to a host. The properties
make the platform very suitable for embedded security applications.

The authors use a Generalized-Merssenne prime to facilitate the underlying field
arithmetic. The operations i.e. multiplication, squaring and modular reduction are
adapted to explore the specifics of the architecture. For example, multiplications
with small constants were traded for additions as the ratio of multiplication and
addition is around 10 on this processor. Also, squaring was found to be much
faster when implemented as a special routine because the communication with
data memory was reduced (requiring only one input in this case). The use of a
special prime, as suggested by standards, was additionally tailored to the 16-bit
architecture. However, all the tricks used were not enough to meet the requirements
for the 160-bit security level (as required minimum for ECC key lengths). Therefore,
they propose to use 128-bit EC implementations as sufficient for the targeted
applications.

We note here that implementing squaring in a different manner from general mul-
tiplication is found to be sensitive to side-channel attacks (see Sect. 3). Therefore,
the ideas of dedicated squaring are abandoned for embedded applications.

By extensive use of the DSP blocks on Xilinx’s Virtex-4 SX55 FPGA board,
Güneysu and Paar [34] report the fastest point multiplication on commercially
available FPGA platforms. Their implementation performs more than 24,000 and
37,000 point multiplications per second for ECC over the NIST P-256 and P-224
fields, respectively.

Morozov et al. [58] investigate the design space of ECC implementation on Texas
Instruments’ OMAP 3530 platform (accommodating the ARM Cortex A8 core),
specifically considering its DSP core for accelerating the underlying modular arith-
metic. A speedup of more than 9 times is achieved, compared to the implementation
executing on the ARM Cortex processor only.
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2.2.3 Other Ideas for Arithmetic Borrowed from Signal Processing

Cryptographic application as well as signal processing require arithmetic-intensive
operations, hence there are several ideas that were applied in both. Examples
include Residue Number System (RNS) arithmetic [69], signed-digit arithmetic,
computation in frequency domain etc.

Nowadays ever faster arithmetic is demanded e.g. for RSA cryptosystems due
to the constant improvements in factoring and the resulting requirements for even
longer key sizes. In order to achieve that, the Residue Number System is an
alternative to the common radix representation. RNS arithmetic is a very old idea
which relies on the Chinese Remainder Theorem (CRT) and it provides a good
means for very long integer arithmetic.

Let 〈x〉a denote an RNS representation of x, then:

〈x〉a = (x[a1],x[a2], . . . ,x[an]) (3)

where, x[ai] = xmodai. The set a = {a1,a2, . . . ,an} is called a base (of size n). It is
required that gcd(ai,a j) = 1 for i 	= j. CRT implies that the integer x which satisfies
0≤ x < ∏n

i=1 ai is uniquely represented by 〈x〉a.
A well known advantage of RNS is that to add, subtract and multiply such

numbers we only need to compute the addition, subtraction and multiplication of
their components, of size much smaller than the original modulus. Also carry-free
arithmetic makes parallelization possible. The final result is obtained by means of
the CRT. The disadvantage of an RNS representation is the overhead introduced
by the input and output conversions from binary to RNS and vice versa. It is
also difficult to perform division. To overcome this disadvantage, a combination
with Montgomery multiplication was proposed [64]. Recent results show that RNS
Montgomery brings a higher speed for both ECC and Pairing implementations on
FPGAs [15, 33].

Exponent recoding techniques for modular exponentiation (as used for RSA)
replace the binary representation of an exponent with a representation which has
fewer non-zero terms (see Gollmann et al. [29]). Many techniques for exponent
recoding have been proposed in the literature. Here we mention the signed-digit
representation. Consider an integer representation of the form k = ∑l

i=0 si2i, where
si ∈ {−1,0,1}. This is called the (binary) signed digit (SD) representation (see
Menezes et al. [53]). The representation is redundant. For example, the integer
3 can be represented as (011)2 or (101̄)2, where 1̄ = −1. It is said that an
SD representation is sparse if it has no adjacent non-zero digits. A sparse SD
representation is also called a non-adjacent form (NAF). Every integer k has a
unique NAF which has the minimum weight of any signed digit representation of k.

For RSA, the NAF techniques are not beneficial because they assume performing
the division operation, which should be avoided due to the complexity of the
operation. However, for ECC it is considered advantageous because the Hamming
weight of the scalar is minimal. Also in this case “−1” means point subtraction
instead of addition, which is an addition of the inverse point. More precisely, the
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scalar is decomposed as a NAF and the scalar multiplication is done with a series of
addition/subtractions of elliptic curve points.

Other redundancy-based techniques include on-line arithmetic as proposed by
Ercegovac [21]. In particular on-line arithmetic for DSP applications can be found
in [22].

ECC implementation in the frequency domain is given by Baktir et al. [6].
The work is based on Discrete Fourier transform (DFT) modular multiplication
and ECC processor architecture using the multiplier is presented. In this way
multiplication in GF(qm) is achieved by only a linear number of base field GF(q)
multiplications in addition to a quadratic number of simpler base field operations
such as additions/subtractions and bitwise rotations.

An idea for implementation of large integer multiplication in the discrete Fourier
domain originates from Kalach and David [40].

2.3 Architecture

The architecture design of cryptographic systems requires special considerations on
performance, cost and security. Many cryptographic systems, especially public-key
cryptosystems, involve complex operations with large integers or long polynomials.
Thus, cryptographic co-processors, just like accelerators for multimedia, commu-
nication or image processing, are introduced to offload the heavy processes from
CPU. As a result, a Hardware/Software (HW/SW) co-design approach is usually
used. Both the co-processor and the interface need to be carefully designed such
that the co-processor can efficiently offload the work from CPU while security and
flexibility are maintained. We illustrate the idea with an Elliptic Curve Processor.

2.3.1 Datapath

Datapath normally accounts for a large percentage of the total area and is a
determinative factor of the performance. Taking ECC over GF(p) as an example,
each scalar point multiplication involves hundreds of modular multiplications. As
a result, speeding up the modular multiplication is the key to improve the overall
performance. The multiplier can be implemented in a bit-parallel, digit-parallel or
digit-serial way. When using digit-serial multiplier, the area of the datapath can be
by adjusted by changing the digit-size. On some FPGA platforms, we can also use
the dedicated multipliers or MACs (e.g. 25-bit MAC on Virtex-5) as building blocks
of a modular multiplier [34, 54].

When targeting high speed applications, an implementation can use multiple
datapaths to run several modular multiplications in parallel [23, 67]. The basic
idea is similar to a classical superscalar processor that explores the instruction
level parallelism. However, such kind of architecture normally requires aggressive
memory accesses, which requires a high throughput memory.
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Fig. 3 Hardware/Software
co-design for ECC

2.3.2 Interface

The interface between the co-processor and CPU is of vital importance, as the
HW/SW partitioning has a large impact on the performance and flexibility. Take
ECC as an example, one can immediately see the following three choices, as shown
in Fig. 3.

When choosing PL as the partitioning point, the co-processor performs the
modular arithmetic while the CPU generates instruction sequences for point ad-
dition/doubling and all functions above. This choice is offers a very good flexibility.
On the other side, the CPU has to frequently transfer data and instructions to the
co-processor, which may become a bottleneck. If we choose PH as the partitioning
point, then the CPU only needs to send the data at the very beginning of a scalar
multiplication, and substantially reduces the communication overhead. However, it
is difficult to update the scalar multiplication algorithm since it is now implemented
in hardware.

Being able to update the functionality of an cryptographic implementation is
very important as standards may change or the old algorithm is no longer safe due
to the discovery of new attacks. For example, when new side-channel attacks are
founded, corresponding countermeasures need to be added. Thus, the co-processor
should have a certain degree of programmability. One method to achieve low
communication overhead and high flexibility is to introduce control hierarchy.
Instead of fixed state machine (FSM), a programmable micro-controller can be used
in the co-processor.

2.3.3 Low Power Architecture

When using cryptography in constrained devices, i.e. passive RFID tags and
wireless sensor nodes, power consumption becomes a big challenge. Several low
power architectures [36, 49] for ECC have been proposed. Traditional techniques
such as reducing the hardware size, lowering the clock frequency and using clock-
gating are helpful. For ECC implementations, registers account for more than 60%
of the area and most of the dynamic power. Thus, reducing the size of register file
and register flipping can significantly reduce the power consumption.
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3 Secure Implementations: Side Channel Attacks

Cryptographic algorithms, i.e. mathematical objects describing the input–output
behavior of a black box, have to go through a thorough process of cryptanalysis
before they are widely accepted as secure and possibly standardized. Implementa-
tions of cryptographic algorithms essentially instantiate these black boxes.

An implementation of an algorithm does however not automatically inherit
the algorithm’s security. The fact that the abstract black box is implemented in
software, hardware, or a combination of both gives rise to new security risks. Indeed,
measurable physical properties of an implementation become an additional, unin-
tended source of information, giving away knowledge about the secrets involved in
cryptographic implementations. Those sources are called side channels. While the
execution time of an implementation can be measured even from a distance, e.g.
over a network, the physical accessibility of embedded devices in particular gives
rise to even more side channels such as the power consumption, electromagnetic
radiation, acoustics, heat dissipation, light emission, etc.

Cryptanalytical methods exploiting such information leakage to extract secret
data are called side channel attacks. Side channel attacks are a serious concern as
they allow to extract secret information from unprotected implementations of black
box secure algorithms with moderate effort. With the ever increasing availability and
ubiquity of embedded devices, side channel attacks are a realistic threat nowadays.

One type of side channel attacks, a differential side channel attack, sequences
several steps to extract the secret information. In a first stage the attacker collects
measurements of the side channel, e.g. power consumption, as a function of the
time. Each measurement is the physical representation of the execution of the
cryptographic algorithm with a different message but a fixed key. In a second stage,
the attacker preprocesses the data, chooses a hypothetical power leakage model and
calculates the hypothetical leakage using this model for each message and for every
possible key guess. An example of one such model is the hamming weight of the
processed data at a certain time instant. In this case an adversary assumes that the
amplitude of the side channel measurement is related to the amount of binary ones in
the data. The validity of this model in certain cases is demonstrated in Fig. 4. In the
last phase of the attack, the attacker uses a statistical test to quantify the similarity
between the hypothetical leakage and the real side channel leakage for every key
guess. The key that reveals the strongest relation is the adversary’s best guess.

3.1 DSP Techniques Used in Side Channel Analysis

The side channel analysis research domain has become a mature research area
over the last decade, hence a multitude of techniques for preprocessing the data
and quantifying the relation between the real and hypothetical leakage have been
proposed.
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Fig. 4 Measurements of supply current over time. Data dependent operations in clock cycles three
and four leak information about the operand(s)

The measurements of the side channel are susceptible to external and internal
noise contamination. Therefore, a first group of preprocessing techniques aims at
reducing the amplitude noise. The easiest preprocessing technique is averaging the
measurements. This was first pointed out by Kocher et al. in [45]. More noise
reduction can be achieved through filtering the data [7]. Results have been published
for the power side channel [55] as well as for the electromagnetic side channel [5].
Another, more recently proposed technique is calculating the fourth-order cumu-
lant [46]. In some cases, the useful information is modulated onto a carrier. For this
type of data extraction, demodulation techniques are appropriate [5, 41, 60].

Due to clock jitter, absence of a suitable trigger or simply due to countermea-
sures, measurements can suffer from temporal misalignment. Some publications
deal with this problem and try to remove the temporal misalignment. Homma
et al. explain the phase-based waveform matching procedure [37] and Gebotys
and White introduce the phase replacement technique [27]. Pelletier and Charvet
use wavelets to get rid of misalignment [63]. The rapid alignment method [59] of
Muijrers et al. also builds on wavelets. Woudenberg et al. propose to use dynamic
time warping [70].

In the final phase of a side channel attack, the attacker uses a statistical tool to
find the correct key by analyzing the relation between the hypothetical leakage and
the measured leakage. The difference of means test was proposed by Kocher et al. in
their seminal paper [45]. Later, more advanced techniques were put forward: the T-
test [17], the Pearson correlation coefficient [12], Spearman rank correlation [9],
mutual information [28], and maximum likelihood [14]. While all the previous
techniques are applied in the time domain, the differential frequency analysis
exploits the frequency information [26].

Advanced signal processing techniques strengthen the adversary’s capabilities
and raise the need for proper and better countermeasures against side channel
attacks.
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4 Working with Fuzzy Secrets

4.1 Fuzzy Secrets: Properties and Applications
in Cryptography

Secrets play an important role in cryptography, since the alleged security of many
cryptographic schemes is solely based on the assumed confidentiality of certain data,
mostly called a key. In order for a secret key to be secure, it needs to be hard for an
adversary to guess its value. Keys are mostly represented as digital n bit strings and
when they are sampled uniformly at random from {0,1}n, an adversary can only
guess their value with probability 2−n, which becomes negligibly small when n is
chosen large enough. Also, a cryptographic algorithm should only succeed when
the correct key is applied, and fail when even the slightest bit is changed, in order
to prevent an adversary from guessing close keys, which is easier than 2−n. This
means that secret keys cannot be subject to any kind of noise or distortion.

In a number of security applications, secret data is present, but not in the form of
a uniformly distributed and noise-free binary key string. This is often the case when
the secret stems from a physical phenomenon which is mostly analogue in nature,
not uniformly distributed and subject to random noise. Such data is called a fuzzy
secret. Some examples of cryptographic settings involving fuzzy secrets are listed
below:

• Biometric readings such as fingerprints, iris scans, face structure and voice
patterns are believed to be unique to each human being and can hence serve as a
unique, and possible secret, identifier. To obtain digital data from these readings,
a feature extraction process is necessary. However, the extracted features are
most likely not uniformly distributed and some features are measured differently
at consecutive readings, i.e. they are subject to measurement noise. Extracted
biometrical features can hence not be directly used as a cryptographic key.

• Physically unclonable functions [52] or PUFs are cryptographic hardware primi-
tives that fulfill a function similar to biometrics, i.e. they measure unique physical
properties of their embedding device. Interesting constructions of PUFs are
those that are embedded into integrated circuits, since they allow to generate
device-unique and highly protected chip identifiers [24, 32]. The uniqueness of
every chip stems from uncontrollable nano-scale manufacturing variability in the
production process of the circuits. Like biometrics, PUF responses suffer from
a non-uniform distribution and unreliability due to measurement inaccuracy and
random thermal noise in the electrical measurement circuits.

More settings involving fuzzy secrets exist, e.g. in authentication with long pass-
phrases and in quantum key agreement.

The non-uniformity and the noise of a fuzzy secret can be quantified. Information
entropy is commonly used to describe the uncertainty about a random variable.
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A special case of entropy called min-entropy describes the worst case uncertainty,
i.e. it evaluates the best chances an adversary has in guessing a secret value chosen
from a known distribution. The min-entropy of a random variable X is denoted as

H∞(X) and defined as H∞(X)
de f
= − log2 maxx Pr[X = x]. A uniformly distributed

n-bit variable has maximal min-entropy equal to n, while a deterministic value has
min-entropy zero. To describe the noise, it is assumed that the measured fuzzy secret
X is a bit vector of length n. Two distinct observations of the fuzzy secret possibly
differ in a number of bit locations due to noise. The amplitude of the noise affecting
X can be quantified by the maximum number δ (X) of differing bits between two
measurements.

4.2 Generating Cryptographic Keys from Fuzzy Secrets
by Means of Error Correction

Mostly, a physical variable cannot be directly used. It should first be measured as
accurately as possible and afterwards quantized into a discrete value which can
be used by a digital algorithm. The quantization process translates physical noise
into bit errors of a bit vector. Also, due to rounding, part of the information in the
measured value is already lost. A careful choice for quantization should be made to
optimize these parameters given the implementation constraints.

After measurement and quantization, one is left with a possibly non-uniform
and unreliable bit string X ∈ {0,1}n. By performing multiple measurements, the
aforementioned parameters H∞(X) and δ (X) can be estimated. The next step in the
transformation is dealing with the noise which can introduce up to δ (X) bit errors.
Error correction techniques are frequently used in channel coding theory. A process
known as the code-offset construction [19, 39, 50] is an elegant way of using error
correcting block codes in order to get rid of bit errors in a measurement of X . The
technique works in two phases:

1. In the generation phase, X is measured and a codeword C is randomly selected
from an [n,k, t]-block code, with n the code length, k the code dimension and t
the error correcting capability. The binary offset between X and C ia calculated
as W = X⊕C and W is made publicly available, e.g. it is published in an online
database.

2. In the reproduction phase, X ′ is measured which can differ from X in up to
δ (X) bit positions. Using the publicly available W , one can calculate C′ =
X ′ ⊕W , which differs from C in at most δ (X) bits. If the used code is chosen
appropriately such that t≥ δ (X), the decoding algorithm will succeed to compute
C = Decode(C′). In that case the same X as in the generation phase can be
reconstructed as X =C⊕W .
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More elaborate error-correction techniques can be applied to transform a noisy
measurement value into a reliable bit string. In the syndrome construction [19] the
syndrome, instead of the offset, of a linear block code is used, which reduces the
communication overhead. In [51], it is shown that certain fuzzy secrets produce
soft-decision information, which allows the use of soft-decision error-correcting
techniques. This allows to extract a longer and hence more secure key from the
same fuzzy secret.

All these techniques uses a public communication to establish a noise-free secret
from a noisy secret. The data that is passed through this channel, W is called helper
data. It is clear that the publishing of W decreases the uncertainty an adversary may
have about the value of X . In fact, for the code-offset construction it can be shown
that the min-entropy of X is reduced from H∞(X) to H∞(X)− n+ k, i.e. that the
helper data induces a min-entropy loss.

To conclude, the now noise-free secret with limited min-entropy needs to be
transformed into a uniformly distributed key K. In order to do this, randomness
extractors are used. Randomness extractors succeed in extracting uniform ran-
domness from non-uniformly distributed variables [10, 13]. It is obvious that the
output domain of a randomness extractor is smaller than the input, hence they are
compression functions. In fact, the min-entropy of a random variable X is a measure
for the maximum number of uniform bits an ideal randomness extractor can extract
from X . After error correction with the code-offset technique, the fuzzy secret X can
hence contribute at most H∞(X)−n+k uniformly random bits. Generic randomness
extractors can be constructed relatively easy by using so-called universal hash
functions: if H is a universal hash family, the process that selects a random function
hσ ←H and calculates K = hσ (X) is a randomness extractor. The seed σ can again
be published as helper data to allow reconstruction of K at later times, this time
however without additional loss in min-entropy.

5 Conclusion

The purpose of this chapter is to illustrate the usage of signal processing techniques
into the design and implementation of cryptographic and security applications. This
is only the beginning and by no means complete. New directions are being explored.
One example is the exploration of signal processing in the encrypted domain, which
is the topic of the SPEED project [65].
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44. Ç.K. Koç, Acar, T., Kaliski Jr., B.: Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro pp. 26–33 (1996)

45. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryptology—
CRYPTO ’99 [1], pp. 388–397
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