
Signal Flow Graphs and Data Flow Graphs

Keshab K. Parhi and Yanni Chen

Abstract This chapter first introduces two types of graphical representations of
digital signal processing algorithms including signal flow graph (SFG) and data
flow graph (DFG). Since SFG and DFG are in general used for analyzing structural
properties and exploring architectural alternatives using high-level transformations,
such transformations including retiming, pipelining, unfolding and folding will then
be addressed. Finally, their real-world applications to both hardware and software
design will be presented.

1 Introduction

Signal processing programs differ from the traditional computing programs in the
sense that these programs are referred to as non-terminating programs. In other
words, input samples are processed periodically (typically with a certain iteration
period or sampling period) and the tasks are repeated infinite number of times.
A traditional dependence graph representation of such a program would require
infinite number of nodes. Signal flow graphs and data flow graphs are powerful
representations of signal processing algorithms and signal processing systems
because these can represent the operations using a finite number of nodes.

K.K. Parhi (�)
University of Minnesota, Department of Electrical and Computer Engineering, 200 Union St.
S.E., Minneapolis, MN 55455, USA
e-mail: parhi@umn.edu

Y. Chen
Marvell Semiconductor Inc., 5488 Marvell Lane, Santa Clara, CA 95054, USA
e-mail: yannic@marvell.com

S.S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
DOI 10.1007/978-1-4614-6859-2 39, © Springer Science+Business Media, LLC 2013

1277

mailto:parhi@umn.edu
mailto:yannic@marvell.com

1278 K.K. Parhi and Y. Chen

Signal flow graphs have been used for a long time to analyze transfer functions
of linear systems. Data flow graphs are more general and are used to represent
both linear and non-linear systems. These can also be used to represent multi-rate
systems that contain rate-altering components such as interpolators and decimators.
The z−1 elements in signal flow graphs and delay elements in data flow graphs
describe inter-iteration precedence constraints, i.e., constraints between two tasks
of different iterations. A simple edge without any z−1 or delay element represents
a precedence constraint within the same iteration. These are referred as intra-
iteration precedence constraints. Both types of precedence constraints describe
the causality constraints among different operations. These causality constraints
are important both in hardware designs [1] and software implementations. In a
hardware implementation, the critical path time is the time needed for satisfying
the causality constraints among all tasks within the same iteration, and is a lower
bound on the clock period. In a software implementation, the scheduling algorithm
must satisfy these causality constraints by satisfying both intra-iteration and inter-
iteration constraints.

Another important property of these flow graphs is that these can be transformed
into equivalent forms by high-level transformations such as pipelining, retiming,
unfolding and folding. These equivalent forms have same input-output character-
istics but have different sets of constraints. Pipelining and retiming can be used
to reduce clock period in a circuit. These transformations can also be used as a
preprocessing step for folding where the objective is to design time-multiplexed or
folded architectures. Unfolding transformation can lead to lower iteration periods
in software implementations as it can unravel some of the concurrency hidden
in the original data flow graph. In hardware implementations, unfolding leads to
parallel implementations that can increase the effective sample speed while the
clock speed remains unaltered. Both pipelined and parallel implementations can
be used to reduce power consumption if achieving higher speed is less important.
Alternatively, in deep submicron technologies with low supply voltage, pipelining
and parallel processing can be used to meet the critical path requirements.

This chapter provides a brief overview of signal flow graphs and data flow graphs,
and is organized as follows. Section 2 introduces signal flow graphs, and illustrates
how signal flow graphs are used for deriving transfer functions, either by using
Mason’s gain formula or by using a set of equations. This section also illustrates
retiming and pipelining of signal flow graphs. Section 3 addresses single-rate
and multi-rate data flow graphs, and illustrates how an equivalent single-rate data
flow graph can be obtained from a multi-rate data flow graph. Section 4 provides
an overview of unfolding and folding transformations, and their applications to
hardware design. Section 5 illustrates how the causality constraints imposed by the
intra-iteration and inter-iteration constraints are exploited for scheduling in software
implementations. Sections 3–5 are adapted from the text book [2].

Signal Flow Graphs and Data Flow Graphs 1279

2 Signal Flow Graphs

In this section, the notation of signal flow graph (SFG) is first overviewed. Then
two useful approaches, i.e., the Mason’s gain formula and the equation-solving, are
explained in detail to derive the corresponding transfer function for a given SFG.

2.1 Notation

Signal flow graphs have been used for the analysis, representation, and evaluation
of linear digital networks, especially digital filter structures. An SFG is a collection
of nodes and directed edges [3], where the nodes represent computations or tasks
and a directed edge (j,k) denotes a branch originating from node j and terminating
at node k. With input signal at node j and output signal at node k, the edge (j,k)
denotes a linear transformation from the signal at node j to the signal at node k. An
example of SFG is shown in Fig. 1, where both nodes j and k represent summing
operations and the edge (j,k) denotes a unit gain transformation.

Two types of nodes exist in SFG, source nodes and sink nodes. A source node
is a node with no entering edges, and is used to represent the injection of external
inputs into a graph. A sink node is a node with only entering edges, and is used to
extract outputs from a graph.

2.2 Transfer Function Derivation of SFG

For a given SFG, there are mainly two approaches to derive its corresponding
transfer function. One is the Mason’s gain formula, which provides a step-by-
step method to obtain the transfer function. The other is the equation-solving
approach by labeling each intermediate signal, writing down the equation for that
signal with dependency on other signals, and then solving the multiple equations to

Y1 YX Y2

G1

−H1

−H3

−H2

G4

j k G2 G3

Y3 Y4 Y5

Fig. 1 An example of signal flow graph

1280 K.K. Parhi and Y. Chen

represent the output signal only in terms of the input signal. Note that the variables
used in the signal flow graphs and the equations correspond to frequency-domain
representations of signals.

2.2.1 Mason’s Gain Formula

First of all, a few useful terminologies in Mason’s gain formula have to be defined
related to an SFG.

• Forward path: a path that connects a source node to a sink node in which no node
is traversed more than once.

• Loop: a closed path without crossing the same point more than once.
• Loop gain: the product of all the transfer functions in the loop.
• Non-touching or non-interacting loops: two loops are nontouching or noninter-

acting if they have no nodes in common.

In general, Mason’s gain formula [4] is presented as below:

M =
Y
X

=

N

∑
j=1

MjΔ j

Δ
(1)

where

• M = transfer function or gain of the system
• Y = output node
• X = input node
• N = total number of forward paths between X and Y
• Δ = determinant of the graph = 1−∑ loop gains + ∑ non-touching loop gains

taken two at a time−∑ non-touching loop gains taken three at a time + . . .
• Mj = gain of the jth forward path between X and Y
• Δ j = 1-loops remaining after eliminating the jth forward path, i.e., eliminate the

loops touching the jth forward path from the graph. If none of the loops remains,
Δ j = 1.

To illustrate the actual usage of Mason’s gain formula, the transfer function for
the example SFG shown in Fig. 1 is derived by following the steps below:

1. Find the forward paths and their corresponding gains
Two forward paths exist in this SFG:
M1 = G1G2G3 and M2 = G4

2. Find the loops and their corresponding gains
There are four loops in this example:
Loop1 =−G1H1,
Loop2 =−G3H2,

Signal Flow Graphs and Data Flow Graphs 1281

Loop3 =−G1G2G3H3,
Loop4 =−G4H3

3. Find the Δ j

If we eliminate the path M1 = G1G2G3 from the SFG, no complete loops remain,
so Δ1 = 1. Similarly, if the path M2 =G4 is eliminated from the SFG, no complete
loops remain neither, so Δ2 = 1 as well.

4. Find the determinant Δ
Only one pair of non-touching loops is in this SFG, i.e., Loop1 and Loop2, thus
∑ non-touching loop gains taken two at a time = (−G1H1)(−G3H2).
Therefore,
Δ = 1−∑ loop gains + ∑ non-touching loop gains taken two at a time
= 1− (−G1H1 −G3H2 −G1G2G3H3 −G4H3)+ (−G1H1)(−G3H2)
= 1+G1H1 +G3H2 +G1G2G3H3 +G4H3 +G1G3H1H2

5. The final step is to apply the Mason’s gain formula using the terms found above

M =
Y
X

=

N

∑
j=1

MjΔ j

Δ
=

G1G2G3 +G4

1+G1H1 +G3H2 +G1G2G3H3 +G4H3 +G1G3H1H2
(2)

2.2.2 Equations-Solving Based Transfer Function Derivation

As an alternative approach, the equations-solving based method follows different set
of steps. Note that the intermediate signals have already been appropriately labeled
in Fig. 1.

1. Write down the equations for each labeled signal with dependency on other
signals:
Y1 = X −YH3

Y2 = Y1 −Y3H1

Y3 = G1Y2

Y4 = G2Y3 −YH2

Y5 = G3Y4 +G4Y2

Y = Y5

2. Solve all the equations above and derive the relationship between output node Y
and input node X:
Y = Y5 = G3Y4 +G4Y2 = G3(G2Y3 −YH2)+G4Y2

= G3(G2G1Y2 −YH2)+G4Y2 =−G3H2Y +(G1G2G3 +G4)Y2

Therefore,

Y =
G1G2G3 +G4

1+G3H2
Y2 (3)

Note that

Y2 = Y1 −Y3H1 (4)

1282 K.K. Parhi and Y. Chen

By substituting both Y1 and Y3 into (4), we obtain

Y2 = X −YH3 −Y3H1 = X −YH3 −G1H1Y2 (5)

Consequently,

Y2 =
X −YH3

1+G1H1
(6)

Then by substituting (6) into (3),

Y =
G1G2G3 +G4

1+G3H2
· X −YH3

1+G1H1
=

(G1G2G3 +G4)(X −YH3)

(1+G3H2)(1+G1H1)

=
G1G2G3+G4

(1+G3H2)(1+G1H1)
X − (G1G2G3 +G4)H3

(1+G3H2)(1+G1H1)
Y

As a result,

1+
(G1G2G3 +G4)H3

(1+G3H2)(1+G1H1)
Y =

G1G2G3 +G4

(1+G3H2)(1+G1H1)
X

Y
X

=
G1G2G3 +G4

(1+G3H2)(1+G1H1)+ (G1G2G3 +G4)H3

Finally, the transfer function between the output node Y and input node X is

M =
G1G2G3 +G4

1+G1H1 +G3H2 +G1G3H1H2 +G4H3 +G1G2G3H3
(7)

which is exactly the same as the derived transfer function using Mason’s gain
formula in (2).

3 Data Flow Graphs

In this section, the notation of data flow graph (DFG) is introduced and is followed
by an overview of the single-rate DFG and the multi-rate DFG. How to construct
an equivalent single-rate DFG from the multi-rate DFG is then explained in detail.
After that, the concepts of retiming and pipelining are briefly introduced to derive
equivalent DFGs.

3.1 Notation

In data flow graph representations, the nodes represent computations or functions
or subtasks and the directed edges represent data paths (communications between
nodes) and each edge has a nonnegative number of delays associated with it.

Signal Flow Graphs and Data Flow Graphs 1283

a

y(n)x(n)

1

1

1
1

D
D D

A

B
(4)

A

B

(2)

(4)

(2)

a b c

Fig. 2 (a) Block diagram description of the computation y(n) = ay(n−1)+x(n). (b) Conventional
DFG representation. (c) Synchronous DFG representation

For example, Fig. 2b is the DFG corresponding to the block diagram in Fig. 2a.
Compared to the SFG in Sect. 2.1, DFG can be seen as a more generalized form of
SFG in that it can effectively describe both linear single-rate and nonlinear multi-
rate DSP systems.

DFG describes the data flow among subtasks or elementary computations
modeled as nodes in a signal processing algorithm. Similar to SFG, various
DFGs derived for one algorithm can be obtained from each other through high-
level transformations. DFGs are generally used for high-level synthesis to derive
concurrent implementations of DSP applications onto parallel hardware, where
subtask scheduling and resource allocation are of major concerns.

3.2 Synchronous Data Flow Graph

A synchronous data flow graph (SDFG) is a special case of data-flow graph where
the number of data samples produced or consumed by each node in each execution
is specified a priori [5]. For example, Fig. 2c is an SDFG for the computation y(n) =
ay(n− 1)+ x(n), which explicitly specifies that one execution of both nodes A and
B consumes one data sample and produces one output sample, which is a single-rate
system.

In addition, the SDFG can describe multi-rate systems in a simple way. For
example, Fig. 3a shows an SDFG representation of a multi-rate system, where nodes
A, B and C are operated at different frequencies fA, fB and fC, respectively. Note
that A processes fA input samples and produces 3 fA output samples per time unit.
Node B consumes five input samples during each execution, hence consumes 5 fB

input samples per time unit. Using the equality 3 fA = 5 fB, we have fB = 3 fA/5.
Similarly, the operating rate of node C can be computed as fC = 2 fB/3 = 2 fA/5.
For a specified input sampling rate, the operating frequencies for nodes A, B and C
can be computed. An equivalent single-rate DFG for the multi-rate DFG in Fig. 3a is
shown in Fig. 3b. In contrast, this single-rate DFG contains 10 nodes and 30 edges,
as compared to 3 nodes and 4 edges in the SDFG representation.

1284 K.K. Parhi and Y. Chen

A0

A1

A2

A3

A4

B0

B1

B2

C0

C1

A
1 53 2 3 2

B C

a

b

Fig. 3 Multi-rate DFG in (a) can be converted into single-rate DFG in (b), which can then be
represented using linear SFG

U V
OUV IUViUVDFig. 4 An edge U →V in a

multi-rate DFG

3.3 Construct an Equivalent Single-Rate DFG
from the Multi-Rate DFG

By definition, each node in a single-rate DFG (SRDFG) is executed exactly once per
iteration. In contrast, multi-rate DFG (MRDFG) allows each node to be executed
more than once per iteration, and 2 nodes are not required to execute the same
number of times in an iteration. However, SRDFG can still be used to represent
multi-rate systems by first unfolding the multi-rate systems to single-rate.

An edge from the node U to the node V in an MRDFG is shown in Fig. 4, where
the value OUV is the number of samples produced on the edge by an invocation of
the node U , the value IUV is the number of samples consumed from the edge by an
invocation of the node V and the value iUV is the number of delays on the edge.

If the nodes U and V are invoked kU times and kV times in one iteration,
respectively, then the number of samples produced on the edge from the node U
to the node V in this iteration is OUV kU , and the number of samples consumed
from the edge by the node V in this same iteration is IUV kV . Intuitively, to avoid
a buildup or deficiency of samples on the edge, the number of samples produced

Signal Flow Graphs and Data Flow Graphs 1285

a b c3D
2

4
3

1

1

2D3 1 2

Fig. 5 A multi-rate DFG

in one iteration must equal the number of samples consumed in one iteration. This
relationship can be described mathematically as

OUV kU = IUV kV (8)

An algorithm for constructing an equivalent SRDFG from an MRDFG is
described as follows:

1. For each node U in the MRDFG
2. For k = 0 to kU − 1
3. Draw a node Uk in the SRDFG with the same computation time as U in the

MRDFG
4. For each edge U

iUV→ V in the MRDFG
5. For j = 0 to OUV kU -1
6. Draw an edge U j/OUV →V ((j+iUV)/IUV)%kV in the SRDFG with (j+ iUV)/(IUV kV)

delays

To determine how many times each node must be executed in an iteration, the
set of equations found by writing (8) for each edge in the MRDFG must be solved
so the number of invocations for the nodes are coprime. For example, the set of
equations for the MRDFG in Fig. 5 is

4ka = 3kb

kb = 2kc

kc = kc

3kc = 2ka

which has a solution of ka = 3, kb = 4, kc = 2. Once the number of invocations of
the nodes has been determined, an equivalent SRDFG can be constructed for the
MRDFG. For the MRDFG in Fig. 5, the equivalent SRDFG is shown in Fig. 6.

3.4 Equivalent Data Flow Graphs

Data flow graphs can be transformed into different yet equivalent forms. Two
common techniques to derive the equivalent DFGs are introduced here, one is
the retiming and the other is pipelining. The transfer functions in these equivalent

1286 K.K. Parhi and Y. Chen

a0

a1

a2

b0

b1

b2

b3

c0

c1

D

D

DDD

D

Fig. 6 An equivalent
SRDFG for the MRDFG in
Fig. 5

D

1

2

4

D

3D

G1

G2

D

1

2

4

D 2DD

1

2

4

3 3 3

a b c

Fig. 7 (a) The unretimed DFG with a cutset shown as a dashed line. (b) The 2 graphs G1 and
G2 formed by removing the edges in the cutset. (c) The retimed graph found using cutset retiming
with k = 1

forms are either unaltered or differ only by a factor of z−i, i.e., they may contain i
additional delay elements. Note that both retiming and pipelining transformations
can be applied to DFGs as well as SFGs in an identical manner.

3.4.1 Retiming

Retiming [6] is a transformation technique that changes the locations of delay
elements in a circuit without affecting its input/output characteristics. For example,
although the DFGs in Fig. 7a, c have different number of delays at different
locations, they share the same input/output characteristics. Furthermore, these two
DFGs can be derived from one another using retiming.

Retiming has many applications in synchronous circuit design including reducing
the clock period of the circuit by reducing the computation time of the critical
path, decreasing the number of registers in the circuit, reducing the dynamic power
consumption of the circuit by placing the registers at the inputs of nodes with large
capacitances to reduce the switching activity, and logic synthesis.

Signal Flow Graphs and Data Flow Graphs 1287

DIN

OUT
G2

G1

D

a

IN

OUT
2D 2D

DIN

OUT

D D

D

2D

b c

a b ca b c

a

c

b

Fig. 8 (a) The unretimed DFG with a cutset shown as a dashed line. (b) The 2 graphs G1 and G2
formed by removing the edges in the cutset. (c) The graph obtained by cutset retiming with k = 2

Cutset retiming is a special case of retiming and it only affects the weights of the
edges in the cutset, which is a set of edges that can be removed from the graph to
create two disconnected subgraphs. If these two disconnected subgraphs are labeled
G1 and G2 as depicted in Fig. 7b, then cutset retiming consists of adding k delays
to each edge from G1 and G2, and removing k delays from each edge from G2 to
G1. In the case of k = 1, the DFG in Fig. 7a can then be transformed to the DFG in
Fig. 7c by using cutset retiming technique.

3.4.2 Pipelining

Pipelining is a special case of cutset retiming where there are no edges in the cutset
from the subgraph G2 to the subgraph G1 as shown in Fig. 8b, i.e., pipelining applies
to graphs without loops. These cutsets are referred to as feed-forward cutsets, where
the data move in the forward direction on all the edges of the cutset. Consequently,
registers can be arbitrarily placed on a feed-forward cutset without affecting the
functionality of the algorithm. If two registers are inserted to each edge, the DFG
in Fig. 8a can then be transformed into the DFG in Fig. 8c by applying pipelining
technique. Therefore, complex retiming operations can be described by multiple
simple cutest retiming or pipelining operations applied in a step-by-step manner.

1288 K.K. Parhi and Y. Chen

x(n)

a(n)

y(n)

x(n)

a(n)

y(n−1)D

b(n)

b(n−1)

a

b

Fig. 9 (a) A datapath. (b)
The 2-level pipelined
structure of (a)

Pipelining transformation leads to a reduction in the effective critical path by
introducing pipelining registers along the datapath, which can be exploited to either
increase the clock speed or sample speed or to reduce power consumption at
same speed. Consider the simple structure in Fig. 9a, where the computation time of
the critical path is 2TA. Figure 9b shows the 2-level pipelined structure, where one
register is placed between two adders and hence the critical path is reduced by half.

Obviously, in an M-level pipelined system the number of delay elements in any
path from input to output is (M−1) greater than that in the same path in the original
sequential circuit. While pipelining offers the benefit of critical path reduction, its
two drawbacks lie in the increase in the number of registers and the system latency,
which is the time difference in the availability of the first output data in the pipelined
system and the sequential system.

4 Applications to Hardware Design

In this section, two DFG-based high-level transformations applicable to practical
hardware design such as field programmable gate array (FPGA) or application
specific integrated circuit (ASIC) implementations are introduced, one is the
unfolding transformation, and the other is the folding transformation. Examples will
be given to demonstrate their usage in hardware design. For more details on how to
map the decidable signal processing graphs to FPGA implementation, the reader is
referred to [1].

4.1 Unfolding

Unfolding is a transformation technique that can be applied to a DSP program to
create a new program describing more than one iteration of the original program.
More specifically, unfolding a DSP program by the unfolding factor J creates a new

Signal Flow Graphs and Data Flow Graphs 1289

program that describes J consecutive iterations of the original program. As a result,
in unfolded system each delay is J-slow.

Unfolding has applications in designing high-speed and low-power VLSI archi-
tectures. One application is to unfold the program to reveal hidden concurrencies so
that the program can be scheduled to a smaller iteration period, thus increasing
the throughput of the implementation. Another application is to design parallel
architectures at the word level and bit level from serial counterpart to increase the
throughput or decrease the power consumption of the implementation.

4.1.1 The DFG Based Unfolding

Two approaches can be used to derive the J-unfolded DFG. One is to write equations
for the original and the J-unfolded programs and then draw the corresponding
unfolded DFG. This method could be tedious for large value of J. The other
approach is to use a graph-based technique which directly unfolds the original DFG
to create the DFG of the J-unfolded program without explicitly writing the equations
describing the original unfolded system.

For each node U in the original DFG, there are J nodes with the same function as
U in the J-unfolded DFG. Additionally, for each edge in the original DFG, there are
J edges in the J-unfolded DFG. Consequently, the DFG of the J-unfolded program
contains J times as many nodes and edges as the DFG of the original DFG. The
following two-step algorithm could be used to construct a J-unfolded DFG:

1. For each node U in the original DFG, draw the J nodes U0,U1, . . . ,UJ − 1.
2. For each edge U → V with w delays in the original DFG, draw the J edges

Ui → V(i+w)%J with � i+w
J � delays for i = 0,1, . . . ,J − 1. Apparently, if an edge

has w < J delays in the original DFG, unfolding produces J −w edges with no
delays and w edges with 1 delay in the J-unfolded DFG.

To demonstrate the unfolding algorithm, the DFG in Fig. 10b that corresponds to
the DSP algorithm in Fig. 10a will serve as an example, where the nodes A and B
represent input and output, respectively, and the nodes C and D represent addition
and multiplication by a, respectively. To unfold this DFG in Fig. 10b by unfolding
factor of 2 to obtain the 2-unfolded DFG as shown in Fig. 10c, the two steps of the
unfolding algorithm are performed:

1. The 8 nodes Ai, Bi, Ci and Di for i = 0,1 are first drawn according to the 1st step
of the unfolding algorithm.

2. After these nodes have been drawn, for an edge U → V such as D → C with
no delays, this step reduces to drawing the J edges Ui → Vi with no delays.
Additionally, for the edges C → D with w = 9 delay, there are the edges
C0 → D(0+9)%2 = D1 with �(0+9

2)� = 4 delays and C1 → D(1+9)%2 = D0 with
�(1+9

2)�= 5 delays.

1290 K.K. Parhi and Y. Chen

a b

c d

Fig. 10 (a) The original DSP program describing y(n) = ay(n−9)+ x(n) for n = 0 to ∞. (b) the
DFG corresponding to DSP program in (a). (c) The 2-unfolded DFG. (d) The 2-unfolded DSP
program describing y(2k) = ay(2k− 9)+ x(2k) and y(2k+ 1) = ay(2k− 8)+ x(2k+ 1) for n = 0
to ∞

Referring to Fig. 10c, the nodes C0 and C1 in the 2-unfolded DFG represent
addition as the node C in the original DFG. Similarly, the nodes D0 and D1 in the
2-unfolded DFG represent multiplications as the node D in the original DFG. The
node A in the original DFG represents the input x(n). The k-th iteration of the node
Ai in the unfolded DFG executes the Jk+ i-th iteration of the node A in the original
DFG for i = 0,1, . . . ,J − 1 and k = 0 to ∞. Similarly, the node B0 corresponds to
the output samples y(2k + 0) and the node B1 corresponds to the output sample
y(2k+1). Therefore, the 2-unfolded DFG in Fig. 10c corresponds to the 2-unfolded
DSP program in Fig. 10d.

4.1.2 Applications to Parallel Processing

A direct application of the general unfolding transformation is to design parallel
processing architectures from serial processing architectures. At the word level,
this means that word-parallel architectures can be designed from word-serial
architectures. At the bit level, it means that bit-parallel and digit-serial architecture
can be designed from bit-serial architectures.

Signal Flow Graphs and Data Flow Graphs 1291

a b

dc

Fig. 11 (a) The original DSP program. (b) The DFG for (a). (c) The 3-unfolded DFG. (d) The
3-parallel DSP program

Word-Level Parallel Processing

In general, unfolding a word-serial architecture by J creates a word-parallel
architecture that processes J words per clock cycle. As an example, consider the
DSP program y(n) = ax(n)+ bx(n− 4)+ cx(n− 6) shown in Fig. 11a. To create an
architecture that can process more than 1 word per clock cycle, the first step is to

1292 K.K. Parhi and Y. Chen

U V

Wl+uFig. 12 A switch

draw a corresponding DFG as in Fig. 11b. The next step is to unfold the DFG to the
3-unfolded DFG as in Fig. 11c by following the steps described in 4.1.1. The final
step is to draw the corresponding 3-unfolded DSP program as in Fig. 11d. The exact
details are omitted here and left to the reader as an exercise.

Bit-Level Parallel Processing

Assume the wordlength of the data is W bits, the hardware implementation could
have following possible architectures:

• Bit-serial processing: One bit is processed per clock cycle and hence a complete
word is processed in W clock cycles.

• Bit-parallel processing: one word of W bits is processed every clock cycle.
• Digital serial processing: N bits are processed per clock cycle and a word is

processed in W/N clock cycles, which is referred to as the digit size.

Most bit-serial architecture contains an edge with a switch, which corresponds to
a multiplexer in hardware. Consider the edge U →V in Fig. 12. To unfold this edge
with unfolding factor J, two basic assumptions are made:

• The wordlength W is a multiple of the unfolding factor J, i.e., W =W ′J
• All edges into and out of the switch have no delays.

With these two assumptions in mind, the edge in Fig. 12 can be unfolded using
the following two steps:

1. Write the switching instance as
W l + u = J(W ′l + � u

J �)+ (u%J)
2. Draw an edge with no delays in the unfolded graph from the node Uu%J to the

node Vu%J, which is switched at time instance (W ′l + � u
J �).

If the switch has multiple instances, then each switching instance is treated
separately. In addition, if an edge contains a switch and a positive number of delays,
a dummy node can be used to reduce this problem to the case where the edge
contains no delay elements.

Using these techniques for unfolding switches, bit-parallel and digit-serial
architectures can be systematically designed from bit-serial architectures. This is
demonstrated using the bit-serial adder in Fig. 13a. A DFG corresponding to this
adder is shown in Fig. 13b. The 2-unfolded version of this DFG is shown in Fig. 13c
and the architectures corresponding to this unfolded DFG is in Fig. 13d, where the
2-unfolded architecture is a digit-serial adder with digit size equal to 2.

Signal Flow Graphs and Data Flow Graphs 1293

X

Z

B

A S

D

4l+0 4l+1,2,3

DD

a0a1a2a3
b0b1b2b3

s0s1s2s3

0
l4l+0 4 +1,2,3

A1

B1

Z1

S1

D1

X1

A0

B0

S0
X0

D0

Z0
2l+0

2l+1

D

D

2l+0

2l+1

a0

a2

a1

a3

b0

b2

b1

b3

s0

s2

s1

s3

carry
out

l2 +0
0

a b

c d

Fig. 13 (a) Bit-serial addition s = a+b for wordlength W = 4. (b) The DFG corresponding to the
bit-serial adder. (c) The DFG resulting from unfolding the DFG using unfolding factor of J = 2.
(d) The digit-serial adder designed by unfolding the bit-serial adder using J = 2

For more details on how to unfold the DFG when the unfolding factor J is not
the divisor of the wordlength W , the reader is referred to Sect. 5.5.2.2 in [2].

4.1.3 Infinite Unfolding of DFG

Any DFG can be unfolded by a factor of ∞. This infinitely unfolded DFG explicitly
represents all intra-iteration and inter-iteration constraints. These DFGs correspond
to dependence graphs (DGs) of traditional terminating programs. The DG or the
infinitely unfolded DFG cannot contain any delay elements. Figure 14a shows a
DFG and Fig. 14b shows the corresponding infinitely unfolded DFG.

4.2 Folding

The folding transformation is used to systematically determine the control circuits
in DSP architectures where multiple algorithm operations such as additions are
time-multiplexed to a single functional unit such as pipelined adder. By executing
multiple algorithm operations on a single functional unit, the number of functional
units in the implementation is reduced, resulting in an integrated circuit with low

1294 K.K. Parhi and Y. Chen

A0 B0 C1

B1A1 C2

A2 B2 C3

A4

A3

A5

B3

B4

B5

C4

C5

C6

A7

A6 B6

B7

C7

BA
D

2D

...

...

...

C

a

b

Fig. 14 (a) The original DFG. (b) The infinitely unfolded DFG

HV

Nl+v

HUVU w(e)D PUD DF(U V)

a b

Fig. 15 (a) An edge U
e→ V with w(e) delays. (b) The corresponding folded datapath. The data

begin at the functional unit HU which has PU pipelining stage, pass through DF (U
e→ V) delays,

and are switched into the functional unit HV at the time instances Nl + v

silicon area. In general, folding can be used to reduce the number of hardware
functional units by a factor of N at the expense of increasing the computation time
by a factor of N.

Consider the edge e connecting the nodes U and V with w(e) delays, as shown in
Fig. 15a. Let the executions of the l-th iteration of the nodes U and V be scheduled
at the time units Nl + u and Nl + v, respectively, where u and v are folding orders
of the nodes U and V that satisfy 0 ≤ u,v ≤ N − 1 and N is the folding factor.
The folding order of a node is the time partition to which the node is scheduled
to execute in hardware. The functional units that execute the nodes U and V are
denoted as HU and HV , respectively. If HU is pipelined by PU stages, then the result
of the l-th iteration of the node U is available at the time unit Nl+u+PU . Since the
edge U

e→ V has w(e) delays, the result of the l-th iteration of the node U is used
by the (l +w(e))-th iteration of the node V , which is executed at N(l +w(e))+ v.
Therefore, the result must be stored for

DF(U
e→V) = [N(l +w(e))+ v]− [Nl+PU + u] = Nw(e)−PU + v− u (9)

time units, which is independent of the iteration number l. The edge U
e→ V is

implemented as a path from HU to HV in the architecture with DF(U
e→V) delays,

and data on this path are input to HV at Nl + v, as in Fig. 15b.

Signal Flow Graphs and Data Flow Graphs 1295

D

D

D

D

(S1|3) (S1|1)

(S1|0)(S1|2)

(S2|3) (S2|1)

(S2|2)(S2|0)

D

D

OUTIN

a

c

1 2

3 4

5

7 8

d

b

6

Fig. 16 The retimed biquad
filter with valid folding sets
assigned

D D D 2D

D OU

{2}

{p,q} denotes 4l +p and 4l +q

D

2D

{1,3}

a
b
c
d

{0}

{2}

{3}

{1}

{0} {2} {3} {1}

IN

{0,2} {3} {1}

{0,2}

Fig. 17 The folded biquad
filter using the folding sets
given in Fig. 16

A folding set is an ordered set of operations executed by the same functional unit.
Each folding set contains N entries, some of which may be null operations. The
operation in the j-th position within the folding set, where j goes from 0 to N−1, is
executed by the functional unit during the time partition j. The biquad filter example
shown in Fig. 16 is folded with folding factor of N = 4 and the folding sets shown in
the figure can be written as S1 = {4,2,3,1} and S2 = {5,8,6,7}, where the folding
set S1 and S2 contains only addition operations using the same hardware adder and
multiplication operation using the same hardware multiplier, respectively. To obtain
the folded architecture as shown in Fig. 17 corresponding to the DFG in Fig. 16, the
folding equations for each of the 11 edges are written as below:

DF(1 → 2) = 4(1)− 1+ 1− 3= 1

DF(1 → 5) = 4(1)− 1+ 0− 3= 0

DF(1 → 6) = 4(1)− 1+ 2− 3= 2

1296 K.K. Parhi and Y. Chen

DF(1 → 7) = 4(1)− 1+ 3− 3= 3

DF(1 → 8) = 4(2)− 1+ 1− 3= 5

DF(3 → 1) = 4(0)− 1+ 3− 2= 0

DF(4 → 2) = 4(0)− 1+ 1− 0= 0

DF(5 → 3) = 4(0)− 2+ 2− 0= 0

DF(6 → 4) = 4(1)− 2+ 0− 2= 0

DF(7 → 3) = 4(1)− 2+ 2− 3= 1

DF(8 → 4) = 4(1)− 2+ 0− 1= 1

For a folded system to be realizable, DF(U
e→ V) ≥ 0 must hold for all of the

edges in the DFG. Once valid folding sets have been assigned, retiming can be used
to either satisfy this property or determine that the folding sets are infeasible.

In general, the original DFG and the N-unfolded version of the folded DFG are
retimed and/or pipelined versions of each other. Furthermore, an arbitrary DFG can
be unfolded by factor N and the unfolded DFG can be folded with many possible
folding sets to generate a family of architectures. In order to obtain the original DFG
from the unfolded DFG via folding transformation, an appropriate folding set has to
be chosen.

5 Applications to Software Design

In this section, the precedence constraints in DFG will first be introduced followed
by the definition of critical path and the iteration bound. A DFG based scheduling
algorithm is then explained in detail.

5.1 Intra-iteration and Inter-iteration Precedence Constraints

The DFG captures the data-driven property of DSP algorithms where any node
can fire (perform its computation) whenever all the input data are available. This
implies that a node with no input edges can fire at any time. Thus many nodes can
be fired simultaneously, leading to concurrency. Conversely, a node with multiple
input edges can only fire after all its precedent nodes have fired. The latter case
imposes the precedence constraints between two nodes described by each edge. This
precedence constraint is an intra-iteration precedence constraint if the edge has no
delay elements or an inter-iteration precedence constraint if the edge has one or
more delays. Together, the intra-iteration and inter-iteration precedence constraints
specify the order in which the nodes in the DFG can be executed.

Signal Flow Graphs and Data Flow Graphs 1297

A B C

(4)(2) (5)

D

2D

A B

2D

(4)(2)

a b

Fig. 18 (a) A DFG with one loop that has a loop bound of 6/2 = 3 u.t. The iteration bound for
this DFG is 3 u.t. (b) A DFG with iteration bound T∞ = max{6/2,11/1} = 11 u.t.

For example, the edge from node A to node B in Fig. 2b enforces the inter-
iteration precedence constraint, which states that the execution of the k-th iteration
of A must be completed before the (k+ 1)-th iteration of B. On the other hand, the
edge from B to A enforces the intra-iteration precedence constraint, which states that
the k-th iteration of B must be executed before the k-th iteration of A.

5.2 Definition of Critical Path and Iteration Bound

The critical path of a DFG is defined to be the path with the longest computation
time among all paths that contain no delay elements. The critical path in the DFG in
Fig. 18a is the path A → B, which requires 6 u.t. Since the critical path is the longest
path for combinational rippling in the DFG, the computation time of the critical
path is the minimum computation time for one iteration of the DFG, which is the
execution of each node in the DFG exactly once.

A loop is a directed path that begins and ends at the same node and the amount
of time required to execute a loop can be determined from the precedence relation
described by the edges of the DFG. According to these precedence constraints,
iteration k of the loop consists of the sequential execution of Ak and Bk. Given that
the execution times of nodes A and B are 2 and 4 u.t., respectively, one iteration of
the loop requires 6 u.t. This is the loop bound, which represents the lower bound on
the loop computation time. Formally, the loop bound of the l-th loop is defined as
tl
wl

, where tl is the loop computation time and wl is the number of the delays in the
loop. As a result, the loop bound for the loop in Fig. 18a is 6/2 = 3 u.t.

As another example, the DFG in Fig. 18b contains two loops, namely, the loops
l1 = A → B → A and l2 = A → B → C → A. Therefore, the loop bounds for l1 and
l2 are 6/2 = 3 u.t. and 11/1 = 11 u.t., respectively. The loop with the maximum loop
bound is called the critical loop and its corresponding loop bound is the iteration
bound of the DSP program, which is the lower bound on the iteration or sample
period of the DSP program regardless of the amount of the computing resources
available. Formally, the iteration bound is defined as

T∞ = maxl∈L{ tl
wl

} (10)

1298 K.K. Parhi and Y. Chen

OPi

Ti

(ti)
OPj

Tj

(tj)

Ti+(ti)

OPNDx

Fig. 19 A pair of operators showing the timing information

where L is the set of the loops in the DFG, tl and wl are the computation time and
the number of delays of the loop l, respectively.

To compute the iteration bound of a DFG by locating all the loops and directly
compute T∞ by using (10) is rather straightforward. However, the number of loops
in a DFG grows exponentially with the number of nodes, and therefore polynomial-
time algorithms are desired for computing the iteration bound. Examples of
polynomial-time algorithms include longest path matrix algorithm [7] and the
minimum cycle mean algorithm [8].

5.3 Scheduling

DFGs are generally used for high-level synthesis to derive concurrent implementa-
tions of DSP applications onto parallel hardware, where a major concern is subtask
scheduling which determines when and in which hardware units nodes can be
executed.

Scheduling algorithm consists of assigning a scheduling time to every operator
in an architecture, where the time represents when the operation will normally take
place. Each operator must be scheduled at a time after all of its inputs become
available. Consequently, the scheduling problem can be formulated as a linear
programming problem. Furthermore, because all scheduled time of the operators
must be integers, the scheduling algorithm must find the optimal integer solution to
this problem.

5.3.1 The Scheduling Algorithm

Consider a pair of operators joined by an edge shown in Fig. 19. One of the outputs
produced by the operator OPi is the operand OPNDx, which in turn is the input to
the operator OPj. The scheduled times of operators OPi and OPj are denoted by
Ti and Tj, respectively. In addition, the timing specifications of the relevant output
and input ports of OPi and OPj are denoted by ti and t j, respectively. Since OPi

is scheduled at time Ti, the output OPNDx will become available at time Ti + ti.

Signal Flow Graphs and Data Flow Graphs 1299

Further, the same operand will be required as an input to the operator OPj at time
Ti + t j. By the requirement that the operand can not be used by operator OPj before
it is produced by operator OPi, the following inequality can be derived:

Tj + t j ≥ Ti + ti (11)

Such an inequality holds for each pair of operands joined by an edge in the DFG.
In these inequalities, Ti and Tj are the unknowns, where the value ti − t j is a known
constant. A solution to the set of inequalities can be determined by using common
techniques for solving linear programming problems. Once a solution is found to
this set of inequalities, the circuit may be correctly synchronized by inserting a
delay equal to Tj −Ti − (ti − t j) clock cycles between the operators OPi and OPj.

In general, many solutions exist to satisfy the set of inequalities for a given
architecture and hence there are many ways to synchronize the circuit. The goal of
optimal scheduling is to generate a solution that provides the minimal cost, where
cost is defined to be the total number of shift-register delays required to properly
synchronize the circuit. If a linear cost function can be defined, the minimum cost
problem can be easily formulated as a linear programming problem.

5.3.2 Minimum Cost Solution

Minimizing the total number of synchronization delays required for reach edge
between functional units of a circuit is not sufficient. Note that there exists the
possibility of multiple fanout from any functional unit. Therefore, the delays from
a multiple fanout output should be allocated sequentially instead of in parallel.
Consider a simple case where an output of some operator OPo is used as an input
to three other operators, OPA, OPB and OPC as shown in Fig. 20a with delays of
10, 12 and 25 clock cycles. respectively. The total number of delays is equal to
10+ 12+ 25= 47. An alternative sequential arrangement of the delays is shown in
Fig. 20b, where the total number of delays is 25, which is the length of the longest
delay. Therefore, the total number of delays that need to be allocated to any node in
the circuit is equal to the maximum delay that must be allocated.

Let Dx represents the maximum delay that must be allocated to an operand
OPNDx of width wx. A total cost function to be minimized can now be defined:

Cost = ∑
x

Dxwx (12)

where the sum is over each operand node in the circuit. For each node as shown in
Fig. 20b, there exists a constraint equivalent to (11),

Tj −Ti ≥ ti − t j (13)

1300 K.K. Parhi and Y. Chen

O 10D 2D 13D C

A

B

C

10D

O 12D

25D

OPNDx

BA

OPNDx

a

b

Fig. 20 (a) Operator O with a fanout of three and no delay sharing. (b) Operator O with a fanout
of three and delay sharing

OPi

Ti

(ti) OPj

Tj

(tj)
OPNDx

Ti+(ti)

Z
−n

Fig. 21 General code to be scheduled including z−1operators

In addition, the maximum delay on operand OPNDx from OPi to OPj is less than
the maximum delay Dx, which is described by the constraint:

Tj −Ti − (ti − t j)≤ Dx (14)

These two constraints along with the cost function that will be minimized as in (12),
describe a linear programming problem capable of providing the minimum cost
scheduling.

5.3.3 Scheduling of Edges with Delays

The scheduling algorithm will generate optimal solutions for DFGs consisting of
delay-free edges. To handle edges that contain delays, a preferable method is to
incorporate the word delays right into the linear programming solutions, which is
achieved by slightly modifying equations to take into account the presence of z−1

operators. Specifically, Fig. 21 shows a general situation in which the output of some

Signal Flow Graphs and Data Flow Graphs 1301

operator OPi undergoes a z−n transformation before being used as an input to the
operator OPj. The modified equations describing these scheduling constraints thus
become:

Tj −Ti ≥ ti − t j − nW (15)

and

Tj −Ti − (ti − t j)+ nW ≤ Dx (16)

where W is the number of clock cycles in a word or wordlength. In this case, Tj −
Ti − (ti − t j)+ nW is the delay applied to the connection shown in the diagram, and
Dx is the maximum delay applied to this variable.

6 Conclusions

This chapter has introduced the signal flow graphs and data flow graphs. Several
transformations such as pipelining, retiming, unfolding and folding have been
reviewed, and applications of these transformations on signal flow graphs and data
flow graphs have been demonstrated for both hardware and software implementa-
tions. It is important to note that any DFG that can be pipelined can be operated in a
parallel manner, and vice versa. Any transformation that can improve performance
in a hardware system can also improve the performance of a software system. Thus,
preprocessing of the DFGs and SFGs by these high-level transformations can play
a major role in the system performance.

Acknowledgements Many parts of the text and figures in this chapter are taken from the text
book in [2]. These have been reprinted with permission of John Wiley & Sons, Inc. The authors
are grateful to John Wiley & Sons, Inc., for permitting the authors to use these figures and parts
of the text from [2]. They are also grateful to George Telecki, associate publisher at Wiley for his
help in this regard.

References

1. Woods, R.: Mapping decidable signal processing graphs into FPGA implementations. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, second edn. Springer (2013)

2. Parhi, K.: VLSI Digital Signal Processing Systems, Design and Implementation. John Wiley &
Sons, New York (1999)

3. Crochiere, R., Oppenheim, A.: Analysis of linear digital networks. Proc. IEEE 64(4), 581–595
(1975)

4. Bolton, W.: Newnes Control Engineering Pocketbook. Newnes, Oxford, UK (1998)
5. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE, special issue on hardware and

software for digital signal processing 75(9), 1235–1245 (1987)

1302 K.K. Parhi and Y. Chen

6. Leiserson, C., Rose, F., Saxe, J.: Optimizing synchronous circuitry by retiming. In: Third
Caltech Conference on VLSI, pp. 87–116 (1983)

7. Gerez, S., Heemstra de Groot, S., Herrmann, O.: A polynomial-time algorithm for the
computation of the iteration-period bound in recursive data flow graphs. IEEE Trans. on Circuits
and Systems-I: Fundamental Theory and Applications 39(1), 49–52 (1992)

8. Ito, K., Parhi, K.: Determining the minimum iteration period of an algorithm. Journal of VLSI
Signal Processing 11(3), 229–244 (1995)

	Signal Flow Graphs and Data Flow Graphs
	1 Introduction
	2 Signal Flow Graphs
	2.1 Notation
	2.2 Transfer Function Derivation of SFG
	2.2.1 Mason's Gain Formula
	2.2.2 Equations-Solving Based Transfer Function Derivation

	3 Data Flow Graphs
	3.1 Notation
	3.2 Synchronous Data Flow Graph
	3.3 Construct an Equivalent Single-Rate DFG from the Multi-Rate DFG
	3.4 Equivalent Data Flow Graphs
	3.4.1 Retiming
	3.4.2 Pipelining

	4 Applications to Hardware Design
	4.1 Unfolding
	4.1.1 The DFG Based Unfolding
	4.1.2 Applications to Parallel Processing
	4.1.3 Infinite Unfolding of DFG

	4.2 Folding

	5 Applications to Software Design
	5.1 Intra-iteration and Inter-iteration Precedence Constraints
	5.2 Definition of Critical Path and Iteration Bound
	5.3 Scheduling
	5.3.1 The Scheduling Algorithm
	5.3.2 Minimum Cost Solution
	5.3.3 Scheduling of Edges with Delays

	6 Conclusions
	References

