
Decidable Dataflow Models for Signal
Processing: Synchronous Dataflow
and Its Extensions

Soonhoi Ha and Hyunok Oh

Abstract Digital signal processing algorithms can be naturally represented by a
dataflow graph where nodes represent function blocks and arcs represent the data
dependency between nodes. Among various dataflow models, decidable dataflow
models have restricted semantics so that we can determine the execution order
of nodes at compile-time and decide if the program has the possibility of buffer
overflow or deadlock. In this chapter, we explain the synchronous dataflow (SDF)
model as the pioneering and representative decidable dataflow model and its
decidability focusing on how the static scheduling decision can be made. In addition
the cyclo-static dataflow model and a few other extended models are briefly
introduced to show how they overcome the limitations of the SDF model.

1 Introduction

Digital signal processing (DSP) algorithms are often informally, but intuitively,
described by block diagrams in which a block represents a function block and an arc
or edge represents a dependency between function blocks. While a block diagram
is not a programming model, it resembles a formal dataflow graph in appearance.
Figure 1 shows a block-diagram representation of a simple DSP algorithm, which
can also be regarded as a dataflow graph of the algorithm.

A dataflow graph is a graphical representation of a dataflow model of computa-
tion in which a node, or an actor, represents a function block that can be executed,

S. Ha (�)
Seoul National University, Seoul, Korea
e-mail: sha@snu.ac.kr

H. Oh
Hanyang University, Seoul, Korea
e-mail: hoh@hanyang.ac.kr

S.S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
DOI 10.1007/978-1-4614-6859-2 33, © Springer Science+Business Media, LLC 2013

1083

mailto:sha@snu.ac.kr
mailto:hoh@hanyang.ac.kr

1084 S. Ha and H. Oh

Read Filter Play

Store

Fig. 1 Dataflow graph of a
simple DSP algorithm

or fired, when enough input data are available. An arc is a FIFO channel that delivers
data samples, also called tokens, from an output port of the source node to an input
port of the destination node. If a node has no input port, the node becomes a source
node that is always executable. In DSP algorithms, a source node may represent
an interface block that receives triggering data from an outside source. The “Read”
block in Fig. 1 is a source block that reads audio data samples from an outside
source. A dataflow graph is usually assumed to be executed iteratively as long as the
source blocks produce samples on the output ports.

The dataflow model of computation was first introduced as a parallel program-
ming model for the associated computer architecture called dataflow machines [6].
While the granularity of a node is assumed as fine as a machine instruction in
dataflow machine research, the node granularity can be as large as a well-defined
function block such as a filter or an FFT unit in a DSP algorithm representation. The
main advantage of the dataflow model as a programming model is that it specifies
only the true dependency between nodes, revealing the function-level parallelism
explicitly. There are many ways of executing a dataflow graph as long as data
dependencies between the nodes are preserved. For example, blocks “Filter” and
“Store” in Fig. 1 can be executed in any order after they receive data samples
from the “Read” block. They can be executed concurrently in a parallel processing
system.

To execute a dataflow graph on a target architecture, we have to determine where
and when to execute the nodes, which is called scheduling. Scheduling decision
can be made only at run-time for general dataflow graphs. A dynamic scheduler
monitors the input arcs of each node to check if it is executable, and schedules the
executable nodes on the appropriate processing elements. Thus dynamic scheduling
incurs run-time overhead of managing the ready nodes to schedule in terms of
both space and time. Another concern in executing a dataflow graph is resource
management. While a dataflow graph assumes an infinite FIFO queue on each arc, a
target architecture has a limited size of memory. Dynamic scheduling of nodes may
incur buffer overflow or a deadlock situation if buffers are not carefully managed. A
dataflow graph itself may have errors to induce deadlock or buffer overflow errors. It
is not decidable for a general dataflow program whether it can be executed without
buffer overflow or a deadlock problem.

On the other hand, some dataflow models have restricted semantics so that the
scheduling decision can be made at compile-time. If the execution order of nodes is
determined statically at compile-time, we can decide before running the program if
the program has the possibility of buffer overflow or deadlock. Such dataflow graphs
are called decidable dataflow graphs. More precisely, a dataflow is decidable if and
only if a schedule of which length is finite can be constructed statically. Hence,

Decidable Dataflow Models for Signal Processing. . . 1085

A B C
32 2 1

D

1

1

a b
Periodic schedules
Σ1: ADADBCCADBCC
Σ2: 3(AD)2(B2(C))
Σ3: 3A3D2B4C

1D

Fig. 2 (a) An SDF graph and (b) some periodic schedules for the SDF graph

in a decidable dataflow graph, the invocation number of each node is finite and
computable at compile time. The SDF (synchronous dataflow) model proposed by
Lee in [12], is a pioneering decidable model that has been widely used for DSP
algorithm specification in many design environments including Ptolemy [5] and
Grape II [11].

Subsequently, a number of generalizations of the SDF model have been proposed
to extend the expression capability of the SDF model. The most popular extension is
CSDF (cyclo-static dataflow) [4]. Three other extensions that aim to produce better
software synthesis results will also be introduced in this chapter. In this chapter,
we explain these decidable dataflow models and focus on their characteristics of
decidability. For decidable dataflow graphs, the most important issue is to determine
an optimal static schedule with respect to certain objectives since there are numerous
ways to schedule the nodes.

2 Synchronous Dataflow

In a dataflow graph, the number of tokens produced (or consumed) per node firing
is called the output (or the input) sample rate of the output (or the input) port. The
simplest dataflow model is the single-rate dataflow (SRDF) in which all sample rates
are unity. When a port may consume or produce multiple tokens, we call it multi-
rate dataflow (MRDF). Among multi-rate dataflow graphs, synchronous dataflow
(SDF) has a restriction that the sample rates of all ports are fixed integer values and
do not vary at run time. Note that the SRDF is called sometimes the homogeneous
SDF.

Figure 2a shows an SDF graph, which has the same topology as Fig. 1, where
each arc is annotated with the number of samples produced and consumed by the
incident nodes. There may be delay samples associated with an arc. The sample
delay is represented as initial samples that are queued on the arc buffer from the
beginning, and denoted as xD where x represents the number of initial samples, as
shown on arc AD in Fig. 2a.

From the sample rate information on each arc, we can determine the relative
execution rate of two end nodes of the arc. In order not to accumulate tokens
unboundedly on an arc, the number of samples produced from the source node
should be equal to the number of samples consumed by the destination node in

1086 S. Ha and H. Oh

the long run. In the example of Fig. 2a, the execution rate of node C should be
twice as fast as the execution rate of node B on average. Based on this pair-wise
information on the execution rates, we can determine the ratio of execution rates
among all nodes. The resultant ratio of execution rates among nodes A, B, C and D
in Fig. 2a becomes 3:2:4:3.

2.1 Static Analysis

The key analytical property of the SDF model is that the node execution schedule
can be constructed at compile time. The number of executions of node A within a
schedule is called the repetition count x(A) of the node. A valid schedule is a finite
schedule that does not reach deadlock and produces no net change in the number of
samples accumulated on each arc. In a valid schedule, the ratio of repetition counts
is equal to the ratio of execution rates among the nodes so that one iteration of a
valid schedule does not increase the samples queued on all arcs. If there exists a
valid schedule, the SDF graph is said consistent . We represent the repetition counts
of nodes in a consistent SDF graph G by vector qG. For the graph of Fig. 2a,

qG = (x(A),x(B),x(C),x(D)) = (3,2,4,3) (1)

Since an SDF graph imposes only partial ordering constraints between the nodes,
the order of node invocations can be determined in various ways. Figure 2b shows
three possible valid schedules of the Fig. 2a graph. In Fig. 2b, each parenthesized
term n(X1X2 . . .Xm) represents n successive executions of the sequence X1X2 . . .Xm,
which is called a looped schedule. If every block appears exactly once in the
schedule such as Σ2 and Σ3 in Fig. 2b, the schedule is called a single appearance
(SA) schedule. An SA-schedule that has no nested loop is called a flat SA-schedule.
Σ3 of Fig. 2b is a flat SA-schedule, while Σ2 is not. Consistency analysis of an SDF
graph is performed by constructing a valid schedule; no valid schedule can be found
for an erroneous SDF graph.

To construct a valid schedule, we first compute the repetition counts of all nodes.
For a given arc e, we denote the source node as src(e) and the destination node
as snk(e). The output sample rate of src(e) onto the arc is denoted as prod(e) and
the input sample rate of snk(e) as cons(e). Then, the following equation, called a
balance equation, should be held for a consistent SDF graph.

x(src(e))prod(e) = x(snk(e))cons(e) f or each e. (2)

We can formulate the balance equations for all arcs compactly with the following
matrix equation.

Γ qT
G = 0 (3)

Decidable Dataflow Models for Signal Processing. . . 1087

A B C
2

ba

1 2 1

1 2 Γ =
2 −1 0
0 2 −1
1 0 −2

node: A B C
arc:
AB
BC
AC

Fig. 3 (a) An SDF graph that is sample rate inconsistent and (b) the associated topology matrix

A B C
1 2 2 1

1 1

A B C
1 2 2 1

1 1

xD

a b

Fig. 4 (a) An SDF graph that is deadlocked and (b) the modified graph with initial samples on the
feedback arc

where Γ , called the topology matrix of G, is a matrix of which rows are indexed by
the arcs in G and columns are indexed by the nodes in G, An entry of the topology
matrix is defined by

Γ (e,A) =

⎧
⎨

⎩

prod(e), if A = src(e)
−cons(e), if A = snk(e)
0, otherwise

(4)

A valid schedule exists only if Eq. (3) has a non-zero solution of repetition vector
qG. Mathematically, this condition is satisfied when the rank of the topology matrix
Γ is n− 1 [12], where n is the number of nodes in G. In case no non-zero solution
exists, the SDF graph is called sample rate inconsistent. Figure 3a shows a simple
SDF graph that is sample rate inconsistent, and its associated topology matrix. Note
that the rank of the topology matrix is 3, not 2.

Sample rate consistency does not guarantee that a valid schedule exists. A sample
rate consistent SDF graph can be deadlocked as illustrated in Fig. 4a if the SDF
graph has a cycle with insufficient amount of initial samples. The repetition vector,
qG = (x(A),x(B),x(C)), is (2,1,2). However, there is no fireable node since all nodes
wait for input samples from each other. So we modify the graph by adding initial
samples on arc CA in Fig. 4b. Suppose that there is an initial sample on arc CA, or
x= 1. Then node A is fireable initially. After node A is fired, one sample is produced
and queued into the FIFO channel of arc AB. But the graph is deadlocked again
since no node becomes fireable afterwards. In this example, the minimum number
of initial samples is two in order to rescue the graph from the deadlock condition.

1088 S. Ha and H. Oh

The simplest method to detect deadlock is to construct a static SDF schedule by
simulating the SDF graph as follows:

1. At first, make an empty schedule list that will contain the execution sequence of
nodes, and initialize the set of fireable nodes.

2. Select one of the fireable nodes and put it in the schedule list. If the set of fireable
nodes is empty, exit the procedure.

3. Simulate the execution of the selected node by consuming the input samples from
the input arcs and producing the output samples to the output arcs.

4. Examine each destination node of the output arcs, and add it to the set of fireable
nodes only if it becomes fireable and its execution count during the simulation is
smaller than its repetition count.

5. Go back to step 2 to repeat this procedure.

When we complete this procedure, we can determine if the graph is deadlocked
by examining the schedule list. If there is any node that is scheduled fewer times
than its repetition count in the schedule list, the graph is deadlocked. Otherwise, the
graph is deadlock-free. In summary, an SDF graph is consistent if it is sample rate
consistent and it is deadlock-free. Therefore, the consistency of an SDF graph can
be statically verified by computing the repetition counts of all nodes (sample rate
consistency) and by constructing a static schedule.

2.2 Software Synthesis from SDF Graph

An SDF graph can be used as a graphical representation of a DSP algorithm,
from which target codes are automatically generated. Software synthesis from an
SDF graph includes determination of an appropriate schedule and a coding style
for each dataflow node, both of which affect the memory requirements of the
generated software. One of the main scheduling objectives for software synthesis
is to minimize the total (sum of code and data) memory requirements.

For software synthesis, the kernel code of each node (function block) is assumed
already optimized and provided from a predefined block library. Then the target
software is synthesized by putting the function blocks into the scheduled position
once a schedule is determined. There are two coding styles, inline and function,
depending on how to put a function block into the target code. The former is to
generate an inline code for each node at the scheduled position, and the latter is
to define a separate function that contains the kernel of each node. Figure 5 shows
three programs based on the same schedule Σ2 of Fig. 2b. The first two use the inline
coding style, and the third the function coding style.

If we use function calls, we have to pay, at run-time, the function-call overhead
which can be significant if there are many function blocks of small granularity. If
inlining is used, however, there is a danger of large code size if a node is instantiated
multiple times. For the example of Fig. 2, schedule Σ1 is not adequate for inlining
unlike SA-schedules, Σ2 and Σ3. Figure 5b shows an alternative code that uses

Decidable Dataflow Models for Signal Processing. . . 1089

main() {
for () {
for (3) {
code block of A;
code block of D;

}
for (2) {
code block of B;
for (2) {

code block of C;
}
}

} /* end of for */
} /* end of main */

main() {
for () {

switch (i) {
case 1-3:

code block of A;
code block of D;
break;

case 4-5:
code block of B;
for (2) {code block of C;}
break;

default: i = 1; break;
}
i++;

} /* end of for */
} /* end of main */

A() { code block of A; }
B() { code block of B; }
C() { code block of C; }
D() { code block of D; }

main() {
for() {
for (3) { A() ; D(); }
for (2) {
B();
for (2) { C(); }

}
} /* end of for */
} /* end of main */

a b c

Fig. 5 Three programs based on the same schedule Σ2 of Fig. 2b

Table 1 Buffer requirements for three schedules of Fig. 2b

Schedule Arc AB Arc AD Arc BC Total

Σ1: ADADBCCADBCC 4 2 2 8
Σ2: 3(AD)2(B2(C)) 6 2 2 10
Σ3: 3A3D2B4C 6 4 4 14

inlining without a proportional increase of code size to the number of instantiations
of nodes. The basic idea is to make a simple run-time system that executes
the nodes according to the schedule sequence. It pays the run-time overhead of
switch-statements and code overhead for schedule sequence management. Hence
an appropriate coding style should be selected considering the node granularity and
the schedule.

For each schedule, the buffer size requirement can be computed. If we assume
that a separate buffer is allocated on each arc, as is usually the case, the minimum
buffer requirement of an arc becomes the maximum number of samples accumulated
on the arc during an iteration of the schedule. For the example of Fig. 2, we can
compare the buffer size requirements of three schedules as shown in Table 1.

From Table 1, we can observe that the SA schedules usually require larger
buffers while they guarantee the minimum code size for inline code generation. In
multimedia applications, frame-based algorithms are common where the size of a
unit sample may be as large as a video frame or an audio frame. In these applications
minimizing the buffer size is as important as minimizing the code size. In general,
both code size and buffer size should be considered when we construct a memory-
optimal schedule.

1090 S. Ha and H. Oh

Buffering requirements can be reduced if we use buffer sharing. Arc buffers can
be shared if their life-times are not overlapped with each other during an iteration of
the schedule. The life-time of an arc buffer is defined by a set of durations from the
source node invocation that starts producing a sample to the buffer to the completion
of the destination node that empties the buffer. Consider schedule Σ1 of Fig. 2. The
buffer life-time of arc BC consists of two durations, {BCC, BCC}, in the schedule.
Since the buffer of arc AD is never empty, the buffer life-time of arc AD is the entire
duration of the schedule. If we remove the initial sample on arc AD, the buffer life-
time of arc AD consists of three durations, {AD, AD, AD}. Then we can share the
two arc buffers of arc AD and arc BC since their life-times are not overlapped. A
more aggressive buffer sharing technique has been developed by separating global
sample buffers and local pointer buffers in case the sample size is large in frame-
based applications [13]. The key idea is to allocate a global buffer whose size is
large enough to store the maximum amount of live samples during an iteration of
the schedule. Each arc is assigned a pointer buffer that stores pointers to the global
buffer.

Code size can also be reduced by sharing the kernel of a function block when
there are multiple instances of the same block [22] in a dataflow graph. Multiple
instances of the same block are regarded as different blocks, and the same kernel,
possibly with different local states, may appear several times in the generated
code. A technique has been proposed to share the same kernel by defining a
shared function. Separate state variables and buffers should be maintained for each
instance, which define the context of each instance. The shared function is called
with the context of an instance as an argument at the scheduled position of the
instance. To decide whether sharing a code block is beneficial or not, the overhead
and the gain of sharing should be compared. If Δ is an overhead that is incurred by
function sharing, R is a code block size, and n is the number of instances of a block,
the decision function for code sharing is summarized as the following inequality:

Δ
(n−1)R < 1.

For more detailed information on the code generation procedure and other issues
related with software synthesis from SDF graphs, refer to [2].

2.3 Static Scheduling Techniques

Static scheduling of an SDF graph is the key technique of static analysis that
checks the consistency of the graph and determines the memory requirement of
the generated code. Since an SDF graph imposes only partial ordering constraints
between the nodes, there exist many valid schedules and finding an optimal schedule
has been actively researched.

Decidable Dataflow Models for Signal Processing. . . 1091

2.3.1 Scheduling Techniques for Single Processor Implementations

The main objective for a single processor implementation is to minimize the mem-
ory requirement, considering both the code and the buffer size. Since the problem
of finding a schedule with minimum buffer requirement for an acyclic graph is
NP-complete, various heuristic approaches have been proposed. Since a single
appearance schedule guarantees the minimum code size for inline code generation,
a group of researchers have focused on finding a single appearance schedule that
minimizes the buffer size. Bhattacharyya et al. developed two heuristics: APGAN
and RPMC, to find an SA-schedule that minimizes the buffer requirements [3].
Ritz et al. used an ILP formulation to find a flat single appearance schedule that
minimizes the buffer size [19] considering buffer sharing. Since a flat SA-schedule
usually requires more data buffer than a nested SA-schedule, it is not evident which
approach is better between these two approaches.

Another group of researches tries to minimize only the buffer size. Ade et al.
presented an algorithm to determine the smallest possible buffer size for arbitrary
SDF applications [1]. Though their work is mainly targeted for mapping an
SDF application onto a Field Programmable Gate Array (FPGA) in the GRAPE
environment, the computed lower bound on the buffer requirement is applicable to
software synthesis. Govindarajan et al. [7] developed a rate optimal compile time
schedule, which minimizes the buffer requirement by using linear programming
formulation. Since the resultant schedule will not be an SA-schedule in general, a
function coding style should be used to minimize the code size in the generated
code.

No previous work exists that considers all design factors such as coding styles,
buffer sharing, and code sharing. In spite of extensive prior research efforts, finding
an optimal schedule that minimizes the total memory requirement still remains an
open problem, even for single processor implementation.

2.3.2 Scheduling Techniques for Multiprocessor Implementations

A key scheduling objective for multiprocessor implementation is to reduce the
execution length or to maximize the throughput of a given SDF graph. While there
are numerous techniques developed for multiprocessor scheduling, they usually
assume a single rate dataflow graph where each node is executed only once in a
single iteration. And they primarily focus on exploiting the functional parallelism
of an application to minimize the length of the schedule, called makespan. In
stream-based applications, however, maximizing the throughput is more important
than minimizing the schedule length. Pipelining is a popular way of improving
the throughput of a dataflow graph. For example Hoang et al. have proposed a
pipelined mapping/scheduling technique based on a list scheduling heuristic [8].
They maximize the throughput of a homogeneous dataflow graph on a homogeneous
multi-processor architecture.

1092 S. Ha and H. Oh

A1

A2

A3

B1

B2

C1

C2

C3

C4

D1

D2

D3

2

2

1

1

A1 A2

A3D1

B1

B2

D2 D3

C1 C2

C3 C4

P1

P2

P3

time

processor

a b

Fig. 6 (a) An APEG (acyclic precedence expanded graph) of the SDF graph in Fig. 2a, and (b) a
parallel scheduling result displayed with a Gantt chart

To apply these techniques for an SDF graph directly, we need to translate an SDF
graph to a single rate task graph, called an APEG (Acyclic Precedence Expanded
Graph) or simply EG (Expanded Graph) [17]. A node of an SDF graph is expanded
to as many nodes in the EG as the repetition counts of the node. The corresponding
EG of the graph of Fig. 2a is shown in Fig. 6a where nodes A and D are expanded
to three invocations respectively and node B to two and node C to four invocations.
The number of samples communicated through each arc is unity unless specified
otherwise; if an arc is annotated with a non-unity sample rate, such as an arc between
nodes A1 and B2, the arc can be split into as many uni-rate arcs as the number to
make a single-rate dataflow graph. If a node has any internal state, dependency arcs
should be added between node invocations: in the figure, we assume that nodes A
and D have internal states and the dependency between invocations is represented
by dashed arcs. Note that the initial sample on arc AD is placed on the arc between
A3 and D1. Since the initial sample breaks the execution dependency between A3
and D1 in the same iteration, D1 can be executed before A3.

One approach to schedule an SDF graph to a multiprocessor architecture is to
generate an APEG and apply an existent multi-processor scheduling algorithm.
Figure 6b shows a parallel scheduling result with a Gantt chart where the vertical
axis represents the processing elements of the target system and the horizontal axis
represents the elapsed time. There are some issues worth noting in this approach.
First, loop-level data parallelism in an SDF graph is translated into functional
parallelism in the EG. Nodes B and C in Fig. 2a express data-level parallelism since
multiple invocations can be executed in parallel. But all invocations are translated
into separate nodes that can be scheduled independently, ignoring the loop structure,
in the EG. As a result, the same block can appear several times in the schedule,
which may incur significant code size overhead if inline coding style is used. While
it is a reasonable way to exploit the loop-level data parallelism, it may result in a
very expensive solution.

Second, the total number of nodes in the EG is the sum of all repetition counts
of the nodes. A simple SDF graph with non-trivial sample rate changes can be
translated to a huge EG. Therefore the algorithm complexity of a multiprocessor
scheduling technique should be low enough to scale well as the graph size increases.

Decidable Dataflow Models for Signal Processing. . . 1093

Third, multiple invocations of the same node are likely to be mapped to different
processors. If a node has internal states (for instance node D in Fig. 6b), the internal
states should be transferred between invocations, which incurs significant run-time
overhead. And additional code should be inserted to manage the internal states in
the generated code.

Therefore several parallel scheduling techniques have been proposed that work
with the SDF graph directly without APEG generation. A node with internal states
is constrained to be mapped to a single processor. A recent approach considers
functional parallelism, loop-level parallelism, and pipelining simultaneously to
minimize the throughput of the graph [24]. In this work, a node can be mapped
to multiple processors if the kernel code of a node has internal data parallelism.

Unlike single processor implementation, there is a trade-off between buffer size
and throughput in multi-processor implementation of SDF graphs. Stuijik et al. have
explored the trade-off and obtained the Pareto-optimal solutions in terms of the
buffer size and the throughput, assuming that there is no constraint for the number
of processors [21]. This work is extended to consider resource constraints in [20].
Other extensions can be found in a web-site (http://www.es.ele.tue.nl/sdf3/) that
they manage to make the proposed technique open to public under the name of
SDF3 (SDF for Free) [21].

While most work on multiprocessor scheduling assumes static scheduling, some
recent researches consider static mapping and dynamic scheduling as a viable imple-
mentation technique of SDF task graphs. This approach maps nodes to processors
at compile time and delegates the scheduling decision to a run-time scheduler on
each processor. A main benefit of dynamic scheduling is that it may tolerate large
variation of node execution times or communication delays. When we make a static
schedule, we have to assume a fixed node execution time and a fixed communication
delay; worst-case values are usually assumed for real-time systems. If the worst-
case values are assumed, however, a processor may be idle while the current
scheduled node is waiting for the arrival of input data from the other processors
even though there are other executable nodes. Thus static scheduling may result in
waste of resources while dynamic scheduling changes the execution sequence of
nodes to increase resource utilization. A key issue for dynamic scheduling is how
to assign priorities to the mapped nodes on each processor. There is a recent work
to find an optimal static mapping and priority assignment to minimize the resource
requirement under a throughput constraint [10].

If the execution time of each function block is fixed and known at compile-time,
we can estimate the total execution length of the SDF graph. Hence the SDF graph
is suitable for specifying an application that has real-time constraints on throughput
or latency. When the execution time of a node varies at run-time, the worst case
execution time (WCET) should be used in parallel scheduling in order to guarantee
satisfaction of real-time constraints. Unfortunately, however, using WCETs is not
enough to guarantee the schedulability if an application consists of multiple tasks
running concurrently. If the execution time of a node becomes smaller than its
WCET, the order of node firings may vary at run-time, which may lengthen the total
execution time of the application. This behavior is known as “scheduling anomaly”

(http://www.es.ele.tue.nl/sdf3/)

1094 S. Ha and H. Oh

of multiprocessor scheduling; If multiple tasks are running concurrently, resource
contention may lengthen the execution of the graph when a node takes shorter time
than its worst case execution time.

Since many DSP applications involve multiple tasks running concurrently, we
need to consider multi-tasking in parallel scheduling. One solution is to statically
schedule the multiple tasks up to their hyper-period that is defined as a least common
multiple of all task periods. Since the hyper-period can be huge if the task periods
are relatively prime, this approach may not be applicable. Multiprocessor scheduling
of multi-tasking applications on heterogeneous multiprocessor systems still remains
an open problem. With a given schedule, it is not yet possible to decide whether the
schedule can satisfy the real-time constraints if some nodes have varying execution
times and/or there are resource contentions during execution.

2.4 Hardware Synthesis from SDF Graph

While the target architecture is given as a constraint for software synthesis, the
target hardware structure can be synthesized in hardware synthesis from an SDF
graph. Therefore, we can achieve the iteration bound of an SDF graph in theory
(see [15] to find the definition of the iteration bound of a graph) if there is no
limitation on the hardware size. Since there is a trade-off between hardware cost
and the throughput performance, however, architecture design and node scheduling
should be considered simultaneously under given design constraints.

A key issue in hardware synthesis is to preserve the SDF semantics to maintain
the correctness of the graph. In the SDF model, two samples that have the same value
should be distinguished as separate samples while the same value is not identified
as a new event in a hardware logic. So the arrival of an input sample should be
notified somehow. And if a node has more than one input port, the node should
wait until all input ports receive data samples before the node starts execution. It
means that we need some control logic to perform scheduling of the nodes. There
are two types of controllers: distributed controller and centralized controller. In the
centralized control scheme, the execution timing of each node is controlled by a
central scheduler. The execution timing can be determined at compile-time by static
scheduling of the graph. In a distributed scheme, a node is associated with a control
logic that monitors the input queues and triggers the node execution when all input
queues have input samples to fire the node.

For hardware synthesis, a node should be specified by a hardware description
language that will be synthesized by a CAD tool, or by a function block that is
mapped to a pre-defined hardware IP. If an hardware IP is used, interface between
the IP and the rest of the system should be designed carefully. Since the interface
design is a laborious and error-prone task, extensive researches are being performed
on the automatic interface synthesis.

In summary, hardware synthesis from a SDF graph involves the following
problems: architecture and datapath synthesis, controller synthesis, and interface

Decidable Dataflow Models for Signal Processing. . . 1095

synthesis. The node granularity in a SDF graph also affects the hardware synthesis
procedure. Various issues in hardware synthesis for a coarse grained graph is
discussed in [9]. For FPGA synthesis from a fine-grained graph, see [23] for more
detailed information.

3 Cyclo-Static Dataflow

The strict restriction of the SDF model, that all sample rates are constant, limits
the expression capability of the model. Figure 7a shows a simple SDF graph that
models a stereo audio processing application where the samples for the left and
right channels are interleaved at the source. The interleaved samples are distributed
by node D to the left (node L) and to the right (node R) channel. In this example, the
distributor node (node D) waits until two samples are accumulated on its input arc
to produce one sample at each output arc. A more natural implementation would be
to make the distribution node route an input sample to two output ports alternatively
at each arrival. A useful generalization of the SDF model, called the cyclo-static
dataflow (CSDF), makes it possible [4].

In a cyclo-static dataflow graph, the sample rates of an input or output port may
vary in a periodic fashion. Figure 7b shows how the CSDF model can specify the
same application as Fig. 7a. To specify the periodic change of the sample rates, a
tuple rather than an integer is annotated at the output ports of node D’. For instance,
“{1,0}” on arc D’R denotes that the rate change pattern is repeated every other
execution, where the rate is 1 at the first execution, and 0 at the second execution.
Similarly, the periodic sample rate “{0,1}” means that the rate is 0 at every (2n+1)-
th iteration and 1 at the other iterations.

Note that Fig. 7a, b represent the same application in functionality. One firing of
node D in the SDF graph is broken down into two firings of node D’ in the CSDF
graph. Thus we have to split the behavior of node D’ into phases. The number of
phases is determined by the periods of the sample rate patterns of all input and
output ports. In general, we can convert a CSDF graph to an equivalent SDF graph
by merging as many firings of a CSDF node as the number of phases into a single
firing of an equivalent SDF node. For instance, node D’ in the CSDF graph repeats
its behavior every two firings, and the number of phases becomes 2. So an equivalent

D’
1

S
1

L
1

R1{1, 0}

{0, 1}

D
2

S
1

L
1

R1
1

1

a b

Fig. 7 (a) An SDF graph where node D is a distributor block and (b) a CSDF graph that shows
the same behavior with a different version of a distributor block

1096 S. Ha and H. Oh

B

{1,0,0}

{0,2}
A

a b

C
{0,1,0}1

1

B’
6 2

A’ C
3 1

1 1

1

Fig. 8 (a) A cyclo-static dataflow graph and (b) its corresponding SDF graph

SDF node can be constructed by merging two firings of node D’ into one, which is
node D in the SDF model. The sample rates of input and output ports are adjusted
accordingly by summing up the number of samples consumed and produced during
one cycle of periodic behavior.

The CSDF model has a big advantage over the SDF model in that it can reduce
the buffer requirement on the arcs. In the example shown in Fig. 7, the minimum
size of input buffer for node D should be 2 in the SDF model while it is 1 in the
CSDF model.

3.1 Static Analysis

Since we can construct an equivalent SDF graph, static analysis and scheduling
algorithms developed for SDF are also applicable to CSDF. For formal treatment,
we use vectors to represent the periodic sample rates in CSDF: for an arc e, the
output sample rate vector of src(e) and the input sample rate vector of snk(e) are
denoted by prod(e) and cons(e) in CSDF. Figure 8a shows another CSDF graph
that has non-trivial periodic patterns of sample rates. The sample rate vectors for the
graph become the following:

prod(AC) = (1,0,0),cons(AB) = (0,2),prod(BC) = (0,1,0),
prod(AB) = cons(BC) = cons(AC) = (1).

To make an equivalent SDF node for each CSDF node, we have to compute the
repetition period for the phased operation of the CSDF node. First we obtain the
period of the sample rate variation for each port, which is the size of the sample rate
vector. Let dim(v) be the dimension of the sample rate vector v. Then the repetition
period of a CSDF node A, denoted by p(A) becomes the least common multiple
(lcm) value of all dim(v) values for the input and output ports of the node. For the
example of Fig. 8a, the repetition periods become the following:

p(A) = lcm(dim(prod(AB)),dim(prod(AC))) = lcm(3,1) = 3.
p(B) = lcm(dim(cons(AB)),dim(prod(BC))) = lcm(2,3) = 6.
p(C) = lcm(dim(cons(AC)),dim(prod(BC))) = lcm(1,1) = 1.

Decidable Dataflow Models for Signal Processing. . . 1097

If p(A) firings of CSDF node A are merged into a single firing, an equivalent SDF
actor A’ is obtained. Hence the equivalent SDF graph is obtained as shown in Fig. 8b
where node B’ is obtained by merging six firings of node B in the CSDF graph. We
denote this equivalence relation as B′ ≈ 6B. For an equivalent SDF node, the scalar
sample rate of a port should be determined. Let σ(v) be the sum of elements in
vector v. The total number of samples produced or consumed on arc e of CSDF
node A per the corresponding SDF node execution is given by p(A) σ(prod(e))

dim(prod(e)) or

p(A) σ(cons(e))
dim(cons(e)) . So, we can construct a topology matrix for the equivalent SDF

graph as follows:

Γ (e,A) =

⎧
⎪⎨

⎪⎩

p(A) σ(prod(e))
dim(prod(e)) , if A = src(e)

−p(A) σ(cons(e))
dim(cons(e)) , if A = snk(e)

0, otherwise

(5)

We can check the sample rate consistency with this topology matrix. For the
graph in Fig. 8b, the topology matrix and the repetition vector become:

Γ =

⎛

⎝
3 −6 0
1 0 −1
0 2 −1

⎞

⎠

qG = (2,1,2)

Since rank of Γ is 2, the CSDF graph is sample rate consistent. Moreover, a valid
schedule includes two invocations of nodes A’ and C, and one invocation of node
B’. This means that a valid CSDF schedule contains 6A, 6B and 2C since A′ ≈ 3A
and B′ ≈ 6B. The deadlock detection algorithm for an SDF graph in Sect. 2.1 is
applicable for a CSDF graph, which is to construct a static schedule by simulating
the graph.

3.2 Static Scheduling and Buffer Size Reduction

One strategy of scheduling a CSDF graph is to schedule the equivalent SDF graph
and replace the execution of the equivalent node with the multiple invocations of
the original CSDF node. We can obtain the following schedule for the graph in
Fig. 8: Σ1 = 2A′B′2C = 6A6B2C. Then the minimum buffer requirement on arc AB
becomes 6. We can construct better schedules in terms of buffer requirements by
utilizing the phased operation of a CSDF node. For the case of CSDF graph of
Fig. 8a, we can construct a better schedule as follows.

1. Initially nodes A and B are fireable, so schedule nodes A and B: Σ2 = “AB”.
2. Since node A is the only fireable node, we schedule node A again: Σ2 = “ABA”

1098 S. Ha and H. Oh

3. Now two samples are accumulated on arc AB and the second phased of node B
can start. So schedule node B: Σ2 = “ABAB”.

4. Node C becomes fireable. Schedule node C for the first time: Σ2 = “ABABC”.
5. We can schedule nodes A and B twice: Σ2 = “ABABCABAB”
6. At this moment, only one sample is stored on arc AC and we can fire nodes A and

B. We choose to schedule the fifth invocation of node B to produce one sample
on arc BC. Σ2 = “ABABCABABB”

7. Then, node C becomes fireable. Schedule node C: Σ2 = “ABABCABABBC”
8. Finally we schedule node A twice and node B once to complete one iteration of

the schedule: Σ2 = “ABABCABABBCAAB”
9. Since schedule Σ2 contains 6A, 6B and 2C, scheduling is finished and no

deadlock is detected.

Schedule Σ2 requires two buffers on arc AB, which is three times better than
schedule Σ1. Generally, as sample rates vary more, the buffer size reduction
becomes more significant. This gain is obtained by splitting the CSDF node into
multiple phases. But we have to pay the overhead of code size since a single
appearance schedule is given up. In general, there are more valid schedules for a
CSDF graph than for the equivalent SDF model. Therefore, discussion on the SDF
scheduling can be applied to the CSDF model, but with increased complexity of
scheduling problems.

3.3 Hierarchical Composition

Another advantage of CSDF is that it offers more opportunities of clustering when
constructing a hierarchical graph. It also allows a seemingly delay-free cycle of
nodes, while no delay-free cycle is allowed in SDF. Figure 9a shows an SDF graph
with four nodes A, B, C and D. All sample rates are unity since no sample rate is
annotated on any arc. The graph can be scheduled without deadlock since there is
an initial delay sample between nodes A and B. One unique valid schedule of this
graph is “BCDA”. Suppose we cluster nodes A and B into an hierarchical node W
in CSDF and W’ in SDF as illustrated in Fig. 9a and b respectively. Since CSDF
node W fires node B at every (2n+1)-th cycle and node A at every 2n-th cycle, the
input and the output sample rate vectors of node W become “{0,1}” and “{1,0}”
respectively. Therefore, the CSDF graph can be scheduled without deadlock and a
valid static schedule is “WCDW” where node B is fired at the first invocation of
node W and node A is fired at the second invocation. On the other hand, SDF node
W’ should execute both nodes A and B when it is fired. Therefore, the SDF graph
as shown in Fig. 9b is deadlocked since nodes W’, D, and C wait for each other.

Clustering of nodes may cause deadlock in SDF even though the original SDF
graph is consistent. On the other hand, a CSDF graph that includes a cyclic loop
without an initial delay can be scheduled without deadlock if the periodic rates
are carefully determined. Therefore, the CSDF model allows more freedom of
hierarchical composition of the graph.

Decidable Dataflow Models for Signal Processing. . . 1099

A B

CD

Cluster nodes A and B
in a hierarchical node

W

CD

W’

CD

CSDF version SDF version

{0,1} {1,0}

a b

Fig. 9 Clustering of nodes A and B into an hierarchical node in (a) CSDF and (b) in SDF

ME EN

current
frame
previous
frame

99 1 1
frME EN

1 1 1
1

1

1/99

1/99

a b

Fig. 10 A subgraph of an H.263 encoder graph (a) in SDF and (b) in FRDF

4 Other Decidable Dataflow Models

4.1 Fractional Rate Dataflow

The SDF model does not make any assumption on the data types of samples as
long as the same data types are used between two communicating nodes. To specify
multimedia applications or frame-based signal processing applications, it is natural
to use composite data types such as video frames or network packets. If a composite
data type is assumed, the buffer requirement for a single data sample can be huge,
which amounts to 176× 144 pixels for a QCIF video frame for instance. Then
reducing the buffer requirement becomes more important than reducing the code
size when we make a schedule.

Figure 10a shows an SDF subgraph of an H.263 encoder algorithm for QCIF
video frames. A QCIF video frame consists of 11× 9 macroblocks whose size is
16×16 pixels. Node ME that performs motion estimation consumes the current and
the previous frames as inputs. Internally, the ME block divides the current frame
into 99 macroblocks and computes the motion vectors and the pixel differences from
the previous frame. And it produces 99 output samples at once where each output

1100 S. Ha and H. Oh

A B C
1 1 1/3 1/2

1/3 1/2

Fig. 11 An FRDF graph in which sample types on arc BC and AC are a composite and a primitive
type respectively

sample is a macroblock-size data that represents a 16×16 array of pixel differences.
Node EN performs macroblock encoding by consuming one macroblock at a time
and produces one encoded macroblock as its output sample.

This SDF representation is not efficient in terms of buffer requirement and
performance. Since node ME produces 99 macroblock-size samples at once after
consuming a single frame size sample at each invocation, we need a 99-macroblock-
size buffer or a frame-size buffer (99×16×16= 176×144) to store the samples on
the arc between nodes ME and EN. Moreover node EN cannot start execution before
node ME finishes motion estimation for the whole input frame. As this example
demonstrates, the SDF model has inherent difficulty of efficiently expressing
the mixture of a composite data type and its constituents: a video frame and
macroblocks in this example. A video frame is regarded as a unit of data sample in
integer rate dataflow graphs, and should be broken down into multiple macroblocks
explicitly by consuming extra memory space.

To overcome this difficulty, the fractional rate dataflow (FRDF) model in which a
fractional number of samples can be produced or consumed has been proposed [14].
In FRDF, a fraction number can be used as a sample rate as shown in Fig. 10b where
the input sample rates of node frME is set to 1

99 . The fractional number means that
the input data type of node frME is a macroblock and it corresponds to 1

99 of a frame
data.

Figure 11 shows an FRDF graph where the data type of arc BC is a composite
type as illustrated in the figure and the data type of arc AC is a primitive type such
as integer or float. A fractional sample rate has different meaning for a composite
data type from a primitive type. For a composite data type, the fractional sample rate
really indicates the partial production or consumption of the sample. In the example
graph, one firing of node B fills 1

3 of a sample on arc BC and node C reads the
first half of the sample at every (2n+ 1)-th firing and the second half at every 2n-
th firing. Hence, if we consider the execution order of nodes B and C, a schedule
“BBCBC” is valid since 2

3 of a sample is available after node B is fired twice and
node C becomes fireable.

For primitive types, partial production or consumption is not feasible. Then
statistical interpretation is applied for a fractional rate. In the example graph, the
output sample rate of node A is 1

3 on arc AC. This means that node A produces
a single sample every three executions. Similarly node C consumes one sample
every two executions. Note that a fractional rate does not imply at which firings
samples are produced. So node C becomes fireable only after node A is executed
three times. If we are concerned about the execution order of nodes A and C only,

Decidable Dataflow Models for Signal Processing. . . 1101

1/3D U1/2

Fig. 12 If the consumer and the producer have the different access patterns for a composite type
data then the type should be treated as atomic

schedule “3A2C” is valid while “2ACAC” is not. Consequently, a valid schedule for
the FRDF graph of Fig. 11 is “3(AB)2C”.

Regardless of the data type, a fractional sample rate p
q guarantees that p samples

are produced or consumed after q firings of the node. Similar to the CSDF graph, we
can construct an equivalent SDF graph by merging q firings of an FRDF node into
an equivalent SDF node that produces or consumes p samples per firing. Therefore,
static analysis techniques for the SDF model can be applied to the FRDF model. For
the analysis of sample rate consistency, however, we can use fractional sample rates
directly in the topology matrix. For the FRDF graph of Fig. 11, the topology matrix
and repetition vector are:

Γ =

⎛

⎝
1 −1 0
0 1

3 − 1
2

1
3 0 − 1

2

⎞

⎠

qG = (3,3,2)

Since the rank of Γ is 2, the graph is sample rate consistent. Deadlock can be
detected by constructing a static schedule similarly to the SDF case. If there exists
a valid static schedule, the graph is free from deadlock. A static schedule is simply
constructed by inserting a fireable node into the schedule list and simulating its
firing. An FRDF node has different firing conditions depending on the data types
of input ports. An FRDF node is fireable, or executable, if all input arcs satisfy the
following condition depending on the data type:

1. If the data type is primitive, there must be at least as many stored samples as the
numerator value of the fractional sample rate. An integer sample rate is a special
fractional rate whose denominator is 1.

2. If the data type is composite, there must be at least as large a fraction of samples
stored as the fractional input sample rate.

Special care should be taken for a composite type data. If the consumer and the
producer have a different interpretation on the fraction, then a composite type should
be regarded as atomic like a primitive type when the firing condition is examined.
Suppose that for a composite data type of a two-dimensional array, the producer
regards it as an array of row vectors while the consumer regards it as an array of
column vectors as shown in Fig. 12. In this case, the two-dimensional array may not
be regarded as a composite type data. Therefore, schedule “DDUDU” is not valid
while “3D 2U” is.

1102 S. Ha and H. Oh

Read
From
Device

Motion
Estimation

Macro
Block

Encoding

Variable
Length
Coding

Write
To

Device

Motion
Compensation

Macro
Block

Decoding

1/99

1/99

1D

1/99

1/991 1 1 1 1

111

1/99

Fig. 13 H.263 encoder in FRDF

B∗2/2 1/3
A∗ C

1 1

11/3Fig. 14 An FRDF graph
corresponding to Fig. 8

In general, the FRDF model results in an efficient implementation of a multi-
media application in terms of buffer requirement and performance. Consider the
example in Fig. 10b again. Since node frME uses a macroblock-size sample, the
output arc requires only a single macroblock-size buffer. For each arrival of an input
video frame, node frME is fired 99 times and consumes a macro-block size portion
of the input frame per firing. Since node EN can be fired after each firing of node
frME, shorter latency is experienced when compared with the SDF implementation.
Figure 13 shows a whole H.263 encoding algorithm in FRDF where the sample
types for “current frame” and “previous frame” are video frames. It is worth noting
that the entire previous frame is needed to do motion estimation for each macroblock
of the current frame while the sample rate of the bottom input port of node “Motion
Estimation” is 1

99 . Hence, even though the previous frame is a composite data type,
it should be regarded as atomic. Then node “Motion Estimation” is fireable only
after the entire previous frame is available.

Figure 14 shows an FRDF graph that corresponds with Fig. 8a. Both have the
same equivalent SDF graphs. Similar to the CSDF model, the FRDF model can
reduce the buffer size when compared with the corresponding SDF model. Since
node A∗ produces a single sample and B∗ consumes two samples every other
execution, a valid schedule for the graph is “2A∗ 2B∗ 2A∗ B∗ C B∗ 2A∗ 2B∗ C”.
And the required buffer sizes on arcs A∗B∗ and B∗C∗ are equal to the sizes for the
CSDF graph. The buffer size for arc A∗C is, however, larger than the CSDF graph
since the FRDF model does not know when samples are produced and consumed,
and the schedule for the FRDF model should consider the worst case behavior. For
an output port, the worst case is when output samples are all produced at the last
phase while it is when input samples are all consumed at the first phase for an input
port. Therefore, in the FRDF model, rate p

q for a primitive data type corresponds
to “{(q− 1)× 0,p}” for an output sample rate and “{p,(q− 1)× 0}” for an input
sample rate in the CSDF model, where “(q− 1)× 0” denotes “0,0, · · · ,0

︸ ︷︷ ︸
q−1

”. Hence,

Decidable Dataflow Models for Signal Processing. . . 1103

the CSDF model may generate better schedules than the associated FRDF model
since we can split the node execution into finer granularity of phases at compile-
time scheduling; this is not possible in the FRDF if the date type is primitive. The
expression capability of two models is, however, different. The CSDF model allows
only a periodic pattern to express sample rate variations while the FRDF model
has no such restriction as long as the average value is constant during a period. So
the FRDF model has more expression power than the CSDF model since it allows
dynamic behavior of an FRDF node within a period and the periodic pattern can be
regarded as a special case.

4.2 Synchronous Piggybacked Dataflow

The SDF model does not allow communication through a shared global variable
since the access order to the global variable can vary depending on the execution
order of nodes. Suppose a source block produces the frame header in a frame-based
signal processing application that is to be used by several downstream blocks. A
natural way of coding in C is to define a shared data structure that the downstream
blocks access by pointers. But in a dataflow model, such sharing is not allowed. As a
result, redundant copies of data samples are usually introduced in the automatically
generated code from the dataflow model. Such overhead is usually not tolerable
for embedded systems with tight resource and/or timing constraints. To overcome
this limitation, an extended SDF model, called SPDF (Synchronous Piggybacked
Dataflow) is proposed [16], by introducing the notion of “controlled global states”
and by coupling a data sample with a pointer to the controlled global state.

The Synchronous Piggybacked Dataflow (SPDF) model was first proposed to
support frame-based processing, or block-based processing, that frequently occurs
in multimedia applications. In frame-based processing, the system receives input
streams of frames that consist of a frame header and data samples. The frame
header contains information on how to process data samples. So an intuitive
implementation is to store the information in a global data structure, called global
states, and the data processing blocks refer to the global states before processing the
data samples.

Figure 15 shows a simple SPDF graph where node A reads a frame from a
file and produces the header information and the data samples through different
output ports. Suppose that a frame consists of 100 data samples in this example.
The header information and the data samples are both connected to a special
FRDF (Fractional Rate Dataflow) block, called “Piggyback” block, that has three
parameters: “statename”, “period”, and “offset”. The Piggyback block updates the
global state of “statename” with the received header information periodically with
the specified “period” parameter. It piggybacks a pointer to the global state on
each input data sample before sending it through the output port. Since it needs to
receive the header information in order to update the global state only once per 100
executions, the sample rate of the input port associated with the header information

1104 S. Ha and H. Oh

A B C
Down
Streampiggyback

1/100

state name: header
period = 100
offset = 0

state name 1st value 2nd value

“header” 10

Global table

Fig. 15 An example SPDF graph that shows a typical frame-based processing: the Piggyback
block writes the header information to the global state and the downstream blocks refer to the
global state before processing the data samples

is set to the fractional value 1
100 , which means that it consumes one sample per 100

executions in the FRDF model. The input port of this fractional rate is called the
“state port” of the Piggyback block. The sample rate of the data port, on the other
hand, is unity.

The “offset” parameter indicates when to update the global state. The Piggyback
block receives as many data samples as the “offset” value before updating the global
state. In this example, the “offset” value is set to its default value, zero, which makes
the Piggyback block consume the header information and update the global state
before it piggybacks the data samples with a pointer to the global state.

Note that the Piggyback block with a fractional rate input port is the only
extension to the SDF model. Since the sample rates of the SPDF graph are all
static, the static analyzability of the SDF model is preserved even after addition
of the Piggyback block. Also, piggybacking of data samples with pointers can
be performed without any run-time overhead by utilizing the static schedule
information of the graph. Suppose that the SDF graph in Fig. 15 has the following
static schedule: “A 100(Piggyback, B, C, DownStream)”. Then the pseudo code of
the automatically generated code associated with the schedule is as follows:

code block of A
for (int i = 0; i < 100, i++) {

if (i == offset_Piggyback)
update the global state header

code block of B
code block of C
if (i == offset_Piggyback)

update the local state of DownSteam block
from the global state information

code block of DownStream
}

Decidable Dataflow Models for Signal Processing. . . 1105

Ramp

singen

piggyback gain out

state name: g_gain
period = 100
offset = 0

gain: g_gain
1/100

generate sin wave:
100 samples per period

Fig. 16 An SPDF graph that produces a sinusoidal waveform with varying amplitude at run-
time: the “gain” state of the “Gain” block is updated by the “Ramp” block through a global state,
“global gain”

Figure 16 shows another example that produces a sinusoidal waveform with
varying amplitude at run-time. The “Singen” block generates a sinusoidal waveform
(N samples per period) of unit amplitude and the “Gain” block amplifies the input
samples by the “gain” parameter of the block. To control the amplitude, the graph
uses a Piggyback block after the “Singen” block. Another source block, “Ramp”,
is connected to the state port of the Piggyback block. The “statename” of the
Piggyback is named “global gain” and the “gain” parameter of the “Gain” block
is also set to “global gain”. Then, the “gain” parameter of the “Gain” block is
updated with a global state named by “global gain” whose value is determined by
the “Ramp” block. In this example, the period of the Piggyback block is set to N so
that the amplitude of the sinusoidal waveform is incremented by one every period
as shown in Fig. 16. If we insert two initial samples on the input arc of the “Gain”
block, the “offset” parameter of the Piggyback block should be 2.

Thus the SPDF model provides a safe mechanism to deliver state values
through shared memory instead of message passing. Communication through shared
memory is prohibited in conventional dataflow models since the access order to the
shared memory may vary depending on the schedule. But the SPDF model gives
another solution by observing that the side effect is caused by an implicit assumption
that the global state is assigned a memory location before scheduling is performed.
The SPDF model changes the order: allocate the memory for the global state after
the schedule is made. Since the scheduling decision is made at compile-time, we
know the access order to the variable and the life time of each global state variable.
Suppose that the schedule of Fig. 16 becomes “2(100(Singen) Ramp Piggyback)
200(Gain Display)”. From the static schedule, we know that we need to maintain
two memory locations for the global state, “global gain” since the Piggyback block
writes the second value to the global state before the “Gain” reads the first global
state.

Allowing shared memory communication without side effects gives a couple
of significant benefits over conventional dataflow models. First, it can remove the
unnecessary overhead of data copying of message passing communication since
the global state can be shared by multiple blocks. Second, it greatly enhances the

1106 S. Ha and H. Oh

void add()
{

*addOut = *addIn1 + *addIn2;
}

void add()
{

for(int i=0; i<Nb; i++)
*addOut++ = *addIn1++ + *addIn2++;

}

ba

Fig. 17 Code of an “Add” actor (a) in SDF and (b) in SSDF where Nb is the blocking factor

expression capability of the SDF model without breaking the static analyzability. It
provides an explicit mechanism of affecting the internal behavior of a block from
the outside through global states.

4.3 Scalable Synchronous Dataflow

DSP architectures have stringent on-chip memory limits and off-chip memory
access is costly. They also allow vector processing of instructions and arithmetic
pipelining like MAC in order to attain peak performance when the pipelining is
fully utilized. Therefore, when an SDF block operates on primitive-type data and the
granularity is small, it behaves inefficiently. For example, an adder block performs a
single accumulation operation by reading two samples from memory and writing a
sample into memory. It requires large run time overhead of off-chip memory access
for two read and one write operations. In order to achieve efficient implementation,
the scalable synchronous dataflow (SSDF) model is proposed [18]. The SSDF model
has the same semantics as the SDF model except that a node may consume or
produce any integer multiple of the fixed rates per invocation. The actual multiple,
called blocking factor, is determined by a scheduler or an optimizer.

Figure 17a shows the code of an “Add” block in SDF. In SSDF, the code includes
blocking factor Nb that is the number of iterations as shown in Fig. 17b. Since the
function call overhead of “add()” is larger than the accumulation operation, the
SSDF model amortizes the function call overhead by performing Nb accumulations
per function call. When blocking factor Nb is 1, the SSDF graph degenerates to an
SDF graph. Therefore, the SSDF model has the same sample rates as the SDF model
and sample rate inconsistency can be checked using the topology matrix for the SDF
model. Moreover, deadlock is detected by constructing a schedule by setting block
factor Nb = 1. From the static analysis of the degenerated SDF graph, repetition
vector qG can be obtained, assuming Nb is 1 for all blocks. When Nb > 1, the
repetition vector for SSDF becomes NbqG.

A straightforward scheduling technique for an SSDF graph is to increase the
minimal scheduling period by an integer factor Ng where Ng is a global blocking
factor. Each node A of the graph will be invoked Ngx(A) times within one scheduling
period, where x(A) is the repetition count of node A. Increasing Ng reduces the
function call overhead but requires larger buffer memory for graph execution. For

Decidable Dataflow Models for Signal Processing. . . 1107

A B C D E F

G H

1D

11 11 11 11 11

11

1

1

1

1

Fig. 18 A graph with feedback loop

instance, the “Add” node in Fig. 17 consumes Nb samples from each input port and
produces Nb output samples, then all three buffers have size Nb while they have
size 1 when the blocking factor is unity. Moreover, the increment of Ng delays the
response time although it does not decrease the throughput.

Another major obstacle to increase the blocking factor is related with feedback
loops. Vector processing is restricted to the number of initial delays on the feedback
loop. If the number is smaller than Ng, the vector processing capability cannot be
fully utilized. For example, the scheduling result for a graph shown in Fig. 18 is “A
B G C D H E F” when the blocking factor is 1. If blocking factor Ng becomes 5
then the scheduling becomes “5A 5B 5(GCDH) 5E 5F” in which nodes G, C, D and
H are repeated five times sequentially. Therefore, a scheduling algorithm for SSDF
should consider the graph topology to minimize the program code size.

In case feedback loops exist, strongly-connected components are first clustered
into a strong component. A strong component of graph G is defined as a subgraph
F ⊂G if for all pairs of nodes u,v∈F there exist paths puv(from u to v) and pvu(from
v to u). This clustering is performed in a hierarchical fashion until the top graph
does not have any feedback loop. Then, a valid schedule for an SSDF graph can
be constructed using the SDF scheduling algorithms. Each node is scheduled by
applying the global blocking factor Ng. For the SSDF graph in Fig. 18, the top graph
consists of five nodes “A B (CDGH) E F” where nodes C, D, G and H are merged
into a clustered-node. When blocking factor Ng is set to 5, a schedule for the top
graph becomes “5A5B5(clustered-node)5E5F”.

Next, the strong components are scheduled. The blocking factor depends on
the number of initial delay samples on a feedback loop. Let Nl(L) denote the
maximum bound of the blocking factor on feedback loop L. Since feedback loops
can be nested, a feedback loop with the largest maximum bound Nl(L) should be
selected first. Subsequently, feedback loops are selected in a descending order of
Nl(L). Scheduling of the clustered subgraph starts with a node that has many initial
delay samples on its input ports and allows a large blocking factor. When a strong
component “(CDHG)” is scheduled in the SSDF graph, actor G should be fired since
it has an initial delay sample.

For a selected strong component, we schedule the internal nodes as follows,
depending on the number of delays on the feedback loop.

1108 S. Ha and H. Oh

Case 1: Ng is an integer multiple of Nl(L). The scheduling order needs to be re-
peated Ng/Nl(L) times using Nb = Nl(L) for the internal nodes. In the example
of Fig. 18, since Nl(L) = 1, Ng = 5, and Ng/Nl(L) is an integer, schedule of
“GCDH” is repeated five times. Moreover, the blocking factor for each node
Nb is 1. Hence, the final schedule is “5A 5B 5(GCDH) 5E 5F”.

Case 2: Ng ≤ Nl(L). Blocking factor Nb = Ng is applied for all actors in the strong
component. For example, if the number of delay samples increases to 5 in Fig. 18,
then blocking factor Nl(L) is 5 which is equal to Ng, and the schedule becomes
“5A 5B (5G 5C 5D 5H) 5E 5F”. Therefore, the blocking factor can be fully
utilized.

Case 3: If Ng > Nl(L) but not an integer multiple. One of two scheduling strate-
gies can be applied:

1. The schedule for the strong component is repeated Ng times using Nb = 1
internally, which produces the smallest code at the cost of throughput.

2. The schedule is repeated with blocking factor Nb = Nl(L), and then once more for
the remainder to Ng. This improves throughput but also enlarges the code size.

When Nl(L) = 2 by increasing the number of delay samples to 2, a valid schedule
is “5(GCDH)” if the first strategy is followed or “2(2G 2C 2D 2H) GCDH” if the
second strategy is followed. Consequently, the final schedule is either “5A5B
5(GCDH) 5E 5F” or “5A 5B 2(2G 2C 2D 2H) GCDH 5E 5F”.

Although the SSDF model is proposed to allow large blocking factors to utilize
vector processing of simple operations in a node, the scheduling algorithm for SSDF
is also applicable to an SDF graph in which every node has an inline style code
specification. Without the modification of the SDF actor, the blocking factor can be
applied to the SDF graph and the SDF schedule. For instance, when block factor
Ng = 3 is applied to Fig. 2, a valid schedule is “9A 9D 6B 12C”. For the given
schedule with the blocking factor, programs can be synthesized as shown in Fig. 5
where each loop value in the codes will be multiplied by blocking factor Ng (=3).

References

1. Ade, M., Lauwereins, R., Peperstraete, J.A.: Implementing DSP applications on heterogeneous
targets using minimal size data buffers. In: Proceedings of RSP’96, pp. 166–172 (1996)

2. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow Graphs.
Kluwer Academic Publisher, Norwell MA (1996)

3. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: APGAN and RPMC: Complementary heuristics
for translating DSP block diagrams into efficient software implementations. Journal of Design
Automation for Embedded Systems 2, 33–60 (1997)

4. Bilsen, G., Engles, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. IEEE Trans.
Signal Processing 44, 397–408 (1996)

Decidable Dataflow Models for Signal Processing. . . 1109

5. Buck, J.T., Ha, S., Lee, E.A., Messerschimitt, D.G.: Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal of Computer Simulation, Special issue on
Simulation Software Development 4, 155–182 (1994)

6. Dennis, J.B.: Dataflow supercomputers. IEEE Computer Magazine 13 (1980)
7. Govindarajan, R., Gao, G., Desai, P.: Minimizing memory requirements in rate-optimal

schedules. In: Proceedings of the International Conference on Application Specific Array
Processors, pp. 75–86 (1993)

8. Hoang, P.D., Rabaey, J.M.: Scheduling of DSP programs onto multiprocessors for maximum
throughput. IEEE Transactions on Signal Processing pp. 2225–2235 (1993)

9. Jung, H., Yang, H., Ha, S.: Optimized RTL code generation from coarse-grain dataflow
specification for fast HW/SW cosynthesis. Journal of Signal Processing Systems 52, 13–34
(2008)

10. Kim, J., Shin, T., Ha, S., Oh, H.: Resource minimized static mapping and dynamic scheduling
of SDF graphs. In: ESTIMedia (2011)

11. Lauwereins, R., Engels, M., Peperstraete, J.A., Steegmans, E., Ginderdeuren, J.V.: GRAPE: A
CASE tool for digital signal parallel processing. IEEE ASSP Magazine 7, 32–43 (1990)

12. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous dataflow programs for
digital signal processing. IEEE Transactions on Computer C-36, 24–35 (1987)

13. Oh, H., Ha, S.: Memory-optimized software synthesis from dataflow program graphs with large
size data samples. EURASIP Journal on Applied Signal Processing 2003, 514–529 (2003)

14. Oh, H., Ha, S.: Fractional rate dataflow model for memory efficient synthesis. Journal of VLSI
Signal Processing 37, 41–51 (2004)

15. Parhi, K.K., Chen, Y.: Signal flow graphs and data flow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn.
Springer (2013)

16. Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient DSP system
prototyping. Design Automation for Embedded Systems 3, 295–322 (2002)

17. Pino, J., Ha, S., Lee, E.A., Buck, J.T.: Software synthesis for DSP using Ptolemy. Journal of
VLSI Signal Processing 9, 7–21 (1995)

18. Ritz, S., Pankert, M., Meyr, H.: High level software synthesis for signal processing systems. In:
Proceedings of the International Conference on Application Specific Array Processors (1992)

19. Ritz, S., Willems, M., Meyr, H.: Scheduling for optimum data memory compaction in block
diagram oriented software synthesis. In: Proceedings of the ICASSP 95 (1995)

20. S. Stuijk, T.B., Geilen, M.C.W., Corporaal, H.: Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: DAC, pp. 777–782 (2007)

21. Stuijk, S., Geilen, M.C.W., Basten, T.: Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In: DAC, pp. 899–904 (2006)

22. Sung, W., Ha, S.: Memory efficient software synthesis using mixed coding style from dataflow
graph. IEEE Transactions on VLSI Systems 8, 522–526 (2000)

23. Woods, R.: Mapping decidable signal processing graphs into FPGA implementations. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, second edn. Springer (2013)

24. Yang, H., Ha, S.: Pipelined data parallel task mapping/scheduling technique for MPSoC. In:
DATE (Design Automation and Test in Europe) (2009)

	Decidable Dataflow Models for Signal Processing: Synchronous Dataflow and Its Extensions
	1 Introduction
	2 Synchronous Dataflow
	2.1 Static Analysis
	2.2 Software Synthesis from SDF Graph
	2.3 Static Scheduling Techniques
	2.3.1 Scheduling Techniques for Single Processor Implementations
	2.3.2 Scheduling Techniques for Multiprocessor Implementations

	2.4 Hardware Synthesis from SDF Graph

	3 Cyclo-Static Dataflow
	3.1 Static Analysis
	3.2 Static Scheduling and Buffer Size Reduction
	3.3 Hierarchical Composition

	4 Other Decidable Dataflow Models
	4.1 Fractional Rate Dataflow
	4.2 Synchronous Piggybacked Dataflow
	4.3 Scalable Synchronous Dataflow

	References

