
Multicore Systems on Chip

Luigi Carro and Mateus Beck Rutzig

Abstract This chapter discusses multicore architectures for DSP applications.
We explain briefly the main challenges involved in future processor designs,
justifying the need for thread level parallelism exploration, since instruction-level
parallelism is becoming increasingly difficult and unfeasible to explore given a
limited power budget. We discuss, based on an analytical model, the tradeoffs on
using multiprocessor architectures over high-end single-processor design regarding
performance and energy. Hence, the analytical model is applied to a traditional DSP
application, illustrating the need of both instruction and thread exploration on such
application domain. Some successful MPSoC designs are presented and discussed,
indicating the different trend of embedded and general-purpose processor market
designs. Finally, we produce a thorough analysis on hardware and software open
problems like interconnection mechanism and programming models.

1 Introduction

Industry competition in the current wide electronics market makes the design
of a device increasingly complex. New marketing strategies have been focusing
on increasing the product functionalities to attract consumer’s interest. However,
the convergence of different functions in a single device produces new design
challenges, making the device implementation even more difficult. To worsen
this scenario, designers should handle well known design constraints as energy
consumption and process costs, all mixed in the difficult task to increase the
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processing capability, since users desire nowadays the equivalent of a portable
supercomputer. Therefore, the fine tuning of these requirements is fundamental to
produce the best possible product, which consequently will obtain a wider market.

The convergence of functionalities to a single product enlarges the application
software layer over the hardware platform, increasing the range of heterogeneous
code that the processing element should handle. The clear examples of such
convergence with mixed behavior are iPhone and Android phones. Aiming to
balance manufacturing costs and to avoid overloading of the original hardware
platform with extra processing capabilities, way beyond the original hardware
design scope, there is a natural lifecycle that guides the functionality execution
scheme in the platform. Here, the functionality lifecycle is divided into three phases:
introduction, growth and maturity. Commonly, during the introduction phase, which
reflects the time when a novel functionality is launched in the market, due to doubts
about the consumer acceptance, the logical behavior of the product is described
using well known high level software languages like C++, Java and .NET. This
execution strategy avoids costs, since the target processing element, usually a
general-purpose processor (GPP), is the very same of (or very close to) the previous
product. After market consolidation the growth and maturity phase start. At this
time, the functionality is used in a wide range of products, and its execution tends to
be closer to the hardware to achieve better energy efficiency, speedup, and to avoid
overloading in the general purpose processor.

Generally, two methods are used to approach the required functionality of a
product to the underlying hardware, aiming to explore the benefits of a joint
development. The first technique evaluates small applications parts, which possibly
have huge impact in the whole application execution. For example, this used to
be the scenario of embedded systems some time ago, or of some very specialized
applications in general-purpose processors. After the profiling and evaluation phase,
chosen code parts are moved to specialized hardwired instructions that will extend
the processor instruction set architecture (ISA) and assist a delimited range of
applications. MMX, SSE and 3DNow! are successful ISA extensions that have been
created aiming to support certain application domains, in those cases, multimedia
processing.

A second technique uses a more radical approach to close the gap between the
hardware and the required functionality. Its entire logic behavior is implemented in
hardware, aiming to build an application specific integrated circuit (ASIC). ASIC
development can be considered a better design solution than ISA extensions, since
it provides better energy efficiency and performance.

Due to several reasons the current scenario of the electronics market is changing,
since over 1.5 billion of embedded devices were shipped in 2011 [20] showing
an increasing by 11% in comparison with 2010. Besides the already explained
drawbacks regarding the traditional product manufacturing, such designs need to
worry about battery life, size and, for critical applications, reliability. Aiming
to achieve their hard requirements, system-on-a-chip (SoC) is largely used in
the embedded domain. The main proposal of a SoC design is to integrate in a
single die the processing element (in most cases a GPP is employed), memory,
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Fig. 1 Different MPSoC approaches

communication, peripheral and external interfaces. This eases the deployment of
a product, by freeing designers from the hard system validation task. The mobileGT
SoC platform [6] exemplifies a successful employment of a SoC for the embedded
domain. BMW, Ford, General Motors, Hyundai and Mercedes Benz use the cited
SoC in their cars to manage the information and entertainment applications.

However, SoC designs do not sustain the required performance for the growing
market of heterogeneous software behaviors, which has been running on top of
the available GPP processor. Moreover, the instruction level parallelism (ILP)
exploration is no longer an efficient technique, in terms of energy consumption,
to improve performance of those processors, due the limited ILP available in
the application code [22]. Despite the great advantages shown on ISA extensions
employment, like the MMX strategy, this approach relies on a high design and
validation time, which goes against the need of a fast time-to-market of embedded
systems. ASIC employment usually depends on a complex and costly design process
that could also affect the time-to-market required by the company. In addition, this
architecture attacks only a specific application domain, and can fail to deliver the
required performance to software behaviors that are out of this domain. However,
both ASIC and ISA extension are supplied by their high-performance under a
limited application domain.

This critical scenario dictates the need for changes on the hardware platform
development paradigm. A new organization that appears as a possible solution for
the current design requirements is the Multiprocessor System-on-chip (MPSoC).
Many advantages can be obtained by combining different processing elements into
a single die. The computation time can clearly benefit since, at the same time,
several different programs could be executed in the available processing elements.
In addition, the flexibility to combine different processing elements appears as a
solution to the heterogeneous software execution problem, since designers can select
the set of processing elements that best fit in their design requirements. Figure 1
illustrates three examples of MPSoC with different set of processing elements.
MPSoC #1 is composed of only general-purpose processors (GPP) with the same
processing capability. In contrast, the MPSoC #2 aggregates GPP with distinct
computation capability. As another example, MPSoC #3 is assembled to another
computation purpose, since it contains three different processing paradigms. More
details about each MPSoC approach are explained in the next sections.
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Fig. 2 Scheduling methodologies for a given active process set

MPSoC provides several advantages, and three highlight among all: perfor-
mance, energy consumption and validation time. MPSoC design introduces a
new parallel execution paradigm aiming to overcome the performance barrier
created for the instruction level parallelism limitation. In contrast to the ILP
exploration paradigm that can be supported both for hardware or software, current
coarser parallelism detection strategies are made only for the software team. The
hardware team is only responsible for encapsulating and making the communication
infrastructure to build a single die with a suitable number of processing elements.
The software team splits and distributes the paralyzed code among the MPSoC
processing elements. Although both teams might work together, the reality is that
there is no strong methodology nowadays that can support software development
for multiprocessing chips for any kind of application.

We define parallel code as composed of threads or processes. A thread is
contained inside a process, and differs from this by its lightweight context infor-
mation. Moreover, a process has a private address space, while a set of threads
shares the same address space used to make communication with each other in
an easier fashion. Figure 2 illustrates an active process set environment composed
of three threaded processes. Scheduling 1 reflects the traditional Thread-Level
Parallelism (TLP), exploiting the parallel execution of active processes parts.
Scheduling 2 methodology supports only single-threaded parallelism exploitation,
in Process-Level Parallelism (PLP) only processes are scheduled, regardless of their
internal thread number. Finally, there is mixed parallelism exploitation, illustrated
by Scheduling 3, working both in thread and process scheduling levels. The last
approach is widely used in the commercial MPSoC due to its greater flexibility on
scheduling methodology. The scheduling policies rely on the MPSoC processing
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elements set (Fig. 1). Therefore, the above scheduling approaches can be associated
with the previous MPSoC processing element sets. Supposing that all GPP of
MPSoC #1 and MPSoC #2 have the same ISA, Scheduling 1 methodology only fits
in this hardware modeling due the binary compatibility of threads code. In contrast,
the three examples of MPSoC illustrated in Fig. 1 support the Scheduling 2 and 3.

Commonly, parallel execution in multiprocessing platforms is not only used to
achieve better speedup, but energy consumption is a big reason for its usage as
well. Several factors, both in hardware and software level, contribute to the lower
energy consumption of MPSoC architectures. Considering the architecture design,
there is no dedicated hardware to split and distribute the application code over the
processing elements, since the software team does such work during application
development time. A responsible for software distribution is needed, and this is the
main problem.

Embedded platforms employ several techniques to save energy in multiprocess-
ing designs. Dynamic voltage and frequency scaling (DVFS) is applied at the entire
chip, changing, at runtime, the global MPSoC voltage and frequency [26]. The
management policy is based on some system tradeoff like processing elements load,
battery charge or chip temperature. Commonly, DVFS is controlled by software,
which provides unsuitable time overhead to change the processing element status.
Nevertheless, DVFS can affect the performance and even cause drawbacks on real-
time based systems. DVFS can also be applied independently on each processing
element. Software team during profiling can insert frequency scaling instructions
into code, to avoid hardware monitoring for DVFS. Hence, the computational load
of each processor is individually monitored, making chip power management more
accurate [2, 18]. More recently, aiming to decrease the delay of power management
based on software, Core i7, a multiprocessing platform from Intel, employs a
dedicated built-in microcontroller to handle DVFS [9, 31]. The built-in chip power
manager frequently looks at the temperature and power consumption aiming to turn
off independent cores when they are not being used. The DVFS microcontroller can
be seen as an ASIC that supplies only the power management routine, which makes
clear the convergence of dedicated processing elements to a single die.

Consumers are always waiting for products equipped with exciting features.
Time-to-market appears as an important consumer electronics constraint that should
be carefully handled. Researches explain that 70% of the design time is spent in
the platform validation [1] being an attractive point for optimization. Regarding
this subject, MPSoC employment softens the hard task to shrink time-to-market.
Commonly, an MPSoC is built by the combination of validated processing elements
that are aggregated into a single die as a puzzle game. Since each puzzle block
reflects a validated processing element, the remaining design challenge is to assem-
ble the different blocks. Actually, the designer should only select a communication
mechanism to connect the entire system, easing the design process by the use of
standard communication mechanisms.

Up to now, only explanations about hardware characteristics of MPSoC were
mentioned. However, software partitioning is a key feature in an MPSoC system.
Considering software behavior, a computational powerful MPSoC becomes useless
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Fig. 3 Throughput requirements of traditional DSP applications, adapted from [7]

if the application partitioning is poorly performed, or if application does not provide
a minimum thread or process level parallelism to be explored by the computational
resources. Amdahl’s law argues that an application speedup is limited by its
sequential part. Therefore, if an application needs 1 h to execute, being 5 min
sequential (almost 9% of entire application code), the maximum speedup provided
for a multiprocessing system is 12 times, no matter how many processing elements
are available. Therefore, the designer ability to perform software partitioning and the
limited parallel code are the main challenges on an MPSoC design development.

Today, we are usually in touch with functionalities like video conferencing,
graphics and speech processing. These functionalities are widespread in digital
cameras, MP3, DVD, cell phones and generic communication devices. To support
their executions several DSP algorithms are running inside of these devices.
Fast Fourier Transform (FFT), Finite Impulse Response (FIR), Discrete Cosine
Transform (DCT) and IEEE 802.11 communication standard are examples of these
algorithms. The growing convergence of different functionalities to a single device
has been increasing, and it is difficult for a single hardware platform to reach the
performance requirements of these applications.

Many DSP functionalities and their throughput requirements are shown in Fig. 3.
Let us suppose a mobile device composed by all the functionalities shown in Fig. 3,
and also let us suppose that they are running on a 1 GHz 8-issue superscalar
processor. The processor throughput needed to support the execution is almost
seven billion instructions per second. The application execution scenario becomes
hard for a general-purpose processor, since the maximum performance of the
baseline processor reaches eight billion of instructions per second (with perfect
ILP exploitation and perfect branch prediction). In this way, DSP processors are
always present in real life products, aiming to achieve, with their specialized DSP
instructions, the necessary performance for the DSP applications. However, even
DSP processors are suffering to reach the high performance required when many
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Fig. 4 Speedup of traditional DSP application on MPSoC system [8]

applications are deployed. Hence, the multiprocessing system appears, also in the
DSP domain, as a solution to supply the high performance requirements. The major
advantage of multiprocessing elements on the DSP domain is the inherent Thread-
Level Parallelism, not present in most traditional applications [15].

Figure 4 illustrates the speedup provided by a multiprocessing system for DSP
applications. The speedup for the Maximum Value application increases almost
linearly with the number of processor. The eight-tap FIR and 64-pt FFT also show
optimistic speedups when the number of processing elements increases. On the other
hand, the 8× 8 Discrete Cosine Transform provides the smallest speedup among the
application workload. Clearly, this application is a good example for Amdahl’s law,
demonstrating that multiprocessing systems can fail to accelerate applications that
have a meaningful sequential part.

The rest of this chapter is divided into five major sections. First, a more detailed
analytical modeling is provided to show the actual design space of multiprocessing
devices in the DSP field. Next, an MPSoC hardware taxonomy is presented, aiming
to explain the different architectures and applicability domain. MPSoC systems
are classified taking into account two points of view: architecture and employed
organization. A dedicated section demonstrates some successful MPSoC designs.
A section discusses open problems in MPSoC design, covering from software
development, communication infrastructure. Finally, future challenges like how can
one overcome Amdahl’s law limitations are covered.

2 Analytical Model

In this sub-section, we try to figure out the potential of single parallelism exploita-
tion by modeling a multiprocessing architecture (MP-MultiProcessor) composed of
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Fig. 5 Modeling of the (a) multiprocessor system and the (b) high-end single-processor

many simple and homogeneous cores without any capability to explore instruction
level parallelism (ILP) to elucidate the advantages of Thread Level Parallelism
(TLP) exploitation. We also compare its Execution Time (ET) to a high-end single
processor SHE (Single High-End) model, which is able to exploit only ILP available
in applications.

We have considered different amounts of fine- (instruction) and coarse- (thread)
level parallelism available in the application code to investigate the performance
potentials of the both aforementioned architectures.

Considering a part of a given application code, we classify it in four different
ways:

• α – the instructions that can be executed in parallel in a single processor;
• β – the instructions that cannot be executed in parallel in a single processor;
• δ – the amount of instructions that can be distributed among the processors of the

multiprocessor environment.
• γ – the amount of instructions that cannot be split, and therefore must be executed

in one of the processors among those in the multiprocessor environment.

Figure 5 exemplify how the previously stated classification, considering a certain
application “A”, would be applied. In the example shown in this figure, when
the application is executed in the multiprocessor system (Fig. 5a), 70% of the
application code can be parallelized at some degree (i.e. divided in threads) and
executed on different cores at the same time, so δ= 0.7 and γ= 0.3. On the other
hand, when the very same application “A” is executed on the high-end single-
processor (Fig. 5b), in 64% of the application code instructions can be executed
in parallel at some degree, so α= 0.64 and β= 0.36.
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2.1 Performance Comparison

Let us start with the basic equation relating Execution Time (ET) with instructions,

ET = Instructions∗CPI∗CycleTime, (1)

where CPI is the mean number of cycles necessary to execute an instruction, and
Cycletime is the clock period of the processor.

In this model, information about cache accesses, performance of the disk or
any other I/O operation is not considered. However, although simple, this model
can provide interesting performance clues on the potential of multiprocessing
architectures and aggressive instruction level parallelism exploitation for a wide
range of different applications classes.

2.1.1 Low End Single Processor

Based on Eq. (1), for a Low-End Single SLE (Single Low End) processor, the
execution time can be written as:

ETSLE = Instructions(∝ CPISLE +βCPISLE)CycleTimeSLE . (2)

Since the low-end processor is a single-issue processor, it is not able to exploit
ILP. Therefore, classifying instructions in α and β as previously stated does not
make much sense. In this case, α is always equal to zero and β equal to one, but we
will keep the notation and their meaning for comparison purposes.

2.1.2 High End Single Processor

In the case of a high-end ILP exploitation architecture, based on Eqs. (1) and (2),
one can state that ETSHE(Execution Time of the High End Single Processor) is given
by the following equation:

ETSHE = Instructions(∝ CPISHE +β CPISLE)CycleTimeSHE . (3)

As already explained, coefficients α and β refer to the percentage of instructions
that can be executed in parallel or not (this way, α+ β= 1), respectively. Cycle-
TimeSHE represents the clock cycle time of the high-end single processor.

The CPISHE is usually smaller than 1, because a single high-end processor can
exploit high levels of ILP, thanks to the replication of functional units, branch
prediction, speculative execution, mechanisms to handle false data dependencies
and so on. A typical value of CPISHE for a current high-end single processor is 0.62
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[8], which shows that more than one instruction can be issued and executed per
cycle. The CPISHE, could also be written as ∝CPISLE

issue , where Issue is the number of
instructions that can be issued in parallel to the functional units, when considering
the average situation (i.e. a High-End Single processor would have the same CPI as
the CPI of a Low-End Processor divided by the mean number of instructions issued
per cycle). Thus, based on Eq. (3), one gets:

ETSHE = Instructions

(
∝ CPISLE

issue
+β CPISLE

)
CycleTimeSHE . (4)

Having stated the equation to calculate the performance of both high-end and
low-end single processor models, now the potential of using a homogeneous
multiprocessing architecture to exploit TLP is studied. Because we are considering
that such architecture is built by the replication of low-end processors (so that a large
number of them can be integrated within the same die), a single low-end processor
does not have any capability to exploit the available ILP of each thread.

If one considers that each application has a certain number of sequences of
instructions that can be split (transformed to threads) to be executed on several
processors, one could write the following equation, based on Eqs. (1) and (2):

ETMP = Instructions

(
δ
P
+ γ

)
( αCPISLE +βCPISLE) CycleTimeMP, (5)

where δ is the amount of sequential code that can be parallelized (i.e. transformed
into multithreaded code), while γ is the part of the code that must be executed
sequentially (so no TLP is exploited). P is the number of low-end processors that is
available in the chip. As can be observed in the second term of the Eq. (5), because
the single low end processor is considered, the multiprocessor architecture does
not exploit ILP (α= 0 and β= 1). Therefore, when one increases the number of
processors P, only the part of code that presents TLP (δ) will benefit from the extra
processors.

2.2 High-End Single Processor Versus Homogeneous
Multiprocessor Chip

Based on the above reasoning, now we compare the performance of the high-end
single processor to the multiprocessor architecture. Since power is crucial in an
embedded system design, we have chosen a certain total power budget as a fair
performance factor to compare both designs. Thus, based on Eqs. (3) and (5), one
can consider the following equation:
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ETSHE

ETMP
=

[
Instructions

(
∝ CPISLE

issue +βCPISLE

)
CycleTimeSHE

]
[
Instructions

(
δ
P + γ

)
(∝ CPISLE +βCPISLE)CycleTimeMP

] . (6)

If one considers that in the model of the multiprocessor environment, a single
low end processor is not capable of exploiting instruction level parallelism, and
then ∝= 0, one can reduce the Eq. (6) to:

ETSHE

ETMP
=

[
Instructions

(
∝ CPISLE

issue +βCPISLE

)
CycleTimeSHE

]
[
Instructions

(
δ
P + γ

)
(0 ∗CPISLE + 1 ∗CPISLE)CycleTimeMP

] , (7)

and, by simplifying (7), one gets

ETSHE

ETMP
=

[
Instructions

(
∝ CPISLE

issue +βCPISLE

)
CycleTimeSHE

]
[
Instructions

(
δ
P + γ

)
(CPISLE)CycleTimeMP

] . (8)

We are also considering that, as a homogeneous multiprocessor design is
composed of several low-end processors with a very simple organization, those
processors could run at much higher frequencies than a single and complex high-end
processor. Therefore, we will assume that

(
1

CycleTimeMP

)
= K ∗

(
1

CycleTimeSHE

)
, (9)

where K is the frequency adjustment factor to equal the power consumption of the
homogeneous multiprocessor with the high-end single processor.

By merging and simplifying Eqs. (8) and (9), one gets:

ETSHE

ETMP
=

[
1

δ
P + γ

][
∝ CPISLE

issue +βCPISLE

CPISLE

]
K. (10)

According to Eq. (10), a machine based on a high-end single core will be faster

than a multiprocessor-based machine if
(

ETSHE
ETMP

)
< 1. This equation also shows that,

although the multiprocessor architecture with low-end simple processors could have
a faster cycle time (by a factor of K), that factor alone is not enough to define
performance, as demonstrated in the second term between brackets in Eq. (10).
Because the high-end processor can execute many instructions in parallel, better
performance improvements can be obtained, as long as ILP is the dominant factor,
instead of TLP.

To better illustrate this point, let us imagine the extreme case: P=∞, meaning
that infinite processors are available. In addition, if one considers that the multipro-
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cessor design is composed of single low end processors that do not exploit ILP and,
therefore, ∝ CPISLE is always equal to zero, it can be removed from the equation.
Therefore, Eq. (10) reduces to:

ETSHE

ETMP
=

[
∝ CPISLE

issue +βCPISLE

γCPISLE

]
K. (11)

Let us consider that the execution of the very same application on both
multiprocessor and single high-end architectures presents exactly the same amount
of sequential code, so β = γ . In this case, the operating frequency (given by the K
factor) will determine which architecture runs faster if the issue width of the high-
end superscalar processor also tends to infinite.

In another example, if one applies the same Eq. (11) in a scenario where an
application presents 10% of sequential code (β = γ = 0.1) and is executing on a four
issue high-end single processor, the operating frequency of the four issue high-end
single processor should be only 20% (K = 0.8) greater than the multiprocessor to
achieve the very same execution time. On the other hand, if that the application now
presents 90% of sequential code (β = γ = 0.9), the high-end single processor should
run 3.2 times (K = 0.31) faster than the multiprocessor design. With these corner
cases, one can conclude that when applications present small parts of its code that
cannot be parallelized, both architectures running at the same operating frequency
will present almost the same performance regardless the number of processors in
a multiprocessor system. For applications with huge amount of sequential code,
complex single processors must run at higher frequencies than multiprocessors
systems to achieve the same performance.

2.3 Applying the Analytical Model in Real Processors

Given the analytical model, one can briefly experiment it with numbers based on
real data. Let us consider a high-end single core: a 4-issue SPARC64 superscalar
processor with CPI equal to 0.62 [8]; and a multiprocessor design composed of low-
end single-issue TurboSPARC processors with CPI equal to 1.3 [8]. A comparison
between both architectures is done using the equations of the aforementioned analyt-
ical model. In addition, we consider that the TurboSPARC has 5,200,000 transistors
[16], and that the SPARC64 V design [24] requires 180,000,000 transistors to
be implemented. For the multiprocessing design we add 37% of area overhead
due to the intercommunication mechanism [25]. Therefore, aiming to make a fair
performance comparison among the high-end single core and the multiprocessor
system, we have devised an 18-Core design composed of low-end processors that
has the same area of the 4-issue superscalar processor and consumes the same
amount of power.
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Figure 6 shows, in a logarithmic scale, the performance of the superscalar
processor, when parameters α and β change, and the performance of the many in-
order TurboSPARC cores, when the δ and γ and the number of processors (from 8
to 128) varies. The x-axis of Fig. 6 represents the amount of the instruction- and
thread-level parallelism in the application, considering that the α factor is only valid
for the superscalar processor, while δ is valid for all the multiprocessing systems’
setups.

The goal of this comparison is to demonstrate which technique better explores
its particular parallelism type at different levels, considering six values for both ILP
and TLP. For instance, δ= 0.01 means that a hypothetic application only shows
1% of TLP available within its code (in the case of the multiprocessing systems).
In the same way, when α= 0.01, it is assumed that only 1% of the total number
of instructions can be executed in parallel on the superscalar processor. In these
experiments, we considered the same power budget for the high-end single core
and the multiprocessor approaches. In order to normalize the power budget of both
approaches we have tuned the adjustment factor K of Eq. (9). For that, we fixed the
power consumption of the 4-issue superscalar to use it as the reference, changing
the operating frequency (K factor) of the remaining approaches to achieve the same
power consumption.

Thus, the operating frequency of the 8-Core multiprocessing system must be 3
times higher than the one of the four-issue superscalar processor. For the 18-Core
setup, the operating frequency must be a 25% higher than the reference value. Since
a considerable number of cores is employed in the 48-Core setup, it must execute 2
times slower than the superscalar processor to operate under the same power budget.
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Finally, the operating frequency of the 128-Core design must be 5.3 times lower than
the superscalar.

In the leftmost side of Fig. 6, one considers any application that has a minimum
amount of instruction (α= 0.01) and thread (δ= 0.01) level parallelism. In this
case, the superscalar processor is slower than the 8- and 18-Core designs since the
parallelism is insignificant, the higher operating frequency of both multiprocessing
system is responsible for faster execution. Moreover, when the application shows
higher parallelism levels (α> 0.25 and δ> 0.25), the 18- and 8-Core better handles
the extra TLP available than the superscalar does with the ILP, presenting more
performance. So, considering only the 18-Core design, the multiprocessing system
achieve better performance with the same area and power budget in the whole
spectrum of parallelism available.

However, as more cores are added in a multiprocessor design, the overall clock
frequency tends to decrease, since the adjustment factor K must be decreased to
respect the power budget. Therefore, the performance of applications that present
low TLP (small δ) worsens when the number of cores increases. Applications with
δ= 0.01 in Fig. 6 are good examples of this case: performance is significantly
affected as the number of cores increases. As another representative example, even
when almost the whole application presents high TLP (δ> 0.99), the 128-Core
design takes longer than the other multiprocessor designs. Figure 6 concludes that
the increasing on the number of cores not always produces a satisfactory tradeoff
among energy, performance and area.

2.4 Energy Comparison

If the superscalar processors usually does not perform well in most cases, when
one measures energy consumption, several factors combine to further affect its
employment on embedded systems: power in CMOS circuits is proportional to the
switching capacitance, to the operating frequency and to the square of the power
supply. In this simple model, we will assume that the power is dissipated only in the
data path. This is clearly overly optimistic for what regards the power dissipated by
a superscalar, but this can also give an idea of the lower bound of energy dissipation
in the high-end single processor.

The power dissipated by a high-end single processor can be written as

PSHE ≈ issue∗C ∗
(

1
CPISHE

)
∗ V 2

SHE , (12)

where C is the capacitance switching of a single issue processor, and Vss is the

voltage the processor is operating on. The term
(

1
CPISHE

)
is included to consider

the extra power needed during the speculation process to sustain performance with
a CPI smaller than 1. The energy of the high-end single processor is given by:

ESHE = PSHE ∗TSHE . (13)
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Power consumed by a homogeneous multiprocessing system is given by

PMP ≈ P∗C ∗
(

1
CPISLE

)
∗ V 2

MP. (14)

Again, as in the case of superscalar processor, the term considering the CPI of

the single low-end processor
(

1
CPISLE

)
has been also included, while its energy is

given by

EMP = PMP ∗TMP. (15)

When one compares both, it is possible to write

ESHE

EMP
= issue∗

[(
∝

CPISLE

issue
+βCPISLE

)
∗ 1

CPISHE
∗ 1

K

]

= P∗
[(

δ
P
+ γ

)
∗ (αCPISLE +βCPISLE)

]
∗ 1

CPIMP
, (16)

and, by simplifying (16), one gets

ESHE

EMP
=

V 2
SHE

[
(∝ +issue∗β)∗ 1

K

]
V 2

MP [(δ +Pγ)]
. (17)

Equation (17) demonstrates that both approaches unnecessarily spend power
when there is no ILP or TLP available since there is no power management
technique modeled to reduce power supply (V 2

SHE and V 2
MP). Figure 7 shows the

energy results considering the same power budget, as it was already done in the
performance model. For this first experiment, we do not consider the communication
overhead for the multiprocessing environment that will be modeled later. In
addition, we only show the energy of 8- and 18-Core Designs, since the conclusions
of these setups are also valid for the rest of the setups.

The high-end single processor organization spends higher energy than the 18-
Core multiprocessor the same amount of energy when considering all levels of
available parallelism since the latter is faster than the former in all cases (Fig. 6).

To obey the given power budget, the 8-Core multiprocessor runs 3 times faster
than four-issue superscalar and the 18-Core multiprocessor. Thus, as the 8-Core
Design present 3 times lower execution time than the 4-issue superscalar, the former
spends 3 times less energy. When the parallelism is more exposed the superscalar
approaches to the 8-Core Design, since its execution time decreases. Multipro-
cessors composed of a significant number of cores present worst performance in
applications with low/medium TLP (Fig. 6). Consequently, in those cases and if
no power management techniques are considered (e.g., cores are turned off when
not used), energy consumption of such multiprocessor designs tend to be higher
than those with fewer cores. As can be seen in Fig. 7, the 8-Core multiprocessor
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Fig. 7 Multiprocessing Systems and High-end single processor energy consumption; α= δ is
assumed

consumes less energy than the 18-Core for low/medium TLP values (δ< 0.75).
However, when applications present greater thread level parallelism (δ> 0.9), the
energy consumed by the 18-Core multiprocessor reaches the same values as the
8-Core design, thanks to the better usage of the available processors.

2.5 DSP Applications on a MPSoC Organization

We evaluate the superscalar and MPSoC performance considering an actual DSP
application execution. An 18-tap FIR filter is used to measure the performance
of both approaches handling a traditional DSP application. The C-like description
of the FIR filter employed in this experiment is illustrated in Fig. 8. Superscalar
machines explore the FIR filter instruction level parallelism in a transparent way,
working on the original binary code. Unlike the superscalar approach, to explore
the potential of the MPSoC architecture there is a need to make manual source code
annotations in order to split the application code among many processing elements.
In this way, some code highlights are shown in Fig. 8 to simulate annotations,
indicating the necessary number of cores to explore the ideal thread level parallelism
of each part of the FIR filter code. For instance, the first annotation considers a loop
controlled for IMP SIZE value, which depends on the number of FIR taps. In this
case, 54 loop iterations are done since the experiment regards an 18-tap FIR filter.

The OpenMP [4] programming language provides specific code directives to
easily split loop iterations among processing elements. Using OpenMP directives,
the ideal exploration of this loop is done through 54-core MPSoC, each one
being responsible for running single loop iteration. However, when the amount of
processing elements is lower than the number of loop iterations, OpenMP combines



Multicore Systems on Chip 533

Fig. 8 C-like FIR filter

them in groups to distribute tasks among the available resources. Hence, regarding
the execution of 54 loop iterations into 18-core MPSoC, OpenMP creates 18 groups,
each one composed of three iterations. Figure 8 demonstrates that almost the
entire FIR code can be parallelized, since its code is made up of several loops.
In general, traditional DSP applications (ex: FFT and DCT) have a loop-based code
behavior suitable for OpenMP loop parallelization. However, some loops cannot be
parallelized due data dependency among iterations. For instance, the last loop of
the FIR filter description shown in Fig. 8 demonstrates this behavior, since shifting
array values presents dependencies among all loop iterations.
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approaches

Aiming to illustrate the impact on performance of TLP and ILP exploration
on DSP applications, we evaluated the 18-tap FIR execution over three different
architectures: a four-issue Superscalar (SS); 6- 18- and 54-core MPSoCs based on
pipelined cores, with no ILP exploration capabilities (MPIOC). Finally, in order to
have a glimpse on the future, we imagined a 6- 18- and 54-Cores MPSoCs based
on a four-issue superscalar processor, able to explore both ILP and TLP (MPSS).
We have extracted the speedup with a tool [16] that makes all data dependence
graphs of the application. After, considering the characteristics of the evaluated
architectures, the execution time of each graph is measured in order to obtain their
speedup over the baseline processor. It is important to point out that instruction and
thread communication overhead has not been taken into account in this experiment.

The results shown in Fig. 9 reflect the speedup provided over a single pipelined
core performance running the C-like description of the 18-tap FIR filter presented
in Fig. 8. The leftmost bar shows the speedup provided for the ILP exploration of a
four-issue superscalar processor. In this case, the execution time of the Superscalar
processor is 2.2 times lower than that of a pipelined core, showing that the FIR
filter has neither high nor low ILP, since a four-issue superscalar processor could
potentially achieve up to 4 times the performance of a pipelined core.

Considering the MPSoC composed of pipelined cores, the 6-core machine
provides almost a linear speedup, decreasing by 5.96 times the single pipelined core
execution time. This behavior is maintained when more pipelined cores are inserted.
However, when 18-tap FIR filter is explored for the maximum TLP (54-MPIOC), a
speed up of only 44.8 times is achieved, showing that even applications which are
potentially suitable for TLP exploration could present non-linear speedups. This can
be explained by the sequential code present inside of each loop iteration.
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Amdahl’s Law shows that it is not sufficient to build architectures with a large
number of processors, since most parallel applications contain a certain amount of
sequential code [23]. Hence, there is a need to balance the number of processors
with a suitable ILP exploration approach to achieve greater performance. The MPSS

approach combines TLP with ILP exploration of four-issue superscalar aiming to
show that simple TLP extraction is not enough to achieve linear speedups even
for DSP applications with high TLP. Figure 9 illustrates the speedup of the MPSS

approach. As it can be noticed, 6-MPSS accelerates the 18-tap FIR filter more than
twice 6-MPIOC, since higher ILP is explored for the superscalar processor. In this
case, when the first loop of Fig. 8 is split among the MPSoC, each core executes
nine loop iterations providing a large room for ILP exploration. However, when
the number of cores increases, the sequential code decreases, making less room
for the ILP optimization. Nevertheless, the 18-tap FIR filter execution in 54-MPSS

is 66% faster than 54-MPIOC execution showing the need for a mixed parallelism
exploration.

Summarizing, most DSP applications benefit of thread level parallelism explo-
ration thanks to their loop-based behavior. However, even applications with high
TLP could still obtain some performance improvement by also exploiting ILP.
Hence, in a MPSoC design ILP techniques also should be investigated to conclude
what is the best fit considering the design requirements. Finally, this subsection
also shows that replications of simple processing elements leaves a significant
optimization possibility unexplored, indicating that heterogeneous MPSoC could
be a possible solution to balance the performance of the system.

3 MPSoC Classification

Due to the large amount of application domains that the MPSoC design principle
can be applied to, some methods to define the advantages/disadvantages of each one
should be defined. Commonly, a MPSoC design is classified only considering its ar-
chitecture type, as homogeneous or heterogeneous. In this section the classification
is done from two points of view: architecture and organization modeling.

3.1 Architecture View Point

When processors are classified under the architecture view point, the instruction
set architecture (ISA) is the parameter used to distinguish them. The first step
of a processor design is the definition of its basic operation capabilities, aiming
to create an ISA to interface those operations to the high level programmer.
Generally, an ISA is typically classified as reduced instruction set computer (RISC)
or complex instruction set computer (CISC). The strategy of RISC architectures
is making the processor data path control as simple as possible. Their instructions
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set are non-specialized, covering only the basic operations needed to make simple
computations. Besides its reduced instruction set, the genuine RISC architectures
provide additional features like instructions issued at every clock cycle execution,
special instructions to perform memory accesses, register-based operations and a
small clock cycle, thanks to their pipelined micro-operations. On the other hand, the
CISC architecture strategy aims at supporting all required operations on hardware,
building specialized instructions to better support high level software abstractions.
In fact, a single CISC instruction reflects the behavior of a several RISC instructions,
with different amount of execution cycles and memory accesses. Hence, the data
path control becomes more complex and harder to manage than RISC architectures.
Both strategies are widely employed in processor architectures, always guided by
the requirements and constraints of the design. DSP processors better fit the CISC
characteristics, since there are many specialized instructions to provide efficient
signal processing execution. Multiply-accumulate, round arithmetic, specialized
instructions for modulo addressing in circular buffers and bit-reversed addressing
mode for FFT are some examples of specialized CISC instructions focused on
accelerating specific and critical parts of the DSP application domain.

In the architecture point of view, there are several ways to combine processing
elements inside a die. Figure 1 presents three examples of MPSoC with different
processing element arrangement. As can be noticed in this figure, MPSoC #1 is
composed of four processing elements with the very same ISA, and this MPSoC
arrangement is classified as a homogeneous MPSoC architecture. The same classifi-
cation is given for the MPSoC #2 that only differs from the first for the diversity on
computing time of its processing elements. Details about this organization fashion
are given in the next section.

Homogeneous MPSoC architectures have been widespread in general-purpose
processing domain. As already explained, the current difficulties found on increas-
ing the applications performance by using ILP techniques, aggregated to the large
density provided by the high transistor level integration, encouraged the coupling
of several GPP into a single die. Since, in most cases, the baseline processor is
already validated, the inter-processor communication design is the unique task to
be performed on the development of a homogeneous MPSoC architecture (although
this turned out to be not such an easy task). In the software side, programming
models are used to split the code among the homogeneous cores, making the hard
task of coding parallel software easier. OpenMP [4] and MPI [14] are the most
used programming models providing a large number of directives that facilitate
such a hard task. More details about programming languages are provided in the
last section.

For almost 5 years now, Intel and AMD have been using this approach to
speed up their high-end processors. In 2006, Intel has shipped its first MPSoC
based on homogeneous architecture strategy. Intel Core Duo is composed of two
processing elements that make communication among themselves through an on-
chip cache memory. In this project, Intel has thought beyond the benefits of MPSoC
employment and created an approach to increase the process yield. A new processor
market line, called Intel Core Solo, was created aiming to increase the process yield
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by selling even Core Duo dies with manufacturing defects. In this way, Intel Core
Solo has the very same two-core die as the Core Duo, but only one core is defect free.

Recently, embedded general-purpose RISC processors are following the trend
of high-end processors coupling many processing elements, with the same archi-
tecture, on a single die. Early, due to the hard constraints of these designs and
the few parallel applications that would benefit from several GPP, homogeneous
MPSoC were not suitable for this domain. However, the embedded software
scenario is getting similar to a personal computer one due the large amount of
simultaneous applications running over its GPP. ARM Cortex-A9 MPSoC processor
is the pioneer to employ homogeneous multiprocessing approach into embedded
domain, coupling four Cortex-A9 cores into a single die. Each processing element
uses powerful techniques for ILP exploration, as superscalar execution and SIMD
instruction set extensions, which closes the gap between the embedded processor
design and high-end general purpose processors.

Heterogeneous MPSoC architectures support different market requirements than
homogeneous ones. Generally, the main goal of the homogeneous approach is to
provide efficiency on a large range of applications behaviors, being widespread
used in GPP processor. On the other hand, heterogeneous approach aims to
supply efficient execution on a defined range of application behavior, including
some particular ISA extensions to handle specific software domains. MPSoC #3
(Fig. 1) better exemplifies a heterogeneous architecture composed of three different
ISAs. This architecture style is widely used in the mobile embedded domain,
due to the need for high performance with energy efficiency. The heterogeneous
MPSoC assembly depends a lot on the performance and power requirements of
the application. Supposing a current cell phone scenario where there are several
applications running over the MPSoC. Commonly, designers explore the design
space by trying to find critical parts of code that could be efficiently executed in
hardware. After, these parts are moved to hardware, achieving better performance
and energy efficiency. In an MPSoC used by a current cell phone there are many
heterogeneous processing elements providing efficient execution for specific tasks,
like video decompression and audio processing.

Samsung S3C6410 better illustrates the embedded domain trend to use MPSoCs.
This heterogeneous architecture handles the most widely used applications on
embedded devices like multimedia and digital signal processing. Samsung’s MP-
SoC is based on an ARM 1176 processor, which includes several ISA extensions,
such as DSP and SIMD processing, aiming to increase the performance of those
applications. Its architecture is composed of many other dedicated processing
elements, called hard-wired multimedia accelerators. Video Codec (MPEG4, H.264
and VC1), Image Codec (JPEG), 2D and 3D accelerators have become hard-wired
due to the performance and energy constraints of the embedded systems. This drastic
design change illustrates the growth and maturity phase of the functionality lifecycle
discussed in the beginning of this chapter. In this phase, the electronic consumer
market already has absorbed these functionalities, and their hard-wired execution is
mandatory for energy and performance efficiency.
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3.2 Organization View Point

In contrast with the previous section, this part of the chapter explores the hetero-
geneous versus homogeneous arrangement considering the MPSoC organization
as a classification parameter. This means that all MPSoC designs discussed here
have the same ISA, and they are classified by the use of similar/dissimilar processor
organization.

The homogeneous MPSoC organization, as already explained, has been
widespread in general-purpose processing. Intel and AMD replicate their cores into
a single die to explore the process/thread parallelism, moving the responsibility
of process/thread scheduling to the operating system or software team. Also, the
ARM Cortex design has introduced MPSoC in the embedded domain with a
homogeneous MPSoC organization employment. When a simple replication of the
very same processing elements occurs, the design is classified as homogeneous,
both in architecture and organization. Their processing elements have the same
processing capability, area and energy consumption, which delimits the design space
exploration, since no special task scheduling could be employed.

The process/thread scheduling, in an MPSoC design, is an important feature
to be explored, in order to create a tradeoff between the requirements and design
constraints, aiming to find the right balance between performance and power
consumption. Supposing the two approaches illustrated in Fig. 10, MPSoC #1
is composed by replications of the same processing element, being classified as
homogeneous both in architecture and organization. On the other hand, MPSoC
#2, from the organization point of view, demonstrates different processing elements
despite having the same ISA. The last MPSoC fashion is classified as a hetero-
geneous MPSoC in the organization point of view, and homogeneous MPSoC in
the architecture point of view. MPSoC #1 supports only naive task scheduling
approaches, since all processing elements have the same characteristics. In this
organization fashion, the task is always allocated in the same processing element
organization, meaning that there is no choosing for a smart task scheduling to
achieve certain design requirements, such as energy efficiency. In contrast, MPSoC
#2 provides flexibility on task scheduling. An efficient algorithm could be developed
to support design tradeoffs regarding requirements and constraints of the device.
Supposing a scenario with three threads (thread#1, thread#2, and thread #3) that
require the following performance level: low, very low and very high. The MPSoC
#1 scheduling approach simply ignores the computation requirements, executing
the three threads into their powerful processing elements, causing a waste of
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energy resources. An efficient scheduling algorithm can be employed in MPSoC
#2 to avoid the previous drawback, exploiting its heterogeneous organization.
Supposing a dynamic task scheduling algorithm that saves information about
threads execution, one can fit the thread computation need regarding the different
processing capabilities available in MPSoC #2 which allows an energy-efficient
design. For the given example, thread#1 is executed in the middle-size processing
element, thread#2 in the smallest one and thread#3 in the largest processing element.

4 Successful MPSoC Designs

Many successful MPSoC solutions are in the market, for both high-end performance
personal computers and highly-constrained mobile embedded devices. Commonly,
as already explained, high-end performance personal computers provide robust
GPP use with architecture and organization shaped on a homogeneous way due
to the large variation of software behavior that runs over these platforms. On the
other hand, MPSoCs for mobile embedded devices supply many ISAs, through
application specific instruction set processor to provide an efficient execution on
a restricted application domain. This subsection delimits MPSoC exploration to
embedded domain due their widely usage of DSP processors. Some successful
embedded MPSoC platforms are discussed, demonstrating the trends for mobile
multiprocessors.

4.1 OMAP Platform

In 2002, Texas Instruments has launched in the market an Innovator Development
kit (IDK) targeting high performance and low power consumption for multimedia
applications. IDK provides an easy design development, with open software, based
on a customized hardware platform called open multimedia applications processor
(OMAP). Since its launching, OMAP is a successful platform being used by the
embedded market leaders like Nokia with its N90 cell phones series, Samsung
OMNIA HD and Sony Ericsson IDOU. Currently, due to the large diversity found on
the embedded consumer market, Texas Instruments has divided the OMAP family
in two different lines, covering different aspects. The high-end OMAP line supports
the current sophisticated smart phones and powerful cell phone models, providing
pre-integrated connectivity solutions for the latest technologies (3G, 4G, WLAN,
Bluetooth and GPS), audio and video applications (WUXGA), including also high
definition television. The low-end OMAP platforms cover down-market products
providing older connectivity technologies (GSM/GPRS/EDGE) and low definition
display (QVGA).

Launched in 2009, OMAP4440 covers the connectivity besides high-quality
video, image and audio support. This mobile platform came to supply the need for
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the increasingly multimedia applications convergence in a single embedded device.
As can be seen in Fig. 11, this platform incorporates a dual-core ARM Cortex
A9 MPCore providing higher mobile general-purpose computing performance.
A novel power management hardware technique available in ARM Cortex A9
MPCore balances the power consumption with the performance requirements,
activating only the cores that are needed for a particular execution. Also, due to
the high performance requirement of today smart phones, up to eight threads can be
concurrently fired in the MPCore, since each core is composed of four single-core
Cortex A9. The single-core ARM Cortex A9 implements speculative issue out-of-
order superscalar execution, SIMD instruction set and DSP extensions, showing
almost the same processing power as a personal computer into an embedded mobile
platform. Excluding the ARM Cortex MPCore, the remainder processing elements
are dedicated to multimedia execution.

The PowerVR™ SGX540 multi-threaded graphics accelerator employs state-of-
art support for 2D and 3D graphics, including OpenGL and EGL APIs. Several
image enhancements like digital anti-aliasing, digital zoom and auto-focus are
provided by the Image Signal Processor (ISP), which focus on increasing the
quality of the digital camera. The processing capabilities of ISP enables picture
resolutions of up to 20-megapixel, with an interval of 1 s between shots. The
high memory bandwidth needed for ISP is supplied by a DMA controller that
achieves a memory-to-memory rate of 200 megapixel/s at 200 MHz. To conclude
the robust multimedia accelerators scenario, OMAP4440 allows a true 1080p multi-
standard high definition record and playback at 30 frames per second rate, by its
IVA3 hardware accelerator. IVA DSP processor supports a broad of multimedia
codec standards, including MPEG4 ASP, MPEG-2 MP, H.264 HP, ON2 VP7
and VC-1 AP.
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The large amount of OMAP4440 processing elements makes its power dissipa-
tion rates unfeasible for mobile embedded devices. Texas Instruments has handled
this drawback by integrating on the OMAP 440 design a power management
technology. Smartreflex2 supports, both at the hardware and software level, the
following power management techniques: Dynamic Voltage and Frequency Scaling
(DVFS), Adaptive Voltage Scaling (AVS), Dynamic Power Switching (DPS), Static
Leak Management (SLM) and Adaptive Body Bias (ABB). DVFS supports multiple
voltage values, aiming to balance the power supply and frequency regarding the
performance needed in a given execution time. AVS is coupled to DVFS to
provide a greater balance on power consumption, considering hardware features like
temperature. The coupling of both techniques delivers the maximum performance
of OMAP4440 processing elements with the minimum possible voltage at every
computation. Regarding leakage power, the 45 nm OMAP4440 MPSoC die already
provides a significant reduction in the consumption. DPS and SLM techniques
allow lowest stand-by power mode avoiding leakage power. Finally, ABB works
at transistor level enabling dynamic changes on transistor threshold voltages aiming
to reduce leakage power. All techniques are supported by the integrated TLW6030
power management chip illustrated in Fig. 11. In order to support energy efficient
audio processing, Texas has included the TWL6040 integrated chip that acts as an
audio back-end chip, providing up to 140 h of music playback in airplane mode.

Recently, Texas Instrument released its latest high-end product, OMAP543x
family platform [27]. Several technological improvements over the OMAP4440
were coupled to OMAP5430. The ARM Cortex-A9 was replaced to ARM Cortex-
A15 running at 2 GHz. ARM reports that the former performs 40% faster the latter.
Two ARM Cortex-M4 were inserted in the SoC to provide low power consumption
when offload computation mode is activated. The multicore PowerVR SGX544-
MPx replaced the single core SGX540 graphics accelerator, being capable of
encapsulate up to 16 processing elements, now supporting OpenGL and DirectX
application programming interfaces. Its 28 nm fabrication process produces lower
power consumption than the 45 nm of OMAP4440, which improves the battery
life. The OMAP543x family is divided in two target markets: area-sensitive and
cost-sensitive. The former includes the OMAP5430 platform and it is targeted to
smartphones and tablets encapsulating several imaging interfaces. The latter in-
cludes the OMAP5432 platform being focused on mobile computing which requires
higher bandwidth and lower interface to handle images. In terms of organization
and architecture, Texas Instrument keeps both heterogeneous encapsulating more
specialized processing elements to achieve low-power computation.

4.2 Samsung SoCs

As OMAP, Samsung MPSoC designs are focused on multimedia-based develop-
ment. Their projects are very similar due to the increasing market demand for
powerful multimedia platforms, which stimulates the designer to take the same
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decision to achieve efficient multimedia execution. Commonly, the integration of
specific accelerators is used, since this reduces the design time avoiding validation
and testing time.

In 2008, Samsung has launched the most powerful of the Mobile MPSoC family.
At first, S3C6410 was a multimedia MPSoC like OMAP4440. However, after
its deployment in the Apple iPhone 3G employment, it has become one of the
most popular MPSoCs, shipping three million units during the first month after
the launching. Recently, Apple has developed iPhone 3GS, which assures better
performance with lower power consumption. These benefits are supplied by the
replacement of the S3C6410 architectures with the high-end S5PC100 version.
In this subsection, we will explore both architecture highlighting the platform
improvements between S3C6410 and S5PC100. The S5PC100 was the last Samsung
SoC employed by Apple in the iPhone. After that, Apple encapsulates his own chips
in iPhone 4 and 4S, the Apple A4 and Apple A5 chips, respectively. However, these
chips still being fabricated by Samsung.

Following the multimedia-based MPSoC trend, Samsung platforms are com-
posed of several application specific accelerators building heterogeneous MPSoC
architectures. S3C6410 and S5PC100 have a central general-purpose processing
element, in both cases ARM-based, surrounded by several multimedia accelerators
tightly targeted to DSP processing. As can be noticed in Fig. 12, both platforms
skeleton follows the same execution strategy changing only the processing capa-
bility of their IP cores. This is an interesting design modeling approach, since
while traditional architecture designs suffer for long design/validate/test phases to
build a new architecture, MPSoC ones shorter these design times only by replacing
their low-end cores for high-end ones, creating a new MPSoC architecture. This
can be verified in the Fig. 12, small platform changes are done from S3C6410
to S5PC100 aiming to increase the MPSoC performance. More specifically, a
nine-stage pipelined ARM 1176JZF-S core with SIMD extensions is replaced for
a 13-stage superscalar pipelined ARM Cortex A8 providing greater computation
capability for general-purpose applications. Besides its double-sized L1 cache
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compared with ARM1176JZF-S, ARM Cortex A8 also includes a 256KB L2 cache
avoiding external memory accesses due L1 cache misses. NEON ARM technology
is included in ARM Cortex A8 to provide flexible and powerful acceleration for
intensive multimedia applications. Its SIMD based-execution accelerates multime-
dia and signal processing algorithms such as video encode/decode, 2D/3D graphics,
speech processing, image processing at least 2× of previous SIMD technology.

Regarding multimedia accelerators, both MPSoCs are able to provide suitable
performance for any high-end mobile devices. However, S5PC100 includes the
latest codec multimedia support using powerful accelerators. A 720p multi format
codec (MFC) video is included aiming to provide high quality capture and playback
at 30 frames per second rate. Also, previous video codec as MPEG4, VCI and
H.264 are available in this platform. Besides the S3C6410 TV out interfacing
PAL and NTSC, the new MPSoC version includes high definition multimedia
interface (HDMI) standard allowing high definition video formats. Summarizing,
all technologies included in S5PC100 platform accelerate multimedia applications
employing DSP approaches.

In 2010, Samsung launched the first SoC of its Exynos platforms, named as
Exydos 3110 [28], which was employed in the high-end cell phones and tablets
developed in such year (i.e. Samsung Galaxy S, Samsung Galaxy Tab). The second
SoC of this family, named as Exynos 4210 [29], keeps being the most employed
SoC in the high-end cell phones of Samsung. The best seller, Galaxy S II (i9100),
contain an Exynos 4210 composed of dual-core Cortex A9 running at 1.2 GHz
coupled to an ARM 4-Core Mali-400MP graphics processing unit. However, the
newer version of this cell phone, Galaxy S II (i9100G), changes the Exynos 4210
to an already discussed SoC, a 1.2 GHz dual core TI OMAP 4430 with a PowerVR
SGX540 GPU.

4.3 Apple SoCs

In March of 2010, Apple has announced its first SoC named as Apple A4, an ARM
Cortex-A8 running at 1 GHz and a PowerVR SGX535 GPP were coupled in a single
die to push up the performance of the iPAD, iPhone 4 and iTouch. In 2011, Apple
introduced the multicore concept in their devices launching Apple A5 SoC. This
SoC improves the performance over the Apple A4 by integrating a dual-core ARM
Cortex-A9 together with a dual-core PowerVR SGX543MP, iPAD 2 and iPhone
4S explore such powerful performance. Recently, Apple has announced its latest
SoC, named as Apple A5X. The changes over the previous version happen only
in the GPU. Apple A5X encapsulates a quad-core PowerVR SGX544MP4 which
drastically increases its video processing capabilities. The new iPAD, equipped with
such engine, achieves a display resolution of 2,048× 1,536, meaning a million more
pixels than the HDTV standard.
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4.4 Other MPSoCs

Other MPSoCs have already been released in the market, with different goal
from the architectures discussed before. Sony, IBM and Toshiba have worked
together to design the Cell Broadband Engine Architecture [3]. The Cell architecture
combines a powerful central processor with eight SIMD-based processing elements.
Aiming to accelerate a large range of application behaviors, the IBM PowerPC
architecture is used as GPP processor. Also, this processor has the responsibility
to manage the processing elements surrounding it. These processing elements,
named as synergistic processing elements (SPE), are built to support streaming
applications with SIMD execution. Each SPE has a local memory, but no hardware
is employed to manage it, which avoid that these memories directly access the
system memory. These facts make the software development for the Cell processor
even more difficult, since the software team should be aware of this local memory,
and manage it at the software level to better explore the SPE execution. Despite
its high processing capability, the Cell processor does not yet have a large market
acceptance due to the intrinsic difficulty to produce software. Sony has lost parts
of the gaming entertainment market after the Cell processor was deployed in the
Playstation console family, since game developers had not enough knowledge to
efficiently explore the complex Cell architecture.

Homogeneous MPSoC organization is also explored in the market, mainly for
personal computers with general-purpose processors, because of the huge amount of
different applications these processors have to face, and hence it is more difficult to
define specialized hardware accelerators. In 2005, Sun Microsystems announced its
first homogeneous MPSoC, composed of up to eight processing elements executing
the full RISC SparcV9 instruction set. UltraSparc T1, also called Niagara [11], is
the first multithreaded homogeneous MPSoC, and each processing element is able
to execute four threads concurrently. In this way, Niagara can handle, at the same
time, up to 32 threads. Recently, with the deployment of UltraSparc T2 [10], this
number has grown to 64 concurrent threads. Niagara MPSoC family targets massive
data computation with distributed tasks, like the market for web servers, database
servers and network file systems.

Intel has announced its first MPSoC homogeneous prototype with 80 cores,
which is capable of executing 1 trillion floating-point operations per second, while
consuming 62 W [21]. Hence, the x86 instruction set architecture era could be
broken, since their processing elements is based on the very long instruction word
(VLIW) approach, letting to the compiler the responsibility for the parallelism
exploration. The interconnection mechanism used on the 80-core MPSoC uses a
mesh network to communicate among its processing elements [5]. However, even
employing the mesh communication turns out to be difficult, due to the great
amount of processing elements. In this way, this ambitious project uses a 20 MB
stacked on-chip SRAM memory to improve the processing elements communication
bandwidth.
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Graphic processing unit (GPU) is another MPSoC approach aiming to accelerate
graphic-based software. However, this approach has been arising as promise
architecture also to improve general-purpose software. Intel Larrabee [17] attacks
both applications domain thanks to its CPU- and GPU-like architecture. In this
project Intel has employed the assumption of energy efficiency by simple cores
replication. Larrabee uses several P54C-based cores to explore general-purpose
applications. In 1994, P54C was shipped in CMOS 0.6 μm technology reaching
up to 100 MHz and does not include out-of-order superscalar execution. However,
some modifications have been done in the P54C architecture, like supporting
of SIMD execution aiming to provide more powerful graphic-based software
execution. The SIMD Larrabee execution is similar to but powerful than the SSE
technology available in the modern x86 processors. Each P54C is coupled to a 512-
bit vector pipeline unit (VPU), capable of executing, in one processor cycle, 16
single precision floating point operations. Also, Larrabee employs a fixed-function
graphics hardware that performs texture sampling tasks like anisotropic filtering and
texture decompression. However, in 2009, Intel discontinued Larrabee project.

NVIDIA Tesla [12] is another example of MPSoC based on the concept of a
general-purpose graphic processor unit. Its massive-parallel computing architecture
provides support to Compute Unified Device Architecture (CUDA) technology.
CUDA, the NVIDIA’s computing engine, supports the software developer by easing
the application workload distribution and by providing software extensions. Also,
CUDA provides permission to access the native instruction set and memory of the
processing elements, turning the NVIDIA Tesla to a CPU-like architecture. Tesla
architecture incorporates up to four multithreaded cores communicating through a
GDDR3 bus, which provides a huge data bandwidth.

In 2011, NVIDIA introduced the project named Tegra 3 [30], also called Kal-
el mobile processor. This project is the first to encapsulate four processors in a
single die for mobile computation. The main novelty introduced by this project
is the Variable Symmetric Multiprocessing (vSMP) technology. vSMP introduces
a fifth processor named “Companion Core” that executes tasks a low frequency
for active standby mode, as mobile systems tend to keep in this mode for most
time. All five processors are ARM Cortex-A9, but the companion core is built in
a special low power silicon process. In addition, all cores can be enabled/disabled
individually and when the active standby mode is on, only the “Companion Core”
works, so battery life can significant improved. NVIDIA reports that the switching
from the companion core to the regular cores are supported only by hardware and
take less than 2 ms being not perceptible to the end users. In comparison with Tegra
2, NVIDIA previous platform, vSMP achieves up to 61% of energy savings on
running HD video playback. Tegra 3 is inside of several tablets developed by Asus
and Acer, such as Asus Eee Pad Trasformer Prime, Trasformer Pad Infinity and Acer
Iconia.

Summarizing all MPSoC discussed before, Table 1 compares their main char-
acteristics showing their differences depending on the target market domain.
Heterogeneous architectures, such as OMAP, Samsung and Cell, incorporate sev-
eral specialized processing elements to attack specific applications for highly-
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constrained mobile or portable devices. These architectures have multimedia-based
processing elements, following the trend of embedded systems. Homogeneous
architectures still use only homogeneous organizations, coupling several process-
ing elements with the same ISA and the processing capabilities. Heterogeneous
organizations have not been used on homogeneous architectures, since the variable
processing capability is supported dynamically by power management like DVFS.
Unlike heterogeneous architectures, homogeneous ones aims at the general-purpose
processing market, handling a wide range of applications behavior by replicating
general purpose processors.

5 Open Problems

Due to the short history of MPSoCs, several design points are still open. In
this section, we discuss two open problems of MPSoC design: interconnection
mechanism and MPSoC programming models.

5.1 Interconnection Mechanism

The interconnection mechanism has a very important role in an MPSoC design,
since it is responsible for supporting the exchange of information between all
MPSoC components, typically between processing elements or processing elements
and some storage component. The development of the interconnection mechanism
in a MPSoC should take into account the following aspects: parallelism, scalability,
testability, fault tolerance, reusability, energy consumption and communication
bandwidth [13]. However, there are several communication interconnection ap-
proaches that provide different qualitative levels regarding the cited aspects. As can
be noticed in Table 1, there is no agreement on the interconnection mechanism,
since each design has specifics constraints and requirements that guide the choices
of the communication infrastructure, always considering its particular aspects.

Commonly, buses are the most used mechanism on current MPSoC designs.
Current buses can achieve high speeds, and buses have additional advantages like
low cost, easy testability and high communication bandwidth, encouraging the use
of buses in MPSoC designs. The weak points of this approach are poor scalability,
no fault tolerance and no parallelism exploitation. However, modifications on
its original concept can soften these disadvantages, but could also affect some
good characteristics. Segmented bus is an original bus derivative to increase the
performance, communication parallelism exploration and energy savings [7]. This
technique divides the original bus in several parts, enabling concurrent communica-
tion inside of each part. However, bus segmentation impacts on the scalability, and
makes the communication management between isolated parts harder. Besides their
disadvantages, for obvious historical reasons buses are still widely used in MPSoC
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designs. Intel and AMD are still using integrated buses to make the communication
infrastructure on their high-end MPSoC, due to the easier implementation and high
bandwidth provided.

Crossbars are widely used on network hardware like switches and hubs. Some
MPSoC designers have been employing this mechanism to connect processing
elements [10]. This interconnection approach provides huge performance, allowing
communication between any processing elements and the smallest possible time.
However, high area cost, energy consumption and poor scalability discourage its
employment. AMD Opteron family and Sun Niagara use crossbars to support high
communication bandwidth within their general-purpose processors.

Network-on-chip has been emerging as a solution to couple several processing
elements [21]. This approach provides high communication parallelism, since
several connecting paths are available for each node. In addition, as the technology
scales, wire delays increase (because of the increased resistance derived form the
smaller cross-section of the wire), and hence shorter wires, as used in NoCs could
soften this scaling drawback. Also, its explicit modular shape positively affects
the processing elements scalability, and can be explored by a power management
technique to support the simple turning off of idle components of the network
on chip. NoC disadvantages include the excessive area overhead and high latency
of the routers. Intel 80-core prototype employs a mesh style network-on-chip
interconnection to supply the communication of its 80 processing elements.

5.2 MPSoC Programming Models

For decades, many ILP exploration approaches were proposed to improve the
processor performance. Most of those works employed dynamic ILP exploration
at hardware level, becoming an efficient and adaptive process used in superscalar
architectures, for instance. Also, traditional ILP exploration free software devel-
opers from the hard task to explicit, in the source code, those parts that can be
executed in parallel. Some works [19] can even translate code with enough ILP
into TLP, so that more than one core can execute the code, exploiting ILP also at
the single issue core level, when embedded in a multiprocessing device. However,
MPSoC employment relies on manual source code changes to split the parallel parts
among the processing elements. Currently, software developers must be aware of the
MPSoC characteristic like the number of processing elements to allocate the parallel
code. Thus, the sequential programming knowledge should migrate to the parallel
programming paradigm. Due to these facts, parallel programming approaches
have been gaining importance on computing area, since easy and efficient code
production is fundamental to explore the MPSoC processing capability.

Communication between processing elements is needed whenever information
exchange among the threads is performed. Commonly, this communication is based
either on message passing or on shared memory techniques. Message passing
leaves the complex task of execution management to the software description level.
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The software code should contain detailed description of the parallelization process
since the application developer has the complete control to manage the process.
The meticulous message passing management by the software becomes slower than
shared memory. However, this approach enables robust communication employment
providing the complete control to the software developer to make this job. Message
Passing Interface (MPI) [14] is a widely used standard protocol that employs
message passing communication mechanism. MPI provides an application pro-
gramming interface (API) that specifies a set of routines to manage inter processes
communication. The advantage of MPI employment over other mechanisms is that
both data and task parallelism can be explored, with the cost of more code changes
to achieve parallel software. In addition, MPI relies on network communication
hardware, which guides the performance of the entire system.

Shared memory communication uses a storage mechanism to hold the nec-
essaries information for threads communication. This approach provides simpler
software development, since thanks to a global addressing system most of the
communication drawbacks are transparent to the software team. The main drawback
of shared memory employment is the bottleneck between processing element and
memory, since several threads could try to concurrently access the same storage
element at a certain time. Memory coherency also can be a bottleneck for shared
memory employment, since some mechanism should be applied to guarantee data
coherency. OpenMP [4] employs shared memory communication mechanism to
manage the parallelization process. This approach is based on a master and slave
mechanism, where the master thread forks a specified number of slave threads
to execute in parallel. Thus, each thread executes a parallelized section of the
application into a processing element independently. OpenMP provides easier
programming than MPI, with greater scalability, since a smaller number of code
changes should be done to increase the number of spawned threads. However, in
most cases OpenMP code coverage is limited to highly parallel parts and loops.
This approach is strongly based on a compiler, which must translate the OpenMP
directives to recognize what section should be parallelized.

6 Future Research Challenges

As discussed throughout this chapter, although MPSoCs can be considered a
consolidated strategy for the development of high performance and low energy
products, there are still many open problems that required extra research effort.
Software partitioning is one of the most important open issues. That is, taking a
program developed in the way programs have been developed for years now, and
making it work in an MPSoC environment by the use of automatic partitioning is
very difficult already for the homogeneous case, not to mention the heterogeneous
one. Matching a program to an ISA and to a certain MPSoC organization is an open
and challenging problem.
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Another research direction should contemplate hardware development. From the
results shown in Sect. 2 it is clear that heterogeneous SoCs, capable of exploring
parallelism at the thread and also at the instruction level, are the most adequate to
obtain real performance and energy gains. Unfortunately, in an era where fabrication
costs demand huge volumes, the big question to be answered regards the right
amount of heterogeneity to be embedded in the MPSoC fabric.
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