
Architectures for Stereo Vision

Christian Banz, Holger Blume, and Peter Pirsch

Abstract Stereo vision is an elementary problem for many computer vision tasks.
It has been widely studied under the two aspects of increasing the quality of
the results and accelerating the computational processes. This chapter provides
theoretic background on stereo vision systems and discusses architectures and
implementations for real-time applications. In particular, the computationally most
intensive part, the stereo matching, is discussed on the example of one of the
leading algorithms, the semi-global matching (SGM). For this algorithm two
implementations are presented in detail on two of the most relevant platforms
for real-time image processing today: Field Programmable Gate Arrays (FPGAs)
and Graphics Processing Units (GPUs). Thus, the major differences in designing
parallelization techniques for extremely different image processing platforms are
being illustrated.

1 Introduction

The field of stereo vision is highly inspired by the capabilities of the human imaging
system. It encompasses all aspects of computer vision processing data from stereo
image pairs in one way or another. The goal is to estimate 3D information about
the observed scene, which can be used for a number of applications such as e.g.
distance measurement, 3D reconstruction, and arbitrary view interpolation. Crucial
for stereo vision is the task of stereo matching which identifies the projection points
of the same 3D real world point in both images of the stereo pair. The location

C. Banz (�) • H. Blume • P. Pirsch
Institute of Microelectronic Systems, Leibniz University of Hannover Appelstr. 4,
30167 Hannover, Germany
e-mail: christian.banz@alumni.uni-hannover.de; blume@ims.uni-hannover.de;
pirsch@ims.uni-hannover.de

S.S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
DOI 10.1007/978-1-4614-6859-2 16, © Springer Science+Business Media, LLC 2013

483

mailto:christian.banz@alumni.uni-hannover.de
mailto:blume@ims.uni-hannover.de
mailto:pirsch@ims.uni-hannover.de

484 C. Banz et al.

Fig. 1 Results for the stereo correspondence problem: (a) left rectified input image (raw input
images taken from [20]), (b) disparity map after left/right check where white denotes disparities
marked as invalid, (c) false color representation of the disparity map, (d) untextured 3D view
generated from the disparity map of (b)

difference (the disparity) in conjunction with a known stereo camera calibration
allows to infer the depth information. Figure 1 gives an example.

The importance of stereo matching has been underlined by Szeliski and
Scharstein stating that it is “one of the most widely studied and fundamental
problems of computer vision” [83]. Active research in this field has resulted in a
wide range of disparity estimation algorithms using radically different approaches.
Recently, a general taxonomy has been introduced [81] including a comprehensive
survey, what resulted in the on-going online Middlebury benchmark [80]. Further
surveys evaluated different algorithms and variations thereof [39, 86]. Major focus
was the quality of the stereo matching in terms of accuracy, density of the disparity
map, and robustness.

However, advances in robustness and accuracy were accompanied with signif-
icant increases in complexity and computational requirements making the use of
specialized implementations for many of today’s real-time applications an absolute
necessity. Surveys on efficient implementations for selected types of algorithms
have been conducted [29, 59, 66, 86] and many more specialized implementations
and architectures for individual algorithms and applications have been proposed.

Architectures for Stereo Vision 485

Considering all aspects (algorithmic performance, implementation performance,
architectures) a huge design space is unfolded. For embedded systems the choice is
invariably on low-power solutions, e.g. based on application specific architectures
implemented on FPGAs or ASICs. However, with the recent rise of GPUs for
high performance computing, GPUs offer a cost-efficient alternative for stationary
systems where power consumption is not an issue.

This chapter addresses high performance disparity estimation considering both,
algorithmic and implementation performance. The chapter is structured into an
algorithmic and an architectural section; these being Sects. 2 and 3. An introduction
to the fundamental principles of the stereo image matching (epipolar geometry)
and a minimal practical stereo vision system is given in Sect. 2.1. The algorithmic
and architecture sections both give a comprehensive overview of recent works.
It is followed by a detailed discussion of the semi-global matching algorithm (SGM)
[37] (Sect. 2.3) and two exemplary implementations on FPGA (Sect. 3.7) and GPU
(Sect. 3.6), respectively.

2 Algorithms

A minimal system for disparity estimation from a real camera setup consists of
two processing steps: The first step is camera lens undistortion and rectification of
non-ideal stereo camera setup (Sect. 2.1) while the second step is the actual stereo
matching (Sect. 2.2). All other image preprocessing steps (e.g. noise reduction,
equalization) and disparity map post-processing steps (e.g. whole filling, interpo-
lation of pixel with missing stereo information) are optional.

2.1 Epipolar Geometry and Rectification

The objective is to find corresponding pixels in the two images of a stereo camera
setup. Due to the underlying epipolar geometry [34, 83] of a stereo camera setup,
the search space for corresponding pixels is one-dimensional. As shown in Fig. 2a,
for a given pixel in the base image all potential correspondences project onto the
epipolar line (ebm) in the match image and vice versa. Strictly speaking the possible
projections are bound by the epipole and the viewing rays for a real-world point at
infinity.

For efficient correspondence search implementations a preprocessing step, the
rectification, is employed. Both images are warped such that epipolar lines in both
images are parallel to the scanlines and are row-aligned, i.e. corresponding pixels
are in the same horizontal line [34,103]. Thus, efficient memory access patterns and
parallelism over independent scanlines can be obtained. After rectification, the focal
axis are parallel to each other and perpendicular to the line joining the two camera
centers (baseline) and the disparity for points at infinity is 0.

486 C. Banz et al.

a b

Fig. 2 Epipolar geometry: in (a) an unrectified setup and in (b) a rectified setup is shown. The
rectification process in (b) to achieve row-aligned search space is illustrated only for the left
projection plane

The rectified stereo setup is shown in Fig. 2b and the disparity is purely horizontal
offset d =(xl −xr) [pixel]. With the rectified focal length f [pixel], the baseline T [m]
of the camera pair, the distance z [m] between the baseline and the 3D point can be
calculated as

z =
f T

(xl − xr)
=

f T
d

. (1)

This is also referred to as standard rectified geometry [83]. Thus, extracting depth
information from a stereo camera setup becomes estimating the disparity map
d(x,y).

In addition to a non-ideal camera setup, stereo vision systems have to handle
camera-inflicted image distortions, of which the most common are radial lens
distortion, sensor tilting and offset from focal axis [11]. These must be compensated
before rectification. However, when applying undistortion and rectification to a
sequence of input images both steps can be combined. Reverse mapping assigns
every pixel in the undistorted and rectified image a sub-pixel accurate origin in the
input image. The rectified pixels are obtained using any desired pixel interpolation
method. The bilinear interpolation for example, exhibits a reasonable trade-off
between image quality and hardware implementation costs. Alternative interpola-
tion methods are spline interpolation, which has higher silicon area requirements,
and nearest-neighbor, which does not provide the required resolution for disparity
estimation. Intermediate results from the processing steps are shown in Fig. 3.

The displacement vectors for undistortion and rectification are calculated using
the intrinsic and extrinsic matrices, the tangential and the radial distortion parame-
ters. These can be obtained by separate camera calibration steps (e.g. [104]) using
a calibration pattern, such as a chessboard pattern employed in OpenCV [11].
Alternatively, or additionally, camera self-calibration from scene structure can be
employed for particular camera parameters. For latter use in e.g. cars, camera self-
calibration or at least updating of the intrinsic parameters from scene structure is
mandatory.

Architectures for Stereo Vision 487

Fig. 3 Image results after undistortion and rectification: (a) input images showing that correspon-
dences are not aligned (circle and square). (b) Undistorted images showing the epipolar lines
(dashed lines) for two exemplary points (circles). Here, the effect is minor but the epipolar lines
are clearly not aligned to the scanlines (i.e. horizontal pixel rows, white). (c) Final, undistorted,
rectified images with row aligned epipolar lines

2.2 Stereo Correspondence

The origins of stereo correspondence were sparse, feature-based methods pro-
cessing only a set of potentially highly discriminative image points. Today, most
algorithms are dense methods, trying to infer a complete disparity map even for
texture-less regions. Dense methods are typically classified into local and global
approaches. However, for both classes of dense methods a common taxonomy

488 C. Banz et al.

and categorization has been introduced in [81]. Generally, a disparity estimation
algorithm consists of the four processing steps:

1. Matching cost computation
2. Cost (support) aggregation
3. Disparity computation and optimization
4. Disparity refinement (or post processing)

It is of crucial importance to distinguish between the matching costs, which is
the initial similarity measure between two pixels in the base and match image (or
left and right image, respectively), and the aggregation method that uses these costs.
The results of the matching cost computation are stored in the disparity space image
C(x,y,d). Cost aggregation of local (or area based) methods is performed on the
information based in a local aggregation region (support region) from the matching
costs C(x,y,d). Global methods on the other hand perform one or more optimization
steps on the matching costs often enforcing some kind of smoothness criterion.
Depending on the algorithm, steps have varying importance and some might even
be omitted. An example will be given in Sect. 2.3.

For matching cost computation a number of different window-based similarity
measures can be employed. With rectified input images similarity of potentially
corresponding pixels must be computed at location p = [x,y]T in the left image
and q = [x− d,y]T in the right image. Initially often used and inspired by other
areas of video processing are sum of squared intensity differences (SSD), sum
of absolute differences (SAD), normalized cross correlation (NCC) and their
respective zero mean variations. More recently, measures specifically for stereo
matching have been proposed. For example, rank and census transform [99] are
non-parametric transforms, and are thus robust to a certain amount of intensity
differences. A vast number of other measures based on gradients, phase correlations,
ordinal measures and dense feature descriptors exist. Entropy based measures
(e.g. mutual information [37, 51]) have also been proposed. For those measures
that compare absolute difference values, the approach of Birchfeld and Tomasi
(BT) [9] can be used to include sampling insensitivity. For a more complete list
of similarity measures refer to [83]. Detailed studies on the performance of the
similarity measures in conjunction with different aggregation methods have been
conducted [39, 81, 90].

The emphasis of local methods is on the cost aggregation step (step 2). A recent,
comprehensive comparison of aggregation methods can be found in [86] and of
selected methods for GPU implementation in [29]. Support regions can be two- or
three-dimensional windows from the disparity space with fixed or adaptive window
sizes, shapes, anchor points or weights. Adaptation may e.g. be performed by a full
search through multiple windows or from a number of cues, e.g. constant disparity
constraints and color-based segmentation. A more complete list may also be found
in [83]. After cost aggregation, follows the disparity computation (step 3) of which
the most basic form is selecting the disparity with minimal aggregated cost value for
each pixel. Local methods are often well suited for hardware implementation due to
the implicit parallelism and local data dependencies.

Architectures for Stereo Vision 489

With global methods, the cost aggregation (step 2) is often omitted because
the global smoothness constraints, which are enforced by the optimization process
during the disparity computation (step 3), perform similar functions [83]. Global
methods are often formulated within an energy-minimization framework:

E(D) = Ed(D)+λ Es(D). (2)

The objective is to find a solution d that minimizes the total energy E for a disparity
map D, where Ed is the data term representing how well the solution fits to the input
image and Es represents the smoothness constraints made by the algorithm. These
regularization or variational formulations are also employed in many others areas
of image processing. In stereo processing it is important to formulate Es(d) to allow
for discontinuity preservation in the disparity map. Algorithms to find the solution
to (2) include belief propagation, graph cuts, and total variation among others
[83]. Unfortunately, the problem is NP-hard for many discontinuity preserving
if Es is formulated two-dimensionally [10]. Reducing Es to one-dimension along
the scanlines, allows for independent, parallel scanline optimization but suffers
from streaking (inconsistency between scanlines). Other global methods are based
on dynamic programming, which performs global optimization for independent
scanlines. Dynamic programming also suffers from streaking, but several works
have addressed this problem (e.g. [78]).

For each approach several algorithms have been proposed and minute details
influence the performance. As mentioned in Sect. 1, comparative studies have been
performed (e.g. [29, 39, 81]) and a widely used benchmark exists [80]. For a stereo
vision system with high performance in terms of robustness, accuracy and process-
ing speed, several aspects have to be weighted against each other. While some local
methods are more efficiently implementable, they can be challenged by areas with
low or repetitive textures due to a high level of ambiguity [39]. Iterative, global
minimization methods are often computationally intensive. However, Tombari et al.
[86] express, that with sophisticated cost aggregation some local methods yield
performance comparable with many global methods. The semi-global optimization
strategy [37] is a solution resident in between by accumulating optimization results
from multiple independent one-dimensional directions for each pixel. It produces
very high quality results, even though not the best in the Middlebury benchmark
[80]. Further, it is robust and it can be implemented efficiently for a global method.
For robustness of the entire disparity estimation a suitable similarity measure must
be chosen. Among the more robust measures in [38, 39] were census, rank, ordinal
measures, and hierarchical mutual information.

Disparity refinement (step 4) often includes sub-pixel refinement, confidence or
integrity checks, and interpolation measures. Since most stereo methods compute
disparities at integer level, a sub-pixel refinement is necessary for many applications.
An easy and computationally efficient way is to fit a curve through the discrete
disparity space around the selected disparity. Interpolation functions are investigated

490 C. Banz et al.

in [32]. Several arising issues are discussed in [84]. An often computationally
prohibitively expensive alternative is to start the computation with a disparity space
already discretized to sub-pixel accuracy.

Foreground objects in the scene occlude different parts of the background
when seen from the two camera perspectives. Consequently disparities cannot be
computed for these occluded areas of the image due to missing stereo correspon-
dences. This is visible in Fig. 1 by the halos around the foreground objects. It is
often desirable to exclude these areas and areas with low confidence from the
disparity map and optionally process them with sophisticated hole filling algorithms.
Identification of these areas is performed with a left/right check, where the disparity
maps for the left and right perspective are computed and only matching depth
information from both perspectives to a 3D world point is allowed. With respect to
the camera-to-camera projection in a rectified stereo pair the constraint for a valid
disparity in the base image can be formulated as

Db,check (x,y) =

{
Db if |Db (x,y)−Dm (emb (x,Db(x,y)) ,y)| ≤ δ
invalid otherwise

(3)

with Db and Dm are the disparity maps from the base and match perspective,
respectively.

Further post-processing of the disparity map can be performed using basic
median filtering to remove single outliers, peak removal and sophisticated whole
filling algorithms, such as surface fitting. However, without a dense, highly accurate
initial disparity map, post-processing will not provide reliable disparities.

2.3 Algorithm Example: Semi-global Matching

As a specific example disparity estimation based on the highly relevant and
top-performing combination of rank transform [99] and semi-global matching
algorithm (SGM) [37] will be used to illustrate the matter of the previous sections.
Simultaneously, SGM will be used as a case study for implementations on FPGA
and GPU.

The matching costs C(x,y,d) (step 1) are calculated from the rank transform of
the base and match image Rb and Rm with absolute difference comparison:

C (p,d) =
∣∣Rb (px, py)−Rm (px − d, py)

∣∣ . (4)

It is p = [px, py]
T the pixel location in the left image. The rank transform is defined

as the number of pixels p′ in a square M×M neighborhood A(p) of the center pixel
p with a luminous intensity I less than I(p)

R(p) =
∥∥{p′ ∈ A(p) | I(p′)< I(p)

}∥∥ . (5)

Architectures for Stereo Vision 491

Fig. 4 The path cost
aggregation is performed
from eight cardinal directions
to every pixel

These initial pixel-wise calculated matching costs (i.e. locally calculated) yield
non-unique or wrong correspondences due to low texture and ambiguity. Therefore,
semi-global matching introduces global consistency constraints by aggregating
matching costs along several independent, one-dimensional paths from different
cardinal directions as shown in Fig. 4. A path r is formulated recursively by the
definition of the path costs Lr(p,d).

Lr(p,d) = C(p,d)+min [Lr(p− r,d) ,

Lr(p− r,d− 1)+P1,

Lr(p− r,d+ 1)+P1,

min
i

Lr(p− r, i)+ P2]−

min
l

Lr(p− r, l)
(6)

The first term, C(p,d), describes the initial matching costs. The second term adds
the minimal path costs of the previous pixel p−r including a penalty P1 for disparity
changes and P2 for disparity discontinuities, respectively. Discrimination of small
changes |Δd| = 1pixel (px) and discontinuities |Δd| > 1 px allows for slanted and
curved surfaces on the one hand and preserves disparity discontinuities on the
other hand. The last term prevents constantly increasing path costs. For a detailed
discussion refer to [37]. P1 is an empirically determined constant. P2 can also be
an empirically determined constant or can be adapted to the image content. The
selection of these penalty functions is investigated in [5] in detail.

Path costs are calculated from several cardinal directions to each pixel, as shown
in Fig. 4 and are summed. The aggregated sum costs S are the sum of the path costs

S (p,d) = ∑
r

Lr(p,d). (7)

492 C. Banz et al.

÷

Fig. 5 Effect of path cost aggregation: matching costs, aggregated path costs, and sum costs
(scaled by factor 1/6 for better presentation) for the pixel p = [183;278] of the Teddy test image
[82] calculated with SGM

By (6) and (7) SGM aims to approximate the following global energy minimiza-
tion problem:

E(D) =∑
p

C(p,d)

︸ ︷︷ ︸
Ed(D)

+∑
p

(
∑

p′∈A

P1T
[∣∣Dp −Dp′

∣∣= 1
]
+ ∑

p′∈A

P2T
[∣∣Dp −Dp′

∣∣> 1
])

︸ ︷︷ ︸
Es(D)

(8)

where Es contains the 2D smoothness constraints on the disparity map. For a deriva-
tion of (8) see [37]. The resulting method of the approximation resembles a scanline
optimization approach but with excellent regard to interscanline consistencies.

Final disparity selection (step 3) is performed by a winner-take-all (WTA)
approach. The disparity map Db(px, py) from the perspective of the base camera
is calculated by selecting the disparity with the minimal aggregated costs

min
d

S(px, py,d) (9)

for each pixel. For calculating the disparity map from the perspective of the match
camera Dm(qx,qy), the minimal aggregated costs along the corresponding epipolar
lines are selected:

min
d

S (qx + d,qy,d) . (10)

Alternatively, SGM can be applied again, but with the other image as base image.
The effect of the path costs aggregation and the disparity selection is illustrated

in Fig. 5. The initial matching costs C(p,d) (dashed line) exhibit a high level of
ambiguity. Seven of the eight aggregated paths costs Lr(p,d) already show distinct

Architectures for Stereo Vision 493

Fig. 6 Processing steps for disparity estimation using rank transform, semi-global matching, and
optional median filter. Numbers in parenthesis refer to the respective equations and R denotes the
number of paths

minima. The summed path costs S(p,d) (thick black line) clearly identify the
minimum at a disparity level of 32 resolving all ambiguities. However, the cost
difference for the positions 32 and 33 is minimal indicating that the correct position
is located a sub-pel precision.

Finally, left/right check according to (3) and post processing can be applied, e.g.
a median filter in its most basic form. An overview of the processing steps is given
in Fig. 6.

3 Architectures

The variety of architectures and implementations to compute the stereo correspon-
dence easily rivals the variety of the underlying stereo matching algorithms. Today
very efficient implementations for local and global stereo methods are available on
FPGAs, ASICs, GPUs, and DSPs. For real-time image throughput, local methods
have been and continue to be favored by many researches because of their efficient
implementation possibilities. However, with advances in computational power,
many global methods are also implementable in real-time.

Early work includes a complete stereo vision system from 1996 featuring
rectification and stereo matching with an SSD variant on a custom hardware board
consisting of off-the-shelf components and a DSP array [49]. At 30 fps 200×200
images with 5 bit depth resolution could be computed. Other noteworthy early
implementations have been presented in 1993 using a DSP array [21] and in 1997
using a single DSP [52]. In [52] also an early overview of implementations is
provided. An FPGA array was used in 1997 to implement a census transform
stereo matching method [95]. All of these implementations directly compute the
disparity information from the matching costs without cost aggregation. Early work
includes a complete stereo vision system from 1996 featuring rectification and
stereo matching with an SSD variant on a custom hardware board consisting of
off-the-shelf components and an DSP array [49]. At 30 fps 200×200 images with

494 C. Banz et al.

5 bit depth resolution could be computed. Other noteworthy early implementations
have been presented in 1993 using a DSP array [21] and in 1997 using a single DSP
[52]. In [52] also an early overview of implementations is provided. An FPGA array
was used in 1997 to implement a census transform stereo matching method [95].
All of these implementations directly compute the disparity information from the
matching costs without cost aggregation.

The following three subsections aim to give an overview of the conducted
research on architectures and implementations for disparity estimation. Each sub-
section focuses on one specific hardware platform. Some key throughput values
will be highlighted but without indication of algorithmic performance. A fair com-
parison must take into account architecture specific features, scalability, algorithmic
performance under challenging imaging conditions (which are not present in the
standard Middlebury data set), termination criterions on data dependent algorithms
(e.g. belief propagation), and varying post processing steps. Thus, a comparison is
an extremely complex task and beyond the scope of this chapter. The interested
reader may consult the references themselves or one of the comparison studies.

3.1 GPU-Based Implementations

Commodity graphics processing hardware, nowadays superseded by general pur-
pose graphics processing units (GPUs), have been used quite early to outsource, at
first, part of the computation and then the entire stereo matching. For the calculation
of disparity maps with an image size of 200×200 pixels and 50 disparity levels
(abbreviated 200×200×50), 106 ms were achieved using a variable window SSD
method on a NVIDIA GeForce4 in 2003 [76]. Early implementations for scene
reconstruction are [77] on a Nvidia GeForce4 and [100] on a ATI Radeon 9700Pro
from 2002 and 2003, respectively.

For belief propagation (BP) an efficient technique has been proposed in [22]
and implemented for CPUs. It has been extended with occlusion handling and
adapted for GPU implementation [12]. The same technique is used in recent
implementations [43, 96] reaching 2.75 s for a 640×480×33 image on Nvidia
GeForce GTX 280 and 93.98s on an Intel Core 2 Duo (2.13GHz). A fast converging
hierarchical belief propagation is proposed and implemented in [97] reaching 16 fps
for 320×240×16 images. New message passing schemes for BP have been applied
in [55] for a GPU and VLSI implementation.

A dynamic programming solution with extensive use of MMX instructions on
the CPU using color based cost aggregation has been presented in [23]. In 2005
the dynamic programming optimization step was still slower on the GPU than on
the CPU [30] due to limitations of general purpose computation capabilities of the
GPU (e.g. branching). Consequently, mixed CPU/GPU implementations performing
cost aggregation on the GPU and dynamic programming optimization on the CPU
have been presented [30, 56]. Scanline optimization in [101] also shows mixed
performance results when comparing GPU versus CPU implementations. Recently,

Architectures for Stereo Vision 495

[48] presented a multi-resolution symmetric dynamic programming variant on a
GTX 295 reaching 14 fps for 2048×2048×256 images. A total variation algorithm
with GPU implementation has been presented requiring between 15 and 60 s per
image [73].

Variants of local methods examining the different techniques of adaptive weights
or adaptive support regions have received much attention. Recent local approaches
are census based with basic box filter cost aggregation [92] and a local truncated
laplacian kernel approximation with adaptive cost aggregation [44]. Locally adap-
tive support regions have been used and speeded up with bitwise voting in [50].
Further work on local variants with adaptive cost aggregation methods includes
[45, 63] and [40]. Instead of adaptive support regions on the input images [61]
use edge-preserving filtering on the matching costs. A comparison of six local
methods in terms of algorithmic and computational performance on GPUs has been
conducted [29]. A plane sweep algorithm with local depth connectivity in order to
retain depth discontinuities has been examined in [16].

For SGM various implementations have been presented on a GeForce 8800 Ultra
[19] (0.0057 fps at 640×480×128), a Quadro FX5600 [27], a GTX 280 without
[31] and with increased depth accuracy [67], and on a Tesla C2050 [4], which is
the highest performing implementation with 63 fps for 640×480×128 images. This
allows a very interesting retrospective on the evolution of GPUs. Especially some of
the new features of Nvidia’s compute capability 2.0 graphics cards allow radically
different parallelization schemes, which was exploited in [4]. We will have a detailed
look at this implementation in Sect. 3.6. Furthermore, a combination of adaptive
support regions with a reduced version of SGM is proposed in [62] reaching 10 fps
for 450×375×64 images.

3.2 Dedicated Architectures (FPGA and VLSI)

For dedicated architectures targeting FPGAs or ASICs, local methods are often
favored because of potentially very small designs. This goes as far as to omit the cost
aggregation altogether despite the drawbacks in accuracy and robustness. Neverthe-
less, new cost aggregation concepts have also been investigated and incorporated in
hardware. In the following implementations without cost aggregation are indicated
with “w/o CA”.

Some examples of early architectures using SAD based matching w/o CA are
[2, 54, 64]. An SAD based stereo vision system with three cameras has been
presented in [98]. Depending on the emphasis of the referenced work, the results
vary in throughput and resolution up to 640×480×64 and 31fps. The so-called Tyzx
ASIC for color-image census-based stereo-matching (w/o CA) achieves 200 fps for
512×480 images and 52 disparity levels [93]. It forms the basis of an extended
stereo vision system in [94].

Also for recent implementations local methods with and without cost aggregation
are still popular. This includes [46] where a census transform (w/o CA) is employed

496 C. Banz et al.

as basis of an entire stereo vision system on an FPGA. Another complete system
based on SAD (w/o CA) is presented in [91]. Census with aggregation cues from
the original and gradient images is investigated in [1]. Color SAD with a fuzzy
logic disparity selection has been proposed and implemented on an FPGA [26].
Methods and architectures using adaptive support weights have been proposed in
[14] employing a census variant and in [89] employing an absolute differences
variant. In order to reduce the amount of data to be processed [88] works on sobel
filtered images, which goes into the direction of sparse matching.

In [60], the architecture of [17], which is based on a local, phase-based method,
is extended to large disparity ranges without significant additional hardware cost by
adapting an offset of the smaller disparity search window across multiple frames.
After large disparity changes, a latency of several frames occurs before correct
disparity information can be regained. A bio-inspired method based on gabor filters
is introduced in [18].

Among the implementations of dynamic programming approaches a trellis-based
implementation, using a single interline consistency constraint has been investigated
[68]. A dynamic programming approach based on a maximum-likelihood method is
implemented in [78] achieving 64 fps at 640×480 px with 128 disparity levels. And
a symmetric dynamic programming variant, similar to the GPU implementation of
[48], has been implemented on an FPGA [65].

An FPGA architecture for memory efficient belief propagation for stereo match-
ing has been proposed in [71]. New concepts and architectures for the message
passing in BP are proposed [87].

For semi-global matching two architectures have been proposed. The implemen-
tation of [25] utilizes a SGM variant with depth adaptive sub-sampling. It achieves
27 fps at 320×200 px and 64 px disparity range. A parameterizable parallelization
scheme for SGM and a corresponding FPGA architecture have been proposed in
[7, 8]. It achieves, depending on the degree of parallelism, up to 176 fps for VGA
images with 128 disparity levels and 4 SGM paths. This architecture will be studied
in more detail in Sect. 3.7.

3.3 Other Architectures

The use of programmable architectures besides GPUs has also been investigated
in some depth. Mühlmann et al. [66] investigated memory layout schemes for the
disparity space and implementations schemes including MMX optimizations for
SAD-based matching without cost aggregation (w/o CA).

A number of publications specifically target programmable embedded solutions:
An SSD with multiple window selection has been implemented on the ClearSpeed
CSX700 architecture (250 MHz, 9 W) which provides massively parallel SIMD in
multiple parallel processing elements [41]. The same algorithm has been imple-
mented [79] on the Tilera TILEPro64, which is a MIMD architecture with 64 integer
processing cores organized in a two dimensional mesh network running at MHz.

Architectures for Stereo Vision 497

A SAD w/o CA is also investigated on the Tilera TilePro 64 and on many-core CPUs
[75]. SAD (w/o CA) for a VLIW processor (Texas Instruments TMS320C6414T,
1.0 GHz) has been shown in [13].

Application specific processors (ASIP) have been investigated in two cases:
For semi-global matching an instruction set extension for the Tensilica LX2 DSP
template has been proposed [6] reporting 20 fps for 640×480×64 images with
reduced number of paths when run at 373 MHz, which is possible with the targeted
TSMC 90 nm process. Similarly for SGM, architecture optimizations for a VLIW
processor template, the MOAI, have been investigated in [69] reaching 30 fps when
running at 400 MHz.

Apart from the original CPU implementation of SGM running at 1.3 s for 450×
375×64 images [36], a variant with depth adaptive sub-sampling has been proposed
running at 14 fps for 320×160 images [24].

The cell broadband engine has been utilized for belief propagation and dynamic
programming, both taking few seconds to process an image pair [58]. An SAD (w/o
CA) implementation on the cell achieves 30 fps for VGA images with 48 disparity
levels.

3.4 Comparison Studies

In addition to the algorithmic studies mentioned earlier, studies also taking into
account the computational performance have been conducted. An evaluation of cost
aggregation for local methods with focus on algorithmic performance and run-time
on CPU can be found in [86]. Selected algorithms (various SAD variants, belief
propagation, and dynamic programing) have been compared on a CPU in [59]. An
evaluation of local algorithms on the GPU has been conducted in [29, 57].

An implementation of belief propagation on GPU and for VLSI has been
compared in [55]. And symmetric dynamic programing on GPU and FPGA has
been compared in [47]. Comparison of a census based approach (w/o CA) on a
DSP (TI C6416), a GPU (GeForce 9800 GT), and a CPU (Intel Core2Quad) has
been conducted in [42]. And in [75] SAD (w/o CA) has been studied on a GPU,
two multi-core CPUs and the MIMD Tilea architecture. Further, in many of the
references in the previous sections the GPU or FPGA implementation is compared
to a regular CPU implementation. However, these are too numerous to list them here.

3.5 Current Trends

When targeting real-world applications, an everlasting question is to improve
algorithmic performance while reducing computational requirements. This has
already been addressed in many of the above references. A recent research direction
is to integrate the computation of various information retrieval image processing

498 C. Banz et al.

tasks (e.g. disparity estimation with optical flow). In [28] an algorithm for joint
computation of disparity estimation and optical flow is proposed and implemented
on the GPU. A holistic architecture for phase based disparity estimation, optical
flow, and more is presented [85] and implemented on an FPGA. An holistic
architecture for disparity estimation and motion estimation based on SAD is
presented in [102].

3.6 Implementation Example: Semi-global
Matching on the GPU

An example implementation of the semi-global matching algorithm for GPUs will
be given based on the works in [4]. Since GPUs are becoming more and more
common, an introduction of the architecture and the terminology will be skipped.
Please refer to the Nvidia manuals and [35] for a detailed background on GPU
architecture or directly to [4] for a short sketch. The evaluation platform in the
following is a Nvidia Tesla C2050 with compute capability 2.0 providing 3 GB
DDRRAM global memory with a maximum theoretical bandwidth of 144 GB/s.

3.6.1 Parallelization Principles

Banz et al. [4] formulate the following performance limiting factors for a kernel:

• Effective memory bandwidth usage for the payload data which is e.g. reduced
by nonaligned, overhead-producing memory access

• Instruction throughput defined as the number of instructions performing
arithmetics for the core computation and other non-ancillary instructions per unit
of time

• Latency of the memory interface occurring e.g. when accessing scattered
memory locations even if aligned and coalesced, warp-wise access is performed

• Latency of the arithmetic pipeline of the ALUs inside the GPU cores if
arithmetic instructions depend on each other and can only be executed with the
result from the previous instruction

Accordingly, kernels can be memory bound, compute bound or latency bound.
Kernels that are not limited by any of the three bounds are ill-adapted for GPU
implementation and can be classified as bound by their parallelization scheme.

An efficient parallelization scheme guarantees inherently aligned and coalesced
data access schemes without instruction overhead. Coalesced memory access is
the simultaneous memory access to consecutive memory locations of all threads
of a warp. It further includes a combination of parallel and sequential processing
with independent arithmetic computation steps. An inner (sequential) loop in the
otherwise parallel threads working on a set of data that is kept in shared memory or

Architectures for Stereo Vision 499

Fig. 7 Data fetching and accessing scheme for the 2D filter kernels processing tdx · nppt×tdy
kernel windows with a radius of K′ where nppt is the number of pixels processed per thread
and the launch configuration, which determines how threads are grouped and executed on the
streaming multiprocessors, is tdx×tdy. Each square represents a pixel and the number inside is the
x-dimension thread ID which fetches the pixel from global memory

register facilitates data reuse, increases the instruction ratio, and keeps the pipeline
filled. Further, coherent access schemes are ensured for the memory interface if
results are written out with each loop iteration. Apart from an inner loop, executing
several warps per streaming multiprocessor increases pipeline utilization.

3.6.2 Rank Transform and Median Filter Kernel

The rank transform and median filter are both non-linear, non-separable 2D image
transforms. To generate the result of one output pixel, the data of a local N×N-
neighborhood from the input image is required.

The kernel for rank transform and median filter are based on the same principle
which is based on the implementation of a separable convolution in [74]. It pre-
fetches data of a two-dimensional spatial locality from global memory into shared
memory. Thus, data reuse is maximized because all filter kernels that fully reside in
this spatial locality can be processed by a block of threads without additional global
memory access. An aligned group of pixels is processed by a two-dimensional block
of threads first loading the neighboring center pixels of all kernels. Left and right
pixels outside the center area are always loaded with the warp width. Even though
this causes minimal data to be loaded which is not used by the current block, it
ensures inherent coalesced memory access without instruction overhead or warp
divergence. An inner loop allows to process several pixels per thread (nppt) with a
stride of the warp width. Adjusting nppt and the launch configuration, i.e. the number
of threads per block in x-dimension (tdx) and y-dimension (tdy), allows to navigate
between the different optimization principles. Figure 7 shows the data layout and
thread access scheme.

500 C. Banz et al.

Fig. 8 Performance of the
3×3 median filter: on
1280×960 images as the
parallelization configuration
changes. Block width is fixed
to tdx = 32. Best performance
is achieved with
tdx×tdy = 32×4 and nppt = 4

Fig. 9 Performance of the 3×3 median filter: comparison of the texture memory kernel and the
proposed shared memory kernel on a Tesla C2050 GPU for the best-performing parallelization
configuration

The median filter is always compute bound and performs best with tdx×tdy =
32×4 threads and nppt = 4. The results of the parameter study for tdx= 32 are shown
in Fig. 8. Configurations with nppt = 8 perform slightly worse although redundant
memory access is further reduced because of inefficient pipeline utilization. Pro-
cessing times for a 3×3 median filter (i.e. kernel radius K′ = 1) are given in Fig. 9
resulting in 0.64 ms for the new shared memory based kernel. For a texture-memory
based kernel, which is the most often suggested way of implementing a 2D non-
separable filter, processing time is which is 2.77 ms. In comparison, this yields a
speed-up of 4.3 when processing a 1280×960 image.

For a 9×9 rank transform (i.e. K′ = 4) experiments showed that a block size
of tdx×tdy = 32×4 with nppt = 4 yields best performance. A speed up of 4.0 is
obtained switching from the texture-based kernel (3.13 ms) to the shared memory
kernel (0.78 ms) for 1280×960 images.

Architectures for Stereo Vision 501

Fig. 10 Memory access scheme for calculating the matching costs for tdx pixels in parallel in a
tdx-thread wide warp and tdy = 1. The location of the results in the 3D matching cost space is
shown. Again the numbers in the squares represent the thread ID that fetches the according pixels
from global memory

3.6.3 SGM Kernel

For every pixel location p, calculation of the matching cost C(p,d) according to
Eq. (4) results in a vector with one entry for each disparity level d. Thus, the spatial
directions (x and y) and the disparity range span the three-dimensional disparity
space. The matching cost (MC) calculation for every point in this space can be
performed independently allowing for parallelization in all three dimensions.

A straightforward parallelization is to assign each thread with the calculation of
one entry in the 3D cost space of C(p,d). This kernel (mc unaligned) reaches
16.3ms and 48.6GB/s which is far from the bandwidth limit due to inefficient, often
misaligned memory access, lack of data reuse, and little latency hiding possibilities.
This kernel is latency bound which can only be eliminated by a new parallelization
scheme.

The new kernel (mc proposed) processes all disparity levels of a group of tdx
neighboring pixels synchronously in tdx threads. The disparity dimension itself is
further separated into tdy groups each processing drange/tdy disparity levels with an
inner loop in the kernel. By adjusting tdy thread parallelism is substituted with inner
loop complexity. Pixels from the base image are read aligned and coalesced over
the tdx threads. The required pixels from the right image are loaded in groups of tdx
aligned, coalesced pixels into the shared memory where they can be accessed and
reused by all threads. The parallelization scheme is shown in Fig. 10. Furthermore,
only 8 bit precision is required. Since performing arithmetic in non-native GPU data
types (i.e. other than 32-bit integer and float) is slow, input images and computation
are based on 32-bit integer and type conversion to uchar is performed just before
writing out the result. Consequently, type conversion to uchar is performed just
before writing out the result. Choosing tdx as a multiple of the warp size (i.e.
32) results in always aligned memory access. This kernel adheres the optimization
approach of Sect. 3.6.1 by providing inherently aligned memory access, high data
reuse, and efficient use of the arithmetic pipeline. With an obtained performance of
1.8 ms and 111.2 GB/s this is a speed-up of factor 9.2. A performance summary is
given in Table 1.

The path costs (PC) calculation according to Eq. (6) is performed by individually
traversing along each of the eight path directions updating the matching cost values

502 C. Banz et al.

Table 1 Performance results of the optimized kernels (MC: matching costs, PC: path costs,
WTA: winner-takes-all) with optimal launch configuration for computing the semi-global matching
algorithm for images with 1280×960 pixels and 128 disparity levels

Kernel Time (ms) Bandwidth (GB/s) Bound by

MC unaligned 16.32 48.6 Parallelization scheme
MC proposed (uchar4) 1.80 107.3 Pipeline latency
MC+PC 8 path dir. (sequential) 75.68 20.9 Pipeline latency
MC+PC 8 path dir. (concurrent) 39.81 39.7 Pipeline latency
Sum, WTA left disp. map 15.09 117.4 Memory bandwidth

Fig. 11 Image tiling for the 45◦ path and ty = 2 allowing divergent processing direction and path
direction while tiles with the same letter can be processed in parallel. The processing direction
ensures coalesced and aligned memory access

and resulting in a new 3D cost space for each path direction. PC calculation must be
done sequentially along the respective path direction (e.g. from left to right) because
the previous pixel’s path costs must be known. The parallel minimum search over
the disparity levels has been implemented similar to the parallel reduction scheme
from [33]. Although the MCs are common to all PC directions and it seems obvious
to separate MC and PC calculation, it is faster to integrate MC and PC calculation
and recalculate the MCs on-the-fly for each PC direction. This drastically reduces
pressure on the performance-limiting memory bandwidth since the MC data is never
transferred via the external memory but can be kept locally in shared memory. All
eight path directions are executed concurrently using the CUDA concurrent kernel
execution on Fermi architectures.

Due to the coalesced memory access necessity only a group of horizontally
neighboring pixels can be efficiently accessed in memory. The path costs kernels
must be modified according to their path direction in order to maintain efficient
memory access. For each diagonal path direction, processing is separated into
rectangular tiles. Within each tile the processing direction is along the image
columns, i.e. misaligned to the path direction, but ensuring aligned memory access.
Tiles not sharing data dependencies can be processed in parallel as independent
thread blocks. This is similar to the intrablock encoding scheme for video streams
proposed in [53]. An example of the parallel processing order is shown in Fig. 11.
Since block synchronization does not exist on GPUs, correct execution order is
established by sequentially launching a kernel for each diagonal tile front (identical
letters in Fig. 11) causing some minor time overhead. The seeming alternative

Architectures for Stereo Vision 503

Fig. 12 Impact of the parallelization configuration on the performance of the concurrent path cost
calculation for eight paths of the SGM for 1280×960 images and 128 disparity levels. Block width
and tile width are both fixed to tdx = 32. Best performance is achieved with tdx×tdy = 32×4 (i.e.
each inner loop processes 32 disparity levels) and ty = 16

of keeping the processing implementation unchanged but rearranging the data in
the memory creates an inherently contradictory situation: if the GPU is used to
rearrange the data, the re-sorting causes additional memory access with is not even
coalesced.

Again, parameters adjustment allows to navigate between the performance
optimization principles. The first parameter (tdy) trades thread parallelism against
sequential computation in the inner loop for all kernels. The second parameter
(ty) trades the number of parallelly processable blocks versus launch overhead and
memory overhead for the four diagonal paths. Figure 12 shows the result of the
parameter study. Choosing tdy = 4 and ty = 16 results in best performance (39.8 ms
and 39.7 GB/s) for a 1280×960 image. If the concurrent kernel execution is not
used, performance is approximately halved (75.7 ms and 20.9 GB/s). Both kernel
sets, concurrent and sequential, are latency bound.

Summation of the eight path cost spaces (7) and winner-takes-all disparity
selection (9) can be performed independently for each pixel allowing for the same
parallelization scheme as for the MC calculation. This kernel (sum wta) requires
15.1 ms and is memory bound with 117.4 GB/s.

3.6.4 Performance

The processing time for the complete disparity estimation including rank transform,
semi-global matching for eight paths, disparity map generation (without left/right
check (3)) and median filtering on a Tesla C2050 Fermi architecture GPU is
summarized in Table 2. Overall, a 1280×960 image with 128 disparity levels
requires 56.2 ms. The processing times do not include data transfer between host
and GPU because it can be effectively hidden using concurrent data transfer
when processing image streams. When processing 1280×960 image sets ca. 5 ms
additional transfer time is required.

504 C. Banz et al.

Table 2 Performance results for the entire disparity
estimation algorithm using rank transform, semi-global
matching and median filtering on a Nvidia Tesla
C2050 GPU

Image size drange = 64 128 256

640×480 9.7 ms 16.0 ms 29.0 ms
1024×768 21.5 ms 35.9 ms 67.1 ms
1280×960 32.9 ms 56.2 ms 105.7 ms

Results are k-mean values over multiple runs and images

3.7 Implementation Example: VLSI Architecture
for Semi-global Matching

In this section a parallelization scheme and corresponding VLSI architecture for
semi-global matching will be discussed. It is based on the works of [7, 8].

3.7.1 Parallelization

A crucial point for VLSI-implementation is the mapping of the algorithm into a
parallel-processable and stream-based flow that only requires a single-pass across
the input images. Further important aspects are regularity and locality of the
architecture that implements this flow [72]. Challenges are imposed by the semi-
global matching due to the recursively defined paths and their orientations within
the images (see Sect. 2.3), which are not aligned to a stream-based flow.

First, the two-dimensional parallelization concept that enables stream-based
processing will be introduced. Afterwards, an extension of the concept into the third
dimension is presented, what significantly increases processing speed and through-
put. The two-dimensional parallelization concept is shown in Fig. 13 and will be
presented for the path directions of 0◦, 45◦, 90◦, 135◦. Pixels are processed from
left to right along the image row (0◦ path). After processing pixel p−1 = [x− 1,y]
of the upper row, all path costs over d of all directions are available in the path
costs buffers

(
z−1

)
. Path costs are delayed, according to their path directions of

90◦ and 45◦ by one and two additional processing steps, respectively. Afterwards,
path costs of L45◦(x − 3,y,d), L90◦(x − 2,y,d), L135◦(x − 1,y,d) are available at
the output of the path cost buffers. These are exactly those path costs needed for
parallel and synchronous calculation of all path costs of all orientations for pixel
p2 = [x− 2,y+ 1]. Synchronous calculation allows direct summation of path costs
in a pipeline that returns the aggregated costs S.

Therefore, all paths to the pixels p1 = [x,y] and p2 = [x− 2,y+ 1] are calculated
in parallel in a single processing step. This concept is extendable to an arbitrary
number of rows. An additional delay by two pixels is introduced for each new row,
as illustrated in Fig. 13. Images are separated into image slices of N parallel rows in
order to process whole images. Path costs of the last row of an image slice need to
be stored and made available to the first row of the next slice.

Architectures for Stereo Vision 505

Fig. 13 Synchronized and
parallel calculation of the
path costs of the four paths
L0◦ , L45◦ , L90◦ and L135◦ for
the two pixels p1 = [x,y] and
p2 = [x−2,y+1]. Each delay
element stores the respective
path costs over all disparity
levels for the duration of one
processing step

Generalization of this concept is only limited by the fact that the maximum angle
range must be within the half-closed interval [0,180◦). This means that no paths
in opposite directions can be directly supported without additional hardware. The
two-dimensional parallelization allows regular data accesses of the input images
and all intermediate values and will further be referred to as row parallelism.
Moreover, this concept is independent of the processing method of the disparity
levels, which can be either serial or parallel. Processing the disparity levels in
parallel establishes a third dimension of parallelism, which will be referred to as
disparity level parallelism. An approach of particular interest for dedicated hardware
implementations is not to choose either extreme (none or all disparity levels in
parallel) but to process the disparity levels in small groups (e.g. 2, 4, or 8). In this
case the size of the path cost buffers, as specified above, remains constant while
the throughput increases linearly with the number of parallelized disparity levels.
However, some additional logic for the arithmetic computation of n paths in parallel
will be required. The increase of logic requirements vs. performance of disparity
level parallelism and row level parallelism will be investigated in Sect. 3.7.3.

3.7.2 Architecture

The hardware architecture for the entire stereo matching algorithm is given in
Fig. 14. Computation of the rank transform of both images and calculation of the
data dependent penalty term P2 is done in parallel and synchronously utilizing the
same data path.

506 C. Banz et al.

Fig. 14 Hardware architecture for calculation of disparity maps using rank-transform and semi-
global matching. The median filter is optional

Fig. 15 Hardware architecture of the systolic array for parallel path cost calculation of the semi-
global matching for two parallel rows

An N-row buffer provides this data to the systolic array, which calculates
the disparities of all N rows in parallel according to the parallelization concept
introduced above. As a basic post processing step, a median filter is employed for
outlier suppression.

A heterogeneous, completely synchronized systolic array realizes the paralleliza-
tion concept for the semi-global matching utilizing path directions from 0◦, 45◦,
90◦, 135◦. Figure 15 shows the corresponding block diagram without utilization
of disparity level parallelism. In this case processing of a pixel p is carried out
sequentially over all disparities of this pixel. The first processing elements (C-PEs)
calculate the matching costs C(p,d). Each of the following PEs (L-PEs) calculates
the path costs Lr along a path r according to Eq. (6). The results are buffered in
the appropriate path cost buffers. All L-PEs are completely identical and the path
orientations are solely defined by the delays introduced by the path cost buffers.
Path costs are summed to S and then processed by disparity computation PEs (D-
PEs). D-PEs locate the minimum, i.e. the correct disparity, for the disparity maps Db

and Dm of the base and match camera, respectively. A final L/R-Check-PE projects
the disparity map Dm to the perspective of the base camera, executes the left/right
check including occlusion detection, and marks pixels accordingly. A local single
row buffer is needed for the projection. It functions simultaneously as an output
buffer.

Architectures for Stereo Vision 507

a b

Fig. 16 Architectural extension (b) of the 2D-systolic array (a) for introducing disparity level
parallelism where dm specifies the number of disparity levels processed in parallel

In order to introduce disparity level parallelism in addition to the row level
parallelism, the C-PEs and L-PEs are extended to process several consecutive
disparity levels in parallel. These groups of parallel disparity levels are processed
serially. This leads to an approximately linear increase in throughput. Further, it
is area efficient for two reasons. First, additional logic is only required for parts
of the processing units. And second, the absolute size of local buffers does not
change—only the depth-to-width ratio. This is a major advantage of disparity level
parallelism. The architectural extension for disparity level parallelism is shown in
Fig. 16.

Boundary treatment for pixels with missing stereo overlap (i.e. x < dmax)
significantly reduces the number of entries of the cost spaces C (p,d), Lr (p,d),
S (p,d), and, consequently, leads to a computing time reduction. For VGA images
and a disparity range of 128 px the reduction is 9.9% (without disparity level
parallelism).

An external interim memory is required for storing the path costs of the three non-
horizontal paths of the last row of an image slice and providing them to the first row
of the consecutive image slice. Due to the extremely regular data transfer, obeying
the FIFO-principle, and the low transfer rates, external SSRAM and SDRAM-
memories can be used. Alternatively, on-chip memory can be considered due to
the quite low absolute memory requirements.

3.7.3 Performance

Performance of the complete system and scalability of the SGM unit are analyzed
with the minimum clock frequency required to fulfill a fixed throughput constraint.
This metric, i.e. the clock frequency normalized for a fixed throughput, allows direct
and accurate comparison, and reflects the importance of performance while being
independent from varying operating clock frequencies [70]. This also models a
typical design constraint of real-world applications, where the required throughput
is usually specified by external circumstances (e.g. by the cameras, required depth
resolution, etc.). In this case, throughput-normalized metrics for clock frequency,

508 C. Banz et al.

Table 3 Minimum required clock frequencies of the SGM unit (including rank transform and
median filter) for a fixed resolution of 640×480px with 128 disparity levels at 30 fps and resource
usage on a Xilinx Virtex-5 FPGA

Min. clock frequency (MHz) LUTs

pr \ dm 1 2 4 8 1 2 4 8

5 219.6 112.3 58.5 31.6 5,652 6,621 10,110 17,214
10 111.9 57.4 30.0 16.8 11,595 13,398 20,565 34,589
20 58.3 30.2 17.2 13.4 23,379 26,986 41,292 69,578
30 40.7 21.4 14.9 12.4 35,119 40,700 61,930 103,504

The number of parallel rows and parallel disparity levels is denoted pr and dm, respectively

Fig. 17 Required number of LUTs of the systolic array of the SGM unit over the minimum
required clock frequency to process 640×480 px with 128 disparity levels at 30 fps. The number
of parallel rows and parallel disparity levels is denoted pr and dm, respectively. The diagrams
effectively show the impact in area and performance when varying row parallelism and/or disparity
level parallelism. The lower left border in the diagram reflects the Pareto-optimum configuration
points

resource usage, power, and latency enable straightforward identification of the
Pareto-optimal point of operation. Table 3 provides the results for the SGM unit for
a typical parameter set of 640×480 px at 30 fps. As metric for required silicon area,
only Virtex5 LUTs are used. For more information (e.g. BRAMs) please refer to [8].

Interesting insights can be gained by studying the row parallelism vs. disparity
parallelism trade-off. With increasing degree of parallelism, the SGM unit can be
clocked with lower frequencies at the price of higher area requirements. However,
there are significant differences between row level parallelism and disparity level
parallelism. Each point in Fig. 17 is a specific configuration of the design represent-
ing the LUT requirements over the normalized clock frequency. This representation

Architectures for Stereo Vision 509

Fig. 18 Hardware setup of the stereo vision system with the system board and the stereo camera
rig. On the right is the input image of lab scene and the computed raw disparity map before false
color visualization and sending to display is conducted

is considerably different from a typical AT-diagram, which would be inadequate for
this comparison as it would not reflect the throughput constraint.

For a small number of parallel disparity levels, increasing disparity level
parallelism is very efficient since it has a significantly smaller influence on the total
resource usage than increasing row level parallelism. However, row parallelism is
the key concept for stream-based processing and crucial for a high base performance
but increases linearly with the number of rows. The full potential of the parallelism
approaches is exploited when using a combination of both, i.e. by using a small
number of parallel rows and additionally introducing disparity level parallelism
up to the configuration that does not yet require additional memory resources. For
example, starting from the (pr = 10,dm = 1)-configuration a performance increase
of approximately factor two can be achieved by doubling the number of either
parallel rows or disparity levels. Increasing disparity level parallelism does not
increase BRAM requirements (not shown, see [8]) and results in a LUT saving of
factor 1.8. The major benefit of increasing disparity level parallelism is that local
memory requirements remain constant for both, path costs buffers and input/output
buffers.

A stereo vision system covering the entire stereo vision process including image
acquisition, noise reduction, rectification, disparity estimation, post processing,
and visualization has been integrated into a single FPGA. The system has been
integrated on a custom build hardware platform show in Fig. 18. This work shows
that it is possible to implement an algorithmically extremely high performing
disparity matching algorithm in an FPGA with true real-time performance. More
details on the implementation can be found in [8].

510 C. Banz et al.

4 Summary

There has been and continues to be tremendous research in the field of computer
vision, both on the algorithmic side and on the hardware side. Nowadays, many
implementations for GPUs, FPGAs, ASICs, DSPs, and ASIPs are available. These
cover a huge variety of algorithms and design aspects (e.g. algorithmic performance
vs. silicon area). The two example implementations on the GPU and the FPGA for
semi-global matching based disparity estimation show, that it is possible to realize
high quality stereo correspondance search in real-time. The GPU implementation
enables SGM processing with eight paths but without left/right check with more
than 62 fps of images with a resolution of 640×480 and 128 disparity levels on
Nvidia Fermi architecture GPUs. The VLSI architecture is scalable and allows exact
adaptation to the particular application. For the same image resolution frame rates
of 1.7 fps to 319 fps are achieved at a operating frequency of 133 MHz. Which of
both architectures is the more suitable solution depends on the external parameters.

5 Further Reading

A detailed algorithmic overview is provided in the textbook [83] and the surveys
[29,81,85]. Epipolar geometry and rectification is covered in [34,103]. The OpenCV
library provides many functions for stereo processing [11]. For multi-view stereo
and 3D reconstruction [83] is a good starting point.

Dedicated image processing architectures including rectification and many more
are covered in [3] and RTL hardware design in [15]. Various kinds of computer
architectures including GPUs are found in the newest edition of [35].

References

1. Ambrosch, K., Kubinger, W.: Accurate hardware-based stereo vision. Computer Vision and
Image Understanding, Elsevier 114, 1303–1316 (2010)

2. Arias-Estrada, M., Xicotencatl, J., Brebner, G., Woods, R.: Multiple stereo matching using
an extended architecture. Proc. Field-Programmable Logic and Applications 2147, 203–212
(2001)

3. Bailey, D.G.: Design for embedded image processing on FPGAs. John Wiley & Sons,
Singapore (2011)

4. Banz, C., Blume, H., Pirsch, P.: Real-time semi-global matching disparity estimation on the
GPU. Proc. IEEE Intl. Conf. Computer Vision Workshops pp. 514–521 (2011)

5. Banz, C., Blume, H., Pirsch, P.: Evaluation of penalty functions for SGM cost aggregation.
Intl. Archives of Photogrammetry and Remote Sensing (2012)

6. Banz, C., Dolar, C., Cholewa, F., Blume, H.: Instruction set extension for high throughput
disparity estimation in stereo image processing. Proc. IEEE Intl. Conf. Architectures and
Processors Application Specific Systems pp. 169–175 (2011)

Architectures for Stereo Vision 511

7. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using
semi-global matching disparity estimation: Architecture and FPGA-implementation. Proc.
IEEE Intl. Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation
pp. 93–101 (2010)

8. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system
using semi-global matching disparity estimation: Architecture and FPGA-implementation.
Trans. High-Performance Embedded Architectures and Compilers, Springer (2012)

9. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling.
IEEE Trans. Pattern Analysis and Machine Intelligence 20(4), 401–406 (1998)

10. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
Proc. IEEE Intl. Conf. Computer Vision 1, 377–384 (1999)

11. Bradski, G., Kaehler, A.: Learning OpenCV, 1 edn. O’Reilly, Sebastopol (2008)
12. Brunton, A., Chang, S., Roth, G.: Belief propagation on the GPU for stereo vision. Proc.

Canadian Conf. Computer and Robot Vision p. 76 (2006)
13. Chang, N., Lin, T.M., Tasi, T.H., Tseng, Y.C., Chang, T.S.: Real-time DSP implementation

on local stereo matching. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 2090–2093 (2007)
14. Chang, N., Tasi, T.H., Hsu, B., Chen, Y., Chang, T.S.: Algorithm and architecture of disparity

estimation with mini-census adaptive support weight. IEEE Trans. Circuits and Systems for
Video Technology 20(6), 792–805 (2010)

15. Chu, P.P.: RTL hardware design using VHDL: Coding for efficiency, portability, and
scalability. Wiley-Interscience, Hoboken and N.J (2006)

16. Cornells, N., van Gool, L.: Real-time connectivity constrained depth map computation
using programmable graphics hardware. Proc. IEEE Conf. Computer Vision and Pattern
Recognition 1, 1099–1104 (2005)

17. Darabiha, A., MacLean, W., Rose, J.: Reconfigurable hardware implementation of a phase-
correlation stereo algorithm. Machine Vision and Applications, Springer 17, 116–132 (2006)

18. Diaz, J., Ros, E., Carrillo, R., Prieto, A.: Real-time system for high-image resolution disparity
estimation. IEEE Trans. Image Processing 16(1), 280–285 (2007)

19. Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the
GPU. Proc. Intl. Symp. Visual Computing 5358, 228–239 (2008)

20. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person
tracking. Proc. IEEE Conf. Computer Vision and Pattern Recognition pp. 1–8 (2008)

21. Faugeras, O., Viéville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin,
P., Mathieu, H., Fua, P., Berry, G., Proy, C.: Real-time correlation-based stereo: Algorithm,
implementations and applications (1993)

22. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Intl.
Journal of Computer Vision, Springer 70, 41–54 (2006)

23. Forstmann, S., Kanou, Y., Jun, O., Thuering, S., Schmitt, A.: Real-time stereo by using dy-
namic programming. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop
p. 29 (2004)

24. Gehrig, S., Rabe, C.: Real-time semi-global matching on the CPU. Proc. IEEE Conf.
Computer Vision and Pattern Recognition Workshop pp. 85–92 (2010)

25. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-
global matching. Proc. Intl. Conf. Computer Vision Systems 5815, 134–143 (2009)

26. Georgoulas, C., Andreadis, I.: A real-time fuzzy hardware structure for disparity map
computation. Journal of Real-Time Image Processing, Springer 6(4), 257–273 (2011)

27. Gibson, J., Marques, O.: Stereo depth with a unified architecture GPU. Proc. IEEE Conf.
Computer Vision and Pattern Recognition Workshop pp. 1–6 (2008)

28. Gong, M.: Real-time joint disparity and disparity flow estimation on programmable graphics
hardware. Computer Vision and Image Understanding, Elsevier 113(1), 90–100 (2009)

29. Gong, M., Yang, R., Wang, L., Gong Mingwei: A performance study on different cost
aggregation approaches used in real-time stereo matching. Intl. Journal of Computer Vision,
Springer 75, 283–296 (2007)

512 C. Banz et al.

30. Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics
hardware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, 924–931 (2005)

31. Haller, I., Nedevschi, S.: GPU optimization of the SGM stereo algorithm. Proc. IEEE Intl.
Conf. Intelligent Computer Communication and Processing pp. 197–202 (2010)

32. Haller, I., Nedevschi, S.: Design of interpolation functions for subpixel-accuracy stereo-vision
systems. IEEE Trans. Image Processing 21(2), 889–898 (2012)

33. Harris: Optimizing parallel reduction in CUDA (2007). Whitepaper included in Nvidia Cuda
SDK 4.0

34. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2. ed., 7. print. edn.
Cambridge Univ. Press, Cambridge (2010)

35. Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach, 5 edn.
Morgan Kaufmann, San Francisco and Calif and Oxford (2011)

36. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and
mutual information. Proc. IEEE Conf. Computer Vision and Pattern Recognition 2, 807–814
(2005)

37. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE
Trans. Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)

38. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. Proc. IEEE
Conf. Computer Vision and Pattern Recognition pp. 1–8 (2007)

39. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with
radiometric differences. IEEE Trans. Pattern Analysis and Machine Intelligence 31(9),
1582–1599 (2009)

40. Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., Rother, C.: Real-time local stereo matching
using guided image filtering. Proc. IEEE Intl. Conf. Multimedia and Expo pp. 1–6 (2011)

41. Hosseini, F., Fijany, A., Safari, S., Fontaine, J.: Fast implementation of dense stereo vision
algorithms on a highly parallel SIMD architecture. Journal of Real-Time Image Processing,
Springer pp. 1–15 (2011)

42. Humenberger, M., Zinner, C., Kubinger, W.: Performance evaluation of a census-based stereo
matching algorithm on embedded and multi-core hardware. Proc. Intl. Symp. Image and
Signal Processing and Analysis pp. 388–393 (2009)

43. Ivanchenko, V., Shen, H., Coughlan, J.: Elevation-based MRF stereo implemented in real-
time on a GPU. Workshop Applications of Computer Vision pp. 1–8 (2009)

44. Jiangbo, L., Rogmans, S., Lafruit, G., Catthoor, F.: Real-time stereo correspondence using a
truncated separable laplacian kernel approximation on graphics hardware. Proc. IEEE Intl.
Conf. Multimedia and Expo pp. 1946–1949 (2007)

45. Jiangbo, L., Zhang, K., Lafruit, G., Catthoor, F.: Real-time stereo matching: a cross-based
local approach. Proc. IEEE Intl. Conf. Acoustics, Speech and Signal Processing pp. 733–736
(2009)

46. Jin, S., Cho, J., Pham, X.D., Lee, K.M., Park, S.K., Kim, M., Jeon, J.W.: FPGA design and
implementation of a real-time stereo vision system. IEEE Trans. Circuits and Systems for
Video Technology 20(1), 15–26 (2010)

47. Kalarot, R., Morris, J.: Comparison of FPGA and GPU implementations of real-time stereo
vision. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshop pp. 9–15
(2010)

48. Kalarot, R., Morris, J., Gimel’farb, G.: Performance analysis of multi-resolution symmetric
dynamic programming stereo on GPU. Proc. Intl. Conf. Image and Vision Computing New
Zealand pp. 1–7 (2010)

49. Kanade, T., Yoshida, A., Oda, K., Kano, H., Tanaka, M.: A stereo machine for video-rate
dense depth mapping and its new applications. Proc. IEEE Conf. Computer Vision and Pattern
Recognition pp. 196–202 (1996)

50. Ke, Z., Jiangbo, L., Qiong, Y., Lafruit, G., Lauwereins, R., van Gool, L.: Real-Time and
Accurate Stereo: A Scalable Approach With Bitwise Fast Voting on CUDA. IEEE Trans.
Circuits and Systems for Video Technology 21(7), 867–878 (2011)

Architectures for Stereo Vision 513

51. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and
mutual information. Proc. IEEE Intl. Conf. Computer Vision pp. 1033–1040 (2003)

52. Konolige, K.: Small vision systems: Hardware and implementation. Proc. Intl. Symp. Robotic
Research (1997)

53. Kung, M., Au, O., Wong, P., Chun, H.L.: Block based parallel motion estimation using
programmable graphics hardware. Proc. Intl. Conf. Audio , Language and Image Processing
pp. 599–603 (2008)

54. Lee, S.H., Yi, J., Kim, J.S.: Real-time stereo vision on a reconfigurable system. Proc. Intl.
Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation Workshops
3553, 299–307 (2005)

55. Liang, C., Cheng, C., Lai, Y., Chen, L., Chen, H.: Hardware-efficient belief propagation. IEEE
Trans. Circuits and Systems for Video Technology 21(5), 525–537 (2011)

56. Liang, W., Miao, L., Minglun, G., Ruigang, Y., Nister, D.: High-quality real-time stereo using
adaptive cost aggregation and dynamic programming. Proc. Intl. Symp. 3D Data Processing,
Visualization, and Transmission pp. 798–805 (2006)

57. Liang, W., Mingwei, G., Minglun, G., Ruigang, Y.: How far can we go with local optimization
in real-time stereo matching. Proc. Intl. Symp. 3D Data Processing, Visualization, and
Transmission pp. 129–136 (2006)

58. Liu, J., Xu, Y., Klette, R., Chen, H., Vaudrey, T.: Disparity Map Computation on a Cell
Processor (2009)

59. van der Mark, W., Gavrila, D.: Real-time dense stereo for intelligent vehicles. IEEE Trans.
Intelligent Transportation Systems 7(1), 38–50 (2006)

60. Masrani, D., MacLean, W.: A real-time large disparity range stereo-system using FPGAs.
Proc. Intl. Conf. Computer Vision Systems p. 13 (2006)

61. Mattoccia, S., Viti, M., Ries, F.: Near real-time Fast Bilateral Stereo on the GPU. Proc. IEEE
Conf. Computer Vision and Pattern Recognition Workshop pp. 136–143 (2011)

62. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo
matching system on graphics hardware. Proc. IEEE Intl. Conf. Computer Vision Workshops
pp. 467–474 (2011)

63. Minglun, G., Ruigang, Y.: Image-gradient-guided real-time stereo on graphics hardware.
Proc. Intl Conf. 3D Digital Imaging and Modeling pp. 548–555 (2005)

64. Miyajima, Y., Maruyama, T.: A real-time stereo vision system with FPGA. Proc. Intl. Conf.
Field Programmable Logic And Application 2778, 448–457 (2003)

65. Morris, J., Jawed, K., Gimel’farb, G., Khan, T.: Breaking the ‘Ton’: Achieving 1% depth
accuracy from stereo in real time. Proc. Intl. Conf. Image and Vision Computing New Zealand
pp. 142–147 (2009)

66. Mühlmann, K., Maier, D., Hesser, J., Manner, R.: Calculating dense disparity maps from
color stereo images, an efficient implementation. Intl. Journal of Computer Vision, Springer
47(1–3), 79–88 (2002)

67. Pantilie, C., Nedevschi, S.: SORT-SGM: Subpixel optimized real-time semiglobal matching
for intelligent vehicles. IEEE Trans. Vehicular Technology 61(3), 1032–1042 (2012)

68. Park, S., Jeong, H.: Real-time stereo vision FPGA chip with low error rate. Proc. Intl. Conf.
Multimedia and Ubiquitous Engineering pp. 751–756 (2007)

69. Paya Vaya, G., Martin Langerwerf, J., Banz, C., Giesemann, F., Pirsch, P., Blume, H.: VLIW
architecture optimization for an efficient computation of stereoscopic video applications.
Proc. Intl. Conf. Green Circuits and Systems pp. 457–462 (2010)

70. Paya-Vaya, G., Martin-Langerwerf, J., Pirsch, P.: A multi-shared register file structure for
VLIW processors. Journal of Signal Processing Systems, Springer 58(2), 215–231 (2010)

71. Perez, J., Sanchez, P., Martinez, M.: High memory throughput FPGA architecture for high-
definition Belief-Propagation stereo matching. Proc. Intl. Conf. Signals, Circuits and Systems
pp. 1–6 (2009)

72. Pirsch, P.: Architectures for digital signal processing. John Wiley & Sons, Inc., Chichester
(2008)

514 C. Banz et al.

73. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation
of continuous multi-label problems. Proc. European Conference on Computer Vision 5304,
792–805 (2008)

74. Podlozhnyuk, V.: Image Convolution with CUDA (2007). Whitepaper included in Nvidia
Cuda SDK 4.0

75. Ranft, B., Schoenwald, T., Kitt, B.: Parallel matching-based estimation - a case study on three
different hardware architectures. Proc. IEEE Intelligent Vehicles Symposium pp. 1060–1067
(2011)

76. Ruigang, Y., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hard-
ware. Proc. IEEE Conf. Computer Vision and Pattern Recognition 1, I–211–I–217 (2003)

77. Ruigang, Y., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using
commodity graphics hardware. Proc. Pacific Conf. Computer Graphics and Applications
pp. 225–234 (2002)

78. Sabihuddin, S., Islam, J., MacLean, W.: Dynamic programming approach to high frame-
rate stereo correspondence: A pipelined architecture implemented on a field programmable
gate array. Proc. Canadian Conf. Electrical and Computer Engineering pp. 001,461–001,466
(2008)

79. Safari, S., Fijany, A., Diotalevi, F., Hosseini, F.: Highly parallel and fast implementation
of stereo vision algorithms on MIMD many-core Tilera architecture. Proc. IEEE Aerospace
Conference pp. 1–11 (2012)

80. Scharstein, D., Szeliski, R.: The Middlebury Stereo Pages. http://vision.middlebury.edu/
stereo/

81. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms. Intl. Journal of Computer Vision, Springer 47(1), 7–42 (2002)

82. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Proc.
IEEE Conf. Computer Vision and Pattern Recognition 1, I–195–I–202 (2003)

83. Szeliski, R.: Computer vision: Algorithms and applications. Springer, London and New York
(2011)

84. Szeliski, R., Scharstein, D.: Sampling the disparity space image. IEEE Trans. Pattern Analysis
and Machine Intelligence 26(3), 419–425 (2004)

85. Tomasi, M., Vanegas, M., Barranco, F., Daz, J., Ros, E.: Massive parallel-hardware architec-
ture for multiscale stereo, optical flow and image-structure computation. IEEE Trans. Circuits
and Systems for Video Technology 22(2), 282–294 (2012)

86. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of
cost aggregation methods for stereo correspondence. Proc. IEEE Conf. Computer Vision and
Pattern Recognition pp. 1–8 (2008)

87. Tseng, Y.C., Chang, T.S.: Architecture design of belief propagation for real-time disparity
estimation. IEEE Trans. Circuits and Systems for Video Technology 20(11), 1555–1564
(2010)

88. Ttofis, C., Hadjitheophanous, S., Georghiades, A., Theocharides, T.: Edge-directed hardware
architecture for real-time disparity map computation. IEEE Trans. Computers PP(99), 1
(2012)

89. Ttofis, C., Theocharides, T.: Towards accurate hardware stereo correspondence: A real-time
FPGA implementation of a segmentation-based adaptive support weight algorithm. Proc.
Conf. Design, Automation & Test in Europe pp. 703–708 (2012)

90. Vaish, V., Levoy, M., Szeliski, R., Zitnick, C., Sing, B.K.: Reconstructing occluded surfaces
using synthetic apertures: Stereo, focus and robust measures. Proc. IEEE Conf. Computer
Vision and Pattern Recognition 2, 2331–2338 (2006)

91. Villalpando, C., Morfopolous, A., Matthies, L., Goldberg, S.: FPGA implementation of stereo
disparity with high throughput for mobility applications. Proc. IEEE Aerospace Conference
pp. 1–10 (2011)

92. Weber, M., Humenberger, M., Kubinger, W.: A very fast census-based stereo matching
implementation on a graphics processing unit. Proc. IEEE Intl. Conf. Computer Vision
Workshops pp. 786–793 (2009)

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/

Architectures for Stereo Vision 515

93. Woodfill, J., Gordon, G., Buck, R.: Tyzx DeepSea high speed stereo vision system. Proc.
IEEE Conf. Computer Vision and Pattern Recognition Workshop p. 41 (2004)

94. Woodfill, J., Gordon, G., Jurasek, D., Brown, T., Buck, R.: The Tyzx DeepSea G2 vision
system, a taskable, embedded stereo camera. Proc. IEEE Conf. Computer Vision and Pattern
Recognition Workshop p. 126 (2006)

95. Woodfill, J., Herzen, B.v.: Real-time stereo vision on the PARTS reconfigurable computer.
Proc. IEEE Symp. FPGAs for Custom Computing Machines pp. 201–210 (1997)

96. Xu, Y., Chen, H., Klette, R., Liu, J., Vaudrey, T.: Belief propagation implementation using
CUDA on an Nvidia GTX 280. Proc. Advances in Artificial Intelligence 5866, 180–189
(2009)

97. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nister, D.: Real-time global stereo
matching using hierarchical belief propagation. Proc. The British Machine Vision Conference
pp. 989–998 (2006)

98. Yunde, J., Xiaoxun, Z., Mingxiang, L., Luping: A miniature stereo vision machine (MSVM-
III) for dense disparity mapping. Proc. IEEE Intl. Conf. Pattern Recognition 1, 728–731
(2004)

99. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspon-
dence. Proc. European Conference on Computer Vision pp. 151–158 (1994)

100. Zach, C., Klaus, A., Hadwiger, M., Karner, K.: Accurate dense stereo reconstruction using
graphics hardware. Proc. EUROGRAPHICS pp. 227–234 (2003)

101. Zach, C., Sormann, M., Karner, K.: Scanline optimization for stereo on graphics hardware.
Proc. Intl. Symp. 3D Data Processing, Visualization, and Transmission pp. 512–518 (2006)

102. Zatt, B., Shafique, M., Bampi, S., Henkel, J.: Multi-level pipelined parallel hardware
architecture for high throughput motion and disparity estimation in Multiview Video Coding.
Proc. Conf. Design, Automation & Test in Europe pp. 1–6 (2011)

103. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. Intl. Journal of
Computer Vision, Springer 27(2), 161–195 (1998)

104. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and
Machine Intelligence 22(11), 1330–1334 (2000)

	Architectures for Stereo Vision
	1 Introduction
	2 Algorithms
	2.1 Epipolar Geometry and Rectification
	2.2 Stereo Correspondence
	2.3 Algorithm Example: Semi-global Matching

	3 Architectures
	3.1 GPU-Based Implementations
	3.2 Dedicated Architectures (FPGA and VLSI)
	3.3 Other Architectures
	3.4 Comparison Studies
	3.5 Current Trends
	3.6 Implementation Example: Semi-global Matching on the GPU
	3.6.1 Parallelization Principles
	3.6.2 Rank Transform and Median Filter Kernel
	3.6.3 SGM Kernel
	3.6.4 Performance

	3.7 Implementation Example: VLSI Architecture for Semi-global Matching
	3.7.1 Parallelization
	3.7.2 Architecture
	3.7.3 Performance

	4 Summary
	5 Further Reading
	References

