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Abstract Distributed smart cameras are multiple-camera systems that perform
computer vision tasks using distributed algorithms. Distributed algorithms scale
better to large networks of cameras than do centralized algorithms. However, new
approaches are required to many computer vision tasks in order to create efficient
distributed algorithms. This chapter motivates the need for distributed computer
vision, surveys background material in traditional computer vision, and describes
several distributed computer vision algorithms for calibration, tracking, and gesture
recognition.

1 Introduction

Distributed smart cameras have emerged as an important category of distributed
sensor and signal processing systems. Distributed sensors in other media have been
important for quite some time, but recent advances have made the deployment of
large camera systems feasible. The unique properties of imaging add new classes of
problems that are not apparent in unidimensional and low-rate sensors. Physically
distributed cameras have been used in computer vision for quite some time to han-
dle two problems: occlusion and pixels-on-target. Cameras at different locations
expose and occlude different parts of the scene. Their imagery can be combined to
create a more complete model of the scene. Pixels-on-target refers to the resolution
with which a part of the scene is captured, which in most applications is primarily
limited by sensor resolution and not by optics. Wide-angle lenses cover a large area
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but at low resolution for any part of the scene. Imagery from multiple cameras can be
combined to provide both extended coverage and adequate resolution. Distributed
smart cameras combine physically distributed cameras and distributed algorithms.
Early approaches to distributed-camera-based computer vision used server-based,
centralized algorithms. While such algorithms are often easier to conceive and
implement, they do not scale well. Properly-designed distributed algorithms scale to
handle much larger camera networks. VLSI technology has aided both the image-
gathering and computational abilities of distributed smart camera systems. Moore’s
Law has progressed to the point where very powerful multiprocessors can be put on
a single chip at very low cost [30]. The same technology has also provided cheap
and powerful image sensors, particularly in the case of CMOS image sensors [31].
Distributed smart cameras have been used for a variety of applications, including
tracking, gesture recognition, and target identification. Networks of several hundred
cameras have been tested. Over time, we should expect to see much larger networks
both tested and deployed. Surveillance is one application that comes to mind.
While surveillance and security are a large application—analysts estimate that 25
million security cameras are installed in the United States—that industry moves
at a relatively slow pace. Health care, traffic analysis, and entertainment are other
important applications of distributed smart cameras. After starting in the mid-
1990s, research on distributed smart cameras has progressed rapidly over the past
decade. A recent special issue of Proceedings of the IEEE [24] presented a variety
of recent results in the field. The International Conference on Distributed Smart
Cameras is devoted to the topic. We start with a review of some techniques from
computer vision that were not specifically developed for distributed systems but
have been used as components in distributed systems. Section 3 reviews early
research in distributed smart cameras. Section 4 considers the types of challenges
created by distributed smart cameras. We next consider calibration of cameras in
Sect. 5, followed by algorithms for tracking in Sect. 6 and gesture recognition in
Sect. 7. Section 7.1 discusses computing platforms suitable for real-time distributed
computer vision.

2 Approaches to Computer Vision

Several algorithms that used in traditional computer vision problems such as
tracking also play important roles as components in distributed computer vision
systems. In this section we briefly review some of those algorithms. Tracking
refers to the target or object of interest as foreground and non-interesting objects
as background (even though this usage is at variance with the terminology of
theater). Many tracking algorithms assume that the background is relatively static
and use a separate step, known as background elimination or background sub-
traction, to eliminate backgrounds. The simplest background subtraction algorithm
simply compares each pixel in the current frame to the corresponding pixel in a
reference frame that does not include any targets. If the current-frame pixel is
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equal the reference-frame pixel, then it is marked as background. This algorithm
is computationally cheap but not very accurate. Even very small amounts of
movement in the background can cause erroneous classification; the classic example
of extraneous motion is the blowing of tree leaves in the wind. The mixture-
of-Gaussians approach [11] provides more accurate results. Mixture-of-Gaussian
systems also use multiple models so more than one candidate model can be kept
alive at a time. The algorithm proceeds in three steps: compare Gaussians of each
model to find matches; update Gaussian mean and variance; update weights. Given
a pixel value as a vector of luminance and chrominance information X ∈ (Y,Cb,Cr)

and αx =
√

|X−μx|
σx

, we can compare a current-frame and reference-frame pixels
using a threshold: (
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aY

)2

+
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Matching weights are updated as follows, where n is the number of frames over
which this Gaussian distribution has been active:

N =

{
n, n < Nmax

Nmax, n ≥ Nmax

(2)

μX n = μX n−1 +
(Xn − μX n−1)

N
(3)

σX n = σX n−1 +
(Xn − μX n−1)(Xn − μX n)−σX n−1

N
(4)

A weight wm evaluates the system’s confidence in that model and pixel position:

M =

{
m, m < Mmax

Mmax, m ≥ Mmax

(5)

wm = wm−1 +
(ρ −wm−1)

M
(6)

An appearance model is used to compare the appearance of targets in different
frames; appearance models are useful both in a single-camera system to ensure
tracking continuity or between cameras to compare views. Appearance models may
make use of shape and/or color. Bounding box is a simple shape model, but more
complex curve-based models may also be used. A color or luminance histogram is
often used to represent detail within the image. One common method for comparing
two histograms is the Bhattacharyya distance. More than one appearance model
may be necessary since many interesting targets change in both shape and color as
a function of the observer’s position. The two major approaches to single-camera
tracking are Kalman filtering [4] and particle filters. Particle filters [6] use Monte
Carlo methods to estimate a probability distribution. Weighted particles represent
samples of the hidden states as weighted by Bayesan estimates of probability
masses. Coates [7] describes a distributed algorithms for computing particle filters.
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In their architecture, each sensor node ran one particle filter, with random number
generators on each node that were synchronized. They described two approaches to
the problem of distributing observations over the network, one parametric and one
based on adaptive encoding. Sheng et al. [26] developed two distributed particle
filter algorithms: one that exchanges information between cliques (nearby sensors
whose signals tend to be correlated) and another in which cliques compute partial
estimates based on local information and forward their estimates to a fusion center.

3 Early Work in Distributed Smart Cameras

The DARPA-sponsored Video Surveillance and Monitoring (VSAM) program was
one of the first efforts to develop distributed computer vision systems. A system
developed at Carnegie Mellon University [8] developed a cooperative tracking
system in which tracking targets were handed off from camera to camera. Each
sensor processing unit (SPU) classified targets into categories such as human or
vehicle. At the MIT Media Lab, Mallet and Bove [18] developed a distributed
camera network that could hand-off tracking targets in real time. Their camera
network consisted of small cameras mounted on tracks in the ceiling of a room. The
cameras would move to improve their view of subjects based on information from
other cameras as well as their own analysis. Lin et al. [17] developed a distributed
system for gesture recognition that fuses data after some image processing using a
peer-to-peer protocol. That system will be described in more detail in Sect. 7. The
distributed tracker of Bramberger et al. [5] passed off a tracking task from camera
to camera as the target moved through the scene. Each camera ran its own tracker.
Handoffs were controlled by a peer-to-peer protocol.

4 Challenges

A distributed smart camera is a data fusion system—samples from cameras are
captured, features are extracted and combined, and results are classified. There is
more than one way to perform these steps, providing a rich design space. We can
identify several axes on which the design space of distributed smart cameras can be
analyzed:

• How abstract is the data being fused: pixel, small-scale feature, shape, etc.? What
methods are used to fuse data?

• What groups/cliques of sensors combine their data? For example, groups may be
formed by network connectivity, location, or signal characteristics. How does the
group structure evolve as the scene changes?

• How sparse in time and space is the data?
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group

Fig. 1 Groups in wireless
networks

We can also identify some axes based on the underlying technology:

• Number of cameras.
• Heterogeneity of cameras.
• Fixed and/or moving cameras.
• Fields-of-view (overlapping, non-overlapping).
• Server-assisted (directories, etc.) vs. peer-to-peer.
• Data fusion level: pixels (server-based) vs. mid-level vs. high-level

The simplest form of data fusion is to directly combine pixels. Image stitching
algorithms [19] can be used to merge several images into a larger image. Such
algorithms are more often used for photography—that is, directly-viewed images—
than for computer vision. Thanks to the large amount of data involved, some amount
of preprocessing is often done before merging data. Features can be extracted using a
variety of methods. Scale-invariant feature transform (SIFT) is a widely used feature
extraction algorithm. A set of feature vectors is extracted from the image as min/max
of the difference-of-Gaussians function to smoothed and resampled images. The
features are then clustered to identify corresponding features in the images to be
compared. These features can be combined in a variety of ways using distributed
algorithms, either tree-based or graph-based. Group structure is an issue that cuts
across image processing and distributed algorithms. The natural structure of the
problem suggests certain groupings of data that are reflected in the formulas that de-
scribe the image processing being performed. Distributed algorithms and networks
also encourage grouping. In many cases, the groupings suggested by those two
disciplines are complementary but in some cases their recommendations conflict.

Group structure in networks is often based on network distance as illustrated
in Fig. 1. Network distance is determined in part in a wireless network by the
transmission radius of a node, which determines what other nodes can be reached
directly. It is also determined by the path length between nodes in a network. In
contrast, group structure for image processing algorithms is determined by field-of-
view as illustrated in Fig. 2. When cameras have overlapping fields of view, a target
is in general visible to several cameras, These cameras are not always physically
adjacent—in fact, to battle occlusion, cameras at widely different angles provide the
best coverage. The cameras also may not be close in the network sense. However,
these cameras do need to talk to each other. In the case of non-overlapping fields-
of-view, as shown in Fig. 3, communication between nodes is determined by the
possible or likely paths of targets, which may or may not correspond to network
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Fig. 2 Groups in overlapping field-of-view image processing

Fig. 3 Groups in non-overlapping cameras

topology. Features from multiple sensors need to be combined at some point. Where
they are combined and how they are combined are both factors. We will use two
example systems to illustrate different approaches to feature analysis, fusion, and
classification. A separate chapter in this book describes sensor networks in more
detail.
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5 Camera Calibration

Several aspects of the camera network need to be calibrated:

• Intrinsic calibration determines camera parameters such as focal length and
color response.

• Extrinsic spatial calibration determines the position of the camera relative to the
scene that it views and, in the case of camera networks, to the other cameras in
the system.

• Temporal calibration determines the time at which frames are captured and, in
the case of camera networks, how the cameras are synchronized relative to each
other.

Some calibration problems for camera networks are similar to the calibration
problems for a single camera. Camera networks also introduce new calibration
problems. Without proper calibration, we cannot properly compare data or analysis
results between cameras.

The book by Hartley and Zisserman [10] provides a thorough discussion of
camera calibration. A thorough review of the subject is beyond the scope of this
article; we concentrate here on distributed algorithms to solve calibration problems.
However, we can identify a few basic techniques for calibration. Intrinsic calibration
is necessary to determine the relationship between image features and objects in
world coordinates. When we have multiple cameras, we need to determine the
relationships between the cameras as well as the internal parameters of each camera.
The fundamental matrix describes the relationship between two views of a point
in space. The three-view geometry problem determines the relationships between
three cameras, which is based on the correspondence between two lines and a point.
The trifocal tensor describes the required relationship, along with a set of internal
constraints. The four-view geometry problem is yet more complex and is often
solved using the simpler affine camera model. This problem can be generalized to
the n-camera case.

Radke et al. [23] developed a distributed algorithm for the metric calibration
of camera networks. External calibration of a camera determines the position of
the camera in world coordinates using a rotation matrix and translation vector.
Intrinsic parameters include focal length, location of the principal point, and skew.
Calibrating cameras through image processing is usually more feasible than by
directly measuring camera position. Devarajan et al. model the camera network
using a communication graph and a vision graph. The communication graph is based
on network connectivity—it has an edge between nodes that directly communicate;
this graph can be constructed using standard ad-hoc network techniques. The vision
graph is based on signal characteristics—it has an edge between two nodes that have
overlapping fields-of-view; this graph needs to be constructed during the calibration
process. Each camera is described by a 3×4 matrix Pi that gives the rotation matrix
and optical center of the camera. The intrinsic parameter matrix for camera i is
known as Ki. A set of points X = {X1, . . . ,Xn} are used as reference points for
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calibration; these points can be selected using a variety of methods, such as SIFT.
Two cameras have overlapping fields-of-view if they can both see a certain number
of the Xs.

The reconstruction is ambiguous and we need to estimate a matrix H that turns
the reconstruction into a metric form (preserving angles, etc.). A bundle adjustment
step uses nonlinear minimization to improve the calibration. Synchronization, also
known as temporal calibration, is necessary to provide an initial time base for
video analysis. Cameras may also need to be resynchronized during operation.
Even professional cameras may not provide enough temporal stability for long-
running experiments and low-cost cameras often display wide variations in frame
rate. Lamport and Melliar-Smith [16] developed an algorithm for synchronizing
clocks in distributed systems; such approaches are independent of the distributed
camera application. Velipasalar and Wolf [29] developed a video-based algorithm
for synchronization. The algorithm works by matching target positions between
cameras, so it assumes that the cameras have previously been spatially calibrated.
A set of frames is selected for comparison by each camera. For each frame, an
anchor point is selected. The targets are assumed to be on a plane, so the anchor
point is determined by dropping a line from the top of the bounding box to
the ground plane. Given these reference points, a search algorithm compares the
positions of the targets to minimize the distance D1,2

i, j between frame sequences 1
and 2 at offsets i and j.

Pollefeys et al. [21] developed an algorithm for combined spatial and temporal
calibration of camera networks. They use a moving target, such as a person, to
provide data for calibration in the form of boundary points on the target’s silhouette.
They use RANSAC to match points from frames from two videos. The RANSAC
search evaluates both the epipolar geometry and the temporal offset between the
frames. They first generate a consistent set of fundamental matrics for three cameras.
They then add cameras one at a time until either all cameras have been calibrated or
the errors associated with a camera’s calibration are too large.

Porikli and Divakaran [22] calibrate color models of cameras by recording
images of identical objects from each camera and then computing a correlation
matrix of the histograms generated for the object from each camera.

6 Tracking

6.1 Tracking with Overlapping Fields-of-View

Velipasalar et al. [28] developed a peer-to-peer tracking system that fuses data
at a higher level. At system calibration time, the cameras determine all other
cameras that share overlapping fields-of-view. This information is used to build
groups for sharing information about targets. Each camera runs its own tracker.
As illustrated in Fig. 4, a camera maintains for each target in its field-of-view the
position and appearance model of the target. The cameras then trade information
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target
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node 1 node 2

Fig. 4 Combining tracks
during distributed tracking

about targets. The cameras that have a given target in their fields-of-view form a
group. Cameras communicate every n frames, where n is chosen at design time.
A more adaptive approach would be to adapt the communication rate based upon
the rate at which targets move. The group is built on top of a logical ring structure,
which is commonly used to communicate in multiprocessors. The cameras in the
group exchange information on the position of the target. Exchange allows cameras
to estimate position more accurately. It also allows cameras whose view of the
target is occluded to know where the target is during the occlusion interval. The
protocol also negotiates an identity for each target. When a target enters the system,
the cameras must also agree upon a common label for the target. They compare
appearance models and positions to determine that they, in fact share a target. They
then select a common label for that target.

Fleuret et al. [9] use dynamic programming to track multiple people in a scene.
They discretize the planar floor into discrete regions and compute the most likely
positions of people from frame to frame. They solve overlapping windows of 100
frames. Models for motion and color constrain the search space. They identify tracks
one subject at a time to minimize the size of the search space.

6.2 Tracking in Sparse Camera Networks

In many environments, we cannot set up cameras whose fields-of-view cover the
entire area of interest. In sparse camera networks, we must find alternative methods
to correlate observations between cameras. The most common approach is to use
Bayesian metrics to group observations into sets that correspond to paths. Search
algorithms find the most likely assignments of observations to paths. A graph
models the set of observation positions as nodes and the possible paths between
those positions as edges.
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Oh et al. [20] developed a Markov chain Monte Carlo algorithm for multi-
target tracking (MCMC-MTT). We are given a set of target positions xi and a
set of observations yi. We partition the available observations into a set of tracks
τ = {y1, . . . ,yt}. The set of all tracks for a given scene is ω . Given a new set of
observations yt+1, we want to assign them to tracks and possibly reassign existing
observations to different tracks, generating an updated set of tracks ω ′ such that we
maximize the posterior of ω ′. Oh et al. showed that the posterior of ω ′ is:

P(ω | Y ) =
1
Z ∏

1≤t≤T

pzt
z (1− pz)

ct pdt
d (1− pd)

ut λ at
b λ ft

f ×

∏
τ∈ω/{τ0}

∏
1≤i≤|τ|−1

N(τ(ti+1 | x̄ti+1(τ),bti+1(τ)) (7)

Z is a normalizing constant and N() is the Gaussian density function with mean μ
and covariance matrix Σ . In the approach of Oh et al., MCMC multi-target tracking
makes use of several types of moves to generate new candidate tracks:

• Birth/death: Create or destroy a track.
• Split/merge: Break or combine an existing track.
• Extension/reduction: Add or remove observations at the end of a track.
• Track update: An update adds an observation to a track.
• Track switch: Swap an observation from one track to another.

A move is accepted or rejected with probability:

A(ω ,ω ′) = min

(
1,

π(ω ′)q(ω ′,ω)

π(ω)q(ω ,ω ′)

)
(8)

where π(ω) is the stationary distribution of the states and q(ω ,ω ′) is the proposal
distribution.

Kim et al. [14] used a modified graph model to encapsulate information about
priors that guides the search process. Entry and exit nodes are often connected
by cycles of edges that model entry and exit. Such cycles can induce long
paths to be generated that consist of the target shuttling between two nodes. A
supernode models a set of nodes and associated edges. The supernode represents
the prior knowledge that such cycles are unlikely. Kim and Wolf [15] developed a
distributed algorithm to perform the search over candidate paths. A camera is able to
communicate only with nearby cameras. Each camera estimates local paths for the
targets using its own observations and observations obtained from nearby cameras.
A maximum weighted bipartite matching algorithm is used to match observations
with their immediate predecessors. The local paths are then concatenated to create
global paths for the targets.

Song and Roy-Chowdhury [27] used a modified form of optimal path solving
with random variables for weights. They compare the similarity between observa-
tions to compute a similarity score for a pair of observations. They then solve a
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maximum matching problem in a weighted bipartite graph. They handle variations
among the observations by relaxing independence of the correspondences between
features using a path smoothness function.

Javed et al. [13] model variations in appearance of targets from camera to camera
due to a combination of camera parameters, illumination, and pose using brightness
transfer functions (BTFs). They generated inter-camera BTFs for pairs of cameras
during a training phase using object histograms. They then use inter-camera BTFs
to modify the similarity metric for observations during computation of the track.

Tracking from pan-tilt-zoom (PTZ) cameras is more challenging. de Agapito
et al. [1] developed an algorithm for calibrating using a set of images from a camera
that rotates. They assume that pixels are square, that the images are not skewed, and
that there is a known principal point. Given those constraints, they can formulate the
homographies between the reference image and the other images from the camera.
Standard least-squares algorithms can be used to solve the system of equations. Del
Bimbo et al. [3] perform real-time tracking taking into account the homography
between the reference view and successive frames of the PTZ camera. They use
a particle filter to estimate the camera parameters. They use a SIFT algorithm to
extract points in the images.

7 Gesture Recognition

A gesture is a sequence of poses [32]. Each pose can be extracted from a frame.
The sequence of poses can then be determined from the poses using a variety of
techniques such as hidden Markov models.

Van den Bergh et al. [2] developed an algorithm for pose estimation. They extract
a three-dimensional hull over the subject using voxel carving. They achieve real-
time performance by using a fixed lookup table for each voxel that gives for each
pixel the set of voxels that project onto that pixel. They use an example-based
classifier to bin the 3D hulls into poses.

Lin et al. [17] developed a peer-to-peer algorithm for gesture recognition. The
distributed system is based on a single-camera gesture recognition system [32]. That
algorithm extracts shapes, builds a graph model of the relationships between the
shapes, and then matches that graph against a library of graphs representing poses.

The basic challenge in extending the single-camera system to multiple cameras
is that a subject may stand such that no single camera has a complete view. In
general, data must be combined from multiple cameras before a graph can be built.
A brute-force approach would be to share frames, but this entails a substantial
bandwidth penalty. Lin’s system combines the features created by pixel-level region
identification. The regions from different cameras are easily fused but they can be
transmitted at lower cost. As shown in Fig. 5, when the target appears in the view
of multiple cameras, each camera extracts the foreground object and extracts pixel
boundaries for the foreground regions. A protocol determines which camera will
fuse these boundaries and complete the recognition process. A group is formed by
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Fig. 5 Combining features
for gesture recognition

the cameras that can view the target. One member of the group, the lead node, has
a token that denotes that it is responsible for fusion. The token moves to a different
node when the target’s position, as determined by the centerline of its bounding box,
moves out of the field-of-view of the lead node. The token is passed to a camera
whose field-of-view contains the target centerline.

7.1 Platform Architectures

The details of the computing platform can vary widely, but the fundamental
assumptions made by most distributed computer vision algorithms include the
nodes and network in a distributed system. Processing nodes are assumed to have
reasonably powerful processors that can perform significant amounts of work in
real time. RAM is generally not unlimited but enough is available for the required
algorithms. Mass storage (disk or flash) may or may not be available. Most systems
assume that power is available to nodes for continuous operations, although it is
possible to build a battery-operated system that will operate for a short interval.
Networking may be provided using either wired or wireless networks. A useful
amount of bandwidth is available, as well.

In reality, the fundamental assumptions made by many distributed computer
vision algorithms are not entirely pragmatic. Consider a primary application area of
computer vision: security and surveillance. As expected, these fields call for discreet
and in many cases remote deployment. Clearly, attaching a PC-equivalent process-
ing node to each camera reduces the potential for covertness, while the necessary
deployment remoteness necessitate the consideration of power reduction techniques.
As a result, a reconsidering of the aforementioned assumptions of significantly
powerful processors with large amounts of RAM and power is necessitated.

In order to provide the level of computational ability needed by computer
vision algorithms, while also incorporating the additional considerations mentioned
above, a number of non-PC computing platforms can be considered. The simplest
possibility in terms of architectural design is the use of an embedded general
purpose processor such as those from ARM. In many cases, moving a vision
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algorithm onto an embedded processor involves code tweaking for hardware
interaction, and otherwise tends to be a relatively painless process. Unfortunately,
these processors suffer from performance issues, as they ultimately are still generic
CPUs with lower processing ability. For all but the least complex algorithms, this
platform is insufficient.

Another approach is to use a DSP, such as the Texas Instruments DaVinci
processor [12]. These allow for a middle ground between an embedded processor
and a PC node in that they still consume significantly less power than PC nodes
while providing optimized instructions which can be exploited by computer vision
algorithms. A simple example found on the majority of DSPs is the inclusion of an
optimized multiply-accumulate instruction. This instruction is applicable to a num-
ber of preprocessing and filtering steps in many vision algorithms, and is typically
available in commodity CPUs, the difference being the DSP unit consumes much
less power while providing this boost in performance. DSP toolchains typically are
similar to those used in embedded processors, with the additional requirement of
the system designer incorporating appropriate code annotations to take advantage
of the DSP instructions.

For some algorithms and system requirements, still more computational potential
is necessary while maintaining a level of low power consumption and small
footprint. In these instances, a custom or reconfigurable platform is considered.
Typically an FPGA will be utilized either as a design and test platform for a
final custom build or as a target reconfigurable fabric for these cases, respectively.
Much like DSPs, these provide optimized processing ability, in this case with
specialized processing units within the FPGA fabric. For example, high-speed
integer multipliers and adders are found in many FPGA cells currently on the
market. Furthermore, many FPGAs incorporate a simple embedded processor for
algorithm flow control. The complexity in using this type of platform is in design
overhead. An FPGA requires significantly more design consideration than the
previously mentioned platforms. This is due to the inherent need for hardware
and software task analysis. Also, the determined hardware tasks typically cannot
be directly mapped to FPGA logic, and instead require algorithmic redesign and
hardware timing scheme design and analysis.

It should be mentioned that all of these platforms raise the need for bandwidth
analysis during architectural design and mapping, in opposition to the previously
mentioned assumptions. This is due to the platforms having a smaller footprint,
and resultant lower amount of available storage on the board, not to mention on
the chip itself. As vision algorithm complexity increases through use of larger
pixel representation schemes, greater temporal frame storage, and also accuracy
requirements which abound in real-time critical vision systems, the amount of
data which needs to be both transferred on and off chip as well as stored on-
chip intermediately increases dramatically. Schlessman [25] addresses each of these
issues with the MEAD methodology for embedded architectural design, ultimately
providing vision designers with a clearer concept of what platform architecture is
best suited for the algorithm under consideration.
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8 Summary

Distributed algorithms offer a new approach to computer vision. Nodes in a
distributed system communicate explicitly through mechanisms that have non-zero
cost in delay and energy. This constraint encourages us to consider algorithms that
refine the representation of a scene in stages with predictable ways of combining
data within a stage. Distributed algorithms are, in general, more difficult to develop
and prove correct, but they also provide advantages such as robustness. Distributed
signal processing may require new statistical representations of signals that can
be efficiently shared over the network while preserving the useful properties of
the underling signal. We also need a better understanding of the accuracy of
the approximations underlying distributed signal processing algorithms—how do
termination conditions affect the accuracy of the estimate, for example.
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