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Abstract Traditional efforts in standardizing video coding used to involve a
lengthy process that resulted in large monolithic standards and reference codes.
This approach has become increasingly ill-suited to the dynamics and the fast
changing needs of the video coding community. Most importantly, there used to
be no principled approach to leveraging the significant commonalities between
the different codecs, neither at the level of the specification nor at the level of
the implementation. The result is a long interval between the time a new idea is
validated and the time it is implemented in consumer products as part of a worldwide
standard. The analysis of this problem was the starting point of a new standard
initiative within the ISO/IEC MPEG committee, called Reconfigurable Video
Coding (RVC). The main idea is to develop a video coding standard that overcomes
many shortcomings of the current standardization and specification process by
updating and progressively incrementing a modular library of components. As the
name implies, flexibility and reconfigurability are new attractive features of the
RVC standard. The RVC framework is based on the usage of a new actor/dataflow
oriented language called CAL for the specification of the standard library and the
instantiation of the RVC decoder model. CAL dataflow models expose the intrinsic
concurrency of the algorithms by employing the notions of actor programming and
dataflow. This chapter gives an overview of the concepts and technologies building
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the standard RVC framework and the non-standard tools supporting the RVC model
from the instantiation and simulation of the CAL model to the software and/or
hardware code synthesis.

1 Introduction

A large number of successful MPEG (Motion Picture Expert Group) video coding
standards has been developed since the first MPEG-1 standard in 1988 [12].
The standardization efforts in the field, besides having as first objective to guarantee
the interoperability of compression systems, have also aimed at providing appropri-
ate forms of specifications for wide and easy deployment. While video standards
are becoming increasingly complex, and they take ever longer to be produced, this
makes it difficult for standards bodies to produce timely specifications that address
the need to the market at any given point in time. The structure of past standards
has been one of a monolithic specification together with a fixed set of profiles
that subset the functionality and capabilities of the complete standard. Similar
comments apply to the reference code, which in more recent standards has become
normative itself. Video devices are typically supporting a single profile of a specific
standard, or a small set of profiles. They have therefore only very limited adaptivity
to the video content, or to environmental factors (bandwidth availability, quality
requirements).

Within the ISO/IEC MPEG committee, Reconfigurable Video Coding (RVC)
[5, 28, 43] standard is intended to address the two following issues: make standards
faster to produce, and permit video devices based on those standards to exhibit
more flexibility with respect to the coding technology used for the video content.
The key idea is to standardize a library of video coding components, instead of
an entire video decoder. The standard can then evolve flexibly by incrementally
extending that library, and video devices can configure themselves to support a
variety of coding algorithms by composing encoders and decoders from that library
of predefined coding modules.

This chapter gives an overview of the concepts and technologies building the
standard RVC framework and can complement and be complemented by the
following chapters of this handbook [11, 36, 42].

2 Requirements and Rationale of the MPEG RVC
Framework

Started in 2004, the MPEG Reconfigurable Video Coding (RVC) framework [5] is
a new ISO standard (Fig. 1) aiming at providing an alternative form of video codec
specifications by standardizing a library of modular dataflow components instead of
monolithic sequential algorithms. RVC provides the new form of specification by
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Fig. 1 CAL and RVC standard timeline

defining two standard elements: dataflow language with which video decoders can
be described (ISO/IEC23001-4 or MPEG-B pt. 4 [26]) and a library of video coding
tools employed in MPEG standards (ISO/IEC23002-4 or MPEG-C pt. 4 [27]).
The new concept is to be able to specify a decoder of an existing standard or a
completely new configuration that may better satisfy application-specific constraints
by selecting standard components from a library of standard coding algorithms.
Such possibility also requires new methodologies and new tools for describing the
new bitstream syntaxes and the parsers of such new codecs. An additional possibility
of RVC is also to allow the dynamic reconfiguration of codecs on terminal at
runtime. Such new option requires normative extensions of the system layer for
the transport of the new configuration and the associated signalling and is currently
under study by the MPEG committee.

The essential concepts of the RVC framework (Fig. 2) are the following:

• RVC-CAL [15], a dataflow language describing the Functional Unit (FU) be-
havior. This language defines the behavior of dataflow components called actors
(or FUs in MPEG), which is a modular component that encapsulates its own state
such that an actor can neither read nor modify the state of any other actor. The
only interaction between actors is via messages (known in CAL as tokens) which
flow from an output of one actor to an input of another. The behavior of an actor
is defined in terms of a set of atomic actions. The execution inside an actor is
purely sequential: at any point in time, only one action can be active inside an
actor. An action can consume (read) tokens, modify the internal state of the actor,
produce tokens, and interact with the underlying platform on which the actor is
running.

• FNL (Functional unit Network Language), a language describing the video codec
configurations. FNL is an XML dialect that lists the FUs composing the codec,
the parameterization of these FUs and the connections between the FUs. FNL
allows hierarchical constructions: an FU can be defined as a composition of other
FUs and described by another FND (FU Network Description).

• BSDL (Bitstream Syntax Description Language), a language describing the
structure of the input bitstream. BSDL is a XML dialect that lists the sequence
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of the syntax elements with possible conditioning on the presence of the
elements, according to the value of previously decoded elements. BSDL is further
explained in Sect. 4.4.

• A library of video coding tools, also called Functional Units (FU) covering all
MPEG standards (the “MPEG Toolbox”). This library is specified and provided
using RVC-CAL (a subset of the original CAL language that is standardized by
MPEG) as specification language for each FU.

• An “Abstract Decoder Model” (ADM) constituting a codec configuration
(described using FNL) instantiating FUs of the MPEG Toolbox. Figure 2 depicts
the process of instantiating an “Abstract Decoder Model” in RVC.

• Tools simulating and validating the behavior of the ADM (Open DataFlow
environment [46]).

• Tools automatically generating software and hardware descriptions of the ADM.

3 Rationale for Changing the Traditional Specification
Paradigm based on Sequential Model of Computation

As briefly introduced in the previous section one of the more radical innovation
introduced by the RVC standard is the adoption of a non traditional model of com-
putation and new specification language. The essential reasons of this change versus
the traditional ways of building specifications are discussed here in more depth.
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Fig. 3 Representation of a unified SW-HW design space, showing how leaving current se-
quential Von Neumann based approaches, portable parallelism and Software/Hardware unified
programming/design can be achieved in a much larger design space by developing efficient
sequentialization and parallelization techniques. Currently only design spaces labeled in the picture
as “HDL” “Software w/threads” and “parallelising compilers” are covered. Dataflow approach will
allow to cover a much larger space (gray area)

For most of the history of silicon-based computing, the relentless scaling of
silicon technology has led to ever faster sequential computing machines, with
higher clock rates and more sophisticated internal architectures exploiting the
improvements in silicon manufacturing Fig. 3. Backwards compatible processor
designs ensured that software remained portable to new machines, which meant that
legacy software automatically benefited from any progress in the way processors
were built. In the same way the specification of complex algorithms such as the one
employed in video compression and the development of the associated reference
SW descriptions have been following the same trend using the generic sequential
programming languages. In recent years, however, this has ceased to be the case.
In spite of continued scaling of silicon technology, individual sequential processors
are not becoming faster any more, but slightly slower while reducing power dissi-
pation. Consequently, rather than building more sophisticated and complex single
processors, manufacturers have used the space gained from scaling the technology
by building more processors onto a single chip, making multi-core machines and
heterogeneous systems a nearly ubiquitous commodity in a wide (and increasing)
range of computing applications. As a result, the performance gains of modern
computing machines are primarily due to an increase in the available parallelism.
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These developments pose a qualitatively novel challenge to the portability of
specifications, applications and ultimately on the software that is used to implement
them, as well as to the software engineering and implementation methodology in
general: while sequential software used to automatically execute faster on a faster
processor, an increase in performance of an application on a new platform that
provides more parallelism is predicated on the ability to effectively exploit that
parallelism, i.e. to parallelize the application and thus match it to the respective
computing substrate. Traditionally, applications described in the style of mostly
sequential algorithms have taken advantage of multiple execution units using
threads and processes, thereby explicitly structuring an application into a (usually
small) set of concurrently executing sequential activities that interact with each
other using shared memory or other means of communication (e.g. messages, pipes,
semaphores) often provided either by the operating system or some middleware.
However, this parallel programming approach has some significant drawbacks. First,
it poses considerable engineering challenges—large collections of communicating
threads are difficult to test since errors often arise due to the timing of activities in
ways that cannot be detected or reproduced easily, and the languages, environments,
and tools usually provide little or no support for managing the complexities of
highly parallel execution. Second, a thread-based approach scales poorly across
platforms with different degrees of parallelism if the number of execution units
is significantly different from the number of threads. Too few execution units
mean that several threads need to be dynamically scheduled onto each of them,
incurring scheduling overhead. If the number of processors exceeds the number of
threads, the additional processors remain unused. The consequence is that threaded
application either needs to be overengineered to using as many threads as possible,
with the attendant consequences for engineering cost and performance on less
parallel hardware, or they will underutilize highly parallel platforms. Either way,
the requirement to construct an application with a particular degree of parallelism
in mind is a severe obstacle to the portability of threaded software. In an effort
to implement sequential or threaded applications on platforms that provide higher
degrees of parallelism than the application itself, parallelizing compilers have been
used with some success. However, the effectiveness of automatic parallelization
depends highly on the application and the details of the algorithm description, and
it does not scale well for larger programs. For well behaving specifications and
corresponding software to scale to future parallel computing platforms as seamlessly
as possible, it is necessary to describe algorithms in a way that:

1. exposes as much parallelism of the application as practical,
2. provides simple and natural abstractions that help manage the high degree

of parallelism and permits principled composition of and interaction between
modules,

3. makes minimal assumptions about the physical architecture of the computing
machine it is implemented on,

4. is efficiently implementable on a wide range of computing substrates, including
traditional sequential processors, shared-memory multicores, manycore proces-
sor arrays, and programmable logic devices, as well as combinations thereof.
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This is not a trivial proposition, since it implies for instance that the current
body of software will not by itself be implementable efficiently on future com-
puters, but will have to be rewritten if it is supposed to take advantage to the
parallel performance of these machines. In fact, the requirements above suggest a
programming style and a tool support that is effectively the antithesis of the current
approach to mapping software onto parallel platforms. Today, software tends to
begin as sequential code, and parallelization, either manually or automatically, is the
process of adapting the sequential algorithm and code to a parallel implementation
target. Looking at the above criteria, shared-memory threads for instance fulfill the
first requirement, but essentially fail on the other three. By comparison, hardware
description languages such as VHDL and Verilog fulfill the first two criteria, but
as they fail on the third point by assuming a particular model of (clocked) time
and their implementability is essentially limited to hardware and hardware-like
programmable logic (FPGAs). Needless to say CAL dataflow programming is a
good candidate to be able to satisfy the above requirements and for such reasons
has been selected and adopted by MPEG RVC.

3.1 Limits of Previous Monolithic Specifications

MPEG has produced several video coding standards such as MPEG-1, MPEG-
2, MPEG-4 Video, AVC (Advanced Video Coding) and its scalable profile SVC
(Scalable Video Coding). Currently a considerable effort is aiming at providing a
new standard, called High Efficiency Video Coding (HEVC), yielding a factor 2 gain
versus the previous AVC performance for sequence formats ranging from HDTV
resolution up to the various super HDTV formats. While at the beginning MPEG-
1 and MPEG-2 were only specified by textual descriptions, with the increasing
complexity of algorithms, starting with the MPEG-4 set of standards, C or C++
specifications, called also reference software, have became the formal specification
of the standards. However, the past monolithic specification of such standards
(usually in the form of C/C++ programs) lacks flexibility and does not allow to
use the combination of coding algorithms from different standards enabling to
achieve specific design or performance trade-offs and thus fill, case by case, the
requirements of specific applications. Indeed, not all coding tools defined in a
profile@level of a specific standard are required in all application scenarios. For a
given application, codecs are either not exploited at their full potential or require
unnecessarily complex implementations. However, a decoder conformant to a
standard has to support all of them and may results in non-efficient implementations.

Moreover, such descriptions composed of non-optimized non-modular software
packages have started to show many limits. If we consider that they are in
practice the starting point of any implementation, system designers have to rewrite
these software packages not only to try to optimize performances, but also to
transform these descriptions into appropriate forms adapted to the current system
design methodologies. Such monolithic specifications hide the inherent parallelism
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and the dataflow structure of the video coding algorithms, features that are necessary
to be exploited for efficient implementations. In the meanwhile the evolution of
video coding technologies, leads to solutions that are increasingly complex to
be designed and present significant overlap between successive versions of the
standards.

The control over low-level details, which is considered a merit of C language,
typically tends to over-specify programs. Not only the algorithms themselves are
specified, but also how inherently parallel computations are sequenced, how and
when inputs and outputs are passed between the algorithms and, at a higher
level, how computations are mapped to threads, processors and application specific
hardware. In general, it is not possible to recover the original knowledge about the
intrinsic properties of the algorithms by means of analysis of the software program
and the opportunities for restructuring transformations on imperative sequential
code are very limited compared to the parallelization potential available on multi-
core platforms [4]. These in conjunction with the previously discussed motivations,
are the main reasons for which C has been replaced by CAL in RVC.

3.2 Reconfigurable Video Coding Specification Requirements

Scalable parallelism. In parallel programming, the number of things that are
happening at the same time can scale in two ways: It can increase with the size of
the problem or with the size of the program. Scaling a regular algorithm over larger
amounts of data is a relatively well-understood problem, while building programs
such that their parts execute concurrently without much interference is one of the
key problems in scaling the von Neumann model. The explicit concurrency of the
actor model provides a straightforward parallel composition mechanism that tends
to lead to more parallelism as applications grow in size, and scheduling techniques
permit scaling concurrent descriptions onto platforms with varying degrees of
parallelism.

Modularity and reuse. The ability to create new abstractions by building reusable
entities is a key element in every programming language. For instance, object-
oriented programming has made huge contributions to the construction of von
Neumann programs, and the strong encapsulation of actors along with their
hierarchical composability offers an analog for parallel programs.

Concurrency. In contrast to procedural programming languages, where con-
trol flow is made explicit, the actor model emphasizes explicit specification of
concurrency. Rallying around the pivotal and unifying von Neumann abstraction has
resulted in a long and very successful collaboration between processor architects,
compiler writers, and programmers. Yet, for many highly concurrent programs,
portability has remained an elusive goal, often due to their sensitivity to timing.
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The untimedness and asynchrony of stream-based programming offers a solution
to this problem. The portability of stream-based programs is underlined by the fact
that programs of considerable complexity and size can be compiled to competitive
hardware [32] as well as software [52], which suggests that stream-based program-
ming [33] might even be a solution to the old problem of flexibly co-synthesizing
different mixes of hardware/software implementations from a single source.

Encapsulation. The success of a stream programming model will in part depend
on its ability to configure dynamically and to virtualize, i.e. to map to collections
of computing resources too small for the entire program at once. Moving parts
of a program on and off a resource requires encapsulation, i.e. a clear distinction
between those pieces that belong to the parts to be moved and those that do not.
The transactional execution of actors generates points of quiescence, the moments
between transactions, when the actor is in a defined and known state that can be
safely transferred across computing resources.

4 Description of the Standard or Normative Components
of the Framework

The fundamental element of the RVC framework, in the normative part, is the
Decoder Description (Fig. 2) that includes two types of data:

The Bitstream Syntax Description (BSD), which describes the structure of the
bitstream. The BSD is written in RVC-BSDL. It is used to generate the appropriate
parser to decode the corresponding input encoded data [25, 50].

The FU Network Description (FND), which describes the connections between
the coding tools (i.e. FUs). It also contains the values of the parameters used for
the instantiation of the different FUs composing the decoder [14, 32, 52]. The FND
is written in the so called FU Network Language (FNL). The syntax parser (built
from the BSD), together with the network of FUs (built from the FND), form a
CAL model called the Abstract Decoder Model (ADM), which is the normative
behavioral model of the decoder.

4.1 The Toolbox Library

An interesting feature of the RVC standard that distinguishes it from traditional
decoders-rigidly-specified video coding standards is that, a description of the
decoder can be associated to the encoded data in various ways according to each
application scenario. Figure 4 illustrates this conceptual view of RVC [41, 43].
All the three types of decoders are within the RVC framework and constructed
using the MPEG-B standardized languages. Hence, they all conform to the MPEG-
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Fig. 4 The conceptual view of RVC

B standard. A Type-1 decoder is constructed using the FUs within the MPEG
Video Tool Library (VTL) only. Hence, this type of decoder conforms to both
the MPEG-B and MPEG-C standards. A Type-2 decoder is constructed using
FUs from the MPEG VTL as well as one or more proprietary libraries (VTL
1-n). This type of decoder conforms to the MPEG-B standard only. Finally, a
Type-3 decoder is constructed using one or more proprietary VTL (VTL 1-n),
without using the MPEG VTL. This type of decoder also conforms to the MPEG-
B standard only. An RVC decoder (i.e. conformant to MPEG-B) is composed of
coding tools described in VTLs according to the decoder description. The MPEG
VTL is described by MPEG-C. Traditional programming paradigms (monolithic
code) are not appropriate for supporting such types of modular framework. A new
dataflow-based programming model is thus specified and introduced by MPEG RVC
as specification formalism.

The MPEG VTL is normatively specified using RVC-CAL. An appropriate level
of granularity for the components of the standard library is important, to enable
an effective possibility of reconfigurations, for codecs, and an efficient reuse of
components in codecs implementations. If the library is composed of too coarse
modules, such modules will be too large/coarse to allow their usage in different
and interesting codec configurations, whereas, if the granularity level of the library
component is too fine, the number of modules in the library will result to be too large
for an efficient and practical reconfiguration process at the codec implementation
side, and may obscure the desired high-level description and modeling features of
the RVC codec specifications. Most of the efforts behind the standardization of the
MPEG VTL were devoted to study the best granularity trade-off level of the VTL
components. However, it must be noticed that the choice of the best trade-off in
terms of high-level description and module re-usability, does not really affect the
potential parallelism of the algorithm that can be exploited in multi-core and FPGA
implementations.
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Fig. 5 Basic structure of
a CAL actor

Fig. 6 Guard structure in
a CAL actor

4.2 The CAL Actor Language

CAL [15] is a domain-specific language that provides useful abstractions for
dataflow programming with actors. CAL has been used in a wide variety of
applications and has been compiled to hardware and software implementations, and
work on mixed HW/SW implementations is under way. The next section provides a
brief introduction to some key elements of the language.

4.2.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add actor (Fig. 5), which has
two input ports A and B, and one output port Out, all of type T. T may be of type
int, or uint for respectively integers and unsigned integers, of type bool for
booleans, or of type float for floating-point integers. Moreover CAL designers
may assign a number of bits to the specific integer type depending on numeric size
of the variable. The actor contains one action that consumes one token on each
input ports, and produces one token on the output port. An action may fire if the
availability of tokens on the input ports matches the port patterns, which in this
example corresponds to one token on both ports A and B.

An actor may have any number of actions. The untyped Select actor (Fig. 6)
reads and forwards a token from either port A or B, depending on the evaluation of
guard conditions. Note that each of the actions has empty bodies.

4.2.2 Priorities and State Machines

An action may be labeled and it is possible to constrain the legal firing sequence by
expressions over labels. In the PingPongMerge actor, illustrated in Fig. 7, a finite
state machine schedule is used to force the action sequence to alternate between the
two actions A and B. The schedule statement introduces two states s1 and s2.
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Fig. 7 FSM structure in a CAL actor

Fig. 8 Priority structure
in a CAL actor

The Route actor, in the Fig. 8, forwards the token on the input port A to one of
the three output ports. Upon instantiation it takes two parameters, the functions P
and Q, which are used as predicates in the guard conditions. The selection of which
action to fire is in this example not only determined by the availability of tokens and
the guards conditions, by also depends on the priority statement.

4.2.3 CAL Subset Language for RVC

For an in-depth description of the language, the reader is referred to the language
report [15], for the specific subset specified and standardized by ISO in the Annex
C of [26]. This subset only deals with fully typed actors and some restrictions on
the CAL language constructs from [15] to have efficient hardware and software
code generations without changing the expressivity of the algorithm. For instance,
Figs. 6, 7 and 8 are not RVC-CAL compliant and must be changed as the Figs. 9, 10
and 11 where T1, T2, T are the types and only typed parameters can be passed to
the actors not functions as P, Q.

A large selection of example actors is available at the OpenDF repository [46],
among them can also be found the MPEG-4 decoder discussed below. Many
other actors written in RVC-CAL are available as reference SW of the standard
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Fig. 9 Guard structure in a RVC-CAL actor

Fig. 10 FSM structure in a RVC-CAL actor

Fig. 11 Priority structure in
a RVC-CAL actor

MPEG RVC tool repository (ISO/IEC 23002-4). Currently beside the MPEG-4 SP,
MPEG-4 Part 10 AVC is available as Constrained Baseline Profile, Progressive High
Profile and their scalable profile version. In parallel to the standardization process
of HEVC, an RVC-CAL version of HEVC is also under development.
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4.3 FU Network Language for the Codec Configurations

A set of CAL actors are instantiated and connected to form a CAL application, i.e.
a CAL network. Figure 12 shows a simple CAL network Sum, which consists of the
previously defined RVC-CAL Add actor and the delay actor shown in Fig. 13.

The source/language that defined the network Sum is found in Fig. 14. Please,
note that the network itself has input and output ports and that the instantiated
entities may be either actors or other networks, which allow for a hierarchical
design.

Formerly, networks have been traditionally described in a textual language,
which can be automatically converted to FNL and vice versa—the XML dialect
standardized by ISO in Annex B of [26]. XML (Extensible Markup Language) is a
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Fig. 15 XML representation
of the Sum network

flexible way to create common information formats. XML is a formal recommen-
dation from the World Wide Web Consortium (W3C). XML is not a programming
language, it is rather a set of rules that allow you to represent data in a structured
manner. Since the rules are standard, the XML documents can be automatically
generated and processed. Its use can be gauged from its name itself:

• Markup: Is a collection of Tags
• XML Tags: Identify the content of data
• Extensible: User-defined tags

The XML representation of the Sum network is found in Fig. 15. A graphical
editing framework called Graphiti editor [24] is available to create, edit, save and
display a network. This editor supports XML and textual format for the network
description.

4.4 Bitstream Syntax Specification Language BSDL

MPEG-B Part 5 is an ISO/IEC international standard that specifies BSDL [25]
(Bitstream Syntax Description Language), an XML dialect describing generic
bitstream syntaxes. In the field of video coding, the bitstream description in BSDL of
MPEG-4 AVC [55] bitstreams represents all the possible structures of the bitstream
which conforms to MPEG-4 AVC. A Binary Syntax Description (BSD) is one
unique instance of the BSDL description. It represents a single MPEG-4 AVC
encoded bitstream: it is no longer a BSDL schema but a XML file showing the
data of the bitstream. Figure 16 shows a BSD associated to its corresponding BSDL
schema.
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Fig. 16 A Bitstream Syntax Description (BSD) fragment of an MPEG-4 AVC bitstream and its
corresponding BS schema fragment codec in RVC-BSDL

An encoded video bitstream is described as a sequence of binary elements
of syntax of different lengths: some elements contain a single bit, while others
contain many bits. The Bitstream Schema (in BSDL) indicates the length of these
binary elements in a human- and machine-readable format (hexadecimal, integers,
strings. . . ). For example, hexadecimal values are used for start codes as shown in
Fig. 16. The XML formalism allows organizing the description of the bitstream in a
hierarchical structure. The Bitstream Schema (in BSDL) can be specified at different
levels of granularity. It can be fully customized to the application requirements [53].
BSDL was originally conceived and designed to enable adaptation of scalable
multimedia contents in a format-independent manner [54]. In the RVC framework,
BSDL is used to fully describe video bitstreams. Thus, BSDL schemas must specify
all the elements of syntax, i.e. at a low level of granularity. Before the use of BSDL
in RVC, the existing BSDL descriptions described scalable contents at a high level
of granularity. Figure 16 is an example BSDL description for video in MPEG-4
AVC format.
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In the RVC framework, BSDL has been chosen because:

• It is stable and already defined by an international standard.
• The XML-based syntax interacts well with the XML-based representation of the

configuration of RVC decoders.
• The parser may be easily generated from the BSDL schema by using standard

tools (e.g. XSLT).
• The XML-based syntax integrates well with the XML infrastructure of the

existing tools.

4.5 Instantiation of the ADM

In the RVC framework, the decoding platform acquires the Decoder Description
that fully specifies the architecture of the decoder and the structure of the incoming
bitstream. So as to instantiate the corresponding decoder implementation, the
platform uses a library of building blocks specified by MPEG-C. Conceptually,
such a library is a user defined proprietary implementation of the MPEG RVC
standard library, providing the same I/O behavior. Such a library can be developed
to explicitly expose an additional level of concurrency and parallelism appropriate
for implementing a new decoder configuration on user specific multi-core target
platforms. The dataflow form of the standard RVC specification, with the associated
Model of Computation, guarantee that any reconfiguration of the user defined
proprietary library, developed at whatever lower level of granularity, provides
an implementation consistent with the (abstract) RVC decoder model—originally
specified using the standard library. Figures 2 and 4 show how a decoding solution
is built from, not only the standard specification of the codecs in RVC-CAL by
using the normative VTL, and this already provides an explicit, concurrent and
parallel model, but also from any non-normative “multi-core-friendly” proprietary
Video Tool Libraries, that increases if necessary the level of explicit concurrency
and parallelism for specific target platforms. Thus, the standard RVC specification,
which is already an explicit model for concurrent systems, can be further improved
or specialized by proprietary libraries that can be used in the instantiation phase of
an RVC codec implementation.

4.6 Case Study of New and Existing Codec Configurations

4.6.1 Commonalities

All existing MPEG codecs are based on the same structure: the hybrid decoding
structure including a parser that extracts values for texture reconstruction and
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motion compensation. Therefore, MPEG-4 SP and MPEG-4 AVC are hybrid
decoders. Figure 17 shows the main functional blocks composing an hybrid decoder
structure.

As said earlier, an RVC decoder is described as a block diagram with FNL [26],
an XML dialect that describes the structural network of interconnected actors from
the Standard MPEG Toolbox. The only two case studies performed so far by MPEG
RVC experts [32, 52] are the RVC-CAL specifications of MPEG-4 Simple Profile
decoder and MPEG-4 AVC decoder [19].

4.6.2 MPEG-4 Simple Profile (SP) Decoder

Figure 18 shows the network representation of the macroblock-based MPEG-4
Simple Profile decoder description. The parser is a hierarchical network of actors
(each of them is described in a separate FNL file). All other blocks are atomic actors
programmed in RVC-CAL. Figure 18 presents the structure of the MPEG-4 Simple
Profile ADM as described within RVC. Essentially it is composed of four main
parts: the parser, a luminance component (Y) processing path, and two chrominance
component (U, V) processing paths. Each of the path is composed by its texture
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decoding engine as well as its motion compensation engine (both are hierarchical
RVC-CAL Functional Units).

The MPEG-4 Simple Profile abstract decoder model that essentially results to
be a dataflow program (Fig. 18, Table 2), is composed of 27 atomic FUs (or actors
in dataflow programming) and 9 sub-networks (actor/network composition); atomic
actors can be instantiated several times, for instance there are 42 actor instantiations
in this dataflow program. Figure 26 shows a top-level view of the decoder. The
main functional blocks include the bitstream parser, the reconstruction block, the
2D inverse cosine transform, the frame buffer and the motion compensation module.
These functional units are themselves hierarchical compositions of actor networks.

4.6.3 MPEG-4 AVC Decoder

The MPEG-4 Advanced Video Coding (AVC), jointly developed by ISO and ITU
by which is also referred to as H.264 [55], is a state-of-the-art video compression
standard. Compared to previous coding standards, it is able to deliver higher video
quality for a given compression ratio, and 30 % better compression ratio compared
to MPEG-4 SP for the same video quality. Because of its complexity, many
applications including Blu-ray, iPod video, HDTV broadcasts, and various computer
applications use variations of MPEG-4 AVC codec (also called profiles). A popular
use of MPEG-4 AVC is the encoding of high definition video contents. Due to high
resolutions processing required, HD video is the application that requires the highest
performance for decoding. Common formats used for HD include 720p (1280×720)
and 1080p (1920×1080) resolutions, with frame rates between 24 and 60 frames per
second.

The decoder introduced in this section corresponds to the Constrained Baseline
Profile (CBP). This profile is primarily addressing low-cost applications and
corresponds to a subset of features that are in common between the Baseline, Main,
and High Profiles.

The description of this decoder expresses the maximum of parallelism and
mimics the MPEG-4 SP. This description is composed of different hierarchical level.
Figure 19 shows a view of the highest hierarchy of the MPEG-4 AVC decoder—note
that for readability, one input represents a group of input for similar information on
each actor. The main functional block includes a parser, one luma and two chroma
decoders.

The parser analyses the syntax of the bitstream with a given formal grammar.
This grammar, written by hand, will later be given to the parser by a BSDL [50]
description. As the execution of a parser strongly depends on the context of the
bitstream, the parser incorporates a Finite State Machine so that it can sequentially
extract the information from bitstream. This information passes through an entropy
decoder and is then encapsulated in several kinds of tokens (residual coefficients,
motion vectors. . . ). These tokens are finally sent to the selected input port of the
luma/chroma decoding actor.
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Fig. 19 Top view of MPEG-4 advanced video coding decoder description

Fig. 20 Structure of decoding actors

Because decoding a luma/chroma component does not need to share informa-
tion with the other luma/chroma component, it was chosen to encapsulate each
luma/chroma decoding in a single actor. This means that each decoding actor can
run independently and at the same time in a separate thread. The entire decoding
component actor has the same structure.

Luma/chroma decoding actors (Fig. 20) decode a picture and store the decoded
picture for later use in inter-prediction process. Each component owns the memory
needed to store pictures, encapsulates into the Decoded Picture Buffer (DPB) actor.
DPB actor also contains the Deblocking Filter and is a buffering solution to regulate
and reorganize the resulting video flow according to the Memory Management
Control Operations (MMCO) input.

The Decoded Picture Buffer creates each frame by adding prediction data,
provided by the actor prediction, and residual data, provided by the actor Inverse
Transform. The Prediction actor (Fig. 21) encompasses inter/intra prediction modes
and a multiplexer that sends prediction results to the output port. The PREDselect

input port has the role to stoke the right actors contingent on a prediction mode.
The target of this structure is to offer a quasi-static work of the global actor and, by
adding or removing prediction modes, to easily switch between configurations of the
decoder. For instance, adding B inter-prediction mode into this structure switches
the decoder into the main profile configuration.
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Fig. 21 Structure of prediction actor

5 The Procedures and Tools Supporting Decoder
Implementations

5.1 Simulation and Compiling Frameworks

CAL is supported by portable interpreters infrastructure that can simulate a hier-
archical network of actors. A first interpreter was used in the Moses [44] project.
Moses features a graphical network editor, and allows the user to monitor actors
execution (actor state and token values). The project being no longer maintained,
it has been superseded by an Eclipse environment composed of 2 tools/plugins—
the Open Dataflow environment for CAL editing (OpenDF [46] for short) and the
Graphiti editor for graphically editing the network.

One interesting and very attracting implementation methodology of MPEG RVC
decoder descriptions is the direct synthesis of the standard specification. OpenDF is
also a compilation framework. It provides a source of relevant application of realistic
sizes and complexity and also enables meaningful experiments and advances in
dataflow programming. More details on the software and hardware code generators
can be found in [31, 56]. Today there exists a backend for generation of HDL
(VHDL/Verilog) [31,32]. A second backend targeting ARM11 and embedded C has
been developed [47] by the EU project ACTORS [2]. It is also possible to simulate
CAL models in the Ptolemy II [49] environment.

Works made on action synthesis and actor synthesis [52,56] led to the creation of
a new compiler framework called Open RVC CAL Compiler [45]. This framework
is designed to support multiple language front-ends, each of which translates
actors written in RVC-CAL and FNL network into an Intermediate Representation
(IR), and to support multiple language back-ends, each of which translates the
Intermediate Representation into the supported languages. IR provides a dataflow
representation that can be easily transformed in low level languages. Currently
several backends are available, among them a C language backend, a Java backend,
a VHDL/verilog backend (using the same library as in [31,32] and a LLVM backend
(Fig. 22).
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Fig. 23 Dataflow Models of
Computation

5.2 CAL Analysis

This section presents a taxonomy of Models of Computation (MoCs) (Fig. 23) that
can model the different types of behavior that RVC-CAL actors can exhibit. The
actors in the Video Tool Library of the RVC standard can behave statically, cyclo-
statically, quasi-statically, or dynamically. Different MoCs exist in the literature that
are suitable to model these types of behaviors.

Dataflow MoCs are defined as subsets of a general model called Dataflow Process
Networks (DPNs). The taxonomy shown on Fig. 23 reflects the fact that MoCs are
progressively restricted from DPN towards SDF with respect to expressiveness, but
at the same time they become more amenable to analysis. We first study the rules
of DPN, and then present the models that can be used to model static, cyclo-static,
quasi-static, and dynamic RVC-CAL actors.

Dataflow models respect the semantics of DPNs: A dataflow model is a directed
graph whose vertices are actors and edges are unidirectional FIFO channels with
unbounded capacity, connected between ports of actors.
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• Each FIFO channel carries a sequence of tokens.
• Executing a DPN boils down to executing repeatedly the actors in the graph,

possibly ad infinitum.
• An actor executes (or fires) when at least one of its firing rules is satisfied. Each

firing may consume and produce tokens.
• An actor can have N firing rules, where each one represents an acceptable

sequence of tokens.
• Additionally an actor has a firing function that takes a sequence of tokens and

produce a sequence of tokens.

Synchronous Dataflow (SDF) [38] is the least expressive DPN model, but it
is also the model that can be analyzed more easily. Schedulability and memory
consumption of SDF graphs can be determined at compile-time, and algorithms
exist that can map and schedule SDF graphs onto multi-processors in linear time
with respect to the number of vertices and processors. Any two firing rules of an
SDF actor must consume the same amount of tokens, and all firings must produce
the same amount of tokens on the output ports. This definition is actually included
in Lee’s denotational semantics for SDF [40], which states that SDF actors have a
single firing rule. Our definition simply allows SDF actors to have several firing rules
as long as they have the same production/consumption rate, which in practice makes
it easier to describe SDF actors that have data-dependent computations. Figure 5
represents one SDF actor in RVC-CAL.

Cyclo-static Dataflow (CSDF) [7] extends SDF with the notion of state while
retaining the same compile-time properties concerning scheduling and memory
consumption (Fig. 10). State can be represented as an additional argument to the
firing rules and firing function, in other words it is modeled as a self-loop.

Figure 24 describes the RVC-CAL version of actor Clip. The s f lag variable is
not taken into account in the firing rules, hence it does not influence the Model of
Computation. Instead the count variable holds the number of values processed so
far. Figure 25 shows the behavior of the actor Clip actor expressed with Cyclo-
Static Dataflow (CSDF) [7]. Within this model, the number of tokens produced and
consumed by an actor changes periodically according to a production/consumption
sequence. For instance, the consumption sequence on port IN has a zero followed
by 64 ones: On its first invocation, the actor will not consume any token on the
port, and for the next 64 invocations, it will consume one token on the port each
time. The advantage of expressing an actor as CSDF is that it can be statically
scheduled because the number of tokens the actor will consume and produce is
known at compile-time.

Synchronous and cyclo-static dataflow allow signal processing algorithms to
be modeled as graphs with fixed production/consumption rates. On the other
hand, so-called “quasi-static” graphs can be used to describe data-dependent token
production and consumption. Quasi-static dataflow differs from dynamic dataflow
in that there are techniques that statically schedule as many operations as possible
so that only data-dependent operations are scheduled at runtime [6, 8] (see Fig. 9).
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Fig. 24 The Clip actor in RVC-CAL

Fig. 25 Behavior of the actor
Clip actor

RVC-CAL places no restrictions whatsoever about the firing rules nor fir-
ing function of an actor. An RVC-CAL actor can thus have a behavior that is
data-independent and state-independent, cyclo-static state-dependent, quasi-static
data-dependent, or data-dependent and state-dependent (dynamic). The RVC-CAL

language extends the DPN MoC by adding a notion of guard to firing rules. For-
mally the guards of a firing rule are boolean predicates that may depend on the input
patterns, the actor state, or both, and must be true for a firing rule to be satisfied.

Zebelein et al. present a classification algorithm for dynamic dataflow models
in [58]. In their model, actors are defined as SystemC modules that receive and send
data via SystemC FIFOs. Their classification method is based on the analysis of read
and write patterns and FSMs of the different modules. Their approach is limited by
the fact that they ignore any C++ code that does not contain a read or a write, and
that they do not classify quasi-static actors.



MPEG Reconfigurable Video Coding 305

In [57], Wipliez et al. present a method to automatically classify dynamic
dataflow actors into more restricted dataflow MoCs, along with a method to
automatically transform classified actors to static dataflow and parameterized static
dataflow graphs. The transformations presented allow more efficient code to be
generated for those actors and improve execution speed by reducing the number
of FIFO accesses.

In [8], Boutellier et al. show how to express quasi-static RVC-CAL actors as
PSDF graphs and how to derive a multiprocessor schedule from these graphs. How-
ever, they do not address the issues of automated classification and transformation:
Quasi-static behavior is specified with parameters defined manually, and they do
not explain how low-level Homogeneous SDF (HSDF) graphs created from quasi-
static branches can be automatically transformed to high-level PSDF graphs. As a
consequence, Wipliez and Raulet [57] can serve as a preprocessing step for their
approach by automatically classifying actors as quasi-static and transforming them
to high-level PSDF graphs.

Gu et al. present a technique to recognize a set of Statically Schedulable Regions
(SSRs) within a dynamic dataflow program [23]. SSRs are sets of ports that are
statically coupled, which essentially means that the production of an output port
matches the consumption of the input port(s) it is connected to (additional criteria
are developed in [23]). On the one hand, SSR classification has potentially more
knowledge about static behavior because it looks at connected actors rather than just
inside actors. On the other hand, by considering an actor as a whole our classification
can discover its behavior (cyclo-static and quasi-static) and transform it into a high-
level SDF or PSDF graph that will make merging easier. SSRs can be used as an
input to the classification algorithm in [57] to obtain additional information.

Other approaches aiming at reducing the number of condition testing for
executing actors actions are based on abstract analysis of the actor composition
state space. In [29, 30] Janneck proposes a simple machine model for dataflow
actors that captures the structure and the logic of selecting and executing the actions
comprising an actor. The model is expected to be used to simplify and optimize
the selection process based on analysis of the actor machine itself and of the actor
description. In other words the actor machine model intends to capture the dynamics
of actor compositions and aims at the elimination of all testing of internal buffers
and action execution, thus in principle enabling the generation of very efficient
code for arbitrary (i.e. dynamic) actor networks, alleviating the tension between
expressiveness and efficient implementability dataflow networks.

On the same line of research, but based on the abstract exploration of actor
compositions state space is the approach presented in [16, 17]. In these works
a model checking methodology is used to identify the occurrence of association
of recurrent states and input data token vectors, so that the identified sequences
of actions executions are then used for the generation of software that omits test
executions between such identified state space trajectories.
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Table 1 Hardware synthesis results for a proprietary implementation
of a MPEG-4 Simple Profile decoder. The numbers are compared with
a reference hand written design in VHDL

Size slices,
BRAM

Speed
kMB/s

Code size
kSLOC

Dev. time
MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

kMB/s=kilo macroblocks per second
kSLOC=kilo source lines of code
MM= man months

5.3 CAL2HDL Synthesis

Some of the authors have performed an implementation study [31], in which the
RVC MPEG-4 Simple Profile decoder specified in CAL according to the MPEG
RVC formalism has been implemented on an FPGA using a CAL-to-RTL code
generator called Cal2HDL. The objective of the design was to support 30 frames
of 1080p in the YUV420 format per second, which amounts to a production of
93.3 Mbyte of video output per second. The given target clock rate of 120 MHz
implies 1.29 cycles of processing per output sample on average (Fig. 26).

The results of the implementation study were encouraging in that the code
generated from the MPEG RVC CAL specification did not only outperform the
handwritten reference in VHDL, both in terms of throughput and silicon area,
but also allowed for a significantly reduced development effort. Table 1 shows the
comparison between CAL specification and the VHDL reference implemented over
a Xilinx Virtex 2 pro FPGA running at 100 MHz.

It should be emphasized that this counter-intuitive result cannot be attributed
to the sophistication of the synthesis tool. On the contrary the tool does not
perform a number of potential optimizations, such as for instance optimizations
involving more than one actor. Instead, the good results appear to be yield by
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the implementation and development process itself. The implementation approach
was based generating a proprietary implementation of the standard MPEG RVC
toolbox composed of FUs of lower level of granularity. Thus the implementation
methodology was to substitute the FU of the standard abstract decoder model of the
MPEG-4 SP with an equivalent implementation, in terms of behavior. Essentially
standard toolbox FUs were substituted with networks of FU described as actors of
lower granularity.

The initial design cycle of the proprietary RVC library resulted in an implementa-
tion that was not only inferior to the VHDL reference, but one that also failed to meet
the throughput and area constraints. Subsequent iterations explored several other
points in the design space until arriving at a solution that satisfied the constraints.
At least for the considered implementation study, the benefit of short design cycles
seem to outweigh the inefficiencies that resulted from high-level synthesis and the
reduced control over implementation details.

In particular, the asynchrony of the programming model and its realization in
hardware allowed for convenient experiments with design ideas. Local changes,
involving only one or a few actors, do not break the rest of the system in spite
of a significantly modified temporal behavior. In contrast, any design methodology
that relies on precise specification of timing—such as RTL, where designers specify
behavior cycle-by-cycle—would have resulted in changes that propagate through
the design.

Table 1 shows the quality of result produced by the RTL synthesis engine of
the MPEG-4 Simple Profile video decoder. Note that the code generated from
the high-level dataflow RVC description and proprietary implementation of the
MPEG toolbox actually outperforms the hand-written VHDL design in terms of
both throughput and silicon area for a FPGA implementation.

5.4 Cal2C Synthesis

Another synthesis tool called Cal2C [52, 56] currently available at [45] validates
another implementation methodology of the MPEG-4 Simple Profile dataflow
program (Fig. 18) provided by the RVC standard. The SW code generator presented
in details in [52] uses process network model of computation [34] to implement
the CAL dataflow model. The compiler creates a multi-thread program [59] from
the given dataflow model, where each actor is translated into a thread and the
connectivity between actors is implemented via software FIFOs. Although the
generation provides correct SW implementations, inherent context switches occur
during execution, due to the concurrent execution of threads, which may lead to
inefficient SW execution if the granularity of actor is too fine.

Major problems with multi-threaded programs are discussed in [39]. A more
appropriate solution that avoids thread management are presented in [40, 48].
Instead of suspending and resuming threads based on the blocking read semantic
of process network [35], actors are, instead, managed by a user-level scheduler that
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Table 2 Code size and
number of files automatically
generated for MPEG-4
Simple Profile decoder

MPEG-4 SP decoder CAL C actors C scheduler

Number of files 27 61 1
Code Size (kSLOC) 2.9 19 2

Table 3 Code size and
number of files automatically
generated for MPEG-4 AVC
decoder

MPEG-4 AVC decoder CAL C actors C scheduler

Number of files 43 83 1
Code Size (kSLOC) 5.8 44 0.9

select the sequence of actor firing [59]. The scheduler checks, before executing
an actor, if it can fire, depending on the availability of tokens on inputs and the
availability of rooms on outputs. If the actor can fire, it is executed (these two
steps refers to the enabling function and the invoking function of [48]). If the actor
cannot fire, the scheduler simply tests the next actor to fire (sorted following an
appropriate given strategy) and so on. This code generator based on this concept [56]
is available at [45]. Such a compiler presents a scheduler that has the two following
characteristics: (1) actor firings are checked at run-time (the dataflow model is
not scheduled statically), (2) the scheduler executes actors following a round-robin
strategy (actors are sorted a priori).

As described above, the MPEG-4 Simple Profile dataflow program is composed
of 61 actor instantiations in the flattened dataflow program. The flattened network
becomes a C file that currently contains a round robin scheduler for the actor
scheduling and FIFOs connections between actors. Each actor becomes a C file
containing all its action/processing with its overall action scheduling/control. Its
number of SLOC is shown in Table 2. All of the generated files are successfully
compiled by gcc. For instance, the “ParserHeader” actor inside the “Parser” network
is the most complex actor with multiple actions. The translated C-file (with actions
and state variables) includes 2062 SLOC for both actions and action scheduling.
The original CAL file contains 962 lines of codes as a comparison.

A comparison of the CAL description (Table 3) shows that the MPEG-4 AVC
CAL decoder is twice more complex in RVC-CAL than the MPEG-4 Simple Profile
CAL description. Some parts of the model have already been redesigned in order to
improve pipelining and parallelism between actors.

Comparing to the MPEG-4 Simple Profile CAL model, the MPEG-4 AVC
decoder has been modeled to use more CAL possibility (for instance processing
of several tokens in one firing) while staying fully RVC conformant. Thanks to this
increasing complexity, MPEG-4 AVC CAL model is the most reliable way to test
the accordance and the efficiency of the current RVC tools. The current SW code
generation of MPEG-4 AVC is promising since we can achieve up to 250fps on 1
core on a QCIF sequence and up to 450 fps on 2 cores.

The software code generator is also used in [9] where Boutellier et al. present
a design flow that enables automatic synthesis of RVC-CAL actor networks
to application specific transport-triggered architecture (TTA [13, 18]) processor
networks. The functionality of the toolchain is demonstrated by applying it to an
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Fig. 27 Structure of the just-in-time adaptive decoder engine

RVC-CAL network, which defines an MPEG-4 SP video decoder. The automated
process realizes the RVC-CAL dataflow network into several tiny heterogeneous
processors.

5.5 LLVM Synthesis: An LLVM Based RVC Decoder

As shown on Fig. 4, an RVC decoder can create and handle several decoder
descriptions on-the-fly, either by using coding tools standardized in MPEG, or
proprietary implementations of coding tools, or other hybrid versions composed
from proprietary and standardized implementations.

An RVC decoder called Jade [21, 22], represented in Fig. 27, extends a Virtual
Machine to handle a RVC decoder description. Its configuration engine (Fig. 28)
has two inputs, a decoder configuration and a representation of the Video Tools
Library (VTL) [20] standardized in MPEG-C pt.4. It outputs a complete dataflow
representation of the decoder as a set of interconnected functional processing
units in byte code format. This decoder representation can then be compiled or
interpreted by a specific Virtual Machine (VM). Jade is based on the open source
LLVM infrastructure [37]. This VM provides efficient Just-In-Time compilation and
multicore execution for a wide range of platforms (X86, X86-64, PPC, ARM, etc.).

The configuration engine of Jade contains several mechanisms to switch be-
tween different decoder representations during the decoding process. The dataflow
representation of the coding tools provided by MPEG RVC gives the ability to in-
crementally and partially re-program a decoder when receiving new configurations
from a bitstream.

The configuration and the reconfiguration of decoder are illustrated in Table 4
on the 2 representations of decoders; the Simple Profile (SP) from the MPEG-4
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Fig. 28 Configuration of an RVC description by the configuration engine

Table 4 Configuration and reconfiguration times between implementa-
tions of MPEG-4 part 2 Simple Profile (SP) and MPEG-4 AVC

Standard Configurations Configuration Reconfiguration

SP RVC −> SP modified 1,141 ms 380 ms
AVC CBP −> FRExt 3,313 ms 1,610 ms

part 2 standards and the Constrained Baseline Profile (CBP) of the MPEG-4 AVC.
Reconfiguration is done by switching to a proprietary configuration of these
decoders. The first configuration is an optimized configuration of the same decoder.
The second reconfiguration is a configuration which represents the Fidelity Range
Extensions (FRExt) of MPEG-4 AVC. The benchmarks are realized on dual-core
processor at 2.4 Ghz.

Jade maximizes the use of the computing resources of any target platform by
taking advantage of the inherent parallelism present in an MPEG RVC decoder. The
configuration of a decoder gives information about the interconnection between cod-
ing tools (algorithms) that compose a decoder without carrying any implementation
details for a specific platform. Therefore, Jade can execute the adaptive decoder
according to the features (e.g. multiple cores) of the underlying platform.

Two optimizations algorithms based on execution models were incorporated in
Jade to utilize the concurrency of a decoder configuration, depending on the number
of cores in the underlying platforms. The first optimization analyzes a configuration
and removes concurrency between tools to find an efficient execution on a same
core. The second optimization applies an efficient distribution of independent
coding tools onto separate cores.
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6 Further Readings and Perspectives

This chapter introduces and describes the essential motivations and components
developed so far of the ISO/IEC MPEG Reconfigurable Video Coding frame-
work [43] based on the dataflow specification concept [4]. The MPEG RVC tool
library continuously evolves so as to cover in a unified modular form all past and
new standard video algorithms. MPEG RVC further demonstrates that dataflow
programming is an high level system specification that constitutes an appropriate
starting point and a methodology apt to build complex heterogeneous system
implementations. The MPEG RVC framework is also supported by an evolving
environment of different tools including simulators, software [21,22,47,52,56] and
hardware [13, 31] code synthesis, design exploration tools for the dimensioning of
buffers, the definition of partitions and scheduling policies as well as the support of
other design optimization objectives [1, 10]. CAL dataflow programs standardized
and employed by MPEG RVC also result particularly efficient for developing
specifications of other signal processing systems yielding very synthetic and ex-
pressive specifications when compared to classical imperative languages. In addition
the strong encapsulation properties of CAL program libraries can be developed in
the form of of proprietary implementation libraries enforcing the efficient usage of
specific architectural features on the target implementation platform, but at the same
time enabling the RVC implementer/designer to work at high levels of abstraction
comparable to the one of the RVC video coding algorithm library. Hardware and
software code generators then provide the low level implementation of the actors
and associated network of actors for the different target implementation platforms
(multi-core processors or FPGA) [3, 51, 59]. In conclusion the innovations and
features of both dataflow specifications and methodologies for producing the relative
synthesized implementations is the subject of a very active research showing at each
year new results and achievements.
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