
Chapter 7

Nonlinear Regression Models

The previous chapter discussed regression models that were intrinsically
linear. Many of these models can be adapted to nonlinear trends in the data
by manually adding model terms (e.g., squared terms). However, to do this,
one must know the specific nature of the nonlinearity in the data.

There are numerous regression models that are inherently nonlinear in
nature. When using these models, the exact form of the nonlinearity does not
need to be known explicitly or specified prior to model training. This chapter
looks at several models: neural networks, multivariate adaptive regression
splines (MARS), support vector machines (SVMs), and K-nearest neighbors
(KNNs). Tree-based models are also nonlinear. Due to their popularity and
use in ensemble models, we have devoted the next chapter to those methods.

7.1 Neural Networks

Neural networks (Bishop 1995; Ripley 1996; Titterington 2010) are power-
ful nonlinear regression techniques inspired by theories about how the brain
works. Like partial least squares, the outcome is modeled by an intermedi-
ary set of unobserved variables (called hidden variables or hidden units here).
These hidden units are linear combinations of the original predictors, but,
unlike PLS models, they are not estimated in a hierarchical fashion (Fig. 7.1).

As previously stated, each hidden unit is a linear combination of some or
all of the predictor variables. However, this linear combination is typically
transformed by a nonlinear function g(·), such as the logistic (i.e., sigmoidal)
function:

hk(x) = g

(
β0k +

P∑
i=1

xjβjk

)
, where

g(u) =
1

1 + e−u
.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 7,
© Springer Science+Business Media New York 2013

141

142 7 Nonlinear Regression Models

Predictor
A

Predictor
B

Predictor
C

Predictor
P

Hidden
Unit1

Hidden
Unit H

Outcome

Sigm
oidal

R
elationship

L
inear

R
elationship

−6 −2 2 4 6

0.
0

0.
4

0.
8

β1 + β11x1 + β21x2 γ0 + γ1h1(x) + γ2h2(x) + γ3h3(x)

F
irs

t H
id

de
n

U
ni

t h
(x

)

−6 −2 2 4 6

−
6

−
2

2
4

6
P

re
di

ct
io

n

Fig. 7.1: A diagram of a neural network with a single hidden layer. The hidden
units are linear combinations of the predictors that have been transformed
by a sigmoidal function. The output is modeled by a linear combination of
the hidden units

The β coefficients are similar to regression coefficients; coefficient βjk is the
effect of the jth predictor on the kth hidden unit. A neural network model
usually involves multiple hidden units to model the outcome. Note that, unlike
the linear combinations in PLS, there are no constraints that help define
these linear combinations. Because of this, there is little likelihood that the
coefficients in each unit represent some coherent piece of information.

7.1 Neural Networks 143

Once the number of hidden units is defined, each unit must be related to
the outcome. Another linear combination connects the hidden units to the
outcome:

f(x) = γ0 +

H∑
k=1

γkhk.

For this type of network model and P predictors, there are a total of H(P +
1)+H +1 total parameters being estimated, which quickly becomes large as
P increases. For the solubility data, recall that there are 228 predictors. A
neural network model with three hidden units would estimate 691 parameters
while a model with five hidden units would have 1,151 coefficients.

Treating this model as a nonlinear regression model, the parameters are
usually optimized to minimize the sum of the squared residuals. This can be
a challenging numerical optimization problem (recall that there are no con-
straints on the parameters of this complex nonlinear model). The parameters
are usually initialized to random values and then specialized algorithms for
solving the equations are used. The back-propagation algorithm (Rumelhart
et al. 1986) is a highly efficient methodology that works with derivatives to
find the optimal parameters. However, it is common that a solution to this
equation is not a global solution, meaning that we cannot guarantee that the
resulting set of parameters are uniformly better than any other set.

Also, neural networks have a tendency to over-fit the relationship between
the predictors and the response due to the large number of regression coeffi-
cients. To combat this issue, several different approaches have been proposed.
First, the iterative algorithms for solving for the regression equations can be
prematurely halted (Wang and Venkatesh 1984). This approach is referred to
as early stopping and would stop the optimization procedure when some esti-
mate of the error rate starts to increase (instead of some numerical tolerance
to indicate that the parameter estimates or error rate are stable). However,
there are obvious issues with this procedure. First, how do we estimate the
model error? The apparent error rate can be highly optimistic (as discussed
in Sect. 4.1) and further splitting of the training set can be problematic. Also,
since the measured error rate has some amount of uncertainty associated with
it, how can we tell if it is truly increasing?

Another approach to moderating over-fitting is to use weight decay, a pe-
nalization method to regularize the model similar to ridge regression discussed
in the last chapter. Here, we add a penalty for large regression coefficients
so that any large value must have a significant effect on the model errors to
be tolerated. Formally, the optimization produced would try to minimize a
alternative version of the sum of the squared errors:

n∑
i=1

(yi − fi(x))
2
+ λ

H∑
k=1

P∑
j=0

β2
jk + λ

H∑
k=0

γ2
k

144 7 Nonlinear Regression Models

for a given value of λ. As the regularization value increases, the fitted model
becomes more smooth and less likely to over-fit the training set. Of course,
the value of this parameter must be specified and, along with the number of
hidden units, is a tuning parameter for the model. Reasonable values of λ
range between 0 and 0.1. Also note that since the regression coefficients are
being summed, they should be on the same scale; hence the predictors should
be centered and scaled prior to modeling.

The structure of the model described here is the simplest neural network
architecture: a single-layer feed-forward network. There are many other kinds,
such as models where there are more than one layer of hidden units (i.e.,
there is a layer of hidden units that models the other hidden units). Also,
other model architectures have loops going both directions between layers.
Practitioners of these models may also remove specific connections between
objects to further optimize the model. There have also been several Bayesian
approaches to neural networks (Neal 1996). The Bayesian framework outlined
in Neal (1996) for these models automatically incorporates regularization
and automatic feature selection. This approach to neural networks is very
powerful, but the computational aspects of the model become even more
formidable. A model very similar to neural networks is self-organizing maps
(Kohonen 1995). This model can be used as an unsupervised, exploratory
technique or in a supervised fashion for prediction (Melssen et al. 2006).

Given the challenge of estimating a large number of parameters, the fit-
ted model finds parameter estimates that are locally optimal; that is, the
algorithm converges, but the resulting parameter estimates are unlikely to
be the globally optimal estimates. Very often, different locally optimal solu-
tions can produce models that are very different but have nearly equivalent
performance. This model instability can sometimes hinder this model. As
an alternative, several models can be created using different starting values
and averaging the results of these model to produce a more stable prediction
(Perrone and Cooper 1993; Ripley 1995; Tumer and Ghosh 1996). Such model
averaging often has a significantly positive effect on neural networks.

These models are often adversely affected by high correlation among the
predictor variables (since they use gradients to optimize the model parame-
ters). Two approaches for mitigating this issue is to pre-filter the predictors
to remove the predictors that are associated with high correlations. Alterna-
tively a feature extraction technique, such as principal component analysis,
can be used prior to modeling to eliminate correlations. One positive side ef-
fect of both these approaches is that fewer model terms need to be optimized,
thus improving computation time.

For the solubility data, model averaged neural networks were used. Three
different weight decay values were evaluated (λ = 0.00, 0.01, 0.10) along with
a single hidden layer with sizes ranging between 1 and 13 hidden units. The
final predictions are the averages of five different neural networks created
using different initial parameter values. The cross-validated RMSE profiles of
these models are displayed in Fig. 7.2. Increasing the amount of weight decay

7.2 Multivariate Adaptive Regression Splines 145

#Hidden Units

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

0.70

0.75

0.80

0.85

0.90

2 4 6 8 10 12

Weight Decay

0 0.01 0.1

Fig. 7.2: RMSE profiles for the neural network model. The optimal model
used λ = 0.1 and 11 hidden units

clearly improved model performance, while more hidden units also reduce the
model error. The optimal model used 11 hidden units with a total of 2,531
coefficients. The performance of the model is fairly stable for a high degree
of regularization (i.e., λ = 0.1), so smaller models could also be effective for
these data.

7.2 Multivariate Adaptive Regression Splines

Like neural networks and partial least squares, MARS (Friedman 1991) uses
surrogate features instead of the original predictors. However, whereas PLS
and neural networks are based on linear combinations of the predictors,
MARS creates two contrasted versions of a predictor to enter the model.
Also, the surrogate features in MARS are usually a function of only one or
two predictors at a time. The nature of the MARS features breaks the pre-
dictor into two groups and models linear relationships between the predictor
and the outcome in each group. Specifically, given a cut point for a predictor,
two new features are “hinge” or “hockey stick” functions of the original (see
Fig. 7.3). The“left-hand”feature has values of zero greater than the cut point,
while the second feature is zero less than the cut point. The new features are
added to a basic linear regression model to estimate the slopes and intercepts.
In effect, this scheme creates a piecewise linear model where each new feature
models an isolated portion of the original data.

146 7 Nonlinear Regression Models

How was the cut point determined? Each data point for each predictor
is evaluated as a candidate cut point by creating a linear regression model
with the candidate features, and the corresponding model error is calcu-
lated. The predictor/cut point combination that achieves the smallest er-
ror is then used for the model. The nature of the predictor transformation
makes such a large number of linear regressions computationally feasible.
In some MARS implementations, including the one used here, the utility
of simple linear terms for each predictor (i.e., no hinge function) is also
evaluated.

After the initial model is created with the first two features, the model
conducts another exhaustive search to find the next set of features that,
given the initial set, yield the best model fit. This process continues until a
stopping point is reached (which can be set by the user).

In the initial search for features in the solubility data, a cut point of 5.9 for
molecular weight had the smallest error rate. The resulting artificial predic-
tors are shown in the top two panels of Fig. 7.3. One predictor has all values
less than the cut point set to zero and values greater than the cut point are
left unchanged. The second feature is the mirror image of the first. Instead of
the original data, these two new predictors are used to predict the outcome in
a linear regression model. The bottom panel of Fig. 7.3 shows the result of the
linear regression with the two new features and the piecewise nature of the
relationship. The “left-hand” feature is associated with a negative slope when
the molecular weight is less than 5.9 while the “right-hand” feature estimates
a positive slope for larger values of the predictor.

Mathematically, the hinge function for new features can be written as

h(x) =

{
x x > 0

0 x ≤ 0
(7.1)

A pair of hinge functions is usually written as h(x − a) and h(a − x). The
first is nonzero when x > a, while the second is nonzero when x < a. Note
that when this is true the value of the function is actually −x. For the MARS
model shown in Fig. 7.3, the actual model equation would be

−5 + 2.1× h(MolWeight− 5.94516) + 3× h(5.94516−MolWeight).

The first term in this equation (−5) is the intercept. The second term is
associated with the right-hand feature shown in Fig. 7.3, while the third term
is associated with the left-hand feature.

Table 7.1 shows the first few steps of the feature generation phase (prior
to pruning). The features were entered into the linear regression model from
top to bottom. Here the binary fingerprint descriptor enters the model as
a plain linear term (splitting a binary variable would be nonsensical). The
generalized cross-validation (GCV) column shows the estimated RMSE for

7.2 Multivariate Adaptive Regression Splines 147

Molecular Weight (transformed)

N
ew

 M
A

R
S

 F
ea

tu
re

0.0

0.5

1.0

1.5

2.0

4.0 4.5 5.0 5.5 6.0 6.5

Left

0.0

0.5

1.0

1.5

2.0

Right

Molecular Weight (transformed)

Lo
g

S
ol

ub
ili

ty

−10

−5

0

4.0 4.5 5.0 5.5 6.0 6.5

Fig. 7.3: An example of the features used by MARS for the solubility data.
After finding a cut point of 5.9 for molecular weight, two new features are
created and used in a linear regression model. The top two panels show the
relationship between the original predictor and the two resulting features.
The bottom panel shows the predicted relationship when using these two
features in a linear regression model. The red line indicates the contribution
of the “left-hand” hinge function while the blue line is associated with the
other feature

148 7 Nonlinear Regression Models

Table 7.1: The results of several iterations of the MARS algorithm prior to
pruning

Predictor Type Cut RMSE Coefficient

Intercept 4.193 −9.33
MolWeight Right 5.95 2.351 −3.23
MolWeight Left 5.95 1.148 0.66
SurfaceArea1 Right 1.96 0.935 0.19
SurfaceArea1 Left 1.96 0.861 −0.66
NumNonHAtoms Right 3.00 0.803 −7.51
NumNonHAtoms Left 3.00 0.761 8.53
FP137 Linear 0.727 1.24
NumOxygen Right 1.39 0.701 2.22
NumOxygen Left 1.39 0.683 −0.43
NumNonHBonds Right 2.58 0.670 2.21
NumNonHBonds Left 2.58 0.662 −3.29

The root mean squared error was estimated using the GCV statistic

the model containing terms on the current row and all rows above. Prior to
pruning, each pair of hinge functions is kept in the model despite the slight
reduction in the estimated RMSE.

Once the full set of features has been created, the algorithm sequentially
removes individual features that do not contribute significantly to the model
equation. This “pruning” procedure assesses each predictor variable and esti-
mates how much the error rate was decreased by including it in the model.
This process does not proceed backwards along the path that the features
were added; some features deemed important at the beginning of the process
may be removed while features added towards the end might be retained. To
determine the contribution of each feature to the model, the GCV statistic
is used. This value is a computational shortcut for linear regression models
that produces an error value that approximates leave-one-out cross-validation
(Golub et al. 1979). GCV produces better estimates than the apparent error
rate for determining the importance of each feature in the model. The num-
ber of terms to remove can be manually set or treated as a tuning parameter
and determined using some other form of resampling.

The process above is a description of an additive MARS model where
each surrogate feature involves a single predictor. However, MARS can build
models where the features involve multiple predictors at once. With a second-
degree MARS model, the algorithm would conduct the same search of a single
term that improves the model and, after creating the initial pair of features,
would instigate another search to create new cuts to couple with each of the
original features. Suppose the pair of hinge functions are denoted as A and B.

7.2 Multivariate Adaptive Regression Splines 149

The search procedure attempts to find hinge functions C and D that, when
multiplied by A, result in an improvement in the model; in other words, the
model would have terms for A, A×B and A×C. The same procedure would
occur for feature B. Note that the algorithm will not add additional terms if
the model is not improved by their addition. Also, the pruning procedure may
eliminate the additional terms. For MARS models that can include two or
more terms at a time, we have observed occasional instabilities in the model
predictions where a few sample predictions are wildly inaccurate (perhaps an
order of magnitude off of the true value). This problem has not been observed
with additive MARS models.

To summarize, there are two tuning parameters associated with the MARS
model: the degree of the features that are added to the model and the number
of retained terms. The latter parameter can be automatically determined us-
ing the default pruning procedure (using GCV), set by the user or determined
using an external resampling technique. For our analysis of the solubility data,
we used 10-fold cross-validation to characterize model performance over first-
and second-order models and 37 values for the number of model terms, rang-
ing from 2 to 38. The resulting performance profile is shown in Fig. 7.4. There
appears to be very little difference in the first- and second-degree models in
terms of RMSE.

The cross-validation procedure picked a second-degree model with 38
terms. However, because the profiles of the first- and second-order model
are almost identical, the more parsimonious first-order model was chosen as
the final model. This model used 38 terms but was a function of only 30
predictors (out of a possible 228).

Cross-validation estimated the RMSE to be 0.7 log units and the R2 to
be 0.887. Recall that the MARS procedure internally uses GCV to estimate
model performance. Using GCV, the RMSE was estimated to be 0.4 log
units and an R2 of 0.908. Using the test set of 316 samples, the RMSE was
determined to be 0.7 with a corresponding R2 of 0.879. Clearly, the GCV
estimates are more encouraging than those obtained by the cross-validation
procedure or the test set. However, note that the internal GCV estimate
that MARS employs evaluates an individual model while the external cross-
validation procedure is exposed to the variation in the entire model building
process, including feature selection. Since the GCV estimate does not reflect
the uncertainty from feature selection, it suffers from selection bias (Ambroise
and McLachlan 2002). This phenomenon will be discussed more in Chap. 19.

There are several advantages to using MARS. First, the model automat-
ically conducts feature selection; the model equation is independent of pre-
dictor variables that are not involved with any of the final model features.
This point cannot be underrated. Given a large number of predictors seen in
many problem domains, MARS potentially thins the predictor set using the
same algorithm that builds the model. In this way, the feature selection rou-
tine has a direct connection to functional performance. The second advantage
is interpretability. Each hinge feature is responsible for modeling a specific

150 7 Nonlinear Regression Models

#Terms

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

0.8

1.0

1.2

1.4

10 20 30

Product Degree

1 2

Fig. 7.4: RMSE profiles for the MARS model. The cross-validation procedure
picked a second-degree model with 38 terms, although there is little difference
between the first- and second-degree models. Given this equivalence, the more
simplistic first-order model was chosen as the final model

region in the predictor space using a (piecewise) linear model. When the
MARS model is additive, the contribution of each predictor can be isolated
without the need to consider the others. This can be used to provide clear
interpretations of how each predictor relates to the outcome. For nonaddi-
tive models, the interpretive power of the model is not reduced. Consider a
second-degree feature involving two predictors. Since each hinge function is
split into two regions, three of the four possible regions will be zero and offer
no contribution to the model. Because of this, the effect of the two factors
can be further isolated, making the interpretation as simple as the additive
model. Finally, the MARS model requires very little pre-processing of the
data; data transformations and the filtering of predictors are not needed. For
example, a zero variance predictor will never be chosen for a split since it
offers no possible predictive information. Correlated predictors do not drasti-
cally affect model performance, but they can complicate model interpretation.
Suppose the training set contained two predictors that were nearly perfectly
correlated. Since MARS can select a predictor more than once during the
iterations, the choice of which predictor is used in the feature is essentially
random. In this case, the model interpretation is hampered by two redun-
dant pieces of information that show up in different parts of the model under
different names.

Another method to help understand the nature of how the predictors affect
the model is to quantify their importance to the model. For MARS, one tech-

7.3 Support Vector Machines 151

nique for doing this is to track the reduction in the root mean squared error
(as measured using the GCV statistic) that occurs when adding a particular
feature to the model. This reduction is attributed to the original predictor(s)
associated with the feature. These improvements in the model can be aggre-
gated for each predictor as a relative measure of the impact on the model. As
seen in Table 7.1, there is a drop in the RMSE from 4.19 to 1.15 (a reduction
of 3.04) after the two molecular weight features were added to the model.
After this, adding terms for the first surface area predictor decreases the er-
ror by 0.29. Given these numbers, it would appear that the molecular weight
predictor is more important to the model than the first surface area predictor.
This process is repeated for every predictor used in the model. Predictors that
were not used in any feature have an importance of zero. For the solubility
model, the predictors MolWeight, NumNonHAtoms, and SurfaceArea2 appear
to be have the greatest influence on the MARS model (see the Computing
section at the end of the chapter for more details).

Figure 7.5 illustrates the interpretability of the additive MARS model with
the continuous predictors. For each panel, the line represents the prediction
profile for that variable when all the others are held constant at their mean
level. The additive nature of the model allows each predictor to be viewed in
isolation; changing the values of the other predictor variables will not alter
the shape of the profile, only the location on the y-axis where the profile
starts.

7.3 Support Vector Machines

SVMs are a class of powerful, highly flexible modeling techniques. The theory
behind SVMs was originally developed in the context of classification models.
Later, in Chap. 13, the motivation for this technique is discussed in its more
natural form. For regression, we follow Smola (1996) and Drucker et al. (1997)
and motivate this technique in the framework of robust regression where we
seek to minimize the effect of outliers on the regression equations. Also, there
are several flavors of support vector regression and we focus on one particular
technique called ε-insensitive regression.

Recall that linear regression seeks to find parameter estimates that mini-
mize SSE (Sect. 6.2). One drawback of minimizing SSE is that the parameter
estimates can be influenced by just one observation that falls far from the
overall trend in the data. When data may contain influential observations,
an alternative minimization metric that is less sensitive, such as the Huber
function, can be used to find the best parameter estimates. This function uses
the squared residuals when they are “small” and uses the absolute residuals
when the residuals are large. See Fig. 6.6 on p. 110 for an illustration.

SVMs for regression use a function similar to the Huber function, with
an important difference. Given a threshold set by the user (denoted as ε),

152 7 Nonlinear Regression Models

P
re

di
ct

ed
 O

ut
co

m
e

4.0 4.5 5.0 5.5 6.0 6.5

MolWeight

1.0 1.5 2.0 2.5 3.0 3.5 4.0

NumNonHAtoms

0 5 10 15 20

SurfaceArea2

0 5 10 15 20

SurfaceArea1

0 2 4 6

NumMultBonds

0.0 0.5 1.0 1.5 2.0 2.5

NumOxygen

0.0 0.2 0.4 0.6

NumNitrogen

1 2 3 4 5 6

NumNonHBonds

0.0 0.5 1.0 1.5 2.0 2.5

NumRotBonds

0 1 2 3

NumAromaticBonds

0.0 0.1 0.2 0.3 0.4 0.5

NumChlorine

−2 0 2

HydrophilicFactor

Fig. 7.5: The predicted relationship between the outcome and the continu-
ous predictors using the MARS model (holding all other predictors at their
mean value). The additive nature of the model allows each predictor to be
viewed in isolation. Note that the final predicted values are the summation of
each individual profile. The panels are ordered from top to bottom by their
importance to the model

7.3 Support Vector Machines 153

data points with residuals within the threshold do not contribute to the
regression fit while data points with an absolute difference greater than the
threshold contribute a linear-scale amount. There are several consequences to
this approach. First, since the squared residuals are not used, large outliers
have a limited effect on the regression equation. Second, samples that the
model fits well (i.e., the residuals are small) have no effect on the regression
equation. In fact, if the threshold is set to a relatively large value, then the
outliers are the only points that define the regression line! This is somewhat
counterintuitive: the poorly predicted points define the line. However, this
approach has been shown to be very effective in defining the model.

To estimate the model parameters, SVM uses the ε loss function shown in
Fig. 7.6 but also adds a penalty. The SVM regression coefficients minimize

Cost
n∑

i=1

Lε(yi − ŷi) +
P∑

j=1

β2
j ,

where Lε(·) is the ε-insensitive function. The Cost parameter is the cost
penalty that is set by the user, which penalizes large residuals.1

Recall that the simple linear regression model predicted new samples using
linear combinations of the data and parameters. For a new sample, u, the
prediction equation is

ŷ = β0 + β1u1 + . . .+ βPuP

= β0 +
P∑

j=1

βjuj

The linear support vector machine prediction function is very similar. The pa-
rameter estimates can be written as functions of a set of unknown parameters
(αi) and the training set data points so that

ŷ = β0 + β1u1 + . . .+ βPuP

= β0 +

P∑
j=1

βjuj

= β0 +

P∑
j=1

n∑
i=1

αixijuj

= β0 +
n∑

i=1

αi

⎛
⎝ P∑

j=1

xijuj

⎞
⎠ . (7.2)

1 The penalty here is written as the reverse of ridge regression or weight decay in
neural networks since it is attached to residuals and not the parameters.

154 7 Nonlinear Regression Models

Residual

C
on

tr
ib

ut
io

n 0
5

10
15

20
25

Squared

−4 −2 0 2 4

0
1

2
3

4
5

Absolute

0
1

2
3

4

−4 −2 0 2 4

Huber

0
1

2
3

4

SVM

Fig. 7.6: The relationship between a model residual and its contribution to
the regression line for several techniques. For the Huber approach, a threshold
of 2 was used while for the support vector machine, a value of ε = 1 was used.
Note that the y-axis scales are different to make the figures easier to read

There are several aspects of this equation worth pointing out. First,
there are as many α parameters as there are data points. From the stand-
point of classical regression modeling, this model would be considered over-
parameterized; typically, it is better to estimate fewer parameters than data
points. However, the use of the cost value effectively regularizes the model to
help alleviate this problem.

Second, the individual training set data points (i.e., the xij) are required
for new predictions. When the training set is large, this makes the prediction
equations less compact than other techniques. However, for some percentage
of the training set samples, the αi parameters will be exactly zero, indicat-
ing that they have no impact on the prediction equation. The data points
associated with an αi parameter of zero are the training set samples that
are within ±ε of the regression line (i.e., are within the “funnel” or “tube”
around the regression line). As a consequence, only a subset of training set

7.3 Support Vector Machines 155

data points, where α �= 0, are needed for prediction. Since the regression line
is determined using these samples, they are called the support vectors as they
support the regression line.

Figure 7.7 illustrates the robustness of this model. A simple linear model
was simulated with a slope of 4 and an intercept of 1; one extreme outlier
was added to the data. The top panel shows the model fit for a linear regres-
sion model (black solid line) and a support vector machine regression model
(blue dashed line) with ε = 0.01. The linear regression line is pulled towards
this point, resulting in estimates of the slope and intercept of 3.5 and 1.2,
respectively. The support vector regression fit is shown in blue and is much
closer to the true regression line with a slope of 3.9 and an intercept of 0.9.
The middle panel again shows the SVM model, but the support vectors are
solid black circles and the other points are shown in red. The horizontal grey
reference lines indicate zero ± ε. Out of 100 data points, 70 of these were
support vectors.

Finally, note that in the last form of Eq. 7.2, the new samples enter into
the prediction function as sum of cross products with the new sample values.
In matrix algebra terms, this corresponds to a dot product (i.e., x′u). This is
important because this regression equation can be rewritten more generally
as

f(u) = β0 +

n∑
i=1

αiK(xi,u),

where K(·) is called the kernel function. When predictors enter the model
linearly, the kernel function reduces to a simple sum of cross products shown
above:

K(xi,u) =
P∑

j=1

xijuj = x′
iu.

However, there are other types of kernel functions that can be used to general-
ize the regression model and encompass nonlinear functions of the predictors:

polynomial = (φ (x′u) + 1)
degree

radial basis function = exp(−σ‖x− u‖2)
hyperbolic tangent = tanh (φ (x′u) + 1) ,

where φ and σ are scaling parameters. Since these functions of the predictors
lead to nonlinear models, this generalization is often called the “kernel trick.”

To illustrate the ability of this model to adapt to nonlinear relationships,
we simulated data that follow a sin wave in the bottom of Fig. 7.7. Outliers
were also added to these data. A linear regression model with an intercept and
a term for sin(x) was fit to the model (solid black line). Again, the regression
line is pulled towards the outlying points. An SVM model with a radial basis
kernel function is represented by the blue dashed line (without specifying the
sin functional form). This line better describes the overall structure of the
data.

156 7 Nonlinear Regression Models

−2 −1 0 1 2

−
5

0
5

10

Predictor

O
ut

co
m

e

Least Squares
SVM

−5 0 5 10

−
2

−
1

0
1

2

Predicted Value

R
es

id
ua

l

2 4 6 8 10

−
5

−
3

−
1

1

Predictor

O
ut

co
m

e

Fig. 7.7: The robustness qualities of SVM models. Top: a small simulated
data set with a single large outlier is used to show the difference between an
ordinary regression line (red) and the linear SVM model (blue). Middle: the
SVM residuals versus the predicted values (the upper end of the y-axis scale
was reduced to make the plot more readable). The plot symbols indicate the
support vectors (shown as grey colored circles) and the other samples (red
crosses). The horizontal lines are ±ε = 0.01. Bottom: A simulated sin wave
with several outliers. The red line is an ordinary regression line (intercept and
a term for sin(x)) and the blue line is a radial basis function SVM model

7.3 Support Vector Machines 157

Which kernel function should be used? This depends on the problem. The
radial basis function has been shown to be very effective. However, when the
regression line is truly linear, the linear kernel function will be a better choice.

Note that some of the kernel functions have extra parameters. For example,
the polynomial degree in the polynomial kernel must be specified. Similarly,
the radial basis function has a parameter (σ) that controls the scale. These
parameters, along with the cost value, constitute the tuning parameters for
the model. In the case of the radial basis function, there is a possible com-
putational shortcut to estimating the kernel parameter. Caputo et al. (2002)
suggested that the parameter can be estimated using combinations of the
training set points to calculate the distribution of ||x − x′||2, then use the
10th and 90th percentiles as a range for σ. Instead of tuning this parame-
ter over a grid of candidate values, we can use the midpoint of these two
percentiles.

The cost parameter is the main tool for adjusting the complexity of the
model. When the cost is large, the model becomes very flexible since the
effect of errors is amplified. When the cost is small, the model will “stiffen”
and become less likely to over-fit (but more likely to underfit) because the
contribution of the squared parameters is proportionally large in the modified
error function. One could also tune the model over the size of the funnel (e.g.,
over ε). However, there is a relationship between ε and the cost parameter.
In our experience, we have found that the cost parameter provides more
flexibility for tuning the model. So we suggest fixing a value for ε and tuning
over the other kernel parameters.

Since the predictors enter into the model as the sum of cross products,
differences in the predictor scales can affect the model. Therefore, we recom-
mend centering and scaling the predictors prior to building an SVM model.

SVMs were applied to the solubility data. First, a radial basis function
kernel was used. The kernel parameter was estimated analytically to be
σ = 0.0039 and the model was tuned over 14 cost values between 0.25 and
2048 on the log2 scale (Fig. 7.8). When the cost values are small, the model
under-fits the data, but, as the error starts to increase when the cost ap-
proaches 210, over-fitting begins. The cost value associated with the smallest
RMSE was 128. A polynomial model was also evaluated. Here, we tuned over
the cost, the polynomial degree, and a scale factor. In general, quadratic mod-
els have smaller error rates than the linear models. Also, models associated
with larger-scale factors have better performance. The optimal model was
quadratic with a scale factor of 0.01 and a cost value of 2 (Fig. 7.9).

As a comparison, both the optimal radial basis and the polynomial SVM
models use a similar number of support vectors, 623 and 627, respectively (out
of 951 training samples). Also it is important to point out that tuning the
radial basis function kernel parameter was easier than tuning the polynomial
model (which has three tuning parameters).

The literature on SVM models and other kernel methods has been vi-
brant and many alternate methodologies have been proposed. One method,

158 7 Nonlinear Regression Models

Cost

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

0.60

0.65

0.70

0.75

0.80

2^0 2^5 2^10

Fig. 7.8: The cross-validation profiles for a radial basis function SVM model
applied to the solubility data. The kernel parameter was estimated analyti-
cally to be σ = 0.0039

Cost

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

0.6

0.7

0.8

0.9

1.0

2^−2 2^0 2^2 2^4

scale: 0.001

2^−2 2^0 2^2 2^4

scale: 0.005

2^−2 2^0 2^2 2^4

scale: 0.010

Polynomial Degree
1 2

Fig. 7.9: Cross-validation results for the polynomial SVM model for the sol-
ubility data. The final model was fit using a quadratic model with a scale
factor of 0.01 and a cost value of 2

7.4 K-Nearest Neighbors 159

the relevance vector machine (Tipping 2001), is a Bayesian analog to the
SVM model. In this case, the α parameters described above have associated
prior distributions and the selection of relevance vectors is determined using
their posterior distribution. If the posterior distribution is highly concen-
trated around zero, the sample is not used in the prediction equation. There
are usually less relevance vectors in this model than support vectors in an
SVM model.

7.4 K-Nearest Neighbors

The KNN approach simply predicts a new sample using the K-closest sam-
ples from the training set (similar to Fig. 4.3). Unlike other methods in this
chapter, KNN cannot be cleanly summarized by a model like the one pre-
sented in Eq. 7.2. Instead, its construction is solely based on the individual
samples from the training data. To predict a new sample for regression, KNN
identifies that sample’s KNNs in the predictor space. The predicted response
for the new sample is then the mean of the K neighbors’ responses. Other
summary statistics, such as the median, can also be used in place of the mean
to predict the new sample.

The basic KNN method as described above depends on how the user
defines distance between samples. Euclidean distance (i.e., the straight-line
distance between two samples) is the most commonly used metric and is
defined as follows: ⎛

⎝ P∑
j=1

(xaj − xbj)
2

⎞
⎠

1
2

,

where xa and xb are two individual samples. Minkowski distance is a gener-
alization of Euclidean distance and is defined as⎛

⎝ P∑
j=1

|xaj − xbj |q
⎞
⎠

1
q

,

where q > 0 (Liu 2007). It is easy to see that when q = 2, then Minkowski
distance is the same as Euclidean distance. When q = 1, then Minkowski dis-
tance is equivalent to Manhattan (or city-block) distance, which is a common
metric used for samples with binary predictors. Many other distance metrics
exist, such as Tanimoto, Hamming, and cosine, and are more appropriate
for specific types of predictors and in specific scientific contexts. Tanimoto
distance, for example, is regularly used in computational chemistry prob-
lems when molecules are described using binary fingerprints (McCarren et al.
2011).

160 7 Nonlinear Regression Models

Because the KNN method fundamentally depends on distance between
samples, the scale of the predictors can have a dramatic influence on the
distances among samples. Data with predictors that are on vastly different
scales will generate distances that are weighted towards predictors that have
the largest scales. That is, predictors with the largest scales will contribute
most to the distance between samples. To avoid this potential bias and to
enable each predictor to contribute equally to the distance calculation, we
recommend that all predictors be centered and scaled prior to performing
KNN.

In addition to the issue of scaling, using distances between samples can
be problematic if one or more of the predictor values for a sample is miss-
ing, since it is then not possible to compute the distance between samples.
If this is the case, then the analyst has a couple of options. First, either the
samples or the predictors can be excluded from the analysis. This is the least
desirable option; however, it may be the only practical choice if the sam-
ple(s) or predictor(s) are sparse. If a predictor contains a sufficient amount
of information across the samples, then an alternative approach is to impute
the missing data using a näıve estimator such as the mean of the predictor,
or a nearest neighbor approach that uses only the predictors with complete
information (see Sect. 3.4).

Upon pre-processing the data and selecting the distance metric, the next
step is to find the optimal number of neighbors. Like tuning parameters from
other models, K can be determined by resampling. For the solubility data,
20 values of K ranging between 1 and 20 were evaluated. As illustrated in
Fig. 7.10, the RMSE profile rapidly decreases across the first four values of
K, then levels off through K = 8, followed by a steady increase in RMSE as
K increases. This performance profile is typical for KNN, since small values
of K usually over-fit and large values of K underfit the data. RMSE ranged
from 1.041 to 1.23 across the candidate values, with the minimum occurring
at K = 4; cross-validated R2 at the optimum K is 0.747.

The elementary version of KNN is intuitive and straightforward and can
produce decent predictions, especially when the response is dependent on
the local predictor structure. However, this version does have some notable
problems, of which researchers have sought solutions. Two commonly noted
problems are computational time and the disconnect between local structure
and the predictive ability of KNN.

First, to predict a sample, distances between the sample and all other
samples must be computed. Computation time therefore increases with n
because the training data must be loaded into memory and because distances
between the new sample and all of the training samples must be computed. To
mitigate this problem, one can replace the original data with a less memory-
intensive representation of the data that describes the locations of the original
data. One specific example of this representation is a k-dimensional tree (or k-
d tree) (Bentley 1975). A k-d tree orthogonally partitions the predictor space
using a tree approach but with different rules than the kinds of trees described

7.5 Computing 161

#Neighbors

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

1.05

1.10

1.15

1.20

5 10 15 20

Fig. 7.10: The RMSE cross-validation profile for a KNN model applied to
the solubility data. The optimal number of neighbors is 4

in Chap. 8. After the tree has been grown, a new sample is placed through
the structure. Distances are only computed for those training observations in
the tree that are close to the new sample. This approach provides significant
computational improvements, especially when the number of training samples
is much larger than the number of predictors.

The KNN method can have poor predictive performance when local pre-
dictor structure is not relevant to the response. Irrelevant or noisy predictors
are one culprit, since these can cause similar samples to be driven away from
each other in the predictor space. Hence, removing irrelevant, noise-laden pre-
dictors is a key pre-processing step for KNN. Another approach to enhancing
KNN predictivity is to weight the neighbors’ contribution to the prediction
of a new sample based on their distance to the new sample. In this variation,
training samples that are closer to the new sample contribute more to the
predicted response, while those that are farther away contribute less to the
predicted response.

7.5 Computing

This section will reference functions from the caret, earth, kernlab, and nnet
packages.

R has a number of packages and functions for creating neural networks.
Relevant packages include nnet, neural, and RSNNS. The nnet package is the
focus here since it supports the basic neural network models outlined in this

162 7 Nonlinear Regression Models

chapter (i.e., a single layer of hidden units) and weight decay and has sim-
ple syntax. RSNNS supports a wide array of neural networks. Bergmeir and
Benitez (2012) outline the various neural network packages in R and contain
a tutorial on RSNNS.

Neural Networks

To fit a regression model, the nnet function takes both the formula and non-
formula interfaces. For regression, the linear relationship between the hidden
units and the prediction can be used with the option linout = TRUE. A basic
neural network function call would be

> nnetFit <- nnet(predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model

+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

This would create a single model with 5 hidden units. Note, this assumes that
the data in predictors have been standardized to be on the same scale.

To use model averaging, the avNNet function in the caret package has nearly
identical syntax:

> nnetAvg <- avNNet(predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ ## Specify how many models to average

+ repeats = 5,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model

+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

Again, new samples are processed using

> predict(nnetFit, newData)

> ## or

> predict(nnetAvg, newData)

To mimic the earlier approach of choosing the number of hidden units and
the amount of weight decay via resampling, the train function can be applied

7.5 Computing 163

using either method = "nnet" or method = "avNNet". First, we remove predic-
tors to ensure that the maximum absolute pairwise correlation between the
predictors is less than 0.75.

> ## The findCorrelation takes a correlation matrix and determines the

> ## column numbers that should be removed to keep all pair-wise

> ## correlations below a threshold

> tooHigh <- findCorrelation(cor(solTrainXtrans), cutoff = .75)

> trainXnnet <- solTrainXtrans[, -tooHigh]

> testXnnet <- solTestXtrans[, -tooHigh]

> ## Create a specific candidate set of models to evaluate:

> nnetGrid <- expand.grid(.decay = c(0, 0.01, .1),

+ .size = c(1:10),

+ ## The next option is to use bagging (see the

+ ## next chapter) instead of different random

+ ## seeds.

+ .bag = FALSE)

> set.seed(100)

> nnetTune <- train(solTrainXtrans, solTrainY,

+ method = "avNNet",

+ tuneGrid = nnetGrid,

+ trControl = ctrl,

+ ## Automatically standardize data prior to modeling

+ ## and prediction

+ preProc = c("center", "scale"),

+ linout = TRUE,

+ trace = FALSE,

+ MaxNWts = 10 * (ncol(trainXnnet) + 1) + 10 + 1,

+ maxit = 500)

Multivariate Adaptive Regression Splines

MARS models are in several packages, but the most extensive implementation
is in the earth package. The MARS model using the nominal forward pass
and pruning step can be called simply

> marsFit <- earth(solTrainXtrans, solTrainY)

> marsFit

Selected 38 of 47 terms, and 30 of 228 predictors
Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceArea1, FP142, ...
Number of terms at each degree of interaction: 1 37 (additive model)
GCV 0.3877448 RSS 312.877 GRSq 0.907529 RSq 0.9213739

Note that since this model used the internal GCV technique for model selec-
tion, the details of this model are different than the one used previously in
the chapter. The summary method generates more extensive output:

> summary(marsFit)

164 7 Nonlinear Regression Models

Call: earth(x=solTrainXtrans, y=solTrainY)

coefficients
(Intercept) -3.223749
FP002 0.517848
FP003 -0.228759
FP059 -0.582140
FP065 -0.273844
FP075 0.285520
FP083 -0.629746
FP085 -0.235622
FP099 0.325018
FP111 -0.403920
FP135 0.394901
FP142 0.407264
FP154 -0.620757
FP172 -0.514016
FP176 0.308482
FP188 0.425123
FP202 0.302688
FP204 -0.311739
FP207 0.457080
h(MolWeight-5.77508) -1.801853
h(5.94516-MolWeight) 0.813322
h(NumNonHAtoms-2.99573) -3.247622
h(2.99573-NumNonHAtoms) 2.520305
h(2.57858-NumNonHBonds) -0.564690
h(NumMultBonds-1.85275) -0.370480
h(NumRotBonds-2.19722) -2.753687
h(2.19722-NumRotBonds) 0.123978
h(NumAromaticBonds-2.48491) -1.453716
h(NumNitrogen-0.584815) 8.239716
h(0.584815-NumNitrogen) -1.542868
h(NumOxygen-1.38629) 3.304643
h(1.38629-NumOxygen) -0.620413
h(NumChlorine-0.46875) -50.431489
h(HydrophilicFactor- -0.816625) 0.237565
h(-0.816625-HydrophilicFactor) -0.370998
h(SurfaceArea1-1.9554) 0.149166
h(SurfaceArea2-4.66178) -0.169960
h(4.66178-SurfaceArea2) -0.157970

Selected 38 of 47 terms, and 30 of 228 predictors
Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceArea1, FP142, ...
Number of terms at each degree of interaction: 1 37 (additive model)
GCV 0.3877448 RSS 312.877 GRSq 0.907529 RSq 0.9213739

In this output, h(·) is the hinge function. In the output above, the term
h(MolWeight-5.77508) is zero when the molecular weight is less than 5.77508
(i.e., similar to the top panel of Fig. 7.3). The reflected hinge function would
be shown as h(5.77508 - MolWeight).

7.5 Computing 165

The plotmo function in the earth package can be used to produce plots
similar to Fig. 7.5. To tune the model using external resampling, the train

function can be used. The following code reproduces the results in Fig. 7.4:

> # Define the candidate models to test

> marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)

> # Fix the seed so that the results can be reproduced

> set.seed(100)

> marsTuned <- train(solTrainXtrans, solTrainY,

+ method = "earth",

+ # Explicitly declare the candidate models to test

+ tuneGrid = marsGrid,

+ trControl = trainControl(method = "cv"))

> marsTuned

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855, ...

Resampling results across tuning parameters:

degree nprune RMSE Rsquared RMSE SD Rsquared SD
1 2 1.54 0.438 0.128 0.0802
1 3 1.12 0.7 0.0968 0.0647
1 4 1.06 0.73 0.0849 0.0594
1 5 1.02 0.75 0.102 0.0551
1 6 0.984 0.768 0.0733 0.042
1 7 0.919 0.796 0.0657 0.0432
1 8 0.862 0.821 0.0418 0.0237
: : : : : :
2 33 0.701 0.883 0.068 0.0307
2 34 0.702 0.883 0.0699 0.0307
2 35 0.696 0.885 0.0746 0.0315
2 36 0.687 0.887 0.0604 0.0281
2 37 0.696 0.885 0.0689 0.0291
2 38 0.686 0.887 0.0626 0.029

RMSE was used to select the optimal model using the smallest value.
The final values used for the model were degree = 1 and nprune = 38.

> head(predict(marsTuned, solTestXtrans))

[1] 0.3677522 -0.1503220 -0.5051844 0.5398116 -0.4792718 0.7377222

There are two functions that estimate the importance of each predictor in
the MARS model: evimp in the earth package and varImp in the caret package
(although the latter calls the former):

166 7 Nonlinear Regression Models

> varImp(marsTuned)

earth variable importance

only 20 most important variables shown (out of 228)

Overall
MolWeight 100.00
NumNonHAtoms 89.96
SurfaceArea2 89.51
SurfaceArea1 57.34
FP142 44.31
FP002 39.23
NumMultBonds 39.23
FP204 37.10
FP172 34.96
NumOxygen 30.70
NumNitrogen 29.12
FP083 28.21
NumNonHBonds 26.58
FP059 24.76
FP135 23.51
FP154 21.20
FP207 19.05
FP202 17.92
NumRotBonds 16.94
FP085 16.02

These results are scaled to be between 0 and 100 and are different than those
shown in Table 7.1 (since the model in Table 7.1 did not undergo the full
model growing and pruning process). Note that after the first few variables,
the remainder have much smaller importance to the model.

Support Vector Machines

There are a number of R packages with implementations of support vector
machine models. The svm function in the e1071 package has an interface to
the LIBSVM library (Chang and Lin 2011) for regression. A more compre-
hensive implementation of SVM models for regression is the kernlab package
(Karatzoglou et al. 2004). In that package, the ksvm function is available for
regression models and a large number of kernel functions. The radial basis
function is the default kernel function. If appropriate values of the cost and
kernel parameters are known, this model can be fit as

> svmFit <- ksvm(x = solTrainXtrans, y = solTrainY,

+ kernel ="rbfdot", kpar = "automatic",

+ C = 1, epsilon = 0.1)

The function automatically uses the analytical approach to estimate σ. Since
y is a numeric vector, the function knows to fit a regression model (instead

7.5 Computing 167

of a classification model). Other kernel functions can be used, including the
polynomial (using kernel = "polydot") and linear (kernel = "vanilladot").

If the values are unknown, they can be estimated through resampling. In
train, the method values of "svmRadial", "svmLinear", or "svmPoly" fit different
kernels:

> svmRTuned <- train(solTrainXtrans, solTrainY,

+ method = "svmRadial",

+ preProc = c("center", "scale"),

+ tuneLength = 14,

+ trControl = trainControl(method = "cv"))

The tuneLength argument will use the default grid search of 14 cost values
between 2−2, 2−1, . . . , 211. Again, σ is estimated analytically by default.

> svmRTuned

951 samples
228 predictors

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 855, 858, 856, 855, 855, 856, ...

Resampling results across tuning parameters:

C RMSE Rsquared RMSE SD Rsquared SD
0.25 0.793 0.87 0.105 0.0396
0.5 0.708 0.889 0.0936 0.0345
1 0.664 0.898 0.0834 0.0306
2 0.642 0.903 0.0725 0.0277
4 0.629 0.906 0.067 0.0253
8 0.621 0.908 0.0634 0.0238
16 0.617 0.909 0.0602 0.0232
32 0.613 0.91 0.06 0.0234
64 0.611 0.911 0.0586 0.0231
128 0.609 0.911 0.0561 0.0223
256 0.609 0.911 0.056 0.0224
512 0.61 0.911 0.0563 0.0226
1020 0.613 0.91 0.0563 0.023
2050 0.618 0.909 0.0541 0.023

Tuning parameter 'sigma' was held constant at a value of 0.00387
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were C = 256 and sigma = 0.00387.

The subobject named finalModel contains the model created by the ksvm

function:

> svmRTuned$finalModel

Support Vector Machine object of class "ksvm"

SV type: eps-svr (regression)
parameter : epsilon = 0.1 cost C = 256

168 7 Nonlinear Regression Models

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.00387037424967707

Number of Support Vectors : 625

Objective Function Value : -1020.558
Training error : 0.009163

Here, we see that the model used 625 training set data points as support
vectors (66% of the training set).

kernlab has an implementation of the RVM model for regression in the
function rvm. The syntax is very similar to the example shown for ksvm.

K-Nearest Neighbors

The knnreg function in the caret package fits the KNN regression model; train
tunes the model over K:

> # Remove a few sparse and unbalanced fingerprints first

> knnDescr <- solTrainXtrans[, -nearZeroVar(solTrainXtrans)]

> set.seed(100)

> knnTune <- train(knnDescr,

+ solTrainY,

+ method = "knn",

+ # Center and scaling will occur for new predictions too

+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = 1:20),

+ trControl = trainControl(method = "cv"))

When predicting new samples using this object, the new samples are auto-
matically centered and scaled using the values determined by the training set.

Exercises

7.1. Simulate a single predictor and a nonlinear relationship, such as a sin
wave shown in Fig. 7.7, and investigate the relationship between the cost, ε,
and kernel parameters for a support vector machine model:

> set.seed(100)

> x <- runif(100, min = 2, max = 10)

> y <- sin(x) + rnorm(length(x)) * .25

> sinData <- data.frame(x = x, y = y)

> plot(x, y)

> ## Create a grid of x values to use for prediction

> dataGrid <- data.frame(x = seq(2, 10, length = 100))

7.5 Computing 169

(a) Fit different models using a radial basis function and different values of
the cost (the C parameter) and ε. Plot the fitted curve. For example:

> library(kernlab)

> rbfSVM <- ksvm(x = x, y = y, data = sinData,

+ kernel ="rbfdot", kpar = "automatic",

+ C = 1, epsilon = 0.1)

> modelPrediction <- predict(rbfSVM, newdata = dataGrid)

> ## This is a matrix with one column. We can plot the

> ## model predictions by adding points to the previous plot

> points(x = dataGrid$x, y = modelPrediction[,1],

+ type = "l", col = "blue")

> ## Try other parameters

(b) The σ parameter can be adjusted using the kpar argument, such as
kpar = list(sigma = 1). Try different values of σ to understand how this
parameter changes the model fit. How do the cost, ε, and σ values affect
the model?

7.2. Friedman (1991) introduced several benchmark data sets create by sim-
ulation. One of these simulations used the following nonlinear equation to
create data:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N(0, σ2)

where the x values are random variables uniformly distributed between [0, 1]
(there are also 5 other non-informative variables also created in the simula-
tion). The package mlbench contains a function called mlbench.friedman1 that
simulates these data:

> library(mlbench)

> set.seed(200)

> trainingData <- mlbench.friedman1(200, sd = 1)

> ## We convert the 'x' data from a matrix to a data frame

> ## One reason is that this will give the columns names.

> trainingData$x <- data.frame(trainingData$x)

> ## Look at the data using

> featurePlot(trainingData$x, trainingData$y)

> ## or other methods.

>

> ## This creates a list with a vector 'y' and a matrix

> ## of predictors 'x'. Also simulate a large test set to

> ## estimate the true error rate with good precision:

> testData <- mlbench.friedman1(5000, sd = 1)

> testData$x <- data.frame(testData$x)

>

Tune several models on these data. For example:

> library(caret)

> knnModel <- train(x = trainingData$x,

+ y = trainingData$y,

+ method = "knn",

170 7 Nonlinear Regression Models

+ preProc = c("center", "scale"),

+ tuneLength = 10)

> knnModel

200 samples
10 predictors

Pre-processing: centered, scaled
Resampling: Bootstrap (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...

Resampling results across tuning parameters:

k RMSE Rsquared RMSE SD Rsquared SD
5 3.51 0.496 0.238 0.0641
7 3.36 0.536 0.24 0.0617
9 3.3 0.559 0.251 0.0546
11 3.24 0.586 0.252 0.0501
13 3.2 0.61 0.234 0.0465
15 3.19 0.623 0.264 0.0496
17 3.19 0.63 0.286 0.0528
19 3.18 0.643 0.274 0.048
21 3.2 0.646 0.269 0.0464
23 3.2 0.652 0.267 0.0465

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 19.

> knnPred <- predict(knnModel, newdata = testData$x)

> ## The function 'postResample' can be used to get the test set

> ## perforamnce values

> postResample(pred = knnPred, obs = testData$y)

RMSE Rsquared
3.2286834 0.6871735

Which models appear to give the best performance? Does MARS select the
informative predictors (those named X1–X5)?

7.3. For the Tecator data described in the last chapter, build SVM, neural
network, MARS, and KNN models. Since neural networks are especially sen-
sitive to highly correlated predictors, does pre-processing using PCA help the
model?

7.4. Return to the permeability problem outlined in Exercise 6.2. Train sev-
eral nonlinear regression models and evaluate the resampling and test set
performance.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Do any of the nonlinear models outperform the optimal linear model you
previously developed in Exercise 6.2? If so, what might this tell you about
the underlying relationship between the predictors and the response?

7.5 Computing 171

(c) Would you recommend any of the models you have developed to replace
the permeability laboratory experiment?

7.5. Exercise 6.3 describes data for a chemical manufacturing process. Use
the same data imputation, data splitting, and pre-processing steps as before
and train several nonlinear regression models.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Which predictors are most important in the optimal nonlinear regres-
sion model? Do either the biological or process variables dominate the
list? How do the top ten important predictors compare to the top ten
predictors from the optimal linear model?

(c) Explore the relationships between the top predictors and the response for
the predictors that are unique to the optimal nonlinear regression model.
Do these plots reveal intuition about the biological or process predictors
and their relationship with yield?

	7 Nonlinear Regression Models
	7.1 Neural Networks
	7.2 Multivariate Adaptive Regression Splines
	7.3 Support Vector Machines
	7.4 K-Nearest Neighbors
	7.5 Computing
	Exercises

