Chapter 5

Measuring Performance in Regression
Models

For models predicting a numeric outcome, some measure of accuracy is
typically used to evaluate the effectiveness of the model. However, there are
different ways to measure accuracy, each with its own nuance. To understand
the strengths and weaknesses of a particular model, relying solely on a sin-
gle metric is problematic. Visualizations of the model fit, particularly residual
plots, are critical to understanding whether the model is fit for purpose. These
techniques are discussed in this chapter.

5.1 Quantitative Measures of Performance

When the outcome is a number, the most common method for characteriz-
ing a model’s predictive capabilities is to use the root mean squared error
(RMSE). This metric is a function of the model residuals, which are the ob-
served values minus the model predictions. The mean squared error (MSE)
is calculated by squaring the residuals, summing them and dividing by the
number of samples. The RMSE is then calculated by taking the square root
of the MSE so that it is in the same units as the original data. The value
is usually interpreted as either how far (on average) the residuals are from
zero or as the average distance between the observed values and the model
predictions.

Another common metric is the coeflicient of determination, commonly
written as R2. This value can be interpreted as the proportion of the in-
formation in the data that is explained by the model. Thus, an R? value of
0.75 implies that the model can explain three-quarters of the variation in the
outcome. There are multiple formulas for calculating this quantity (Kvalseth
1985), although the simplest version finds the correlation coefficient between
the observed and predicted values (usually denoted by R) and squares it.
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Fig. 5.1: A plot of the observed and predicted outcomes where the R? is
moderate (51 %), but predictions are not uniformly accurate. The diagonal
grey reference line indicates where the observed and predicted values would
be equal

While this is an easily interpretable statistic, the practitioner must re-
member that R? is a measure of correlation, not accuracy. Figure 5.1 shows
an example where the R? between the observed and predicted values is high
(51 %), but the model has a tendency to overpredict low values and underpre-
dict high ones. This phenomenon can be common to some of the tree-based
regression models discussed in Chap. 8. Depending on the context, this sys-
tematic bias in the predictions may be acceptable if the model otherwise
works well.

It is also important to realize that R? is dependent on the variation in the
outcome. Using the interpretation that this statistic measures the proportion
of variance explained by the model, one must remember that the denominator
of that proportion is calculated using the sample variance of the outcome. For
example, suppose a test set outcome has a variance of 4.2. If the RMSE of a
predictive model were 1, the R? would be roughly 76 %. If we had another test
set with exactly the same RMSE, but the test outcomes were less variable,
the results would look worse. For example, if the test set variance were 3, the
R? would be 67 %.

Practically speaking, this dependence on the outcome variance can also
have a drastic effect on how the model is viewed. For example, suppose we
were building a model to predict the sale price of houses using predictors such
as house characteristics (e.g., square footage, number of bedrooms, number
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of bathrooms), as well as lot size and location. If the range of the houses in
the test set was large, say from $60K to $2M, the variance of the sale price
would also be very large. One might view a model with a 90 % R? positively,
but the RMSE may be in the tens of thousands of dollars—poor predictive
accuracy for anyone selling a moderately priced property.

In some cases, the goal of the model is to simply rank new samples. As
previously discussed, pharmaceutical scientists may screen large numbers of
compounds for their activity in an effort to find “hits.” The scientists will
then follow up on the compounds predicted to be the most biologically ac-
tive. Here, the focus is on the ranking ability of the model rather than its
predictive accuracy. In this situation, determining the rank correlation be-
tween the observed and predicted values might be a more appropriate metric.
The rank correlation takes the ranks of the observed outcome values (as op-
posed to their actual numbers) and evaluates how close these are to ranks
of the model predictions. To calculate this value, the ranks of the observed
and predicted outcomes are obtained and the correlation coefficient between
these ranks is calculated. This metric is commonly known as Spearman’s rank
correlation.

5.2 The Variance-Bias Trade-off

The MSE can be decomposed into more specific pieces. Formally, the MSE
of a model is

ln
MSE = — i — 0i)°
S nE(y 9i)”,
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where y; is the outcome and ¢; is the model prediction of that sample’s
outcome. If we assume that the data points are statistically independent and
that the residuals have a theoretical mean of zero and a constant variance
of 02, then

E[MSE] = 02 + (Model Bias)? + Model Variance, (5.1)

where E is the expected value. The first part (02) is usually called “irreducible
noise” and cannot be eliminated by modeling. The second term is the squared
bias of the model. This reflects how close the functional form of the model
can get to the true relationship between the predictors and the outcome.
The last term is the model variance. Figure 5.2 shows extreme examples of
models that are either high bias or high variance. The data are a simulated
sin wave. The model fit shown in red splits the data in half and predicts each
half with a simple average. This model has low variance since it would not
substantially change if another set of data points were generated the same
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Fig. 5.2: Two model fits to a sin wave. The red line predicts the data using
simple averages of the first and second half of the data. The blue line is a
three-point moving average

way. However, it is ineffective at modeling the data since, due to its simplicity
and for this reason, it has high bias. Conversely, the blue line is a three-point
moving average. It is flexible enough to model the sin wave (i.e., low bias),
but small perturbations in the data will significantly change the model fit.
Because of this, it has high variance.

It is generally true that more complex models can have very high vari-
ance, which leads to over-fitting. On the other hand, simple models tend not
to over-fit, but under-fit if they are not flexible enough to model the true
relationship (thus high bias). Also, highly correlated predictors can lead to
collinearity issues and this can greatly increase the model variance. In sub-
sequent chapters, models will be discussed that can increase the bias in the
model to greatly reduce the model variance as a way to mitigate the problem
of collinearity. This is referred to as the variance-bias trade-off.

5.3 Computing

The following sections will reference functions from the caret package.

To compute model performance, the observed and predicted outcomes
should be stored in vectors. For regression, these vectors should be numeric.
Here, two example vectors are manually created to illustrate the techniques
(in practice, the vector of predictions would be produced by the model func-
tion):
> # Use the 'c' function to combine numbers into a vector
> observed <- ¢(0.22, 0.83, -0.12, 0.89, -0.23, -1.30, -0.15, -1.4,
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Fig. 5.3: Left: a plot of the observed and predicted values. Right: the residuals

versus the predicted values

+ 0.62, 0.99,
+
> predicted <- c(0.24, 0.78,
+ 0.49, 0.79,
+ -0.25, -0.64,
>
>

summary (residualValues)
Min. 1st Qu. Median

-0.18, 0.32, 0.34,

-0.66,
-1.19,
-1.26,

0.55, -1.30, -1.15, 0.20)

0.53, 0.70,
0.06, 0.75,
-0.07)

residualValues <- observed - predicted

Mean 3rd Qu. Max.

-0.9700 -0.4200 0.0800 -0.0310 0.2625 1.0100

-0.30,

-0.75,
-0.07,

0.04,

-0.41,
0.43,

-0.87,

-0.43,
-0.42,

An important step in evaluating the quality of the model is to visualize
the results. First, a plot of the observed values against the predicted values
helps one to understand how well the model fits. Also, a plot of the residuals
versus the predicted values can help uncover systematic patterns in the model
predictions, such as the trend shown in Fig. 5.1. The following two commands
were used to produce the images in Fig. 5.3:

plot(observed, predicted,
ylim = axisRange,
xlim = axisRange)
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# Add a 45 degree reference line
abline(0, 1, col = "darkgrey", 1ty = 2)

# Predicted values versus residuals
plot(predicted, residualValues, ylab = "residual")
abline(h = 0, col = "darkgrey", lty = 2)

# Observed values versus predicted values
# It is a good idea to plot the values on a common scale.
axisRange <- extendrange (c(observed, predicted))

The caret package contains functions for calculating the RMSE and the

R? value:
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> R2(predicted, observed)
[1] 0.5170123
> RMSE(predicted, observed)

[1] 0.5234883

There are different formulas for R?; Kvalseth (1985) provides a survey of
these. By default, the r2 function uses the square of the correlation coefficient.
Base R contains a function to compute the correlation, including Spearman’s
rank correlation.
> # Simple correlation
> cor(predicted, observed)

[1] 0.7190357
> # Rank correlation

> cor(predicted, observed, method = "spearman")

[1] 0.7554552
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