
Chapter 13

Nonlinear Classification Models

The previous chapter described models that were intrinsically linear—the
structure of the model would produce linear class boundaries unless nonlinear
functions of the predictors were manually specified. This chapter deals with
some intrinsically nonlinear models. As in the regression sections, there are
other nonlinear models that use trees or rules for modeling the data. These
are discussed in the next chapter.

With a few exceptions (such as FDA models, Sect. 13.3), the techniques
described in this chapter can be adversely affected when a large number
of non-informative predictors are used as inputs. As such, combining these
models with feature selection tools (described in Chap. 19) can significantly
increase performance. The analyses shown in this chapter are conducted with-
out supervised removal of non-informative predictors, so performance is likely
to be less than what could be achieved with a more comprehensive approach.

13.1 Nonlinear Discriminant Analysis

We saw in the previous chapter that the linear boundaries of linear discrim-
inant analysis came about by making some very specific assumptions for the
underlying distributions of the predictors. In this section, we will explore
ways that linear discriminant methods as described in the previous chapter
are modified in order to handle data that are best separated by nonlinear
structures. These methods include quadratic discriminant analysis (QDA),
regularized discriminant analysis (RDA), and mixture discriminant analysis
(MDA).
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330 13 Nonlinear Classification Models

Quadratic and Regularized Discriminant Analysis

Recall that linear discriminant analysis could be formulated such that the
trained model minimized the total probability of misclassification. The con-
sequence of the assumption that the predictors in each class shared a common
covariance structure was that the class boundaries were linear functions of
the predictors.

In quadratic discriminant models, this assumption is relaxed so that a
class-specific covariance structure can be accommodated. The primary reper-
cussion of this change is that the decision boundaries now become quadrati-
cally curvilinear in the predictor space. The increased discriminant function
complexity may improve model performance for many problems. However,
another repercussion of this generalization is that the data requirements be-
come more stringent. Since class-specific covariance matrices are utilized, the
inverse of the matrices must exist. This means that the number of predictors
must be less than the number of cases within each class. Also, the predictors
within each class must not have pathological levels of collinearity. Addition-
ally, if the majority of the predictors in the data are indicators for discrete
categories, QDA will only to able to model these as linear functions, thus
limiting the effectiveness of the model.

In pure mathematical optimization terms, LDA and QDA each minimize
the total probability of misclassification assuming that the data can truly
be separated by hyperplanes or quadratic surfaces. Reality may be, however,
that the data are best separated by structures somewhere between linear and
quadratic class boundaries. RDA, proposed by Friedman (1989), is one way
to bridge the separating surfaces between LDA and QDA. In this approach,
Friedman advocated the following covariance matrix:

˜Σ� (λ) = λΣ� + (1− λ)Σ, (13.1)

where Σ� is the covariance matrix of the �th class and Σ is the pooled covari-
ance matrix across all classes. It is easy to see that the tuning parameter, λ,
enables the method to flex the covariance matrix between LDA (when λ = 0)
and QDA (when λ = 1). If a model is tuned over λ, a data-driven approach
can be used to choose between linear or quadratic boundaries as well as
boundaries that fall between the two.

RDA makes another generalization of the data: the pooled covariance
matrix can be allowed to morph from its observed value to one where the
predictors are assumed to be independent (as represented by an identity
matrix):

Σ (γ) = γΣ+ (1− γ)σ2I, (13.2)

where σ2 is the common variance of all predictors and I is the identity matrix
(i.e., the diagonal entries of the matrix are 1 and all other entries are 0),
which forces the model to assume that all of the predictors are independent.
Recall the familiar two-class example with two predictors, last seen in Chap. 4
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(p. 69). There is a high correlation between these predictors indicating that γ
values near 1 are most likely to be appropriate. However, in higher dimensions,
it becomes increasingly more difficult to visually recognize such patterns, so
tuning an RDA model over λ and γ enables the training set data to decide
the most appropriate assumptions for the model. Note, however, that unless
γ is one or λ is zero, the more stringent data standards of QDA must be
applied.

Mixture Discriminant Analysis

MDA was developed by Hastie and Tibshirani (1996) as an extension of
LDA. LDA assumes a distribution of the predictor data such that the class-
specific means are different (but the covariance structure is independent of the
classes). MDA generalizes LDA in a different manner; it allows each class to be
represented bymultiplemultivariate normal distributions. These distributions
can have different means but, like LDA, the covariance structures are assumed
to be the same. Figure 13.1 presents this idea with a single predictor. Here,
each class is represented by three normal distributions with different means
and common variances. These are effectively sub-classes of the data. The
modeler would specify how many different distributions should be used and
the MDA model would determine their optimal locations in the predictor
space.

How are the distributions aggregated so that a class prediction can be cal-
culated? In the context of Bayes’ Rule (Eq. 12.4), MDA modifies Pr[X|Y =
C�]. The class-specific distributions are combined into a single multivariate
normal distribution by creating a per-class mixture. Suppose D�k(x) is the
discriminant function for the kth subclass in the �th class, the overall dis-
criminant function for the �th class would be proportional to

D�(x) ∝
L�
∑

k=1

φ�kD�k(x),

where L� is the number of distributions being used for the �th class and the
φ�k are the mixing proportions that are estimated during training. This over-
all discriminant function can then produce class probabilities and predictions.

For this model, the number of distributions per class is the tuning
parameter for the model (they need not be equal per class). Hastie and
Tibshirani (1996) describe algorithms for determining starting values for
the class-specific means required for each distribution, along with numerical
optimization routines to solve the nontrivial equations. Also, similar to LDA,
Clemmensen et al. (2011) describe using ridge- and lasso-like penalties to
MDA, which would integrate feature selection into the MDA model.
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Fig. 13.1: For a single predictor, three distinct subclasses are determined
within each class using mixture discriminant analysis
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Fig. 13.2: The tuning parameter profile for the MDA model for the grants
data. The optimal number of subclasses is 1, which is identical to performing
LDA

For the grant data, MDA was tuned over the number of subclasses per
group with possible values ranging from 1 to 8 (Fig. 13.2). The areas under
the ROC curve was optimized using one subclass per group, which is the same
as performing LDA. MDA may be adverse to more complex discriminant
boundaries in these data due to the large number of binary predictors.
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13.2 Neural Networks

As we have seen with other classification methods, such as partial least
squares discriminant analysis, the C classes can be encoded into C binary
columns of dummy variables and then used as the outcomes for the model.
Although the previous discussion on neural networks for regression used a
single response, the model can easily handle multiple outputs for both regres-
sion and classification. For neural network classification, this is the approach
discussed here.

Figure 13.3 shows a diagram of the model architecture for classification.
Instead of a single output (as in Fig. 7.1 for regression), the bottom layer has
multiple nodes for each class. Note that, unlike neural networks for regression,
an additional nonlinear transformation is used on the combination of hidden
units. Each class is predicted by a linear combination of the hidden units that
have been transformed to be between zero and one (usually by a sigmoidal
function). However, even though the predictions are between zero and one
(due the extra sigmoidal function), they aren’t “probability-like” since they
do not add up to one. The softmax transformation described in Sect. 11.1 is
used here to ensure that the outputs of the neural network comply with this
extra constraint:

f∗
i�(x) =

efi�(x)
∑

l e
fil(x)

,

where fi�(x) is the model prediction of the �th class and the ith sample.
What should the neural network optimize to find appropriate parameter

estimates? For regression, the sum of the squared errors was the focus and,
for this case, it would be altered to handle multiple outputs by accumulating
the errors across samples and the classes:

C
∑

�=1

n
∑

i=1

(yi� − f∗
i�(x))

2
,

where yi� is the 0/1 indicator for class �. For classification, this can be ef-
fective method for determining parameter values. The class with the largest
predicted value would be used to classify the sample.

Alternatively, parameter estimates can be found that can maximize the
likelihood of the Bernoulli distribution, which corresponds to a binomial like-
lihood function (Eq. 12.1) with a sample size of n = 1:

C
∑

�=1

n
∑

i=1

yi� ln f
∗
i�(x). (13.3)

This function also goes by then names entropy or cross-entropy, which is used
in some of the tree-based models discussed in the next chapter (Sect. 14). The
likelihood has more theoretical validity than the squared error approach,
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Fig. 13.3: A diagram of a neural network for classification with a single hidden
layer. The hidden units are linear combinations of the predictors that have
been transformed by a sigmoidal function. The output is also modeled by a
sigmoidal function

although studies have shown that differences in performance tend to be neg-
ligible (Kline and Berardi 2005). However, Bishop (1995) suggests that the
entropy function should more accurately estimate small probabilities than
those generated by the squared-error function.
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Fig. 13.4: Classification boundaries for neural networks with varying levels
of smoothing and regularization. As weight decay and number of models
increase, the boundaries become smoother

Like their regression counterparts, neural networks for classification have
a significant potential for over-fitting. When optimizing the sums of squares
error or entropy, weight decay attenuates the size of the parameter estimates.
This can lead to much smoother classification boundaries. Also, as previously
discussed, model averaging helps reduce over-fitting. In this case, the class
probability estimates (f∗

i�(x)) would be averaged across networks and these
average values would be used to classify samples.

Figure 13.4 shows examples of models fit with different amounts of weight
decay and model averaging. Each model was initiated with the same random
seed, used three hidden units, and was optimized for the sums of squared



336 13 Nonlinear Classification Models

errors. The first row of models without weight decay shows significant over-
fitting, and, in these cases, model averaging has a marginal impact. The small
amount of decay shown in the second row shows an improvement (as does the
model averaging) but is still over-adapting to the training data when a single
network is used. The highest amount of weight decay showed the best results
with virtually no impact of model averaging. For these data, a single model
with weight decay is probably the best choice since it is computationally least
expensive.

Many other aspects of neural network classification models mirror their
regression counterparts. Increasing the number of predictors or hidden units
will still give rise to a large number of parameters in the model and the
same numerical routines, such as back-propagation, can be used to estimate
these parameters. Collinearity and non-informative predictors will have a
comparable impact on model performance.

Several types of neural networks were fit to the grant data. First, single
network models (i.e., no model averaging) were fit using entropy to estimate
the model coefficients. The models were tuned over the number of units in
the hidden layer (ranging from 1 to 10), as well as the amount of weight decay
(λ = 0, 0.1, 1, 2). The best model used eight hidden units with λ = 2 and
had an area under the ROC curve of 0.884. The tuning parameter profiles
show a significant amount of variation, with no clear trend across the tuning
parameters.

To counter this variation, the same tuning process was repeated, but 10
networks were fit to the data and their results averaged. Here, the best model
had six hidden units with λ = 2 and had an area under the ROC curve of
0.884.

To increase the effectiveness of the model, various transformations of the
data were evaluated. One in particular, the spatial sign transformation, had
a significant positive impact on the performance of the neural networks for
these data. When combined with a single network model, the area under the
curve was 0.903. When model averaging was used, the area under the ROC
curve was 0.911.

Figure 13.5 visualizes the tuning parameter profiles across the various
models. When no data transformations are used, model averaging increases
the performance of the models across all of the tuning parameters. It also
has the effect of smoothing out differences between the models; the profile
curves are much closer together. When the spatial sign transformation is used
with the single network model, it shows an improvement over the model with-
out the transformation. However, performance appears to be optimized when
using both model averaging and the spatial sign.
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Fig. 13.5: Top: The models for grant success were tuned under four different
conditions: with and without a transformation on the predictors and with and
without model averaging. Bottom: The ROC curve for the 2008 holdout set
when a model averaged network is used with the spatial sign transformation
(area under the curve: 0.911)
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1 Create a new response matrix of binary dummy variable columns for
each of the C classes

2 Create a multivariate regression model using any method that
generates slopes and intercepts for predictors or functions of the
predictors (e.g. linear regression, MARS, etc)

3 Post-process the model parameters using the optimal scoring
technique

4 Use the adjusted regression coefficients as discriminant values

Algorithm 13.1: The flexible discriminant analysis algorithm for
generalizing LDA model (Hastie et al. 1994)

13.3 Flexible Discriminant Analysis

In the last chapter, the motivation for classical linear discriminant analysis
was based on minimizing the total probability of misclassification. It turns
out that the same model can be derived in a completely different manner.
Hastie et al. (1994) describe a process where, for C classes, a set of C linear
regression models can be fit to binary class indicators and show that the
regression coefficients from these models can be post-processed to derive the
discriminant coefficients (see Algorithm 13.1). This allows the idea of linear
discriminant analysis to be extended in a number of ways. First, many of the
models in Chaps. 6 and 7, such as the lasso, ridge regression, or MARS, can be
extended to create discriminant variables. For example, MARS can be used
to create a set of hinge functions that result in discriminant functions that are
nonlinear combinations of the original predictors. As another example, the
lasso can create discriminant functions with feature selection. This conceptual
framework is referred to as flexible discriminant analysis (FDA).

We can illustrate the nonlinear nature of the flexible discriminant algo-
rithm using MARS with the example data in Fig. 4.1 (p. 63). Recall that
MARS has two tuning parameters: the number of retained terms and the de-
gree of predictors involved in the hinge functions. If we use an additive model
(i.e., a first-degree model), constrain the maximum number of retained terms
to 2 and have a binary response of class membership, then discriminant func-
tion is

D(A,B) = 0.911− 19.1× h(0.2295−B)

In this equation, h(·) is the hinge function described in Eq. 7.1 on p. 146. If
the discriminant function is greater than zero, the sample would be predicted
to be the first class. In this model, the prediction equation only used the
one variable, and the left-hand panel in Fig. 13.6 shows the resulting class
boundaries. The class boundary is a horizontal line since predictor B is the
only predictor in the split.
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Fig. 13.6: Classification boundaries for two FDA models of different complex-
ities

The effectiveness of FDA is not apparent when MARS is so severely re-
stricted. If the maximum number of retained terms is relaxed to 4, then the
discriminant equation is estimated to be

D(A,B) =− 0.242

+ 11.6× h(A− 0.1322)

− 13.9× h(A− 0.2621)

− 12.1× h(0.2295−B).

This FDA model uses both predictors and its class boundary is shown in
the right-hand panel of Fig. 13.6. Recall that the MARS hinge function h
sets one side of the breakpoint to zero. Because of this, the hinge functions
isolate certain regions of the data. For example, if A < 0.1322 and B >
0.2295, none of the hinge functions affect the prediction and the negative
intercept in the model indicates that all points in this region correspond to
the second class. However, if A > 0.2621 and B < 0.2295, the prediction
is a function of all three hinge functions. Essentially, the MARS features
isolate multidimensional polytopal regions of the predictor space and predict
a common class within these regions.

An FDA model was tuned and trained for the grant application model.
First-degree MARS hinge functions were evaluated where the number of re-
tained terms ranged from 2 to 25. Performance increases as the number of
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Fig. 13.7: Top: The parameter tuning profile for the FDA model. Bottom:
The FDA ROC curve (area under the curve: 0.924) is shown in relation to
the curve for the previous neural network model (in grey)

terms increases and plateaus around 15 terms (see Fig. 13.7). The numeri-
cally optimal value was 19 although there is clearly some flexibility in this
parameter. For this model, the area under the ROC curve for the 2008 data
was estimated to be 0.924, with a sensitivity of 82.5% and a specificity of
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86.4%. Although the FDA model contained 19 terms, 14 unique predictors
were used (of a possible 1,070). Also, nine of the model terms were simple
linear functions of binary categorical predictors. The discriminant equation
for the model is

D(x) = 0.85

− 0.53× h(1− number of chief investigators)

+ 0.11× h(number of successful grants by chief investigators− 1)

− 1.1× h(1− number of successful grants by chief investigators)

− 0.23× h(number of unsuccessful grants by chief investigators− 1)

+ 1.4× h(1− number of unsuccessful grants by chief investigators)

+ 0.18× h(number of unsuccessful grants by chief investigators− 4)

− 0.035× h(8− number of A journal papers by all investigators)

− 0.79× sponsor code 24D

− 1× sponsor code 59C

− 0.98× sponsor code 62B

− 1.4× sponsor code 6B

+ 1.2× unknown sponsor

− 0.34× contract value band B

− 1.5× unknown contract value band

− 0.34× grant category code 30B

+ 0.3× submission day of Saturday

+ 0.022× h(54− numeric day of the year)

+ 0.076× h(numeric day of the year− 338).

From this equation, the exact effect of the predictors on the model can be
elucidated. For example, as the number of chief investigators increases from
zero to one, the probability of a successful grant increases. Having more than
one chief investigator does not affect the model since the opposite hinge func-
tion was eliminated. Also, the probability of success increases with the num-
ber of successful grants by chief investigators and decreases with the number
of unsuccessful grants by chief investigators; this is a similar result to what
was found with previous models. For the day of the year, the probability of
a successful grant decreases as the year proceeds and has no affect on the
model until late in the year when the probability of success increases.

The discriminant function shown above can be additionally transformed to
produce class probability estimates. Visually, the probability trends for the
continuous predictors are shown in Fig. 13.8. Recall that since an additive
model was used, the probability profile for each variable can be considered
independently of the others. Here, the terms for the number of chief inves-
tigators and the number of publications in A-level journals only affect the
prediction up to a point. This is the result of the pruning algorithm elimi-
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Fig. 13.8: Probability profiles for each of the continuous predictors used in
the additive FDA model

nating one of each predictor’s reflective pairs. The profile for the day of the
year has two terms that remain from two different reflected pairs. As a re-
sult, this predictor only affects the model in the early and late periods of the
year. In the last chapter, there was good evidence that this predictor had a
nonlinear relationship with the outcome that was approximated by adding
a quadratic function of the predictor. Here, FDA also tries to approximate
the same relationship. One predictor, the number of unsuccessful grants by
chief investigators, has multiple terms in the model, which is reflected in the
smoother probability profile. Of the binary terms, the predictors for contract
value band B, unknown contract value band, grant category code 30B, spon-
sor code 24D, sponsor code 59C, sponsor code 62B, and sponsor code 6B had
a positive effect on the probability of success while the terms for submission
day of Saturday and unknown sponsor were associated with a decrease in the
success rate.

Bagging the model coerces FDA to produce smoother relationships
between the predictors and the outcome. MARS models are moderately un-
stable predictors since they use exhaustive searches of the data and the splits
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are based on specific data points in the training set.1 Bagging the FDA model
will have the effect of adding more splits for the important predictors, leading
to a better approximation. However, our experience is that bagging MARS
or FDA models has a marginal impact on model performance and increased
number of terms diminishes the interpretation of the discriminant equation
(similar to the trend shown in Fig. 8.16).

Since many of the predictors in the FDA model are on different scales, it
is difficult to use the discriminant function to uncover which variables have
the most impact on the outcome. The same method of measuring variable
importance described in Sect. 7.2 can be employed here. The five most im-
portant predictors are, in order: unknown contract value band, the number
of unsuccessful grants by chief investigators, the number of successful grants
by chief investigators, unknown sponsor, and numeric day of the year.

As an alternative to using MARS within the FDA framework, Milborrow
(2012) describes a two-phase approach with logistic regression when there
are two classes. Here, an initial MARS model is created to predict the binary
dummy response variable (i.e., the first two steps in Algorithm 13.1). After
this, a logistic regression model is created with the MARS features produced
by the original dummy variable model. Our preliminary experiences with this
approach are that it yields results very similar to the FDA model.

13.4 Support Vector Machines

Support vector machines are a class of statistical models first developed in
the mid-1960s by Vladimir Vapnik. In later years, the model has evolved
considerably into one of the most flexible and effective machine learning
tools available, and Vapnik (2010) provides a comprehensive treatment. The
regression version of these models was previously discussed in Sect. 7.3, which
was an extension of the model from its original development in the classifica-
tion setting. Here we touch on similar concepts from SVM for regression and
layout the case for classification.

Consider the enviable problem shown in the left panel of Fig. 13.9 where
two variables are used to predict two classes of samples that are completely
separable. As shown on the left, there are a multitude (in fact an infinite)
number of linear boundaries that perfectly classify these data. Given this,
how would we choose an appropriate class boundary? Many performance
measures, such as accuracy, are insufficient since all the curves would be
deemed equivalent. What would a more appropriate metric be for judging
the efficacy of a model?

Vapnik defined an alternate metric called the margin. Loosely speaking,
the margin is the distance between the classification boundary and the closest

1 However, MARS and FDA models tend to be more stable than tree-based models
since they use linear regression to estimate the model parameters.
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Fig. 13.9: Left: A data set with completely separable classes. An infinite
number of linear class boundaries would produce zero errors. Right: The class
boundary associated with the linear maximum margin classifier. The solid
black points indicate the support vectors

training set point. For example, the right-hand panel of Fig. 13.9 shows one
possible classification boundary as a solid line. The dashed lines on both sides
of the boundary are at the maximum distance from the line to the closest
training set data (equidistant from the boundary line). In this example the
three data points are equally closest to the classification boundary and are
highlighted with solid black symbols. The margin defined by these data points
can be quantified and used to evaluate possible models. In SVM terminology,
the slope and intercept of the boundary that maximize the buffer between
the boundary and the data is known as the maximum margin classifier.

Let’s explore a few of the mathematical constructs of SVM in the context
of a simple example in order to better understand the inner workings of the
method. Suppose we have a two-class problem and we code the class #1
samples with a value of 1 and the class #2 samples with −1. Also, let the
vectors xi contain the predictor data for a training set sample. The maximum
margin classifier creates a decision valueD(x) that classifies samples such that
if D(x) > 0 we would predict a sample to be class #1, otherwise class #2.
For an unknown sample u, the decision equation can be written in a similar
form as a linear discriminant function that is parameterized in terms of an
intercept and slopes as

D(u) = β0 + β′u

= β0 +
P
∑

j=1

βjuj .
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Notice that this equation works from the viewpoint of the predictors. This
equation can be transformed so that the maximum margin classifier can be
written in terms of each data point in the sample. This changes the equa-
tion to

D(u) = β0 +

P
∑

j=1

βjuj

= β0 +
n
∑

i=1

yiαix
′
iu (13.4)

with αi ≥ 0 (similar to Eq. 7.2). It turns out that, in the completely separable
case, the α parameters are exactly zero for all samples that are not on the
margin. Conversely, the set of nonzero α values are the points that fall on
the boundary of the margin (i.e., the solid black points in Fig. 13.9). Because
of this, the predictor equation is a function of only a subset of the training
set points and these are referred to as the support vectors. Interestingly, the
prediction function is only a function of the training set samples that are
closest to the boundary and are predicted with the least amount of certainty.2

Since the prediction equation is supported solely by these data points, the
maximum margin classifier is the usually called the support vector machine.

On first examination, Eq. 13.4 may appear somewhat arcane. However, it
can shed some light on how support vector machines classify new samples.
Consider Fig. 13.10 where a new sample, shown as a solid grey circle, is pre-
dicted by the model. The distances between each of the support vectors and
the new sample are as grey dotted lines.

For these data, there are three support vectors, and therefore contain
the only information necessary for classifying the new sample. The meat of
Eq. 13.4 is the summation of the product of: the sign of the class, the model
parameter, and the dot product between the new sample and the support
vector predictor values. The following table shows the components of this
sum, broken down for each of the three support vectors:

True Dot
class product yi αi Product

SV 1 Class 2 −2.4 −1 1.00 2.40
SV 2 Class 1 5.1 1 0.34 1.72
SV 3 Class 1 1.2 1 0.66 0.79

The dot product, x′
iu, can be written as a product of the distance of xi from

the origin, the distance of u from the origin, and the cosine of the angle
between xi and u (Dillon and Goldstein 1984).

2 Recall a similar situation with support vector regression models where the prediction
function was determined by the samples with the largest residuals.
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Fig. 13.10: Prediction of a new sample using a support vector machine. The
final value of the decision equation is D(u) = 0.583. The grey lines indicate
the distance of the new sample to the support vectors

Based on the parameter estimates αi, the first support vector has the
largest single effect on the prediction equation (all other things being equal)
and it has a negative slope. For our new sample, the dot product is negative,
so the total contribution of this point is positive and pushes the prediction
towards the first class (i.e., a positive value of the decision function D(u)).
The remaining two support vectors have positive dot products and an over-
all product that increases the decision function value for this sample. For
this model, the intercept is −4.372; D(u) for the new sample is therefore
0.583. Since this value is greater than zero, the new sample has the highest
association with the first class.

What happens when the classes are not completely separable? Cortes and
Vapnik (1995) develop extensions to the early maximum margin classifier to
accommodate this situation. Their formulation puts a cost on the sum of the
training set points that are on the boundary or on the wrong side of the
boundary. When determining the estimates of the α values, the margin is
penalized when data points are on the wrong side of the class boundary or
inside the margin. The cost value would be a tuning parameter for the model
and is the primary mechanism to control the complexity of the boundary.
For example, as the cost of errors increases, the classification boundary will
shift and contort itself so that it correctly classifies as many of the training
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set points as possible. Figure 4.2 in Chap. 4 demonstrated this; the panel on
the right-hand side of this figure used an inappropriately high cost value,
resulting in severe over-fitting.

Echoing the comments in Sect. 7.3, most of the regularization models dis-
cussed in this book add penalties to the coefficients, to prevent over-fitting.
Large penalties, similar to costs, impose limits on the model complexity. For
support vector machines, cost values are used to penalize number of errors;
as a consequence, larger cost values induce higher model complexity rather
than restrain it.

Thus far, we have considered linear classification boundaries for these mod-
els. In Eq. 13.4, note the dot product x′

iu. Since the predictors enter into this
equation in a linear manner, the decision boundary is correspondingly linear.
Boser et al. (1992) extended the linear nature of the model to nonlinear clas-
sification boundaries by substituting the kernel function instead of the simple
linear cross product:

D(u) = β0 +

n
∑

i=1

yiαix
′
iu

= β0 +
n
∑

i=1

yiαiK(xi,u),

where K(·, ·) is a kernel function of the two vectors. For the linear case, the
kernel function is the same inner product x′

iu. However, just as in regression
SVMs, other nonlinear transformations can be applied, including:

polynomial = (scale (x′u) + 1)
degree

radial basis function = exp(−σ‖x− u‖2)
hyperbolic tangent = tanh (scale (x′u) + 1) .

Note that, due to the dot product, the predictor data should be centered and
scaled prior to fitting so that attributes whose values are large in magnitude
do not dominate the calculations.

The kernel trick allows the SVM model produce extremely flexible decision
boundaries. The choice of the kernel function parameters and the cost value
control the complexity and should be tuned appropriately so that the model
does not over-fit the training data. Figure 13.11 shows examples of the classi-
fication boundaries produced by several models using different combinations
of the cost and tuning parameter values. When the cost value is low, the
models clearly underfit the data. Conversely, when the cost is relatively high
(say a value of 16), the model can over-fit the data, especially if the kernel
parameter has a large value. Using resampling to find appropriate estimates
of these parameters tends to find a reasonable balance between under- and
over-fitting. Section 4.6 used the radial basis function support vector machine
as an example for model tuning.
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Fig. 13.11: Classification boundaries for nine radial basis function support
vector machine models varied over the cost parameter and the kernel param-
eter (σ)

Support vector machines fall into a more general category of kernel
methods and this has been an extremely active area of research for some
time. Here, we have discussed extensions to the original model to allow
for misclassified samples and nonlinear class boundaries. Still more exten-
sions have been developed for support vector machines, such as handling
more than two classes (Hsu and Lin 2002; Duan and Keerthi 2005). Also,
the original motivation of the model is to create a hard decision bound-
ary for the purpose of classifying samples, as opposed to estimating class
probabilities. However, Platt (2000) describes methods of post-processing
the output of the SVM model to estimate class probabilities. Alternate
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versions of the support vector machine model also exist, such as least squares
support vector machines (Suykens and Vandewalle 1999), relevance vector
machines (Tipping 2001), and import vector machines (Zhu and Hastie 2005).

Specialized kernels have also been developed. For example, the QSAR ap-
plication discussed in Sect. 6.1 and used throughout the regression chapters
used chemical descriptors as predictors. Figure 6.1 shows the chemical formula
of aspirin. Rather than deriving descriptors from a molecular formula, the for-
mula can be converted to a graph (or network) representation. A specialized
class of kernel functions, called graph kernels, can directly relate the content
of the chemical formula to the model without deriving descriptor variables
(Mahé et al. 2005; Mahé and Vert 2009). Similarly, there are different kernels
that can be employed in text mining problems. The “bag-of-words” approach
summarizes a body of text by calculating frequencies of specific words. These
counts are treated as predictor variables in classification models. There are
a few issues with this approach. First, the additional computational burden
of deriving the predictor variables can be taxing. Secondly, this term-based
approach does not consider the ordering of the text. For example, the text
“Miranda ate the bear” and “the bear ate Miranda” would score the same
in the bag-of-words model but have very different meanings. String kernels
(Lodhi et al. 2002; Cancedda et al. 2003) can use the entire text of a doc-
ument directly and has more potential to find important relationships than
the bag-of-words approach.

For the grant data, there are several approaches to using SVMs. We eval-
uated the radial basis function kernel as well as the polynomial kernel (con-
figured to be either linear or quadratic). Also, both the full and reduced
predictor sets were evaluated. As will be shown in Chap. 19, support vector
machines can be negatively affected by including non-informative predictors
in the model.

For the radial basis function kernel, the analytical approach for deter-
mining the radial basis function parameter was assessed. For the full set of
predictors, the estimate was σ = 0.000559 and for the reduced set, the value
was calculated to be σ = 0.00226. However, these models did not show good
performance, so this parameter was varied over values that were smaller than
analytical estimates. Figure 13.12 shows the results of these models. The
smaller predictor set yields better results than the more comprehensive set,
with an optimal area under the ROC curve of 0.895, a sensitivity of 84%, and
a specificity of 80.4%. Also, for the reduced set, smaller values of σ produced
better results, although values below 0.001167 did not improve the model fit.

For the polynomial models, a fair amount of trial and error was used
to determine appropriate values for this kernel’s scaling factor. Inappropriate
values would result in numerical difficulties for the models and feasible values
of this parameter depended on the polynomial degree and the cost parameter.
Figure 13.13 shows the results for the holdout set. Models built with the
reduced set of predictors did uniformly better than those utilizing the full
set. Also, the optimal performance for linear and quadratic models was about
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Fig. 13.12: Tuning parameter profile of the radial basis function SVM model
for the grant data

the same. This suggests that the models are mostly picking up on linear
relationships in the data. Given that many of the predictors are binary, this
makes sense. Of these models, the best area under the ROC curve was 0.898.

Overall, the support vector machine models did not have competitive per-
formance in comparison to models created thus far. Many of the linear models
shown in Chap. 12 had similar (or better) performance; the FDA model in this
chapter, so far, is more effective. However, in our experience, SVM models
tend to be very competitive for most problems.

13.5 K-Nearest Neighbors

We first met the K-nearest neighbors (KNNs) model for classification in
Sect. 4.2 when discussing model tuning and the problem of over-fitting. We
have also learned extensively about KNN in the context of regression in
Sect. 7.4. While many of the ideas from KNN for regression directly apply
here, we will highlight the unique aspects of how this method applies to
classification.

The classification methods discussed thus far search for linear or nonlinear
boundaries that optimally separate the data. These boundaries are then used
to predict the classification of new samples. KNN takes a different approach



13.5 K-Nearest Neighbors 351

Cost

R
O

C
 (

20
08

 H
ol

d−
O

ut
 D

at
a)

0.84

0.85

0.86

0.87

0.88

0.89

0.90

2^−6 2^−5 2^−4 2^−3 2^−2

F
ul

l S
et

Linear
R

ed
uc

ed
 S

et

2^−6 2^−5 2^−4 2^−3 2^−2

0.84

0.85

0.86

0.87

0.88

0.89

0.90
Quadratic

scale =  0.005 scale =  0.010

1 − Specificity

S
en

si
tiv

ity
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 13.13: Top: Performance profiles for the quadratic SVM model. Bottom:
The ROC curve for the optimal model (area under the curve: 0.895)

by using a sample’s geographic neighborhood to predict the sample’s classi-
fication. Similar to the regression context, KNN for classification predicts a
new sample using the K-closest samples from the training set. “Closeness” is
determined by a distance metric, like Euclidean and Minkowski (Sect. 7.4),
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and choice of metric depends on predictor characteristics. For any distance
metric, it is important to recall that the original measurement scales of the
predictors affect the resulting distance calculations. This implies that if pre-
dictors are on widely different scales, the distance value between samples will
be biased towards predictors with larger scales. To allow each predictor to
contribute equally to the distance calculation, we recommend centering and
scaling all predictors prior to performing KNN.

As in the regression context, to determine the classification of a new sam-
ple, theK-closest training set samples are determined via the distance metric.
Class probability estimates for the new sample are calculated as the propor-
tion of training set neighbors in each class. The new sample’s predicted class
is the class with the highest probability estimate; if two or more classes are
tied for the highest estimate, then the tie is broken at random or by looking
ahead to the K + 1 closest neighbor.

Any method with tuning parameters can be prone to over-fitting, and
KNN is especially susceptible to this problem as was shown in Fig. 4.2. Too
few neighbors leads to highly localized fitting (i.e., over-fitting), while too
many neighbors leads to boundaries that may not locate necessary separating
structure in the data. Therefore, we must take the usual cross-validation or
resampling approach for determining the optimal value of K.

For the grant data the neighborhood range evaluated for tuning was
between 1 and 451. Figure 13.14 illustrates the tuning profile for area under
the ROC curve for the 2008 holdout data. There is a distinct jump in pre-
dictive performance from 1 to 5 neighbors and a continued steady increase
in performance through the range of tuning. The initial jump in predictive
performance indicates that local geographic information is highly informative
for categorizing samples. The steady incremental increase in predictive per-
formance furthermore implies that neighborhoods of informative information
for categorizing samples are quite large. This pattern is somewhat unusual for
KNN in that as the number of neighbors increases we begin to underfit and a
corresponding decrease in predictive performance occurs like was illustrated
by Fig. 7.10. In most data sets, we are unlikely to use this many neighbors in
the prediction. This example helps to identify a numerical instability problem
with KNN: as the number of neighbor increases, the probability of ties also
increases. For this example, a neighborhood size greater than 451 leads to too
many ties. The optimal area under the ROC curve was 0.81, which occurred
at K = 451. The bottom plot in Fig. 13.14 compares the KNN ROC profile
with those of SVM and FDA. For these data, the predictive ability of KNN
is inferior to the other tuned nonlinear models. While geographic information
is predictive, it is not as useful as models that seek to find global optimal
separating boundaries.
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Fig. 13.14: Top: The parameter tuning profile for the KNN model. Bottom:
The ROC curve for the test set data. The area under the curve was 0.81

13.6 Näıve Bayes

Bayes’ Rule was previously discussed in the context of linear discriminant
analysis in a previous chapter. This section expands on that discussion and
focuses on a specific classification model that, like the previous LDA, QDA,
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and RDA models, is defined in terms of how the multivariate probability
densities are created.

Bayes’ Rule answers the question “based on the predictors that we have
observed, what is the probability that the outcome is class C�?”More math-
ematically, let Y be the class variable and X represent the collection of pre-
dictor variables. We are trying to estimate Pr[Y = C�|X], which is “given
X, what is the probability that the outcome is the �th class?” Bayes’ Rule
provides the machinery to answer this:

Pr[Y = C�|X] =
Pr[Y ]Pr[X|Y = C�]

Pr[X]
(13.5)

Pr[Y = C�|X] is typically referred to as the posterior probability of the class.
The components are:

• Pr[Y ] is the prior probability of the outcome. Essentially, based on what
we know about the problem, what would we expect the probability of
the class to be? For example, when predicting customer churn, companies
typically have a good idea of the overall turnover rate of customers. For
problems related to diseases, this prior would be the disease prevalence
rate in the population (see Sect. 11.2 on p. 254 for a discussion).

• Pr[X] is the probability of the predictor values. For example, if a new
sample is being predicted, how likely is this pattern in comparison to the
training data? Formally, this probability is calculated using a multivariate
probability distribution. In practice, significant assumptions are usually
made to reduce the complexity of this calculation.

• Pr[X|Y = C�] is the conditional probability. For the data associated with
class C�, what is the probability of observing the predictor values? Similar
to Pr[X], this can be a complex calculation unless strict assumptions are
made.

The näıve Bayes model simplifies the probabilities of the predictor values by
assuming that all of the predictors are independent of the others. This is an
extremely strong assumption. For most of the case studies and illustrative
examples in this text, it would be difficult to claim that this assumption
were realistic. However, the assumption of independence yields a significant
reduction in the complexity of the calculations.

For example, to calculate the conditional probability Pr[X|Y = C�], we
would use a product of the probability densities for each individual predictor:

Pr[X|Y = C�] =
P
∏

j=1

Pr[Xj |Y = C�]

The unconditional probability Pr[X] results in a similar formula when assum-
ing independence. To estimate the individual probabilities, an assumption of
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Fig. 13.15: Left: A plot of two class illustrative data where a new sample (the
solid triangle) is being predicted. Right: Conditional density plots of predictor
A created using a nonparametric density estimate. The value of predictor A
for the new sample is shown by the vertical black line

normality might be made for continuous predictors (using the sample mean
and variance from the training set). Other methods, such as nonparametric
kernel density estimators (Hardle et al. 2004), can more flexibly estimate the
probability densities. For categorical predictors, the probability distribution
can be determined with the observed frequencies in the training set data.

For example, Fig. 13.15 shows the familiar two-class illustrative example.
In the left panel, the training data are shown. Clearly, the two predictors
are unlikely to be independent (their correlation is 0.78). Suppose a new
sample (shown as a solid black triangle) requires prediction. To compute the
overall conditional probability Pr[X|Y = C�], each predictor is considered
separately. For predictor A, the two conditional densities are shown in the
right panel of Fig. 13.15 with a vertical black line indicating the value of the
new sample for this predictor. For the training set data, using this predictor
alone, the first class appears to be much more likely.

To produce the class probability Pr[X|Y = C�] for the first class, two
conditional probability values are determined for predictors A and B then
multiplied together to calculate the overall conditional probability for the
class.

For Pr[X] a similar procedure would occur except the probabilities for
predictors A and B would be determined from the entire training set (i.e.,
both classes). For the example in Fig. 13.15, the correlation between the pre-
dictors is fairly strong, which indicates that the new sample is highly unlikely.
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Table 13.1: The frequencies and conditional probabilities Pr[X|Y = C�] for
the day of the week

Day Count Percent of total
Successful Unsuccessful Successful Unsuccessful

Mon 749 803 9.15 9.80
Tues 597 658 7.29 8.03
Wed 588 752 7.18 9.18
Thurs 416 358 5.08 4.37
Fri 606 952 7.40 11.62
Sat 619 861 7.56 10.51
Sun 228 3 2.78 0.04

However, using the assumption of independence, this probability is likely to
be overestimated.

The prior probability allows the modeler to tilt the final probability to-
wards one or more classes. For example, when modeling a rare event, it is
common to selectively sample the data so that the class distribution in the
training set is more balanced. However, the modeler may wish to specify that
the event is indeed rare by assigning it a low prior probability. If no prior is
explicitly given, the convention is to use the observed proportions from the
training set to estimate the prior.

Given such a severe and unrealistic assumption, why would one consider
this model? First, the näıve Bayes model can be computed quickly, even
for large training sets. For example, when the predictors are all categorical,
simple lookup tables with the training set frequency distributions are all that
are required. Secondly, despite such a strong assumption, the model performs
competitively in many cases.

Bayes’ Rule is essentially a probability statement. Class probabilities are
created and the predicted class is the one associated with the largest class
probability. The meat of the model is the determination of the conditional
and unconditional probabilities associated with the predictors. For continu-
ous predictors, one might choose simple distributional assumptions, such as
normality. The nonparametric densities (such as those shown in Fig. 13.16)
can produce more flexible probability estimates. For the grant application
data, the predictor for the numeric day of the year has several time frames
where an inordinate number of grants were submitted. In this figure, the black
curve for the normal distribution is extremely broad and does not capture
the nuances of the data. The red curve is the nonparametric estimate and
appears produce the trends in the data with higher fidelity.

For categorical predictors, the frequency distribution of the predictor in
the training set is used to estimate Pr[X] and Pr[X|Y = C�]. Table 13.1
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Fig. 13.16: Two approaches to estimating the density function Pr[X] for the
day of the year. The blue line is based on a normal distribution while the red
line is generated using a nonparametric density estimator

shows the observed frequencies for the day of the week in which the grant
was submitted. The columns showing the percent of total are the estimates
of Pr[X|Y = C�] for each class. When a new sample is predicted, a simple
lookup on this table is used to estimate the probabilities.

An obvious issue, especially for small samples sizes, occurs when one or
more frequencies are zero. If a predictor has no training set samples for a
specific class, the conditional probability would be zero and, since the prob-
abilities are multiplied together, one predictor would coerce the posterior
probability to be zero. One method for avoiding this issue is to use a Laplace
correction or Laplace smoothing (Niblett 1987; Zadrozny and Elkan 2001;
Provost and Domingos 2003) where the same correction factor, usually be-
tween one and two, is added to the numerator. For the denominator, the
frequencies are increase by the correction factor times the number of val-
ues of the predictor. For example, there are very low frequencies for grants
submitted on Sunday. To correct for the extreme probabilities, a correction
factor of one would changes the observed frequencies to 229 and 4, but the
denominator would be increased by seven. Given the large sample size for
the training set, this correction only has a small impact (the estimated suc-
cess rate on Sunday is increased from 2.78% to 2.79%). However, all of the
three unsuccessful grants in the table were submitted after 2008. Training on
pre-2008 data would generate zero probabilities. In this case, a correction of
value of one would change the probability for grants to 0.02% while a cor-
rection factor of two would increase the value to 0.03%. For smaller training
set sizes, the correction can have a substantial positive effect on the missing
cells in the table.
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For the grant data, many of the predictors were counts. Although these
are numbers, they are discrete values and could be treated as categories. In
many cases, the observed frequency distribution is compact. For example, in
the training set, the number of chief investigators in department 2,678 takes
on the four values between 0 and 3 and has a very right-skewed distribution.
Treating such a granular predictor as if it was generated by a symmetric nor-
mal distribution may produce poor probability estimates. For this analysis,
the reduced set of predictors was evaluated such that all predictors with less
than 15 possible values were treated as discrete and their probabilities were
calculated using their frequency distribution (such as the day of the week
shown in Table 13.1. There were 14 predictors with more than 15 unique
values, including the number of successful grants by chief investigators, the
number of A∗ journal papers by chief investigators, and numeric day of the
year.

These predictors were modeled using either a normal distribution or a
nonparametric density (the density type was treated as a tuning parameter),
and a Laplace correction of 2 was used. When using a normal distribution
for the continuous predictors, the area under the curve was estimated to be
0.78, a sensitivity of 58.8%, and a specificity of 79.6%. Using nonparamet-
ric estimation of the probability densities, the area under the ROC curve
improves to 0.81, which corresponding increases in sensitivity (64.4%) and
specificity (82.4%). Unfortunately, the performance for this model is on par
with KNNs, which is substantially below the results of the other models in
this chapter.

Section 11.1 showed that Bayes’ Rule can be used to calibrate class proba-
bility estimates. To do this, the true classes are used as Y , but the class proba-
bility values for the training set are used as the“predictor”and Pr[X|Y = C�]
is determined from the model predictions on the training set. When new sam-
ples are predicted, the class probabilities that are generated by the model are
post-processed using Bayes’ Rule to improve the calibration. Ironically, class
probabilities created by apply Bayes’ Rule in the normal fashion tend not to
be well-calibrated themselves. As the number of predictors increases (rela-
tive to the sample size), the posterior probabilities will become more extreme
(similar to the observation related to linear discriminant analysis shown in
Fig. 12.11). Recall that QDA is based on Bayes’ Rule (using multivariate nor-
mality for the predictors) and the QDA results shown in Fig. 11.1 showed poor
calibration with two predictor variables (but was improved by recalibrating
using another application of Bayes’ Rule).

13.7 Computing

The following R packages are discussed in this chapter: caret, earth, kernlab,
klaR, MASS, mda, nnet, and rrcov. This section also uses the same R objects
created in the last chapter that contain the data (such as the data frame
training).



13.7 Computing 359

Nonlinear Discriminant Analysis

A number of packages are available to perform the varieties of nonlinear
discriminant analysis described earlier in this chapter. QDA is implemented
in the qda function in the MASS as well as an outlier-resistant version in the
QdaCov function in the rrcov package. RDA is available in the rda function in
the klaR package, and MDA can be found in the mda package. The syntax for
these models is very similar and we will demonstrate their usage by fitting
an MDA model to the grant data.

The mda function has a model formula interface. The tuning parameter is
the number of subclasses per class, which do not have to be the same for
each class. For example, to fit an MDA model to the grant data with three
subpopulations per class:

> library(mda)

> mdaModel <- mda(Class ~ .,

+ ## Reduce the data to the relevant predictors and the

+ ## class variable to use the formula shortcut above

+ data = training[pre2008, c("Class", reducedSet)],

+ subclasses = 3)

> mdaModel

Call:
mda(formula = Class ~ ., data = training[pre2008, c("Class",

reducedSet)], subclasses = 3)

Dimension: 5

Percent Between-Group Variance Explained:
v1 v2 v3 v4 v5

72.50 92.57 96.10 98.66 100.00

Degrees of Freedom (per dimension): 253

Training Misclassification Error: 0.18709 ( N = 6633 )

Deviance: 6429.499
> predict(mdaModel,

+ newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

Each of these nonlinear discriminant models can be built and optimal
tuning parameters can be found using the caret package. The trControl option
for the grants data is set as described in Sect. 12.7 and will be used here:

> set.seed(476)

> mdaFit <- train(training[,reducedSet], training$Class,

+ method = "mda",

+ metric = "ROC",

+ tuneGrid = expand.grid(.subclasses = 1:8),

+ trControl = ctrl)



360 13 Nonlinear Classification Models

Similar syntax can be used for RDA (using method = "rda") and QDA (method
values of either "rda" or "QdaCov" for the outlier-resistant version in the rrcov
package).

A penalized version of MDA is also available in the sparseLDA package
with the smda function. See Clemmensen et al. (2011) for more details.

Neural Networks

There are many R packages for neural networks, including nnet, RSNNS, qrnn,
and neuralnet. Two resources for using neural networks in R are Venables and
Ripley (2002) and Sect. 7 of Bergmeir and Benitez (2012).

The analyses here focus on the nnet package. The syntax is extremely
similar to that of the regression models with a few exceptions. The linout

argument should be set to FALSE since most classification models use a sig-
moidal transformation to relate the hidden units to the outputs. The sums
of squared errors or entropy estimates model parameters and the logical ar-
guments softmax and entropy toggle between the two.

The package has both a formula interface and an interface for passing
matrices or data frames for the predictors and the outcome. For the latter,
the outcome cannot be a factor variable and must be converted to a set of C
binary indicators. The package contains a function, class.ind, that is useful
in making this conversion:

> head(class.ind(training$Class))

successful unsuccessful
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 0 1
[6,] 1 0

Using the formula interface to fit a simple model:

> set.seed(800)

> nnetMod <- nnet(Class ~ NumCI + CI.1960,

+ data = training[pre2008,],

+ size = 3, decay = .1)

# weights: 13
initial value 4802.892391
iter 10 value 4595.629073
iter 20 value 4584.893054
iter 30 value 4582.614616
iter 40 value 4581.010289
iter 50 value 4580.866146
iter 60 value 4580.781092
iter 70 value 4580.756342
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final value 4580.756133
converged

> nnetMod

a 2-3-1 network with 13 weights
inputs: NumCI CI.1960
output(s): Class
options were - entropy fitting decay=0.1

> predict(nnetMod, newdata = head(testing))

[,1]
6641 0.5178744
6647 0.5178744
6649 0.5138892
6650 0.5837029
6655 0.4899851
6659 0.5701479

> predict(nnetMod, newdata = head(testing), type = "class")

[1] "unsuccessful" "unsuccessful" "unsuccessful" "unsuccessful"
[5] "successful" "unsuccessful"

When three or more classes are modeled, the basic call to predict produces
columns for each class.

As before, train provides a wrapper to this function to tune the model
over the amount of weight decay and the number of hidden units. The same
model code is used (method = "nnet") and either model interface is available,
although train does allow factor vectors for the classes (using class.ind in-
ternally do encode the dummy variables). Also, as in regression, model av-
eraging can be used via the stand-alone avNNet function or using train (with
method = "avNNet").

The final model for the grant data has the following syntax:

> nnetGrid <- expand.grid(.size = 1:10,

+ .decay = c(0, .1, 1, 2))

> maxSize <- max(nnetGrid$.size)

> numWts <- 1*(maxSize * (length(reducedSet) + 1) + maxSize + 1)

> set.seed(476)

> nnetFit <- train(x = training[,reducedSet],

+ y = training$Class,

+ method = "nnet",

+ metric = "ROC",

+ preProc = c("center", "scale", "spatialSign"),

+ tuneGrid = nnetGrid,

+ trace = FALSE,

+ maxit = 2000,

+ MaxNWts = numWts,

+ ## ctrl was defined in the previous chapter

+ trControl = ctrl)
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Flexible Discriminant Analysis

The mda package contains a function (fda) for building this model. The model
accepts the formula interface and has an option (method) that specifies the
exact method for estimating the regression parameters. To use FDA with
MARS, there are two approaches. method = mars uses the MARS implemen-
tation in the mda package. However, the earth package, previously described
in Sect. 7.5, fits the MARS model with a wider range of options. Here, load
the earth package and then specify method = earth. For example, a simple
FDA model for the grant application data could be created as

> library(mda)

> library(earth)

> fdaModel <- fda(Class ~ Day + NumCI, data = training[pre2008,],

+ method = earth)

Arguments to the earth function, such as nprune, can be specified when calling
fda and are passed through to earth. The MARS model is contained in a sub-
object called fit:

> summary(fdaModel$fit)

Call: earth(x=x, y=Theta, weights=weights)

coefficients
(Intercept) 1.41053449
h(Day-91) -0.01348332
h(Day-202) 0.03259400
h(Day-228) -0.02660477
h(228-Day) -0.00997109
h(Day-282) -0.00831905
h(Day-319) 0.17945773
h(Day-328) -0.51574151
h(Day-332) 0.50725158
h(Day-336) -0.20323060
h(1-NumCI) 0.11782107

Selected 11 of 12 terms, and 2 of 2 predictors
Importance: Day, NumCI
Number of terms at each degree of interaction: 1 10 (additive model)
GCV 0.8660403 RSS 5708.129 GRSq 0.1342208 RSq 0.1394347

Note that the model coefficients shown here have not been post-processed.
The final model coefficients can be found with coef(fdaModel). To predict:

> predict(fdaModel, head(training[-pre2008,]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

The train function can be used with method = "fda" to tune this model over
the number of retained terms. Additionally, the varImp function from this
package determines predictor importance in the same manner as for MARS
models (described in Sect. 7.2).
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Support Vector Machines

As discussed in the regression chapter, there are a number of R packages
with implementations for support vector machine and other kernel methods,
including e1071, kernlab, klaR, and svmPath. The most comprehensive of these
is the kernlab package.

The syntax for SVM classification models is largely the same as the re-
gression case. Although the epsilon parameter is only relevant for regression,
a few other parameters are useful for classification:

• The logical prob.model argument triggers ksvm to estimate an additional
set of parameters for a sigmoidal function to translate the SVM decision
values to class probabilities using the method of Platt (2000). If this option
is not set to TRUE, class probabilities cannot be predicted.

• The class.weights argument assigns asymmetric costs to each class (Osuna
et al. 1997). This can be especially important when one or more specific
types of errors are more harmful than others or when there is a severe class
imbalance that biases the model to the majority class (see Chap. 16). The
syntax here is to use a named vector of weights or costs. For example, if
there was a desire to bias the grant model to detect unsuccessful grants,
then the syntax would be

class.weights = c(successful = 1, unsuccessful = 5)

This makes a false-negative error five times more costly than a false-
positive error. Note that the implementation of class weights in ksvm affects
the predicted class, but the class probability model is unaffected by the
weights (in this implementation). This feature is utilized in Chap. 17.

The following code fits a radial basis function to the reduced set of predictors
in the grant data:

> set.seed(202)

> sigmaRangeReduced <- sigest(as.matrix(training[,reducedSet]))

> svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1],

+ .C = 2^(seq(-4, 4)))

> set.seed(476)

> svmRModel <- train(training[,reducedSet], training$Class,

+ method = "svmRadial",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = svmRGridReduced,

+ fit = FALSE,

+ trControl = ctrl)

> svmRModel

8190 samples
252 predictors

2 classes: 'successful', 'unsuccessful'
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Pre-processing: centered, scaled
Resampling: Repeated Train/Test Splits (1 reps, 0.75%)

Summary of sample sizes: 6633

Resampling results across tuning parameters:

C ROC Sens Spec
0.0625 0.866 0.775 0.787
0.125 0.88 0.842 0.776
0.25 0.89 0.867 0.772
0.5 0.894 0.851 0.784
1 0.895 0.84 0.804
2 NaN 0.814 0.814
4 0.887 0.814 0.812
8 0.885 0.804 0.814
16 0.882 0.805 0.818

Tuning parameter 'sigma' was held constant at a value of 0.00117
ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.00117.

When the outcome is a factor, the function automatically uses prob.model =

TRUE.
Other kernel functions can be defined via the kernel and kpar arguments.

Prediction of new samples follows the same pattern as other functions:

> library(kernlab)

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]))

[1] successful successful successful successful successful successful
Levels: successful unsuccessful

> predict(svmRModel, newdata = head(training[-pre2008, reducedSet]),

+ type = "prob")

successful unsuccessful
1 0.9522587 0.04774130
2 0.8510325 0.14896755
3 0.8488238 0.15117620
4 0.9453771 0.05462293
5 0.9537204 0.04627964
6 0.5009338 0.49906620

K-Nearest Neighbors

Fitting a KNN classification model has similar syntax to fitting a regression
model. In this setting, the caret package with method set to "knn" generates
the model. The syntax used to produce the top of Fig. 13.14 is

> set.seed(476)

> knnFit <- train(training[,reducedSet], training$Class,
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+ method = "knn",

+ metric = "ROC",

+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = c(4*(0:5)+1,

+ 20*(1:5)+1,

+ 50*(2:9)+1)),

+ trControl = ctrl)

The following code predicts the test set data and the corresponding ROC
curve:

> knnFit$pred <- merge(knnFit$pred, knnFit$bestTune)

> knnRoc <- roc(response = knnFit$pred$obs,

+ predictor = knnFit$pred$successful,

+ levels = rev(levels(knnFit$pred$obs)))

> plot(knnRoc, legacy.axes = TRUE)

Näıve Bayes

The two main functions for fitting the näıve Bayes models in R are naiveBayes

in the e1071 package and NaiveBayes in the klaR package. Both offer Laplace
corrections, but the version in the klaR package has the option of using con-
ditional density estimates that are more flexible.

Both functions accept the formula and non-formula approaches to specify-
ing the model terms. However, feeding these models binary dummy variables
(instead of a factor variable) is problematic since the individual categories
will be treated as numerical data and the model will estimate the probabil-
ity density function (i.e., Pr[X]) from a continuous distribution, such as the
Gaussian.

To follow the strategy described above where many of the predictors are
converted to factor variables, we create alternate versions of the training and
test sets:

> ## Some predictors are already stored as factors

> factors <- c("SponsorCode", "ContractValueBand", "Month", "Weekday")

> ## Get the other predictors from the reduced set

> nbPredictors <- factorPredictors[factorPredictors %in% reducedSet]

> nbPredictors <- c(nbPredictors, factors)

> ## Leek only those that are needed

> nbTraining <- training[, c("Class", nbPredictors)]

> nbTesting <- testing[, c("Class", nbPredictors)]

> ## Loop through the predictors and convert some to factors

> for(i in nbPredictors)

+ {

+ varLevels <- sort(unique(training[,i]))
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+ if(length(varLevels) <= 15)

+ {

+ nbTraining[, i] <- factor(nbTraining[,i],

+ levels = paste(varLevels))

+ nbTesting[, i] <- factor(nbTesting[,i],

+ levels = paste(varLevels))

+ }

+ }

Now, we can use the NaiveBayes function’s formula interface to create a model:

> library(klaR)

> nBayesFit <- NaiveBayes(Class ~ .,

+ data = nbTraining[pre2008,],

+ ## Should the non-parametric estimate

+ ## be used?

+ usekernel = TRUE,

+ ## Laplace correction value

+ fL = 2)

> predict(nBayesFit, newdata = head(nbTesting))

$class
6641 6647 6649 6650 6655 6659

successful successful successful successful successful successful
Levels: successful unsuccessful

$posterior
successful unsuccessful

6641 0.9937862 6.213817e-03
6647 0.8143309 1.856691e-01
6649 0.9999078 9.222923e-05
6650 0.9992232 7.768286e-04
6655 0.9967181 3.281949e-03
6659 0.9922326 7.767364e-03

In some cases, a warning appears: “Numerical 0 probability for all classes
with observation 1.” The predict function for this model has an argument
called threshold that replaces the zero values with a small, nonzero number
(0.001 by default).

The train function treats the density estimate method (i.e., usekernel)
and the Laplace correction as tuning parameters. By default, the function
evaluates probabilities with the normal distribution and the nonparametric
method (and no Laplace correction).

Exercises

13.1. Use the hepatic injury data from the previous exercise set (Exer-
cise 12.1). Recall that the matrices bio and chem contain the biological assay
and chemical fingerprint predictors for the 281 compounds, while the vector
injury contains the liver damage classification for each compound.
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(a) Work with the same training and testing sets as well as pre-processing
steps as you did in your previous work on these data. Using the same
classification statistic as before, build models described in this chapter
for the biological predictors and separately for the chemical fingerprint
predictors. Which model has the best predictive ability for the biological
predictors and what is the optimal performance? Which model has the
best predictive ability for the chemical predictors and what is the opti-
mal performance? Does the nonlinear structure of these models help to
improve the classification performance?

(b) For the optimal models for both the biological and chemical predictors,
what are the top five important predictors?

(c) Now combine the biological and chemical fingerprint predictors into one
predictor set. Re-train the same set of predictive models you built from
part (a). Which model yields best predictive performance? Is the model
performance better than either of the best models from part (a)? What
are the top 5 important predictors for the optimal model? How do these
compare with the optimal predictors from each individual predictor set?
How do these important predictors compare the predictors from the linear
models?

(d) Which model (either model of individual biology or chemical fingerprints
or the combined predictor model), if any, would you recommend using to
predict compounds’ hepatic toxicity? Explain.

13.2. Use the fatty acid data from the previous exercise set (Exercise 12.2).

(a) Use the same data splitting approach (if any) and pre-processing steps
that you did in the previous chapter. Using the same classification statistic
as before, build models described in this chapter for these data. Which
model has the best predictive ability? How does this optimal model’s
performance compare to the best linear model’s performance? Would you
infer that the data have nonlinear separation boundaries based on this
comparison?

(b) Which oil type does the optimal model most accurately predict? Least
accurately predict?
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