
Chapter 10

Case Study: Compressive Strength
of Concrete Mixtures

Thus far, the focus has been on observational data sets where the values of the
predictors were not pre-specified. For example, the QSAR data used in the
previous chapters involved a collection of diverse compounds that captured
a sufficient amount of the “chemical space.” This particular data set was
not created by specifying exact values for the chemical properties (such as
molecular weight). Instead compounds were sampled from an appropriate
population for use in the model.

Designed experiments are created by planning the exact values of the pre-
dictors (referred to as the factors in this context) using some sort of strategic
methodology. The configurations of predictor settings are created so that they
have good mathematical and experimental properties. One such property is
balance. A balanced design is one where no one experimental factor (i.e., the
predictors) has more focus than the others. In most cases, this means that
each predictor has the same number of possible levels and that the frequen-
cies of the levels are equivalent for each factor. The properties used to choose
the best experimental design are driven by the stage of experimentation.

Box et al. (1978) popularized the concept of sequential experimentation
where a large number of possible experimental factors are screened with low
resolution (i.e., “casting a wide net”) to determine the active or important
factors that relate to the outcome. Once the importance of the predictors
are quantified, more focused experiments are created with the subset of im-
portant factors. In subsequent experiments, the nature of the relationship
between the important factors can be further elucidated. The last step in the
sequence of experiments is to fine-tune a small number of important factors.
Response surface experiments (Myers and Montgomery 2009) use a smaller
set of predictor values. Here, the primary goal is to optimize the experimental
settings based on a nonlinear model of the experimental predictors.

M. Kuhn and K. Johnson, Applied Predictive Modeling,
DOI 10.1007/978-1-4614-6849-3 10,
© Springer Science+Business Media New York 2013

225



226 10 Case Study: Compressive Strength of Concrete Mixtures

Designed experiments and predictive models have several differences1:

• A sequence of studies is preferred over a single, comprehensive data set that
attempts to include all possible predictors (i.e., experimental factors) with
many values per predictor. The iterative paradigm of planning, designing,
and then analyzing an experiment is, on the surface, different than most
predictive modeling problems.

• Until the final stages of sequential experimentation, the focus is on un-
derstanding which predictors affect the outcome and how. Once response
surface experiments are utilized, the focus of the activities is solely about
prediction.

This case study will focus on the prediction of optimal formulations of
concrete mixture-based data from designed experiments.

Concrete is an integral part of most industrialized societies. It is used to
some extent in nearly all structures and in many roads. One of the main
properties of interest (beside cost) is the compressive strength of the hard-
ened concrete. The composition of many concretes includes a number of dry
ingredients which are mixed with water and then are allowed to dry and
harden. Given its abundance and critical role in infrastructure, the composi-
tion is important and has been widely studied. In this chapter, models will
be created to help find potential recipes to maximize compressive strength.

Yeh (2006) describes a standard type of experimental setup for this sce-
nario called a mixture design (Cornell 2002; Myers and Montgomery 2009).
Here, boundaries on the upper and lower limits on the mixture proportion
for each ingredient are used to create multiple mixtures that methodically fill
the space within the boundaries. For a specific type of mixture design, there
is a corresponding linear regression model that is typically used to model the
relationship between the ingredients and the outcome. These linear models
can include interaction effects and higher-order terms for the ingredients. The
ingredients used in Yeh (2006) were:

• Cement (kg/m3)
• Fly ash (kg/m3), small particles produced by burning coal
• Blast furnace slag (kg/m3)
• Water (kg/m3)

1 There are cases where specialized types of experimental designs are utilized with
predictive models. In the field of chemometrics, an orthogonal array-type design fol-
lowed by the sequential elimination of level combination algorithm has been shown
to improve QSAR models (Mandal et al. 2006, 2007). Also, the field of active learn-
ing sequentially added samples based on the training set using the predictive model
results (Cohn et al. 1994; Saar-Tsechansky and Provost 2007a).



10 Case Study: Compressive Strength of Concrete Mixtures 227

• Superplasticizer (kg/m3), an additive that reduces particle aggregation
• Coarse aggregate (kg/m3)
• Fine aggregate (kg/m3)

Yeh (2006) also describes an additional non-mixture factor related to com-
pressive strength: the age of the mixture (at testing). Since this is not an
ingredient, it is usually referred to as a process factor. Specific experimental
designs (and linear model forms) exist for experiments that combine mixture
and process variables (see Cornell (2002) for more details).

Yeh (1998) takes a different approach to modeling concrete mixture exper-
iments. Here, separate experiments from 17 sources with common experimen-
tal factors were combined into one “meta-experiment” and the author used
neural networks to create predictive models across the whole mixture space.
Age was also included in the model. The public version of the data set in-
cludes 1030 data points across the different experiments, although Yeh (1998)
states that some mixtures were removed from his analysis due to nonstandard
conditions. There is no information regarding exactly which mixtures were
removed, so the analyses here will use all available data points. Table 10.1
shows a summary of the predictor data (in amounts) and the outcome.

Figure 10.1 shows scatter plots of each predictor versus the compressive
strength. Age shows a strong nonlinear relationship with the predictor, and
the cement amount has a linear relationship. Note that several of the in-
gredients have a large frequency of a single amount, such as zero for the
superplasticizer and the amount of fly ash. In these cases, the compressive
strength varies widely for those values of the predictors. This might indi-
cate that some of the partitioning methods, such as trees or MARS, may
be able to isolate these mixtures within the model and more effectively pre-
dict the compressive strength. For example, there are 53 mixtures with no
superplasticizer or fly ash but with exactly 228 kg/m3 of water. This may
represent an important sub-population of mixtures that may benefit from a
model that is specific to these types of mixtures. A tree- or rule-based model
has the ability to model such a sub-group while classical regression models
would not.

Although the available data do not denote which formulations came from
each source, there are 19 distinct mixtures with replicate data points. The
majority of these mixtures had only two or three duplicate conditions, al-
though some conditions have as many as four replicates. When modeling
these data, the replicate results should not be treated as though they are in-
dependent observations. For example, having replicate mixtures in both the
training and test sets can result in overly optimistic assessments of how well
the model works. A common approach here is to average the outcomes within
each unique mixture. Consequentially, the number of mixtures available for
modeling drops from 1030 to 992.



228 10 Case Study: Compressive Strength of Concrete Mixtures

Table 10.1: Data for the concrete mixtures

9 Variables 1030 Observations

Cement
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 278 281.2 143.7 153.5 192.4 272.9 350.0 425.0 480.0

lowest : 102.0 108.3 116.0 122.6 132.0
highest: 522.0 525.0 528.0 531.3 540.0

BlastFurnaceSlag
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 185 73.9 0.0 0.0 0.0 22.0 142.9 192.0 236.0

lowest : 0.0 11.0 13.6 15.0 17.2
highest: 290.2 305.3 316.1 342.1 359.4

FlyAsh
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 156 54.19 0.0 0.0 0.0 0.0 118.3 141.1 167.0

lowest : 0.0 24.5 59.0 60.0 71.0
highest: 194.0 194.9 195.0 200.0 200.1

Water
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1030 0 195 181.6 146.1 154.6 164.9 185.0 192.0 203.5 228.0

lowest : 121.8 126.6 127.0 127.3 137.8
highest: 228.0 236.7 237.0 246.9 247.0

Superplasticizer
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 111 6.205 0.00 0.00 0.00 6.40 10.20 12.21 16.05

lowest : 0.0 1.7 1.9 2.0 2.2,
highest: 22.0 22.1 23.4 28.2 32.2

CoarseAggregate
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 284 972.9 842.0 852.1 932.0 968.0 1029.4 1076.5 1104.0

lowest : 801.0 801.1 801.4 811.0 814.0
highest: 1124.4 1125.0 1130.0 1134.3 1145.0

FineAggregate
n missing unique Mean 0.05 0.10 0.25 .50 0.75 .90 0.95

1030 0 302 773.6 613.0 664.1 730.9 779.5 824.0 880.8 898.1

lowest : 594.0 605.0 611.8 612.0 613.0
highest: 925.7 942.0 943.1 945.0 992.6

Age
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 14 45.66 3 3 7 28 56 100 180

1 3 7 14 28 56 90 91 100 120 180 270 360 365
Frequency 2 134 126 62 425 91 54 22 52 3 26 13 6 14
% 0 13 12 6 41 9 5 2 5 0 3 1 1 1

CompressiveStrength
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95

1,030 0 845 35.82 10.96 14.20 23.71 34.45 46.14 58.82 66.80

lowest : 2.33 3.32 4.57 4.78 4.83
highest: 79.40 79.99 80.20 81.75 82.60



10.1 Model Building Strategy 229

Feature

0

20

40

60

80

0 100 200 300

Age

0 100 200 300

BlastFurnaceSlag

100 200 300 400 500

Cement

800 900 1000 1100

CoarseAggregate

600 700 800 900 1000

FineAggregate

0 50 100 150 200

0

20

40

60

80
FlyAsh

0

20

40

60

80

0 10 20 30

Superplasticizer

150 200 250

Water

Fig. 10.1: Scatter plots of the concrete predictors versus the compressive
strength

10.1 Model Building Strategy

The neural network models used in Yeh (1998) were single-layer networks
with eight hidden units. Multiple data splitting approaches were used by the
original author. Four models were fit with different training sets such that all
the data from a single source were held out each time. These models resulted
in test set R2 values ranging from 0.814 to 0.895. They also used a random
sample of 25% of the data for holdout test sets. This was repeated four times
to produce test set R2 values between 0.908 and 0.922.

Although an apples-to-apples comparison cannot be made with the anal-
yses of Yeh (1998), a similar data splitting approach will be taken for this
case study. A random holdout set of 25% (n = 247) will be used as a test set
and five repeats of 10-fold cross-validation will be used to tune the various
models.

In this case study, a series of models will be created and evaluated. Once
a final model is selected, the model will be used to predict mixtures with
optimal compressive strength within practical limitations.



230 10 Case Study: Compressive Strength of Concrete Mixtures

How should the predictors be used to model the outcome? Yeh (1998)
discusses traditional approaches, such as relying on the water-to-cement
ratio, but suggests that the existing experimental data are not consistent
with historical strategies. In this chapter, the predictors will enter the mod-
els as the proportion of the total amount. Because of this, there is a built-in
dependency in the predictor values (any predictor can be automatically de-
termined by knowing the values of the other seven). Despite this, the pairwise
correlations are not large, and, therefore, we would not expect methods that
are designed to deal with collinearity (e.g., PLS, ridge regression) to have
performance that is superior to other models.

A suite of models were tested:

• Linear regression, partial least squares, and the elastic net. Each model
used an expanded set of predictors that included all two-factor interactions
(e.g., age × water) and quadratic terms.

• Radial basis function support vector machines (SVMs).
• Neural network models.
• MARS models.
• Regression trees (both CART and conditional inference trees), model trees

(with and without rules), and Cubist (with and without committees and
neighbor-based adjustments).

• Bagged and boosted regression trees, along with random forest models.

The details of how the models were tuned are given in the Computing section
at the end of the chapter.

10.2 Model Performance

The same cross-validation folds were used for each model. Figure 10.2 shows
parallel-coordinate plots for the resampling results across the models. Each
line corresponds to a common cross-validation holdout. From this, the top
performing models were tree ensembles (random forest and boosting), rule
ensembles (Cubist), and neural networks. Linear models and simple trees did
not perform well. Bagged trees, SVMs, and MARS showed modest results but
are clearly worse than the top cluster of models. The averaged R2 statistics
ranged from 0.76 to 0.92 across the models. The top three models (as ranked
by resampling) were applied to the test set. The RMSE values are roughly
consistent with the cross-validation rankings: 3.9 (boosted tree), 4.2 (neural
networks), and 4.5 (cubist).

Figure 10.3 shows plots of the raw data, predictions, and residuals for the
three models. The plots for each model are fairly similar; each shows good
concordance between the observed and predicted values with a slight“fanning
out” at the high end of compressive strength. The majority of the residuals



10.2 Model Performance 231

RMSE

Neural Networks

Boosted Tree

Cubist

Random Forest

SVM

MARS

Bagged Tree

Elastic Net

PLS

CART

Linear Reg

Cond Inf Tree

4 6 8 10

R2

CART

Linear Reg

PLS

Cond Inf Tree

Elastic Net

Bagged Tree

MARS

SVM

Random Forest

Cubist

Boosted Tree

Neural Networks

0.65 0.7 0.75 0.8 0.85 0.9 0.95

Fig. 10.2: Parallel coordinate plots for the cross-validated RMSE and R2

across different models. Each line represents the results for a common cross-
validation holdout set

are within ±2.8 MPa with the largest errors slightly more than 15 MPa.
There is no clear winner or loser in the models based on these plots.

The neural network model used 27 hidden units with a weight decay value
of 0.1. The performance profile for this model (not shown, but can be re-
produced using syntax provided in the Computing section below) showed
that weight decay had very little impact on the effectiveness of the model.
The final Cubist model used 100 committees and adjusted the predic-
tions with 3-nearest neighbors. Similar to the Cubist profiles shown for the



232 10 Case Study: Compressive Strength of Concrete Mixtures

Predicted

O
bs

er
ve

d

20

40

60

80

20 40 60 80

Predicted

R
es

id
ua

l

−15

−10

−5

0

5

10

15

20 40 60 80

Predicted

O
bs

er
ve

d

0

20

40

60

80

0 20 40 60 80

Predicted

a

b

c

R
es

id
ua

l

−15

−10

−5

0

5

10

15

0 20 40 60 80

Predicted

O
bs

er
ve

d

20

40

60

80

20 40 60 80

Predicted

R
es

id
ua

l

−15

−10

−5

0

5

10

15

20 40 60 80

Fig. 10.3: Diagnostic plots of the test set results for three models. (a) Neural
network (b) Boosted trees (c) Cubist



10.3 Optimizing Compressive Strength 233

computational chemistry data (see the figure on page 211), performance
suffered when the number of neighbors was either too low or too high. The
boosted tree preferred a fast learning rate and deep trees.

10.3 Optimizing Compressive Strength

The neural network and Cubist models were used to determine possible
mixtures with improved compressive strength. To do this, a numerical search
routine can be used to find formulations with high compressive strength (as
predicted by the model). Once a candidate set of mixtures is found, addi-
tional experiments would then be executed for the mixtures to verify that
the strength has indeed improved. For illustrative purposes, the age of the
formulation was fixed to a value of 28 days (there are a large number of data
points in the training set with this value) and only the mixture ingredients
will be optimized.

How, exactly, should the search be conducted? There are numerous numer-
ical optimization routines that can search seven-dimensional space. Many rely
on determining the gradient (i.e., first derivative) of the prediction equation.
Several of the models have smooth prediction equations (e.g., neural net-
works and SVMs). However, others have many discontinuities (such as tree-
and rule-based models and multivariate adaptive regression splines) that are
not conducive to gradient-based search methods.

An alternative is to use a class of optimizers called direct methods that
would not use derivatives to find the settings with optimal compressive
strength and evaluate the prediction equation many more times than derivative-
based optimizers. Two such search procedures are the Nelder–Mead simplex
method (Nelder and Mead 1965; Olsson and Nelson 1975) and simulated
annealing (Bohachevsky et al. 1986). Of these, the simplex search procedure
had the best results for these data.2 The Nelder–Mead method has the poten-
tial to get “stuck” in a sub-optimal region of the search space, which would
generate poor mixtures. To counter-act this issue, it is common to repeat
the search using different starting points and choosing the searches that are
associated with the best results. To do this, 15–28-day-old mixtures were se-
lected from the training set. The first of the 15 was selected at random and
the remaining starting points were selected using the maximum dissimilarity
sampling procedure discussed in Sect. 4.3.

Before beginning the search, constraints were used to avoid searching parts
of the formulation space that were impractical or impossible. For example,
the amount of water ranged from 5.1% to 11.2%. The search procedure was
set to only consider mixtures with at least 5% water.

2 The reader can also try simulated annealing using the code at the end of the chapter.



234 10 Case Study: Compressive Strength of Concrete Mixtures

Table 10.2: The top three optimal mixtures predicted from two models where
the age was fixed at a value of 28. In the training set, matching on age, the
strongest mixtures had compressive strengths of 81.75, 79.99, and 78.8

Model Cement Slag Ash Plast. C. Agg. F. Agg. Water Prediction

Cubist
New mix 1 12.7 14.9 6.8 0.5 34.0 25.7 5.4 89.1
New mix 2 21.7 3.4 5.7 0.3 33.7 29.9 5.3 88.4
New mix 3 14.6 13.7 0.4 2.0 35.8 27.5 6.0 88.2

Neural network
New mix 4 34.4 7.9 0.2 0.3 31.1 21.1 5.1 88.7
New mix 5 21.2 11.6 0.1 1.1 32.4 27.8 5.8 85.7
New mix 6 40.8 4.9 6.7 0.7 20.3 20.5 6.1 83.9

In the training set, there were 416 formulations that were tested at 28 days.
Of these, the top three mixtures had compressive strengths of 81.75, 79.99,
and 78.8. Table 10.2 shows the top three predicted mixtures for a smooth and
non-smooth model (neural networks and Cubist, respectively). The models
are able to find formulations that are predicted to have better strength than
those seen in the data.

The Cubist mixtures were predicted to have similar compressive strengths.
Their formulations were differentiated by the cement, slag, ash, and plasticizer
components. The neural network mixtures were in a nearby region of mix-
ture space and had predicted values that were lower than the Cubist model
predictions but larger than the best-observed mixtures. In each of the six
cases, the mixtures have very low proportions of water. Principal component
analysis was used to represent the training set mixture (in seven-dimensional
space) using two components. A PCA plot of the 28-day data is shown in
Fig. 10.4. The principal component values for the 15 mixtures used as start-
ing points for the search procedure are shown (as × symbols) as are the
other 401 time-matched data points in the training set (shown as small grey
dots). The top three predictions from the two models are also shown. Many
of the predicted mixtures are near the outskirts of the mixture space and are
likely to suffer some model inaccuracy due to extrapolation. Given this, it
is extremely important to validate these new formulations scientifically and
experimentally.

More complex approaches to finding optimal mixtures can also be used.
For example, it may be important to incorporate the cost of the mixture (or
other factors) into the search. Such amultivariate ormultiparameter optimiza-
tion can be executed a number of ways. One simple approach is desirability
functions (Derringer and Suich 1980; Costa et al. 2011). Here, the impor-



10.3 Optimizing Compressive Strength 235

PC1

P
C

2

−4

−2

0

2

−4 −2 0 2

Training Set
Starting Values

Cubist
Neural Network

Fig. 10.4: A PCA plot of the training set data where the mixtures were aged
28 days. The search algorithm was executed across 15 different training set
mixtures (shown as × in the plot). The top three optimal mixtures predicted
from two models are also shown

tant characteristics of a mixture (e.g., strength and cost) are mapped to a
common desirability scale between 0 and 1, where one is most desirable and
zero is completely undesirable. For example, mixtures above a certain cost
may be unacceptable. Mixtures associated with costs at or above this value
would have zero desirability (literally). As the cost decreases the relationship
between cost and desirability might be specified to be linearly decreasing.
Figure 10.5 shows two hypothetical examples of desirability function for cost
and strength. Here, formulations with costs greater than 20 and strength less
than 70 are considered completely unacceptable. Once desirability functions
are created by the user for every characteristic to be optimized, the overall
desirability is combined, usually using a geometric mean. Note that, since the
geometric mean multiplies values, if any one desirability function has a score
of 0, all other characteristics would be considered irrelevant (since the over-
all value is also 0). The overall desirability would be optimized by a search
procedure to find a solution that takes all the characteristics into account.
Wager et al. (2010) and Cruz-Monteagudo et al. (2011) show examples of this
approach.



236 10 Case Study: Compressive Strength of Concrete Mixtures

Mixture Cost

D
es

ira
bi

lit
y 

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Compressive Strength

D
es

ira
bi

lit
y 

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Fig. 10.5: Examples of individual desirability functions for mixture cost and
compression strength. The geometric mean of these scores can be optimized
for the purpose of finding strong, low-cost mixtures

10.4 Computing

This section uses functions from the caret, desirability, Hmisc, and plyr
packages.

The concrete data can be found in the UCI Machine Learning repository.
The AppliedPredictiveModeling package contains the original data
(in amounts) and an alternate version that has the mixture proportions:

> library(AppliedPredictiveModeling)

> data(concrete)

> str(concrete)

'data.frame': 1030 obs. of 9 variables:
$ Cement : num 540 540 332 332 199 ...
$ BlastFurnaceSlag : num 0 0 142 142 132 ...
$ FlyAsh : num 0 0 0 0 0 0 0 0 0 0 ...
$ Water : num 162 162 228 228 192 228 228 228 228 228 ...
$ Superplasticizer : num 2.5 2.5 0 0 0 0 0 0 0 0 ...
$ CoarseAggregate : num 1040 1055 932 932 978 ...
$ FineAggregate : num 676 676 594 594 826 ...
$ Age : int 28 28 270 365 360 90 365 28 28 28 ...
$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

> str(mixtures)

'data.frame': 1030 obs. of 9 variables:
$ Cement : num 0.2231 0.2217 0.1492 0.1492 0.0853 ...
$ BlastFurnaceSlag : num 0 0 0.0639 0.0639 0.0569 ...
$ FlyAsh : num 0 0 0 0 0 0 0 0 0 0 ...
$ Water : num 0.0669 0.0665 0.1023 0.1023 0.0825 ...
$ Superplasticizer : num 0.00103 0.00103 0 0 0 ...
$ CoarseAggregate : num 0.43 0.433 0.418 0.418 0.42 ...



10.4 Computing 237

$ FineAggregate : num 0.279 0.278 0.266 0.266 0.355 ...
$ Age : int 28 28 270 365 360 90 365 28 28 28 ...
$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

Table 10.1 was created using the describe function in the Hmisc package,
and Fig. 10.1 was create using the featurePlot function in caret:

> featurePlot(x = concrete[, -9],

+ y = concrete$CompressiveStrength,

+ ## Add some space between the panels

+ between = list(x = 1, y = 1),

+ ## Add a background grid ('g') and a smoother ('smooth')
+ type = c("g", "p", "smooth"))

The code for averaging the replicated mixtures and splitting the data into
training and test sets is

> averaged <- ddply(mixtures,

+ .(Cement, BlastFurnaceSlag, FlyAsh, Water,

+ Superplasticizer, CoarseAggregate,

+ FineAggregate, Age),

+ function(x) c(CompressiveStrength =

+ mean(x$CompressiveStrength)))

> set.seed(975)

> forTraining <- createDataPartition(averaged$CompressiveStrength,

+ p = 3/4)[[1]]

> trainingSet <- averaged[ forTraining,]

> testSet <- averaged[-forTraining,]

To fit the linear models with the expanded set of predictors, such as inter-
actions, a specific model formula was created. The dot in the formula below
is shorthand for all predictors and (.)^2 expands into a model with all the
linear terms and all two-factor interactions. The quadratic terms are created
manually and are encapsulated inside the I() function. This “as-is” function
tells R that the squaring of the predictors should be done arithmetically (and
not symbolically).

The formula is first created as a character string using the paste command,
then is converted to a bona fide R formula.

> modFormula <- paste("CompressiveStrength ~ (.)^2 + I(Cement^2) + ",

+ "I(BlastFurnaceSlag^2) + I(FlyAsh^2) + I(Water^2) +",

+ " I(Superplasticizer^2) + I(CoarseAggregate^2) + ",

+ "I(FineAggregate^2) + I(Age^2)")

> modFormula <- as.formula(modFormula)

Each model used repeated 10-fold cross-validation and is specified with
the trainControl function:

> controlObject <- trainControl(method = "repeatedcv",

+ repeats = 5,

+ number = 10)



238 10 Case Study: Compressive Strength of Concrete Mixtures

To create the exact same folds, the random number generator is reset to a
common seed prior to running train. For example, to fit the linear regression
model:

> set.seed(669)

> linearReg <- train(modFormula,

+ data = trainingSet,

+ method = "lm",

+ trControl = controlObject)

> linearReg

745 samples
44 predictors

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 671, 671, 672, 670, 669, 669, ...

Resampling results

RMSE Rsquared RMSE SD Rsquared SD
7.85 0.771 0.647 0.0398

The output shows that 44 predictors were used, indicating the expanded
model formula was used.

The other two linear models were created with:

> set.seed(669)

> plsModel <- train(modForm, data = trainingSet,

+ method = "pls",

+ preProc = c("center", "scale"),

+ tuneLength = 15,

+ trControl = controlObject)

> enetGrid <- expand.grid(.lambda = c(0, .001, .01, .1),

+ .fraction = seq(0.05, 1, length = 20))

> set.seed(669)

> enetModel <- train(modForm, data = trainingSet,

+ method = "enet",

+ preProc = c("center", "scale"),

+ tuneGrid = enetGrid,

+ trControl = controlObject)

MARS, neural networks, and SVMs were created as follows:

> set.seed(669)

> earthModel <- train(CompressiveStrength ~ ., data = trainingSet,

+ method = "earth",

+ tuneGrid = expand.grid(.degree = 1,

+ .nprune = 2:25),

+ trControl = controlObject)

> set.seed(669)

> svmRModel <- train(CompressiveStrength ~ ., data = trainingSet,

+ method = "svmRadial",

+ tuneLength = 15,

+ preProc = c("center", "scale"),



10.4 Computing 239

+ trControl = controlObject)

> nnetGrid <- expand.grid(.decay = c(0.001, .01, .1),

+ .size = seq(1, 27, by = 2),

+ .bag = FALSE)

> set.seed(669)

> nnetModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "avNNet",

+ tuneGrid = nnetGrid,

+ preProc = c("center", "scale"),

+ linout = TRUE,

+ trace = FALSE,

+ maxit = 1000,

+ trControl = controlObject)

The regression and model trees were similarly created:

> set.seed(669)

> rpartModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "rpart",

+ tuneLength = 30,

+ trControl = controlObject)

> set.seed(669)

> ctreeModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "ctree",

+ tuneLength = 10,

+ trControl = controlObject)

> set.seed(669)

> mtModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "M5",

+ trControl = controlObject)

The following code creates the remaining model objects:

> set.seed(669)

> treebagModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "treebag",

+ trControl = controlObject)

> set.seed(669)

> rfModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "rf",

+ tuneLength = 10,

+ ntrees = 1000,

+ importance = TRUE,

+ trControl = controlObject)

> gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),

+ .n.trees = seq(100, 1000, by = 50),



240 10 Case Study: Compressive Strength of Concrete Mixtures

+ .shrinkage = c(0.01, 0.1))

> set.seed(669)

> gbmModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "gbm",

+ tuneGrid = gbmGrid,

+ verbose = FALSE,

+ trControl = controlObject)

> cubistGrid <- expand.grid(.committees = c(1, 5, 10, 50, 75, 100),

+ .neighbors = c(0, 1, 3, 5, 7, 9))

> set.seed(669)

> cbModel <- train(CompressiveStrength ~ .,

+ data = trainingSet,

+ method = "cubist",

+ tuneGrid = cubistGrid,

+ trControl = controlObject)

The resampling results for these models were collected into a single object
using caret’s resamples function. This object can then be used for visualiza-
tions or to make formal comparisons between the models.

> allResamples <- resamples(list("Linear Reg" = lmModel,

+ "PLS" = plsModel,

+ "Elastic Net" = enetModel,

+ MARS = earthModel,

+ SVM = svmRModel,

+ "Neural Networks" = nnetModel,

+ CART = rpartModel,

+ "Cond Inf Tree" = ctreeModel,

+ "Bagged Tree" = treebagModel,

+ "Boosted Tree" = gbmModel,

+ "Random Forest" = rfModel,

+ Cubist = cbModel))

Figure 10.2 was created from this object as

> ## Plot the RMSE values

> parallelPlot(allResamples)

> ## Using R-squared:

> parallelplot(allResamples, metric = "Rsquared")

Other visualizations of the resampling results can also be created (see
?xyplot.resamples for other options).

The test set predictions are achieved using a simple application of the
predict function:

> nnetPredictions <- predict(nnetModel, testData)

> gbmPredictions <- predict(gbmModel, testData)

> cbPredictions <- predict(cbModel, testData)

To predict optimal mixtures, we first use the 28-day data to generate a set
of random starting points from the training set.

Since distances between the formulations will be used as a measure of
dissimilarity, the data are pre-processed to have the same mean and variance



10.4 Computing 241

for each predictor. After this, a single random mixture is selected to initialize
the maximum dissimilarity sampling process:

> age28Data <- subset(trainingData, Age == 28)

> ## Remove the age and compressive strength columns and

> ## then center and scale the predictor columns

> pp1 <- preProcess(age28Data[, -(8:9)], c("center", "scale"))

> scaledTrain <- predict(pp1, age28Data[, 1:7])

> set.seed(91)

> startMixture <- sample(1:nrow(age28Data), 1)

> starters <- scaledTrain[startMixture, 1:7]

After this, the maximum dissimilarity sampling method from Sect. 4.3 selects
14 more mixtures to complete a diverse set of starting points for the search
algorithms:

> pool <- scaledTrain

> index <- maxDissim(starters, pool, 14)

> startPoints <- c(startMixture, index)

> starters <- age28Data[startPoints,1:7]

Since all seven mixture proportions should add to one, the search procedures
will conduct the search without one ingredient (water), and the water propor-
tion will be determined by the sum of the other six ingredient proportions.
Without this step, the search procedures would pick candidate mixture values
that would not add to one.

> ## Remove water

> startingValues <- starters[, -4]

To maximize the compressive strength, the R function optim searches the
mixture space for optimal formulations. A custom R function is needed to
translate a candidate mixture to a prediction. This function can find settings
to minimize a function, so it will return the negative of the compressive
strength. The function below checks to make sure that (a) the proportions
are between 0 and 1 and (b) the proportion of water does not fall below 5%.
If these conditions are violated, the function returns a large positive number
which the search procedure will avoid (as optim is for minimization).

> ## The inputs to the function are a vector of six mixture proportions

> ## (in argument 'x') and the model used for prediction ('mod')
> modelPrediction <- function(x, mod)

+ {

+ ## Check to make sure the mixture proportions are

+ ## in the correct range

+ if(x[1] < 0 | x[1] > 1) return(10^38)

+ if(x[2] < 0 | x[2] > 1) return(10^38)

+ if(x[3] < 0 | x[3] > 1) return(10^38)

+ if(x[4] < 0 | x[4] > 1) return(10^38)

+ if(x[5] < 0 | x[5] > 1) return(10^38)

+ if(x[6] < 0 | x[6] > 1) return(10^38)

+

+ ## Determine the water proportion



242 10 Case Study: Compressive Strength of Concrete Mixtures

+ x <- c(x, 1 - sum(x))

+

+ ## Check the water range

+ if(x[7] < 0.05) return(10^38)

+

+ ## Convert the vector to a data frame, assign names

+ ## and fix age at 28 days

+ tmp <- as.data.frame(t(x))

+ names(tmp) <- c('Cement','BlastFurnaceSlag','FlyAsh',
+ 'Superplasticizer','CoarseAggregate',
+ 'FineAggregate', 'Water')
+ tmp$Age <- 28

+ ## Get the model prediction, square them to get back to the

+ ## original units, then return the negative of the result

+ -predict(mod, tmp)

+ }

First, the Cubist model is used:

> cbResults <- startingValues

> cbResults$Water <- NA

> cbResults$Prediction <- NA

> ## Loop over each starting point and conduct the search

> for(i in 1:nrow(cbResults))

+ {

+ results <- optim(unlist(cbResults[i,1:6]),

+ modelPrediction,

+ method = "Nelder-Mead",

+ ## Use method = 'SANN' for simulated annealing

+ control=list(maxit=5000),

+ ## The next option is passed to the

+ ## modelPrediction() function

+ mod = cbModel)

+ ## Save the predicted compressive strength

+ cbResults$Prediction[i] <- -results$value

+ ## Also save the final mixture values

+ cbResults[i,1:6] <- results$par

+ }

> ## Calculate the water proportion

> cbResults$Water <- 1 - apply(cbResults[,1:6], 1, sum)

> ## Keep the top three mixtures

> cbResults <- cbResults[order(-cbResults$Prediction),][1:3,]

> cbResults$Model <- "Cubist"

We then employ the same process for the neural network model:

> nnetResults <- startingValues

> nnetResults$Water <- NA

> nnetResults$Prediction <- NA

> for(i in 1:nrow(nnetResults))

+ {

+ results <- optim(unlist(nnetResults[i, 1:6,]),

+ modelPrediction,

+ method = "Nelder-Mead",

+ control=list(maxit=5000),



10.4 Computing 243

+ mod = nnetModel)

+ nnetResults$Prediction[i] <- -results$value

+ nnetResults[i,1:6] <- results$par

+ }

> nnetResults$Water <- 1 - apply(nnetResults[,1:6], 1, sum)

> nnetResults <- nnetResults[order(-nnetResults$Prediction),][1:3,]

> nnetResults$Model <- "NNet"

To create Fig. 10.4, PCA was conducted on the 28-day-old mixtures and
the six predicted mixtures were projected. The components are combined and
plotted:

> ## Run PCA on the data at 28\,days

> pp2 <- preProcess(age28Data[, 1:7], "pca")

> ## Get the components for these mixtures

> pca1 <- predict(pp2, age28Data[, 1:7])

> pca1$Data <- "Training Set"

> ## Label which data points were used to start the searches

> pca1$Data[startPoints] <- "Starting Values"

> ## Project the new mixtures in the same way (making sure to

> ## re-order the columns to match the order of the age28Data object).

> pca3 <- predict(pp2, cbResults[, names(age28Data[, 1:7])])

> pca3$Data <- "Cubist"

> pca4 <- predict(pp2, nnetResults[, names(age28Data[, 1:7])])

> pca4$Data <- "Neural Network"

> ## Combine the data, determine the axis ranges and plot

> pcaData <- rbind(pca1, pca3, pca4)

> pcaData$Data <- factor(pcaData$Data,

+ levels = c("Training Set","Starting Values",

+ "Cubist","Neural Network"))

> lim <- extendrange(pcaData[, 1:2])

> xyplot(PC2 ~ PC1, data = pcaData, groups = Data,

+ auto.key = list(columns = 2),

+ xlim = lim, ylim = lim,

+ type = c("g", "p"))

Desirability functions can be calculated with the desirability package. The
functions dMin and dMax can be used to create desirability function curve
definitions for minimization and maximization, respectively.


	10 Case Study: Compressive Strength of ConcreteMixtures
	10.1 Model Building Strategy
	10.2 Model Performance
	10.3 Optimizing Compressive Strength
	10.4 Computing


