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    Abstract     Human prostatic acid phosphatase (PAcP) is classically known as a 
prostate epithelium-specifi c differentiation antigen and was used as a surrogate 
marker for detecting prostate cancer (PCa) and monitoring its progression until the 
availability of prostate-specifi c antigen. Mature human PAcP protein is a 100 kDa 
glycoprotein containing two subunits of approximately 50 kDa each. Classically, 
two forms of human PAcP proteins have been identifi ed: the cellular form (cPAcP) 
and the secretory form (sPAcP). Recent studies reveal the existence of a transmem-
brane form (TM-PAcP). While the function of sPAcP and TM-PAcP in human 
remains under further investigation, cPAcP functions as a neutral protein tyrosine 
phosphatase in PCa cells and dephosphorylates human epidermal growth factor 
receptor-2 (HER-2/ErbB-2/Neu) resulting in decreased cell growth as well as tumor 
suppression. Clinically, cPAcP levels decrease in PCa tissues and correlate with 
PCa progression, despite elevated levels of sPAcP in circulation. Data from xeno-
graft animal models validate the tumor suppressor activity of cPAcP in prostate 
carcinomas. Further, activation of ErbB-2 upon knockdown of cPAcP expression 
results in a castration-resistant phenotype. Expression of PAcP is regulated by dif-
ferent factors in human PCa cells. PAcP is also a useful immunogen in PCa immu-
notherapy. Further investigation of the regulatory mechanism of cPAcP expression 
will likely provide valuable insights into novel PCa therapy.  
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   Abbreviations 

   Ab    Antibody   
  AcP    Acid phosphatase   
  ADT    Androgen deprivation therapy   
  APCs    Antigen-presenting cells   
  CRPCa    Castration-resistant prostate cancer   
  DHT    5α-dihydrotestosterone   
  EGF    Epidermal growth factor   
  EGFR    EGF receptor   
  FBS    Fetal bovine serum   
  HDAC    Histone deacetylase   
  HER-2/ErbB-2/neu    Human epidermal growth factor receptor-2   
  PAcP    Prostatic acid phosphatase   
  PCa    Prostate cancer   
  PI3K    Phosphoinositide 3-kinase   
  pIs    Isoelectric point   
  PKC    Protein kinase C   
  PSA    Prostate-specifi c antigen   
  PTP    Protein tyrosine phosphatase   
  p-Tyr    Phosphotyrosine   
  TM-PAcP    Transmembrane PAcP   
  Tyr-P    Tyrosine phosphorylation         

    Introduction 

    Prostatic acid phosphatase (PAcP; E.C.3.1.3.2) is known classically as a prostate- 
specifi c differentiation antigen in differentiated prostate epithelia [ 1 ,  2 ]. Human 
PAcP protein is synthesized in differentiated columnar epithelia of the prostate 
gland [ 2 – 6 ]; some of which is secreted into prostatic fl uid as the secretory form 
(sPAcP) and the rest is retained intracellularly as the cellular form (cPAcP) [ 7 ]. 
Recent studies have revealed a transmembrane form of PAcP (TM-PAcP) [ 8 ]. Since 
PAcP biochemically hydrolyzes a broad variety of small organic phosphomonoes-
ters under acidic conditions, this enzyme is known as an AcP [ 3 ,  9 – 11 ]. 

 PAcP levels are very low in normal circulation. In 1936, Gutman and col-
leagues made the seminal observation that human PAcP activity in serum is sig-
nifi cantly increased in PCa patients, especially those with bone metastases [ 12 ]. 
Subsequently, Huggins and colleagues reported that the circulating PAcP activity 
correlates with prostate tumor progression [ 13 ]. Since then, serum PAcP has been 
studied extensively as a surrogate marker for the diagnosis of PCa until the avail-
ability of PSA [ 14 ]. 
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 PAcP expression is positively associated with prostate epithelial cell  differentiation. 
Prior to puberty, cPAcP is expressed at a low level. In normal, well- differentiated 
human prostate epithelial cells, the high level of cPAcP protein is in agreement with 
slow cellular growth [ 1 ,  2 ,  15 ]. In prostate adenocarcinoma cells cPAcP expression is 
lower than in adjacent noncancerous cells, despite elevated sPAcP activity in circula-
tion [ 6 ,  16 – 18 ]. Studies have suggested that cPAcP acts as a tumor suppressor in PCa 
cells [ 19 – 21 ]. Several lines of evidence collectively support the concept that cPAcP 
functions as a histidine-dependent PTP in prostate epithelia and regulates its tumori-
genicity by dephosphorylating p-Tyr of human ErbB-2 (also known as HER-2 or neu 
protein) at physiological pH [ 19 ,  21 – 24 ]. cPAcP also plays a critical role in regulating 
the cross-talk between androgens and Tyr-P signaling. In parallel, numerous studies 
have shown a therapeutic potential of PAcP for the treatment of PCa [ 19 ,  21 ,  25 – 28 ]. 
Hence, in this chapter, we review the structure and regulation of PAcP isoforms in 
prostate epithelia and the function and therapeutic role of cPAcP in human PCa.  

   Human Prostatic Acid Phosphatase 

   Physiology of PAcP 

 AcPs are a group of enzymes that biochemically hydrolyze phosphomonoesters 
optimally at acidic pH. In human cells, AcPs can be divided into at least fi ve iso-
forms, including erythrocytic, lysosomal, prostatic, macrophagic, and testicular 
AcPs [ 2 ,  29 ,  30 ]. The mature form of PAcP is a glycoprotein consisting of two 
subunits of approximately 50 kDa each and is synthesized in differentiated colum-
nar prostate epithelia [ 3 ,  5 ,  17 ,  31 ]. There are two forms of PAcP protein in well- 
differentiated human prostate epithelia: the cellular form (cPAcP) and the secretory 
form (sPAcP). Recent results reveal the possible existence of a transmembrane form 
(TM-PAcP) [ 8 ]. 

 The physiological level of PAcP is negligible in fetal tissue and young males. 
After puberty, cPAcP level can reach approximately 0.5 mg/g of wet tissue in nor-
mal, well-differentiated prostate epithelia [ 2 ,  15 ]. sPAcP is predominantly secreted 
into seminal fl uid at approximately 1 mg/ml and has been used as a marker in foren-
sic medicine [ 7 ,  14 ]. In PCa patients, the circulating level of sPAcP is elevated and 
correlates with the stage of PCa. Hence, PAcP has received much attention and has 
served as a surrogate marker for PCa [ 12 – 14 ].  

   Expression and Distribution of PAcP in Human Tissues 

 While PAcP is considered as a prostate-specifi c differentiation antigen, studies of 
PAcP expression in non-prostate tissues have yielded inconsistent results. Solin 
et al. [ 32 ] showed by RNA blot analysis that there is no detectable hPAcP mRNA in 
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human liver, lung, pancreatic cancer tissue, placenta, breast cancer cells, mononuclear 
blood cells, or acute promyelocytic leukemia cells. Similarly, Zelivianski et al. [ 33 ] 
could not detect hPAcP mRNA expression in spleen, thymus, testis, ovary, small 
intestine, colon, or peripheral blood leukocyte by northern blotting. 

 On the contrary, immunologic studies demonstrate the positive reactivity of 
hPAcP Ab in some non-prostate cells such as leukocytes, kidney, spleen, placenta, 
pancreas, liver, stomach, granulocytes, neutrophils [ 34 – 38 ], male anal gland and in 
urethral gland of both sex [ 39 ], crypt epithelium of the duodenum [ 40 ], pancreatic 
islet cell carcinomas [ 41 ], and breast tumor cells [ 34 ]. Nevertheless, it has been 
proposed that the reactivity of hPAcP Ab in non-prostatic cells does not recognize 
the authentic hPAcP, but an immunologically cross-reactive AcP [ 22 ,  32 ,  42 ,  43 ], 
e.g., lysosomal acid phosphatase, a transmembrane phosphatase expressed in almost 
all tissues and cell types [ 38 ]. Supportively, purifi ed AcPs from human spleen and 
lung having a similar molecular weight as hPAcP share at least one common anti-
genic epitope with hPAcP [ 22 ]. 

 Recently, Graddis et al. [ 44 ] using quantitative RT-PCR reported that hPAcP is 
expressed at moderate to high levels in both normal and malignant prostate tissues. 
In non-prostate normal tissues examined, bladder cells express the highest ratio 
relative to prostate, though the expression level is still 50-fold lower than prostate 
[ 44 ]. The ratio of normal prostate PAcP mRNA to normal kidney PAcP mRNA is 
178, which is comparable to the ratio of 192 reported previously [ 45 ]. The hierar-
chical tissue distribution of hPAcP mRNA by PCR in normal tissues is prostate 
>>>bladder>kidney>pancreas>cervix = testis>lung = ovary [ 44 ], which is similar 
to previous analyses prostate>>>placenta>kidney>testis>pancreas>small intes-
tine = leukocytes>lung>ovary [ 45 ]. Among the tumor samples analyzed, cervical 
tumors express PAcP mRNA at the level similar to that seen in normal bladder; i.e., 
the level is less than 2 % of that in normal prostate [ 44 ]. Due to the clinical impor-
tance of hPAcP in PCa therapy and other medical applications, further experiments 
should clarify the identities of these proteins by determining their sequence.  

   Expression of PAcP in Prostate Epithelia 

 Immunohistochemistry staining has demonstrated that hPAcP is primarily localized 
in the differentiated columnar epithelial cells of prostate [ 37 ,  43 ,  46 – 48 ]. In situ 
hybridization analyses confi rmed that hPAcP mRNA is detected in the glandular, 
ductal epithelial cells of prostate, and that the stromal cells are devoid of this mRNA 
[ 6 ]. An electron microscopic study showed that hPAcP is in the microvilli lining and 
vesicular bodies of apical cells in normal prostate [ 46 ]. The existence of human 
cPAcP in the cytosolic fraction has been clearly demonstrated by various biochemi-
cal approaches including sub-fractionation [ 9 ,  21 ]. Due to the importance of cPAcP 
in regulating Tyr-P signaling in PCa cells, it is imperative to clarify the subcellular 
localization of cPAcP where it interacts with ErbB-2 for growth regulation.   
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   Structure of Human Prostatic Acid Phosphatase 

   Biochemical Characterization of Human PAcP Gene and mRNA 

 The human PAcP gene is located at chromosome 3q21–q23 [ 49 ] and has a size of 
more than 40 kb and distributed over 10 exons [ 50 ,  51 ]. Exon 1 encodes for the 
signal peptide and the fi rst eight amino acids of the protein. Exons 2–10 encode the 
rest of the coding regions and 3′-untranslated region (Fig.  12.1 ). Several PAcP 
cDNA clones have been obtained in which additions, deletions, and/or substitutions 
of nucleotides [ 49 ,  52 – 54 ] lead to the heterogeneity of amino acid residues. 
Interestingly, two different signal peptide sequences have been identifi ed [ 52 – 54 ]. 
The biological signifi cance of these heterogeneities in PAcP sequence requires fur-
ther investigations.

   In human LNCaP prostate carcinoma cells, the major transcription start site is 
located at 50 nucleotides upstream of the gene’s ATG codon [ 55 ]. In normal dif-
ferentiated human prostate epithelia, two species of PAcP mRNA are detected by 
Northern blot analysis with molecular sizes of 2.4 kb and 3.3 kb, essentially due to 
the variation in the number of Alu repeats in the 3′-noncoding sequence [ 32 ]. In 
prostate carcinomas, only expression of the 3.3 kb species is detected, which is 
lower than in noncancerous cells [ 32 ,  33 ,  52 ,  56 ]. The biological signifi cance and 
the molecular mechanism of the loss of 2.4 kb PAcP mRNA expression in PCa cells 
is not clear.  

  Fig. 12.1    Schematic diagram of human prostatic acid phosphatase (PAcP) gene and protein. 
( a ) Localization of the hPAcP gene in the q-arm of the chromosome 3 (Chr 3). ( b ) hPAcP gene 
encoded by 10 exons. The number of nucleotides in each exon was noted. ( c ) The full length of 
hPAcP protein consisting of 386 amino acids with 32 amino acid signal peptides (SP). Th e signal 
peptide and the fi rst eight amino acids were encoded by exon 1 and the rest of amino acids were 
coded by exons 2–10       
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   Structure of the PAcP Protein 

 The PAcP protein is initially translated as a precursor form with 386 amino acids 
containing a 32-amino acid signal peptide, and the mature PAcP protein of 354 
amino acids has a calculated molecular mass of 41,126 Da (Fig.  12.1 ). The signal 
peptide directs the nascent PAcP polypeptide into rough endoplasmic reticulum, 
which provides an environment for posttranslational modifi cations of PAcP protein 
[ 52 ,  57 ]. These modifi cations provide stability for the PAcP protein, where deletion 
of the signal peptide sequence from cDNA results in an extreme low level or nonde-
tectable PAcP protein [ 58 ,  59 ], (Lingappa, Vishwanath and Lin, Ming-Fong, 
Unpublished observations). It has been proposed that the signal peptide directs 
secretion of PAcP protein [ 59 ]; moreover, no cPAcP protein is found intracellularly 
[ 58 ,  59 ]. These data support the concept that the function of signal peptide is pri-
marily responsible for directing the nascent peptide via rough endoplasmic reticu-
lum for its various post-translational modifi cations, including glycosylation, which 
stabilizes PAcP protein [ 58 ]. 

 Sequence analysis has revealed that hPAcP protein contains three asparagine- 
linked glycosylation sites (62Asn–Glu–Ser64, 188Asn–Phe–Thr190, and 301Asn–
Glu–Thr303) and 6 cysteine residues forming two disulfi de bonds (Cys129–340 and 
Cys314–319) and two free residues (Cys183 and Cys281). The glycosylation and 
disulfi de linkages support the structural conformation and the stability of PAcP pro-
tein. Molecular sieving under native and denaturing conditions indicates that hPAcP 
is a dimer consisting of two subunits of similar molecular size [ 3 ,  9 ,  11 ,  60 ]. 
Analyses of the crystal structure of hPAcP reveal that each subunit has two domains: 
the larger domain is α/β type composed of a central seven-stranded mixed β-sheet 
with helices on both sides; while, the second, smaller one contains six α-helices and 
is formed mostly by long-chain excursions (residues 125–227) from the fi rst domain 
and α-loop between residues 16–38 with no secondary structural elements [ 61 ].  

   PAcP Isoforms: Cellular, Secretory, and Transmembrane Forms 

 Recent studies have revealed that the signal peptide of hPAcP protein can direct dif-
ferential biosynthetic pathways, which results in different biological functions of 
PAcP protein, depending on the growth environments [ 56 ], (Lingappa, Vishwanath 
and Lin, Ming-Fong, Unpublished observations). cPAcP and sPAcP proteins exhibit 
unique antigenic epitope(s), yet they share partial cross-reactivities [ 9 ]. 
Biochemically, they exhibit different, while overlapping p I s [ 9 ,  62 ]. 

 The level of PAcP in normal circulation is negligible, while it is elevated in 
PCa patients and correlates with clinical progression [ 12 ,  13 ,  63 ,  64 ]. Thus, 
circulating PAcP has served as a surrogate marker for PCa detection prior to the 
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availability of PSA [ 14 ,  65 ,  66 ]. The tumor-associated PAcP exhibits different 
biochemical properties from normal species and is hyper-glycosylated, includ-
ing sialylation [ 11 ]. This hyper-sialylation prolongs the half-life of sPAcP pro-
tein in circulation, which contributes to the elevated PAcP level in the circulation 
of PCa patients despite its decreased mRNA level [ 11 ,  67 ]. sPAcP and cPAcP 
exhibit different sensitivities to endoglycosidase [Garcia-Arenas, Renee and 
Lin, Ming-Fong, Unpublished observations]. The biological signifi cance of gly-
cosylation involved in PAcP function and subcellular localization deserves fur-
ther studies. 

 Large amounts of PAcP protein are found in normal prostate tissues by immuno-
histochemistry staining and biochemical analysis of tissue homogenates [ 9 ,  62 ,  68 , 
 69 ]. The presence of cytosolic cPAcP protein is further validated by sub- fractionation 
approaches, including ultracentrifugation [ 21 ]. Additionally, immunocytochemistry 
staining of intact, nonpermeabilized LNCaP PCa cells shows no signifi cant staining 
of hPAcP. On the contrary, intensive staining is seen in the cytosolic area of permea-
bilized cells with higher intensity of staining in higher density cells [ 21 ,  70 ,  71 ]. 
Therefore, cPAcP is localized intracellularly and has served as a useful marker for 
identifying the prostate origin of metastatic cancer [ 1 ,  2 ,  14 ]. In prostate carcino-
mas, intracellular PAcP protein level decreases, correlating with PCa progression 
[ 6 ,  16 ]. The decreased protein level is at least in part by the decrease of mRNA [ 32 ]. 
Because of the importance of cPAcP in tumorigenicity and androgen sensitivity of 
PCa cells, the molecular structure of cPAcP relating to sPAcP should be further 
investigated. 

 Quintero et al. [ 8 ] reported the existence of a PAcP-spliced variant, which is a 
type І transmembrane protein in many mouse tissues. However, its expression pro-
fi le in human tissues other than prostate is not yet known. Immunostaining with an 
anti-PAcP Ab showed PAcP expression in human skeletal muscle cells. They fur-
ther demonstrated that PAcP colocalizes with lysosomal associated membrane 
protein 2. None-the-less, expression of PAcP is extremely low in skeletal muscle 
cells, and importantly, exhibits no lysosomal localization [ 1 ,  2 ,  38 ]. These obser-
vations have raised a concern that the staining may be due to a partial cross-reac-
tivity of polyclonal Ab [ 22 ]. It has been further proposed that the active site of 
TM-PAcP is localized and functioning extracellularly [ 20 ]. Biochemical analyses 
have demonstrated that no phosphatase activity is signifi cantly detected when 
small organophosphate substrates are incubated with intact LNCaP cells. These 
results collectively suggest that in prostate epithelia only a very low amount, if 
any, of the active domain of hPAcP faces extracellularly. While the decreased 
expression of classical PAcP mRNA and protein correlates with PCa progression, 
the expression of TM-PAcP mRNA is not signifi cantly changed, indicating that 
TM-PAcP is not involved in prostate carcinogenesis [ 8 ]. A functional characteriza-
tion of TM-PAcP in prostate epithelia utilizing its specifi c monoclonal Ab is 
required for further investigation.   
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   Biological Function of Prostatic Acid Phosphatase Isozymes 

   Cellular PAcP (cPAcP) as a Growth Regulator and Tumor 
Suppressor in Prostate Cancer Cells 

 Expression of PAcP is correlated with the differentiation of normal prostate cells. In 
PCa, cPAcP levels of both mRNA and protein are decreased, compared to nonma-
lignant cells [ 6 ,  16 ,  63 ,  69 ,  72 – 74 ]. It has been proposed that normal prostate epi-
thelia, having a low level of cPAcP, are at high risk of carcinogenesis [ 72 ]. In human 
PCa cell lines, cPAcP levels are correlating inversely with cell growth rates [ 16 ,  19 , 
 21 ,  56 ]. Results of increased PAcP expression by cDNA transfection and decreased 
cPAcP expression by antisense cDNA or shRNA knockdown in PCa cells validate 
the growth regulatory role of cPAcP in PCa cells [ 17 ,  21 ,  71 ]. 

 Several studies of clinical archival specimens showed that decreased cPAcP 
expression correlates with increased tumorigenicity and cancer progression [ 2 ,  6 , 
 16 ,  17 ,  75 ]. Conversely, expression of cPAcP correlates with decreased tumorige-
nicity of PCa cells in xenograft animals [ 16 ]. Igawa et al. [ 19 ] further explored the 
direct tumor suppression activity of cPAcP in a xenograft animal model. 
Importantly, in a PAcP-knockout mouse model, the prostate develops adenocarci-
nomas [ 20 ]. The data collectively demonstrate that cPAcP expression suppresses 
the growth and tumorigenicity of PCa cells. This provides an explanation for the 
clinical phenomenon that the expression levels of cPAcP inversely correlate with 
the stage of PCa as well as its advanced progression under androgen deprivation 
therapy (ADT) [ 6 ,  72 ]. 

 Further studies have revealed that cPAcP is involved in regulating androgen- 
stimulated proliferation of human PCa cells [ 76 – 78 ]. Expression of cPAcP by 
cDNA transfection in androgen receptor (AR)-positive, androgen-independent 
LNCaP C-81 cells results in restoring the androgen sensitivity, i.e., the cell growth 
is sensitive to androgen treatment [ 16 ,  78 ]. Conversely, an androgen-independent 
phenotype is obtained by knockdown of cPAcP expression by shRNA in androgen- 
senstitive LNCaP C-33 cells [ 21 ]. Thus, androgen-induced proliferation of prostate 
epithelia is at least in part due to an androgen effect on decreasing cPAcP activity 
[ 16 ,  71 ,  78 ]. The data taken together support the concept that cPAcP plays a critical 
role in regulating the basal as well as the androgen-stimulated proliferation of 
human PCa cells.  

   Transmembrane PAcP (TM-PAcP) as an Analgesic in Mice 

 While TM-PAcP is detected in several tissues from mice, thus far it has been 
detected only in prostates of humans [ 8 ]. Interestingly, PAcP knock-out (PAcP −/− ) 
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mice display enhanced noxious thermal sensitivity and sensitization through 
inactivation of adenosine A1 receptor (A1R) and phospholipase C-mediated 
elevation of phosphatidylinositol 4,5-bisphosphate (PIP2) [ 20 ,  79 ,  80 ]. It has 
been proposed that TM-PAcP is the fl uoride-resistant acid phosphatase and 
functions as phosphoadenosine phosphatase upon expression in human embry-
onic kidney HEK293 cells [ 20 ]. Considering the long-lasting antinocieptive 
effect of secretory PAcP in the naïve mouse model, it has been proposed that 
recombinant PAcP can be used to treat chronic pain [ 20 ,  81 ,  82 ]. However, it is 
not known if TM-PAcP is indeed expressed in the corresponding human tissues 
and cells. The expression profi le of TM-PAcP in human tissues and cells should 
be analyzed.  

   Role of Secretory PAcP (sPAcP) in Sperm Motility, 
HIV Transmission, and Forensic Marker 

 Due to the large amount of sPAcP protein in seminal fl uid [ 83 ], it has been sug-
gested that PAcP plays a physiological role in fertility [ 84 ] and may affect the motil-
ity of sperm [ 20 ,  85 ]. Dave and Rindani [ 86 ] observed that phosphatase activity is 
maximal in azoospermic men, and that this activity is decreased as the sperm num-
ber (concentration) increases. However, there is no signifi cant difference in PAcP 
activity in seminal plasma between normal and vasectomized patients [ 87 ]. 

 Importantly, a proteolytically cleaved PAcP peptide, PAPf39, which forms amy-
loid fi brils called Semen-derived Enhancer of Viral Infection (SEVI), can enhance 
the HIV’s ability to infect human cells by fi ve orders of magnitude [ 88 ]. This obser-
vation is in agreement with a previous report that HIV replication component is 
detected at a tenfold higher concentration in seminal fl uid than in blood, even in the 
presence of an antiretroviral drug [ 89 ]. Alternatively, PAcP may increase the pH of 
the vagina [ 90 ]. Thus, this postintercourse neutralization of pH may allow a female- 
to-male transmission of HIV [ 91 ]. The role of sPAcP in sexually transmitted dis-
eases requires further investigation. 

 It should be noted that secretory PAcP can also serve as a forensic marker. Due 
to the large quantity of sPAcP in seminal fl uid, and also due to its specifi city of 
expression in males, secretory PAcP was investigated and served as a surrogate 
marker in forensic medicine for sexual assault [ 92 ]. This was supported by the 
observations that elevated levels of AcP activity persist in the vaginal pool after 
sexual intercourse and in semen stains [ 93 – 100 ]. Nevertheless, there are some con-
cerns, for example, the potential cross reactivity with other acid phosphatases and 
the instability of its enzymatic activity. The subsequent advancements including the 
enhancement in enzymatic assays and the development of detection methods such 
as ELISA, counter-immunoelectrophoresis, and radioimmunoassays made PAcP as 
a useful surrogate marker in forensic medicine [ 101 – 104 ]. Nevertheless, the discov-
ery of PSA (also called γ-seminoprotein; γ-SM) in seminal fl uid, due to its 
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long- term stability (identifi able for as long as 1 year) and easy identifi cation, 
replaced PAcP as the forensic marker [ 14 ,  105 – 108 ].   

   Biochemical Characterization of Human Prostatic 
Acid Phosphatase Protein 

   PAcP: A Histidine-Dependent Neutral Protein 
Tyrosine Phosphatase 

 PAcP, which belongs to the histidine phosphatase superfamily, uses an active-site 
histidine in catalyzing the transfer of a phosphoryl group from phosphomonoesters 
to water at acidic pH. The copurifi cation of cPAcP protein with the majority of PTP 
activity from noncancerous prostate tissue and purifi ed PAcP protein from seminal 
fl uid and tissue exhibiting the endogenous PTP activity together indicate that PAcP 
is an authentic PTP [ 109 ,  110 ]. Biochemical characterizations show that PAcP 
dephosphorylates p-Tyr of EGFR with a neutral pH optimum, supporting the con-
cept that cPAcP can indeed function as a neutral PTP in cells [ 111 ]. Further, in 
PAcP K/O mice, Tyr-P activity is increased in prostate cells, suggesting that intra-
cellular cPAcP functions as PTP [ 20 ,  112 ]. Several lines of evidence together sup-
port the notion that cPAcP indeed functions as a neutral PTP in prostate epithelia 
[ 17 ,  110 ,  113 ]. 

 Structural analyses of PAcP protein reveal that it contains neither the PTP 
signature motif, C(X) 

5
 R(S/T), nor the extended active site signature sequence for 

the dual-specifi city phosphatases, VXVHCXXGXXRS(X) 
5
 AY(L/I)M [ 52 ,  57 , 

 114 ,  115 ]. Chemical titration experiments revealed that PAcP has two reactive 
sulfhydryl groups [ 116 ]. It was hypothesized that Cys183 is essential for the 
PTP activity of PAcP. Nevertheless, studies by site-directed mutagenesis deter-
mined that neither Cys183 nor Cys281 plays a role in the phosphatase enzymatic 
activity [ 58 ]. 

 Covalent modifi cations and phosphoenzyme trapping studies revealed that PAcP 
contains histidine and carboxylic acid residues in the active site [ 117 – 119 ]. The role 
of His12 in both AcP and PTP activities is clearly evidenced by site-directed muta-
genesis [ 58 ]. The His12 imidazole ring provides a pair of electrons for nucleophilic 
attack to the phosphate group. Cooperatively, Asp258 donates a proton from its 
carboxyl group to the substrate resulting in the formation of the phosphoenzyme 
intermediate and the liberation of dephosphorylated substrate. Additionally, Asp258 
might also stabilize the phospho-His12 intermediate. Subsequently, the nucleo-
philic attack of the phosphoenzyme intermediate occurs through a water molecule 
to release the phosphate group and to return a proton to the Asp258 carboxyl group 
[ 116 ,  120 ,  121 ]. The data collectively from chemical modifi cation, site-directed 
mutagenesis, and X-ray crystallographic approaches suggest the importance of 
His12 and Asp258 in both AcP and PTP activity of PAcP protein [ 58 ,  61 ,  116 , 
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 120 – 122 ]. These results further support the concept that PAcP represents a novel 
histidine-dependent PTP, which uses the same active site as well as the catalytic 
mechanism of AcP to execute its PTP activity.  

   ErbB-2/HER-2/neu: An Intracellular Substrate 
of cPAcPin Prostate Epithelia 

 Several lines of evidence validate cPAcP as an authentic PTP [ 17 ,  21 ,  109 – 111 ,  113 , 
 121 ,  123 ]. In PCa cells, cPAcP activity inversely correlates with the p-Tyr level of a 
185 kDa protein [ 23 ,  111 ]. The incorporation of purifi ed PAcP protein into PAcP- 
null DU145 PCa cells results in decreased Tyr-P of 185 kDa protein [ 23 ]. The 
185 kDa protein was identifi ed to be the ErbB-2 [ 24 ]. The notion of cPAcP dephos-
phorylating ErbB-2 Tyr-P is further supported by ectopic expression of the wild- 
type cPAcP but not its phosphatase-inactive mutant in PCa cells [ 16 ,  58 ]. Conversely, 
small interfering RNA or antisense-mediated PAcP knockdown in LNCaP cells 
results in increased ErbB-2 Tyr-P and subsequently cell proliferation [ 17 ,  21 ]. 
Additionally, an intratumoral injection of the wild type PAcP, but not phosphatase- 
inactive mutant, cDNA expression vector in xenograft tumors results in decreased 
ErbB-2 Tyr-P as well as tumorigenicity [ 19 ]. 

 Transient expression of PAcP in PAcP-null PCa cells is associated with decreased 
Tyr1221/2 and Tyr1248 phosphorylation at ErbB-2 and reduced Tyr-P of p52Shc 
and cell growth [ 21 ]. Knockdown of endogenous PAcP expression by shRNA is 
associated with elevated Tyr-P of ErbB-2 at Tyr1221/2 as well as Tyr1248 and acti-
vation of downstream signaling, including Akt, STAT-3, and STAT-5 [ 21 ]. 
Importantly, reciprocal co-immunoprecipitation analyses showed an interaction 
between PAcP and ErbB-2 in the same complex under a nonpermissive growth con-
dition [ 21 ]. This interaction by co-immunoprecipitation was decreased upon growth 
stimulation [ 124 ]. Thus, the effect of cPAcP on downregulation of PCa cell growth 
is at least in part through dephosphorylating the p-Tyr of ErbB-2 protein in those 
cells [ 16 ,  21 ,  24 ,  58 ,  124 ]. ErbB-2 serves as an in vivo substrate of cPAcP in PCa 
cells [ 17 ,  19 ,  21 ,  120 ,  124 ] (Fig.  12.2 ).

   The cPAcP dephosphorylation model indicates that dimeric cPAcP dephosphor-
ylates two autophosphorylated residues on an activated receptor simultaneously 
because the presence of a second phosphorylated tyrosyl residue at the C terminus 
of ErbB-2 can enhance the binding affi nity considerably [ 120 ]. Phosphopeptide- 
binding analyses showed that cPAcP has the most favorable binding energy toward 
the synthesized peptide DNLpYYWD, corresponding to Tyr1221/2 phosphoryla-
tion of ErbB-2, with the possibility of acting on Tyr1248 as the additional site [ 120 ]. 
This is supported by kinetic studies on ErbB-2 activation that phosphorylation of 
Tyr1221/2 is elevated prior to Tyr1248 activation in PAcP-knockdown PCa cells 
[ 21 ]. Alternatively, due to the close proximity of Tyr1221/2 and Tyr1248, elevated 
phosphorylation on Tyr1248 in PAcP-knockdown cells may be secondary to the 
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removal of cPAcP from Tyr1221/2. Further experiments should clarify the molecu-
lar mechanism. 

  ErbB-2 Signaling 

 Results of several studies clearly support the notion that ErbB-2 plays a critical 
role in PCa progression despite the fact that ErbB-2 gene is not amplifi ed nor 
ErbB-2 protein is elevated in most carcinomas. It should be noted that ErbB-2-
specifi c activity is increased as shown by increased overall Tyr-P and downstream 
signaling in AI PCa cells, higher than that in corresponding AS cells, and this 
increased Tyr-P is inversely correlated with cPAcP activity [ 21 ,  23 ,  24 ,  77 ]. 
Evidently, knockdown of cPAcP expression by antisense cDNA and siRNA in AS 
PCa cells leads to increased Tyr-P of ErbB-2, activation of downstream signaling 
and increased cell growth both in regular medium and in steroid-reduced condi-
tion [ 17 ,  21 ]. Thus, increased ErbB-2 protein-specifi c activity contributes to 

  Fig. 12.2    Schematic representation of cPAcP interaction with ErbB-2 in prostate cancer cells. 
Progression of androgen-sensitive prostate cancer cells towards androgen independence is accom-
panied by early decrease/loss of cPAcP expression in prostate cancer cells results in hyperphos-
phorylation of HER-2 on tyrosine residues including Y1221/2 and Y1248 leading to 
androgen-independent cellular proliferation. Activated HER-2 can transduce its signals via p52Shc 
(blocked by dominant-negative (DN) HER-2 cDNA transfection or HER-2 inhibitors, AG825, 
AG879) to activate the downstream pathway (blocked by p52Shc Y317F mutant cDNA transfec-
tion or MEK inhibitors)       
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advanced CRPCa progression primarily by phosphorylation regulation, including 
ERK/MAPK, Akt as well as STAT-3 and STAT-5 activation, which leads to 
advanced PCa cell survival, proliferation, and PSA production under androgen-
deprived conditions. In summary, the interaction between cPAcP and ErbB-2 is 
involved in controlling the basal as well as the androgen-stimulated proliferation 
of human PCa cells [ 21 ,  78 ]. Aberrant regulation of this interaction can lead to 
CRPCa progression under ADT.   

   Regulation of PAcP Expression 

 The expression of PAcP protein is regulated by multi factors at different levels. Due 
to the importance of cPAcP protein as a growth regulator in PCa cells, it is vital to 
delineate its regulatory mechanism for potential clinical applications.  

   Androgen Regulation of PAcP Expression and Secretion 
in Prostatic Carcinoma Cells 

 Since PAcP expression correlates with the differentiation of prostate epithelia after 
puberty, it has been proposed that the expression and secretion of PAcP is regulated 
by androgens [ 2 ]. The stimulated secretion of PAcP has served as a hallmark of 
androgen action in prostate epithelial cells for over 6 decades, and the circulating 
PAcP in PCa patients has been used as a surrogate marker in ADT for about fi ve 
decades [ 1 ,  2 ,  13 ]. 

 Lin and Garcia-Arenas [ 125 ] made the seminal observation that depending on 
the cultured cell density, DHT can upregulate or downregulate PAcP mRNA levels 
in LNCaP cells. These results clarify the inconsistent reports of the opposite regula-
tions of PAcP mRNA by DHT [ 54 ,  126 ]. Nuclear run-on experiments showed that 
DHT regulation of PAcP expression can occur at the transcriptional level [ 33 ]. 
Further investigation is needed to delineate the molecular mechanism by which cell 
density modulates androgen regulation of PAcP mRNA level and to examine 
whether androgens regulate the stability of PAcP mRNA in addition to the transcrip-
tional rate [ 33 ]. 

 Sequence analyses revealed that the human PAcP gene promoter DNA within 
3 kb upstream of the coding region lacks the canonical TATA box and the GC box, 
where there are fi ve putative AREs [ 55 ,  127 ]. In prostate carcinoma cells, although 
the PSA promoter is regulated by androgens [ 128 – 130 ], PAcP expression is not 
androgen dependent [ 54 ,  126 ,  131 ]. Utilizing AR-negative, androgen-independent 
PC-3 and DU145 PCa cell lines, in the absence of androgen receptor or the addition 
of androgen, the PAcP promoter is highly active as determined by reporter assay. 
These results demonstrate that in PCa cells, the PAcP gene is regulated in an 
androgen- independent, responsive manner [ 70 ,  126 ,  132 ]. Supportively, secretion 
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of PAcP protein is observed when LNCaP cells are cultured in media supplemented 
with charcoal-stripped FBS [ 133 ] or dialyzed FBS [ 77 ,  134 ] in which steroids and 
growth factors are signifi cantly reduced. Further, PAcP protein expression is at a 
high level in cells with serum-free media in the absence of added DHT and even 
higher than with regular medium containing FBS [ 54 ,  77 ]. These data together sup-
port the notion that in LNCaP cells, androgen-stimulated PAcP secretion is via two 
regulatory pathways: increasing levels of secretory PAcP mRNA and at the same 
time, promoting the secretory pathway [ 54 ]. 

 It has been shown that JFC1 [also designated as synaptotagmin-like protein (slp1)], 
a Rab27a and PtdIns(3,4,5)P3-binding protein, can modulate androgen- stimulated 
secretion of sPAcP in LNCaP cells [ 135 – 137 ]. In parallel, phosphoinositide 3-kinase 
(PI3K) also plays a critical role in regulating the exocytosis of sPAcP [ 135 ]. 
Additionally, PKC activator and androgens both increase PAcP secretion, which are 
blocked by PKC inhibitors [ 138 ]. These results together suggest that sPAcP secretion 
is mediated by a regulatory process including Rab27a, PI3K, and PKC, differing from 
PSA secretion primarily in response to androgens [ 135 ,  138 ,  139 ].  

   Effects of Growth Factors on PAcP Expression 

 Factors other than androgens can regulate PAcP gene expression in LNCaP cells. 
Interestingly, the effect of EGF is more pronounced than DHT in determining PAcP 
mRNA expression and can potentiate the downregulation by androgens, but there is 
no added effect by androgens on EGF suppression [ 54 ,  70 ,  140 ]. EGF treatment also 
results in decreased cPAcP activity, which may be due to its phosphorylation inacti-
vation by EGFR or oxidation inactivation [ 124 ]. While both EGF and TGF-α can 
bind to the EGF receptor [ 141 ,  142 ], TGF-α has a less inhibitory effect than EGF on 
reducing hPAcP mRNA [ 71 ]. On the other hand, TGF-β 

1
 , which is inhibitory to 

normal prostatic epithelial cells [ 143 ,  144 ], upregulates the expression of PAcP 
mRNA [ 140 ]. Due to the importance of PAcP in clinical applications, further exper-
iments should clarify the regulation of PAcP in prostate epithelia. 

 In the presence of androgens, the expression of growth factors, e.g., EGF, TGF- α, 
TGF-β 

1
 , and TGF-β 

3,
  are also modulated. Androgens and growth factors and their 

receptors, represent cross-talk at several levels. Additional experiments are required 
for elucidating the role of this cross-talk on the regulation of PAcP gene expression.  

   Epigenetic Regulation of PAcP Expression in Prostate 
Carcinoma Cells 

 DNA methylation and histone modifi cation, two common epigenetic mechanisms, 
play vital roles in regulating PCa cell growth and metastasis [ 145 ]. Histone modifi -
cation, primarily by acetylation and deacetylation, leads to altered gene expression 
by changing chromosome structure and the level of gene transcription. Histone 
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deacetylase (HDAC) activity is enhanced and upregulated in PCa and other carcino-
mas [ 146 – 148 ]. Hence HDAC is recognized as a promising target for cancer ther-
apy, although the exact role of specifi c HDACs in the pathophysiology of PCa is still 
not well understood. 

 HDAC inhibitors have been shown to induce PCa cell growth arrest, differentia-
tion, and apoptosis. cPAcP functions as a tumor suppressor in prostate carcinomas, 
and its decreased expression correlates with PCa progression. However, the molecu-
lar mechanism of its reduced expression in PCa remains an enigma [ 16 ,  19 ,  21 ]. 
Importantly, HDAC inhibitors, including sodium butyrate, trichostatin A (TSA), 
and valproic acid (VPA), suppress the growth of PCa cells and concurrently, cPAcP 
mRNA and protein expression are increased and ErbB-2 Tyr-P is decreased [ 149 ]. 
Conversely, knockdown of cPAcP expression by shRNA reduces the effi cacy of 
HDAC inhibitor-induced growth suppression. Therefore, PAcP is involved in HDAC 
inhibitor-induced growth suppression and functions as a tumor suppressor gene in 
regulating PCa progression and metastasis (Fig.  12.3 ). Importantly, HDAC inhibitor- 
treated PCa cells increase their androgen responsiveness [ 149 ]. Understanding the 
regulation of cPAcP expression by HDACs may lead to improved CRPCa therapy 
by HDAC inhibitors.

      Prostatic Acid Phosphatase as a Therapeutic Agent 
as Well as a Target for Prostate Cancer Treatment 

 While the majority of patients with metastatic prostate cancer have an initial 
response to ADT, most patients will eventually relapse with castration-resistant 
tumors. With the limited effi cacy of conventional therapeutic approaches and also 
with signifi cant morbidities of surgical and radiation treatments in advanced PCa, 
other avenues for treating advanced prostate carcinoma are actively under 
investigation.  

   PAcP Per Se as a Therapeutic Agent 

 Several lines of biochemical evidence have demonstrated that cPAcP functions as a 
tumor suppressor. A single intratumoral injection of an expression vector encoding 
the wild-type PAcP protein into xenograft tumors results in the suppression of tumor 
growth and progression [ 19 ]. In PAcP-knockout mice, the prostate develops carci-
nomas in situ, indicating that cPAcP functions as a tumor suppressor [ 20 ]. In paral-
lel, cPAcP plays a critical role in HDAC inhibitor-induced PCa cell growth 
suppression [ 149 ]. Importantly, the HDAC inhibitor-treated PCa cells exhibit an 
increase in androgen responsiveness, suggesting that intermittent treatment with 
HDAC inhibitors may prolong the duration of ADT [ 149 ]. Thus, the restoration of 
cPAcP expression in PCa cells may provide a novel avenue for treating CRPCa.  
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   PAcP as an Antigen for Immunotherapy of Prostate Cancer 

 Immunotherapeutic vaccines induce an antitumor response [ 150 ] by targeting 
tumor-associated antigens (TAAs) or by disrupting molecular pathways that pro-
motes tumor growth [ 151 ,  152 ]. Therefore, the primary goal of immunotherapy is to 
activate the effector T cells that can migrate to the developing tumors and facilitate 
the damage of individual cancer cells. 

 Prostate cells express several specifi c biomarkers, including PSA, PAcP, and 
prostate-specifi c membrane antigen, which serve as TAAs and can serve as 

  Fig. 12.3    Epigenetic regulation of prostate cancer cells. We propose that in PCa cells, upregulated 
histone deacetylases (HDACs) downregulate PAcP expression. This PAcP suppression leads to 
aberrant activation of ErbB2/HER-2/neu by Tyr-P followed by ERK/MAPK and Akt activation, 
leading to cell survival, proliferation, adhesion, and migration. Conversely, HDACs inhibitors 
(HDACi) restore cPAcP expression. This restored cPAcP dephosphorylates ErbB-2, which leads to 
inhibit prostate cancer progression and metastasis by p38 and JNK activation       
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immunogens. Previous studies demonstrated naturally occurring PAcP-specifi c 
binding IgG in human serum [ 65 ], the induction of a destructive prostatitis by PAcP-
specifi c CTLs in rodents [ 153 ], and T-helper cell responses in men with PCa [ 154 ]. 
Studies have also identifi ed Abs and circulating T cells against TAAs in PCa patients 
[ 155 ,  156 ]. These fi ndings suggest that T-cells can break the tolerance and induce an 
immune response against tumor cells [ 155 ,  156 ]. These phenomena collectively 
indicate that an immune environment capable of supporting antigen-specifi c CTL 
may exist in vivo [ 154 ]. Small et al. [ 157 ] observed that dendritic cells loaded with 
an engineered antigen–cytokine fusion protein consisting of PAcP and granulocyte 
macrophage colony-stimulating factor (GM-CSF) are capable of inducing a potent 
cellular immune response in vivo to rodent tissues and tumors that express PAcP 
[ 157 ]. Subsequently, a dendritic cell product consisting of autologous dendritic cells 
loaded with the human PAcP–GM-CSF fusion protein was developed. It is hypoth-
esized that when the vaccine is infused into the patient, the activated antigen- 
presenting cells (APCs) displaying the fusion protein will induce an immune 
response against the TAA. Phase I/II clinical trials with a dendritic cell-based PAcP 
vaccine in CRPCa patients led to a greater than 50 % decrease in PSA [ 157 ,  158 ]. 
The study showed that all patients developed specifi c immune responses to the 
recombinant fusion protein, and 38 % developed immune responses to PAcP. The 
time to disease progression correlated with the development of an immune response 
to PAcP and with the dose of dendritic cells received. There were minimal side 
effects of the therapy. 

  Highlight: Sipuleucel-T – An Autologous Dendritic Cell Product 

 Sipuleucel-T (Provenge, the commercial name) has become the fi rst vaccine in 
the class of T cell-associated cancer immunotherapeutic agents approved by the 
United States Food and Drug Administration in April 2010 for the treatment of 
metastatic CRPCa. Sipuleucel-T is composed of autologous peripheral blood 
mononuclear cells (PBMCs), including APCs with a recombinant fusion pro-
tein PA2024 (full- length PAcP) linked to an adjuvant (GM-CSF). Currently, 
Sipuleucel-T is reserved for patients with documented metastatic PCa who have 
progressed on ADT with a documented testosterone level of less than 50 ng/dL. 
Sipuleucel-T treated patients demonstrated an additional 4.1-month median sur-
vival compared to the placebo group, which was statistically signifi cant 
(HR = 0.78; 95 % CI, 0.61–0.98;  p  = 0.03). This increase in survival correlated 
with a 22 % decrease in mortality with the use of Sipuleucel-T [ 159 ,  160 ]. There 
is a need of surrogate markers for determining a patient’s response to therapy. 
Clearly, the identifi cation of predictive biomarkers will help practitioners select 
patients who are most likely to benefi t from therapy [ 160 ]. 
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      Conclusion and Perspectives 

 Until the availability of PSA, circulating PAcP activity has served as a surrogate 
marker for diagnosing PCa and also has been used to monitor the effi cacy of andro-
gen deprivation therapy in treating PCa [ 14 ,  66 ]. In contrast, expression of PAcP 
and its intracellular level (cPAcP) is diminished in prostate carcinomas. Recent 
advances emphasize that cPAcP is an authentic protein tyrosine phosphatase and 
functions as a negative growth regulator in PCa cells. Importantly, cPAcP represents 
a novel subfamily of PTP super family [ 121 ]. The expression of PAcP is regulated 
at different levels as well as by different factors including androgens and growth 
factors in prostate carcinoma cells. The androgenic regulation of PAcP expression 
and secretion has been known to be a hallmark of androgen action for over six 
decades [ 2 ]. Nevertheless, the results of molecular studies demonstrate that the pro-
moter activity of the PAcP gene is regulated in an androgen-independent manner 
[ 54 ,  126 ,  132 ]. 

 Several lines of evidence support the importance of cPAcP enzyme in regulating 
PCa cell proliferation, particularly during the castration-resistant progression, at 
least in part by dephosphorylating p-Tyr of ErbB-2 intracellularly. It has been spec-
ulated that PAcP can also function as a phospholipid phosphatase because in cPAcP- 
knockdown cells, phospholipid activity is enhanced and also PAcP has an open 
active domain [ 80 ,  121 ]. Additionally, PAcP expression is in part regulated by epi-
genetic mechanism including histone acetylation and possibly methylation. These 
emerging data support PAcP as a potential therapeutic target for advanced PCa. The 
recent clinical immunotherapy trial with PAcP protein as a vaccine is promising. 
Further studies are needed to improve the clinical effi cacy, for example, by effective 
intracellular delivery of antigenic peptides into dendritic cells. 

 Taken together, the data clearly show that cPAcP functions as an authentic tumor 
suppressor in PCa. Due to the importance of the PAcP gene in prostate carcinogen-
esis, investigation of the basic biochemistry and molecular biology of cPAcP includ-
ing its interaction with other oncogenic proteins should provide valuable insights 
into its potential therapeutic applications.     
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