
Chapter 6
Some Cinderella Ruckle Type Games

Vic Baston

Abstract Nearly 30 years have elapsed since Ruckle’s pioneering book (Ruckle
WH (1983) Geometric games and their applications. Pitman, Boston) on geometric
games was published; it was pioneering in the sense that it did not seek to detail
a theory but dealt with a host of two-person zero-sum games which were easy to
state and understandable to an intelligent layperson. Attractive features were the
“toy” examples giving very idealized applications of the games and the list of open
problems at the end of most chapters. Although many of the games had quite a lot
in common, the professed aim was to provide “usable solutions” rather than a uni-
fied treatment. In fact Gal’s book (Gal S (1980) Search games. Academic Press,
New York) which developed a theory of search games had already appeared when
Ruckle’s book was published but, in the main, Ruckle’s games fell outside its scope.
Although there has been considerable activity in the theory of search games since
then (see [2] and Chap. 9 of the book), the main emphasis has been on the devel-
opment of the aspects covered in Gal’s book. The aim of this chapter is to draw
attention to some Ruckle games which the writer feels have not received the atten-
tion they deserve; hence the Cinderella in the title.

6.1 Introduction

Fraenkel divides games into two types, games people play (i.e. games that people
buy and play) and games that mathematicians play or, in Peter Winkler’s words,
games people don’t play. The selection of the games here fall very definitely into
the latter category and the hope is that these games will lead to the development of
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ideas which can be used to unify treatments for a variety of games, in other words,
usable methods. Thus the choice has been strongly influenced by two factors. Firstly
there needs to be a connection between the games and secondly each game has to
provide a stimulus for further research; in most cases this means that the games are
used as a starting off point from which attractive open questions can be generated.
As a result Sects. 6.2 and 6.8 all include suggestions for further work of varying
degrees of difficulty which are intended to encourage more researchers to take an
interest in the games. However it does mean that other games associated with Ruckle
such as lattice and accumulation games have been ignored. In keeping with the spirit
of Ruckle’s book, the games in this chapter are all two-person zero-sum ones and
the players are called RED and BLUE with RED being the maximizer. The structure
of the chapter is described in the following paragraphs.

The Several Intervals Game is played in the unit interval I with BLUE choosing
a point of I and RED simultaneously selecting intervals of given lengths αi in I; the
payoff to RED is one if BLUE’s point is in one of the intervals and zero otherwise.
Although simply stated, this has proved to be an extremely difficult game to solve
and no comprehensive solution has been found when RED can choose more than
two intervals. Abbreviated details of the original (unpublished) approach used for
the Two Intervals Game and some of the results on the Three Intervals case are given
in Sect. 6.2.

Ruckle’s greedy games have not attracted very much attention and are the subject
of Sects. 6.3 and 6.4. Many games have the form that RED has the task of deciding
where to hide a given amount of material but, in greedy games, RED has the addi-
tional decision of determining how much material to hide when facing the prospect
that hiding more means a greater probability of discovery. Section 6.3 gives a for-
mal definition of a greedy game and then concentrates attention on games in the unit
interval whereas Sect. 6.4 looks briefly at greedy games on the unit square.

In the Number Hides Game RED and BLUE simultaneously choose subintervals
of given length in an integer interval with RED getting a payoff equal to the num-
ber of integers the subintervals have in common. The game proved more tractable
than the other games we consider and it was solved independently by three sets of
researchers. Section 6.5 presents some natural variations of the game and Sect. 6.6
discusses the interesting generalization by Zoroa, Fernandez-Saez and Zoroa [7] in
which BLUE has to hide a given quantity of objects in an integer subinterval of his
choice with the stipulation that at least one object and at most c can be placed at
each integer of the subinterval; as before RED chooses a subinterval and receives
an amount equal to the number of objects in it. The solution of this game seems to
be difficult so, as a first step, it is proposed that the solution of a couple of particular
cases extending those of [7] be attempted.

The Hiding in a Disc Game is again easily stated. RED and BLUE simultane-
ously choose points in the unit disc and RED wins if and only the chosen points are
at most a given distance c apart. It was already proving awkward 30 years ago as
Ruckle demonstrated that an assertion concerning its value in the American Mathe-
matical Monthly was false and, since then, there seems to have been little work done
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on it. Section 6.7 looks at its symmetrization and asks whether there are optimal
strategies in this symmetrization which are probability distributions over a finite
number of points.

Section 6.8 shows that some of our games can be thought of as special cases of a
general game and Sect. 6.9 details come conclusions.

6.2 The Several Intervals Game

Probably the game in Ruckle’s book which has since received the most attention in
the literature is the Several Intervals Game. In it BLUE chooses a single point b in
[0,1] and RED chooses the union of several closed intervals R = J1∪ . . .∪Jk where,
for each i, the length of Ji is at most αi. The payoff to RED is one if b ∈ R and zero
otherwise. Ruckle obtained solutions by trial and error for two special cases when
k = 2 and, as a result, ventured that the solution for general k may be difficult; he
therefore made a more modest proposal of solving it for k = 2 or 3. Even for this
more limited objective progress has been slow and, to adapt Churchill’s description
of Attlee, workers on it have a lot to be modest about. However, after 20 years,
Woodward in a doctoral thesis [5] managed to come up with what can be regarded
as a complete solution for k = 2. We will indicate the processes that enabled him to
arrive at this solution as they may provide ideas that can be used to solve the case
k = 3 which, as we shall see, still presents a challenge.

In essence Woodward’s approach was straightforward but the devil remained in
the detail. Firstly it was shown that the game for general k is equivalent to a corre-
sponding finite game meaning that a complete solution could be obtained for any
given set of interval lengths using linear programming. Although theoretically use-
ful, little immediate value was obtained from the computer results for k = 2 due to
the sheer volume of data and the vast number of different strategies. In particular
vastly different strategies could be produced for games which had the same game
values and very similar α1 and α2. Also RED strategies proved particularly awk-
ward as the computer did not find symmetric ones. This meant that the approach
was throwing up interesting computing problems because it was important that a
coherent set of solutions be produced for a theoretical analysis to be undertaken. By
perturbing interval positions, swapping intervals from one strategy to another and
other techniques, strategies were found which were valid for all cases with the same
value; in many instances the resulting strategies showed very little resemblance to
the original strategies generated by the computer. It was then possible to detect the
pattern which enabled a theoretical analysis to be made. This analysis is contained
in Woodward’s thesis of almost 300 pages but recently new arguments (see Chap. 9)
have been found which enable the treatment to be shortened.

Woodward also managed to generate a number of results for k = 3 by the same
methods and we give an account of his findings. He produced expressions for the
game value which cover all the cases when 1/3≤ α1 < 1/2 and α3 ≥ 1/5. It might
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have been expected that the justification of a RED optimal strategy would prove
more troublesome than a BLUE one as it involves triplets of intervals played with
certain probabilities whereas a BLUE strategy is simply a probability distribution
on [0,1]. However the reverse was true because a RED optimal strategy could be
easily verified by showing that each point of [0,1] meets its intervals with a cer-
tain probability. In many cases the RED optimal strategies could be derived using
three appropriate inequalities of the form xi1α1 +xi2α2 +xi3α3 ≥ 1 i = 1,2,3 where
the xi j are non-negative integers; to be appropriate, a necessary condition is that
there are positive integers p,q,r satisfying pxi1 + qxi2 + rxi3 =W for each i result-
ing in the value of the game being (p+q+r)/W.Note that the inequalities represent
three different coverings of the unit interval by segments of lengths α1,α2 and α3.
This follows a similar pattern to that found in the Two Intervals Game where the
RED optimal strategies can mostly be derived from two different coverings of the
unit interval.

Although the examples give indications of how the case k = 3 might be treated in
general, there are sufficient exceptions to suggest that further ideas are necessary if
substantial progress is to be made. For example most have a BLUE optimal strategy
which uses each of 0 and 1 with a probability equal to the game value. However no
such BLUE strategy was found for the case α1 = 1/3, α2 = 1/4 and α3 = 1/5. Its
value is 13/56 but the BLUE optimal strategy obtained used each of 0 and 1 with
probability 10/56. This case is interesting in another way as the Red optimal strategy
was derived from four covering inequalities rather than the usual three; in addition
to the obvious 3α1≥ 1, 4α2 ≥ 1 and 5α3 ≥ 1, α1+2α2+α3≥ 1 is needed. It seems
therefore that an interesting challenge on the way to solving the case k = 3 would
be to answer the following open question.

Question 1. What is the value of the Three Intervals Game when the lengths of the
intervals are of the form α1 = 1/u,α2 = 1/v and α3 = 1/w when u,v and w are
positive integers satisfying 3≤ u≤ v≤ w?

To introduce a note of optimism, Woodward in his work on the Three Intervals
Game has taken the length of the largest interval to be at least a third and it could be
that the case when the longest interval has length less than a third will have a more
unified treatment. After all, in the Two Intervals Game, there is a single expression
for the value of the game when the length of the longest interval is less than a half
but this expression does not always hold when it is greater than or equal to a half.

Woodward has also obtained some minor results for the n interval case. In partic-
ular he has shown that, when α1 > 1/2, the value of the game is one half of the value
of the game with n− 1 intervals with lengths having values α2/(1−α1), . . . ,αn/
(1−α1). Also if there are n intervals all of the same length 1/k where k > n, the
value of the game is 1− k/n.
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6.3 Greedy Games

Consider the following scenario. RED wants to hide a quantity of arms or drugs
within a given region which, if not detected within a given time, can be used to fur-
ther RED’s interests in the region. BLUE (the authorities within the region) can em-
ploy various measures in an attempt to find the hidden resource and frustrate RED’s
ambitions. The benefit to RED of successfully hiding the resource depends on the
amount that has been hidden and circumstances dictate that the larger the amount
RED tries to hide the greater the probability that it will be discovered by BLUE. This
means that RED needs to balance two competing factors; RED would like to hide a
large amount so that RED would derive a substantial benefit if it remains undetected
but, at the same time, not so large that BLUE has a high probability of detecting it. In
modelling this scenario as a game it seems reasonable to set the payoff to RED as q
when an amount q is successfully hidden. The payoff when an amount q is detected
by BLUE is not so clearcut as it may depend on how RED views the situation; we
therefore introduce a parameter β ≥ 0 and set the payoff to RED as −β q. If RED
has very large global resources and the scenario is a comparatively minor one for
it, the loss of resource would not be significant and a value of β near zero would
be appropriate. On the other hand, if RED has little influence outside the region, a
loss of a sizeable amount of resource could have major consequences for it so that a
comparatively large value of β might be appropriate.

The above scenario provides the motivation for our definition of a greedy game.

It is a two-person zero-sum game which is played in a compact convex region S, with
interior points, of n-dimensional Euclidean space. RED (the maximizer) chooses a member
C from a given class C of measurable subsets of S and, without knowing RED’s choice,
BLUE (the minimizer) selects B from a given subset B of the power set of S. Letting A
denote the measure of the C chosen by RED and 0 ≤ β , RED gets A if B∩C is empty and
loses β A if it is not. Both players know S, C , B and β .

In a number of ways this type of game is a mirror image of the type of game
discussed in Sect. 6.2. Here, in a particular one-dimensional setting, an interval is
being placed to avoid a point chosen by an opponent whereas, in the Several Interval
Games, intervals are placed in an attempt to include a point chosen by an opponent.

Ruckle solved several greedy games which are played over the unit interval I =
[0,1] when β = 0. In the length greedy game RED can choose any measurable
set and BLUE any set with at most k points whereas, in the interval greedy game,
RED can choose any interval of I and BLUE an interval of length at most α. In
both games BLUE has an optimal strategy which employs a uniform distribution. In
the first BLUE chooses k points independently using the uniform distribution on I
and, in the second, starts by choosing t ∈ [0,1−α] by the uniform distribution on
[0,1−α] and then occupies the interval [t, t +α]. RED has an ε-optimal strategy
which involves a covering of I in both games. The basic idea underpinning the RED
strategy for the length greedy game is that I is divided into an appropriately large
number n of intervals and then a member is chosen at random from the set of unions
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of precisely m members of these intervals where m is defined in terms of α and n. For
the interval greedy game the basic idea is simpler; RED divides I into an appropriate
number of intervals and chooses one of them suitably modified.

When β = 0, the greedy length game in which k = 1 and the interval length
game in which α = 0 have a common solution so we now investigate the point
greedy interval game Γ in which RED chooses an interval, BLUE chooses a point
and β ≥ 0. In common with Ruckle, we take the interval to be closed so that RED
will in general have only ε-optimal strategies although it will be plain that RED
has optimal strategies if open intervals are allowed. The next lemma generalises the
strategies used by Ruckle in the game with β = 0 to obtain bounds on what the
players can achieve in the more general game.

Lemma 1. In the point greedy interval game, BLUE can restrict RED’s expectation
to at most 1/(4(1+ β )) whereas RED can guarantee an expectation of at least
max{(n− 1−β )/n2}− ε where ε > 0 and the maximum is taken over all positive
integers.

Proof. If BLUE employs the uniform distribution on I, then BLUE has a probability
of L of intersecting with a RED interval of length L giving RED an expectation of
(1−L)L−Lβ L = L(1− (1+β )L). Hence the best that RED can do is to choose an
interval of length 1/(2(1+β )) and BLUE can restrict RED to a payoff of at most
1/(4(1+β )).

For a positive integer n and η > 0 small, suppose RED plays one of the intervals
[k/n,(k+ 1)/n−η ], k = 0,1, . . . ,n− 1 at random; any pure strategy of BLUE can
intersect at most one of these intervals so RED can ensure an expectation of at least

(
1
n
−η)(

n− 1
n

)−β
1
n
(

1
n
−η) =

n− 1−β
n2 − n− 1−β

n
η

and the lemma follows. ��
A consequence of the lemma is that, if there is a positive integer n such that

(n− 1−β )/n2 = 1/(4(1+β )), then its common value is the value of the game. It
is therefore easy to check that, for all positive integers n ≥ 2, the game has value
1/(2n) when β = (n− 2)/2.

The formulation of the game requires that the players know the value of β but,
from a practical view, BLUE in particular may have little idea concerning its precise
value. It can therefore be useful to know that a strategy is reasonably good for a
range of values of β even it is not optimal, particularly if that strategy is fairly
simple. The above analysis suggests the uniform distribution is such a strategy; in
particular, it is likely to be effective if the loss of material has serious implications
for RED, that is, when β is large.

For general values of β ∈ [0,1], the position is a good deal more complicated.
First of all we should perhaps address the question of whether the games actually
have a value; we do not wish to go into the details here but they do by an existence
theorem of Alpern and Gal (see [5] Theorem A.1 on page 293). In the games in
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which a value has been found (β = 2/(n− 2)), these RED strategies have been
derived from coverings of I so it is difficult to see how they can be modified to
improve the payoff for other values of β . On the other hand optimal alternatives to
the uniform distribution for BLUE abound. For instance, when β = 1/2, the value is
1/6 so BLUE can afford to ignore all points in [0,1/6) and (5/6,1] and concentrate
the distribution in an appropriate way in [1/6,5/6].

To illustrate the point we show that the value of the game is (2− β )/9 when
1/5≤ β ≤ 5/7. Notice that (n−1−β )/n2 equals 1/5 for n= 2 and 3 when β = 1/5
and equals 1/7 for n= 3 and 4 when β = 5/7. Thus 1/5≤ β ≤ 5/7 is likely to be the
maximum range of values of β giving the game value (2−β )/9 because not only
does Lemma 1 tell us that RED can guarantee more (namely (1−β )/4) if β < 1/5
but it also suggests that RED cannot guarantee as much if β > 5/7. Let

F(x) =

⎧
⎪⎨

⎪⎩

0 if x < (2−β )/9,

1/(1+β )− (2−β )/
(
9x(1+β )

)
if (2−β )/9≤ x < 1/2,

(19β + 7)/
(
18(1+β )

)
if x = 1/2

and F(x) = 1−F(1− x) for 1/2 < x≤ 1.

As x→ 1/2−, F(x)→ (5+ 2β )/(9+ 9β ) ≤ 1/2 when β ≥ 1/5. Thus F(x) is a
probability distribution over I which has a jump at 1/2 when β > 1/5 and is strictly
concave in the interval [(2−β )/9,1/2).

Suppose BLUE employs the strategy F(x). We first show that the properties of F
mean that we only need to find the payoff of certain RED intervals in detail in order
to find RED’s best reply to F.

If [a,a+x] and [b,b+x] are two RED intervals with F(a+x)−F(a)<F(b+x)−F(b), then
[a,a+ x] gives a better payoff than [b,b+ x] so we need only consider [a,a+ x]. Therefore
any RED interval of the form [a,a+x] with 0 < a≤ (2−β )/9 gives an inferior payoff than
[0,x] and so can be ignored.

Furthermore F(a+ x)−F(a) < F(b+ x)−F(b) if (2− β )/9 ≤ b < a < a+ x < 1/2 so
intervals [a,a+ x]⊆ [2−β )/9,1/2) have an inferior payoff to [1/2− x,1/2).

For a < 1/2 < a+ x, F(a+ x)−F(a) has a minimum in a for fixed x at a = (1− x)/2 so,
for intervals having 1/2 as an interior point, it is only necessary to consider those symmetric
about 1/2.

Finally the symmetry of F means that we can assume a RED interval starts in
[0,1/2).

Thus, in finding RED’s best reply to F, the analysis is reduced to investigating
three types of RED interval, namely (i) [0,x], (ii) [x,1/2) where x > (2−β )/9 and
(iii) [1/2− x,1/2+ x].

(i) For x < 1/2, the payoff for [0,x] is

(1−F(x))x−β F(x)x = x(1− (1+β )F(x)) = (2−β )/9.
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For 1/2 < x≤ 1− (2−β )/9, it is

x(1− (1+β )(1−F(1− x))) = x(1−β +
2−β

9(1− x)
)

Routine calculations show that this expression has a minimum at x = 1 −
(1/3)

√
(2−β )/(1−β )≤ 1/2 when β ≥ 1/5; it is convex so, in [1/2,(2−β )/9],

its minimum occurs at 1/2. The payoff is continuous on the right in [0,1] so, for
x > 1/2, it is at least that of the interval [0,1/2] which is at least the payoff (2−β )/9
of [0,1/2).

(ii) For (2−β )/9≤ x < 1/2, the payoff of the interval [x,1/2) is

(1/2−x)(1− (1+β )(F(1/2−)−F(x))) = (1/2−x)(1− (2−β )(1−2x)/9x).

The two (main) brackets are decreasing functions of x so the maximum occurs
at x = (2−β )/9 and is less than (2−β )/9.

(iii) Now F((1+x)/2)−F((1−x)/2) = 1−2F((1−x)/2) so the expected payoff
of [(1− x)/2,(1+ x)/2] is

x(1− (1+β )(1− 2F((1− x)/2))) = x(2−β )(1− (4/(9(1− x))).

This expression is concave and has a maximum of (2−β )/9 when x = 1/3.

Lemma 1 tells us that RED can ensure an expected payoff of at least (2−β )/9 so
we have established the following theorem.

Theorem 1. The value of the point greedy interval game is (2−β )/9 when 1/5≤
β ≤ 5/7.

This leads to the following conjecture.

Conjecture 1. The point greedy interval game has value max{(n−1−β )/n2}where
the maximum is taken over all positive integers.

Of course there are a legion of further challenges with an obvious one being the
case when BLUE is allowed to select more than one point. An alternative approach
would be to investigate other forms of payoff. We have introduced the idea of a
cost to RED of being discovered so a natural extension would be to allow BLUE
to choose the number of points to play but levy a cost on BLUE for them. BLUE
would then have to make a judgement about the amount of resource to employ, thus
creating a doubly greedy game. This might entail a movement away from zero-sum
games but, on the basis that what is good for me is bad for my enemy and vice-
versa, might realistically still remain in the zero-sum environment. As mentioned
above Ruckle did frame his game in terms of BLUE having at most k points but, in
the absence of a penalty for using more points, BLUE does not in fact have to make
a judgement call. For the record, in the modified length greedy game Ruckle did
introduce a modified payoff to RED of aα− bn where α is the length of RED’s in-
terval, n is the number of points in RED’s interval and a and b are positive constants
so this may also be setting off point for allied games.
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6.4 Area Greedy Games

In the previous section we concentrated attention on greedy games played on the
unit interval so we will now look at generalizations of the Area Greedy game which
was given as a problem in Ruckle’s book. In this two person zero-sum game played
over the unit square S, RED (the maximizer) chooses a rectangular subset with edges
parallel to S and BLUE (the minimizer) selects a path in S which is the graph of a
continuous function from [0,1] to [0,1]. BLUE wants the path to intersect RED’s
rectangle and, if it does, RED gets nothing. On the other hand RED gets the value
of the area of the chosen rectangle if BLUE’s path does not intersect it. The game
has the flavour of a needle in a haystack game but, in this game, RED can choose
the size of the rectangle as well as its position whereas the hider in a needle in a
haystack game hides a needle of fixed length.

It is straightforward to see that Ruckle’s game has a simple solution. By choosing
the function fn defined by

fn(t) =

{
2(nt− i) if i≤ nt ≤ i+ 1/2

1− 2(nt− i− 1/2)) if i+ 1/2≤ nt ≤ i+ 1 for i = 0,1 . . . ,n− 1.

BLUE can ensure that every RED rectangle with horizontal length of at least 1/n
is intersected so that RED’s payoff is at most 1/n. Thus, by choosing n sufficiently
large, RED’s payoff can be made arbitrarily small and the value of the game is
therefore zero. Note that the same is true if RED has the freedom to choose any
convex subset of S, not just rectangles.

To particularise the general definition of greedy game given in the previous sec-
tion and stay within the spirit of the area greedy game of Ruckle, we define an area
greedy game as a two person zero-sum game played over a compact region S, with
interior points, of two-dimensional Euclidean space of the following type.

RED (the maximizer) chooses a member from a class C of convex subsets of S and, without
knowing RED’s choice, BLUE (the minimizer) selects a path from a set of paths P , all of
length at most L, in S. Letting A denote the area of the set chosen by RED, RED gets A if
BLUE’s path does not intersect it and loses β A if it does. Both players know S, C , P, L
and β .

Ruckle’s original game is easy to solve because BLUE is allowed to choose a
path that has no restrictions on its length. In fact every one of our area greedy games
(and also some more general ones) has value zero if BLUE is allowed a completely
free choice of path. This follows from Lemma 3.39 of Alpern and Gal [5] which
ensures that, given ε > 0, there is a (closed) path in the two-dimensional compact
convex set S such that every point of S has distance less than ε from the path. Hence
a natural restriction to impose on BLUE’s paths is that they should have length
bounded by a positive real number, L say.

Notice that there are connections between the point greedy interval game anal-
ysed in the previous section and a number of area greedy games on the unit square
when BLUE has to choose a path which is the graph of a constant function. In the
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latter games, the crucial factor that determines whether BLUE’s path intersects the
convex set C chosen by RED is the projection of C onto the y-axis. In particular,
in this restricted form of Ruckle’s area greedy game, in order to play optimally
RED will choose a rectangle with base of length one so his choice is effectively to
choose the height of the rectangle (which is a line segment) while BLUE is effec-
tively choosing a point (the value of the constant). Perhaps the next natural step is
to tackle the following problem.

Problem 1. Solve the Area Greedy Game on the unit square when BLUE can take
any path of length one and RED can choose any compact convex set in the unit
square.

6.5 The Numbers Hides Game

Like the Several Intervals Game the Number Hides Game is a two person zero-sum
game which was posed as a problem in [4] with some special cases being solved. Its
formulation is particularly simple.

RED and BLUE choose sequences of p and q consecutive integers respectively between
1 and n. The payoff to RED is the number of integers in the intersection of the chosen
intervals.

The game has proved more tractable than the Several Intervals Game. When Baston
and Bostock submitted their solution to the proceedings of the American Mathe-
matical Society, they were told that Ferguson had also solved it so a three author
paper [3] was written in the style of Ferguson which the editors preferred. They
subsequently learned that Zoroa, Zoroa and Ruiz had also found a solution [6].

The game is the discrete version of the Interval Overlap Game in which RED
and BLUE choose intervals of lengths at most α and at least β respectively in the
unit interval I, and RED has a payoff of the measure (length) of the intersection
of the chosen intervals; this game was solved in [4]. We have seen in Sect. 6.2 that
the Several Intervals Game is essentially equivalent to a corresponding finite game
so it is natural to ask whether a similar situation pertains here. Although no formal
justification has been given, the answer is probably yes as it was remarked in [3] that
the ideas used to solve the Numbers Hide game carry over to the Interval Overlap
Game; in fact these ideas enabled a fault in the analysis of BLUE’s optimal strategies
in [4] to be corrected. The games where the Number Hides Game is modified so that
one or both players are permitted to choose an arbitrary set of integers rather than a
set of consecutive integers have been solved in [3] and [7]. The game in which both
players can choose an arbitrary set of integers is called the Simple Point Catcher
Game. As pointed out in [3], its value is pq/n,when RED chooses at most p integers
and BLUE chooses at least q but Ruckle [4] gave a more complicated expression,
namely
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qC1
n−qCp−1 + 2 qC2

n−qCp−2 + · · ·+ r qCr
n−qCp−r + · · ·+ p qCp

n−qC0
nCp

;

this expression can be rearranged to

pq/n
n−1Cp−1

W

where

W = n−qCp−1 +
q−1 C1

n−qCp−2 + · · ·+q−1 Cr−1
n−qCp−r + · · ·+q−1 Cp−1

Because W is the coefficient of xp−1 in the expansion of (1+x)n−q(1+x)q−1 and the
denominator is the coefficient of xp−1 in the expansion of (1+ x)n−1, they are equal
and the expression simplifies to pq/n. Optimal strategies for RED and BLUE are
to select the set of p, respectively q, integers from {1,2, . . . ,n} by simple random
sampling.

We now introduce notation which enables us to give alternative optimal strategies
in the Simple Point Catcher Game which are more useful as a guide for optimal
strategies in the modified Interval Overlap games described below. In fact they are
the optimal strategies Ruckle used to solve the Modified Number Hides Game in
which the players can choose sequences modulo n. Let n be a fixed positive integer
and, for each positive integer x, let x = λ n+x∗ where λ is an integer and 0< x∗ ≤ n.
For positive integers m < n and x, put

Im(x) =

{
[x∗,x∗+m− 1] if x∗+m− 1≤ n,

[x∗,n]∪ [1,m+ x∗− n− 1] if x∗+m− 1 > n.

Thus the sets in

Im = {Im(x) : x = 1+ μm for μ = 0,1, . . . ,n− 1}

cover the integer interval [1,n] precisely m times and every integer y ∈ [1,n] is in
precisely m members of Im. Hence, if RED chooses one of the members of Ip at
random and BLUE chooses any set of q integers in [1,n], RED has an expectation
of pq/n. Similarly, if BLUE chooses one of the members of Iq at random, RED
has an expectation of pq/n whatever set of p integers in [1,n] RED chooses. Thus,
taking a member at random from Ip and Iq respectively are optimal strategies for
RED and BLUE in the Simple Catcher Game. These optimal strategies and the ones
mentioned earlier demonstrate that the game has the unusual property that, if the
roles are reversed (so that RED loses the number of integers in the intersection of
the chosen intervals), a player still has the same optimal strategy.

We now look at the analogous problems on the real interval [0,1] where one
or both players can, instead of choosing an interval of length α, choose a set of
(Lebesgue) measure α. This gives rise to the following three games over the unit
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interval where, in each case, the payoff to RED is the measure of the intersection of
the sets chosen by the players:

ΓMM(α ,β ). RED chooses a set of measure at most α and BLUE chooses a set of measure
at least β .

ΓIM(α ,β ). RED chooses an interval of length at most α and BLUE chooses a set of measure
at least β .

ΓMI(α ,β ). RED chooses a set of measure at most α and BLUE chooses an interval of length
at least β .

The next result shows that ΓMM is easy to solve using the ideas we have developed.

Proposition 1. The value of ΓMM is αβ .

Proof. Firstly suppose both α and β are rational, say a1/a2 and b1/b2 respectively.
For each real number x, let x = m+ x∗ where m is an integer and 0≤ x∗ < 1. Given
γ ∈ [0,1) and x a real non-negative number, Iγ(x) is defined as the interval [x∗,x∗+γ]
if x∗+γ ≤ 1 and the pair of intervals [x∗,1]∪ [0,γ +x∗−1] if x∗+γ > 1. For rational
γ = c1/c2 say, let

Iγ = {Iγ(x) : x = μγ for μ = 0,1, . . . ,c2− 1},

then Iγ covers [0,1] precisely c1 times. Thus, if RED chooses a member of Iα
at random, RED can guarantee an expectation of β (c1)/c2) = β α whatever set of
measure β BLUE chooses. Similarly, if BLUE chooses a member of Iβ at random,
RED’s expectation can be restricted to αβ . Hence the Proposition holds for rational
α and β .

Clearly the expectation to RED does not decrease as the value of α increases
or the value of β decreases. The result therefore follows for general α and β be-
cause, given any irrational number γ, there are rational numbers r1 < γ and r2 > γ
arbitrarily close to γ. ��
The proof of Proposition 1 tells us that, provided a player can split the allowed
measure between two intervals, he gets no benefit from being able to choose a mea-
surable set.

Although, in general the games ΓIM and ΓMI are more difficult to analyse, some
easy deductions can be made. Because BLUE’s strategy space in ΓIM contains
BLUE’s strategy space in the Interval Overlap Game and RED’s strategy space is
the same in both games, the value of ΓIM is less than or equal to the value of the
Interval Overlap Game. Furthermore the RED strategy in the proof of Proposition 1
ensures that the value of IMI is at least αβ . By similar arguments, the value of ΓMI

is greater than or equal to the value of the Interval Overlap Game and Blue can en-
sure the value of IIM is not more than αβ . Although one suspects that the following
problem is not so difficult as many of the others in this chapter, it still may not be
easy.

Problem 2. Solve ΓMI and ΓIM.
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6.6 Relatives of the Number Hides Game

The Simple Point Catcher Game can be interpreted as BLUE having q objects to
hide at integer points in [1, p] with the constraint that exactly one object can be
hidden at a point and RED being allowed to search p integer points in an attempt
to find them. The payoff to RED is the number of objects found. A natural gen-
eralization of this game is for BLUE to have q objects to hide and be allowed to
choose b points in which to hide them with the constraint that an amount between
1 and c must be placed in each of the chosen points. The game has an affinity with
the greedy games covered in Sects. 6.3 and 6.4 because BLUE now has to balance
two competing factors; whether to hide objects at a comparatively small number of
integers meaning that it is relatively difficult for RED to find them but expensive
if he does or to spread the objects over a comparatively large number of integers
so that losses are more likely but less painful. N Zoroa, M. J. Fernández-Sáez and
P Zoroa introduced these types of game involving capacities into the literature and
have been in the forefront of research on them (see [7] and [8]); in particular an in-
teresting general Point Catcher Game is solved in [8]. Although they have obtained
many results, interesting and challenging problems remain open and we now detail
some of them.

First consider the following generalization of the Numbers Hide Game; in [7]
it is called the Hide and Seek Game with Capacities equal to c, but we will call it
the Integer Number Hides Game with Capacities to emphasize not only that it has a
strong relationship with the Numbers Hides Game but also that it is not an isolated
game but one that forms part of a coherent body of work.

BLUE has q indivisible objects to hide in the integer interval L = [1,n] and must choose an
interval B of L to do so under the restriction that between 1 and c objects must be allocated
to each point of the chosen interval. Simultaneously RED picks an interval R of length p
and gets a payoff equal to the number of objects that BLUE allocated to the points of A.

Two results for this game are given in [7]. Firstly, if p is a divisor of N, then the
value of the game is pq/N. Secondly, let n = λ p+ r where λ is a positive integer
and 0≤ r < p, then, provided q≤ (c−1)r+ p, the value of the game is q/(λ +1) if
q≤ rc and (q(λ +1)−cr)/(λ (λ +1)) if q> rc. In addition two particular examples
are given which show that the value of the game can equal (q− c)/λ . As they had
found other examples which had the same expression for the value and in which all
RED optimal strategies have a similar structure, they suggested that there may be
a general structure for games with value (q− c)/λ . Very modest progress on this
front when n = λ p+ 2 and c = 2 is detailed below.

Lemma 2. Let n = λ p+1 or n = λ p+2 for some integer λ and q≤ n−2+c, then
RED can ensure a payoff of at least (q− c)/λ .

Proof. Let Jj(i) = [ip + j,(i + 1)p+ j− 1]. First suppose n = λ p+ 1 and RED
chooses a member of {J1(i) : i = 0,1, . . . ,λ − 1} ∪ {J2(i) : i = 0,1, . . . ,λ − 1} at
random. The probability of an x satisfying 2≤ x≤ λ p occurring in the RED strategy
is 1/λ whereas each of 1 and λ p+1 occur with probability 1/(2λ ). Hence in a best
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reply BLUE will place as many objects as possible at the points 1 and n = λ p+ 1.
As q ≤ n− 2+ c, BLUE can put a total of c objects at 1 and n because an object
must be placed at each point of [2,n− 1] if objects are put in both 1 and n. Thus a
minimum of q−c objects must be put in [2,n−1] so that RED is assured of a payoff
of at least (q− c)/λ . ��

Now suppose n = λ p+ 2 for some integer λ and RED chooses a member of
{J2(i) : i = 0,1, . . . ,λ − 1} at random. The probability of an x satisfying 2 ≤ x ≤
λ p+ 1 occurring in the RED strategy is 1/λ whereas each of 1 and n occur with
probability 0. Hence, as before, in a best reply BLUE will put as many objects as
possible at the points 1 and n but be forced to put at least q− c in [2,n− 1] because
q≤ n− 2+ c. Thus RED’s strategy ensures a payoff of at least (q− c)/λ .

The structure of our BLUE strategies is much more complicated so we first look
at a particular example to illustrate the general case.

Example 1. The game in which n = λ p+2 = 32, p = 5, c = 2 and q = 28 has value
26/6 = (q− c)/λ .

Proof. Consider the BLUE strategy which chooses one of the following pure strate-
gies at random.

B1 = (2,2,2,1,1,2,2,2,2,1,2,2,2,2,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B1,

B2 = (2,2,2,2,1,2,2,2,1,1,2,2,2,2,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B2,

B3 = (2,2,2,2,1,2,2,2,2,1,2,2,2,1,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B3

where
←−−−−−−−
(x1, . . . ,xn) = (xn, . . . ,x1). The points in {1,2,3,6,7,8,11,12,13,16} each

have an expected capacity of 6/6, those in {4,9,14} each have an expected capacity
of 5/6 while those in {5,10,15} each have an expected capacity of 3/6. Thus ev-
ery five successive points in [1,16] have an expected capacity of (18+ 5+ 3)/6 =
26/6 = (q− 2)λ . By symmetry the same holds for every five successive points in
[17,32]. Furthermore every 5 consecutive points containing 16 and 17 must contain
at least 1 of 15 and 18 and at least 1 of 14 and 18 so has an expected capacity of at
most 26/6. Thus the value of the game is at most 26/6. ��

By introducing some notation we can see that the example has a structure which
will be useful in the general case. Let gi (i = 1, . . . ,m) denote sequences of lengths
α1, . . . ,αm respectively, then we use g1⊕ g2⊕ ·· · ⊕ gm to denote the sequence of
length α1 + · · ·+αm given by the members of g1 in order, followed by the members
of g2 in order and so on, finishing up with the members of gm in order. Thus, putting
J5(1) = (2,2,2,1,2), J5(2) = (2,2,1,1,2) and letting mt denote the sequence of
t m’s, B1 in our example can be written as 21⊕J5(2)⊕J5(1)⊕J5(1)⊕016. It is then
clear that B2 and B3 can be obtained from B1 by suitably permuting the J5’s in B1.



6 Some Cinderella Ruckle Type Games 99

More generally let Jp(w) denote the sequence (x1, . . . ,xp) with xi = 1 for p−
w ≤ i ≤ p− 1 and xi = 2 otherwise; in particular Jp(0) = 2p. For wi satisfying
0≤ wi ≤ p− 2, let

Hp(w1, . . . ,wμ) = 21⊕ Jp(w1)⊕·· ·⊕ Jp(wμ)⊕ 0μ p+1.

Thus, in the example, B1 = H5(2,1,1), B2 = H5(1,2,1) and B3 = H5(1,1,2).
Note that Hp(w1, . . . ,wμ) represents a BLUE strategy in the game in which
n = 2μ p+ 2, c = 2 and q = 2(μ p+ 1)−∑μ

i=1 wi as does Hp(wσ(1), . . . ,wσ(μ)) =
Hp(σw) (abusing notation) where σ is any permutation of {1, . . . ,μ}. Given w =
(w1, . . . ,wμ), let

Hp(w) = {Hp(σw) : σ ∈I (μ)} ∪ {←−−−−−Hp(σw) : σ ∈I (μ)}

where I (μ) denotes the set of permutations of {1,2, . . . ,μ}
Theorem 2. For p > 2, n = 2μ p+ 2, c = 2 and q satisfying μ(p+ 2)+ 2 ≤ q ≤
2μ p+ 1, the value of the game is (q− c)/(2μ).

Proof. RED can ensure an expectation (q− c)/(2μ) by Lemma 2 so we only need
to show that BLUE can restrict RED to that expectation. Take any w = (w1, . . . ,wμ)
satisfying 0 ≤ wi ≤ p− 2 and ∑μ

i=1 wi = 2(μ p+ 1)− q; such a w exists because
1 ≤ 2(μ p+ 1)− q ≤ μ(p− 2). Suppose BLUE adopts the strategy which picks
a member of Hμ(w) at random, then x1, x2 ∈ [1,μ p+ 1] satisfying x1− x2 = 0
(mod p) have the same expected allocation. Thus, if the RED strategies starting at
1, . . . , p all have expectation at most (q− c)/(2μ), then so does every RED strategy
contained in [1,μ p+1]. Put ρw(m) = |{i : wi ≥m}|, then the expected allocation of
j ∈ [1, p] is (2−ρw(p+1− j)/μ)/2 which is a decreasing function of j. Hence ev-
ery RED strategy contained in [1,μ p+1] has an expected allocation of p−∑p

j=1 ρw

(p+ 1− j)/(2μ). Let tm = |{ j : wj = m}|, then

2(μ p+ 1)− q=
μ

∑
i=1

wi =
p

∑
m=1

mtm =
p

∑
m=1

m(ρw(m)−ρw(m+ 1)) =
p

∑
m=1

ρw(m).

Thus every RED strategy contained in [1,μ p+ 1], and by symmetry, every RED
strategy contained in [μ p+ 2,n], has an expected allocation of (q− 2)/(2μ).

Suppose a RED strategy contains both λ p+ 1 and λ p+ 2. By symmetry the
expected allocations of λ p+ 1− j and λ p+ 2+ j are the same for j = 1, . . . , p− 2
and, from the above, we know that these allocations are increasing functions of
j. Hence every RED strategy containing both λ p+ 1 and λ p+ 2 has an expected
allocation of at most that of [(μ − 1)p+ 2,μ p+ 1] which has the same expected
allocation as [2, p+ 1]. Thus RED has an expectation of at most (q− c)/(2λ ). ��

Apart from the extreme cases q= 2μ p+1 and q= μ(p+2)+2, there are several
possibilities for the choice of (w1, . . . ,wμ) in the proof of the previous theorem so
there are in general a number of optimal strategies for BLUE. However the exam-
ples in [7] show that there are BLUE optimal strategies which do not follow our
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structure, illustrating that it may not be easy to home in on particular BLUE optimal
structures for other cases. It is probably over-optimistic to hope for a complete so-
lution of the game without further inroads into special subcases being made first.
Zoroa, Fernández-Sáez and Zoroa have solved the game when q is relatively small
so it would seem that the two subcases that present the best chance of progress on
an analytical front are:

Problem 3. Solve The Integer Number Hides Game with Capacities for compara-
tively large q.

Problem 4. Solve The Integer Number Hides Game with Capacities for c = 2.

Like the Several Intervals Game, one feels that a comprehensive solution of this
game may need the insight given by computer generated solutions where the com-
puter has been programmed to target certain types of solution.

A natural variation of the above game in which BLUE has an amount q, not nec-
essarily an integer, of divisible material to hide was introduced by Zoroa, Fernández-
Sáez and Zoroa in [8]. It can be formulated as follows.

BLUE has an amount q, not necessarily an integer, of divisible material to hide in the integer
interval I and must choose a subinterval B of I with length at most b in which to do so under
the restriction that an amount of at most c is allocated to each point of B. Simultaneously
RED picks a subinterval R of length r and gets a payoff equal to the amount of material that
BLUE allocated to the points of R.

It is not easy to give a summary of the theorems obtained in [8] which does justice
to them without involving detailed notation so the reader is encouraged to read the
paper itself. Although a complete solution appears to be extremely difficult, many
open questions regarding partial results suggest themselves. Note that, in this game,
BLUE is allowed to put an amount zero at some of the chosen points so it is not
totally obvious that there is a close connection between this game and the previous
one. Thus it is of interest that [8] points out that there are similarities between the
two in some cases.

6.7 Hiding in a Disc Game

The Hiding in a Disc game is very simple to state and easy to understand but seems
difficult to solve. It can be described as follows.

Without knowing each other’s choices, RED and BLUE choose points r and b in a disc D
with centre O and radius one. The payoff to RED in this zero-sum game is one if |r−b| ≤ c
and zero otherwise.

When 1/
√

2 ≤ c < 1, the value is the ratio of the length of the arc whose chord has
length c to the circumference of D; optimal strategies for BLUE and RED are to
choose a point according to a uniform distribution on the circumference of D and
on the circumference of a circle with centre O and radius

√
1− c2 respectively.
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What intrigued me when I first read Ruckle’s book was that the solution for
1/2 < c < 1/

√
2 was still open, particularly so because the value when c = 1/2

is known. Ruckle showed that, in the range, RED can guarantee a payoff of at least
(1/π)arccos(1/2c) demonstrating that a solution communicated to the American
Mathematical Monthly was incorrect. The RED strategy which ensured this payoff
seemed an intuitively natural one so all that was needed was to produce a BLUE
strategy showing RED could do no better. However the “all” proved elusive and,
after prolonged efforts, I gave the problem best. On re-reading Ruckle’s book re-
cently I was curious whether progress had been made on the problem but I have
been unable to find references to it.

It is natural to wonder whether a symmetry argument which is standard in the
literature might be of use for this game; for a formal group theoretic justification of
the following process see [1]. Let A denote the set of all rotations about the cen-
tre and let Γ denote the symmetized version of the game in which, after RED and
BLUE choose strategies r and b respectively, a random (equiprobable) member γ is
selected from A and the payoff P(γr,b) = P(r,γ−1b) is assigned to RED. Observe
that either player can ensure that Γ is played by applying a random automorphism to
his own strategy so its value must be the same as that of the original game. Hence the
Hiding in a Disc game is solved once Γ is solved. We may therefore regard mixed
strategies of the players in Γ as distributions over the equivalence classes of A so
that the strategy spaces are represented by the unit interval. The optimal strategies
of the game given in [4] can all be expressed in Γ as probability distributions over
a finite number of points in the unit interval. Unfortunately the payoff of the sym-
metrized game is much more complicated than that for the original game so there
may be few practical benefits of symmetrising this particular game. However it does
highlight a question that is of interest.

Question 2. In the symmetrized Hiding in a Disc game, do there always exist opti-
mal strategies for the players which are probability distributions over a finite number
of points in the unit interval?

6.8 A General Ruckle-Type Game

Ruckle proposed the problem of solving the Hiding in a Disc Game played on a set
S more general than the circular disc. As that game appears to be still unsolved, it
might seem somewhat bizarre to give a game formulation of which it is a special
case. However the game we now introduce does show that a number of win-lose
Ruckle-type games (payoff 0 or 1) do have a common structure and that there may
be interesting research to be done on them in topologies other than the Euclidean
one. The reader is reminded that a closed ball with centre c and radius r is the set of
points which are at a distance less than or equal to r from c.

Let ΓS(b; r1, . . ., rk) denote the following two-person zero-sum game played on a convex
compact subset S of Rn endowed with a topology from a metric. BLUE chooses a closed
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ball B of radius b and RED closed balls R1, . . . ,Rk of radii r1, . . . , rk where all the closed
balls have their centres in S. The payoff (to RED) is 1 if S∩B∩⋃k

i=1 Ri �= /0 and 0 otherwise.

Note that the Hide in a Disc Game is equivalent to one in which BLUE chooses
a closed disc of radius rB and RED a closed disc of radius c− rB. Thus, when the
topology is given by the Euclidean metric, special cases of ΓS(b;r1, . . . ,rk) include:

• Hide in a Disc Game where S is the unit disc, b = rb,k = 1 and r1 = c− rB;
• Several Intervals Game where S is the unit interval, the closed balls are closed

intervals and b = 0;
• Several Intervals Game Variation in which BLUE chooses an interval of length

b instead of a point.

So far research on Ruckle-type games has almost exclusively concerned itself
with problems in which the Euclidean topology is employed but, from a games
that people do not play standpoint, there is no reason why other topologies should
be ignored. In particular the Euclidean topology is a special case (p = 2) of the
topology given by the distance function

||x− y||p = (
n

∑
i=1

(|xi− yi|)p)1/p

where x=(x1, . . . ,xn), y=(y1, . . . ,yn) and p≥ 1. When p= 1, we have the Manhat-
tan, or taxicab, topology whereas the limit as p→ ∞ gives the Chebyshev topology
which is represented by the distance function ||x− y||∞ = max1≤i≤n |xi− yi|. Note
that closed balls in R2 takes the shape of a square in the Chebyshev topology and
the shape of a diamond in the Manhattan topology. A closed ball in R1 is a linear
segment for all p.

In contrast to the Euclidean version, the Chebyshev Hide in a Disc Game, even
in its n-dimensional form, is easy to solve; it can be stated as follows:

Play takes place in In where I denotes the unit interval. BLUE chooses a point and RED a
n-cube of side 2r1 and the payoff to RED is 1 if BLUE’s point is in RED’s cube and zero
otherwise.

Let G be a minimum cover of In by cubes of side 2r1 then, if RED chooses a
member of G at random, RED’s expectation is at least 1/|G |. Let m be the posi-
tive integer such that 2mr1 < 1 ≤ 2mr1 + 1, δ satisfy 0 < δ < (1− 2mr1)/m and
P(i) = 2i(r1 + δ ). If BLUE selects one of the points B = {(P(i1), . . . ,P(in)) : i j =
0,1 . . . ,m for j = 1, . . . ,n} at random, then

||(P(i),P( j))− (P(s),P(t))||1 = max{|2(s− i)(r1 + δ )|, |2(t− j)(r1 + δ )|}
≥ 2(r1 + δ ).

Thus any closed ball of radius r1 contains at most one point of B so BLUE can
restrict RED’s expectation to at most 1/(m+ 1)2. But, taking S(i, j) to denote the
closed ball with centre at the point ((2i+1)r1,(2 j+1)r1+1) and radius r1, {S(i, j) :
0≤ i, j < m} is a cover of I× I containing (m+1)2 members so RED can expect at
least 1/(m+ 1)2 and the game is solved.
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In addition to problems in the topology given by ||x− y||p, readers who relish
the more esoteric problems may like to investigate problems in the topology arising
from the distance function d(x,y) =∑n

i=1 |xi−yi|p where 0< p < 1; in this topology
the closed ball in R2 is not convex.

6.9 Conclusions

In this chapter we have investigated only a few of the games proposed by Ruckle
in his book but they indicate how the apparently simple games there can provide a
challenge in themselves or the foundation for significant generalisations. A common
thread running through most of the games is that there are optimal strategies which
involve, in some way, coverings of the set the game is played on. Research problems
are the lifeblood of any mathematical discipline and it is hoped that it has been
shown that Ruckle’s problems are in rude health. However one can also expect the
games to evolve in different directions. With the current global financial crisis there
is a much greater questioning as to whether projects are affordable so a natural
direction would be to incorporate costs into many of Ruckle’s games. For instance
the several intervals game has been interpreted as a game in which a defender puts
detecting devices (intervals) across a channel in an attempt to detect an infiltrator
but little interest has so far been shown in creating scenarios in which the defender
has a limited budget and the more efficient the device (the larger the length of the
interval) the greater the cost of deployment. Be that as it may, the important aspect
of Ruckle’s games from my viewpoint is that they provide one with intellectual fun.
His book even includes a game on a Möbius band; definitely a game that people
don’t play.
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