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Preface

Ten years have passed since Alpern and Gal’s monograph on Search Games and
Rendezvous appeared. Over these years, the research on Search Games and Ren-
dezvous, which started as a purely mathematical endeavor, has meandered into other
disciplines. This is reflected by the changing background of the participants of the
yearly workshop that Steve Alpern has organized at the London School of Eco-
nomics for over a decade now. Originally these participants were mathematicians
only, but slowly and steadily ever more computer scientists, biologists, and even
an occasional management scientist, turned up, eventually equalling the number of
mathematicians. The topics of the workshop changed accordingly. Classic mathe-
matical problems on search games, that remain open today and can be found in this
book, were supplemented by new problems that take a more algorithmic point of
view, following the current trend in game theory, or that even go as far as trying
to understand real life behavior of humans and other animals. The change of focus
is such that we felt the need to prepare an update of Alpern and Gal’s monograph,
presenting a wider view of Search Games and Rendezvous, with an emphasis on
open problems and future directions of research.

The preparation of a monograph is a time-consuming project, and so we decided
to take a short cut, by inviting others to join in. In April 2012 we organized a
workshop at the Lorentz Conference Center in Leiden, Netherlands. Around 50 re-
searchers joined hands here, to discuss recent progress and new ideas. The result
of this lies before you. We intend this book to be either used for self study, or as a
guide to the literature for a graduate course, in an applied mathematics or a com-
puter science programme. It is divided into four parts: Search Games, Geometric
Games, Rendezvous, and Search Games in Biology – starting from the mathemati-
cal and ending at the applied. One gets the gist of the book’s gradient, if one com-
pares Shmuel Gal’s review in the initial chapter to Jon Pitchford’s open problems
on search in biology at the end of the book. The first chapter of each section gives
a survey and the final chapter of each section presents open problems. In selecting
these problems, we have chosen those that seem to be solvable, rather than the ones
that are notoriously hard. The exception to this are a few rendezvous problems in
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vi Preface

Chap. 14 that have been around for a long time, but they make up for this noto-
riety by being very entertaining. There are also plenty of open problems that are
mentioned in the other chapters. We expect that readers will find these problems to
their liking, and solve them, so we can write another sequel to Search Games and
Rendezvous within the foreseeable future.

We would like to thank all participants of the workshop on Search and Ren-
dezvous 2012 for lively discussions and fruitful interactions. In particular we would
like to thank all speakers of that conference: Rob Arculus, Mark Broom, Jérôme
Casas, Shantanu Das, John Dickerson, María Jose Fernández-Sáez, Shmuel Gal,
Leonhard Geupel, Thomas Gorry, Mohammad Hajiaghayi, Lora Janse, Ken Kikuta,
Jun Kiniwa, Evangelos Kranakis, Tom Lidbetter, Katerina Papadaki, David Peleg,
Christos Pelekis, Jon Pitchford, Lyn Thomas, Richard Weber, Noemí Zoroa. The
staff of the Lorentz Center make every workshop into an enjoyable experience, and
we thank them for taking all organizational troubles out of our hands. Finally, we
would like to thank Michael Gubanski for preparing the witty cartoons that enliven
the text.

Coventry, UK Steve Alpern
Delft, Netherlands Robbert Fokkink
Liverpool, UK Leszek Gąsieniec
Breda, Netherlands Roy Lindelauf
College Park, MD, USA V.S. Subrahmanian
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Chapter 1
Search Games: A Review

Shmuel Gal

Abstract This review presents an update on the area of Search Games, highlight-
ing recent developments in the field, as well as presenting some new problems for
further research. The search space is either a graph, a bounded domain, a mixture
of the above, or an unbounded set. The search process is presented as a two-player
zero-sum game between the searcher and the hider. The searcher moves along a
continuous trajectory and the cost function is the time needed to find the hider. Our
review emphasises general results concerning minimax search trajectories and opti-
mal search strategies.

We present a review on mathematical modeling of hide and seek situations that
we all know from our childhood. These situations are common in military and anti-
terror activity, as well as many other areas. Isaacs [30] provided a mathematical
foundation to study of such situations in the last chapter of his book, introducing the
concept of a continuous search game, which was further developed by Gal [24]. That
work, and the updated version by Alpern and Gal [4], has stimulated much research,
with applications to Computer Science, Economics and Biology. The present chap-
ter reviews different types of search games, putting an emphasis on recent results.
As such, it is an update of a previous survey article on search games that appeared
in the encyclopedia of Operations Research [26]. The present chapter also contains
some new observations on searching a graph using the Traveling Salesman Tour and
on searching mixed spaces which did not appear in print before, outlining possible
directions of future research.

We consider a zero-sum game played between a searcher and a hider in a search
space Q which is either a compact set in a Euclidean space or an unbounded con-
nected set, e.g., the real line. The searcher usually starts moving from a specified

S. Gal (�)
Department of Statistics, University of Haifa, 31905 Haifa, Israel
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4 S. Gal

point O called the origin but choosing the starting point arbitrarily is also consid-
ered. It is assumed that the searcher is free to choose any continuous trajectory
inside Q, subject to a maximal velocity constraint which is normalized to 1. The
hider can be either stationary or mobile. It will always be assumed that neither the
searcher nor the hider has any knowledge about the movement of the other player
until their distance apart is less than or equal to the discovery radius r, and at this
moment capture occurs. The discovery radius r is assumed to be small with respect
to the dimension of Q. For one dimensional sets, r is assumed zero. A search tra-
jectory will be denoted by S and a hiding point or trajectory (depending whether
the hider is immobile or mobile) by H. The cost function (payoff to the maximizing
hider) c(S,H) , is the time spent until the hider is found (the search time). A mixed
strategy s (resp. h) of the searcher (resp. hider) is a probability measure on the set
of the searcher (resp. hider) pure strategies with expected payoff c(s,h) . The exis-
tence of a value, v, (minimax theorem) for such problems, and an optimal searcher
mixed strategy are established in [24] and [3]. An optimal hiding strategy need not
exist, only ε-optimal strategies always exist. The existence theorem holds both for
immobile and mobile hider.

1.1 Search Games for an Immobile Hider

In this section we consider games with an immobile hider, and the search space is
usually a network. In some sense, these are the simplest search games, but even
their solution can be very subtle and, as we shall see below, there still remain some
open problems to be solved. We assume that the search space Q is a finite connected
graph in which each arc has a given length. The sum of these lengths will be denoted
by μ , which is called the total length of the graph. A pure strategy for the hider
is simply a (hiding) point H in Q, which can be a node or a point on one of the
arcs. A pure strategy S = S(t) for the searcher is a continuous trajectory in Q with
speed 1. The payoff c corresponding to pure strategies S and H is the search time
c(S,H) = min{t : S(t) = H}.

1.1.1 The Searcher Starts at a Fixed Point

A natural way to search a graph is to use a Chinese postman tour (see [21]) i.e., a
closed trajectory that visits all the arcs of Q and has minimal length. Such a tour will
be denoted by S∗. Obviously, if Q is Eulerian, then S∗ can be chosen as any Eulerian
tour with length μ . In this case, if S∗ (t) , 0 ≤ t ≤ μ is an Eulerian tour, then visiting
it with probability 1/2 in the forward direction and probability 1/2 in the backward
direction (using S∗ (μ − t) as the search trajectory) is an optimal search strategy.
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The search strategy used for Eulerian graphs can be extended to non-Eulerian
graphs by using a random Chinese postman tour that encircles S∗ equiprobably in
each direction. It was proven by Gal [25] that a random Chinese postman tour is an
optimal search strategy if and only if Q is weakly Eulerian (a set of Eulerian sub-
graphs connected in a tree-like fashion). The optimal hiding strategy is obtained by
an attractive algorithm using a tree which is equivalent in some sense to the original
graph.

If the graph is not weakly Eulerian then the optimal solution of the search game
is very complicated. The following deceptively simple example illustrates the dif-
ficulties. Assume that Q consists of just three arcs of unit length. connecting two
nodes, the origin O and another node A (Fig. 1.1).

Fig. 1.1 The three arcs graph

It is obvious that an optimal search strategy has to pick a random arc and go to A
but what to do then? Surprisingly it is not optimal to pick another arc at random and
fully traverse it (and later the remaining arc). It turns out that the optimal strategy,
upon reaching A, is to randomly pick one of the unvisited arcs, go a random distance
on it and return to A. Only then fully traverse the third arc and the partly visited
arc. (For details, see [4] p. 33.) This strategy was suggested by Donald J. Newman
in the late 1970s but the rigorous proof of its optimality is very complicated and
took about 15 years to establish [40]. In general, the problem of finding the optimal
search strategy is NP–hard as shown (see [43]). The search game on a graph can, in
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general, be formulated as an infinite-dimensional linear program. This formulation
with an algorithm for obtaining its (approximate) solution is presented by Anderson
and Aramendia [7].

1.1.2 The Searcher Starts at an Arbitrary Point

If we allow the searcher to start at any point in the network Q, then the natural
search trajectory to use is the Chinese postman path S̃ which visits all the points of
Q and has minimum length but is not necessarily closed. The searcher can use the
following natural strategy:

Simple Strategy: Choose the starting point randomly, starting equiprobably at
either end of S̃, going to the other end along S̃.

For example, for a tree the Chinese postman path traverses the arcs of its diameter
once, and all other arcs twice. The simple strategy for a tree (see [18]) means picking
randomly an end of the diameter and using that Chinese postman path to traverse the
tree. Sometimes Simple is optimal. For example, if S̃ is an Eulerian path then Simple
is optimal. Such an example is the three arcs graph, which is very difficult for the
fixed start, but very easy for the arbitrary start search game. In addition, Simple is
optimal for any tree, [18], and also for any tree with one or several Eulerian graphs
attached, [2]. However, Alpern, Baston, and Gal [5] have shown that it is impossible
to topologically characterize the graphs, for which Simple is optimal. Their result is
based on the graph in Fig. 1.2.

Fig. 1.2 A graph for which simple is optimal only if the base is wide

The arcs between A,B,C,D all have unit length, but the arcs DE and DF have
length r. If r is large, then it is easy to see that the optimal search strategy is to ran-
domly pick an end of the long interval and to traverse the network using the Chinese
postman path, so that Simple is the optimal search strategy. However, if r is small
then it can be shown that Simple is not optimal. Since the two networks are topo-
logically equivalent it follows that topological characterization for the optimality of
Simple is impossible. This is quite surprising because it contradicts the result for the
fixed start search games.
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1.1.3 The Hider Hides in a Node

Traditionally, the hider was allowed to hide anywhere in a graph, either in a node
or somewhere in an arc. The case in which the hider can hide in the nodes only, has
just recently been considered. In Chap. 3 of the book, Zoroa et al. develop a theory
for such games, if the graph is an integer lattice. In general, it is natural to use the
Traveling Salesman Problem (TSP) Tour, i.e., the trajectory that starts at O, visits
all the nodes, and returns to O in minimal time. Finding the TSP tour is NP hard, in
contrast to the Chinese Postman tour which can be solved in O

(
N3

)
.

Definition 1. We say that the searcher uses the Random Traveling Salesman Strat-
egy (RTSP), if he equiprobably uses either the TSP tour or the ‘reverse’ tour. RTSP
guarantees an expected search time of at most half the tour length.

It is natural to ask if the RTSP strategy is optimal. It turns out that sometimes
it is, for example if the nodes are on a circle or for a tree. However, RTSP is not
always optimal, for if it would be, then it would also be optimal if the hider can
hide anywhere in the network. This is not the case. The optimal searcher strategy
for the three-arcs graph is much more complicated than RTSP. So if there are n � 1
equally spaced nodes along each of the arcs of the three-arcs graph, then RTSP is not
optimal. One can show that RTSP need not even be optimal for an Eulerian graph,
e.g., by adding one more unit arc between O and A to the three-arcs graph.

Proposition 1. There exists no topological characterization for graphs that have the
property that RTSP is optimal.

Proof. Consider the three-arc graph G consisting of three unit arcs b1,b2,b3 joining
O and A with (n � 1) nodes along each arc, that are equally spaced along b1 and
b2, but they are not necessarily equally spaced along b3. If the n nodes along b3 are
also equally spaced, then we already argued that RTSP is not optimal. However,
if the n nodes along b3 are all very close to A, then these nodes reduce more or
less to one and the resulting graph is more or less a circle, in which case RTSP is
optimal. Indeed, RTSP is optimal: go to A randomly along b1 or b2 – search the
nodes along b3 – return to A and then go back to O via the unvisited arc. Thus, the
same topological structure can have both RTSP optimal and non-optimal.

Note. Similar examples exist with node degrees ≥3 rather than 2.

The RTSP strategy with arbitrary start is the analogous strategy to the Simple
network search. It is based on a minimal trajectory, not necessarily closed, that
visits all the nodes and use it with probability 1/2 for each direction. The RTSP
leads to expected capture time equal to the half length of the minimal trajectory. It
is sometimes an optimal search strategy but for an arbitrary start there does not
exist a topological characterization for the optimality of the RTSP strategy. A
proof for that can be based on a discrete version of Fig. 1.2, following the same line
of argument as in [5].
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1.1.4 Searching an Unknown Graph

Finding a hider in an unknown graph is equivalent to finding the exit of a maze.
Assume that you find yourself in a maze. What is the best way to exit it? This has
been a challenging problem since ancient times but the solution for it has been pub-
lished only in 1882 [39] by an algorithm of Tremaux. In 1895 Tarry [42] described
an algorithm which is now widely used in Computer Science as depth first search
(see Even [20]). This algorithm is based on numbering the passages out of every
node and using each passage by the order of this numbering, so that each passage is
not traversed more than once. It guarantees 2μ search time which is the best possible
for a deterministic strategy. However, using random numbering of the passages out
of every node enables the searcher to exit the maze in expected time μ , as shown
in [27]. This is the best possible expected time which can be guaranteed for any
unknown graph.

1.1.5 Searching a Two-Dimensional Region

Searching an immobile hider in a two dimensional region with area μ is equivalent
to searching an Eulerian graph. An optimal strategy for the searcher is to find a
minimal length closed curve that covers the entire region. Then flip an unbiased
coin and traverse either clockwise or anti-clockwise according to the toss-up result.
Since the searcher discovers a strip of width 2r it follows that the length of a minimal
covering curve for the region is ∼μ/2r. By encircling this curve equiprobably in
each direction the searcher can assure about μ/4r expected search time. Since the
rate of discovery of new points is about 2r for each time unit, it follows that the area
discovered by time t is at most 2rt. Thus, if the hider uses the natural strategy of
a uniform hiding distribution, then the probability of capture after time t is at least
1− 2rt

μ . Since the expected search time is the integral of that probability it follows
that the hider can keep the expected search time above μ/4r. Thus, v ∼ μ/4r as
expected. See [24] for more details.

1.1.6 Searching a Mixed Space

The case of a hider that hides in a node has been considered above. The search
space then is disconnected, consisting of a finite set of points, that are connected by
a set of paths. Suppose that the nodes are in the plane and that the paths are not yet
given. The searcher can choose the paths. This is a type of search game that has not
yet been studied and which can easily be generalized. By a mixed space is meant a
disconnected subset of Euclidean space. An example of such a mixed space is a set
of discrete points plus a region. For instance, houses and a grove. Each house can be
modeled as a point or as a small rectangle. Another example is a line segment plus
a set G of discrete nodes. To search the space, the searcher must connect the line
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segment to the nodes, and the problem is to do this in the most efficient way. The
simplest example of a disconnected search space is a unit interval, with the starting
point O in the middle, plus a point A above O (Fig. 1.3).

Fig. 1.3 A simple mixed space

It seems natural to connect A to O and search it as a tree. However, a better way
is to construct the triangle with A as a vertex and search it as an Eulerian network,
i.e., starting from O and encircling it clockwise or anti-clockwise, each with prob-
ability 1/2. Using the triangle inequality it is easy to demonstrate the superiority
of the latter strategy. This strategy, based on the triangle, is probably optimal but
the problem is more complicated than it seems at first sight. We should take into
consideration some other mixed strategies based on trajectories that visit either A
first, or part of the interval then A and finally the remaining parts of the interval. The
searching of disconnected spaces seems to be an interesting and challenging topic
for further research. For example, in some cases a possible solution is the minimal
value weakly Eulerian graph that spans the line segment plus the set G. It would be
interesting to find some sort of characterization of these cases.

1.2 Search Games for a Mobile Hider

Search games with a mobile hider are more difficult to solve than those with an
immobile hider. These games are also known as princess and monster games.

1.2.1 Isaacs’ Princess and Monster Game

The princess and monster was a well known open problem during the 1960s and
1970s. It was introduced by Rufus Isaacs in his classical book Differential Games
[30] as follows:

The monster P searches for the princess E , the time required being the pay-
off. They are both in a totally dark room Q (of any shape) but they are each
cognizant of its boundary (possibly through small light admitting perforations
high in the walls). Capture means that the distance PE ≤ r, a quantity small in
comparison with the dimension of Q. The monster, supposed highly intelligent,
moves at a known speed. We permit the princess full freedom of locomotion.
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This game was solved by Gal [23], under the condition that the search space Q
is convex. Actually a much weaker condition is needed (see [24], p. 39). The value,
v, of the princess and monster game satisfies v ∼ μ

2r , where μ is the area of the
room (twice the value obtained for an immobile hider). Gal’s optimal strategy for
the princess is to stay at random locations in Q and make the changes of location
not too often but also not too rarely, (for details see [23] or [24]). His proposed
optimal search strategy is based on subdividing Q into many narrow rectangles
searching a random rectangle in a specific random fashion for some time and then
moving to another random rectangle, etc. Note that this type of strategy would not
be efficient if the rules of the game were changed in such a way that the hider knows
the position of the searcher from time to time. A search strategy that is robust to
this type of knowledge has been presented by Lalley and Robbins [35]. It is based
on going in a straight line and, upon reaching the boundary, choosing a random
direction going back into the region, etc. It should be noted, though, that Lalley
and Robbins’ strategy would be ineffective for non-convex regions but Gal’s search
strategy is also effective for non-convex regions and can also be adapted to more
general problems, e.g., a non-constant capture radius, multi-dimensional regions,
more general cost functions and search game with several searchers. Several other
extensions have been presented by Garnaev (e.g. [29]).

1.2.2 Mobile Hider on a Network

The princess and monster game on an arbitrary network remains far from solved.
The only case that has been settled is the game on a circle, which was originally
suggested in the 1960s by Isaacs [30] as a stepping stone for the game in the region
described above. This problem was independently solved by Alpern [1] and Zelikin
[45]. (See also Wilson [44].) Their optimal search strategy is now a well known
strategy which has been named by Alpern ‘coin half tour’. It says simply flip a
symmetric coin every half tour of the circle and go clockwise or anti–clockwise.
This strategy has also been used for rendezvous problems and in computer science.

The search game on the unit interval with an arbitrary start, which may look
like a rather trivial problem, is surprisingly difficult. At first sight it may look like
there is a simple optimal strategy: pick a random end of the interval and go, as
fast as possible, to the other end. However, the hider’s best response to this is to
start very near to a random end, and move to the other end with unit speed. This
leads to an expected search time of 0.75. Surprisingly, the searcher can do better,
using a more complex mixed strategy, and the value of the game is about 0.7. This
unexpected behavior, and an approximate solution of the game on the interval has
been presented by Alpern et al. [6]. The search game with an mobile hider on other
networks remains open. More information on these games, as well as an addendum
to the computations from [6] can be found in Chap. 4.
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1.3 Search in Unbounded Domains

All search games that considered so far had a bounded search region. If the region
is unbounded, then the search game with an immobile hider becomes very difficult
to solve, even if the probability distribution of the hider’s position is known.

1.3.1 The Linear Search Problem

Computer scientists who considered the cow path problem in the 1990s were not
aware that this problem was already being researched by mathematicians for more
than 20 years. This problem was first introduced by Bellman [10] and, indepen-
dently, by Beck [11] as the linear search problem described as follows:

A target is located on the real line at a point H with a known probability dis-
tribution. A searcher, whose maximal velocity is 1, starts from the origin O
and wishes to discover the target in minimal expected time. It is assumed that
changing the direction of motion can be done instantaneously.

Much research has been carried out by Beck, e.g. [12, 13], and others, who found
some general properties of the optimal solution and presented the optimal solution
for several interesting specific distributions. For example, Beck has showed that if
the hiding distribution is uniform, then the optimal search trajectory is to simply go
to one end and then back to the other end, but if the distribution is triangular, then
the optimal trajectory has, surprisingly, an infinite number of turning points.

The linear search problem for a general probability distribution is unsolved yet.
However, a dynamic programming algorithm can produce a solution for any discrete
distribution, [16], and also an approximate solution [4], with any desired accuracy,
for any probability distribution.

The seminal paper by Beck and Newman [14] considers the linear search problem
as a search game. Obviously, the hider’s strategies have to be restricted, leading to
assuming that the expected distance from O of the hider’s location is at most λ . The
constant λ is assumed to be known to the searcher but it turns out that the optimal
search strategies do not depend on λ . They show that the minmax search trajectory
is to double the step size each time. The doubling trajectory guarantees capture by
time 9|H| and 9 is the smallest constant that can be achieved by a fixed trajectory.
The optimal (mixed) search strategy uses a geometric trajectory, with the generator
ḡ, where ḡ minimizes g+1

lng , multiplied by a random constant cu = ḡu, where u is
chosen at random by the uniform distribution in the interval [0,2). The n-th step
size is cuḡn. The value of the games satisfies

v = (1+ ḡ)λ � 4.6λ

so the best possible constant for mixed strategies is 4.6.
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Gal [22] used a normalized cost function to find the minimax trajectory. The two
approaches lead to equivalent results (see [24]). This type of normalization was new
at that time but is now called the competitive ratio in the computer science litera-
ture, and has become a standard tool in analyzing online algorithms (see, e.g. [15]).
The online solution with a turn cost, d, is given by Demaine et al. [19]. The com-
petitive ratio remains 9 and but an additive constant of 2d is added to the minimax
cost. It also turns out that optimal randomized strategies for searching the line in the
presence of turn cost have the same competitive ratio of about 4.6.

1.3.2 On the Optimality of Geometric Trajectories

It was shown by Gal and Chazan [28] that a minimax search trajectory for search
problem in unbounded domains, satisfying a unimodality condition, is always a geo-
metric sequence (or exponential functions for continuous problems). This result has
been developed in [24] as a general tool which just requires optimizing a function
with one variable (the generator of the sequence) instead of minimizing the com-
petitive ratio functional in the space of possible trajectories. This tool has been used
for the linear search problem and also in searching a set of rays (star search) and
searching in the plane using exponential spirals. It has also been used for minimax
search on the boundary of a region consisting of two rays in the plane. That problem
has been presented by Baeza-Yates [8], and solved by Gal using the general tool (see
[4], pp. 154–157).

Geometric trajectories are useful in other areas to produce effective algorithms,
as shown by Chrobak and others (see [17]). Competitiveness via doubling means
designing online and offline approximation algorithms by using geometrically in-
creasing estimates on the optimal solution to produce fragments of the algorithm’s
solution. This method is illustrated by discussing several applications where dou-
bling is used. These areas, in addition to searching, include bidding, minimum la-
tency tours, scheduling, and clustering. It seems to have a promising potential for
other applications as well.

1.3.3 Searching on M Rays (Star Search)

The natural extension of the linear search problem to M > 2 concurrent rays, has
been presented and solved by Gal [22]. It was later rediscovered in the computer
science literature, [8, 32] as the ‘cow path search’. Several applications in search
and other areas were presented. Gal showed that the optimal trajectory is periodic
(visiting each ray every M-th time) with monotone increasing step size. Thus, the
general tool, discussed on the previous section, takes the following form for the star
search:



1 Search Games: A Review 13

For any positive sequence X = {xi}

inf
X

sup
i

∑i+M−1 x j

xi
= min

g>1

∑i+M−1 g j

gi = min
g>1

gM

g− 1
=

MM

(M− 1)M−1

with the minimizing generator of the geometric sequence being M
M−1 . This minimax

trajectory achieves the competitive ratio 1+2 MM

(M−1)M−1 ∼ 1+2eM � 5.4M for large

M.
Similarly to the linear search problem, the (expected) competitive ratio can be

reduced to 3.09M by using mixed search strategies based on geometric trajecto-
ries. In contrast to the pure strategy case, however, the optimality proof applies
only to strategies that use periodic and monotone trajectories. (See [24, 33, 34] and
[41].) López-Ortiz and Schuierer have solved several extensions of the star search
for bounded distance, [37], and for search by several agents who move in paral-
lel, [38].

1.4 Online Searching in the Plane

1.4.1 An Open Problem Recently Solved

An immobile hider is located at an unknown point H in the plane. The searcher
chooses a trajectory, starting from O, and discovers the hider at the moment when
H is covered by the area swept by the radius vector R of his trajectory. It is natu-
ral to use periodic and monotonic trajectories R(θ ) with the angle θ of the radius
vector always strictly increasing, and the trajectory does not intersect itself. Under
this assumption, as we mentioned before, there exists a minimax search trajectory
within the family of exponential spirals, i.e., |R| = ebθ , where b > 0 is a constant.
The competitive ratio is e2πb

√
1+ 1/b2 with minimal value about 17.3, attained at

b � 0.16 (see Gal [24]). Since then it has been an open problem whether the given
strategy is optimal in general without the periodic and monotonic assumption. A re-
cent work of Langetepe [36] has solved this 30 years old open problem and showed
that the above described spiral search is indeed the overall optimal trajectory.

1.4.2 ‘Swimming in a fog’ Problem

The following problem has been proposed by Bellman [9]. A person has been ship-
wrecked in a fog and wishes to minimize the maximum time required to reach the
shore. The shape of the shore is known and some information is given about its
distance. If the shore is a straight line with a known distance D then the minimax
trajectory is given by Isbell [31] as follows: Imagine a clock face and a circle of
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radius D around O, walk towards 1 o’clock for 4
3 D units then, turn on the tangent

that strikes the circle at 2 o’clock. Follow the circle to 9 o’ clock and continue on a
tangent for length D (until reaching the tangent to the circle at 12 o’clock). At that
time all the tangents of the circle with radius D have been visited. The length of this
minmax trajectory is about 6.4D. However, this trajectory is not effective unless D
is known exactly.

An online framework for the general problem is presented in [24]. The goal is to
minimax the ratio between the distance travelled until reaching the shore (assumed
a straight line) and the unknown distance, D, to the shore. It has been suggested that
the solution could be an exponential spiral but the problem seems difficult and is
still open.
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Chapter 2
Search Games for an Immobile Hider

Thomas Lidbetter

Abstract A search game for an immobile hider is a zero-sum game taking place
in some search space. The hider picks a point in the space and a searcher who is
unaware of the hider’s location moves around attempting to find him in the least
possible time. We give an overview of the theory of search games on a network with
an immobile hider, starting with their conception in the Rufus Isaac’s 1965 book on
Differential Games, then moving on to some classic results in the field from Shmuel
Gal and others. Finally we discuss some recent work on new search game models
which consider, for example, what happens when the searcher does not have a fixed
starting point or when the speed of the searcher depends on the direction in which
he is traveling.

T. Lidbetter (�)
Department of Mathematics, London School of Economics, London, UK
e-mail: t.r.lidbetter@lse.ac.uk

S. Alpern et al. (eds.), Search Theory: A Game Theoretic Perspective,
DOI 10.1007/978-1-4614-6825-7__2, © Springer Science+Business Media New York 2013

17

t.r.lidbetter@lse.ac.uk


18 T. Lidbetter

2.1 Introduction

Since the conception of search games almost 50 years ago, the field has expanded
and developed in many different directions, as seen in Chap. 1. In this chapter we
focus in on one particular theme: that of search games on a network with a mobile
searcher and an immobile hider. Games of this type may be described as ‘hide-
and-seek’ games. The classic results in this field can be found in Alpern and Gal’s
monograph [4] and Gal’s recent survey [13]. Here we do not aim to give an ex-
haustive list of all work in the field, but we follow on from Sects. 1.1.1 and 1.1.2 in
Chap. 1, taking a more detailed look at some classic results and linking them to new
work on search games with an immobile hider.

We begin in Sect. 2.2 by discussing how Isaacs [14] first introduced search games
of this type, and how he described strategies for both the hider and the searcher
which would continue to be of fundamental importance in later work in the field. In
Sect. 2.3 we then turn to the first rigorous definition, given by Gal [10], of a search
game with an immobile hider and a mobile searcher who starts from a given point.
We indicate how Gal solved his game if the search space is a tree or if it is Eulerian.

We then show in Sect. 2.4 how Reijnierse and Potters [17] extended Gal’s anal-
ysis to weakly cyclic networks, which have the structure of a tree with some nodes
replaced by cycles. We describe the solution of Gal’s game on these networks, and
how Gal proved an analagous result for weakly Eulerian networks.

In the final two sections we discuss some more recent work on search games on
networks with an immobile hider. Section 2.5 deals with a version of Gal’s original
game in which the searcher can start from any point in the network. Section 2.6
describes three new Search Game models [2, 5, 6] which all modify or generalize
Gal’s classic model in some way.

2.2 The Birth of Search Games

Search games were first introduced by Rufus Isaacs in his 1965 book Differential
Games [14], as indicated in Chap. 1. The book was originally motivated by combat
problems, and indeed, many of the problems discussed in the book have a military
focus to them. Earlier chapters in the book are concerned with so called Pursuit
Games, in which a Pursuer (or Pursuers) aim to capture an Evader whose location
is known to him at all times during the game. Search games are introduced later
in the book in a chapter called ‘Toward a Theory with Incomplete Information’.
The model presented differs from Pursuit Games in that Pursuers now aim to capture
an Evader about whose position the Pursuers now do not have complete information.
The terminology changes: the Evader becomes the hider and the Pursuers become
the searchers. This terminology has stuck and is now widely used in the search
games literature.

Isaacs begins by defining what he calls the simple search game. This could be
regarded as the simplest and most general possible search game, and is described in
informal terms. In an arbitrary region R, which may be a subset of Euclidean space
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of any dimension, a hider picks a hiding point (that is a point in R). The searcher
then picks some sort of unit speed trajectory in the region. The payoff (or search
time) is the time taken until the searcher’s trajectory meets the hider. There is an
assumption that the searcher is able to find a tour of the region that is not wasteful,
so that it does not ‘double back’ on itself. The solution of the game Isaacs gives is
simple: the searcher picks one such tour S, then follows it with probability one half
and follows the reverse tour with probability one half. Supposing R has measure μ ,
if S finds a point in R at time t, the reverse of S will find the same point at time
μ − t. Hence the expected time T to find any given point is given by

T = 1/2t + 1/2(μ− t) = μ/2

The value of the game is therefore at most μ/2. The hider can ensure the payoff
is no more than μ/2 by hiding uniformly in R, so that the probability he hides
in any subset of R is proportional to its measure. By using this strategy, the hider
ensures that the probability the searcher finds him before time t is no more than t/μ
for 0 ≤ t ≤ μ , so the probability the search time is t or more is at least 1− t/μ .
Hence the expected time T satisfies

T =

∫ ∞

0
Pr(search time is ≥ t)dt

≥
∫ μ

0
(1− t/μ)dt

= μ/2.

The value of the game is therefore at least μ/2, and combining the bounds we
have

Theorem 1 (Isaacs). The value of the simple search game is μ/2.

These strategies given by Isaacs are important and direct a lot of the later research
on search games.

2.3 Search Games on Networks

A more precise formulation of Isaac’s game is given by Gal [10] and [11]. Gal
focuses on the game played on a network Q, which is any connected finite set of
arcs of measure μ with a distinguished starting point O, called the root. The hider
picks a point H in Q and the searcher picks a unit speed path S starting from O.
The payoff (or search time) is the time taken for the path to reach H. This game is
mentioned in Sect. 1.1.1 of Chap. 1.

In [10], Gal uses Isaacs hider strategy to give a lower bound for the value V of
the game: by hiding uniformly in the network the hider can ensure that the search
time always at least μ/2. We call this strategy u. However, the assumption made
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by Isaacs that the searcher can find a non-wasteful trajectory is not made, so the
searcher strategy given in [14] is not always available and the value of the game
may be greater than μ/2. The searcher is also restricted to picking a path which
starts from O, so it may not be possible for him to implement the ‘reverse’ of a path.
For instance, if Q is a single unit length arc with the root O at one end and a point
A at the other, the value of this game is clearly 1 > μ/2. The hider simply uses the
pure strategy of hiding at A and the searcher picks the path from O to A.

However, adapting the searcher strategy given in [14], Gal gives an upper bound
for the value. The searcher may not be able to find a non-wasteful, reversible path in
Q, but he will always have some minimal time tour S of Q starting and ending at O of
length μ̄ ≥ μ . He can then use the mixed strategy where he picks S with probability
1/2 and the reverse of S with probability 1/2, ensuring that he finds every point in
Q in expected time no more than μ̄/2. The searcher’s minimal tour S is later called
a Chinese Postman Tour (CPT) in [12], and the randomized strategy given here is
called the Random Chinese Postman Tour (RCPT). The RCPT gives an upper bound
for the value V , and combining this with the lower bound we have

μ/2 ≤V ≤ μ̄/2 (2.1)

Gal examines when these two bounds are tight. Suppose Q is Eulerian, so that
it has a continuous closed path that visits each point of Q exactly once. Then the
searcher’s CPT is one such Eulerian path starting at O. Since the length μ̄ of this
tour is μ , the bounds in (2.1) are tight and we have V = μ/2 = μ̄/2. The uniform
strategy u is optimal for the hider. It is easy to see that Eulerian networks are the
only networks for which μ̄ = μ .

We can also consider the game played on a tree, that is a network without any
cycles. In a sense, a tree is the opposite of an Eulerian network since the CPT of
a tree has the maximum possible length, μ̄ = 2μ , as all arcs must be traversed in
both directions. The inequalities (2.1) therefore become μ/2 ≤ V ≤ μ . Clearly the
uniform hider strategy u is not optimal for the hider, since every point H of Q is
dominated in strategies by a leaf node (a node of degree 1). Hence an optimal hider
strategy must be some distribution on the leaf nodes. In [10] Gal defines a hider
distribution later called the Equal Branch Density (EBD) distribution in [12], and
shows that it is optimal for the hider, guaranteeing him an expected search time of
no less than μ = μ̄/2, which is the value of the game. The RCPT is optimal for the
searcher.

The EBD distribution can be defined in terms of a concept called search density,
which extends to general search spaces Q that may not be networks. For a connected
subset A of Q and a hider hidden on Q according to a fixed distribution, the search
density ρ(A) is defined as the time taken for the searcher to tour A divided by the
probability the hider is in A. Consider a tree Q and a node x of Q that has degree at
least 3. We call x a branch node. The arcs touching x consist of one arc on the path
from x to O and some other arcs. For each of these other arcs a, we define a branch
at x which consists of a together with all arcs whose unique path to O intersects
with a. The EBD distribution is the unique hider distribution on the leaf nodes of Q
that ensures that at every branch node of Q, all branches have equal search density.
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We illustrate the EBD distribution with an example. In Fig. 2.1 nodes are labelled
by letters and arc lengths indicated by numbers. To calculate the EBD distribution
on this network, first note that there are two branches at O, which must have equal
search density. This can be achieved by assigning hider probability 3/9 = 1/3 to
the branch consisting of the arc OC, and probability 2/3 to the other branch. The
branch node D has two branches, and to ensure these have equal search density, the
hider probability assigned to the arcs AD and BD must be proportional to 2 and 3,
respectively. Hence the probabilities the hider is at nodes A and B are 2/5 · 1/3 =
2/15 and 3/5 ·1/3= 3/15 respectively. The probability the hider is at C is 1/3.

Fig. 2.1 A tree network

In [10], Gal shows that if the hider uses the EBD distribution, this ensures that
any depth-first search of Q, and in particular any CPT finds the hider in expected
time exactly μ = μ̄/2, which must therefore be the value of the game. In the case of
the network in Fig. 2.1, the value of the game is μ = 9.

Hence we have

Theorem 2 (Gal). If Q is an Eulerian network or a tree then the value of the search
game with an immobile hider played on Q is μ̄/2.

As discussed in Sect. 1.1.1 of Chap. 1, the RCPT is not optimal for all networks,
in particular the 3-arc network depicted in Fig. 1.1, though this was not shown for
another 15 years [15].

2.4 Weakly Cyclic and Weakly Eulerian Networks

Solutions of the game described in the previous section are not limited to trees and
Eulerian networks. In [17] Reijnierse and Potters solve the game for weakly cyclic
networks, showing that the RCPT is optimal for the searcher, so that the value is
μ̄/2. A weakly cyclic network can be thought of as a tree network for which some of
the nodes have been replaced with cycles. Alternatively, a weakly cyclic network can
be defined more precisely as a network for which there are at most two disjoint paths
between any two nodes. Weakly cyclic networks cannot contain any subnetwork
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that is topologically homeomorphic to the three arc network depicted in Fig. 1.1.
A weakly cyclic network is depicted on the left hand side of Fig. 1.2; the cycles are
indicated by the dotted lines.

Reijnierse and Potters give an algorithm to calculate the optimal hider distribu-
tion, in which the hider hides with some probability on leaf nodes and with some
probability hides uniformly on the cycles. Alpern and Gal [4] later give an alterna-
tive version of the algorithm, in which every cycle in the network is replaced with a
leaf arc of half the length of the cycle, and the EBD distribution is calculated on the
new network. The network depicted on the right hand side of Fig. 1.2 is the modi-
fication of the weakly cycle network on the left. The hider probability that should
be assigned to a cycle in the original network is then the probability assigned to the
end of the associated leaf arc in the new network (Fig. 2.2).

Fig. 2.2 A weakly cyclic network and its modifications

Reijnierse [16] later showed that the equivalent result holds if we replace ‘weakly
cyclic’ with ‘weakly Eulerian’. A network is weakly Eulerian if it can be obtained
from a tree by replacing some nodes with Eulerian networks. Gal [12] found a sim-
ple proof of this result, showing not only that the value V of the game is μ̄/2 for
weakly Eulerian networks, but, as mentioned in Chap. 1, these are the only networks
for which this is the value, and the RCPT is optimal. In summary,

Theorem 3 (Gal). The value of the search game with an immobile hider played on
a network Q is μ̄/2 if and only if Q is weakly Eulerian.

Notice that the class of weakly Eulerian networks includes both trees and Eule-
rian networks, so Theorem 3 generalizes Theorem 2.

2.5 Search Games Without a Fixed Searcher Starting Point

In a recent paper [9] Dagan and Gal define a new Search Game model on a net-
work Q in which the assumption that the searcher has a fixed starting point O is
dropped, and the searcher can begin his search from any point on Q. This model has
already been discussed in Sect. 1.1.2 in Chap. 1, where it was noted that provided the
searcher has some Eulerian path (one which visits every point of the network exactly
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once), Isaac’s result holds and the value of the game is μ/2. The searcher can simply
choose the Eulerian path with probability 1/2 and its reverse with probability 1/2;
the hider can hide uniformly on the network. The networks that have an Eulerian
path include the 3 arc network in Fig. 1.1, whose solution in Gal’s classic model
was so elusive. For the arbitrary start model, the value of this game is μ/2 = 3/2.
Just as we define Chinese Postman Tours, we can define a Chinese Postman Path
of a network Q as a minimal time path that visits all the points of Q. We can then
define μ̃ as the length of a Chinese Postman Path, and we obtain a result analgous
to (2.1) for the value V of the Search Game played on networks with an arbitrary
starting point:

μ/2 ≤V ≤ μ̃/2. (2.2)

The arbitrary start model was further studied in [3] in which the authors call a
network simply searchable if the upper bound on V in (2.2) is tight. They give suffi-
cient conditions for a network to be simply searchable, and in particular they show
that trees are simply searchable and that the hider should use the EBD distribution,
with respect to a root located at the center of the tree: that is the point c whose great-
est distance from any other point in the tree is minimal. For example, in Fig. 2.1 the
center c is located halfway between nodes O and D. If we add a node at c, then at
this point there are two branches of lengths 7/2 and 11/2, which the hider chooses
with probabilities proportional to 7 and 11, respectively. Hence the hider chooses
the node C with probability 7/18 and nodes A and B with total probability 11/18.

2.6 Other Search Game Models

Recently some alternative models of search games on networks have been proposed.
In the models we have discussed so far the searcher’s strategy space is a set of unit
speed paths. However we might consider associated games in which the searcher
has a different strategy set.

In [2] Alpern defines a new model called find-and-fetch in which he considers a
searcher who not only wishes to find a hider but also wishes to return to the root O.
This models common problems such as search-and-rescue and foraging problems
in which an animal must find food and then return to its lair. As in Gal’s model, the
searcher follows a unit speed path from O, but then upon reaching the hider takes
the shortest path back to O at speed ρ . The payoff is the total time to find the hider
and return to O. In the case of a bird being weighed down by food he is taking back
to his nest we might have ρ < 1, whilst ρ > 1 might be more appropriate for the
case of someone searching for a contact lens, in which the return speed would be
quicker.

Alpern finds that if Q is a tree, the optimal strategy for the hider is still the EBD
distribution in this game. However, the RCPT is no longer optimal for the searcher.
Instead, he randomizes between all possible depth-first searches using a type of
strategy called a branching strategy. Upon reaching a node for the first time the
searcher chooses which outward branch to take according to a certain probability.
Alpern proves the following.
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Theorem 4 (Alpern). The value V of the find-and-fetch game on a tree is

V = μ +D/ρ , (2.3)

where D = D(Q) is the mean distance from O to the leaf nodes of Q, weighted
according to the EBD distribution.

To illustrate how D is calculated, consider the network in Fig. 2.1. The probabil-
ities that the hider is at nodes A, B and B are 2/15, 3/15 and 10/15, respectively, and
the distances of these nodes from O are 3, 4 and 3. Hence D = 2/15(3)+3/15(4)+
5/15(3) = 11/5. For ρ = 1/2, the value V of the find and fetch game played on the
tree in Fig. 2.1 is V = 9+(11/5)/(1/2) = 10.1. Note that as ρ tends to infinity so
that the searcher can return instantaneously to the root after finding the hider, the
value V in (2.3) tends to μ , Gal’s classic result (Theorem 2).

A different model of search is given in [6], in which the authors suppose that
the searcher can use an expanding search. This is defined as a sequence of unit
speed paths on a network Q, starting at O, each of which starts from a point already
reached by the searcher. Another way to think of expanding search is as a family of
connected subsets of Q starting with O and expanding at unit speed. To differentiate
expanding search from the type of search used in Gal’s model, we call the latter
pathwise search. Expanding search provides a model of mining, in which the time
taken to recommence mining from a location already reached in small compared to
the time taken up by the mining itself. As before, the hider simply picks a point on
Q and the searcher picks an expanding search. The search time is the time taken for
the searcher to reach the hider.

Again, if Q is a tree it turns out that the EBD distribution is optimal for the hider,
and the searcher’s optimal strategy is a branching strategy. The authors show that

Theorem 5 (Alpern and Lidbetter). The value V of the expanding search game on
a tree is

V = 1/2(μ +D), (2.4)

The variable D is defined as above. In the case of the network in Fig. 2.1 where
D = 11/5 and μ = 9, the value is V = 1/2(9+ 11/5)= 5.6.

In [6] the expanding search game is also solved for 2-arc-connected networks.
These are networks that cannot be disconnected by the removal of fewer than two
arcs. The authors show that on these networks it is optimal for the hider to hide
uniformly, and for the searcher to make an equiprobable choice of a reversible ex-
panding search and its reverse. A reversible expanding search is simply one whose
reverse is also an expanding search, analogous to an Eulerian circuit in Gal’s model.
The authors show that such a search always exists on a 2-arc-connected network,
and the randomized choice of this search and its reverse ensures that the searcher
finds the hider in expected time no greater than μ/2, which is the value of the game.
For example, the 3-arc network depicted in Fig. 1.1 in Chap. 1 is 2-arc-connected,
and hence has value μ/2 = 3/2.
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For trees, the find and fetch model and the expanding search model can both
be encapsulated in a single overarching model. In [1] Alpern examines the Search
Game on a network with asymmetric travel times, meaning that the speed it takes
for the searcher to traverse an arc depends on the direction in which he travels. An
equivalent formulation is given in [5] in which the searcher moves with a speed that
depends on his direction of travel. We therefore call this the variable speed model.
The game is then defined as usual: the searcher picks a path in the network starting
at O, the hider picks a point on the network and the payoff is the time taken for the
searcher to reach the hider. The model clearly encompasses Gal’s model of networks
with symmetric travel times if the travel times of each arc are set to be the same in
either direction.

For a tree Q we can give every point x on Q a height δ (x), equal to the time taken
to travel from O to x (along the shortest path) minus the time taken to travel from x
to O. This definition is motivated by the assumption that it is quicker to travel uphill
than downhill. In [1] Alpern shows that the EBD is once again optimal for this game
played on a tree, and he gives recursive formulae for the optimal branching strategy
for the searcher. In [5], the authors derive a closed form expression for the optimal
searcher strategy as well as a formula for the value V of the game:

Theorem 6 (Alpern and Lidbetter). The value V of the variable speed search
game is

V = 1/2(τ +Δ), (2.5)

where τ is defined as the time taken for the searcher to tour the network, and Δ =
Δ(Q) is defined as the mean height of the leaves, weighted with respect to the EBD
distribution.

If the network is symmetric, then all leaf nodes have height 0, and τ = 2μ ,
so (2.5) reduces to Gal’s classic result, V = μ = μ̄/2 given in Theorem 2. In fact, in
the case that the network Q is a tree, the variable speed network model also encom-
passes both the find and fetch model and the expanding search model, as we now
explain.

We first consider the find and fetch game, in which the searcher must return to O
along the shortest path at speed ρ after finding the hider. It is optimal for the hider to
choose a leaf node x, and for any such choice of x at shortest distance d(x,O) from
O, the searcher must travel for additional time d(x,O)/ρ after finding the hider. We
therefore form a new network Q′ from Q by adding an asymmetric arc from x to a
new leaf node x+ with forward travel time (from x to x+) of d(x,O)/ρ and backward
travel time −d(x,O)/ρ . The variable speed game played on Q′ is then equivalent to
the find and fetch game played on Q: traveling to x+ in Q′ is equivalent to traveling
to x in the original network and then back to O at speed ρ , and if the hider is not at x
the extra arc from x to x+ makes no contribution to the search time. Hence the two
models are equivalent.

The total tour time τ of Q′ is equal to twice the length 2μ of Q, and in the Q′ the
leaf node x+ has height 2d(x,O)/ρ , so Δ = Δ(Q′) is the mean value of 2d(x,O)/ρ ,
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weighted with respect to the EBD distribution, which is equal to 2D(Q)/ρ . Hence
by (2.5), the value is

V = 1/2(2μ + 2D/ρ)
= μ +D/ρ ,

as given in (2.3).
We now return to the expanding search model played on a tree Q. Suppose we

form a new network Q′′ by replacing each arc of Q of length λ with an asymmetric
arc with forward travel time (away from O) of λ and backward travel time 0. Then a
depth-first pathwise search on Q′′ is equivalent to an expanding search on Q. It can
be shown that it is optimal to use a depth-first search in the expanding search game,
so that the two models are equivalent. The total tour time of the new network is the
length μ of the original network, and the height of a leaf node in the new network is
the distance from that node to O in the old network, so Δ(Q′′) = D(Q). Hence, by
(2), the value is

V = 1/2(μ +D),

as given in (2.4).

2.7 Conclusion

We have seen how an idea in [14] sparked a field of research which has produced
many elegant results, and continues to develop and expand. We have focused here
on search games on a network with an immobile hider, but search games are not
limited to this paradigm. Much has been achieved in the field of search games with
a mobile hider (also originally motivated by Isaacs [14]), as well as many other
variations on the classic models. The connected field of search games in unbounded
domains, initiated independently by Bellman [8] and Beck [7], has also been ex-
tensively studied. Many unanswered questions in search games remain and new
problems arise, capturing the imaginations of those who have taken the childhood
game of hide-and-seek to its mathematical extreme.
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Chapter 3
Tools to Manage Search Games on Lattices

Noemí Zoroa, María-José Fernández-Sáez, and Procopio Zoroa

Abstract Search games on a network or a graph have been widely studied in the
literature. In some of these situations, the search space can be represented by the
lattice

L = {1, 2, . . . , n}×{1, 2, . . . ,m}
and the strategies for the players are subsets of this lattice. We develop a method
to simplify the resolution of games of this kind when they satisfy some general
conditions. Some games are solved, these are interesting in themselves, and their
resolution illustrates the usefulness of the obtained results.

3.1 Introduction

In this chapter we suggest a general approach to solve games on a lattice. Search
games where the search space can be thought as a network or graph have been
widely studied in the literature, [2, 4–6]. In some of these situations, the search
space can be represented by the lattice

L = {1, 2, . . . , n}×{1, 2, . . . ,m} .

It is clear that the lattice L can be applied to discretize a game in which the search
space is a rectangular region. The lattice can also be applied to search games that
are played over time. Consider, for example, a game like the patrolling game in [3]
in which the search space is the linear set {1, 2, . . . ,m} and players move over n
consecutive periods of time. The lattice L represents the space-time network, by
depicting the nodes of the linear set vertically and time horizontally. If the set is
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not linear but cyclic, then we may take {1, 2, . . . ,m}, considering point 1 as next
to point m. Therefore, if the situation is carried out in a finite set of points placed
on a perimeter, the strategies for the players can also be represented by subsets of
L. Figure 3.1 shows how the moving of a point on a linear set over time can be
represented on the lattice. Games where the search is developed on a star graph, as

Fig. 3.1 Representation, on the lattice L = {1,2, . . . ,8}×{1,2, . . .,7}, of the moving of a point on
the linear set {1,2, . . . ,7} over eight consecutive periods of time

considered by Gal in Chap. 1, Sect. 1.3 of the book, can also be modeled on L by
imposing appropriate constraints on the strategies for the players. The nice book by
Ruckle, Geometric games and their applications, which is discussed in Chap. 6 of
the book, also includes a number of games on the lattice L. Most of the problems on
lattice games that can be found in that book remain open. More games on the lattice
L can be found in [2, 3, 8, 9, 11].

Here we are going to deal with two-person search games on the lattice L; they
are win-loose games, and, therefore, zero-sum games. One interesting problem is
to obtain results or to develop methods to attack the resolution of games with com-
mon characteristics. In the following section we present a method to simplify the
resolution of games on a finite set that satisfy some general properties. Section 3.3
shows how this method can be applied when the finite set is a lattice L. Two games
of this kind are solved in Sect. 3.4. These games are interesting in themselves, but
their resolution is also useful to illustrate the proposed method.

Let us consider the following situation. A hacker gets information from 20
computers, C1, C2, . . . , C20, of an enterprise. Each day he picks information
from each of the computers, but for the information obtained for one computer
to prove trustworthy, he has to verify it at least k times. The company performs
one inspection each day of all the computers. If a leak is detected, a protection
system is set in motion which invalidates the information that can be obtained dur-
ing that day. The hacker must select, every day, the computers and the hours at
which he will make the incursions. He has to do this bearing in mind, first, that
the importance of the data depends on the responsibility of the person who uses
the computer and, secondly, that he cannot make more than s contacts during a
day. This problem can be modelled as a two-person zero-sum game on the lattice
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L = {1, 2, . . . , 20}×{1, 2, . . . ,24} where column i corresponds to computer Ci and
row j to the one-hour period beginning at j o’clock. The pure strategies for the
hacker are the subsets of L of cardinality equal to s; the pure strategies for the com-
pany are the subsets of L with just one point in each column; if the hacker is not
detected, he receives a quantity ci for every computer Ci where he has made at least
k incursions, and zero otherwise. This payoff can be formalized as follows, when
the hacker uses his strategy A, and the company its strategy B, M(A,B) is defined by

M(A,B) =

⎧
⎨

⎩
∑
j∈H

c j if A∩B =∅,

0 if A∩B 
=∅,

where H is the set of the columns of A with k elements at least. The study of this
problem can be simplified with the method developed in this chapter and it is studied
in [11].

A two-person zero-sum game will be expressed by G = (X ,Y,M) where X , Y are
the sets of pure strategies for players I and II, respectively, and

M : X ×Y → R (3.1)

is the payoff function which represents the winnings of player I and the losses of
player II. Player I chooses a strategy A ∈ X , player II chooses a strategy B ∈ Y and
these choices determine the payoff M(A,B) to player I and −M(A,B) to player II.

Throughout this chapter X and Y are finite sets, therefore a probability distribu-
tion on X , that is to say, a mixed strategy for player I, can be written as a function

x : X →R

such that x(C) ≥ 0 for all C ∈ X and ∑
C∈X

x(C) = 1. Similarly, a mixed strategy for

player II will be given by a function

y : Y →R

such that y(C)≥ 0 for all C ∈Y and ∑
C∈Y

y(C) = 1. When the players use their mixed

strategies x and y, the payoff M(x,y) is the expected value of M(A,B).

3.2 Transformations on the Strategy Space

In this section we develop a method to facilitate the study and resolution of games
where the strategies for the players are subsets of a finite set and these and the
payoff function satisfy certain conditions. This method is based on a well known
invariance property [1, 8]: we show how, given a game G, we can build a game G,
which is easier to study than G and has the same value as G. This game has fewer
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strategies than the original and the optimal strategies for the players in the game G
are easily obtained from the optimal strategies in G. This method can be applied
to finite games in general, but we focus on the lattice and solve two general search
games of this kind. Games on different sets, where the method has been used, appear
in [3, 8, 10, 11].

The method is formalized as follows. Let G = (X ,Y,M) be a two person zero
sum game on a finite set L, that is X and Y are subsets of the power set of L, and let

Ti : L −→ L i = 1,2,3 . . . ,n

be a set of transformations defined on L. Notice that a transformation T induces on
the power set of L, which we denote by T as well. Now suppose that the following
conditions are satisfied for every i, j:

1. TiTj = TjTi.
2. Ti is a bijection on L.
3. TiX = X , TiY = Y.
4. M(TiA,TiB) = M(A,B), A ∈ X , B ∈Y .
5. For every A ⊂ L there exists an integer riA such that

T riA
i A = A,

6. For every set of integers s1,s2, . . . ,sn, which do not vanish simultaneously
and such that 0 ≤ si < riA, the inequality

T s1
1 T s2

2 . . .T sn
n A 
= A

holds.

Given a subset C ⊂ L, let C be the class defined by

C =
{

D = T i1
1 T i2

2 . . .T in
n C, for all i1, i2, . . . , in integers

}
.

Then we have partitions
X =

{
A : A ∈ X

}
,

Y =
{

B : B ∈ Y
}
,

of X and Y , respectively.
As usual, the cardinality of a set C will be written as |C|. We can define the

function
M : X ×Y −→ R

by

M
(
A,B

)
= M (xA,B) =

1∣
∣A

∣
∣ ∑

C∈A

M (C,B) , (3.2)
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where xA means the probability distribution on X uniformly concentrated on A. That
is to say,

xA (C) =
1∣
∣A

∣
∣ , if C ∈ A,

xA (C) = 0, if C ∈ X −A.

The last member of (3.2) does not depend on B ∈ B, in other words, it takes the
same value for any B′ ∈ B. In fact, bearing in mind properties 3 and 4, we have that
M (xA,B) = M (xA,T1B) = M

(
xA,T

s1
1 B

)
= M

(
xA,T

s1
1 T s2

2 . . .T sn
n B

)
, from which we

can easily obtain the independence. The expression (3.2) can also be computed by
M (A,yB), where yB is the distribution on Y uniformly concentrated on B ⊂ Y . The
game G = (X ,Y ,M), constructed above, will be called the associated (averaged)
game of G = (X ,Y,M).

Theorem 1. Given the game G = (X ,Y,M), let x, y be the optimal mixed strategies
for players I and II respectively in the associated game G = (X ,Y ,M). Then the
mixed strategies of game G defined by

x(A) =
x(A)∣
∣A

∣
∣ , A ∈ X ,

y(B) =
y(B)∣
∣B

∣
∣ , B ∈ Y

are optimal in the game G and both games have the same value.

Proof. By definition (3.2), we easily obtain that

∑
A∈X

x
(
A
)

M
(
A,B

)
= ∑

A∈X

x
(
A
)

M (xA,B)

= ∑
A∈X

x
(
A
)

∑
C∈A

1∣
∣A

∣
∣M (C,B) , B ∈Y.

And therefore we have
M

(
x,B

)
= M (x,B) .

A similar reasoning leads to

M
(
A,y

)
= M (A,y) .

Hence the inequalities

M
(
A,y

)≤ M (x,y)≤ M
(
x,B

)
, A ∈ X , B ∈ Y

become
M (A,y)≤ M (x,y)≤ M (x,B) , A ∈ X , B ∈ Y

which completes the proof. �
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3.3 Transformations on the Lattice

We apply the symmetry principle of the previous section to the lattice L. We will
refer to the subset Li = {i}×{1, 2, . . . ,m} as the column i of L. Let Fn,m =F repre-
sent the family of all subsets of L = {1, 2, . . . , n}×{1, 2, . . . ,m} with just one point
in each column, that is, the set of all functions from {1,2, . . . ,n} to {1,2, . . . ,m}.
In the games we are interested in, the pure strategies for one of the players are ele-
ments of Fn,m satisfying different constraints, depending on the game. An A∈Fn,m

may be identified by the subset of L {(i,A(i)) : i = 1,2, . . . ,n} and it can also be rep-
resented simply by the vector (A(1),A(2), . . . ,A(n)).Thus, A can be interpreted as

Fig. 3.2 Effect of transformations Ti over a subset A ⊂ L

a walk along a linear set of m points at moments 1, 2, . . . , n and also as a path
from the first to the last column of L which does not double back on itself. The
transformations

Ts : L −→ L, s = 1,2, . . . ,n

defined by

Ts (i, j) =

⎧
⎨

⎩

(i, j), if i 
= s,
(s, j+ 1), if i = s, j < m
(s,1), if i = s, j = m

(3.3)
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have properties 1, 2, 5 and 6. Figure 3.2 shows the effect of transformations
T1, T2, T3 and T4 on the subset A =

{
(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(3,7),

(4,2),(4,4)} of the lattice {1,2,3,4}×{1,2, . . . ,7}. It is also easy to see that

TsF = F , s = 1,2, . . . ,n.

Therefore we can state the following theorems.

Theorem 2. Let (X,Y,M) be a game on a lattice satisfying

X = F
TsY = Y,

M (TsA, TsB) = M (A,B)
(A ∈ X, B ∈ Y, s = 1,2, . . .n) .

(3.4)

An optimal strategy for player I is the uniform distribution on X.

x(A) = xF (A) =
1

|F |=
1

mn, A ∈ X. (3.5)

Let B0 ∈ Y such that

min
B∈Y

M (xF , B) = min
1

mn ∑
A∈F

M (A,B)

=
1

mn ∑
A∈F

M (A,B0) = M (xF ,B0) . (3.6)

Thus an optimal strategy for player II is the distribution on Y uniformly concentrated
in B0:

yB0
(B) =

{
1
|B0| , if B ∈ B0

0 if B /∈ B0

(3.7)

and the value of the game is M (xF ,B0) given by (3.6).

Proof. Since properties 1–6 of transformations Ts work here, we can apply
Theorem 1. In the associated game G =

(
X , Y , M

)
the set X = {F} contains the

only element F which will be the optimal strategy for player I. The optimal strategy
for player II will be a pure strategy B0 such that

min
B

M
(
F ,B

)
= M

(
F ,B0

)
.

The two strategies xF ,yB0
are obtained from the two optimal strategies F , B0, of

the associated game G, completing the proof. �
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Theorem 3. Let (X,Y,M) be a game on a lattice satisfying

Y = F
TsX = X ,

M (TsA, TsB) = M (A,B)
(A ∈ X, B ∈ Y, s = 1,2, . . .n) .

(3.8)

An optimal strategy for player II is the uniform distribution on Y = F ,

y(B) = yF (B) =
1

|F |=
1

mn, B ∈ F . (3.9)

If we call A0 ∈X a strategy which fulfills

max
A∈X

M (A, yF ) = M (A0, yF ) , (3.10)

then an optimal strategy for player I is the uniformly concentrated distribution
on A0:

xA0
(A) =

{
1
|A0| , if A ∈ A0

0 if A /∈ A0

(3.11)

and the value of the game is M (A0, yF ) given by (3.10).

Proof. Similar to the proof of the Theorem 2. �
These theorems give a general method for solving those games satisfying (3.4)
or (3.8). In each case it will be sufficient to determine either B0 ∈Y satisfying (3.6)
or A0 ∈ X satisfying (3.10).

Example 1. In a conflict situation an intruder (the hider) has to carry out a sab-
otage on the perimeter of a protected zone. He has to perform the action over n
consecutive days, and has to position himself each day at one of m strategic points
placed on this border in order to set a device on it. These points are represented
by 1, 2, 3, . . . , m, considering point 1 as next to point m. The first day the hider
can take his place at any of the m points, on successive days he can either stay,
move one step to the right or move one step to the left. This constraint on the
movements of the hider can be considered as a limit on his maximum speed, and
expresses that his movements are difficult, e.g. because he has to use safe ways
to go from one point to another. Furthermore, the perimeter is protected by a pa-
troller (the searcher) who every day selects one of the m strategic points to in-
spect. This selection has to be done satisfying different constraints depending on
the situation. If it is assumed n = 6 and m = 9, Fig. 3.3 shows a representation
of strategy {(1,7),(2,7),(3,8),(4,9),(5,9),(6,1)} of the intruder on the lattice
L = {1,2, . . . ,6,}×{1,2, . . . ,9} and on the cyclic set {1,2, . . . ,9}.
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This problem, modeled as a two-person zero-sum search game developed on the
lattice L is studied in [9] . It is called ambush game over time on a cyclic set and
the set of strategies for the hider X is equal to

F 1
n,m = {A ∈ Fn,m : A(i+ 1)−A(i)∈ {0,1,−1,m− 1,1−m},

i = 1, . . . ,n− 1} , (3.12)

the set of strategies for the searcher is Y = Fn,m and the payoff function

M(A,B) =

{
1 if A∩B =∅

0 if A∩B 
=∅
.

Fig. 3.3 Representation of strategy {(1,7), (2,7), (3,8), (4,9), (5,9), (6,1)} on the lattice L =
{1,2, . . . ,6,}×{1,2, . . .,9} and on the cyclic set {1,2, . . .,9}

Note that the results obtained in Theorems 2 and 3 cannot be applied to this game
because conditions TsX = X ,s = 1,2, . . . ,n are not satisfied. Now we are going to
define a new transformation that can be applied to make the handling of games
where one of the sets of strategies for the players is the set defined by (3.12) or a
subset of it easier. Let

T : L −→ L, s = 1,2, . . . ,n

be the transformation defined by

T (i, j) =

{
(i, j+ 1) if j < n,
(i,1) if j = n.

(3.13)

Figure 3.4 shows the effect of transformation T over a subset of L = {1,2, . . . ,6,}×
{1,2,3,4}. If G = (X ,Y,M) is a game satisfying X ⊂ F 1

n,m,TY = Y (or Y ⊂
F 1

n,m,T X = X) and M (TA, T B) = M (A,B) then Theorem 1 can be applied and
it is easy to prove that there exist optimal mixed strategies for the players such that
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if a pure strategy C has positive probability, all the pure strategies obtained from C
by successive applications of transformation T , TC, T 2C, T 3C, . . . , T m−1C, have
the same probability. A similar result is obtained in [1].

Fig. 3.4 Effect of transformation T

3.4 Two Games with Invariance Properties

We solve two games satisfying (3.4). Some seminal results for the first of them,
the one-element intersection game, can be found in [8] and the weighted inspection
game, which is the second game, has been studied in [11].

3.4.1 One-Element Intersection Game

The one-element intersection game (OEIG), is a game (X ,Y,M) on a lattice L satis-
fying the following conditions:

X = F

Y = {B : B ⊂ L, |B|= s}

M(A,B) =

{
1, if |A∩B|= 1
0, otherwise.

The intepretation of this game is that Player I wins if he finds just one point of
B. When he finds this first point, however, an alarm system is activated, so that if he
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finds a new point, he is detected and cannot carry out his mission. This game has a
trivial solution when s ≥ 2m. In fact, player II can choose B filling up two columns,
which is an optimal strategy for him and the value of the game is zero. The game
satisfies hypothesis of Theorem 2. Therefore, an optimal strategy for player I is the
uniform distribution on X = F . To obtain an optimal strategy for player II we must
determine B0 in such a way that

M (xF , B0) = min
B∈Y

M (xF , B) = min
B∈Y

1
mn ∑

A∈F
M (A, B)

= min
s1,s2,...,sn

1
mn f (s1,s2, . . . ,sn) =

1
mn min

s1,s2,...,sn

n

∑
i=1

si∏
j 
=i

(m− s j),

where si = |B∩Li| and
n
∑

i=1
si = s. And the value of the game is given by M (xF , B0).

To solve the game when s < 2m, we have to solve the following problem. Given
integers s and m such that s < 2m, find the minimum of the function

f (s1,s2, . . . ,sn) =
n

∑
i=1

si ∏
j 
=i

(m− s j), (3.14)

for s1,s2, . . . ,sn integers satisfying

0 ≤ si ≤ m
n

∑
i=1

si = s. (3.15)

In the following [x] denote the integer part of x. To obtain the solution for the
OEIG when n = 2 we will need the next result.

Lemma 1. If n = 2, the minimum of the function f = f (s1,s2) defined by (3.14) is
obtained with the values

s̄1 = s− [s/2] ,

s̄2 = [s/2] .

Proof. Given integers s1,s2 satisfying (3.15), the symmetry of the function (3.14)
allows us to assume that

s1 ≥ s2

We will prove that either s1 = s̄1 and s2 = s̄2 or f (s1,s2) is not the minimum of f .
If s1 − s2 = 0 or s1 − s2 = 1, then si should be equal to s̄i for i = 1,2. If s1 − s2 ≥ 2,
we can build

s′1 = s1 − 1, s′2 = s2 + 1

and compute the difference

f (s1,s2)− f (s′1,s
′
2) = (s1 − s2− 1)> 0,

therefore f (s1,s2) is not a minimum and the proof is complete. �
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We can now obtain the solution for the OEIG when n= 2. We have to compute (3.6),
which in this case is equal to

1
m2 min(s1(m− s2)+ s2(m− s1))

=
1

m2 min f (s1,s2)

where si = |B∩Li|. From Lemma 1 it follows that this minimum is given by

1
m2 f (s̄1, s̄2) =

1
m2 (ms− 2 [s/2] (s− [s/2]))

which is the value of the game. A set B0 which determines the optimal strategy for
player II is defined by

B0 = {(i, j) : 1 ≤ j ≤ s− [s/2] , for i = 1, 1 ≤ j ≤ [s/2] , for i = 2} .

The solution for the OEIG when n≥ 3 is established by a number of lemmas and
theorems.

Lemma 2. Let s and m be integers such that 0 < s < 2m. For each set of integers
s1,s2, . . . ,sn satisfying

0 ≤ si ≤ m
n

∑
i=1

si = s,

s1 ≥ s2 ≥ . . .≥ sn, (3.16)

the inequality
s2

m− s2
+ . . .+

sn

m− sn
≤ s− [s/n]

m− [s/2]
,

holds.

Proof. From (3.16) it follows that

s2 ≤ [s/2] and therefore si ≤ [s/2] for all i = 2, . . . ,n

then
1

m− si
≤ 1

m− [s/2]
for all i = 2, . . . ,n.

Multiplying both members by si and adding

n

∑
2

si

m− si
≤ s− s1

m− [s/2]
,

assumptions ∑n
i=1 si = s and s1 ≥ s2 ≥ . . .≥ sn imply that s1 ≥ [s/n], then
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n

∑
2

1
m− si

≤ s− [s/n]
m− [s/2]

.

�

Lemma 3. Let s, n, m, s1,s2, . . . ,sn be integers such that 0 < s < 2m, n ≥ 2,

0 ≤ si,
n

∑
i=1

si = s,

s1 ≥ s2 ≥ . . .≥ sn.

and f the function defined by (3.14). If for indexes h and k, one of them equal to 1,
the inequalities sh > 0 and sk < m are satisfied and we build the new set of integers
given by

s′h = sh − 1,

s′k = sk + 1,

s′i = si i 
= h, i 
= k,

then the difference

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n)

is equal to

(sh − sk − 1)P(2− ∑
i
=h,k

si

m− si
),

where

P = ∏
j 
=h,k

(m− s j).

Proof. By computing the difference

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n)

= ∑
i
(si ∏

j 
=i

(m− s j)− s′i ∏
j 
=i

(m− s′j)), (3.17)

we pay first attention only on those terms involving i = h and i = k, so that we find
that

sh(m− sk)P+ sk(m− sh)P− s′h(m− s′k)P− s′k(m− s′h)P

= 2(sh− sk − 1)P, where P = ∏
j 
=h,k

(m− s j).

Bearing in mind that one of the indexes h or k is equal to 1, we can assure that
m− si > 0 for each i 
= h, i 
= k. Then, for the remaining terms in (3.17) we can write
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∑
i
=h,k

si
(m− sh)(m− sk)

m− si
P− ∑

i
=h,k

si
(m− s′h)(m− s′k)

m− si
P

=− ∑
i
=h,k

si

m− si
(sh − sk − 1)P.

Then (3.17) can be rewritten as

(sh− sk − 1)P(2− ∑
i
=h,k

si

m− si
)

and the proof is finished. �
To state the following lemma we will write

s̄i = p+ 1, for i ≤ q,

s̄i = p for i > q.
(3.18)

where p = [s/n] and q = s− pn, (3.19)

Lemma 4. Let s and m be integers, 0 < s < 2m. The minimum of function f defined
by (3.14) for integers s1,s2, . . . ,sn satisfying (3.15) and

n−1

∑
i=2

si

m− si
≤ 2, (3.20)

is achieved with the integers si = s̄i defined by (3.18) and it is equal to

(ms− np(p+ 1))(m− p− 1)q−1(m− p)n−q−1. (3.21)

with p and q defined by (3.19).

Proof. Let S be the set defined by

S =

{

{s1,s2, . . . ,sn} : si integers,0 ≤ si ≤ m,
n

∑
i=1

si = s,
n−1

∑
i=2

si

m− si
≤ 2

}

We want to obtain the minimum

min
(s1,s2,...,sn)∈S

f (s1,s2, . . . ,sn).

Given a set of integers {s1,s2, . . . ,sn} ∈ S , the symmetry of the function (3.14)
allows us to assume that

s1 ≥ s2 ≥ . . .≥ sn.

If s1 − sn = 0 or s1 − sn = 1, then si should be equal to s̄i (for each index i). If
s1 − sn ≥ 2, we can build the new set of integers {s′1,s

′
2, . . . ,s

′
n} ∈ S , by
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s′1 = s1 − 1

s′i = si, 2 ≤ i ≤ n− 1

s′n = sn + 1

Now, from Lemma 3 with h = 1 and k = n it follows

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n)

= (s1 − sn− 1)P(2−
n−1

∑
i=2

si

m− si
)≥ 0.

If this difference is greater than 0 then f (s1,s2, . . . ,sn) is not a minimum. If the
difference is equal to 0 then f (s1,s2, . . . ,sn) = f (s′1,s

′
2, . . . ,s

′
n) and we can remove

the set of integers {s1,s2, . . . ,sn} from set S to find the minimum of f and the proof
of the lemma is complete. �

To state the following theorem we will write

ŝ1 = a = s− b,
ŝ2 = b = [s/2] ,

ŝi = 0, i > 2
(3.22)

Theorem 4. Let s, n, m, be integers 0< s< 2m, n≥ 3. Then the minimum of function
f (s1,s2, . . . ,sn) defined by (3.14) for integers s1,s2, . . . ,sn, satisfying (3.15) is either

K = (ms− np(p+ 1))(m− p− 1)q−1(m− p)n−q−1 (3.23)

where p= [s/n] and q= s− pn, achieved with the values si = s̄i defined by (3.18), or

K′ = (ms− 2ab)mn−2, (3.24)

where a = s− b, and b = [s/2], achieved with the values si = ŝi defined by (3.22).

Proof. Given a set of integers s1,s2, . . . ,sn satisfying (3.15), the symmetry of the
function (3.14) allows us to assume that

s1 ≥ s2 ≥ . . .≥ sn.

If inequality ∑n−1
i=2

si

m− si
≤ 2 then it follows from Lemma 4 that

f (s1,s2, . . . ,sn)≥ f (s̄1, s̄2, . . . , s̄n)

= (ms− np(p+ 1))(m− p− 1)q−1(m− p)n−q−1

with s̄i defined by (3.18) and p and q defined by (3.19). Now let us suppose that
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n−1

∑
i=2

si

m− si
> 2

and let l be the last index for which sl > 0, that is si > 0 for i = 1,2, . . . , l and si = 0
for i = l+1, l+2, . . . ,n. Let us suppose l > 2. We distinguish two cases, s1 < m and
s1 = m. If s1 < m, then we can define the new set of integers

s′1 = s1 + 1, s′l = sl − 1 and s′i = si i 
= 1, and i 
= l,

and applying Lemma 3 with h = l and k = 1 it follows that

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n) = (sl − s1− 1)P(2− ∑

i
=1,l

si

m− si
)

≥ (sl − s1− 1)P(2−
n−1

∑
i
=1

si

m− si
).

Bearing in mind s1 ≥ sl , P > 0 and ∑n−1
i=2

si
m−si

> 2 it follows that f (s1,s2,

. . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n)> 0. Therefore f (s1,s2, . . . ,sn) is not a minimum.

If s1 = m, bearing in mind that s < 2m we can assert s2 < m, then we can define
the new set of integers

s′2 = s2 + 1, s′l = sl − 1 and s′i = si i 
= 2, and i 
= l,

In this case, to compute the difference

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n)

we can not apply Lemma 3 because neither index 2 nor index l is equal to 1, but it
is not difficult to compute it directly,

f (s1,s2, . . . ,sn)− f (s′1,s
′
2, . . . ,s

′
n) = ∑

i

(si ∏
j 
=i

(m− s j)− s′i ∏
j 
=i

(m− s′j))

= s1 ∏
j 
=1

(m− s j)− s′1 ∏
j 
=1

(m− s′j) = m(
l−1

∏
j=2

(m− s j))(m− sl −m+ s′l)

= m
l−1

∏
j=2

(m− s j)> 0

therefore f (s1,s2, . . . ,sn) is not a minimum. Now we can assert that, if f (s1,s2,
. . . ,sn) is the minimum of function f , and sn = 0 then s3 = s4 = . . .= sn = 0. More-
over, given a set of integers s1,s2, . . . ,sn satisfying (3.15) and s3 = s4 = . . .= sn = 0,
if s1 − s2 ≥ 2 we can define the new set of integers
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s′1 = s1− 1, s′2 = s2 + 1

s′i = si = 0 for i = 3,4, . . . ,n

and from Lemma 3, with h = 1 and k = 2 it is obtained that f (s1,s2, . . . ,n)−
f (s′1,s

′
2, . . . ,s

′
n) = (s1 − s2 − 1) > 0. Therefore f (s1,s2, . . . ,sn) is not a minimum.

From the above considerations we obtain that the minimum of f is either

f (s̄1, s̄2, . . . , s̄n) = (ms− np(p+ 1))(m− p− 1)q−1(m− p)n−q−1,

with the values s̄1, s̄2, . . . , s̄n defined by (3.18), or f (ŝ1, ŝ2, . . . , ŝn) = (ms−2ab)mn−2,
where the values ŝ1, ŝ2, . . . , ŝn are defined by (3.22). The second part of the theorem
follows straightforwardly from Lemma 4, and the proof is complete. �
Corollary 1. Let s, n, m, be positive integers, n ≥ 3 and suppose that

[s/2]≤ 2m
3

(3.25)

Then the minimum of function f defined by (3.14) for integers s1,s2, . . . ,sn, satisfy-
ing (3.15) is K defined by (3.23) achieved with the values si = s̄i defined by (3.18).

Proof. From Theorem 4 it follows that the minimum of function f is achieved with
the values s̄1, s̄2, . . . , s̄n defined by (3.18), or with the values ŝ1, ŝ2, . . . , ŝn defined
by (3.22). But if (3.25) is satisfied it follows that

n−1

∑
i=2

ŝi

m− ŝi
=

b
m− b

=
[s/2]

m− [s/2]
≤ 2

is satisfied. Then, from Lemma 4, it follows that f (ŝ1, ŝ2, . . . , ŝn) is not a minimum,
therefore the minimum is K defined by (3.23) achieved with the values si = s̄i de-
fined by (3.18) and the proof is complete. �

Now we can solve the OEIG. We will write

{(i, j) : 1 ≤ j ≤ p+ 1, for i ≤ q, 1 ≤ j ≤ p, for i > q} , (3.26)

H =
1
m
(s− np(p+ 1)

m
)(1− p+ 1

m
)q−1(1− p

m
)n−q−1 (3.27)

where p = [s/n] and q = s− np,

{(i, j) : 1 ≤ j ≤ a, for i = 1, 1 ≤ j ≤ b, for i = 2} (3.28)

H ′ =
1

m2 (ms− 2ab) (3.29)

where b = [s/2] and a = s− b.
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Theorem 5. In the OEIG with n ≥ 3 and 0 < s < 2m, if

[s/2]≤ 2m
3

is satisfied, then an optimal strategy for player II is the uniform distribution on the
set B0, where B0 is the set defined by (3.26) and the value of the game is equal to H
defined by (3.27). If, on the contrary,

[s/2]>
2m
3
, (3.30)

then the value of the game is

v = min
{

H,H ′}

with H defined by (3.27) and H ′ defined by (3.29). If v = H then an optimal strategy
for player II is the uniform distribution on the set B0, where B0 is the set defined by
(3.26), if v = H ′ then an optimal strategy for player II is the uniform distribution on
the set B0, where B0 is the set defined by (3.28).

Proof. As we know, the OEIG satisfies hypothesis of Theorem 2, therefore, an op-
timal strategy for player I is the uniform distribution on X = F and the value of the
game is given by

v =
1

mn min ∑
A∈F

M(A,B)

which in this case is written as

1
mn min f (s1,s2, . . . ,sn) =

1
mn min

n

∑
i=1

si ∏
j 
=i

(m− s j).

If [s/2]≤ 2m
3

is satisfied, then from Corollary 1 it follows that the minimum of f is

equal to K defined by (3.23), therefore

v = H

and an optimal strategy for player II is the uniform distribution on the set B0, where
B0 is the set defined by (3.26).

If, on the contrary, (3.30) is satisfied, then, Theorem 4 proves that the minimum
for f is the minimum of the values K, defined by (3.23), and K′ defined by (3.24).
If this minimum is K, then the value of the OEIG is equal to H defined by (3.27)
and an optimal strategy for player II is the uniform distribution on the set B0, where
B0 is the set defined by (3.26). If this minimum is K′, then the value of the OEIG
is equal to H ′ defined by (3.29) and an optimal strategy for player II is the uniform
distribution on the set B0, where B0 is the set defined by (3.28). This proves the
theorem. �
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Fig. 3.5 Sets B0 for n = 4, m = 10 and the two values of s, 11 and 18

Example 2. Let us consider the OEIG with n = 4 and m = 10. An optimal strategy
for player I is the uniform distribution on the set of his pure strategies, F . If s = 18,
then (3.30) is satisfied, therefore the value of the game is equal to v = min{H,H ′}
where H =

K
mn and H ′ =

K′

mn , K and K′ defined by (3.23) and (3.24) respectively. In

this case

K = 3,000, K′ = 1,800,

therefore K′ < K, H ′ < H. Then the value of the game is

v = H ′ =
1,800
104 = 0.18

and an optimal strategy for player II is the uniformly concentrated distribution on
B0, where B0 is

B0 = {(i, j) : 1 ≤ j ≤ 9, for i = 1,2} .
A representation of this set can be seen in Fig. 3.5. If s = 11, then (3.30) is also
satisfied. In this case

K = 1,274, K′ = 5,000,

therefore K < K′, H < H ′. Then the value of the game is

v = H =
1,274
104 = 0.1274
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and an optimal strategy for player II is the uniformly concentrated distribution on
B0, where B0 is

B0 = {(i, j) : 1 ≤ j ≤ 3, for i = 1,2,3, 1 ≤ j ≤ 2, for i = 4} .

A representation of this set can be seen in Fig. 3.5. Figure 3.6 shows some of the
elements of B0.

3.4.2 Weighted Inspection Game

An inspection game is a mathematical model of a situation where an inspec-
tor verifies that another part, the inspectee, adheres to certain rules. Typically,
the inspector’s resources are limited, so the verification can only be partial. The
weighted inspection game (WIG) is a game (X ,Y,M) on the lattice L satisfying

X = F

Y = {B : |B|= s}

M(A,B) =
n

∑
i=1

ci |B∩Li| |A∩B∩Li|

where ci are constants such that

0 < c1 ≤ c2 ≤ . . .≤ cn. (3.31)

Therefore, in this game the inspector, player I, makes a single inspection on each
column of L (each column can represent a different day, zone, product, etc.), player
II, the inspectee, chooses a subset of L of cardinality equal to s to hide one object
at each one of its points. If player I finds one of the objects hidden by player II in
column Li, then he receives a quantity ci for every object hidden by player II in this
column. This game has been studied in [11], where the case c1 = c2 = . . .= cn = c
is completely solved.

Example 3. A farmer has 800 cows distributed in 8 cowsheds, C1, C2, . . . , C8, 100
in every cowshed. He has decided to administer an illegal substance to 80 of his
cows. The public health agency will test one cow from each cowshed every month.
If the illegal substance is detected, then the sanitary inspector will test all the cows
of that cowshed and the farmer has to pay a fine of ci times the number of positive
results. The coefficient ci depends on the village where the cowshed is allocated.
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Fig. 3.6 Some elements of B0 for n = 4, m = 10 and s = 11

To solve this WIG we can apply Theorem 2. Hence an optimal strategy for player
I is the uniform distribution on F . To obtain an optimal strategy for player II we
must determine B0 in such a way that
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M (xF , B0) = min
B∈Y

M (xF , B) = min
B∈Y

1
mn ∑

A∈F
M (A, B)

= min
B

1
mn ∑

A∈F

n
∑

i=1
ci |B∩Li| |A∩B∩Li|= min

B

1
mn ∑

A∈F

n
∑

i=1
cisi |A∩B∩Li|

= min
B

1
mn

n

∑
i=1

cisisim
n−1 = min

s1,s2,...,sn

1
m

n

∑
i=1

cis
2
i

where si = |B∩Li|, and so
n
∑

i=1
si = s. Therefore to obtain the solution of this game

we need to solve the following problem: Let c1, c2, . . . , cn, be positive real numbers
satisfying (3.31), and s a positive integer. Minimize the quadratic function

f (x1,x2, . . . ,xn) =
n

∑
i=1

cix
2
i . (3.32)

subject to
n

∑
i=1

xi = s and xi i = 1,2, . . . ,n non negative integers (3.33)

If α1, α2, . . . , αn is a solution for this problem and αi ≤ m, i = 1,2, . . . ,n, then an
optimal strategy for player II is the uniformly concentrated distribution in B0, where

B0 = {(i, j) : 1 ≤ j ≤ αi for i = 1,2, ..,n}

and the value of the game is

v =
1
m

n

∑
i=1

ciα2
i .

To solve the game of Example 3 we need to minimize (3.32) subject to (3.33),
which we do by taking advantage of the particular properties of this problem.

Lemma 5. The minimum of the function f , given by (3.32), for real values xi satis-
fying ∑n

i=1 xi = s, is achieved when xi takes the following values ri

ri =
s

ci

n
∑
j=1

c−1
j

, i = 1,2, . . . ,n (3.34)

and for any other x1, x2, . . . , xn the following equality is satisfied

n

∑
i=1

cix
2
i =

n

∑
i=1

cir
2
i +

n

∑
i=1

ci(xi − ri)
2. (3.35)

Proof. It is sufficient to prove (3.35) because from this it follows that the minimum
condition is satisfied. Write
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k =
s

n
∑
j=1

c−1
j

then
ci ri = k, i = 1,2, . . . ,n. (3.36)

and from (3.36) and the relation
n
∑

i=1
xi =

n
∑

i=1
ri = s we have

n

∑
i=1

cix
2
i =

n

∑
i=1

ci(xi − ri)
2 +

n

∑
i=1

cir
2
i

and the proof is complete. �
If we denote x̄ = (x1,x2, . . . ,xn) and therefore r̄ = (r1,r2, . . . ,rn), equality (3.35) can
be written briefly as

f (x̄) = f (r̄)+ f (x̄− r̄). (3.37)

From Lemma 5 we obtain the following considerations.

Remark 1. For any non-negative x̄ = (x1,x2, . . . ,xn) and ȳ = (y1,y2, . . . ,yn) such that
n
∑

i=1
xi = s and

n
∑

i=1
yi = s, (integers or real), it follows that

(a)
n
∑

i=1
cix2

i ≤
n
∑

i=1
ciy2

i ⇔
n
∑

i=1
ci(xi− ri)

2 ≤
n
∑

i=1
ci(yi − ri)

2,

(b) f (x̄)− f (ȳ) = f (x̄− r̄)− f (ȳ− r̄).

Therefore, finding the point ᾱ = (α1,α2, . . . ,αn) with αi integers, which minimizes
f (s̄) = f (s1,s2, . . . ,sn) is equivalent to finding the point ᾱ which minimizes f (s̄−
r̄) = f (s1−r1,s2−r2, . . . ,sn−rn) where s̄=(s1,s2, . . . ,sn), si are integers,

n
∑

i=1
si = s,

and r̄ = (r1,r2, . . . ,rn), the ri given by (3.34).

Once the real numbers given by (3.34) have been obtained we determine the integers
a1, a2, . . . , an, such that

ai− 1/2≤ ri < ai + 1/2

that is to say

ai =

{
[ri] if [ri]≤ ri ≤ [ri]+ 1/2
[ri]+ 1 if [ri]+ 1/2 < ri < [ri]+ 1

(3.38)

where [x] denotes the integer part of x. Now let us write

bi = ri − ai (3.39)

and

d = s−
n

∑
i=1

ai, (3.40)
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then
ri = ai + bi, ai and d integers,

|bi| ≤ 1/2 and d =
n

∑
i=1

bi

will be satisfied.

Theorem 6. If d, given by (3.40) is equal to 0, then the minimum of (3.32) subject
to (3.33) is obtained with the values αi = ai for i = 1,2, . . . ,n. Moreover, if every
one of the values bi given by (3.39) satisfies |bi|< 1/2 then there is no other point s̄
in which the minimum is attained.

Proof. In fact, for any other point s̄ = (s1,s2, . . . ,sn), si integers si ≥ 0, for i =

1,2, . . . ,n, and
n
∑

i=1
si = s, we can write

f (s̄)− f (ā) =
n

∑
i=1

ci(si − ri)
2−

n

∑
i=1

ci(ai − ri)
2

=
n

∑
i=1

ci(si − ai− bi)
2−

n

∑
i=1

ci b2
i ,

but at least one of the integers si−ai is different from zero, and for every one of the
terms in which si − ai 
= 0,

|si − ai− bi| ≥ |si − ai|− |bi| ≥ 1/2 ,

is satisfied, hence

(si − ai− bi)
2 ≥ (1/2)2 ≥ b2

i

and therefore
n

∑
i=1

ci(si − ai− bi)
2 ≥

n

∑
i=1

ci b2
i

which proves that f (ā) is the minimum. �
Theorem 7. If d defined by (3.40), is different from 0 let A and B be the sets

A =

{

s̄ : si = ai + δi, i = 1,2, . . . ,n, δi integers,

δi = 0 or sgn δi = sgnd,
n

∑
i=1

δi = d

}

,

where ai, i = 1,2, . . . ,n, are defined by (3.38), and
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B =

{

s̄ : si are integers,si ≥ 0,
n

∑
i=1

si = s

}

Then A ⊂ B, and the following equality

min
s∈B

f (s̄) = min
s∈A

f (s̄) (3.41)

is satisfied. That is to say, the minimum of (3.32) subject to (3.33) is obtained with
an s̄ ∈ A.

Proof. The relation A⊂ B is clear. To proof equality (3.41) first let us suppose d > 0.

Let s∈ B be given, then
n
∑

i=1
si = s and si = ai+δi is satisfied, where δi, i = 1,2, . . . ,n,

are integers. If every δi different from zero has the same sign (that is δi ≥ 0 for
i = 1,2, . . . ,n) then

n

∑
i=1

si =
n

∑
i=1

ai +
n

∑
i=1

δi = s− d+
n

∑
i=1

δi

⇒
n

∑
i=1

δi = d

and so s ∈ A. If, on the contrary, not all the δi have the same sign, let us call

H1 = {i : δi > 0} , H2 = {i : δi < 0} .

We can write

n

∑
i=1

si =
n

∑
i=1

ai + ∑
i∈H1

δi + ∑
i∈H2

δi = s− d+ ∑
i∈H1

δi + ∑
i∈H2

δi = s.

Then ∑
i∈H1

δi = d− ∑
i∈H2

δi > d, and we can select K ⊂ H1 and δ ′
i for i ∈ K such that

δ ′
i are integers, 1 ≤ δ ′

i ≤ δi and
n
∑

i=1
δ ′

i = d . Now we can build s′ ∈ A as follows

s′i = ai + δ ′
i for i ∈ K ⊂ H1,

s′i = ai for i /∈ K.

We have

f (s− r) =
n

∑
i=1

ci(si − ri)
2 = ∑

i∈K
ci(si − ri)

2 + ∑
i/∈K

ci(si − ri)
2

≥ ∑
i∈K

ci(si − ri)
2 + ∑

i/∈K

ci(ai − ri)
2
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= ∑
i∈K

ci(ai + δi− ri)
2 + ∑

i/∈K

ci(ai− ri)
2

and bearing in mind 1≤ δ ′
i ≤ δi and −1/2≤ ri ≤ 1/2 it follows that 1/2≤ δ ′

i −ri ≤
δi − ri, therefore

f (s− r)≥ ∑
i∈K

ci(ai + δi− ri)
2 + ∑

i/∈K

ci(ai− ri)
2

≥ ∑
i∈K

ci(ai + δ ′
i − ri)

2 + ∑
i/∈K

ci(ai− ri)
2 = f (s′ − r).

Then, the minimum cannot be achieved in s. The same conclusion can be drawn for
d < 0, which finishes the proof. �
Remark 2. Now, it is not difficult to develop a program for the cases where |d| =
0,1,2, or 3. Note that |d| ≤ [n/2], so this program will solve the problem whenever
n≤ 7. Moreover, when n > 7, it is more probable that |d| takes values less than 3 (if
coefficients ci differ) because it is easy for the values bi to have different signs. The
program will, therefore, solve the problem in a wide variety of cases.

Example 4. Let us consider the optimization problem of minimizing function (3.32)
subject to (3.33) with the following data

n = 10;

c1 = 1, c2 = 1, c3 = 3, c4 = 5, c5 = 7,

c6 = 7, c7 = 8, c8 = 11, c9 = 15, c10 = 16.

With these data and changing the value of s, the following values for d are obtained.
We will write the pairs (s,d):

(10,2) (20,1) (30,1) (40,−2)
(50,1) (60,0) (70,2) (80,0)
(90,0) (100,−2) (110,0) (120,0)
(130,−1) (140,0) (150,1) (160,0)

As can be seen |d|< 3 is satisfied in all the cases. Observe also that the values 0, 1,
−1, 2 and −2 appear with high irregularity.

Remark 3. To apply the solution of the optimization problem to solve the WIG it
is necessary that αi ≤ m for i = 1,2, . . . ,n. It is clear that this condition will be
satisfied if m≥ ai+d for i= 1,2, . . . ,n, where ai and d are given by (3.38) and (3.40)
respectively.

Now we can solve some further examples.

Example 5. Let us consider the situation described in Example 3 with the following
data: s = 80; a fine that must be paid for every positive result in cowshed Ci given
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by c1 = 2, c2 = 2.5, c3 = 3, c4 = 2.3, c5 = 1.5, c6 = 1.8, c7 = 2.5, c8 = 2. With
these parameters, we obtain the values ri,ai,bi and αi summarized in the following
table:

ri ai bi αi

10.55 11 −0.45 11
8.44 8 0.44 8
7.04 7 0.04 7
9.18 9 0.18 9

14.07 14 0.07 14
11.73 12 −0.27 12
8.44 8 0.44 8

10.55 11 −0.45 11
Total 80.00 80 d = 0 80

An optimal strategy for player I is the uniform distribution on F , an optimal
strategy for player II is the uniformly concentrated distribution in B0, where B0 is a
set with 14 elements in column 5, 12 elements in column 6, 9 elements in column
4, 11 elements in columns 1 and 8, 8 elements in columns 2 and 7 and 7 elements
in column 3, as for example

B0 = {(1,1),(1,2), . . . ,(1,11),(2,1),(2,2), . . . ,(2,8),(3,1),(3,2), . . . ,(3,7),

(4,1),(4,2), . . . (4,9),(5,1),(5,2), . . . ,(5,14),(6,1),(6,2), . . . ,(6,12),

(7,1),(7,2), . . . ,(7,8),(8,1),(8,2), . . . ,(8,11)}

and the value of the game

v =
1690.5

100
.

Example 6. Let us consider the same situation with the following data: s = 20; a fine
that must be paid for every positive result in cowshed Ci given by: c1 = 10, c2 = 10,
c3 = 15, c4 = 15, c5 = 15, c6 = 15, c7 = 20, c8 = 30. With these parameters, we
obtain the values ri,ai,bi and αi summarized in the following table:

ri ai bi αi

3.63 4 −0.36 4
3.63 4 −0.36 4
2.42 2 0.42 3
2.42 2 0.42 2
2.42 2 0.42 2
2.42 2 0.42 2
1.82 2 −0.18 2
1.21 1 0.21 1

Total 20.00 19 d = 1 20
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An optimal strategy for player I is the uniform distribution on F , an optimal
strategy for player II is the uniformly concentrated distribution in B0, where B0 can
be for example

B0 = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),
(4,1),(4,2),(5,1),(5,2),(6,1),(6,2)(7,1),(7,2),(8,1)}

and the value of the game

v =
745
100

.

Example 7. A factory distributes its product to eight different areas. The factory
sends 1,000 units of the product to each one of the eight distribution centers, C1, C2,
. . . , C8, once a week. In these centers the product is submitted to a quality control by
the respective inspection services. The inspection service of each one of the centers
Ci chooses one unit of the product out of the 1,000 in the series to inspect. If the unit
selected does not meet the requirements, then the service inspects all the series, and
the company has to pay a fine of ci times the number of faulty units in this series.

The management of the factory knows that they produce s faulty units every
week and wants to distribute these among the different areas, thus minimizing the
fine. The number of faulty products, s = 85. The fine that must be paid to center
Ci for every faulty product found is c1 = 10, c2 = 10, c3 = 15, c4 = 15, c5 = 15,
c6 = 15, c7 = 20, c8 = 30. With these parameters we obtain the values ri,ai,bi and
αi summarized in the following table:

ri ai bi αi

15.45 15 0.45 16
15.45 15 0.45 16
10.30 10 0.30 10
10.30 10 0.30 10
10.30 10 0.30 10
10.30 10 0.30 10
7.72 8 −0.27 8
5.15 5 0.15 5

Total 85.00 83 d = 2 85

An optimal strategy for player I is the same that in the previous case, an optimal
strategy for player II is the uniformly concentrated distribution in B0, where B0

can be
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B0 = {(1,1),(1,2), . . . ,(1,16),(2,1),(2,2), . . . ,(2,16),(3,1),(3,2), . . . ,(3,10),

(4,1),(4,2), . . . (4,10),(5,1),(5,2), . . . ,(5,10),(6,1),(6,2), . . . ,(6,10),

(7,1),(7,2), . . . ,(7,8),(8,1),(8,2), . . . ,(8,5)}

and the value of the game is

v =
13150
1000

.

3.5 Conclusions and Open Problems

In this chapter we develop a method to facilitate the resolution of games on a finite
set, and particularly games on the lattice L, satisfying certain invariance properties.
Two games are studied following the proposed method, the OEIG and the WIG.
Some seminal results for the first can be seen in [8], where a conjecture about the
value of the game is made. Here the OEIG is solved in closed form, showing that the
conjecture made in [8] was true. To solve the WIG we have to solve an interesting
problem of minima and once this problem is solved, the solution for the WIG is
straightforward. We develop a method to solve the problem of minima which can
be easily implemented in a program. This program gives the solution when n ≤ 7
and in a wide variety of cases for n > 7, but, unfortunately, we have not been able to
solve this game in closed form. The complete solution for the WIG with c1 = c2 =
. . .= cn = c is obtained in [11].

When we deal with games on the lattice we find many other open problems. Let
as consider the example in the introduction where a hacker tries to get information
from the computers of a big enterprise, the game that model this situation is studied
in [11] and, there, it is solved when some constraints on their parameters are satis-
fied, but the complete solution of the game is not obtained. The patrolling games on
line graphs over the time studied in [3] are solved in some particular cases, but the
general solutions have not been obtained. Other examples are the lattice games that
have been studied in [7] and in [9]. None of them has been completely solved. We
discuss these lattice games in Chap. 7 of the book.
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Chapter 4
Network Coloring and Colored Coin Games

Christos Pelekis and Moritz Schauer

Abstract Kearns et al. introduced the Graph Coloring Problem to model dynamic
conflict resolution in social networks. Players, represented by the nodes of a graph,
consecutively update their color from a fixed set of colors with the prospect of finally
choosing a color that differs from all neighbors choices. The players only react
on local information (the colors of their neighbors) and do not communicate. The
reader might think of radio stations searching for transmission frequencies which
are not subject to interference from other stations. While Kearns et al. (see [10])
empirically examined how human players deal with such a situation, Chaudury et
al. performed a theoretical study and showed that, under a simple, greedy and selfish
strategy, the players find a proper coloring of the graph within time O

(
log

(
n
δ
))

with probability ≥ 1− δ , where n is the number of nodes in the network and δ is
arbitrarily small. In other words, the graph is properly colored within τ steps and
τ < c log

(
n
δ
)

with high probability for some constant c. Previous estimates on the
constant c are very large. In this chapter we substantially improve the analysis and
upper time bound for the proper coloring, by combining ideas from search games
and probability theory.

4.1 Notation and Definitions

The network coloring game is a stochastic process evolving on a graph, G = (V,E),
on n vertices and maximum degree Δ . Each vertex is thought of as a player that has k
available colors. Each player has the same set of colors. As in [2] we assume that k≥
Δ + 2. The game is played in rounds and in each round all players simultaneously
and individually choose a color. They can only observe the colors chosen by their
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neighbors. We say that a player is ‘happy’ if she chooses a color that is different
from the colors of her neighbors, otherwise she is ‘unhappy’. The game reaches a
proper coloring when all players are happy.

We assume that once a player is happy, she chooses the same color in the next
round. Knowing this, players will never choose a color that has been used by a
neighbor in the previous round. Therefore, once a player is happy, she continues to
be happy in all consecutive rounds by sticking to her color, i.e., happiness can only
increase. Note that happy players are essentially removed from the game.

Suppose each player adopts the following strategy: if the player is happy she
sticks to her color, if she is unhappy she changes her color and chooses equiprobably
between the remaining colors that are not used by her neighbors. We call this the
simple strategy. In [2] it is shown that under this strategy the expected number of
unhappy players decays exponentially in each round. Note that the condition k ≥
Δ + 2 guarantees that for every unhappy player, there are always at least two colors
that are not chosen by the neighbors.

For an individual player, v ∈ V , denote by τv the first round in which she is
happy. The first round in which all players are happy, τ , is the maximum over all τv.
In particular, the main result of Chaudhuri et al. says that

P
[
τ ≤ O

(
log

( n
δ

))]
≥ 1− δ , (4.1)

for arbitrary small δ . It is remarkable that this estimate does not depend on the max-
imum degree of the network. The proof of this theorem depends on the following
key lemma [2, p. 526]

Lemma 1 (Key Lemma). There exists a constant c such that

P[τv ≤ t + 2|τv > t]≥ c, (4.2)

for every v.

It turns out that the constant c according to the estimates of Chaudhuri et al. is
equal to 1

1.050e9 . Notice that this estimate does not depend on Δ . Also notice that the
estimate is over two rounds instead of one, which is because of a two-step approach
to obtain the constant c.

The probability that an unhappy player v gets happy after the next round depends
on two factors: the number of colors that v can choose from and the number of
unhappy neighbors. Roughly, the proof of the Key Lemma is in two steps. The first
step concerns the event that v, who is unhappy after round t, gets many available
colors in round t + 1. The second step concerns the event that such a v that has
many available colors gets happy in round t + 2. In both steps the probabilities are
estimated by using Markov’s inequality. Now, using the Key Lemma, the main result
in [2] is proven by applying the so-called Bayes sequential formula and an union
bound. We also use a two step approach, but we avoid the use of Markov’s inequality
(mean estimate), which is rather crude. Instead we use ideas from search games and
bound the probabilities using median estimates, which give much sharper bounds
and allow us to replace the constant c in the Key Lemma by 1

29 .
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Our approach differs from that of [2] in the following way. First we consider a
new search game that turns out to be of use to estimate the constant c in the Key
Lemma. To the best of our knowledge, this is the first attempt to use search games
in the context of graph coloring. We find that the optimal strategy of the searchers
involves tossing colored coins. This leads to a combinatorial probability problem,
which we solve in the final section. We use the solution of this problem to obtain a
better estimate in the first step in the proof of the Key Lemma. Then we apply the
arithmetic-geometric mean inequality to obtain a better estimate of the second step
in the proof of the Key Lemma. Finally, we apply results on maximally dependent
random variables to show that the global time to equilibrium, τ , is stochastically
dominated by an exponential random variable.

There exists a vast literature on graph coloring algorithms. Some related work
is in [13], where a graph coloring is provided in O(logn) rounds via a distributed
algorithm which uses Δ + 1 colors, or more, but requires that the neighbors have
information on the status of a vertex. Attempts to properly color a graph via strategic
games can be found in [5, 14]. Another line of research in which games are used
to model conflict situations that are similar to those that are modeled by network
coloring is in [1]. For a general discussion on the network coloring game see [3].

4.2 A Related Search Game

In order to estimate the first time player v is happy, τv, we define the following
Search Game. A player, H, the hider, chooses an element from Ω = {1,2, . . . ,d}
with d ≥ 2. So the strategy space of H is the set Ω . The opponent of H consists of
a team of m ≥ d searchers (agents) that each choose a subset Ω j containing at least
two colors from Ω . We denote these searchers by S j,1 ≤ j ≤ m. Subsequently, each
searcher draws a color ω j uniformly randomly from his own Ω j. The searchers may
communicate their choice of Ω j. If H has chosen a color that is different from all
ω j he wins, otherwise he looses. This is a finite, one round zero-sum game that has
a value, which is the probability that H wins under optimal play on both sides.

Lemma 2. The optimal strategy for H is to choose his color uniformly randomly.

Proof. This is a standard invariance argument (see [6], page 24). The game is in-
variant under the group, Sd , of permutations. To see this, let π(�,Ω1,Ω2, . . . ,Ωm)
be the payoff to H (i.e. his winning probability) provided that H has chosen � and
S j has chosen Ω j, j = 1,2, . . . ,m. Then, for any σ ∈ Sd we have that

π(�,Ω1,Ω2, . . . ,Ωm) = π(σ(�),σ(Ω1),σ(Ω2), . . . ,σ(Ωm)).

As the game is invariant under the group Sd , there exist invariant optimal strategies
for the players. Since for any two �1, �2 ∈ {1,2, . . . ,d} there exists a permutation
σ that maps �1 to �2, a mixed strategy for H is invariant if it assigns the same
probability to all elements of Ω . �

The value of the game equals the expected proportion of the number of colors
chosen by the searchers.
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Lemma 3. There exists an optimal pure strategy in which all searchers use a
doubleton.

Proof. Any searcher, S j, picks a color uniformly randomly from his own Ω j, i.e.
with probability 1

|Ω j | . It is equivalent to first pick a doubleton from Ω j uniformly

randomly and then equiprobably choose one of the two colors from that doubleton.
This means that every pure strategy of S j is equivalent to a mixed strategy on (some)
doubletons. Now we prove that it is optimal for each searcher to choose one double-
ton. Since the game is finite, there exists an optimal mixed strategy for the searchers
which can be described by a probability distribution on doubletons (pure strategies).
Fix some searcher, say S1, and suppose that he chooses a collection of doubletons,
D1,D2, . . . ,Dk with probabilities p1, p2, . . . , pk that add up to 1. Let, P, denote the
winning probability of the searchers. Then P = ∑ piPi, where Pi denotes the prob-
ability that the searchers win, given that S1 chooses Di and the other searchers do
not change their strategy. Choose an i0 for which Pi0 = maxi Pi. Then Pi0 ≥ ∑ piPi.
This means that there is a doubleton such that if it is chosen by S1, the expected
payoff does not decrease, provided that the rest of the searchers do not change their
strategy. �
Theorem 1. If 2m= ad+b, for integers a and 0 < b< d, then the value of the game
equals 2d−b

2a+1d
.

Proof. Clearly, it is optimal for the searchers to use coins that contain every color
at least once. Let Z be the set of colors chosen by the searchers after flipping
their coins, let Xd,m = |Z|. That is, Xd,m is the number of different colors after
a toss. The value of the game is equal to the expected proportion of the com-

plement of Z, E[|Zc|]
d = 1− E[Xd,m]

d . Fix some strategy, s, of the searchers, let Gs

be the set of colors corresponding to this strategy and let Ci be the event that
color i is chosen by the searchers after they toss their coins. Note that |Gs| = d.
Then E[Xd,m] = ∑i∈Gs P[Ci] = ∑i∈Gs(1 − ( 1

2 )
c(i)), where c(i) is the number of

times that color i appears on a coin. The searchers seek to minimize the sum

∑i∈Gs

(
1
2

)c(i)
under the constraint ∑i c(i) = 2m. Note that whenever l − j ≥ 2 then

(
1
2

)l
+

(
1
2

) j ≥ (
1
2

)l−1
+

(
1
2

) j+1
. Iteration of this inequality shows that the mini-

mum is achieved by choosing Gs such that all c(i), i ∈ Gs, are as equal as possi-
ble, i.e. b of them equal to a+ 1 and the remaining d − b equal to a. Then we get

∑i∈Gs

( 1
2

)c(i)
= b

2a+1 +
d−b
2a = 2d−b

2a+1 . �

4.3 Maximizing the Median

Picking an element from a doubleton is just flipping a coin and so the searchers
are using d colors to create m coins that do not use the same color on both sides.
Note that for each array of coins used by the searchers, one can draw a graph
whose vertices correspond to the colors and whose edges correspond to the coins.
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More explicitly, for each color put a vertex in the graph and join two vertices if and
only if they are sides of the same coin. Note that the graph is loop-less and that it
might have parallel edges, because the same coin may occur more than one time.
In addition, note that the graph may not be connected and that there is a one-to-one
correspondence between array of coins and graphs and so one can choose not to
distinguish between vertices and colors as well as between coins and edges. We call
this graph the dependency graph of the set of coins.

Notice that in case m = d, the searchers strategy {1,2}{2,3} . . .{d− 1,d}{d,1}
corresponds to the cycle-graph on d vertices. The proof of Theorem 1 actually says
that if the searchers want to maximize the mean of Xd , the number of different colors
after a toss, then they have to choose coins in such a way that the corresponding
graph is a cycle or a union of cycles. But what if the searchers want to maximize
the median of Xd? By median of a random variable, X , we mean any number μ
satisfying P[X ≥ μ ] ≥ 1/2 and P[X ≤ μ ] ≥ 1/2. Notice that this μ might not be
unique. It turns out that the following theorem is true.

Theorem 2. The median of Xd is ≤ 3d+2
4 .

The proof of this Theorem is involved and builds on ideas from combinatorial
probability. We prove this theorem in the final section. Having this result, we are
then able to improve on the constant of the Key Lemma. This is the content of the
following section.

4.4 Back to Network Coloring

4.4.1 Probability of Individual Happiness

The lemma below improves on Lemma 4, from [2].

Lemma 4. Consider a single player, i.e., a vertex v in the network game at a given
round, t, and suppose that v is unhappy. Let Y be the set of available colors to v in
the next round, t + 1, and let f be the number of happy neighbors of v in the next
round, t + 1. Then

P

[
|Y | ≥ k− f − 2

4

]
≥ 1

2
.

Proof. Let h be the number of happy neighbors of v at the start of round t+1. Let θ
be the degree of v. Then only θ −h unhappy neighbors are active in the game. Let I
be the set of colors that are not used by the happy neighbors. Then I contains k− h
elements. In the worst case there are Δ −h≤ k−h unhappy neighbors all choosing a
color from I. That is, the neighbors are searchers in a game as the one of the previous
section. We may even add more searchers and suppose that the number of unhappy
neighbors in k− h. If Z is the set of colors chosen by the searchers, then we have
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that with probability ≥ 1
2 , the cardinality of Z is less than 3(k−h)+2

4 , by Theorem 2.

That is, with probability more than 1
2 we have that |Y | ≥ k−h−2

4 ≥ k− f−2
4 , since the

number of happy players can only increase. �
Recall that τv is the number of rounds needed for player v to become happy in

the Network Coloring Game.

Lemma 5. For every player, v, in the Network Coloring Game we have that

P[τv ≤ t + 2|τv > t]≥ 1
29 .

Proof. Suppose that v is unhappy after round t has been played. Let Y be the set of
available colors to v after round t + 1 and f the number of happy neighbors after
this round. So v is choosing a color with probability 1

|Y | . Suppose that U is the set of
unhappy neighbors of v after round t + 1. Thus |U | ≤ k− f − 2. For each u ∈U , let
pu(i) be the probability with which player u chooses color i. Define also Yu to be the
set of available colors to each u ∈U . From the previous lemma we know that with
probability more than 1

2 the cardinality of Y is more than k− f−2
4 . The probability

that a fixed color i ∈ Y is not chosen by the neighbors is

∏
{u∈U:i∈Yu}

(1− pu(i)).

Thus the probability Pv that v is happy in the next round equals

Pv =
1
|Y | ∑i∈Y

∏
u∈U:i∈Yu

(1− pu(i))≥
(

∏
i∈Y

∏
u∈U:i∈Yu

(1− pu(i))

) 1
|Y |
,

by the arithmetic-geometric mean inequality. For each player in u ∈U that has i as
a choice we have that 1− pu(i) equals to 1− 1

� , for some � ≥ 2. If i is not a choice
of u ∈U , then pu(i) = 0. Thus 1− pu(i) = 1− 1

|Yu| ≥ 1
2 for every i and so

(

∏
i∈Y

∏
u∈U:i∈Yu

(1− pu(i))

) 1
|Y |

≥
(

∏
u∈U

∏
i∈Yu

(1− pu(i))

) 1
|Y |

≥
(

∏
u∈U

(
1− 1

|Yu|
)|Yu|

) 1
|Y |

≥ 1

4|U|/|Y | ,

since |Yu| ≥ 2. Now on the event |Y | ≥ k− f−2
4 , and since |U | ≤ k− f − 2, we find

1
4|U |/|Y| ≥ 1

44 = 1
28 . The result follows by noticing that P[τv ≤ t + 2|τv > t] is at least

P
[
τv ≤ t + 2|τv > t, |Y | ≥ k− f−2

4

]
·P

[
|Y | ≥ k− f−2

4 |τv > t
]
. �
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Our lower bound of 1
29 improves on the lower bound of 1

1.050e9 that is derived
in [2]. In the next subsection we use this lower bound to estimate the expected time
to global happiness.

4.4.2 Time to Global Happiness

So far, we have obtained a bound on the time τv of an individual player. Now we
want to obtain a bound on the global time to happiness τ = maxv τv. Unfortunately,
we know nothing about the dependence structure between the τv, so the estimate on
maxv τv has to be a worst case estimate. It turns out that this worst case estimate is
covered by the case of maximally dependent random variables. This is a notion that
comes up in the study of stochastic order relations.

Recall that a random variable, X , is said to be stochastically smaller than another
random variable, Y , if P[X > t] ≤ P[Y > t], for all t. Denote this as X ≤st Y . It is
known (see [15], Theorem 1.A.1) that X ≤st Y if and only if there exist two random
variables X̂ ,Ŷ such that X̂ ∼ X , Ŷ ∼ Y and X̂ ≤ Ŷ with probability 1. This will
apply in our case because we will show that τv is stochastically smaller than Sv,
where Sv ∼ 2 ·Exp(λ ) and λ :=− log(1− 1

29 ). In that case maxv τ̂v ≤ maxv Ŝv with
probability 1 and τ ∼ maxv τ̂v.

To see that τv ≤st Sv, note that the estimate of the previous subsection shows that
P[τv > t + 2|τv > t]≤ 1− 1

29 . Notice also that, for every player v,

P[τv > 1|τv > 0] = 1− (1− 1
k
)deg(v) ≤ 1− (1− 1

k
)k−1 ≤ 1− 1

e
≤ 1− 1

29 .

Hence, if t is odd,

P[τv > t] = P[τv > 1|τv > 0] ·P[τv > 3|τv > 1] · · ·P[τv > t|τv > t − 2]

≤
(

1− 1
29

)t/2

= P[Exp(λ )>
t
2
]

= P[2 ·Exp(λ )> t],

and similarly if t is even.
Thus τv ≤st Sv and thus maxv τ̂v ≤ maxv Ŝv with probability 1. Define Mn :=

maxv Ŝv = 2maxv Xv, where Xv ∼ Exp(λ ). Since τ ∼ maxv τ̂v and maxv τ̂v ≤ Mn

with probability 1, we have that E[τ]≤ E[Mn].
Thus, in order to estimate E[τ], it is enough to estimate the maximum possible

value of E[Mn] = 2E[μn], where μn is the maximum of n (dependent) Exp(λ ) ran-
dom variables. Such ensemble maxima occur often in practical problems and have
been well studied both in the independent and the dependent case (see [4, 11, 12]).
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We estimate E[μn] using ideas from [11]. Let F be the distribution function of
Xv,v ∈V . For any real number t, we have that

μn ≤ t +∑
v
(Xv − t)+,

which gives that E[μn]≤ h(t) := t+n
∫ ∞

t [1−F(x)] dx, for any t ∈ R. Differentiating
h(·) one finds that its minimum is at tn := F−1(1− 1

n ) and so E[μn]≤ tn + n
∫ ∞

tn [1−
F(x)] dx. Since 1−F(x) = e−λ x it follows that E[μn]≤ 1

λ (1+ logn). Hence

E[τ]≤ 2 ·E[μn]≤ 2
λ
(1+ logn).

We summarize the preceding results into a Theorem which is an improvement of
the Main Theorem from [2].

Theorem 3. Let G be a graph on n vertices and maximum degree Δ . If the number
of available colors is at least Δ +2 and if all players adopt the simple strategy, then
for any starting assignment of colors, the network coloring game reaches a proper
coloring at time τ that is stochastically smaller than a random variable T , such that
E[T ]≤ 2

λ (1+ logn), where 2
λ ≈ 1,023.

4.5 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We want to show that the median
of Xd is ≤ 3d+2

4 , where Xd is the number of different colors after a toss of d coins
that are colored using d colors. Before proving this theorem we need some notation
and remarks.

Suppose that we have d coins that are colored with d colors. Let G be the depen-
dency graph corresponding to this set of coins. We are going to orient G as follows.
Toss all the coins and orient each edge towards the vertex (color) that came up in
the toss. Thus a toss of the coins gives rise to an orientation on the edges of G. As a
consequence, Xd = j corresponds to the fact that j vertices have positive in-degree,
which means that d − j vertices must have in-degree 0. Also note that none of the
vertices of zero in-degree can be adjacent.

We denote the in-degree of a vertex v by deg−(v) and by Zd the number of ver-
tices of zero in-degree. Thus Xd = d−Zd .

It turns out that the median of Xd can be estimated through the median of Ed ,
the number of even in-degree vertices, whose distribution is easier to determine. We
will need the following two graph-theoretic results.

Lemma 6. Suppose that G is a (possibly disconnected) graph on d vertices and m
edges. Fix some orientation on the edges and let Od,m,Ed,m be the number of odd
and even in-degree vertices respectively. Then the parity of Ed,m equals the parity of
m− d.
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Proof. The in-degree sum formula states that

∑
v∈G

deg−(v) = m.

From this we have that the parity of Od,m equals the parity of m. Note that d−Ed,m =
Od,m. Hence the parity of m equals the parity of d−Ed,m and the lemma follows. �

For any real number r, we denote r+ = max{r,0}.

Lemma 7. For every oriented graph on d vertices and m edges,

−Zd +∑
v
(deg−(v)− 1)+ = m− d.

Proof. We use again the in-degree sum formula, ∑v deg−(v) = m. Thus ∑v(deg−
(v)−1) =m−d and so −Zd +∑v(deg−(v)−1)+ =m−d, since the sum contributes
a −1 for every vertex of in-degree zero. �

We denote by Med(Y ) the median of the random variable Y .

Lemma 8. If Med(Ed)≥ d−2
2 , for any graph on d vertices and d edges, then Theo-

rem 2 holds true.

Proof. Let Yd := Ed −Zd , then Lemma 7 gives that Zd = ∑v(deg−(v)− 1)+, since
m = d. Note that

∑
v
(deg−(v)− 1)+ ≥ ∑

{v:deg−(v)≥2}
(deg−(v)− 1)+ ≥ ∑

{v:deg−(v)≥2}
1 ≥ Yd .

Since Yd +Zd =Ed , it follows that Zd ≥ 1
2 Ed . Now Xd +Zd = d so that Xd = d−Zd ≤

d− 1
2 Ed and Med(Xd)≤ d− d−2

4 = 3d+2
4 . �

So it remains to prove that Med(Ed) ≥ d−2
2 . To prove this, we first compute the

distribution of the number of even in-degree vertices in the case of a connected
graph on d vertices and m ≥ d − 1 edges. We then extend this computation to the
general case by considering the connected components of the graph.

We denote by Bin(s, p) a Binomially distributed random variable of parameters
s and p. In case p = 1

2 we just write Bin(s). The parity of the in-degree of each
particular vertex is related to the parity of the Binomial distribution for which the
following is well known.

Lemma 9. Suppose that Xs := Bin(s) mod 2. Then Xs is a Bin(1) random variable
regardless of s.

Proof. The proof is by induction on s. When s = 1 the conclusion is true. Suppose
that it is true for all integers up to s− 1 and consider Xs. Observe that Xs ∼ Xs−1 +
Bin(1), mod 2. The induction hypothesis gives that Xs−1 +Bin(1) equals Bin(1)+
Bin(1)mod 2,for two independent Bin(1) random variables which finishes the proof
of the lemma. �
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The next lemma is also well known. We include a proof for the sake of
completeness.

Lemma 10. A median of a Bin(s) random variable is its mean.

Proof. Let X ∼Bin(s). Then X and s−X are identically distributed. Thus, for any t,

P[X ≥ t] = P[s−X ≥ t] = P[X ≤ s− t].

Now apply this with t = s
2 to get the result. �

Lemma 11. Fix some vertex v of the graph. Let C be any set of edges (coins) that
does not contain some edge incident to v. Then the parity of deg−(v) is independent
of the orientation of the edges in C.

Proof. Suppose the coins corresponding to C have been flipped. Let C− be the num-
ber of edges in C which are oriented towards v after the toss. By the previous lemma,
C− is even or odd with probability 1

2 . Since there is at least one edge incident to v
that does not belong to C, we have that

P[deg−(v) is even|C−] =
1
2
P[deg−(v) is even|C− is odd]

+
1
2
P[deg−(v) is even|C− is even] =

1
2
.

So this conditional probability does not depend on C−. Similarly for the odd out-
comes. �

We will also need a special enumeration on the vertices and edges of a tree which,
combined with the previous lemma, allows us to compute the distribution of the
number of even in-degree vertices.

Lemma 12. For any tree, T , on d vertices, there exists an enumeration, v1,v2, . . . ,vd,
of the vertices and an enumeration, e1,e2, . . . ,ed−1, of the edges such that the
only edge incident to vertex vi, i = 1,2, . . . ,d − 1, among the set of edges {ei,ei+1,
. . . ,ed−1} is ei.

Proof. Fix a tree, T , on d > 1 vertices and choose any of its vertices. Call this
vertex vd . If vd is a leaf, then consider the vertex set L of leaves in T except vd and
enumerate them v1,v2, . . . ,v�. If vd is not a leaf, then consider all leaves of T and
enumerate them in the same manner. Note that L is not empty even if vd is a leaf
since any tree with at least two vertices has at least two leaves. Enumerate each edge
incident to v j by e j, j = 1,2, . . . , �. Now consider the tree T ′ := T \ {v1,v2, . . . ,v�}
and repeat this process on the leaves of T ′ again sparing vd if it is a leaf of T ′. We
continue enumerating the leaves and edges of the subtrees until we end up with the
graph consisting of vertex vd only. It is evident that the enumeration satisfies the
required condition. �
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We are now ready to compute the distribution of the number of even in-degree
vertices for any connected graph.

Theorem 4. Suppose that G is a connected graph on d vertices and m≥ d−1 edges.
Let Ed,m be the number of even in-degree vertices after a random orientation on
the edges. Then Ed,m has the probability distribution of a Bin(d) random variable
conditional on the event that the outcome of Bin(d) has the parity of m− d. To be
more precise,

P[Ed,m = k] =

(
d
k

)
1

2d−1 ,

where k runs over the odd integers up to d, if m−d is odd and over the even integers
if m− d is even.

Proof. Fix some spanning tree, T , of G and toss the coins corresponding to the
edges that do not belong to T . Enumerate the vertices of the tree v1,v2, . . . ,vd and
the edges e1,e2, . . . ,ed−1 as in Lemma 12. Now toss the coins e1,e2, . . . ,ed−1 in
that order. The enumeration on the vertices and edges gives that once the coin e j

is flipped, then the parity of vertex v j is determined. Lemma 11 gives that once
the parity of some vertex v j is determined, the parity of the next vertex v j+1 is
independent of the parity of v1,v2, . . . ,v j−1. Only the parity of vd is deterministic
given the parities of the previous vertices. Thus, if we set δi := deg−(vi) mod 2, for
i= 1,2, . . . ,d, we have that each δi is distributed as a Bin(1) random variable which,
by independence, means that ∑d−1

i=1 δi ∼ Bin(d− 1). Let Od,m be the number of odd
in-degree vertices. Then Od,m = δ1+ · · ·+δd−1+δd ∼X+δd , where X ∼Bin(d−1)
and δd depends on the outcome of X . From the relation Od,m+Ed,m = d and the fact
that X is symmetric, i.e. X ∼ d−1−X , we get that Ed,m = d−X−δd ∼ X +1−δd.
Suppose that m−d is even. In case m−d is odd, the argument is similar. Then Ed,m

is also even, by Lemma 6, and thus 1− δd equals 0, if X is even and equals 1, if X
is odd. Hence, we have that Ed,m = k, for some even k, if and only if either X = k or
X = k− 1. This means that

P[Ed,m = k] = P[Bin(d− 1) = k]+P[Bin(d− 1) = k− 1] =

(
d
k

)
1

2d−1 .

�
For any positive integer, s, we write W ∼ Bin(s,even) (resp. Bin(s,odd)) when-

ever the random variable W is distributed as a Bin(s) random variable conditioned to
be even (resp. odd). We will also write Bin(s,�) whenever we don’t want to specify
the exact parity and refer to it as a half-Binomial.

Note that the proof of the last Theorem says that if we are interested in an out-
come of, say, Bin(s,even) (resp. Bin(s,odd)), we can toss s−1 fair 0/1 coins and if
the result is even, add a 0 (resp. a 1), if it is odd add 1 (resp. a 0). Call such a toss an
even-sum (resp. odd-sum) toss of s coins.

We now consider the general case of a disconnected graph, G. Suppose that it
consists of connected components, G1,G2, . . . ,Gt each having di vertices and mi
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edges such that ∑di = d and ∑mi =m. Recall that we assume d =m. Let Ei,1≤ i≤ t
be the number of vertices of even in-degree in each graph after a toss. The Ei’s are
independent random variables and the total number of even in-degree vertices is
given by E = E1 + · · ·+Et . Now, the distribution of each Ei is given by the previous
theorem and thus E is the sum of independent Bin(di,�) random variables. Note
that if these were pure Binomials instead of half-Binomials, then we would be done.
In that case E would also be Binomial whose median is known. The problem is that
we have a sum of independent half-Binomials and it is not immediately clear how to
analyze a sum like Bin(7,odd)+Bin(6,even). We analyze such sums by breaking
down each term of the sum, Bin(s,�), into a sum of Bin(2,�) and Bin(3,�). More
specifically, Bin(s,�) will be a convex combination (mixture) of such sums. Recall
that a mixture of random variables Zi is defined as a random selection of one of the
Zi according to a probability distribution on the index set of i’s. It is clear that if all
these Zi have a median that is ≥ μ , then also the mixture has a median ≥ μ .

Lemma 13. For any s ≥ 2, let s = s1 + s2 + · · ·+ sl be a partition of s into si = 2 or
si = 3, with at most one part equal to 3 in case s is odd. Then Bin(s,�) is a mixture
of sums Bin(s1,�)+ · · ·+Bin(sl ,�), where the parities of all these half-Binomials,
Bin(si,�), add up to the given parity of Bin(s,�).

Proof. Suppose we want to decompose a Bin(s,even) random variable. The other
case is similar. We get an outcome of such a half-Binomial by tossing s−1 indepen-
dent coins and add a deterministic one to fix the parity, i.e., by tossing s even-sum
0/1 fair coins. This is equivalent to partition s into s1, . . . ,sl , where all si are equal
to 2, except possibly one that is equal to 3, and then toss l even-sum 0/1 fair coins,
assign the parity of the j-th coin, j = 1, . . . , l, to s j and then this parity to Bin(s j ,�).
To be more precise, suppose that Yj ∈ {even,odd} is the parity of the j-th coin. Then
for each j = 1, . . . , l, toss s j Yj-sum coins to get an outcome from Bin(s j,Yj). Then
the parity of ∑l

j=1 Yj is even and thus the independent sum ∑l
j=1 Bin(s j ,Yj) has as

even number of terms of the form Bin(s j,odd) which means that it is an outcome
from Bin(s,even).

To see that this is equivalent, notice that the probability of each particular out-
come equals 1

2l−1 · 1
2s1−1 · 1

2s2−1 · · · 1
2sl−1 = 1

2s−1 , which is exactly the probability of
each particular outcome from Bin(s,even). So it remains to prove that the number
of outcomes for which Bin(s,even) = k, for some even k, equals the number of out-
comes for which ∑l

i=1 Bin(si,Yi) = k, given the parities Y = (Y1, . . . ,Yl). But this is
immediate. Every outcome of Bin(s,even), that is, every toss of s even-sum 0/1 fair
coins with k 1’s gives rise to a vector of parities Y = (Y1, . . . ,Yl) such that the parity
of ∑l

j=1 Yj is even, ∑l
i=1 Bin(si,Yi) = k and vice versa. �

If we apply the last Lemma to each Ei ∼ Bin(di,�), i = 1, . . . , t we get the fol-
lowing.

Corollary 1. E is a mixture of sums of independent half-Binomials Bin(2,�) and
Bin(3,�).

The reason to partition each di into sums of 2’s and at most one 3 is the following.
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Lemma 14. Bin(2,�) and Bin(3,�) can be interpreted as Binomials of biased
coins. More precisely, they are distributed like the sum of a Binomial and a scalar.

Proof. It is easy to check that Bin(3,odd) ∼ 1+ 2 ·Bin(1, 1
4 ) and Bin(2,odd) ∼

Bin(1,1), as well as Bin(3,even)∼ 2 ·Bin(1, 3
4 ) and Bin(2,even)∼ 2 ·Bin(1, 1

2). �
Corollary 2. E has the distribution of a mixture of a sum of a scalar and a sum of
independent Binomials.

Having this corollary, we can then apply a well known result of Hoeffding [8].

Theorem 5 (Hoeffding). If Xp1 ,Xp2 , . . . ,Xp� are independent Bernoulli trials with
parameters p1, p2, . . . , p� respectively, then

P[b ≤
�

∑
i=1

Xpi ≤ c]≥ P[b ≤ Bin(�, p̄)≤ c], when 0 ≤ b ≤ � p̄ ≤ c ≤ �,

where p̄ = 1
� ∑�

i=1 pi.

Recall that we are interested in a lower bound on the median of the independent
sum E ∼ ∑t

i=1 Ei ∼ ∑t
i=1 Bin(di,�). We know that E is a mixture of independent

sums of Bin(2,�) and Bin(3,�), which are (rescaled) biased coins. We finish the
proof of Theorem 2 by proving that every particular independent sum of this mixture
has a median that is ≥ d−2

2 . Suppose that we have an independent sum, Ξ , consist-
ing of r,z,a,w ∈ {0,1,2, . . .} terms from Bin(3,odd),Bin(3,even), Bin(2,even) and
Bin(2,odd) respectively. Notice that 3r+ 3z+ 2a+ 2w= d.

Lemma 15. A median of Ξ is ≥ d−2
2 .

Proof. Suppose first that z ≥ r. In that case we show that Med(Ξ) ≥ d−1
2 . Denote

by Ψ the independent sum Bin(r, 1
4)+Bin(a, 1

2)+Bin(z, 3
4). Then Ψ = j if and only

if Ξ = r+2 j+w. Thus a median of Ξ can be estimated through a median of Ψ and
so a median of Ξ is ≥ d−1

2 if and only if a median of Ψ is ≥ r+2a+3z−1
4 . We apply

Hoeffding’s result with p̄ = 1
r+a+z

(
r+2a+3z

4

)
, � = r + a+ z and c = r + a+ z,b =

r+2a+3z−1
4 . This gives that

P[Ψ ≥ r+ 2a+ 3z− 1
4

] ≥ P[Bin(r+ a+ z, p̄)≥ r+ 2a+ 3z− 1
4

]

≥ P[Bin(r+ a+ z, p̄)≥ r+ 2a+ 3z
4

].

Hence the lemma will follow once we prove that P[Bin(r+a+z, p̄)≥ r+2a+3z
4 ]≥ 1

2 .
Note that the mean of Bin(r+a+ z, p̄) equals r+2a+3z

4 . Now, if z ≥ r then p̄ ≥ 1
2 and

thus Bin(r+a+ z, p̄) is stochastically larger than Bin(r+a+ z, 1
2). This means that

a median of Bin(r+a+z, p̄) is bigger than or equal to a median of Bin(r+a+z, 1
2 ).
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But a median of Bin(r+ a+ z, 1
2 ) is r+a+z

2 , it’s mean. Since r+a+z
2 ≤ r+2a+3z

4 when
z ≥ r, the result follows.

Suppose now that z < r. We consider two case.

(a) Assume that r− z is even. In that case we prove again that Med(Ξ) ≥ d−1
2 .

Define Φ1 := Bin(r, 1
4 ) + Bin(a, 1

2 ) + Bin(z, 3
4 ) +

r−z
2 . Then Med(Ξ) ≥ d−1

2
if and only if Med(Φ1) ≥ 3r+2a+z

4 . By the result of Hoeffding we have that
Med(Φ1)≥ Med(Bin(n̂, p̂)), where p̂ = 1

r+a+z+ r−z
2
( r

4 +
a
2 +

3z
4 + r−z

2 ) = 1
2 and

n̂ = r+a+z+ r−z
2 . Since p̂ = 1/2, we get that a median of Bin(n̂, p̂) is its mean

which in turn equals n̂ · p̂ = 3r+2a+z
4 .

(b) Assume that r−z is odd. In a similar way as above we show that Med(Ξ)≥ d−2
2 .

Define Φ2 := Bin(r, 1
4 )+Bin(a, 1

2 )+Bin(z, 3
4)+

r−z−1
2 . Then Med(Ξ)≥ d−2

2 if
and only if Med(Φ2)≥ 3r+2a+z−2

4 − 2
4 . Again, by Hoeffding, we conclude that

Med(Φ2) ≥ Med(Bin(ň, p̌)), where p̌ = 1
r+a+z+ r−z−1

2
( r

4 +
a
2 +

3z
4 + r−z−1

2 ) and

ň = r+ a+ z+ r−z−1
2 . Now the mean of Bin(ň, p̌) equals ň · p̌ = 3r+2a+z−2

4 . It
is known (see [7]) that the smallest uniform (with respect to both parameters)
distance of the mean and a median of a Binomial distribution is ≤ ln2≈ 0.69<
3
4 . This means that if ň · p̌ equals μ + 1

4 , for some integer μ , then μ is a median
of Bin(ň, p̌). If ň · p̌ equals μ + 3

4 , for some integer μ , then μ +1 is a median of
Bin(ň, p̌) and if ň · p̌ = μ + 1

2 , then a median of Bin(ň, p̌) is ≥ μ . If the mean,
ň · p̌ is an integer, then it is well known (see [9]) that mean and median coincide.
In all cases a median is ≥ ň · p̌− 1

2 and the result follows.
�

4.6 Final Comment

We have improved the previous estimates on the time to global equilibrium in the
network coloring game by combining search games and combinatorial probability.
The colored coin tossing problem which we considered is interesting in its own
right. One open problem that deserves further study is the following: suppose you
can color n biassed coins with n colors, all coins having the same bias. It is forbidden
to color both sides of a coin with the same color, but all other colors are allowed.
Let X be the number of different colors after a toss of the coins. In what way should
you color the coins such that you maximize the median of X?
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Chapter 5
Open Problems on Search Games

Robbert Fokkink, Leonhard Geupel, and Kensaku Kikuta

Abstract We discuss two classic search games: Isaacs’ princess and monster game,
and Dresher’s high-low guessing game. Despite the fact that these games were in-
troduced decades ago, there are still numerous open problems around them.

5.1 Introduction

Rufus Isaacs’ princess and monster game, which was discussed in the first chapter
by Shmuel Gal, is a classic search game. One could argue that this game, and its
solution by Gal in 1979, started Search Games as an independent area of research.
Gal essentially showed that the princess has the upper hand. From time to time
she quickly moves to a new position, nullifying any progress that the monster has
made in his search, so the time of capture becomes an exponential random variable.
One could take the area that has been searched by the monster as a state variable.
Every time the princess moves, she resets the state variable to zero. In Chap. 16, Rob
Arculus analyzes the princess and monster game from this point of view, and applies
it to predator-prey models in biology. It seems plausible that even if the princess is
noisy and the monster is aware of the fact that she has just moved, it does not help
him find the princess any more quickly.
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The original problem posed by Isaacs, was to solve the game for a relatively small
radius of detection. If the radius of detection is larger, and has an order of magnitude
that is comparable to the size of the search space, then it is more convenient to
model the game on a graph. The searcher then finds the hider once they are in the
same place. This version of the princess and monster game was also proposed by
Isaacs [11, p 349-350]. The game on a graph has only been solved for the circle (see
Sect. 1.2 of this book), but it remains open for all other graphs. Even if the graph
is an interval, although there is a conjectured solution in this case, which we will
discuss below.

The princess and monster game is related to the game between the lion and a
Christian, which was invented by Richard Rado: a lion and a Christian in a closed
circular arena have equal maximum speeds. Can the lion catch the Christian in finite
time? Surprisingly, the answer turns out to be NO [3, p 46], provided that the players
are both represented by points, and the radius of detection is zero. So the lion only
catches the Christian if the two points coincide and not any earlier, which in real life
would require some divine intervention. This game was popularized by Littlewood
in his Miscellany [14], and he added the following problem: can two lions catch a
man in a bounded area with rectifiable lakes? According to Béla Bollobás [3], this
problem remains unsolved. If there are two lions, then we have a multi-agent game
that is similar to the game of cops and robbers [4], which has recently received
a lot of attention. These are pursuit-evasion games: the players have visual contact.
Contrary to search games, in which the players are blind. It is the difference between
catching and finding.

Gal’s 1980 book [9] is the first monograph on Search Games. Selmer Johnson’s
1964 paper [13], which is aptly called ‘A Search Game’, may be the first serious
publication on the topic, predating Isaacs’ classic on Differential Games which is
generally recognized as the work that initiated the field (see Gal’s review in Chap. 1).
Johnson writes:

The following game was first suggested to the author by Melvin Dresher several
years ago. Blue chooses h, an integer from the set 1 to n (a region to hide). Red
guesses an integer from 1 to n, is told whether he is too high or too low, and
repeats until he guesses h . The payoff to Blue is one unit for each guess.

This game had appeared earlier as an example in Dresher’s monograph on Game
Theory [5]. In that same year Rényi proposed to study a similar game. It is inspired
by the parlor game 20 Questions, so it is a win-lose game with an upper bound
on the number of questions. The original text is in Hungarian, and the following
translation is taken from [15]:

A thinks of something and B must guess it. B can ask questions which can be
answered by ‘yes’ or ‘no’ and he must find out of what A had thought of [. . . ] it
is better to suppose that a given percentage of the answers are wrong (because
A misunderstands the question or does not know certain facts).
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The game is now commonly called Ulam’s game or the Rényi-Ulam game, after
Stanislaw Ulam popularized a similar problem in his autobiography [16]. Since the
hider may give faulty feedback, the Rényi-Ulam game presents a more versatile
problem than Dresher’s guessing game, and the literature on the topic is extensive.

5.2 The Princess and Monster Game on Graphs

We consider the princess and monster game on the interval [−1,1]. The max-
imum speed of the monster M is 1 and the maximum speed of the princess P is
unbounded. If M moves at maximum speed, then we say that he runs. The positions
of the players m(t) and p(t) vary continuously with t and m(t) is Lipschitz of con-
stant 1. The time that the monster finds the princess is min t0 = {t : m(t) = p(t)},
and the payoff to the princess is t0 in this case. As a first attempt to solve this game,
the following strategy is an obvious candidate solution: the monster flips a coin and
start at either end of the interval equiprobably, and runs to the opposite end. We
say that an M that moves like that is a sweeper. Against this sweeper strategy, it is
optimal for the princess to initially hide in 0, wait until time 1− ε , flip a coin, and
move to one of the end points equiprobably. The expected time that M finds P is 3

2
in this case. This is not the solution of the game. P’s strategy is optimal againt M’s,
but M’s strategy is not optimal against P’s. In [2] it has been conjectured that an
optimal mixed strategy for M can be based upon the following pure strategies:

M1 Choose an arbitrary initial point and an arbitrary direction. M runs in that di-
rection until the end, and then back until the other end.

M2 Again choose an arbitrary initial point and an arbitrary direction. But now M
runs until he meets the sweeper coming from that direction, then turns around
and runs until the end, joining the sweeper, and then back until the other end.

If the strategy space of the monster is restricted to these pure strategies, then the
optimal mixed strategy of the princess is based upon the following pure strategies:

P Choose an infinitesimal ε > 0. Either hide at an end-point and remaind immo-
bile, or choose an arbitrary initial point in [−1+ ε,−ε]∪ [ε,1− ε] and remain
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there until the sweeper that starts from the nearest end point is ε-close. Then
run to the the middle until ε-close, turn, and run back until the end.

It is possible to show that there exists an optimal response in M1 ∪M2 against
any mixed strategy that is based on P . The conjecture in [2] is that conversely
against any mixed strategy that is based on M1 ∪ M2 there exists an optimal
response that is in P . If this conjecture is true, then the princess and monster game
on an interval reduces to a standard optimization problem that can be solved numer-
ically by discretization and linear programming. An initial computation of the value
of the game under the assumption of the conjecture was carried out in [2], but it
contained some inaccuracies that have been corrected in [10]. The table below gives
the value of the game Vn against the number of grid points n of the discretization.
In [2] it was stated that the value of the game could perhaps be 11/8, but this table
demonstrates that the value must be slightly lower: the value Vn for n = 1,024 in
Table 5.1 is within 10−3 of the actual value of the game.

n Vn

1 1
2 1.2667
4 1.3303
8 1.3547

16 1.3647
32 1.3689
64 1.3709

128 1.3719
256 1.3724
512 1.3726

1,024 1.3727

Table 5.1 Number of grid points versus value of the game

Since the solution of the game on an interval is already a hard problem, it may
seem that the solution of the game on an arbitrary graph is impossible. However,
one should observe the following nice confluency property of the princess’ strategy
: suppose that p1, p2 ∈ P and that p1(t0) = p2(t0) for some t0. Then p1(t) = p2(t)
for all t0 ≥ t (in Chap. 14, Steve Alpern calls this ‘sticky’). Even more so, a mixed
strategy based on P can be described by a probability measure μt such that μt(A)
is the probability that P is in A at time t. Perhaps it is possible to derive the optimal
response of the monster from this property, and verify the conjecture. We conjecture
more generally, that for the game on a tree there exists an optimal princess strategy
that satisfies the confluency property.

5.3 High-Low Search Games

Dresher’s guessing game has recently been solved asymptotically [8], but there is a
very similar high-low search game that remains unsolved. It was proposed around
the same time as Dresher’s game, by Ed Gilbert [12]. As in Dresher’s game, Blue



5 Open Problems on Search Games 79

chooses a secret number h and tells Red whether his guess is too high, too low, or
correct. However, after doing this, Blue may change the secret number, but it has to
be in accordance with the answers that have been given so far. Dresher’s guessing
game has an immobile hider, the secret number remains the same. In Gilbert’s guess-
ing game, the hider is mobile between consecutive guesses. Ordinarily, a search
game with a mobile hider is a more difficult game to solve, but in this case that is
not true. A guessing game is played over rounds and in Gilbert’s game the play-
ers play the same game each round, over a reduced set of numbers. This recursion
should make the game easier to solve. It certainly makes the value of the game easier
to compute, and it is conjectured in [7] that the value of the game satisfies

lim
n→∞

V (n)− log2(n) = c

for some constant c = 0.487 . . ..

There are many other versions of the high-low guessing game. The following
continous version of the game was first proposed by Vic Baston and Fred Bo-
stock: Blue chooses a secret number h ∈ [0,1]. Red repeatedly guesses it and is
told whether the guess is too high or too low (the probability of guessing the ex-
act number is zero). If gn is the sequence of guesses, then Blue’s payoff is equal
to ∑ |gn − h|. Steve Alpern [1] found a pure minimax strategy for the searcher,
see Fig 5.1. One should realize that a pure strategy in a guessing game is equal
to a binary search tree. The next guess depends on the fact whether the previous
guess is too high or too low. Alpern introduces a state variable that keeps track of
the excess of guesses that were too low. After n guesses gi, the state variable is
k = |{i ≤ n : gi < h}|− |{i≤ n : gi > h}|. There exists a unique number 0 < λk < 1
for every integer k, which has the property that if the remaining interval that con-
tains h is [a,b] and if the searcher guesses λka+(1−λk)b in the next round, then
∑ |gn−h| is constant for every h, with the exception of h that are in the countable set
of guesses. The searcher uses a single binary tree, which is illustrated in the figure,
partly and for the first few guesses, that has equal payoff against almost every secret
number. However, it is unknown if there exists a mixed strategy that performs better.

Fig. 5.1 A part of Alpern’s minimax tree, rounded to three decimals
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An optimal strategy for the hider has never been determined. One might try an al-
gorithmic approach to this open problem, by giving the searcher a bounded number
of questions, say 20 as in 20 questions, and taking ∑20

n=1 |gn−h| as the payoff to the
hider.

One can modify the continuous guessing game following Gilbert, by allowing
the hider to move from one secret number hn to the next hn+1 between consecu-
tive guesses. There are various choices for the payoff: it could be either ∑ |gn − hn|
or ∑ |gn − h∞|, where h∞ denotes the limiting value of the hider’s secret numbers.
Alpern’s pure minimax strategy still works for the payoff ∑ |gn − h∞|, even though
the hider has a larger strategy space. It should be easier to prove that the pure min-
imax strategy is optimal in this case. Instead of ∑ |gn − h| one may also consider
other norms or other payoffs. Tom Ferguson has studied a game with two guesses
only, in which the payoff to the hider is (g2 − h)2. Despite its apparent simplicity,
this game is non-trivial and the optimal strategies are not easy to find, see [6].

Finally, we would like to mention the following conjecture of Johnson: in
Dresher’s guessing game, the probability that Blue chooses the secret number 1
is equal to the probability that Blue chooses the secret number in {2,3}, if n > 4.
This problem has remained unsolved for almost 50 years now, and may very well be
the longest standing open problem on search games.
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Geometric Games



Chapter 6
Some Cinderella Ruckle Type Games

Vic Baston

Abstract Nearly 30 years have elapsed since Ruckle’s pioneering book (Ruckle
WH (1983) Geometric games and their applications. Pitman, Boston) on geometric
games was published; it was pioneering in the sense that it did not seek to detail
a theory but dealt with a host of two-person zero-sum games which were easy to
state and understandable to an intelligent layperson. Attractive features were the
“toy” examples giving very idealized applications of the games and the list of open
problems at the end of most chapters. Although many of the games had quite a lot
in common, the professed aim was to provide “usable solutions” rather than a uni-
fied treatment. In fact Gal’s book (Gal S (1980) Search games. Academic Press,
New York) which developed a theory of search games had already appeared when
Ruckle’s book was published but, in the main, Ruckle’s games fell outside its scope.
Although there has been considerable activity in the theory of search games since
then (see [2] and Chap. 9 of the book), the main emphasis has been on the devel-
opment of the aspects covered in Gal’s book. The aim of this chapter is to draw
attention to some Ruckle games which the writer feels have not received the atten-
tion they deserve; hence the Cinderella in the title.

6.1 Introduction

Fraenkel divides games into two types, games people play (i.e. games that people
buy and play) and games that mathematicians play or, in Peter Winkler’s words,
games people don’t play. The selection of the games here fall very definitely into
the latter category and the hope is that these games will lead to the development of
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ideas which can be used to unify treatments for a variety of games, in other words,
usable methods. Thus the choice has been strongly influenced by two factors. Firstly
there needs to be a connection between the games and secondly each game has to
provide a stimulus for further research; in most cases this means that the games are
used as a starting off point from which attractive open questions can be generated.
As a result Sects. 6.2 and 6.8 all include suggestions for further work of varying
degrees of difficulty which are intended to encourage more researchers to take an
interest in the games. However it does mean that other games associated with Ruckle
such as lattice and accumulation games have been ignored. In keeping with the spirit
of Ruckle’s book, the games in this chapter are all two-person zero-sum ones and
the players are called RED and BLUE with RED being the maximizer. The structure
of the chapter is described in the following paragraphs.

The Several Intervals Game is played in the unit interval I with BLUE choosing
a point of I and RED simultaneously selecting intervals of given lengths αi in I; the
payoff to RED is one if BLUE’s point is in one of the intervals and zero otherwise.
Although simply stated, this has proved to be an extremely difficult game to solve
and no comprehensive solution has been found when RED can choose more than
two intervals. Abbreviated details of the original (unpublished) approach used for
the Two Intervals Game and some of the results on the Three Intervals case are given
in Sect. 6.2.

Ruckle’s greedy games have not attracted very much attention and are the subject
of Sects. 6.3 and 6.4. Many games have the form that RED has the task of deciding
where to hide a given amount of material but, in greedy games, RED has the addi-
tional decision of determining how much material to hide when facing the prospect
that hiding more means a greater probability of discovery. Section 6.3 gives a for-
mal definition of a greedy game and then concentrates attention on games in the unit
interval whereas Sect. 6.4 looks briefly at greedy games on the unit square.

In the Number Hides Game RED and BLUE simultaneously choose subintervals
of given length in an integer interval with RED getting a payoff equal to the num-
ber of integers the subintervals have in common. The game proved more tractable
than the other games we consider and it was solved independently by three sets of
researchers. Section 6.5 presents some natural variations of the game and Sect. 6.6
discusses the interesting generalization by Zoroa, Fernandez-Saez and Zoroa [7] in
which BLUE has to hide a given quantity of objects in an integer subinterval of his
choice with the stipulation that at least one object and at most c can be placed at
each integer of the subinterval; as before RED chooses a subinterval and receives
an amount equal to the number of objects in it. The solution of this game seems to
be difficult so, as a first step, it is proposed that the solution of a couple of particular
cases extending those of [7] be attempted.

The Hiding in a Disc Game is again easily stated. RED and BLUE simultane-
ously choose points in the unit disc and RED wins if and only the chosen points are
at most a given distance c apart. It was already proving awkward 30 years ago as
Ruckle demonstrated that an assertion concerning its value in the American Mathe-
matical Monthly was false and, since then, there seems to have been little work done
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on it. Section 6.7 looks at its symmetrization and asks whether there are optimal
strategies in this symmetrization which are probability distributions over a finite
number of points.

Section 6.8 shows that some of our games can be thought of as special cases of a
general game and Sect. 6.9 details come conclusions.

6.2 The Several Intervals Game

Probably the game in Ruckle’s book which has since received the most attention in
the literature is the Several Intervals Game. In it BLUE chooses a single point b in
[0,1] and RED chooses the union of several closed intervals R = J1∪ . . .∪Jk where,
for each i, the length of Ji is at most αi. The payoff to RED is one if b ∈ R and zero
otherwise. Ruckle obtained solutions by trial and error for two special cases when
k = 2 and, as a result, ventured that the solution for general k may be difficult; he
therefore made a more modest proposal of solving it for k = 2 or 3. Even for this
more limited objective progress has been slow and, to adapt Churchill’s description
of Attlee, workers on it have a lot to be modest about. However, after 20 years,
Woodward in a doctoral thesis [5] managed to come up with what can be regarded
as a complete solution for k = 2. We will indicate the processes that enabled him to
arrive at this solution as they may provide ideas that can be used to solve the case
k = 3 which, as we shall see, still presents a challenge.

In essence Woodward’s approach was straightforward but the devil remained in
the detail. Firstly it was shown that the game for general k is equivalent to a corre-
sponding finite game meaning that a complete solution could be obtained for any
given set of interval lengths using linear programming. Although theoretically use-
ful, little immediate value was obtained from the computer results for k = 2 due to
the sheer volume of data and the vast number of different strategies. In particular
vastly different strategies could be produced for games which had the same game
values and very similar α1 and α2. Also RED strategies proved particularly awk-
ward as the computer did not find symmetric ones. This meant that the approach
was throwing up interesting computing problems because it was important that a
coherent set of solutions be produced for a theoretical analysis to be undertaken. By
perturbing interval positions, swapping intervals from one strategy to another and
other techniques, strategies were found which were valid for all cases with the same
value; in many instances the resulting strategies showed very little resemblance to
the original strategies generated by the computer. It was then possible to detect the
pattern which enabled a theoretical analysis to be made. This analysis is contained
in Woodward’s thesis of almost 300 pages but recently new arguments (see Chap. 9)
have been found which enable the treatment to be shortened.

Woodward also managed to generate a number of results for k = 3 by the same
methods and we give an account of his findings. He produced expressions for the
game value which cover all the cases when 1/3 ≤ α1 < 1/2 and α3 ≥ 1/5. It might
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have been expected that the justification of a RED optimal strategy would prove
more troublesome than a BLUE one as it involves triplets of intervals played with
certain probabilities whereas a BLUE strategy is simply a probability distribution
on [0,1]. However the reverse was true because a RED optimal strategy could be
easily verified by showing that each point of [0,1] meets its intervals with a cer-
tain probability. In many cases the RED optimal strategies could be derived using
three appropriate inequalities of the form xi1α1 +xi2α2 +xi3α3 ≥ 1 i = 1,2,3 where
the xi j are non-negative integers; to be appropriate, a necessary condition is that
there are positive integers p,q,r satisfying pxi1 + qxi2 + rxi3 =W for each i result-
ing in the value of the game being (p+q+r)/W.Note that the inequalities represent
three different coverings of the unit interval by segments of lengths α1,α2 and α3.
This follows a similar pattern to that found in the Two Intervals Game where the
RED optimal strategies can mostly be derived from two different coverings of the
unit interval.

Although the examples give indications of how the case k = 3 might be treated in
general, there are sufficient exceptions to suggest that further ideas are necessary if
substantial progress is to be made. For example most have a BLUE optimal strategy
which uses each of 0 and 1 with a probability equal to the game value. However no
such BLUE strategy was found for the case α1 = 1/3, α2 = 1/4 and α3 = 1/5. Its
value is 13/56 but the BLUE optimal strategy obtained used each of 0 and 1 with
probability 10/56. This case is interesting in another way as the Red optimal strategy
was derived from four covering inequalities rather than the usual three; in addition
to the obvious 3α1 ≥ 1, 4α2 ≥ 1 and 5α3 ≥ 1, α1+2α2+α3 ≥ 1 is needed. It seems
therefore that an interesting challenge on the way to solving the case k = 3 would
be to answer the following open question.

Question 1. What is the value of the Three Intervals Game when the lengths of the
intervals are of the form α1 = 1/u,α2 = 1/v and α3 = 1/w when u,v and w are
positive integers satisfying 3 ≤ u ≤ v ≤ w?

To introduce a note of optimism, Woodward in his work on the Three Intervals
Game has taken the length of the largest interval to be at least a third and it could be
that the case when the longest interval has length less than a third will have a more
unified treatment. After all, in the Two Intervals Game, there is a single expression
for the value of the game when the length of the longest interval is less than a half
but this expression does not always hold when it is greater than or equal to a half.

Woodward has also obtained some minor results for the n interval case. In partic-
ular he has shown that, when α1 > 1/2, the value of the game is one half of the value
of the game with n− 1 intervals with lengths having values α2/(1−α1), . . . ,αn/
(1−α1). Also if there are n intervals all of the same length 1/k where k > n, the
value of the game is 1− k/n.
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6.3 Greedy Games

Consider the following scenario. RED wants to hide a quantity of arms or drugs
within a given region which, if not detected within a given time, can be used to fur-
ther RED’s interests in the region. BLUE (the authorities within the region) can em-
ploy various measures in an attempt to find the hidden resource and frustrate RED’s
ambitions. The benefit to RED of successfully hiding the resource depends on the
amount that has been hidden and circumstances dictate that the larger the amount
RED tries to hide the greater the probability that it will be discovered by BLUE. This
means that RED needs to balance two competing factors; RED would like to hide a
large amount so that RED would derive a substantial benefit if it remains undetected
but, at the same time, not so large that BLUE has a high probability of detecting it. In
modelling this scenario as a game it seems reasonable to set the payoff to RED as q
when an amount q is successfully hidden. The payoff when an amount q is detected
by BLUE is not so clearcut as it may depend on how RED views the situation; we
therefore introduce a parameter β ≥ 0 and set the payoff to RED as −β q. If RED
has very large global resources and the scenario is a comparatively minor one for
it, the loss of resource would not be significant and a value of β near zero would
be appropriate. On the other hand, if RED has little influence outside the region, a
loss of a sizeable amount of resource could have major consequences for it so that a
comparatively large value of β might be appropriate.

The above scenario provides the motivation for our definition of a greedy game.

It is a two-person zero-sum game which is played in a compact convex region S, with
interior points, of n-dimensional Euclidean space. RED (the maximizer) chooses a member
C from a given class C of measurable subsets of S and, without knowing RED’s choice,
BLUE (the minimizer) selects B from a given subset B of the power set of S. Letting A
denote the measure of the C chosen by RED and 0 ≤ β , RED gets A if B∩C is empty and
loses β A if it is not. Both players know S, C , B and β .

In a number of ways this type of game is a mirror image of the type of game
discussed in Sect. 6.2. Here, in a particular one-dimensional setting, an interval is
being placed to avoid a point chosen by an opponent whereas, in the Several Interval
Games, intervals are placed in an attempt to include a point chosen by an opponent.

Ruckle solved several greedy games which are played over the unit interval I =
[0,1] when β = 0. In the length greedy game RED can choose any measurable
set and BLUE any set with at most k points whereas, in the interval greedy game,
RED can choose any interval of I and BLUE an interval of length at most α. In
both games BLUE has an optimal strategy which employs a uniform distribution. In
the first BLUE chooses k points independently using the uniform distribution on I
and, in the second, starts by choosing t ∈ [0,1−α] by the uniform distribution on
[0,1−α] and then occupies the interval [t, t +α]. RED has an ε-optimal strategy
which involves a covering of I in both games. The basic idea underpinning the RED
strategy for the length greedy game is that I is divided into an appropriately large
number n of intervals and then a member is chosen at random from the set of unions
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of precisely m members of these intervals where m is defined in terms of α and n. For
the interval greedy game the basic idea is simpler; RED divides I into an appropriate
number of intervals and chooses one of them suitably modified.

When β = 0, the greedy length game in which k = 1 and the interval length
game in which α = 0 have a common solution so we now investigate the point
greedy interval game Γ in which RED chooses an interval, BLUE chooses a point
and β ≥ 0. In common with Ruckle, we take the interval to be closed so that RED
will in general have only ε-optimal strategies although it will be plain that RED
has optimal strategies if open intervals are allowed. The next lemma generalises the
strategies used by Ruckle in the game with β = 0 to obtain bounds on what the
players can achieve in the more general game.

Lemma 1. In the point greedy interval game, BLUE can restrict RED’s expectation
to at most 1/(4(1+ β )) whereas RED can guarantee an expectation of at least
max{(n− 1−β )/n2}− ε where ε > 0 and the maximum is taken over all positive
integers.

Proof. If BLUE employs the uniform distribution on I, then BLUE has a probability
of L of intersecting with a RED interval of length L giving RED an expectation of
(1−L)L−Lβ L = L(1− (1+β )L). Hence the best that RED can do is to choose an
interval of length 1/(2(1+β )) and BLUE can restrict RED to a payoff of at most
1/(4(1+β )).

For a positive integer n and η > 0 small, suppose RED plays one of the intervals
[k/n,(k+ 1)/n−η ], k = 0,1, . . . ,n− 1 at random; any pure strategy of BLUE can
intersect at most one of these intervals so RED can ensure an expectation of at least

(
1
n
−η)(

n− 1
n

)−β
1
n
(

1
n
−η) =

n− 1−β
n2 − n− 1−β

n
η

and the lemma follows. �
A consequence of the lemma is that, if there is a positive integer n such that

(n− 1−β )/n2 = 1/(4(1+β )), then its common value is the value of the game. It
is therefore easy to check that, for all positive integers n ≥ 2, the game has value
1/(2n) when β = (n− 2)/2.

The formulation of the game requires that the players know the value of β but,
from a practical view, BLUE in particular may have little idea concerning its precise
value. It can therefore be useful to know that a strategy is reasonably good for a
range of values of β even it is not optimal, particularly if that strategy is fairly
simple. The above analysis suggests the uniform distribution is such a strategy; in
particular, it is likely to be effective if the loss of material has serious implications
for RED, that is, when β is large.

For general values of β ∈ [0,1], the position is a good deal more complicated.
First of all we should perhaps address the question of whether the games actually
have a value; we do not wish to go into the details here but they do by an existence
theorem of Alpern and Gal (see [5] Theorem A.1 on page 293). In the games in
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which a value has been found (β = 2/(n− 2)), these RED strategies have been
derived from coverings of I so it is difficult to see how they can be modified to
improve the payoff for other values of β . On the other hand optimal alternatives to
the uniform distribution for BLUE abound. For instance, when β = 1/2, the value is
1/6 so BLUE can afford to ignore all points in [0,1/6) and (5/6,1] and concentrate
the distribution in an appropriate way in [1/6,5/6].

To illustrate the point we show that the value of the game is (2− β )/9 when
1/5≤ β ≤ 5/7. Notice that (n−1−β )/n2 equals 1/5 for n= 2 and 3 when β = 1/5
and equals 1/7 for n= 3 and 4 when β = 5/7. Thus 1/5≤ β ≤ 5/7 is likely to be the
maximum range of values of β giving the game value (2−β )/9 because not only
does Lemma 1 tell us that RED can guarantee more (namely (1−β )/4) if β < 1/5
but it also suggests that RED cannot guarantee as much if β > 5/7. Let

F(x) =

⎧
⎪⎨

⎪⎩

0 if x < (2−β )/9,

1/(1+β )− (2−β )/
(
9x(1+β )

)
if (2−β )/9≤ x < 1/2,

(19β + 7)/
(
18(1+β )

)
if x = 1/2

and F(x) = 1−F(1− x) for 1/2 < x ≤ 1.

As x → 1/2−, F(x) → (5+ 2β )/(9+ 9β ) ≤ 1/2 when β ≥ 1/5. Thus F(x) is a
probability distribution over I which has a jump at 1/2 when β > 1/5 and is strictly
concave in the interval [(2−β )/9,1/2).

Suppose BLUE employs the strategy F(x). We first show that the properties of F
mean that we only need to find the payoff of certain RED intervals in detail in order
to find RED’s best reply to F.

If [a,a+x] and [b,b+x] are two RED intervals with F(a+x)−F(a)<F(b+x)−F(b), then
[a,a+ x] gives a better payoff than [b,b+ x] so we need only consider [a,a+ x]. Therefore
any RED interval of the form [a,a+x] with 0 < a ≤ (2−β )/9 gives an inferior payoff than
[0,x] and so can be ignored.

Furthermore F(a+ x)−F(a) < F(b+ x)−F(b) if (2− β )/9 ≤ b < a < a+ x < 1/2 so
intervals [a,a+ x]⊆ [2−β )/9,1/2) have an inferior payoff to [1/2− x,1/2).

For a < 1/2 < a+ x, F(a+ x)−F(a) has a minimum in a for fixed x at a = (1− x)/2 so,
for intervals having 1/2 as an interior point, it is only necessary to consider those symmetric
about 1/2.

Finally the symmetry of F means that we can assume a RED interval starts in
[0,1/2).

Thus, in finding RED’s best reply to F, the analysis is reduced to investigating
three types of RED interval, namely (i) [0,x], (ii) [x,1/2) where x > (2−β )/9 and
(iii) [1/2− x,1/2+ x].

(i) For x < 1/2, the payoff for [0,x] is

(1−F(x))x−β F(x)x = x(1− (1+β )F(x)) = (2−β )/9.
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For 1/2 < x ≤ 1− (2−β )/9, it is

x(1− (1+β )(1−F(1− x))) = x(1−β +
2−β

9(1− x)
)

Routine calculations show that this expression has a minimum at x = 1 −
(1/3)

√
(2−β )/(1−β )≤ 1/2 when β ≥ 1/5; it is convex so, in [1/2,(2−β )/9],

its minimum occurs at 1/2. The payoff is continuous on the right in [0,1] so, for
x > 1/2, it is at least that of the interval [0,1/2] which is at least the payoff (2−β )/9
of [0,1/2).

(ii) For (2−β )/9≤ x < 1/2, the payoff of the interval [x,1/2) is

(1/2−x)(1− (1+β )(F(1/2−)−F(x))) = (1/2−x)(1− (2−β )(1−2x)/9x).

The two (main) brackets are decreasing functions of x so the maximum occurs
at x = (2−β )/9 and is less than (2−β )/9.

(iii) Now F((1+x)/2)−F((1−x)/2) = 1−2F((1−x)/2) so the expected payoff
of [(1− x)/2,(1+ x)/2] is

x(1− (1+β )(1− 2F((1− x)/2))) = x(2−β )(1− (4/(9(1− x))).

This expression is concave and has a maximum of (2−β )/9 when x = 1/3.

Lemma 1 tells us that RED can ensure an expected payoff of at least (2−β )/9 so
we have established the following theorem.

Theorem 1. The value of the point greedy interval game is (2−β )/9 when 1/5 ≤
β ≤ 5/7.

This leads to the following conjecture.

Conjecture 1. The point greedy interval game has value max{(n−1−β )/n2} where
the maximum is taken over all positive integers.

Of course there are a legion of further challenges with an obvious one being the
case when BLUE is allowed to select more than one point. An alternative approach
would be to investigate other forms of payoff. We have introduced the idea of a
cost to RED of being discovered so a natural extension would be to allow BLUE
to choose the number of points to play but levy a cost on BLUE for them. BLUE
would then have to make a judgement about the amount of resource to employ, thus
creating a doubly greedy game. This might entail a movement away from zero-sum
games but, on the basis that what is good for me is bad for my enemy and vice-
versa, might realistically still remain in the zero-sum environment. As mentioned
above Ruckle did frame his game in terms of BLUE having at most k points but, in
the absence of a penalty for using more points, BLUE does not in fact have to make
a judgement call. For the record, in the modified length greedy game Ruckle did
introduce a modified payoff to RED of aα − bn where α is the length of RED’s in-
terval, n is the number of points in RED’s interval and a and b are positive constants
so this may also be setting off point for allied games.
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6.4 Area Greedy Games

In the previous section we concentrated attention on greedy games played on the
unit interval so we will now look at generalizations of the Area Greedy game which
was given as a problem in Ruckle’s book. In this two person zero-sum game played
over the unit square S, RED (the maximizer) chooses a rectangular subset with edges
parallel to S and BLUE (the minimizer) selects a path in S which is the graph of a
continuous function from [0,1] to [0,1]. BLUE wants the path to intersect RED’s
rectangle and, if it does, RED gets nothing. On the other hand RED gets the value
of the area of the chosen rectangle if BLUE’s path does not intersect it. The game
has the flavour of a needle in a haystack game but, in this game, RED can choose
the size of the rectangle as well as its position whereas the hider in a needle in a
haystack game hides a needle of fixed length.

It is straightforward to see that Ruckle’s game has a simple solution. By choosing
the function fn defined by

fn(t) =

{
2(nt− i) if i ≤ nt ≤ i+ 1/2

1− 2(nt− i− 1/2)) if i+ 1/2≤ nt ≤ i+ 1 for i = 0,1 . . . ,n− 1.

BLUE can ensure that every RED rectangle with horizontal length of at least 1/n
is intersected so that RED’s payoff is at most 1/n. Thus, by choosing n sufficiently
large, RED’s payoff can be made arbitrarily small and the value of the game is
therefore zero. Note that the same is true if RED has the freedom to choose any
convex subset of S, not just rectangles.

To particularise the general definition of greedy game given in the previous sec-
tion and stay within the spirit of the area greedy game of Ruckle, we define an area
greedy game as a two person zero-sum game played over a compact region S, with
interior points, of two-dimensional Euclidean space of the following type.

RED (the maximizer) chooses a member from a class C of convex subsets of S and, without
knowing RED’s choice, BLUE (the minimizer) selects a path from a set of paths P , all of
length at most L, in S. Letting A denote the area of the set chosen by RED, RED gets A if
BLUE’s path does not intersect it and loses β A if it does. Both players know S, C , P, L
and β .

Ruckle’s original game is easy to solve because BLUE is allowed to choose a
path that has no restrictions on its length. In fact every one of our area greedy games
(and also some more general ones) has value zero if BLUE is allowed a completely
free choice of path. This follows from Lemma 3.39 of Alpern and Gal [5] which
ensures that, given ε > 0, there is a (closed) path in the two-dimensional compact
convex set S such that every point of S has distance less than ε from the path. Hence
a natural restriction to impose on BLUE’s paths is that they should have length
bounded by a positive real number, L say.

Notice that there are connections between the point greedy interval game anal-
ysed in the previous section and a number of area greedy games on the unit square
when BLUE has to choose a path which is the graph of a constant function. In the
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latter games, the crucial factor that determines whether BLUE’s path intersects the
convex set C chosen by RED is the projection of C onto the y-axis. In particular,
in this restricted form of Ruckle’s area greedy game, in order to play optimally
RED will choose a rectangle with base of length one so his choice is effectively to
choose the height of the rectangle (which is a line segment) while BLUE is effec-
tively choosing a point (the value of the constant). Perhaps the next natural step is
to tackle the following problem.

Problem 1. Solve the Area Greedy Game on the unit square when BLUE can take
any path of length one and RED can choose any compact convex set in the unit
square.

6.5 The Numbers Hides Game

Like the Several Intervals Game the Number Hides Game is a two person zero-sum
game which was posed as a problem in [4] with some special cases being solved. Its
formulation is particularly simple.

RED and BLUE choose sequences of p and q consecutive integers respectively between
1 and n. The payoff to RED is the number of integers in the intersection of the chosen
intervals.

The game has proved more tractable than the Several Intervals Game. When Baston
and Bostock submitted their solution to the proceedings of the American Mathe-
matical Society, they were told that Ferguson had also solved it so a three author
paper [3] was written in the style of Ferguson which the editors preferred. They
subsequently learned that Zoroa, Zoroa and Ruiz had also found a solution [6].

The game is the discrete version of the Interval Overlap Game in which RED
and BLUE choose intervals of lengths at most α and at least β respectively in the
unit interval I, and RED has a payoff of the measure (length) of the intersection
of the chosen intervals; this game was solved in [4]. We have seen in Sect. 6.2 that
the Several Intervals Game is essentially equivalent to a corresponding finite game
so it is natural to ask whether a similar situation pertains here. Although no formal
justification has been given, the answer is probably yes as it was remarked in [3] that
the ideas used to solve the Numbers Hide game carry over to the Interval Overlap
Game; in fact these ideas enabled a fault in the analysis of BLUE’s optimal strategies
in [4] to be corrected. The games where the Number Hides Game is modified so that
one or both players are permitted to choose an arbitrary set of integers rather than a
set of consecutive integers have been solved in [3] and [7]. The game in which both
players can choose an arbitrary set of integers is called the Simple Point Catcher
Game. As pointed out in [3], its value is pq/n,when RED chooses at most p integers
and BLUE chooses at least q but Ruckle [4] gave a more complicated expression,
namely
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qC1
n−qCp−1 + 2 qC2

n−qCp−2 + · · ·+ r qCr
n−qCp−r + · · ·+ p qCp

n−qC0
nCp

;

this expression can be rearranged to

pq/n
n−1Cp−1

W

where

W = n−qCp−1 +
q−1 C1

n−qCp−2 + · · ·+q−1 Cr−1
n−qCp−r + · · ·+q−1 Cp−1

Because W is the coefficient of xp−1 in the expansion of (1+x)n−q(1+x)q−1 and the
denominator is the coefficient of xp−1 in the expansion of (1+ x)n−1, they are equal
and the expression simplifies to pq/n. Optimal strategies for RED and BLUE are
to select the set of p, respectively q, integers from {1,2, . . . ,n} by simple random
sampling.

We now introduce notation which enables us to give alternative optimal strategies
in the Simple Point Catcher Game which are more useful as a guide for optimal
strategies in the modified Interval Overlap games described below. In fact they are
the optimal strategies Ruckle used to solve the Modified Number Hides Game in
which the players can choose sequences modulo n. Let n be a fixed positive integer
and, for each positive integer x, let x = λ n+x∗ where λ is an integer and 0< x∗ ≤ n.
For positive integers m < n and x, put

Im(x) =

{
[x∗,x∗+m− 1] if x∗+m− 1≤ n,

[x∗,n]∪ [1,m+ x∗− n− 1] if x∗+m− 1 > n.

Thus the sets in

Im = {Im(x) : x = 1+ μm for μ = 0,1, . . . ,n− 1}

cover the integer interval [1,n] precisely m times and every integer y ∈ [1,n] is in
precisely m members of Im. Hence, if RED chooses one of the members of Ip at
random and BLUE chooses any set of q integers in [1,n], RED has an expectation
of pq/n. Similarly, if BLUE chooses one of the members of Iq at random, RED
has an expectation of pq/n whatever set of p integers in [1,n] RED chooses. Thus,
taking a member at random from Ip and Iq respectively are optimal strategies for
RED and BLUE in the Simple Catcher Game. These optimal strategies and the ones
mentioned earlier demonstrate that the game has the unusual property that, if the
roles are reversed (so that RED loses the number of integers in the intersection of
the chosen intervals), a player still has the same optimal strategy.

We now look at the analogous problems on the real interval [0,1] where one
or both players can, instead of choosing an interval of length α, choose a set of
(Lebesgue) measure α. This gives rise to the following three games over the unit
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interval where, in each case, the payoff to RED is the measure of the intersection of
the sets chosen by the players:

ΓMM(α ,β ). RED chooses a set of measure at most α and BLUE chooses a set of measure
at least β .

ΓIM(α ,β ). RED chooses an interval of length at most α and BLUE chooses a set of measure
at least β .

ΓMI(α ,β ). RED chooses a set of measure at most α and BLUE chooses an interval of length
at least β .

The next result shows that ΓMM is easy to solve using the ideas we have developed.

Proposition 1. The value of ΓMM is αβ .

Proof. Firstly suppose both α and β are rational, say a1/a2 and b1/b2 respectively.
For each real number x, let x = m+ x∗ where m is an integer and 0 ≤ x∗ < 1. Given
γ ∈ [0,1) and x a real non-negative number, Iγ(x) is defined as the interval [x∗,x∗+γ]
if x∗+γ ≤ 1 and the pair of intervals [x∗,1]∪ [0,γ +x∗−1] if x∗+γ > 1. For rational
γ = c1/c2 say, let

Iγ = {Iγ(x) : x = μγ for μ = 0,1, . . . ,c2− 1},

then Iγ covers [0,1] precisely c1 times. Thus, if RED chooses a member of Iα
at random, RED can guarantee an expectation of β (c1)/c2) = β α whatever set of
measure β BLUE chooses. Similarly, if BLUE chooses a member of Iβ at random,
RED’s expectation can be restricted to αβ . Hence the Proposition holds for rational
α and β .

Clearly the expectation to RED does not decrease as the value of α increases
or the value of β decreases. The result therefore follows for general α and β be-
cause, given any irrational number γ, there are rational numbers r1 < γ and r2 > γ
arbitrarily close to γ. �
The proof of Proposition 1 tells us that, provided a player can split the allowed
measure between two intervals, he gets no benefit from being able to choose a mea-
surable set.

Although, in general the games ΓIM and ΓMI are more difficult to analyse, some
easy deductions can be made. Because BLUE’s strategy space in ΓIM contains
BLUE’s strategy space in the Interval Overlap Game and RED’s strategy space is
the same in both games, the value of ΓIM is less than or equal to the value of the
Interval Overlap Game. Furthermore the RED strategy in the proof of Proposition 1
ensures that the value of IMI is at least αβ . By similar arguments, the value of ΓMI

is greater than or equal to the value of the Interval Overlap Game and Blue can en-
sure the value of IIM is not more than αβ . Although one suspects that the following
problem is not so difficult as many of the others in this chapter, it still may not be
easy.

Problem 2. Solve ΓMI and ΓIM.



6 Some Cinderella Ruckle Type Games 97

6.6 Relatives of the Number Hides Game

The Simple Point Catcher Game can be interpreted as BLUE having q objects to
hide at integer points in [1, p] with the constraint that exactly one object can be
hidden at a point and RED being allowed to search p integer points in an attempt
to find them. The payoff to RED is the number of objects found. A natural gen-
eralization of this game is for BLUE to have q objects to hide and be allowed to
choose b points in which to hide them with the constraint that an amount between
1 and c must be placed in each of the chosen points. The game has an affinity with
the greedy games covered in Sects. 6.3 and 6.4 because BLUE now has to balance
two competing factors; whether to hide objects at a comparatively small number of
integers meaning that it is relatively difficult for RED to find them but expensive
if he does or to spread the objects over a comparatively large number of integers
so that losses are more likely but less painful. N Zoroa, M. J. Fernández-Sáez and
P Zoroa introduced these types of game involving capacities into the literature and
have been in the forefront of research on them (see [7] and [8]); in particular an in-
teresting general Point Catcher Game is solved in [8]. Although they have obtained
many results, interesting and challenging problems remain open and we now detail
some of them.

First consider the following generalization of the Numbers Hide Game; in [7]
it is called the Hide and Seek Game with Capacities equal to c, but we will call it
the Integer Number Hides Game with Capacities to emphasize not only that it has a
strong relationship with the Numbers Hides Game but also that it is not an isolated
game but one that forms part of a coherent body of work.

BLUE has q indivisible objects to hide in the integer interval L = [1,n] and must choose an
interval B of L to do so under the restriction that between 1 and c objects must be allocated
to each point of the chosen interval. Simultaneously RED picks an interval R of length p
and gets a payoff equal to the number of objects that BLUE allocated to the points of A.

Two results for this game are given in [7]. Firstly, if p is a divisor of N, then the
value of the game is pq/N. Secondly, let n = λ p+ r where λ is a positive integer
and 0 ≤ r < p, then, provided q ≤ (c−1)r+ p, the value of the game is q/(λ +1) if
q≤ rc and (q(λ +1)−cr)/(λ (λ +1)) if q> rc. In addition two particular examples
are given which show that the value of the game can equal (q− c)/λ . As they had
found other examples which had the same expression for the value and in which all
RED optimal strategies have a similar structure, they suggested that there may be
a general structure for games with value (q− c)/λ . Very modest progress on this
front when n = λ p+ 2 and c = 2 is detailed below.

Lemma 2. Let n = λ p+1 or n = λ p+2 for some integer λ and q≤ n−2+c, then
RED can ensure a payoff of at least (q− c)/λ .

Proof. Let Jj(i) = [ip + j,(i + 1)p+ j − 1]. First suppose n = λ p+ 1 and RED
chooses a member of {J1(i) : i = 0,1, . . . ,λ − 1} ∪ {J2(i) : i = 0,1, . . . ,λ − 1} at
random. The probability of an x satisfying 2≤ x≤ λ p occurring in the RED strategy
is 1/λ whereas each of 1 and λ p+1 occur with probability 1/(2λ ). Hence in a best
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reply BLUE will place as many objects as possible at the points 1 and n = λ p+ 1.
As q ≤ n− 2+ c, BLUE can put a total of c objects at 1 and n because an object
must be placed at each point of [2,n− 1] if objects are put in both 1 and n. Thus a
minimum of q−c objects must be put in [2,n−1] so that RED is assured of a payoff
of at least (q− c)/λ . �

Now suppose n = λ p+ 2 for some integer λ and RED chooses a member of
{J2(i) : i = 0,1, . . . ,λ − 1} at random. The probability of an x satisfying 2 ≤ x ≤
λ p+ 1 occurring in the RED strategy is 1/λ whereas each of 1 and n occur with
probability 0. Hence, as before, in a best reply BLUE will put as many objects as
possible at the points 1 and n but be forced to put at least q− c in [2,n− 1] because
q ≤ n− 2+ c. Thus RED’s strategy ensures a payoff of at least (q− c)/λ .

The structure of our BLUE strategies is much more complicated so we first look
at a particular example to illustrate the general case.

Example 1. The game in which n = λ p+2 = 32, p = 5, c = 2 and q = 28 has value
26/6 = (q− c)/λ .

Proof. Consider the BLUE strategy which chooses one of the following pure strate-
gies at random.

B1 = (2,2,2,1,1,2,2,2,2,1,2,2,2,2,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B1,

B2 = (2,2,2,2,1,2,2,2,1,1,2,2,2,2,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B2,

B3 = (2,2,2,2,1,2,2,2,2,1,2,2,2,1,1,2,

16 times
︷ ︸︸ ︷
0, . . .,0),

←−
B3

where
←−−−−−−−
(x1, . . . ,xn) = (xn, . . . ,x1). The points in {1,2,3,6,7,8,11,12,13,16} each

have an expected capacity of 6/6, those in {4,9,14} each have an expected capacity
of 5/6 while those in {5,10,15} each have an expected capacity of 3/6. Thus ev-
ery five successive points in [1,16] have an expected capacity of (18+ 5+ 3)/6 =
26/6 = (q− 2)λ . By symmetry the same holds for every five successive points in
[17,32]. Furthermore every 5 consecutive points containing 16 and 17 must contain
at least 1 of 15 and 18 and at least 1 of 14 and 18 so has an expected capacity of at
most 26/6. Thus the value of the game is at most 26/6. �

By introducing some notation we can see that the example has a structure which
will be useful in the general case. Let gi (i = 1, . . . ,m) denote sequences of lengths
α1, . . . ,αm respectively, then we use g1 ⊕ g2 ⊕ ·· · ⊕ gm to denote the sequence of
length α1 + · · ·+αm given by the members of g1 in order, followed by the members
of g2 in order and so on, finishing up with the members of gm in order. Thus, putting
J5(1) = (2,2,2,1,2), J5(2) = (2,2,1,1,2) and letting mt denote the sequence of
t m’s, B1 in our example can be written as 21⊕J5(2)⊕J5(1)⊕J5(1)⊕016. It is then
clear that B2 and B3 can be obtained from B1 by suitably permuting the J5’s in B1.
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More generally let Jp(w) denote the sequence (x1, . . . ,xp) with xi = 1 for p−
w ≤ i ≤ p− 1 and xi = 2 otherwise; in particular Jp(0) = 2p. For wi satisfying
0 ≤ wi ≤ p− 2, let

Hp(w1, . . . ,wμ) = 21⊕ Jp(w1)⊕·· ·⊕ Jp(wμ)⊕ 0μ p+1.

Thus, in the example, B1 = H5(2,1,1), B2 = H5(1,2,1) and B3 = H5(1,1,2).
Note that Hp(w1, . . . ,wμ) represents a BLUE strategy in the game in which
n = 2μ p+ 2, c = 2 and q = 2(μ p+ 1)−∑μ

i=1 wi as does Hp(wσ(1), . . . ,wσ(μ)) =
Hp(σw) (abusing notation) where σ is any permutation of {1, . . . ,μ}. Given w =
(w1, . . . ,wμ), let

Hp(w) = {Hp(σw) : σ ∈ I (μ)} ∪ {←−−−−−Hp(σw) : σ ∈ I (μ)}

where I (μ) denotes the set of permutations of {1,2, . . . ,μ}
Theorem 2. For p > 2, n = 2μ p+ 2, c = 2 and q satisfying μ(p+ 2)+ 2 ≤ q ≤
2μ p+ 1, the value of the game is (q− c)/(2μ).

Proof. RED can ensure an expectation (q− c)/(2μ) by Lemma 2 so we only need
to show that BLUE can restrict RED to that expectation. Take any w = (w1, . . . ,wμ)
satisfying 0 ≤ wi ≤ p− 2 and ∑μ

i=1 wi = 2(μ p+ 1)− q; such a w exists because
1 ≤ 2(μ p+ 1)− q ≤ μ(p− 2). Suppose BLUE adopts the strategy which picks
a member of Hμ(w) at random, then x1, x2 ∈ [1,μ p+ 1] satisfying x1 − x2 = 0
(mod p) have the same expected allocation. Thus, if the RED strategies starting at
1, . . . , p all have expectation at most (q− c)/(2μ), then so does every RED strategy
contained in [1,μ p+1]. Put ρw(m) = |{i : wi ≥ m}|, then the expected allocation of
j ∈ [1, p] is (2−ρw(p+1− j)/μ)/2 which is a decreasing function of j. Hence ev-
ery RED strategy contained in [1,μ p+1] has an expected allocation of p−∑p

j=1 ρw

(p+ 1− j)/(2μ). Let tm = |{ j : wj = m}|, then

2(μ p+ 1)− q=
μ

∑
i=1

wi =
p

∑
m=1

mtm =
p

∑
m=1

m(ρw(m)−ρw(m+ 1)) =
p

∑
m=1

ρw(m).

Thus every RED strategy contained in [1,μ p+ 1], and by symmetry, every RED
strategy contained in [μ p+ 2,n], has an expected allocation of (q− 2)/(2μ).

Suppose a RED strategy contains both λ p+ 1 and λ p+ 2. By symmetry the
expected allocations of λ p+ 1− j and λ p+ 2+ j are the same for j = 1, . . . , p− 2
and, from the above, we know that these allocations are increasing functions of
j. Hence every RED strategy containing both λ p+ 1 and λ p+ 2 has an expected
allocation of at most that of [(μ − 1)p+ 2,μ p+ 1] which has the same expected
allocation as [2, p+ 1]. Thus RED has an expectation of at most (q− c)/(2λ ). �

Apart from the extreme cases q= 2μ p+1 and q= μ(p+2)+2, there are several
possibilities for the choice of (w1, . . . ,wμ) in the proof of the previous theorem so
there are in general a number of optimal strategies for BLUE. However the exam-
ples in [7] show that there are BLUE optimal strategies which do not follow our
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structure, illustrating that it may not be easy to home in on particular BLUE optimal
structures for other cases. It is probably over-optimistic to hope for a complete so-
lution of the game without further inroads into special subcases being made first.
Zoroa, Fernández-Sáez and Zoroa have solved the game when q is relatively small
so it would seem that the two subcases that present the best chance of progress on
an analytical front are:

Problem 3. Solve The Integer Number Hides Game with Capacities for compara-
tively large q.

Problem 4. Solve The Integer Number Hides Game with Capacities for c = 2.

Like the Several Intervals Game, one feels that a comprehensive solution of this
game may need the insight given by computer generated solutions where the com-
puter has been programmed to target certain types of solution.

A natural variation of the above game in which BLUE has an amount q, not nec-
essarily an integer, of divisible material to hide was introduced by Zoroa, Fernández-
Sáez and Zoroa in [8]. It can be formulated as follows.

BLUE has an amount q, not necessarily an integer, of divisible material to hide in the integer
interval I and must choose a subinterval B of I with length at most b in which to do so under
the restriction that an amount of at most c is allocated to each point of B. Simultaneously
RED picks a subinterval R of length r and gets a payoff equal to the amount of material that
BLUE allocated to the points of R.

It is not easy to give a summary of the theorems obtained in [8] which does justice
to them without involving detailed notation so the reader is encouraged to read the
paper itself. Although a complete solution appears to be extremely difficult, many
open questions regarding partial results suggest themselves. Note that, in this game,
BLUE is allowed to put an amount zero at some of the chosen points so it is not
totally obvious that there is a close connection between this game and the previous
one. Thus it is of interest that [8] points out that there are similarities between the
two in some cases.

6.7 Hiding in a Disc Game

The Hiding in a Disc game is very simple to state and easy to understand but seems
difficult to solve. It can be described as follows.

Without knowing each other’s choices, RED and BLUE choose points r and b in a disc D
with centre O and radius one. The payoff to RED in this zero-sum game is one if |r−b| ≤ c
and zero otherwise.

When 1/
√

2 ≤ c < 1, the value is the ratio of the length of the arc whose chord has
length c to the circumference of D; optimal strategies for BLUE and RED are to
choose a point according to a uniform distribution on the circumference of D and
on the circumference of a circle with centre O and radius

√
1− c2 respectively.
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What intrigued me when I first read Ruckle’s book was that the solution for
1/2 < c < 1/

√
2 was still open, particularly so because the value when c = 1/2

is known. Ruckle showed that, in the range, RED can guarantee a payoff of at least
(1/π)arccos(1/2c) demonstrating that a solution communicated to the American
Mathematical Monthly was incorrect. The RED strategy which ensured this payoff
seemed an intuitively natural one so all that was needed was to produce a BLUE
strategy showing RED could do no better. However the “all” proved elusive and,
after prolonged efforts, I gave the problem best. On re-reading Ruckle’s book re-
cently I was curious whether progress had been made on the problem but I have
been unable to find references to it.

It is natural to wonder whether a symmetry argument which is standard in the
literature might be of use for this game; for a formal group theoretic justification of
the following process see [1]. Let A denote the set of all rotations about the cen-
tre and let Γ denote the symmetized version of the game in which, after RED and
BLUE choose strategies r and b respectively, a random (equiprobable) member γ is
selected from A and the payoff P(γr,b) = P(r,γ−1b) is assigned to RED. Observe
that either player can ensure that Γ is played by applying a random automorphism to
his own strategy so its value must be the same as that of the original game. Hence the
Hiding in a Disc game is solved once Γ is solved. We may therefore regard mixed
strategies of the players in Γ as distributions over the equivalence classes of A so
that the strategy spaces are represented by the unit interval. The optimal strategies
of the game given in [4] can all be expressed in Γ as probability distributions over
a finite number of points in the unit interval. Unfortunately the payoff of the sym-
metrized game is much more complicated than that for the original game so there
may be few practical benefits of symmetrising this particular game. However it does
highlight a question that is of interest.

Question 2. In the symmetrized Hiding in a Disc game, do there always exist opti-
mal strategies for the players which are probability distributions over a finite number
of points in the unit interval?

6.8 A General Ruckle-Type Game

Ruckle proposed the problem of solving the Hiding in a Disc Game played on a set
S more general than the circular disc. As that game appears to be still unsolved, it
might seem somewhat bizarre to give a game formulation of which it is a special
case. However the game we now introduce does show that a number of win-lose
Ruckle-type games (payoff 0 or 1) do have a common structure and that there may
be interesting research to be done on them in topologies other than the Euclidean
one. The reader is reminded that a closed ball with centre c and radius r is the set of
points which are at a distance less than or equal to r from c.

Let ΓS(b; r1, . . ., rk) denote the following two-person zero-sum game played on a convex
compact subset S of Rn endowed with a topology from a metric. BLUE chooses a closed
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ball B of radius b and RED closed balls R1, . . . ,Rk of radii r1, . . . , rk where all the closed
balls have their centres in S. The payoff (to RED) is 1 if S∩B∩⋃k

i=1 Ri 
= /0 and 0 otherwise.

Note that the Hide in a Disc Game is equivalent to one in which BLUE chooses
a closed disc of radius rB and RED a closed disc of radius c− rB. Thus, when the
topology is given by the Euclidean metric, special cases of ΓS(b;r1, . . . ,rk) include:

• Hide in a Disc Game where S is the unit disc, b = rb,k = 1 and r1 = c− rB;
• Several Intervals Game where S is the unit interval, the closed balls are closed

intervals and b = 0;
• Several Intervals Game Variation in which BLUE chooses an interval of length

b instead of a point.

So far research on Ruckle-type games has almost exclusively concerned itself
with problems in which the Euclidean topology is employed but, from a games
that people do not play standpoint, there is no reason why other topologies should
be ignored. In particular the Euclidean topology is a special case (p = 2) of the
topology given by the distance function

||x− y||p = (
n

∑
i=1

(|xi − yi|)p)1/p

where x=(x1, . . . ,xn), y=(y1, . . . ,yn) and p≥ 1. When p= 1, we have the Manhat-
tan, or taxicab, topology whereas the limit as p → ∞ gives the Chebyshev topology
which is represented by the distance function ||x− y||∞ = max1≤i≤n |xi − yi|. Note
that closed balls in R2 takes the shape of a square in the Chebyshev topology and
the shape of a diamond in the Manhattan topology. A closed ball in R1 is a linear
segment for all p.

In contrast to the Euclidean version, the Chebyshev Hide in a Disc Game, even
in its n-dimensional form, is easy to solve; it can be stated as follows:

Play takes place in In where I denotes the unit interval. BLUE chooses a point and RED a
n-cube of side 2r1 and the payoff to RED is 1 if BLUE’s point is in RED’s cube and zero
otherwise.

Let G be a minimum cover of In by cubes of side 2r1 then, if RED chooses a
member of G at random, RED’s expectation is at least 1/|G |. Let m be the posi-
tive integer such that 2mr1 < 1 ≤ 2mr1 + 1, δ satisfy 0 < δ < (1− 2mr1)/m and
P(i) = 2i(r1 + δ ). If BLUE selects one of the points B = {(P(i1), . . . ,P(in)) : i j =
0,1 . . . ,m for j = 1, . . . ,n} at random, then

||(P(i),P( j))− (P(s),P(t))||1 = max{|2(s− i)(r1 + δ )|, |2(t− j)(r1 + δ )|}
≥ 2(r1 + δ ).

Thus any closed ball of radius r1 contains at most one point of B so BLUE can
restrict RED’s expectation to at most 1/(m+ 1)2. But, taking S(i, j) to denote the
closed ball with centre at the point ((2i+1)r1,(2 j+1)r1+1) and radius r1, {S(i, j) :
0 ≤ i, j < m} is a cover of I× I containing (m+1)2 members so RED can expect at
least 1/(m+ 1)2 and the game is solved.
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In addition to problems in the topology given by ||x− y||p, readers who relish
the more esoteric problems may like to investigate problems in the topology arising
from the distance function d(x,y) =∑n

i=1 |xi−yi|p where 0< p < 1; in this topology
the closed ball in R2 is not convex.

6.9 Conclusions

In this chapter we have investigated only a few of the games proposed by Ruckle
in his book but they indicate how the apparently simple games there can provide a
challenge in themselves or the foundation for significant generalisations. A common
thread running through most of the games is that there are optimal strategies which
involve, in some way, coverings of the set the game is played on. Research problems
are the lifeblood of any mathematical discipline and it is hoped that it has been
shown that Ruckle’s problems are in rude health. However one can also expect the
games to evolve in different directions. With the current global financial crisis there
is a much greater questioning as to whether projects are affordable so a natural
direction would be to incorporate costs into many of Ruckle’s games. For instance
the several intervals game has been interpreted as a game in which a defender puts
detecting devices (intervals) across a channel in an attempt to detect an infiltrator
but little interest has so far been shown in creating scenarios in which the defender
has a limited budget and the more efficient the device (the larger the length of the
interval) the greater the cost of deployment. Be that as it may, the important aspect
of Ruckle’s games from my viewpoint is that they provide one with intellectual fun.
His book even includes a game on a Möbius band; definitely a game that people
don’t play.
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Chapter 7
The Cardinality of the Sets Involved in Lattice
Games

Noemí Zoroa, María-José Fernández-Sáez, and Procopio Zoroa

Abstract Lattice games were introduced by Ruckle in (Geometric games and their
applications. Pitman Advanced Publishing Program, 1983). These are games on the
Lattice games where at least one of the players can move only from one point to
an adjacent lattice point. This restriction on the movements of the player is realistic
because it expresses that his movements are difficult. Although different results have
been obtained for games on the lattice since the book of Ruckle, the work on lattice
games is very scarce, and none of the problems set up there has been totally solved.
In this chapter we obtain the cardinalities of the sets of strategies for the players of
lattice games, this is the first of the problems proposed by Ruckle, and we hope, as
does he that it will be of value in attacking such games.

7.1 Introduction

In this chapter we deal with two-person zero-sum games on the lattice

L = {1, 2, . . . , n}×{1, 2, . . . ,m}

in which, one of the sets of strategies for the players is the set of all the functions
from {1, 2, . . . ,n} into {1, 2, . . . ,m} such that f (i+1) equals one of the three values
f (i), f (i+ 1), or f (i− 1) or a subset of it. Ruckle, in his interesting book [5] on
geometric games, includes some games of these kind and calls them lattice games.
In Chap. 3 we considered algorithms for solving search games on a lattice. In this
chapter, we consider the cardinality of the strategy space.
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Let Fn,m denote the set of all the functions from {1,2, . . . ,n} to {1,2, . . . ,m}, that
is Fn,m consists of all subsets of L which have a single point in each column, and let
F 0

n,m denote the subset of Fn,m containing the functions such that f (i+ 1) equals
one of the three values f (i), f (i+ 1), or f (i− 1). The lattice games presented by
Ruckle in [5] are the Lattice Ambush Game (LAG), the Lattice Search Game (LSG),
the Lattice Penetration Game (LPG), and those obtained from these on laying out the
lattice on a cylinder, the Cylindrical Ambush Game (CAG), the Cylindrical Search
Game (CSG) and the Cylindrical Penetration Game (CPG).

In the LAG the set of strategies for player I is F 0
n,m, the set of strategies for

player II is Fn,m and the payoff to player I is 1 if both players do not meet, and zero
otherwise. In the LSG the sets of strategies for both players are the same as in the
LAG and the payoff to player I is equal to 0 if they do not meet and 1 if they meet. In
the third game, the LPG, player I receives a payoff equal to his degree of penetration
in the lattice if he is not intercepted, and 0 otherwise. The set of strategies of player
I is F 0

1,m ∪F 0
2,m ∪ ·· · ∪F 0

n,m and the set of strategies for player II is Fn,m. The
CAG, CSG and CPG are games that have the same set of strategies for player II
and the payoff functions are equal to those of the LAG, LSG and LPG respectively,
but player I is allowed to pass from one edge of the lattice to another. For all these
games Ruckle obtains results for some special cases, but the general solutions are
not obtained.

Although there has been activity in the study of games on the lattice [1, 6–8],
there are few results on lattice games. The CAG is studied in [7] where it is called
ambush game over time on a cyclic set; it is solved for the cases n = 2, n = 3,
m > 3(n− 1) and for some cases when m = 3(n− 1). Bounds for the value of the
game are also obtained, but the general solution is not obtained. Patrolling games on
different graphs are studied in [1], the games studied when the graph is a line graph
are similar to the LSG and the CSG, but in these games the attacker attack just one
node along a period of time of length k. Properties for the optimal strategies for the
players and the solution for some particular cases are obtained. Ruckle remarks that,
among the games on the lattice, the hardest to handle are the lattice games, because
of the combinatorial difficulties involved. In an attempt to shed some light on lattice
games we have studied the sets of strategies of the players and we have obtained the
cardinalities of all the sets involved in these games.

A two-person zero-sum game will be expressed by G = (X ,Y,M) where X , Y are
the sets of pure strategies for players I and II, respectively, and

M : X ×Y → R (7.1)

is the payoff function which represents the winnings of player I and the losses of
player II. Player I chooses a strategy A ∈ X , player II chooses a strategy B ∈ Y and
these choices determine the payoff M(A,B) to player I and −M(A,B) to player II.

Throughout this chapter X and Y are finite sets, therefore a probability distribu-
tion on X , that is to say, a mixed strategy for player I, can be written as a function

x : X →R
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such that x(C) ≥ 0 for all C ∈ X and ∑
C∈X

x(C) = 1. Similarly, a mixed strategy for

player II will be given by a function

y : Y →R

such that y(C)≥ 0 for all C ∈Y and ∑
C∈Y

y(C) = 1. When the players use their mixed

strategies x and y, the payoff M(x,y) is the expected value of M(A,B).
A very simple lattice game G = (X ,Y,M) is the following, X = Y ⊂ F 0

n,m and

M(A,B) =

{
1 if A = B,
0 if A 
= B.

(7.2)

It is easy to see that an optimal strategy for both players is the uniform distribution
on the set of their pure strategies and the value of the game v is given by

v =
1
|X | ,

but, to completely solve this game we have to know the cardinality of the set X .
Given A ∈ Fn,m we denote its increments by ΔA(i), ΔA(i) = A(i+ 1)−A(i) for

i = 1,2, . . . ,n− 1 and ΔA(n) = A(n)−A(1). We consider the following sets:

F 0
n,m = {A ∈ Fn,m : �A(i) ∈ {0,1,−1} , i = 1, . . . ,n− 1} , (7.3)

F 1
n,m = {A ∈ Fn,m : �A(i) ∈ {0,1,−1,m− 1,1−m},

i = 1, . . . ,n− 1} , (7.4)

F 2
n,m = {A ∈Fn,m : �A(i) ∈ {0,1,−1} , i = 1, . . . ,n} , (7.5)

F 3
n,m = {A ∈ Fn,m : �A(i) ∈ {0,1,−1,m− 1,1−m}, i = 1, . . . ,n} (7.6)

Clearly F 2
n,m ⊂ F 0

n,m ⊂ Fn,m and F 3
n,m ⊂ F 1

n,m ⊂ Fn,m. The elements of the
set F 2

n,m can be interpreted as paths on the cylinder, that is paths on the lattice
{1,2, . . . ,n+ 1}×{1,2, . . . ,m} where the points (1, j) and (n+1, j) are considered
to be the same point. In a similar way the elements of the set F 1

n,m can be interpreted
as paths which can surround a cylinder one or more times and the elements of F 3

n,m
as paths which can surround a cylinder or as paths on a torus. Figure 7.1 shows a
representation of the element

{
(1,6),(2,7),(3,8),(4,9),(5,10),(6,1),(7,2)(8,2),

(9,3),(10,4),(11,3),(12,4), (13,5)} ∈ F 3
13,10 ⊂ F 1

13,10 ⊂ F13,10 on the lattice

L = {1,2, . . . ,13}×{1,2, . . . ,10} and on the torus. The sets F 0
n,m, F 1

n,m, F 2
n,m and

F 3
n,m appear in many situations in which the path of a person needs to be described.
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Fig. 7.1 Paths on the torus

To obtain the cardinality of these sets we will use the tridiagonal Toeplitz matrices.
Other games where these matrices appear can be seen in [2].

7.2 The Cardinality of F 0
n,m and F 2

n,m

Let us consider the set F 0
n,m defined by (7.3). Let a pair r, s be given, 1≤ r ≤m,1≤

s ≤ m, and let us denote by a(n)rsm the number of paths of F 0
n,m satisfying A(1) = r

and A(n) = s, since m is fixed, we omit it for simplification, so

a(n)rs =
∣
∣{A ∈ F 0

n,m : A(1) = r,A(n) = s
}∣∣

and hence
∣∣F 0

n,m

∣∣= ∑
r,s

a(n)rs , r = 1, . . . ,m, s = 1, . . . ,m. (7.7)

Let B denote the square matrix of order m
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B =

⎡

⎢
⎢
⎢⎢
⎣

1 1 0 0 . . . 0
1 1 1 0 . . . 0
0 1 1 1 . . . 0
. . . . . .
0 0 0 0 . . . 1

⎤

⎥
⎥
⎥⎥
⎦
, (7.8)

that is the matrix having zeros as elements everywhere, with the exception of the
elements of the principal diagonal and that immediately above and below which are
equal to 1.

If we call M(n) the square matrix of order m whose elements are the a(n)rs ,
r = 1, . . . ,m, s = 1, . . . ,m

M(n) =
[
a(n)rs

]
, (7.9)

it is clear that

M(2) = B,

M(n) = M(n−1)B,

and so

M(n) =
[
a(n)rs

]
= Bn−1.

The following lemma and proposition are known, they give us the tools to obtain
the cardinalities of the sets F 0

n,m and F 2
n,m.

Lemma 1. The eigenvalues of the square matrix B of order m, given by (7.8) are

λk = 1− 2cos
kπ

m+ 1
, k = 1, . . . ,m, (7.10)

and the components of the eigenvector c.k (column vector) corresponding to λk are

chk = (−1)h+k

√
2

m+ 1
sin

(
hk

π
m+ 1

)
, h = 1, . . . ,m. (7.11)

Let us denote by C the square matrix of order m whose elements are the chk, C =
[chk]. Then C is an orthogonal and symmetric matrix, that is to say,

CT =C, CC = I, CΛC = B (7.12)

is satisfied, where Λ is the diagonal matrix whose elements of the principal diagonal
are the eigenvalues λk.

Proof. Let T be the square matrix

T =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

b c 0 0 · · · 0
a b c 0 · · · 0
0 a b c · · · 0
. . . . . .
0 0 · · · a b c
0 0 · · · 0 a b

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

,
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where a 
= 0 and b 
= 0. These are the tridiagonal Toeplitz matrices, these matrices
are among the few nontrivial structures that admit formulas for their eigenvalues
and eigenvectors. Matrix B given by (7.8) is the particular case of matrix T where
a = b = c = 1, therefore it is known that its eigenvalues are given by (7.10) and the
components of the eigenvector c.k (column vector) corresponding to λk are given by
(7.11). See [4].

Since the m eigenvalues are all different, it follows that the eigenvectors are or-
thogonal, that is to say

cT
.kc.k′ = 0 if k 
= k′.

With the constants chosen in the elements chk the equalities

cT
.kc.k =

m

∑
h=1

c2
hk = 1, k = 1, . . . ,m

are satisfied, this can be proved directly or by applying Lemma 2, which we will see
below. Therefore (7.12) is proved. �
Proposition 1. The number of elements of F 0

n,m satisfying A(1) = r and A(n) = s is

given by a(n)rs , and is equal to

a(n)rs = (−1)r+s 2
π

m

∑
k=1

βk

k
(1− 2cosβk)

n−1 sin(rβk)sin(sβk)

where

βk =
kπ

m+ 1
. (7.13)

Proof. A proof of this result can be found in [3]. We can provide the following
proof; let C and Λ be the given in Lemma 1. CC = I and CΛC = B is satisfied,
therefore

Mn = Bn−1 =CΛ n−1C (7.14)

is fulfilled. From the above equality it follows that

a(n)rs =
m

∑
k=1

λ n−1
k crk csk

= (−1)r+s
m

∑
k=1

(1− 2cosβk)
n−1 2

m+ 1
sin(rβk) sin(sβk)

= (−1)r+s 2
π

m

∑
k=1

βk

k
(1− 2cosβk)

n−1 sin(rβk)sin(sβk) (7.15)

where βk is given by (7.13), and the proof is complete. �
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Theorem 1. The cardinality of the set F 0
n,m is given by the expression

∣
∣F 0

n,m

∣
∣=

m

∑
k=1

(1− 2cosβk)
n−1 1+(−1)m+k

(m+ 1)
tg2 βk

2
, (7.16)

where βk is given by (7.13).

Proof. We can express the cardinality of F 0
n,m as

∣
∣F 0

n,m

∣
∣= ∑

h,r

a(n)hr =
m

∑
k=1

λ n
k ∑

h,r

chk crk =
m

∑
k=1

λ n
k

(
m

∑
h=1

chk

)2

. (7.17)

First we will compute the sum

m

∑
h=1

chk = (−1)k

√
2

m+ 1

m

∑
h=1

(−1)h sin(hβk) = (−1)k

√
2

m+ 1
S. (7.18)

The value of S is obtained from the imaginary part of the expression

m

∑
h=0

(−1)h exp(ihβk)

=
1+(−1)mei(m+1)βk

1+ eiβk

=
1+(−1)meikπ

1+ eiβk
=

1+(−1)mcos(kπ)
1+ eiβk

1+(−1)m+k

ei
βk
2 (e−iβk/2 + eiβk/2)

=
e−i

βk
2 (1+(−1)m+k)

2cos
βk

2

,

and the imaginary part of this value is equal to

sin(− βk
2 )(1+(−1)m+k)

2cos βk
2

=−tg
βk

2
1+(−1)m+k

2
= S. (7.19)

Therefore,

m

∑
h=1

chk = (−1)k

√
2

m+ 1
S = (−1)k+1

√
2

m+ 1
tg

βk

2
1+(−1)m+k

2

and substituting the last value into (7.17) we conclude that
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∣∣F 0
n,m

∣∣=
m

∑
k=1

λ n−1
k

(
m

∑
h=1

chk

)2

=
m

∑
k=1

λ n−1
k

2
m+ 1

(1+(−1)m+k)2

4
tg2 βk

2

=
m

∑
k=1

(1− 2cosβk)
n−1 1+(−1)m+k

(m+ 1)
tg2 βk

2
,

which proves the theorem. �

Lemma 2. The sum ∑p
r=1 sin2 nrπ

p+ 1
is equal to 0 if n is a multiple of (p+1), and to

p+ 1
2

otherwise.

Proof. It is clear that, if n is a multiple of (p+ 1) the equality

p

∑
r=1

sin2 nrπ
p+ 1

= 0

is satisfied. Let us suppose that n is not a multiple of (p+ 1), then

p

∑
r=0

sin2 nrπ
p+ 1

=
p

∑
r=0

1
2
(1− cos

2nrπ
p+ 1

) =
p+ 1

2
− 1

2

p

∑
r=0

cos
2nrπ
p+ 1

. (7.20)

The last sum of the above expression is the real part of ∑p
r=0 exp

i2nrπ
p+ 1

, and with the

notation

z = exp
i2nπ
p+ 1


= 1

we have
p

∑
r=0

exp
i2nrπ
p+ 1

=
p

∑
r=0

zr =
1− zp+1

1− z
= 0

and (7.20) gives the desired conclusion, which finishes the proof. �
Theorem 2. The cardinality of F 2

n,m is equal to

∣
∣F 2

n,m

∣
∣=

m

∑
k=1

(1− 2cosβk)
n

where βk is given by (7.13).

Proof. We can express the cardinality of F 2
n,m in the way
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∣
∣F 2

n,m

∣
∣= a(n)11 + a(n)12 +

m−1

∑
r=2

(a(n)r r−1 + a(n)r r + a(n)r r+1)+ a(n)mm−1+ a(n)mm

= a(n+1)
11 +

m−1

∑
r=2

a(n+1)
r r + a(n+1)

mm = Trace of M(n+1) = Trace of Bn

=
m

∑
k=1

(1− 2cosβk)
n 2

m+ 1

m

∑
h=1

sin2(hβk)

and from Lemma 2 it follows

∣
∣F 2

n,m

∣
∣=

m

∑
k=1

(1− 2cosβk)
n, (7.21)

which establishes the formula. �

7.3 The Cardinality of F 1
n,m and F 3

n,m

Let us consider now the sets F 1
n,m and F 3

n,m. The elements of F 1
n,m are the func-

tions A ∈ Fn,m satisfying ΔA(i) ∈ {0,1,−1,m− 1,1−m}, for i = 1,2, . . . ,n− 1,
and F 3

n,m is the subset of F 1
n,m set up by the lattice paths satisfying the additional

condition

ΔA(n) = A(1)−A(n)∈ {0,1,−1,m− 1,1−m},
so the relation F 3

n,m ⊂ F 1
n,m ⊂ Fn,m is satisfied.

Theorem 3. The cardinality of the set F 1
n,m is equal to 3n−1m if m � 3, and to 2n

for m = 2.

Proof. First let us assume m � 3. For every A ∈ F 1
n,m we define the n values

a,x1,x2, . . . ,xn−1 to be

a = A(1), xi =

⎧
⎨

⎩

ΔA(i), if |ΔA(i)| ≤ 1,
−1, if ΔA(i) = m− 1,
1, if ΔA(i) = 1−m,

so
a ∈ {1,2, . . . ,m}

and
xi ∈ {0,−1,1} , i = 1,2, . . . ,n− 1.

There is a bijection between the set of sequences a,x1,x2, . . . ,xn−1 and F 1
n,m, and

clearly the number of different possibilities for the sequences a,x1,x2, . . . ,xn−1 is
equal to m3n−1, which is the desired conclusion.
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Now let m = 2, this part of the proof is similar to the previous one, but we have
to bear in mind that, in this case, it is the same consider an increment equal to 1
than an increment equal to −1. For every A ∈ F 1

n,2, we can define the n values
a,x1,x2, . . . ,xn−1 to be

a = A(1), xi =

{
1, if |ΔA(i)|= 1;
0, if ΔA(i) = 0;

then there is a bijection between the set of sequences a,x1,x2, . . . ,xn−1 and F 1
n,2,

and clearly the number of different possibilities for the sequences a,x1,x2, . . . ,xn−1

is equal to 2n as it was stated, and the proof finishes. �
It is clear that F 3

n,2 = F 1
n,2 and F 3

n,3 = F 1
n,3. Therefore

∣
∣F 3

n,2

∣
∣= 2n and

∣
∣F 3

n,3

∣
∣= 3n.

In the next theorem the cardinality of the rest of the sets F 3
n,m is obtained.

Theorem 4. Let m > 3. The cardinality of the set F 3
n,m is given by

∣
∣F 3

n,m

∣
∣= m

[ n
2 ]

∑
h=0

(
n
2h

)(
2h
h

)

+2m
[ n

m ]

∑
r=1

[ n−rm
2 ]

∑
h=0

(
n

rm+ 2h

)(
rm+ 2h

h

)
. (7.22)

Proof. For every A ∈ F 3
n,m we define the n+ 1 values a,x1,x2, . . . ,xn to be

a = A(1), xi =

⎧
⎨

⎩

ΔA(i), if |ΔA(i)| ≤ 1,
−1, if ΔA(i) = m− 1,
1, if ΔA(i) = 1−m,

clearly the sequence a,x1,x2, . . . ,xn determines the function A, so there is a bijection
between the set of sequences a,x1,x2, . . . ,xn and the set F 3

n,m. But now the values xi

satisfy the following relation

∑xi = rm, −
[ n

m

]
≤ r ≤

[ n
m

]
. (7.23)

The number of functions A ∈ F 3
n,m for which r = 0, clearly is given by

m
[ n

2 ]

∑
h=0

(
n

2h

)(
2h
h

)

and, for every r, 0 < r ≤ [
n
m

]
, the number of A ∈ F 3

n,m for which ∑xi = rm or
∑xi =−rm is equal to
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2m
[ n−rm

2 ]

∑
h=0

(
n

rm+ 2h

)(
rm+ 2h

h

)
. (7.24)

Combining (7.23) and (7.24) we can assert that the cardinality of F 3
n,m is given by

(7.22), which finishes the proof. �
Remark 1. (a) Theorem 4 and its proof are also valid when m = 3, therefore in this

case the value of expression (7.22) is equal to 3n.
(b) Due to the symmetry it is clear that the number of functions belonging to F 1

n,m

for which A(1) = r is equal to the cardinality of F 1
n,m divided by m. In a similar

way, the number of functions belonging to F 3
n,m for which A(1) = r is equal to

the cardinality of F 3
n,m divided by m.

Example 1. In a warlike situation the guerrilla wants to place n mines around the
perimeter of a zone. There is a weak point to penetrate in the ring where the mines
are going to be placed and it will be used by the guerrilla to do the incursion. The
ring is discretized in a grid with n columns and m rows, considering column 1 as
next to column n, and the weak point situated in the midst of them. The grid can be
represented by

L = {1, 2, . . . , n}×{1, 2, . . . ,m} ,
and column i by the set Li = {i}× {1, 2, . . . ,m}. The guerrilla will set a mine in
each column. In L1 he will set the mine at any of its m points, but he moves with
difficulty therefore if one mine is set at point (i, j) in column Li the next mine
has to be placed in column Li+1 at one of the points (i + 1, j − 1), (i + 1, j),
(i+ 1, j + 1). Bearing in mind that column 1 is next to column n, it follows that,
if the first mine was placed in the point (1, j) the last mine has to be placed at
one of the points (n, j − 1), (n, j), (n, j + 1). Furthermore, the perimeter is pro-
tected by the army, which tries to deactivate as many set mines as it can, beginning
by the the first column and ending in column Ln. The payoff to the army is max-
imum if it deactivates all the mines. In the rest of the cases the payoff is equal
to the number of deactivated mines from column L1 to the first column contain-
ing a mine that has not been deactivated, because the risk of an accident in this
column is very big. This situation can be modeled by the two-person zero-sum
game (X ,Y,M) where player I is the army, player II the guerrilla, X = Y = F 2

n,m =
{A ∈Fn,m : �A(i) ∈ {0,1,−1} , i = 1, . . . ,n} and the payoff function

M(A,B) =

{
h if A(i) = B(i) for i = 1,2, . . . ,h, A(h+ 1) 
= B(h+ 1),
kn if A(i) = B(i) for i = 1,2, . . . ,n.

where, k is a constant, k > 1.
Figure 7.2 shows a representation of the strategy

{(1,4),(2,3),(3,2),(4,3),(5,4),(6,3),(7,2),(8,3),(9,4),(10,5),(11,6),

(12,5)(13,4)(14,5)}
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on the lattice L = {1, 2, . . . , 14}× {1, 2, . . . ,8} and on the ring. In this game an
optimal strategy for both players is the uniform distribution over the set of their
pure strategies

Fig. 7.2 Strategy on the lattice and on the ring

α(A) =
1
|X | =

1
|Y | =

1∣
∣F 2

n,m

∣
∣ .

To obtain the value of the game we have to compute

M(A,α) = M(α,B) =
1∣

∣F 2
n,m

∣
∣ ∑

A∈X

M(A,B)

let Xh the subset of X defined by

Xh = {A ∈ X : A(i) = B(i) for i = 1,2, . . . ,h, A(h+ 1) 
= B(h+ 1)}
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then we can write

M(A,α) =
1∣

∣F 2
n,m

∣
∣

(

∑
A∈X1

1+ ∑
A∈X2

2+ . . .+ ∑
A∈Xn−1

(n− 1)+ kn

)

=

(
2 ·3n−2+ 2 ·3n−3 ·2+ 2 ·3n−4 ·3+ . . .+ 2 ·3 · (n− 2)+2(n−1)+ kn

)
∣
∣F 2

n,m

∣
∣

=
2∣∣F 2
n,m

∣∣

(
n−1

∑
h=1

h 3n−h−1

)

+
kn∣∣F 2
n,m

∣∣

= 2
3n−1
∣
∣F 2

n,m

∣
∣

(
n−1

∑
h=1

h 3−h

)

+
kn∣

∣F 2
n,m

∣
∣ = 2

3n−1
∣
∣F 2

n,m

∣
∣

(
3n− 2n− 1

3n−122

)
+

kn∣
∣F 2

n,m

∣
∣

=
3n− 2n(1− k)− 1

2
∣
∣F 2

n,m

∣
∣

and this is the value of the game.

7.4 Further Results

Lattice games were introduced by Ruckle in [5]. These are games on the lattice
where at least one of the players can move only from one point to an adjacent lat-
tice point. This restriction on the movements of the player is realistic because it
expresses that his movements are difficult. Although different results have been ob-
tained for games on the lattice since the book of Ruckle, the work on lattice games
is very scarce, and none of the problems set up there has been totally solved. In this
chapter we obtain the cardinality of the sets of strategies for the players of lattice
games, this is the first of the problems proposed by Ruckle, and we hope, as him,
that it will be of value in attacking such games.
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Chapter 8
Effective Search for a Naval Mine
with Application to Distributed Failure
Detection

Jun Kiniwa, Kensaku Kikuta, and Toshio Hamada*

Abstract We consider a kind of reconnaissance problem which has an application
to distributed failure detection. The problem can be considered as a multistage two-
person zero-sum game. The two-person, player A and player B, consists of a trans-
port ship and a terrorist, respectively, where the ship is equipped with an unmanned
reconnaissance boat. The ship circulates ports again and again and the terrorist may
lay a naval mine on the shipping route. For safety, the ship dispatches the unmanned
reconnaissance boat and removes the risk of a mine. However, it is very rare that
the terrorist lays the mine, while the circulation of the reconnaissance boat is very
costly. So, we introduce a mine-preparing probability, represented by geometric dis-
tribution, preceding the terrorist’s strategy. The ship has to determine when it should
dispatch the boat so that it can maximize its expected payoff. First, we assume that
the mine is laid at each beginning of a stage and investigate two cases, a game con-
tinuation case and a game termination case, after the ship has been broken by a
mine. Next, we assume that the mine may be laid at any timing of a stage and inves-
tigate two methods, dispatching two boats and dispatching one boat, for the game
continuation case. Finally, we state that the problem can also be applied to a failure
detection problem in a distributed system if we regard the ship as a token and the
terrorist as an adversary who causes a failure.
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8.1 Introduction

We consider a reconnaissance problem which has an application to distributed
failure detection. The problem is described as follows. A transport ship circulates
a route containing distinct n ports again and again. A terrorist aims to attack the
ship by a naval mine. The ship can avoid the attack by dispatching an unmanned re-
connaissance boat before starting from one port to another. However, it is costly to
dispatch the boat at every starting time because the ship has to wait until the circu-
lation of the boat. So, the ship uses a mixed strategy which maximizes the expected
payoff in two-person zero-sum game, where the ship is considered as player A and
the terrorist as player B [13].

The topic of this chapter is motivated by a distributed failure detection/repair
problem. In distributed systems, e.g., the Internet, it is difficult to detect/repair a
failure. So, it is useful to consider a self-mending system in particular for a tran-
sient failure, a kind of memory corruption. Self-stabilizing mutual exclusion sys-
tems [2, 3], in which at most one process is allowed to obtain a privilege to some
resource, e.g., a shared printer, tolerate the transient failure. One of the systems uses
a token circulation mechanism [14] and is carefully reinforced with a sub-token,
called a superstabilization [8, 10]. The token and the sub-token in a distributed
system correspond to the transport ship and the reconnaissance boat in our recon-
naissance problem, respectively. In addition, the failure caused by an adversary is
considered as the naval mine laid by a terrorist. The great advantage is that our
problem enables us to omit the detailed implementation of the distributed system
and to extract an essential point. Thus, we interpret the solution of the reconnais-
sance problem as that of the token circulation without proving the correctness of a
protocol.

After circulation of a sub-token,
process i  sends both the tokens.

token

i sub-token

After circulation of a boat, a fleet
of ships proceed to the next port.

ship

i

reconnaissance
boat

a b

Fig. 8.1 Superstabilizing protocol vs. mine reconnaissance

Figure 8.1a illustrates the superstabilizing protocol. The feature of the method
is that the process holding a token always dispatches a sub-token before acquir-
ing a privilege. When the sub-token meets a failure, it is corrected to a legitimate
state. After the circulation of the sub-token, the process holding a token acquires
a privilege. Figure 8.1b illustrates our reconnaissance problem, where the same
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strategies of the ship as those of the token can be discussed. Kiniwa and Kikuta [11]
improved the superstabilizing protocol by taking a mixed strategy into consideration
in two-person zero-sum game. In their chapter, the process holding a token issues
a sub-token with some probability. However, their model is so simple and ignores
empirical probability of failures. It follows that the adversary always aims to bring
about a failure. Thus, an unlikely failure may frequently occur against our intuition.

In this chapter, we incorporate an empirical failure probability into our model,
and adapt our idea to a practical case. We consider that the terrorist cannot make
a decision until the naval mine is prepared, where the mine-preparing probability
is empirical. We interpret an interval between failures as a state that a mine is not
prepared and is followed by a state that a mine has been prepared but not laid yet.
By adjusting the mine-preparing probability, we can use our idea in practice.

Our topic is related to a well-studied problem, called a sequential inspection
game, consisting of an inspector and an inspectee, or customs and a smuggler, re-
spectively [1, 5–7, 9, 12, 15]. It was originally started by Dresher[4] as arms control
and disarmament. That is, the customs patrols in order to stop the smuggler attempt-
ing to ship a cargo of perishable contraband across a strait. The customs has limited
resources, i.e., the number of boats, and can patrol only during k of n nights. The
smuggler ships the cargo of contraband during l of n nights, where l = 1 in its orig-
inal work. When the smuggling coincides with the patrol, the smuggler is captured
with probability q, where originally q = 1. The modeling and the technique of this
chapter is due to the inspection game.

The difference between our problem and the inspection game is as follows. First,
in the inspection game, the inspectee may be captured, while in our problem not.
On the contrary, the inspector in our problem may suffer severe damage. Second,
the inspection game plans the number of the inspectee’s illegal actions in advance,
while our problem does not and the number of mine-laying is very rare. Third, the
inspection game has the upper bound of the number of patrols, while our problem
considers it as a cost.

The rest of this chapter is organized as follows. Section 8.2 states our model.
Section 8.3 includes one stage case which presents our fundamental idea and an idea
of mine-preparing probability. Then, for the iterated circulation of a ship, we have
several interpretations. First, Sect. 8.3.1 considers that player A corresponds to a
fleet of ships and our game continues after a ship suffers damage. Second, Sect. 8.3.2
considers that player A corresponds to only one ship and our game terminates when
the ship suffers damage. Third, Sect. 8.4 changes the assumption adopted in previous
sections and compares two boats case with one boat case. Fourth, Sect.8.5 shows our
application to distributed failure detection. Then, Sect. 8.6 concludes the chapter.
Finally, Appendix refers to our distributed failure detection protocol.

8.2 Model

A fleet of ships transport (or a ship transports) goods/materials on a circular route,
a ring, again and again. Since there is a risk that a terrorist may lay a naval mine
on the route, it is sometimes necessary to take a scout along the route by using
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an unmanned reconnaissance boat. If the boat finds a naval mine, a crew on the
ships can remove it by remote control. On the shipping route, there are n ports
(n > 1),1 where the crew on the ships makes a decision whether or not it dispatches
the reconnaissance boat. Notice that the ships cannot move while the boat circulates
a ring if it is dispatched once.

It is assumed to be very rare that a terrorist lays the naval mine. Therefore, it is too
costly to dispatch the boat every arrival time to each port. So we have two choices,
to dispatch the boat and not to dispatch the boat. The actual decision of the dispatch
is modeled by the mixed strategy in a two-person zero-sum game. An interval while
the transport ships move one port to another is called a stage, which may contain
a circulation of the reconnaissance boat or not. We consider different multistage
games Γ (k), where the maximum number of stages is assumed to be k = m. Let α
be the reward that the reconnaissance boat finds and handles the naval mine, and let
β be the loss that the transport ships suffer damage without dispatching the boat.
Let −n+ 1 be the cost n of circulating the boat plus the reward 1 of moving the
ships to the next port. The ships safely proceed to the next port without circulating
the boat with reward 1. We assume 1 < α < β because the removal of risk does not
make money, while the crash of a ship incurs high cost. Since the crews’ purpose is
to proceed the ships, we do not consider the successful ship moving as a cost but as
a reward.

Furthermore, we make the following assumptions.

1. The mine laid by a terrorist is surely removed by a reconnaissance boat if it
is dispatched. The ship without dispatching a boat surely suffers damage if the
mine is laid.

2. The mine may be laid on the route at each beginning of a stage. So, we assume
that the mine is not laid immediately after the boat has passed.

3. The number of stages m is sufficiently larger than the interval during which
failures occur.

4. Any distance between neighboring ports is almost the same for simplicity. So,
it takes n units time for a boat to circulate the ring.

Notice that the assumption 2 is used only in the games in Sect. 8.3. It is replaced
by another assumption in Sect. 8.4.

8.3 Two-Person Zero-Sum Game

In this section, we first consider a game with m = 1, and then consider two multi-
stage games containing mine preparation. The transport ships, player A, use a mixed
strategy a = (p,1− p) such that he dispatches the reconnaissance boat with prob-
ability p and does not dispatch it with probability 1− p. On the other hand, the
terrorist, player B, uses a mixed strategy b = (q,1− q) such that he lays a naval
mine with probability q and does not lay it with probability 1− q.

1 In Sect. 8.4, we assume n > 2
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A mine No mine
Reconnaissance α 1−n
No reconnaissance −β 1

Table 8.1 Payoff matrix for a stage

Table 8.1 shows the payoff matrix of our game. In the left column, where a ter-
rorist lays a mine, if a ship dispatches a reconnaissance boat, the reward of the ship
is α > 0. Otherwise, the reward of the ship is −β . In the right column, where a
terrorist does not lay a mine, if a ship dispatches a reconnaissance boat, the reward
of the ship is 1− n because it takes n steps for the boat to circulate a ring and then
the ship proceeds to the next port.

Let E(a,Mine) be the expected payoff of player A when player B lays a naval
mine. On the contrary, let E(a,¬Mine) be the expected payoff of player A when
player B does not lay a naval mine.

E(a,Mine) = p ·α +(1− p) · (−β ) = p(α +β )−β
E(a,¬Mine) = p · (1− n)+ (1− p) ·1= 1− pn

Since two straight lines intersect in 0 ≤ p ≤ 1, player A’s optimal strategy a∗ is

a∗ =
(

β + 1
α +β + n

,
α + n− 1
α +β + n

)
.

The value of the game is
α +β (1− n)

α +β + n
. (8.1)

Let E(Recon,b) be the expected payoff of player B when player A dispatches a
reconnaissance boat. On the contrary, let E(¬Recon,b) be the expected payoff of
player B when player A does not dispatch a reconnaissance boat.

E(Recon,b) = (1− q) · (1− n)+ q ·α = q(n+α− 1)− n+ 1

E(¬Recon,b) = (1− q) ·1+ q · (−β)= 1− q(β + 1)

Since two straight lines intersect in 0 ≤ q ≤ 1, player B’s optimal strategy b∗ is

b∗ =
(

n
α +β + n

,
α +β

α +β + n

)
.

Notice that if we use the player A’s optimal strategy as it is, it means that the ad-
versary always aims to bring about a failure. So, an unlikely failure may frequently
occur against our intuition. To avoid it, we consider the empirical probability of a
terrorist from now. Let s be a mine-preparing probability for each stage. We assume
that the terrorist succeeds in preparing the mine by geometric distribution. Then, he
can prepare it with probability
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rk = (1− s)k−1s (1 ≤ k ≤ m)

at the k-th stage. It is assumed that the terrorist has material only to prepare a mine,
therefore the terrorist can prepare a mine on stage k only if he has not been able
to prepare one on the previous stages (1,2, . . . ,k − 1). After preparing the mine,
he makes a decision to lay it for each stage. The following table shows the payoff
matrix where the mine-preparing probability is considered. It is essentially the same
one as Table 8.1 except for the probability and the value, where vk−1 is the value
of the game Γ (k − 1). In Sects. 8.3.1 and 8.3.2, we consider two cases, a game
continuation case and a game termination case, after the ship is broken by a mine.

A mine No mine

Reconnaissance rk(
αn

n+1 − β
n+1 )+ vk−1 1−n+ vk−1

No reconnaissance rk(−β )+ vk−1 1+ vk−1

Table 8.2 Payoff matrix for Γ (k) with mine-preparation

8.3.1 Mine-Preparing Probability: Game Continuation Case

In this section, we consider that a fleet of ships can continue to sail and thus the
game continues if one of them is broken by a mine. Then, the game Γ (m) for m > 1
can be expressed as follows :

Γ (m) =

[
rmα +Γ (m− 1) 1− n+Γ(m− 1)

rm(−β )+Γ (m− 1) 1+Γ (m− 1)

]
,

where Γ (k) (k < m) is the first k stages of the game Γ (m). The game value vm for
the game Γ (m), where v1 = (r1(α +β (1− n)))/(r1(α +β )+ n), can be solved as
follows.

vm = val

[
rmα + vm−1 1− n+ vm−1

rm(−β )+ vm−1 1+ vm−1

]

= vm−1 + val

[
rmα 1− n

rm(−β ) 1

]

= vm−1 +
rm(α +β (1− n))

rm(α +β )+ n

=
m

∑
h=1

rh(α +β (1− n))
rh(α +β )+ n

.
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The optimal strategies of player A and player B for the k-th stage (1 ≤ k ≤ m),
denoted by a∗k and b∗k , are

a∗k =
(

rkβ + 1
rk(α +β )+ n

,
rkα + n− 1

rk(α +β )+ n

)

and

b∗k =
(

n
rk(α +β )+ n

,
rk(α +β )

rk(α +β )+ n

)
,

respectively.
If k is very large or α < β � n holds, we have

a∗k �
(

1
n
,

n− 1
n

)
, b∗k � (1,0).

On the other hand, if n � α < β holds, we have

a∗k �
(

β
α +β

,
α

α +β

)
, b∗k � (0,1).

If n � rkα and β � α hold, we have

a∗k �
(

n+ 1
3n

,
2n− 1

3n

)
, b∗k � (1/3,2/3).

8.3.2 Mine-Preparing Probability: Game Termination Case

In this section, we consider that only one transport ship sails and the game termi-
nates if it is broken by a mine. Then, the game Γ (m) is determined by an auxiliary
game Γ ′(k,m), i.e., the last k stages of the game Γ (m) :

Γ (m) =

[
r1α +Γ ′(m− 1,m) 1− n+Γ ′(m− 1,m)

r1(−β ) 1+Γ ′(m− 1,m)

]

and

Γ ′(k,m) =

[
rm−k+1α +Γ ′(k− 1,m) 1− n+Γ ′(k− 1,m)

rm−k+1(−β ) 1+Γ ′(k− 1,m)

]

for (k = m− 1,m− 2, . . .,2), where Γ ′(1,m) is the game with payoff matrix
[

rmα 1− n
rm(−β ) 1

]
.

If the ship does not dispatch a reconnaissance boat when a naval mine is laid, the
ship is sunk and the game terminates with an expected cost r1(−β ). The value of
the game is represented by
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vm = val

[
r1α + v′m−1,m 1− n+ v′m−1,m

r1(−β ) 1+ v′m−1,m

]

and

v′k,m = val

[
rm−k+1α + v′k−1,m 1− n+ v′k−1,m

rm−k+1(−β ) 1+ v′k−1,m

]

for (k = m− 1,m− 2, . . .,2), where v′k,m is the value of Γ ′(k,m), and

v′1,m = val

[
rmα 1− n

rm(−β ) 1

]
=

rm(α +β (1− n))
rm(α +β )+ n

.

For the game Γ ′(k,m), the expected payoffs of player A’s mixed strategy a′ =
(p′,1− p′) against player B’s pure strategies are

E(a′,Mine) = p′(rm−k+1α + v′k−1,m)+ (1− p′)rm−k+1(−β )
E(a′,¬Mine) = p′(1− n+ v′k−1,m)+ (1− p′)(1+ v′k−1,m). (8.2)

Then, the intersection of them is

p′(rm−k+1α + v′k−1,m)+ (1− p′)rm−k+1(−β ) = p′(1− n+ v′k−1,m)

+ (1− p′)(1+ v′k−1,m)

p′ =
rm−k+1β + v′k−1,m+ 1

rm−k+1(α +β )+ v′k−1,m+ n
= 1− rm−k+1α + n− 1

rm−k+1(α +β )+ v′k−1,m+ n
. (8.3)

Since the value of the game is 1+ v′k−1,m− np′ from (8.2), we have

v′k,m = 1+ v′k−1,m− n+ n · rm−k+1α + n− 1
rm−k+1(α +β )+ v′k−1,m+ n

.

Then, the value of v′k,m can be approximated by

v′k,m � rm−k+1

(
α

n− 1
−β

)
. (8.4)

Since vm = v′m,m, we have

vm � r1

(
α

n− 1
−β

)
.

From (8.3) and (8.4), the probability p′ for the k-th from the last stage is

p′ = 1− rm−k+1 α + n− 1
rm−k+1 gn,s + n

,
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where

gn,s =
α(n− s)

n− 1
+ sβ .

Since the k-th from the last stage corresponds to the (m− k+ 1)-th (from the first)
stage, the player A’s optimal strategy for the k-th stage (1 ≤ k ≤ m) is

a∗k �
(

1− rk α + n− 1
rk gn,s + n

,
rk α + n− 1
rk gn,s + n

)
.

On the other hand, the expected payoffs of player B’s mixed strategy b=(q,1−q)
against player A’s pure strategies are

E(Recon,b) = q(rm−k+1α + v′k−1,m)+ (1− q)(1− n+ v′k−1,m)

E(¬Recon,b) = qrm−k+1(−β )+ (1− q)(1+ v′k−1,m). (8.5)

Since we obtain

q =
n

rm−k+1(α +β )+ v′k−1,m+ n
� n

rm−k+1 gn,s + n

from (8.4) and (8.5), similar to a∗k , the player B’s optimal strategy b∗k = (q,1−q) for
the k-th stage (1 ≤ k ≤ m) is

b∗k �
(

n
rk gn,s + n

, 1− n
rk gn,s + n

)
.

For simplicity, we assume gn,s �α +sβ . Then, the approximation can be derived
as follows. If k is very large or α < β � n holds, we have

a∗k �
(

1
n
,

n− 1
n

)
, b∗k � (1,0).

On the other hand, if n � α < β holds, we have

a∗k �
(

sβ
α + sβ

,
α

α + sβ

)
, b∗k � (0,1).

If n � rkα and β � α hold, we have

a∗k �
(

sn+ 1
(2+ s)n

,
2n− 1
(2+ s)n

)
, b∗k �

(
1

2+ s
,

1+ s
2+ s

)
.
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8.4 Another Assumption

If assumption 2 described in Sect. 8.2 is changed as follows, a new argument is
possible. We call the time interval that a boat/ship moves from one port to another a
slot.

New Assumption 1 The mine may be laid on the route at each beginning of a slot,
where every slot is selected equally likely. �
It means that the mine can be laid between the two ports immediately after the boat
has passed across the ports. In what follows, we compare two boats case with one
boat case for a fleet of ships (i.e., the game continues after the attack in both cases)
and for n > 2 ports.

Notice that it takes n+1 slots, consisting of reconnaissance (n slots) and the move
of ships (1 slot), to proceed to the next stage if the reconnaisance boat is dispatched.
Therefore, the terrorist has n+ 1 chances to lay a mine in such a case.

8.4.1 Two Boats Case

To deal with the new assumption, we consider a new method, that is, the transport
ships dispatch two reconnaissance boats in both clockwise direction and counter-
clockwise direction. Then, the mine laid immediately after a boat has passed can
be found by another boat (see Fig. 8.2). It seems that the method can be replaced
by dispatching one boat in the counterclockwise direction. However, the two boats
method is meaningful in the distributed failure detection because no spurious tokens
are allowed in the global network as well as in front of the true token. Since the two
boats method does not work for n = 2 ports, we assume n > 2 in this section.

After boat 1 has passed, a mine
is laid in front of the ship.

ship

i

boat 1

boat 2

Even the case (b), boat 2 can 
find and remove the mine.

ship

i

boat 2

boat 1

When boat 1 is passing, no mine
is laid in front of the ship.

ship

i

boat 1

boat 2

a b c

Fig. 8.2 Usefulness of two boats for the new assumption

By using this method, we have the following payoff matrix for the game contin-
uation case. Notice that even the two boats method cannot prevent the ships from
suffering damage if the mine is laid after a circulation of them.
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A mine No mine
Reconnaissance rkα + vk−1 1−n+ vk−1

No reconnaissance rk(−β )+ vk−1 1+ vk−1

Table 8.3 Payoff matrix for Γ (k)—two boats case

Table 8.3 differs from Table 8.2 in the left upper part. If the ships dispatch recon-
naissance boats, a stage contains n slots for the circulation of a boat and 1 slot for
the move of ships. Even if a boat missed a mine, it would be found by another boat
except for the interval while 1 slot move of the ships. Thus, the reward of the ships
is αn/(n+1). On the contrary, one of the ships strikes the mine if it is laid after the
boats circulate the ring (and before the ships move). Thus, the loss of the ships is
β/(n+ 1).

Next, the game Γ (m) for m > 1 can be expressed as follows.

Γ (m) =

[
rm(

αn−β
n+1 )+Γ (m− 1) 1− n+Γ(m− 1)

rm(−β )+Γ (m− 1) 1+Γ (m− 1)

]

The game value vm for Γ (m), where v1 = 1−(r1β +1)/(r1(α +β )/(n+1)+1),
can be solved as follows.

vm = val

[
rm(

αn−β
n+1 )+ vm−1 1− n+ vm−1

rm(−β )+ vm−1 1+ vm−1

]

= vm−1 + val

[
rm(

αn−β
n+1 ) 1− n

rm(−β ) 1

]

= vm−1 +

(
1− rmβ + 1

rm(α +β )/(n+ 1)+ 1

)

= m−
m

∑
k=1

rkβ + 1
rk(α +β )/(n+ 1)+ 1

.

Similar to the argument for m = 1, the optimal strategies of player A and player
B for the k-th stage (1 ≤ k ≤ m), denoted by a∗k and b∗k , are

a∗k =
(

(rkβ + 1)(n+ 1)
rk(α +β )n+ n(n+ 1)

,
rk(αn−β )+ n2− 1

rk(α +β )n+ n(n+ 1)

)

and

b∗k =
(

n+ 1
rk(α +β )+ n+ 1

,
rk(α +β )

rk(α +β )+ n+ 1

)
,

respectively.
If k is very large or α < β � n holds, we have

a∗k �
(

1
n
,

n− 1
n

)
, b∗k � (1,0).
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On the other hand, if n � α < β holds, we have

a∗k �
(

β
α +β

,
α

α +β

)
, b∗k � (0,1).

If n � rkα and β � α hold, we have

a∗k �
(

(n+ 1)2

n(3n+ 1)
,
(n− 1)(2n+ 1)

n(3n+ 1)

)
, b∗k �

(
n+ 1

3n+ 1
,

2n
3n+ 1

)
.

8.4.2 One Boat Case

If the ship can dispatch only one boat, the payoff matrix is shown in Table 8.4.

A mine No mine

Reconnaissance rk(
α

n+1 − βn
n+1 )+ vk−1 1−n+ vk−1

No reconnaissance rk(−β )+ vk−1 1+ vk−1

Table 8.4 Payoff matrix for Γ (k)—one boat case

Table 8.4 also differs from Table 8.2 in the left upper part. Similar to the explana-
tion above, if the ships dispatch a reconnaissance boat, a stage contains n+ 1 slots.
Since there is only one boat, it can find a mine only if it is laid at the first slot of the
stage. Thus, the reward of the ships is α/(n+ 1). On the contrary, one of the ships
strikes the mine if it is laid at other slots. Thus, the loss of the ships is β n/(n+ 1).

Next, the game Γ (m) for m > 1 can be expressed as follows.

Γ (m) =

[
rm(

α−β n
n+1 )+Γ (m− 1) 1− n+Γ(m− 1)

rm(−β )+Γ (m− 1) 1+Γ (m− 1)

]

The game value vm for Γ (m), where v1 = 1−n(r1β +1)/(r1(α+β )/(n+1)+n),
can be solved as follows.

vm = val

[
rm(

α−β n
n+1 )+ vm−1 1− n+ vm−1

rm(−β )+ vm−1 1+ vm−1

]

= vm−1 + val

[
rm(

α−β n
n+1 ) 1− n

rm(−β ) 1

]

= vm−1 +

(
1− n(rmβ + 1)

rm(α +β )/(n+ 1)+ n

)

= m−
m

∑
k=1

n(rkβ + 1)
rk(α +β )/(n+ 1)+ n

.
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Similar to the argument for m = 1, the optimal strategies of player A and player
B for the k-th stage (1 ≤ k ≤ m), denoted by a∗k and b∗k , are

a∗k =
(

(rkβ + 1)(n+ 1)
rk(α +β )+ n(n+ 1)

,
rk(α −β n)+ n2− 1
rk(α +β )+ n(n+ 1)

)

and

b∗k =
(

n(n+ 1)
rk(α +β )+ n(n+ 1)

,
rk(α +β )

rk(α +β )+ n(n+ 1)

)
,

respectively.
If k is very large or α < β � n holds, we have

a∗k �
(

1
n
,

n− 1
n

)
, b∗k � (1,0).

On the other hand, if n � α < β holds, we have

a∗k �
(

β
α +β

,
α

α +β

)
, b∗k � (0,1).

If n � rkα and β � α hold, we have

a∗k �
(
(n+ 1)2

n(n+ 3)
,

n− 1
n(n+ 3)

)
, b∗k �

(
n+ 1
n+ 3

,
2

n+ 3

)
.

8.5 Application

We briefly state how our reconnaissance problem can be applied to a self-stabilizing
mutual exclusion, when there is at most one (major) token in a system. The process
holding the (major) token is given a privilege to do some task, called a critical sec-
tion. As shown in Fig. 8.1, our protocol works for ring networks, in which a token,
called a major token, and a sub-token, called a minor token, are used. Our protocol
is the combination of a base state protocol and a superstabilizing protocol [11].

In the base state protocol, we predefine H > n integer states IH = {0,1, . . . ,H −
1}, called bases, such that every correct state of a major token takes in a domain
RH = [0,H) = {x | 0 ≤ x < H}. If some major token has a non-base state, called a
non-base falut, it is reset to a neighboring base state. To avoid a deadlock in which
every major token has a non-base state, process 0 sends a deadlock-breaking token,
called dtoken. When the process 0 receives the dtoken, it resets to some base
state independently because such a situation means the deadlock occurs.

In the superstabilizing protocol, we can also define the correct states of a major
token as IH . In addition, we can recognize a process has a major token if it has a
different state from its neighboring state(s). Notice that there may be other spurious
major tokens even if every process has a base state. In such a case, we cannot restore
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a non-error state by the base state protocol but by the superstabilizing protocol. That
is, when the minor token encounters the spurious major token, the erroneous state
can be corrected. Since it is very costly to send the minor token at every moving
the major token, we considered a mixed strategy of sending a minor token (ST, for
short) with probability p and not sending it (NS, for short) with probability 1− p.

Here is our protocol. There are two descriptions for i = 0 and i 
= 0, but we omit
the one for i = 0.

Our protocol for process i 
= 0

if (i has a non-base fault) then
reset to a neighboring base (if any);

send dtoken if i receives it

else if (i has both major and minor tokens) then
if (i has just received the major token) then
choose ST with probability p and NS with probability 1− p

if (i has been waiting for the minor token) or (i chooses NS) then
perform critical section ;

send major and minor tokens to i+1

else if (i has a spurious major token) and (i has a minor token) then
eliminate spurious major token

fi
send a minor token to i+1 (if any)

8.6 Conclusion

In this chapter we considered an effective search strategy for a naval mine by using
a two-person zero-sum game. The problem is motivated by distributed failure detec-
tion/repair as shown in the appendix. The advantage of our topic is to simplify the
original problem and to show its wide application.

We can find the feature of a method in some typical cases. For example, suppose
that n � rkα and β � α hold. First, the reconnaissance probabilities in the optimal
strategies are (n+ 1)/(3n) for the game continuation case and 1/n for the game
termination case. This means the probability for the termination case is smaller than
that for the continuation case for n > 2. Next, the reconnaissance probabilities in the
optimal strategies are (n+ 1)2/(3n2 + n) for the two boats case and (n+ 1)2/(n2 +
3n) for the one boat case, where a detailed timing assumption is used. This means
the probability for the two boats case is smaller than that for the one boat case.

Our future work includes another application of reconnaissance problem to dis-
tributed protocols.
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Chapter 9
The Value of the Two Cable Ambush Game

Vic Baston and Ian Woodward

Abstract This chapter finds the value of Ruckle’s much studied two-person zero-
sum ambush game which involves an Infiltrator attempting to traverse a channel
undetected when the channel is protected by two lengths of electronic cable. The
value is obtained by exploiting the structure of a Defender optimal strategy without
explicitly constructing an optimal strategy for either player. It is expressed as the
minimum of a finite number of simple expressions, each of which is easily calcu-
lated from the values of the cable lengths. This result identifies ranges of values for
the lengths of the two cables over which the games not only have the same value but
also have Defender optimal strategies with the same basic structure.

9.1 Introduction

In [10, 11] Ruckle introduced a number of search and ambush games. Some of the
games he described have generated a considerable amount of interest and one game
in particular has been the subject of a number of papers. It can be described as
follows.

Infiltrator wishes to travel down a channel without being detected by Defender
who has two electronic cables of lengths a and b which can be placed in the channel.
Infiltrator knows the lengths of the cables but has no means of determining where
they have been laid and he will be detected if he crosses them. As it is natural for
Defender to place the cables across the channel where its width is minimal, the prob-
lem can be formulated mathematically by letting Infiltrator choose a point x in the
interval [0,1] and Defender choose closed intervals [y,y+ a] and [z,z+ b] in [0,1].
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The situation can then be considered as a two person zero-sum game Γ (a,b) by
choosing an appropriate payoff function to Infiltrator; the one favoured is 1 if Infil-
trator’s point is not in either of the intervals chosen by Defender and 0 otherwise.
More formally Γ (a,b) can be regarded as the two person zero-sum game with strat-
egy spaces [0,1] and [0,1]× [0,1] with payoff function f to Infiltrator given by

f (x,(y,z)) =

{
0 if x ∈ [y,y+ a]∪ [z,z+ b],

1 otherwise.

This formulation makes use of the fact that the position of an interval is determined
by describing where its left-hand endpoint is located.

Ruckle [11] found a complete solution for Γ (a,b) when a = b and also for some
particular numerical values of a and b. Baston and Bostock [2] solved the game for
the case b≥ 1/2 and Lee [8] extended their results to cover all cases for which a≤ b
and 1/3 ≤ b < 1/2 as well as producing some bounds for other cases. Further, less
easy to describe, results have been obtained by Zoroa, Zoroa and Fernández-Sáez
[15]. On a slightly different tack, Garnaev [6] considered a discrete version of the
game in which play takes place over an integer interval [1,n]; further details of this
and similar games can be found in Garnaev [7].

In the chapter mentioned above, the approach was to nominate explicit strate-
gies for the players and show that they were optimal. However Woodward [13, 14]
has adopted a different approach by investigating the structure of the more gen-
eral continuous game in which Defender has n barriers. He demonstrated that it is
equivalent to a finite game in the sense that the games have the same value and
that optimal strategies in the finite game remain optimal when transferred to the
continuous game. This enabled him to use linear programming for the continuous
game and, in [14], he solved the three barrier game for lengths a1 ≥ a2 ≥ a3 ≥ 1/4
and some additional cases where a3 ≥ 1/5. Woodward has also shown that his fi-
nite game is equivalent to Garnaev’s discrete game generalized to n barriers. On a
slightly different tack, Baston and Kikuta have considered two variations of the n
barrier continuous game. In [3] Infiltrator may send more than one agent down the
channel and the players have limited information available to them whereas, in [4],
Infiltrator has a positive width and a proportion of the width needs to be detected for
a positive identification.

In this paper we develop the approach used by Woodward [14], concentrating on
the structure of the game Γ (a,b) and, in particular, on the structure of its optimal
Defender strategies in the finite game which Woodward showed is equivalent to
Γ (a,b). This enables us to find the value of Γ (a,b) for all values of a and b. The
result was first obtained by the second author in his Ph.D. thesis [14] but the methods
of proof here are radically different and much shorter than those in the thesis. An
interesting aspect of the proofs is that, unlike previous work on the game, we do
not at any stage nominate explicit strategies for the players and show that they are
optimal. The value of Γ (a,b) is given in terms of the minimum of a finite number
of terms; loosely speaking the number of terms increase as the length of the longer
interval decreases. Applying our result to the case a ≤ b and 1/3 ≤ b ≤ 1/2, we
provide a much simpler expression for the value of Γ (a,b) than that of Lee [8].
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The structure is as follows. In Sect. 9.2 we introduce the notation we require
and give a summary of Woodward’s results for the two barrier game Γ (a,b). After
analysising an illustrative example in Sect. 9.3, these results are used in Sect. 9.4
to obtain a lower bound for the value of Γ (a,b). This is achieved by proving that
Defender has an optimal strategy of a particular form and then showing by linear
programming that a strategy of this form cannot restrict Infiltrator to less than a
certain quantity. A second example is introduced in Sect. 9.5 to illustrate the ideas
used in Sect. 9.6 to demonstrate that a Defender strategy can be constructed which
achieves the lower bound obtained in Sect. 9.4. In the final section we comment on
and give some consequences of our result.

9.2 Notation and Woodward’s Results

We will always assume that a and b are positive real numbers with a≤ b< 1,Γ (a,b)
is the game defined in the Introduction and v(a,b) is the value of Γ (a,b). Apart from
the final section we will also assume that b < 1/2; as we shall see, our expression
for the value of Γ (a,b) applies for b < 1/2 but there are some cases with b ≥ 1/2
for which it does not. As Baston and Bostock [2] have completely solved the case
b ≥ 1/2, this exception is not a problem, just something of a curiosity.

As mentioned previously, Woodward [13] has shown that Γ (a,b) is equivalent
to a finite game ΓF(a,b) which is similar to Γ (a,b) but one in which the strategy
spaces of the players are finite subsets of [0,1). In ΓF(a,b) Defender’s strategy space
is Z×Z where

Z = {μb+ρa∈ [0,1) : μ and ρ non-negative integers}

so that (w1,w2) ∈ Z ×Z represents the strategy that places the left-hand endpoints
of the intervals with lengths a and b at the points w1 and w2. This result is crucial to
the proof of our theorem in Sect. 9.4 but, for technical reasons, we take the Defender
strategy space as Z∗ ×Z∗ where Z∗ = Z∪{1}. Let

z0 = 0,z1 = a,z2, . . . ,z|Z|−1,z|Z| = 1 (9.1)

be the elements of Z∗ in increasing order. We do not need to consider the strategy
space for Infiltrator in ΓF(a,b) in detail but, for the information of the reader, it
comprises of a set of points obtained by taking, for each z ∈ Z, a point just to the
right of z, the distance past z being larger the farther z is to the right of the interval.

In Sect. 9.6 a Defender strategy in ΓF(a,b) will be defined using a number of
coverings of [0,1] with intervals of lengths a and b and it is reasonable to expect
that, for an optimal strategy, these coverings will be minimal in some sense. This is
the motivation for the following notation.

Given a and b, define λ�1/b� = 0, where �1/b� denotes the least integer greater
than or equal to 1/b, and, for i = 0,1, . . . ,�1/b�− 1, λi by the integer such that
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1− ib
a

≤ λi <
1− ib

a
+ 1. (9.2)

Thus a covering of [0,1] having precisely i intervals of length b must have at least
λi intervals of length a.

Since our (mixed) Defender strategy in ΓF(a,b) will involve the same “number”
of intervals of length a as of length b, the associated coverings will be a balance of
two types;

(i) Those that have more intervals of length b than intervals of length a
and

(ii) Those that have at least as many intervals of length a as those of length b.

As a consequence the sets Λ+ and Λ− defined by

Λ+ = Λ+(a,b) = {i : i > λi} and Λ− = Λ−(a,b) = {i : i ≤ λi} (9.3)

will play a prominent role and feature in our expression for the game value.

9.3 An Illustrative Example

In the next section we prove a theorem that gives a lower bound for the value of our
game. Its proof takes an arbitrary optimal strategy for Defender and shows that it
must have a certain structure. The arguments to do this are somewhat technical so,
in this section, we provide an example which illustrates them.

0
20

5
20

7
20

8
20 20

10 12 13 15
20 20 2020

20

Fig. 9.1 An optimal Defender strategy when a = 5/20 and b = 8/20



9 The Value of the Two Cable Ambush Game 139

Consider the case when a = 5/20 and b = 8/20. Its value is 3/8 (see [8]) so it
is easy to check that an optimal strategy for Defender is given in Fig. 9.1 in which
each (horizontal) line of rectangles represents a pure Defender strategy played with
probability 1/8. Notice that lines 3 and 4 represent the same strategy as do lines 5
and 6. Most vertical lines intersect five rectangles although some intersect more; in
particular vertical lines from points between 7/20 and 8/20 meet seven rectangles
so we could move the rectangles of length 5/20 in rows 5 and 6 which start at 7/20
to the right so that they start at 8/20 without affecting optimality. Doing this means
that they overlap the rectangles of length 8/20 on the same line; with regard to the
proof of the theorem, it is undesirable for rectangles on the same line to intersect
except possibly at a point. Thus the rectangles of length 8/20 in rows 5 and 6 are
moved to the right so that they start at 13/20. From a strictly pedantic standpoint this
is not permissible as they end beyond 1 but this is not a problem because we are at
an interim stage and, when the final stage is reached, they can be moved to the left
so that the intervals lie in [0,1]. Having moved the rectangles on lines 5 and 6, we
see that the vertical lines between 12/20 and 13/20 still intersect seven rectangles so
we perform a similar process to the above on lines 7 and 8 to arrive at the position
in Fig. 9.2. in which every vertical line between 0 and 1 not only intersects precisely
five rectangles but also precisely one rectangle of each shading. Thus rectangles
with the same shading cover the interval [0,1].
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Fig. 9.2 The modified Defender strategy when a = 5/20 and b = 8/20

Notice that the rectangles with no shading is a minimal cover of [0,1] by rectan-
gles of length 5/20. The other rectangles with a particular shading all comprise two
rectangles of length 8/20 and one of length 5/20 and so provide minimal covers of
[0,1] when precisely two rectangles of length 8/20 can be used; although these cov-
ers are different, this is not significant in the analysis and they will all be regarded
as the same type, say C(1,2), where 1 and 2 represent the number of rectangles of
length a and b respectively in the cover.
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The proof of Theorem 1 shows that this process can be applied to every game
Γ (a,b) demonstrating that any optimal Defender strategy in Γ (a,b) gives rise to
two types of minimal cover of [0,1], one, C(λ j+ , j+), with a j+ ∈Λ+ and the other,
C(λ j− , j−), with a j− ∈ Λ− where Λ+ and Λ− are given by (9.3) and the λ s by
(9.2). The number of each type of cover that arises is easy to calculate because,
in the optimal strategy, each pure strategy contains precisely one rectangle of each
length. Hence the number of pure strategies equals the number of rectangles of
length a which equals the number of length b. If there are x of type C(λ j+ , j+) and
y of type C(λ j− , j−), the number of rectangles of length a is xλ j+ + yλ j− while the
number of rectangles of length b is x j+ + y j−. Equating them gives x( j+−λ j+) =
y(λ j− − j−); in practice we can always take x = λ j− − j− and y = j+−λ j+. Thus
the number of pure strategies is j+λ j− − j−λ j+ . Furthermore the number of covers
is x+ y = λ j− − j−+ j+−λ j+ so every vertical line meets at least this number of
rectangles. Thus any choice of a point in [0,1] by Infiltrator will also intersect at
least this number of pure strategies. It follows that Defender can restrict Infiltrator
to at most

H( j+, j−) = 1− λ j− − j−+ j+−λ j+

j+λ j− − j−λ j+
.

In our example Λ+ = {2,3}, Λ− = {0,1}. so λ0 = 4, λ1 = 3, λ2 = 1, λ3 = 0.
Theorem 1 says that, without the knowledge of an optimal strategy, Defender can
restrict Infiltrator to

min{H(2,0),H(2,1),H(3,0),H(3,1)}.

Straightforward calculations then show that the minimum is H(2,0) = 3/8 and that
it is unique.

9.4 A Lower Bound on the Value of the Game

In this section we show that an optimal Defender strategy gives rise to a set of
coverings of [0,1] by intervals of lengths a and b. The value of the game can then
be expressed in terms of the characteristics of these coverings with the consequence
that a simple linear program provides a lower bound for the value.

For i ∈ Λ+, j ∈ Λ−, where Λ+ and Λ− are defined by (9.3), let

G(i, j) = (i−λi+λ j − j)/(iλ j − jλi) (9.4)

and

G = max{G(i, j) : i ∈ Λ+, j ∈ Λ−}. (9.5)

Theorem 1. The value of Γ (a,b) is bounded below by 1−G where G is given by
(9.5).
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Proof. From Lemmas 1 and 2 and Theorem 3 in [13], Defender and Infiltrator have
optimal strategies contained in finite strategy spaces which are subsets of the strat-
egy spaces of Γ (a,b). As stated in Sect. 9.2 we need only be specific about the
Defender strategy space which, for technical reasons, we take to be Z∗ ×Z∗ where
Z∗ = Z∪{1} and Z is given by (9.1). The only feature of the finite Infiltrator strategy
space that is relevant here is that it can be taken so that it is contained in [0,1). As
the payoffs in the finite game are rational, a theorem of Weyl (see [12]) ensures that
the game value is rational and that each player has an optimal strategy in which the
probability of playing any pure strategy is also rational. Hence we may make the
following assumptions.

Assumption 1 There is a Defender optimal strategy S∗0 made up of k (not necessar-
ily distinct) pure strategies in Z∗ ×Z∗ each played with probability 1/k.

Assumption 2 If the intervals in one of the pure strategies in S∗0 intersect within
[0,1], then they do so only at a point of Z∗. For instance, if a pure strategy
places the two intervals [w1,w1 + a] and [w2,w2 + b] such that w1 < w2 and
w1 + a ∈ (w2,w2 + b) then it can be replaced by the strategy placing the intervals
at [w1,w1 + a] and [w1 + a,w1 + a+ b] because every Infiltrator strategy which is
intercepted by the former pair of intervals is intercepted by the latter pair.

Assumption 3 In the set of all strategies satisfying Assumptions 1 and 2 S∗0 is one
with a maximal number of pure strategies having the interval of length b preceding
the interval of length a.

Because there are precisely k Defender strategies, it is clear that the value of the
game v(a,b) must take the form (k−m)/k for some positive integer m. For each
i = 1, . . . , |Z| Infiltrator can choose a point of (zi−1,zi) so there must be at least m of
the k members of S∗0 which contain (zi−1,zi).

Note also that the intervals in the pure strategies of S∗0 all start at a point of Z∗
and thus terminate at a point in Z∗ ∪ (1,1+ b].

CLAIM 1: An optimal strategy S∗ can be obtained from S∗0 using an inductive
argument with the property that, for i = 1, . . . , |Z|, S∗ has precisely m pure
strategies having intervals which contain (zi−1,zi).

The inductive hypothesis is stated as follows. Suppose, for some j satisfying
0 ≤ j < |Z|, S∗j is an optimal Defender strategy which selects at random a member
from a multiset Kj of k pure strategies in Z∗ ×Z∗ and which satisfies the following
conditions:

(α) the intervals in a member of Kj intersect in [0,1] (if at all) only at a point of Z∗,
(β ) for each i = 1, . . . , |Z|, there are at least m members of Kj which have intervals contain-
ing (zi−1, zi),

(γ) for each i= 1, . . . , j there are precisely m members of Kj which have intervals containing
(zi−1, zi).
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We construct a set S∗j+1 from S∗j which has the same properties as S∗j .
If there are precisely m members of Kj containing (z j,z j+1), put Kj+1 = Kj and
define S∗j+1 = S∗j . Clearly S∗j+1 satisfies the inductive conditions.

If there are m j > m members of Kj containing (z j ,z j+1), then, because there are
precisely m members of Kj containing (z j−1,z j), there are at least m j −m members
of Kj which have intervals starting at z j . We can therefore modify precisely m j −m
of them by moving the interval starting at z j so that it starts at z j+1. If, in a modified
pure strategy, the interval I which has been moved to start at z j+1 has interior points
in common with the other interval J, we further modify the strategy by moving J
to the right until it starts at w, where w is the termination point t of I if t < 1 and 1
otherwise; note that w is a point of Z∗ by the definitions of Z and Z∗. We now define
Kj+1 as the set of the modified strategies together with the unmodified strategies of
Kj. Taking S j+1 to be the strategy which chooses a member of Kj+1 at random it is
easy to see that S j+1 satisfies the inductive conditions.

Clearly S∗0 satisfies the above conditions on S j with (γ) being satisfied vacuously.
Thus, by induction we have established Claim 1.

CLAIM 2: S∗ is a strategy in Z×Z.

Suppose K|Z| has a pure strategy W ∗
r which has an interval Xr of length x starting

at the point 1 and let Yr denote the other interval in W ∗
r .

If Yr also starts at 1, the intervals of W ∗
r do not contain any points in Infiltrator’s

finite strategy space so the strategy given by randomly choosing a member of K|Z| \
{W ∗

r } would give a value strictly less than (k−m)/k which is a contradiction.
We can therefore assume that Yr covers some interval [y1,y2] where y1 ∈ Z. Let

x(1) and x(2) be the number of closed intervals of length x needed to cover the inter-
vals [0,y1] and [y2,1] respectively. Let K be the multiset comprising of x(1)+x(2)−1
copies of K|Z| together with an extra W ∗

r , then K contains x(1) + x(2) copies of W ∗
r .

From these copies of W ∗
r , define x(1) + x(2) pure strategies in Z×Z by repositioning

the x(1) + x(2) intervals Xr so that they cover [0,y1] and [y2,1] but do not have y1 or
y2 as an interior point and let K∗ denote the multiset obtained from K by substituting
these strategies for the x(1)+x(2) copies of W ∗

r . The Defender strategy which selects
a member of K∗ at random restricts Infiltrator to at most

1− m(x(1) + x(2)− 1)+ 1

k(x(1) + x(2)− 1)+ 1
< 1−mk = v(a,b)

which is a contradiction. Hence S∗ is a strategy in Z × Z. We have established
Claim 2.

Let T denote the multiset of intervals in the members of K|Z|. By the construction
of S∗, if there are j members of T which terminate at zi > 0, then there are j members
of T which start at zi. We can therefore obtain a “chain” of intervals by selecting a
sequence of intervals I0, I1, . . . , Ir such that I0 starts at z0 = 0, Ii starts at the point
where Ii−1 terminates (i = 1, . . . ,r) and Ir contains the point 1 but starts before it.
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Deleting the intervals of this chain from T, we can form a second chain and so on
until we obtain m chains in all.

CLAIM 3: A chain which has precisely i intervals of length b where 0 ≤ i ≤
�1/b� has exactly λi intervals of length a where λi satisfies (9.2).

Suppose there is a chain I1, I2, . . . , Ir with precisely i intervals of length b for
which the assertion is false then, using the definition of λi in (9.2), there must be at
least λi + 1 ≥ 1 intervals of length a in the chain and the termination point w of Ir

satisfies w ≥ 1+ a. Because the interval Ir starts before the point 1, Ir must be an
interval of length b. Let s = max{ j : |I j|= a} where |I| denotes the length of I, then
s < r. Let Ts+1, . . . ,Tr denote the pure strategies containing Is+1, . . . , Ir respectively;
for j = s+ 1, . . . ,r let T−

j denote the pure strategy obtained from Tj by moving I j a
distance a to the left.

The analysis now divides into two parts (I) and (II).

(I) T−
j has overlapping intervals.

If there is a T−
j which has overlapping intervals, let T−

g denote the one for which
j is maximal, then the strategy S− obtained from S∗ by replacing Tj with T−

j for
j ≥ g is clearly still optimal. Note that, in Tg, the interval of length a precedes the
interval of length b because |Ig| = b. The intervals of T−

g overlap so we can take a
pure strategy T−∗

g whose intervals do not overlap and cover the points covered by
the intervals of T−

g and in which the interval of length b precedes the interval of
length a. Replacing T−

g by T−∗
g in S− now gives rise to an optimal strategy and this

optimal strategy has more pure strategies having the interval of length b preceding
the interval of length a than S∗. However the construction of S∗ ensures that S∗
and S∗0 have the same number of pure strategies having the intervals of length b
preceding the interval of length a so we have a contradiction to Assumption 3 at the
beginning of the proof.

(II) No T−
j has overlapping intervals

If no T−
j has overlapping intervals, replacing Tj by T−

j for j = s+ 1, . . . ,r in S∗
and moving the interval Is so that it starts at the point 1 would still be an optimal
strategy and the argument above that proves S∗ is a strategy in Z×Z shows that this
cannot be the case. Thus we have established the claim, a chain which has precisely
i intervals of length b where 0≤ i≤ �1/b� has exactly λi intervals of length a where
λi satisfies (9.2).

For each integer i = 0,1, . . . ,�1/b�, there is a non-negative integer βi of chains that
have precisely i intervals of length b and hence, by what we have just proved, each
of these chains must have precisely λi intervals of length a. The chains have a total

of ∑�1/b�
i=0 iβi intervals of length b and ∑�1/b�

i=0 λiβi intervals of length a. Since no
member of K|Z| has an interval starting at 1 or more,
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�1/b�
∑
i=0

iβi =
�1/b�
∑
i=0

λiβi = k and
�1/b�
∑
i=0

βi = m

so

v(a,b) = 1− (
�1/b�
∑
i=0

βi/
�1/b�
∑
i=0

iβi).

Thus, putting g j = (β j/∑�1/b�
i=0 iβi), a lower bound for v(a,b) is 1−H where

H = max
�1/b�
∑
j=0

g j

subject to

�1/b�
∑
j=0

λ jg j =
�1/b�
∑
j=0

jg j = 1, and g j ≥ 0 ( j = 0,1, . . . ,�1/b�).

This is a linear program with dual

minx+ y

subject to

λix+ iy ≥ 1, x, y unrestricted (i = 0,1, . . . ,�1/b�).
Let s ∈ Λ+ and q ∈Λ− be such that G(s,q) = G, where G(i, j) and G are given

by (9.4) and (9.5) respectively. It is routine to check that, for i,∈ Λ−

0 ≤ G(s,q)−G(s, i) =
(s−λs)(i(λq −λs)+λi(s− q)− (sλq− qλs))

(sλq− qλs)(sλi − iλs)

and that, for i ∈Λ+,

0 ≤ G(s,q)−G(i,q) =
(λq − q)(i(λq−λs)+λi(s− q)− (sλq− qλs))

(sλq − qλs)(sλi − iλs)
.

It is now straightforward to verify by the duality theorem that H = G(s,q) by
taking gq = G(s,q)−gs = (s−λs)/(sλq−qλs), gi = 0 otherwise and x = G(s,q)−
y = (s− q)/(sλq− qλs). �

9.5 A Second Illustrative Example

In the previous section we showed that an optimal Defender strategy gives rise
to a number of chains of intervals and used this fact to obtain a lower bound for
v(a,b). However the type of chains and the number of each type that give this lower
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bound can be determined from the values of the lengths a and b without knowing
the optimal Defender strategy. Thus it is natural to ask whether a knowledge of these
chains enables us to construct an optimal Defender strategy. In the next section we
will demonstrate that this is always possible when b ≤ 1/2 but, as in the case of
Theorem 1, the justification is somewhat technical so we first analyse a particular
example.

Consider the case when a = 6/21 and b = 7/21, then λ0 = 4,λ1 = 3,λ2 = 2,
λ3 = 0 so that Λ+ = {3}, Λ− = {0,1,2}. Routine calculations give [see (9.5)]

G = max{G(λ j+ ,λ j−) : λ j+ ∈ Λ+, λ j− ∈Λ−}= G(3,0) = 7/12

giving a lower bound for the game of 5/12 by Theorem 1. Hence, to find a Defender
optimal strategy, we are led to consider two chains, one, C(0,3), which has precisely
three intervals of length b and none of length a and the other, C(4,0), with no in-
tervals of length b and precisely four intervals of length a. To be contained in [0,1],
this second chain would have to contain overlapping intervals so we can reduce
the value of a to 1/4 (which we do) and still have a cover of [0,1]. To ensure that
the number of intervals of length b equals the number of intervals of length a, we
need four C(0,3) chains and three C(4,0) chains. Represent the intervals in the four
C(0,3) chains by Bi( j) where, for i = 1,2,3 and j = 1, . . . ,4, Bi( j) = [(i−1)b, ib] is
in the j-th C(0,3) chain and the intervals in the three C(4,0) chains by Ai( j) where,
for i = 1, . . . ,4 and j = 1,2,3, Ai( j) = [(i− 1)a, ia] is in the j-th C(4,0) chain. We
want to construct 12 pure Defender strategies from these intervals with each strategy
containing an interval of length a and an interval of length b which intersect in at
most one point.

For each Bi( j) construct the set Bi( j) of intervals of length a which have at most
one point in common with it so that, for j = 1,2,3,

B1( j) = {Ai(k) : i = 1,2,3, k = 3,4}, B2( j) = {Ai(k) : i = 1,2,3, k = 1,4}

and

B3( j) = {Ai(k) : i = 1,2,3, k = 1,2}.
Provided we can take four members from each of these sets in such a way

that each one of the Ai(k), i = 1, . . . ,4, k = 1,2,3 is chosen, we will have 12
Defender pure strategies. One possibility is shown in Fig. 9.3; clearly an optimal
Defender strategy for the original problem in which a = 6/21 and b = 7/21 can
be obtained by increasing the lengths of the shorter intervals appropriately. No-
tice that Λ+ and Λ− remain the same for all a ∈ [1/4,1/3) when b = 1/3 so
we have effectively found Defender optimal strategies for all these values. Fur-
thermore, if a = (1− 3ε)/3 where ε > 0 is very small, by appropriate lengthen-
ing of the shorter intervals in Fig. 9.3 all vertical lines except those at 0, 1 and
those just either side of 1/3 and 2/3 can be made to intersect more than seven
intervals. Thus it is reasonable to expect Infiltrator to choose points from the set
{0,(1− 2ε)/3,(1+ ε)/3,(2− ε)/3,(2+ 2ε)/3,1} so that an interval of length 1/3
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Fig. 9.3 A Defender optimal strategy when a = 6/24 and b = 8/24

or (1− 3ε)/3 can contain at most two of these points; in addition, if an interval of
length (1− 3ε)/3 contains two of them, the two points must be either (1− 2ε)/3
and (1+ ε)/3 or (2− ε)/3 and (2+ 2ε)/3. Using symmetry and a little intuition,
it is not too difficult to deduce that an optimal Infiltrator strategy is given by play-
ing the points 0,(1− 2ε)/3,(1+ ε)/3,(2− ε)/3,(2+ 2ε)/3,1 with probabilities
10/36,3/36,5/36,5/36,3/36,10/36 respectively.

9.6 The Value of the Game

In Sect. 9.4 we showed that an optimal Defender strategy gives rise to a number
of chains of intervals and used this fact to obtain a lower bound for v(a,b). The
lower bound involved only two non-negative integers, s and q, which satisfy s ∈
Λ+, q ∈ Λ− and G(s,q) = G. This suggests that, if the lower bound is attained,
an optimal Defender strategy might be constructible from a number, xs, of chains
having precisely s intervals of length b and a number, xq, of chains having precisely
q intervals of length b. The total number of intervals of length b in these chains is
sxs + qxq whereas the total number of intervals of length a is λsxs +λqxq. From the
proof of Theorem 1, we would expect these two quantities to be equal which implies
xs =α(λq−q) and xq =α(s−λs) for some positive integer α. For most cases α = 1
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would be sufficient for our purposes but, to make full use of symmetry, we will take
α = 2. We will be able to restrict attention to two particular types of chain, one in
which all the intervals of length b precede all the intervals of length a and the other
in which all the intervals of length a precede all the intervals of length b.

As the number of intervals of length b equals the number of intervals of length
a, there are (1− 1) correspondences between them. Each correspondence f can be
used to define a Defender strategy S( f ) by choosing one of the intervals of length
b at random together with the interval of length a corresponding to it. We shall see
in the proof of the next theorem that, by setting up an appropriate correspondence
f , S( f ) restricts Infiltrator to at most 1−G(s,q) where G(s,q) is given by (9.4). To
prove the existence of an appropriate correspondence, we need Hall’s theorem ([1]
or see [5] p. 89) on systems of distinct representatives.

A system of distinct representatives of not necessarily distinct subsets C1,C2,
. . . ,Cn of a set X is an n-tuple (c1,c2, . . . ,cn) such that ci ∈ Ci for i = 1, . . . ,n and
ci 
= c j if i 
= j.

For a subset J ⊆ {1,2, . . . ,n}, define C(J) = ∪ j∈JCj where C( /0) = /0.

Theorem 2 (Hall’s Theorem). The family C1,C2, . . . ,Cn has a system of distinct
representatives if and only if |C(J)| ≥ |J| for all subsets J of {1,2, . . . ,n}.

For positive integers i and j let A→
i ( j) = [(i− 1)a, ia], B→

i ( j) = [(i− 1)b, ib],
B←

i ( j) = [1− ib,1− (i− 1)b] and A←
i ( j) = [1− ia,1− (i− 1)a]. Although B→

i ( j1)
and B→

i ( j2) are equal as sets, we will want to look on them as different entities when
j1 
= j2. Similar remarks apply to the other entities. To avoid unwieldy notation we
effectively treat these entities as multisets and adopt the following convention.

Convention. For X ,Y ∈ {B→,A←,B←,A→}, we consider Xi1( j1) = Yi2( j2) if and
only if X = Y, i1 = i2 and j1 = j2.

If Defender can restrict Infiltrator’s payoff to at most v with intervals of lengths b
and a, he can clearly restrict Infiltrator’s payoff to at most v with intervals of lengths
b′ and a′ where b′ ≥ b and a′ ≥ a. We will use this fact for some particular cases in
the proof of the next theorem which gives an upper bound for v(a,b) in terms of an
s ∈Λ+(a,b) and a q ∈ Λ−(a,b). These cases use the following remarks.

Remark 1. When λs = 0 and qb+ λqa > 1, we can decrease the value of a to a∗
where qb+ λqa∗ = 1 and just prove the theorem for the case when λs = 0 and
qb+λqa = 1. Furthermore, if we also have q = 0, we can decrease b to b∗ where
sb∗ = 1 and just prove the theorem for b∗ = 1/s and a = 1/λq.

Remark 2. When q = 0 and sb + λsa > 1 where λs > 0, we can decrease b to
b− = max{b1,b2} where sb1 +λsa = 1 and b2 = a; if b− = b2, we can then further
decrease the values of b− and a together until they equal b∗ where sb∗+λsb∗ = 1
(note that (s+λs−1)a≤ sb+(λs−1)a < 1 ≤ λ0a so s+λs ≤ λ0 giving λ0b∗ ≥ 1).
Hence when q = 0 and λs > 0 we need only prove the theorem for the case when
q = 0 and sb+λsa = 1.
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Although the technical details are somewhat involved, the basic idea in the proof
of the next theorem is quite simple. Two sets of intervals X and Y are defined with
all the members of X having length b and all the members of Y having length a.
For each interval J in X the set of all those sets in Y which are disjoint from J is
denoted by BJ . It is shown that BJ has a set of distinct representatives so that the
representative of BJ together with J can be interpreted as a Defender pure strategy.
The strategy which chooses one of these pure strategies at random enables the result
to be established.

Theorem 3. Let 2b < 1, s ∈ Λ+(a,b) and q ∈ Λ−(a,b), then Defender can restrict
Infiltrator to at most 1−G(s,q) where G(s,q) is given by (9.4).

Proof. Let 2b < 1, s ∈ Λ+, and q ∈ Λ−. Define X → and Y ← by

X → = {B→
i ( j) : 1 ≤ i ≤ q, 1 ≤ j ≤ s−λs+λq− q}
∪{B→

i ( j) : q+ 1≤ i ≤ s, 1 ≤ j ≤ λq− q}

and

Y ← = {A←
i ( j) : 1 ≤ i ≤ λs, 1 ≤ j ≤ s−λs+λq− q}
∪{A←

i ( j) : λs + 1 ≤ i ≤ λq, 1 ≤ j ≤ s−λs}

Definitions for X ← and Y → have the directions of the arrows reversed. It is
easy to see that

|X →|= |X ←|= sλq − qλs = |Y →|= |Y ←|.

Note that, for 1 ≤ j ≤ λq − q, B→
1 ( j), . . . ,B→

s ( j),A←
λs
,A←

λs−1
( j), . . . ,A←

1 ( j) is not
in general a chain in the sense of Sect. 9.4 because the definition of λs in (9.2)
means that B→

s ( j) and Aλs( j) can have interior points in common. However it is
easy to generate a chain from it by moving the A←

i ( j)s an appropriate distance to the
right. Similar comments apply to B→

1 ( j), . . . ,B→
q ( j),A←

λq
,A←

λq−1
( j), . . . ,A←

1 ( j). This

motivates the definitions for B→
q ( j) and B→

s ( j) below. Putting Y → ∪Y ← = Y
and denoting the interior of an interval I by int I, let, for each B→

i ( j) ∈X →,

B→
i ( j) =

{
{A ∈ Y : B→

i ( j)∩ int A = /0} if i /∈ {q,s}
{A ∈ Y : A = A←

λi
( j) or B→

i ( j)∩ int A = /0} if i ∈ {q,s}. (9.6)

The B←
i ( j) are defined by reversing the directions of the arrows.

We will obtain the existence of a mixed optimal strategy by taking pure strate-
gies comprising B→

i ( j) (respectively B←
i ( j)) and a member of B→

i ( j) (respectively
B←

i ( j)). To do this, we will show that, for most cases, the family B of all the
B→

i ( j) and B←
i ( j) has a set of distinct representatives; by Remarks 1 and 2 these

cases will be sufficient to prove the theorem. It is easy to see that |B|= 2(sλq−qλs).
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For W ⊆ B, put B(W ) =
⋃

H∈W H, J→(W ) = {i : B→
i ( j) ∈ W for some j}

and J←(W ) = {i : B←
i ( j) ∈W for some j}. Now B→

i ( j) = B→
i (1) so

|B(W )|=
∣
∣
∣
∣

( ⋃

i∈J→(W )

B→
i (1)

)
∪
( ⋃

i∈J←(W )

B←
i (1)

) ∣
∣
∣
∣.

Note that J→(W )∩J←(W ) = /0 implies |W | ≤ |B|/2. We will divide the analy-
sis into several cases and for each case we will show that |B(W )| ≥ |W |; the cases
are expressed in terms of J→(W ) but the corresponding cases for J←(W ) follow
by symmetry and we will often use this fact without explicitly mentioning it in the
arguments below.

Case 1. Suppose J→(W ) contains i1 and i2 satisfying |i1 − i2|> 1. Because b ≥ a,
for each i and j, at least one of A→

i ( j) ∈ B→
i1
(1) and A→

i ( j) ∈ B→
i2
(1) holds and at

least one of A←
i ( j) ∈B→

i1
(1) and A←

i ( j) ∈ B→
i2
(1) holds. Hence we have B(W ) =

Y →∪Y ← = Y and |B(W )|= |B| ≥ |W |.
Thus we can assume that |J→(W )| ≤ 2. Furthermore, if |J→(W )| = 2, then

J→(W ) = {k.k+1} for some integer k so that B(W ) contains at least |Y →|− (s−
λs+λq−q) members of Y →. This follows because A→

i ( j) ∈B(W ) if kb /∈ A→
i ( j).

Similarly B(W ) contains at least |Y ←|− (s−λs) members of Y ←.

Case 2. Suppose J→(W ) contains an i ≤ q. We then have B→
i (W ) ⊇ Y ← and

|B(W )| ≥ |B|/2. Hence |B(W )| ≥ |W | holds when J→(W ) ∩ J←(W ) = /0 or
J←(W ) contains a k ≤ q. Thus, by Case 1, we only have to consider the case
J→(W ) = {q,q+ 1}, q+ 1∈ J←(W ) and J←(W )∩{1,2, . . . ,q}= /0.

If λs 
= 0, B→
q+1( j) contains at least s−λs+λq−q members of Y → so |B(W )| ≥

|B|/2+ s−λs+λq− q ≥ |W | because |J→(W )∩ J←(W )|= 1.
If λs = 0, s ≥ 3 because 2b < 1. Now A→

i ( j) ∈ B(W ) if qb 
∈ int A→
i ( j). There

are at most s−λs members of Y → having qb as an interior point so B(W ) contains
at least (sλq − qλs)− (s−λs) = sλq − s members of Y →. Now s ≤ q+λq because
(q+λq)b ≥ qb+λqa ≥ 1 > (s− 1)b. Thus |B(W )| ≥ |B|/2+ sλq − s ≥ |B|/2+
(s− 1)λq− q ≥ |B|/2+λq− q ≥ |W | because J→(W )∩ J←(W ) = {q+ 1}.

By Cases 1 and 2 we can now assume

|J→(W )| ≤ 2, and |J←(W )| ≤ 2 (9.7)

and
i ∈ J→(W )∪ J←(W ) implies i > q. (9.8)

Thus

|W | ≤ (λq − q)(|J→(W )|+ |J←(W )|). (9.9)

Case 3. Suppose J→(W ) = {k,k + 1} where k > q. We have already shown that,
for this case, B(W ) contains at least sλq − qλs − (s−λs) of the Y ← and at least
sλq − qλs − (s− λs + λq − q) of the Y →. Furthermore, if |J←(W )| = 2, B(W )
contains at least sλq− qλs− (s−λs) members of Y →. Thus
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|B(W )| ≥ 2(sλq− qλs)− 2(s−λs)− (λq− q) = 3(λq− q)+ 2H(s,q) (9.10)

where H(s,q) = (s−λs)(q− 1)+ (λq− q)(s− 2).
Note that, if |J←(W )|= 2, we have the stronger inequality

|B(W )| ≥ 4(λq− q)+ 2H(s,q) (9.11)

Because s ∈ Λ+ and q ∈ Λ−, λq ≥ q and s > λs so s ≥ 2 because 2b < 1. Thus
H(s,q) ≥ 0 if q ≥ 1. Furthermore λ0 ≥ s because b ≥ a so, if s ≥ 3, H(s,0) ≥
−s+λs+λ0 ≥ 0.

Hence, by (9.7), (9.9)–(9.11), |B(W )| ≥ |W | if q ≥ 1 or (q = 0 and s ≥ 3).
Thus we have to consider only the case q = 0, s = 2 which implies k = 1 and
λ2 = 1 because 2b < 1 and s ∈Λ+. Using Remark 2 we need only consider the case
2b+ a = 1. But then λsa = a ≤ b = kb and so, from the definition of Y →, (9.10)
can be strengthened to

|B(W )| ≥ 4(λq− q)+ 2H(s,q) = 4λ0− 2.

As b ≥ a and 2b < 1, λ0 ≥ 3. Thus |B(W )| ≥ |W | when |J←(W )| ≤ 1. How-
ever, if 1 ∈ J←(W ), B(W ) contains Y → and Y ← because B→

1 ( j) and B←
1 ( j) are

distance a apart. Thus |B(W )| ≥ |W |.
In addition to (9.8) and (9.9), we can now assume

|J→(W )| ≤ 1, and |J←(W )| ≤ 1 (9.12)

If λs > 0, |J→(W )|= 1 implies B(W ) contains at least s−λs+λq−q members of
Y ← and, from (9.9), (9.12) and symmetry, it follows that |B(W )| ≥ |W |. Hence
we can also suppose that λs = 0 and so, by Remark 1, that

qb+λqa = 1. (9.13)

Case 4. Suppose J→(W ) = {k} where k > q by (9.8). If qb ≥ 1/2, then, using
(9.13), B(W ) ⊆ Y → so that |B(W )| ≥ |W |) Thus we may assume qb < 1/2 so
s > 2q because sb ≥ 1. Hence s ≥ q+ 2 because s ≥ 3.

If s = q+ 2, then s = 3 and q = 1 because s > 2q so that b+λ1a = 1 by (9.13).
For this case B→

3 ( j) contains Y → while, because λ1 ≥ 2, B→
2 ( j) contains at least

s�λ1/2� = 3�λ1/2� ≥ 3(λ1 − 1)/2 ≥ λ1 − 1 members of Y →. Hence, using the
symmetric result if |J←(W )|= 1, we have |B(W )| ≥ |W |.

Now suppose s ≥ q + 3 and let η = �b/a�. Then B→
k ( j) intersects at most

(η + 2)s members of Y ←, [qb,(k−1)b] contains at least (k−q−1)ηs members of
Y ← and the interval [kb,1] contains at least (s− k−1)+ηs members of Y ← where
(s− k− 1)+ = max{0,s− k− 1}. Thus B→

k ( j) contains at least

ρ(k)s
sρ(k)+ (η + 2)s

|Y ←|= ρ(k)s
ρ(k)+ (η + 2)

λq
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members of Y ← where

ρ(k) =

{
η(s− q− 2) ifk 
= s,

η(s− q− 1) ifk = s

and so at least λq if ρ(k)(s− 1) ≥ (η + 2). Hence, using the symmetric result if
|J←(W )|= 1, we have |B(W )| ≥ |W | if ρ(k)(s− 1)≥ (η + 2).

For s≥ q+3, ρ(k)(s−1)≥ η(s−1) so |B(W )| ≥ |W | for η ≥ 2 and for η = 1
and s ≥ 4. However η = 1 and s < 4 gives s = 3 and q = 0. By Remark 1 we only
need to consider the case b = 1/3 and a = 1/λq. Because η = 1, λq ≤ 5. It is easy
to see that B(W ) contains at least 6 > λq members of Y ← so |B(W )| ≥ |W |.

Using the Remarks, we have therefore shown that, for all W ⊆ B which are
needed for the proof of the theorem |B(W )| ≥ |W |. Thus, for all relevant B, B has
a set of distinct representatives by Hall’s Theorem. Thus B→

i ( j) ∈X → gives rise to
a pure Defender strategy with intervals B→

i ( j) and A where A∈Y is the representa-
tive of B→

i ( j); we say that A is the correspondent of B→
i ( j). Pure Defender strate-

gies involving B←
i ( j) are obtained similarly. Thus we have a total of 2(sλq − qλs)

pure strategies and every member of Y ∪X → ∪X ← occurs in precisely one of
them. Let S denote the Defender strategy which selects one of these pure strate-
gies at random. We show that, for w ∈ [0,1], S has at least 2(s−λs +λq− q) pure
strategies which have intervals containing w. Now

s⋃

i=1

B→
i ( j)∪

λs⋃

i=1

A←
i ( j) j = 1, . . . ,λq− q

q⋃

i=1

B→
i ( j+λq− q)∪

λs⋃

i=1

A←
i ( j+λq− q)∪

λq⋃

i=1+λs

A←
i ( j) j = 1, . . . ,s−λs

are coverings of [0,1] and so are the above expressions with the arrows reversed.
Denote the set of these coverings by C . Note that every member of Y ∪X →∪X ←
occurs in precisely one member of C .

For w ∈ [0,1], a covering C ∈ C has a (unique) first interval IC(w) containing w,
by which we mean that the left-hand endpoint of IC(w) is strictly less than the left-
hand endpoint of any other interval of C containing w. Note that IC(w) starts strictly
to the left of w if w 
= 0. Now IC(w) is in precisely one of the pure strategies of S
for any w so we can define a mapping of C into the pure strategies of S by mapping
C to the pure strategy containing IC(w). We show that this mapping is an injection.
Suppose two different coverings C1 and C2 map into the same pure strategy. This
pure strategy therefore comprises the intervals IC1(w) and IC2(w), one of which is
of length b and the other (its correspondent) is of length a. Because an interval of
length b does not contain its correspondent, w > 0. Hence IC1(w) and IC2(w) have an
interval (w− ε,w] in common for some ε > 0. Thus, by the definition of the Bi( j),
the interval of length b must be of the form B→

i ( j) or B←
i ( j) where i ∈ {q,s} for

some j and the interval of length a of the form A←
λi
( j1) or A→

λi
( j1) respectively where

i ∈ {q,s} for some j1. If B→
i ( j) contains w so must B→

i ( j1). Similarly, if A→
λi
( j1)
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contains w so must A→
λi
( j). By definition, B→

i ( j1) starts to the left of A←
λi
( j1) and

A→
λi
( j) starts to the left of B←

i ( j). As A←
λi
( j) and B→

i ( j) are in the same covering, as
are A→

λi
( j1) and B←

i ( j1), IC(w) cannot be of the form A←
λi
( j1) or B←

i ( j) for i ∈ {q,s}
and we have a contradiction. Thus there are at least 2(s−λs+λq−q) pure strategies
in S which have intervals containing w and the theorem follows. �

From Theorems 1 and 3 we have

Theorem 4. For a ≤ b < 1/2,

v(a,b) = 1− max
s∈Λ+,q∈Λ−

{
s−λs+λq− q

sλq− qλs

}
.

Note that when q = λq, (s−λs+λq− q)/(sλq− qλs) = 1/q.

9.7 Comments on Our Results

Although we have obtained its value, we have not produced explicit optimal strate-
gies for either player in the general game. Evidence suggests that Infiltrator optimal
strategies are more difficult to find than optimal Defender strategies and Woodward
[14] has produced explicit Defender strategies for all values of a and b. Indeed find-
ing an optimal Defender strategy is fairly straightforward using arguments similar
to those employed for the special example in Sect. 9.5. Once the value of the game
is obtained, one can find s ∈ Λ+ and q ∈Λ− such that v(a,b) = 1−G(s,q) so that
the family B in Sect. 9.6 can be constructed. Algorithms exist for finding systems
of distinct representatives (see, for instance, Marshall Hall [9]) and then a strategy
can be obtained as in the proof of Theorem 3.

Of course Woodward’s result [13] that Γ (a,b) is equivalent to a finite game
means that optimal strategies for any particular values of a and b can be obtained
by using linear programming. In practice matters are not that straightforward be-
cause the strategy spaces in Woodward’s finite game can be comparatively large;
for instance, in the example in Sect. 9.5, the Defender has 81 and the Infiltrator
9 pure strategies. Furthermore, as mentioned in Chap. 6, linear programming can
give very different optimal strategies for two games with slightly different values
of a and b even though they have the same value. By contrast, our approach not
only enabled the example to be solved easily but tells us that games with val-
ues of a and b ≥ a which give rise to the same Λ+ and Λ− as a = 6/21 and
b = 7/21 also have the value 5/12. Thus games with (a,b) in the triangle with
vertices (1/4,1/3), (1/3,1/3) and (1/4,3/8) and its interior with the closed line
segment joining (1/3,1/3) to (1/4,3/8) removed all have value 5/12. Defender
optimal strategies for these games are easily derived from Fig. 9.2. Although optimal
Infiltrator strategies for the games are not quite so immediate, they follow a simi-
lar pattern to the particular example. Noting that the values of a and b in the given
region satisfy 1− a− 2b < 0, intervals of length a and b can contain at most two
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of the points 0,a+,b+,(1− b)−,(1− a)−,1 where x+ and x− represent points an
appropriately small distance to the left and right of x respectively. The argument
used for the particular case now show that choosing these points with probabilities
10/36,3/36,5/36,5/36,3/36,10/36 respectively is an optimal Infiltrator strategy.

One might have hoped that the expression for v(a,b) in Theorem 4 also covers
the case b ≥ 1/2. However this is not the case because Baston and Bostock [2]
showed that v(1/3,1/2) = 1/4 whereas, for a = 1/3 and b = 1/2, Theorem 3 gives
v(1/3,1/2) = 1−max{(1+λ1)/(2λ1),(2+λ0)/(2λ0)}= 1/6.

Theorem 4 enables us to express the value of Γ (a,b) when 1/3 ≤ b < 1/2 in a
simpler form than Lee [8].

Theorem 5. Let a ≤ b, 1/3 ≤ b < 1/2 and λi defined by (9.2).

(i) If λ2 ≥ 2, v(a,b) = (2m− 6)/3m where m = min{2λ0,3λ1,6λ2}.
(ii) If λ2 = 1, v(a,b) = (m− 1)/2m where m = min{λ0,2λ1− 1}.
Proof. (i) Let λ2 ≥ 2, then Λ+ = {3} and λ3 = 0 so, by Theorem 4,

v(a,b) = 1−max{3+λ0

3λ0
,

2+λ1

3λ1
,

1+λ2

3λ2
}= 2

3
−max{ 2

2λ0
,

2
3λ1

,
2

6λ2
}

and (i) follows.
(ii) Let λ2 = 1, then Λ+ = {2,3} so, by Theorem 4,

v(a,b) = 1−max{3+λ0

3λ0
,

2+λ1

3λ1
,

1+λ0

2λ0
,

λ1

2λ1− 1
}

Now (3+ λ0)/(3λ0) ≤ (1+ λ0)/(2λ0) because λ0 ≥ 3 and (λ1)/(2λ1 − 1) ≥
(2+λ1)/(3λ1) because λ1 ≥ 2. Thus

v(a,b) = 1/2−max{ 1
2λ0

,
1

2(2λ1− 1)
}

and (ii) follows. �
We now give examples to show that every case in the theorem arises:

a = 1/8, b = 3/8 gives λ2 ≥ 2 and 6λ2 < 3λ1 < 2λ0,
a = 3/39, b = 13/39 gives λ2 ≥ 2 and 2λ0 < 3λ1 < 6λ2,
a = 2/15, b = 5/15 gives λ2 ≥ 2 and 3λ1 < 2λ0 < 6λ2,
a = 3/10, b = 4/10 gives λ2 = 1 and 2λ1− 1 < λ0,
a = 2/20, b = 9/20 gives λ2 = 1 and λ0 < 2λ1− 1.
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10.1 The Kikuta-Ruckle Conjecture

The Kikuta-Ruckle conjecture arose from a series of papers on search games and
optimal allocation that were written by Ken Kikuta and William Ruckle [9–11] over
a number of years. In fact, there is not one, but there are several conjectures that
can be found dispersed over these papers. In this chapter we discuss one of these
conjectures, as well as its ramifications into search games, which have led to some
fascinating new results on expanding search that have been reported by Tom Lid-
better in Chap. 2. The interplay of game theory and combinatorics is a hallmark of
Ruckle’s work. It is manifest in the two cable ambush game, as described in the
previous chapter by Vic Baston and Ian Woodward. The Kikuta-Ruckle conjecture
is no different.

Suppose your mother-in-law comes over for tea. You know that she is going to
eat k biscuits from a tray that contains n biscuits in total, but you do not know which
biscuits she is going to take. Each biscuit is equally likely. You possess h grammes
of arsenic, where h > 1 is a real number. The lethal dose of arsenic is one gramme.
Unfortunately, you cannot put the poison in her tea, you have to put it in the biscuits.
How should you distribute the poison to maximize the probability that your mother-
in-law gets the lethal dose?

Kikuta-Ruckle Conjecture ([11]) It is optimal to put a dose of 1/ j in as many
biscuits as possible, for a natural number j that depends on h,k,n.

Here, optimal means that the distribution maximizes the number of k-element sub-
set such that the cumulative amount is lethal. To illustrate this conjecture we first
present a solution for the particular case of k = 3 and n = 5, which involves
the Petersen graph, see Fig. 10.1. Each vertex represents a possible selection of
three biscuits, and two vertices are neighbors if and only if they have exactly one
biscuit in common. The solution of k = 3 and n = 5 breaks up into two parts, de-
pending on the value of h:

3
2 ≤ h < 5

3 : Any circuit of length five contains contains each biscuit exactly thrice.
So the amount of poison in the circuit adds up to 3h < 5. Therefore, any circuit
contains at least one non-lethal vertex. Any pair of vertices can be avoided by a
circuit of length five, so there are at least three non-lethal vertices. Now it is not
hard to see that a poison distribution of 1

2 ,
1
2 ,

1
2 ,0,0 is optimal. So the conjecture

holds with j = 2 in this case.

1 ≤ h < 3
2 : There must be adjacent vertices that are lethal, otherwise there would

hardly be any. Adjacent vertices share one common biscuit. If both vertices are
lethal, the common biscuit contains a dose of > 1

2 since h < 3/2. It follows that any
other lethal vertex contains this particular biscuit. So we may just as well put a unit
dose in it. The conjecture holds with j = 1 in this case. �
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Fig. 10.1 The nodes in the Petersen graph represent all selections of your mother-in-law if k = 3
and n = 5

The example displays the combinatorial flavor of the conjecture and it is not
surprising that there exists related work in combinatorics. Recently Alon et al.
[1, Conjecture 1.4] have proposed a conjecture that is equivalent to the Kikuta-
Ruckle conjecture. This work of Alon et al. is motivated by an old but still unsolved
conjecture of Erdös on the matching number of hypergraphs [6].

The solution of the conjecture for k = 3 and n = 5 breaks up into two parts,
depending on the value of h. If h is small, then it is optimal to put a unit dose. If h is
large, then it is optimal to put smaller doses. This applies to all known solutions of
the Kikuta-Ruckle conjecture, such as the case of the odd graph that we settle in the
next section, or the case of cyclic graphs that has been solved in [4], also see [2].
The optimal j increases with h. Such monotonicity has also been encountered in
probabilistic allocation problems, see e.g. [7].

10.2 The Kikuta-Ruckle Conjecture for Odd Graphs

The odd graph Ok has one vertex for each of the k-element subsets of a (2k− 1)-
element set. Two vertices are connected by an edge if and only if the corresponding
subsets have one common element.1 The Petersen graph is equal to the odd graph
for k = 3. Norman Biggs [5] already remarked that if one wants to understand a
graph theory problem, the odd graph is a good place to start. So we consider the

1 The original definition of the odd graph takes (k− 1)-element subsets as its vertices. They are
connected by an edge if and only if they are disjoint. So for each edge there is one element that
is not contained in the two vertices: the odd one out. This is where the graph gets its name from.
Our definition is equivalent and more convenient for the poisoning problem. An edge represents
the odd one in.
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Kikuta-Ruckle conjecture for the values of k and n that correspond to odd graphs:
in this section, it is our standing assumption that n = 2k− 1.

Lemma 1. Suppose that the Kikuta-Ruckle conjecture is correct for the odd graph.
Then it is optimal to put a dose of 1/ j if and only if h ∈ [2− 1

j ,2− 1
j+1).

Proof. If the conjecture is correct, then we have to determine what the optimal dose
1/ j is, depending on h. This is a counting problem. Let Nj be the number of lethal
subsets if we put a dose of 1/ j and h ≥ 2− 1

j . We claim that N1 < · · · < Nk is an

increasing sequence. Note that if h ≥ 2− 1
k , then we can put a dose 1/k in every

biscuit, so every k-subset is lethal, and Nk is equal to the total number of biscuits.
Therefore, we only need to consider j < k. To fix our ideas, assume that we put the
dose 1/ j in the first 2 j− 1 biscuits. To compare Nj to Nj+1 we need to consider
the effect of reducing the amount of poison in the first 2 j− 1 biscuits from 1/ j to
1/( j+ 1), while putting a dose of 1/( j+ 1) in the next two biscuits that previously
did not contain any poison. Such a redistribution can only change the lethality of a
k-subset if it contains either j or j+1 elements from {1, . . . ,2 j+1}. A lethal subset
becomes non-lethal if it contains j elements from {1, . . . ,2 j − 1} and none from
{2 j,2 j+ 1}. There are exactly

(
2 j− 1

j

)(
2k− 2 j− 2

k− j

)

such subsets. Conversely, a non-lethal subset becomes lethal if it contains j − 1
elements from {1, . . . ,2 j− 1} and both 2 j and 2 j+ 1. There are exactly

(
2 j− 1
j− 1

)(
2k− 2 j− 2

k− j− 1

)

such subsets. Dividing the first binomial product by the second gives k− j−1
k− j < 1, so

the number of k-subsets that become lethal exceeds those that become non-lethal.
Which proves that Nj < Nj+1.

If we put a dose of 1/ j while h < 2− 1
j , then there are at most 2 j − 2 poi-

sonous biscuits. Let Mj be the number of lethal k-subsets in this case. We claim that
M1 < · · · < Mk is again an increasing sequence. To compare Mj to Mj+1 we need
to consider the effect of reducing the amount of poison in the first 2 j− 2 biscuits,
while putting a dose of 1/( j + 1) in biscuit 2 j − 1 and 2 j. The number of lethal
subsets that become non-lethal now is

(
2 j− 2

j

)(
2k− 2 j− 1

k− j

)

while the number of subsets that become lethal is
(

2 j− 2
j− 1

)(
2k− 2 j− 1
k− j− 1

)
.
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The quotient of these two binomial products is j−1
j < 1, so the number of subsets

that become lethal upon redistribution again exceeds the number of those that be-
come non-lethal. Now we claim that Mk < N1, so it is better to put a single unit
dose. Indeed Mk =

(2k−2
k

)
while N1 =

(2k−2
k−1

)
. So putting a dose 1/ j for j > 1 is only

optimal once h ≥ 2− 1
j . �

We have an amount of poison h that we distribute over the biscuits, putting a
dose hi in the i-th biscuit. A k-subset V is lethal if and only if h(V ) = ∑i∈V hi ≥ 1.
We number the biscuits in decreasing order of their doses, putting the most poi-
sonous biscuit first, i.e., h1 ≥ ·· · ≥ h2k−1. Let P be the family of poisonous k-
subsets. We want to distribute the poison in such a way that P has maximum car-
dinality. We adopt hypergraph terminology. We say that V ∈ P is an edge, and
degP (i) is equal to the number of edges that contains i.

Lemma 2. If h < 2− 1
j+1 then degP (2 j+ 1)≤ 1

2

(2k−2
k−1

)
.

Proof. By the decreasing dosage of poison

(2 j+ 1)h2 j+1 ≤ h1 + · · ·+ h2 j+1 ≤ h <
2 j+ 1
j+ 1

,

and so h+h2 j+1 < 2. If V is any k-subset that contains 2 j+1 then let V̄ =V c∪{2 j+
1}. In other words, V̄ is the neighbor of V in the odd graph Ok that is connected by
the edge that has 2 j+1 as the odd one in. Then h(V )+h(V̄ ) = h+h2 j+1 < 2. So if
V is poisonous then V̄ is not, and we conclude that degP (2 j+ 1) is at most half of
the degree of 2 j+ 1 in the complete hypergraph on all k subsets. The degree of the
complete hypergraph is

(2k−2
k−1

)
. �

Lemma 3. If h < 2− 1
j+1 then the number of lethal edges is at most

1
2

(
2 j
j

)(
2k− 2 j− 1

k− j

)
+

k

∑
i= j+1

(
2 j
i

)(
2k− 2 j− 1

k− i

)
.

Proof. We maximize the number of edges V under the constraint that the hypergraph
has maximal ∑i≥2 j+1 deg(i), which by the previous lemma is bounded by

n− 2 j
2

(
2k− 2
k− 1

)
.

The greedy solution is to first take all k-subsets that have no elements in {2 j +
1, . . . ,2k−1}, then to take all k-subsets that have one element in {2 j+1, . . . ,2k−1},
etc, until the sum of the degrees exceed the given bound. We need to show that this
happens exactly when we have taken all k-subsets that contain > j elements from
{1, . . . ,2 j} and half of the k-subsets that contain exactly j elements from this set.
In other words, we need to show that
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1
2

(
2 j
j

)(
2k− 2 j− 1

k− j

)
(k− j)+

min{2 j,k−1}
∑

i= j+1

(
2 j
i

)(
2k− 2 j− 1

k− i

)
(k− i)

is equal to n−2 j
2

(2k−2
k−1

)
. This equality can be rewritten to

(2 j
j

)(2k−2 j−2
k− j−1

)

2
(2k−2

k−1

) +
min{2 j,k−1}

∑
i= j+1

(2 j
i

)(2k−2 j−2
k−i−1

)

(2k−2
k−1

) =
1
2
.

Let X be a hypergeometric random variable that describes the number of successes
in k−1 draws from a population of N = 2k−2 with 2 j successes. Then this equation
is equal to

1
2

P(X = j)+P(X > j) =
1
2
.

In other words, the median of X is at j. To see why this is true, notice that drawing
k− 1 from 2k− 2 is equivalent to leaving k− 1 from 2k− 2. Since the number of
successes is 2 j, this implies that P(X > j) = P(X < j). �
Theorem 1. The Kikuta-Ruckle conjecture is true for odd graphs, i.e., if n = 2k−1.

Proof. If we put 2 j− 1 doses of 1/ j then an edge is lethal if and only if it contains
at least j out of the first 2 j− 1 biscuits. So the number of lethal edges is equal to

k

∑
i= j

(
2 j− 1

i

)(
2k− 2 j

k− i

)
.

By the previous lemma, it suffices to show that this is equal to

1
2

(
2 j
j

)(
2k− 2 j− 1

k− j

)
+

k

∑
i= j+1

(
2 j
i

)(
2k− 2 j− 1

k− i

)
.

If we divide both sums by
(2k−1

k

)
then the first quotient is P(X1 ≥ j) for a hypergeo-

metric random variable that counts the number of successes if we draw k times with
2 j−1 successes. The second quotient is 1

2 P(X2 = j)+P(X2 ≥ j+1) if the number
of successes is 2 j. To see why these probabilities are the same, start with the popu-
lation that has 2 j successes and call one of them a failure, which transforms X2 into
X1. Let U be the event that the draw does not contain the success which turns into a
failure. Then X1 ≥ j is equal to

(X2 ≥ j+ 1) ∪ {U∩X2 = j} .

Now observe that

P(U∩X2 = j) = P(U | X2 = j)P(X2 = j) =
1
2

P(X2 = j).
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The computation in our proof, which is essentially a double counting argument,
seems to work more or less by coincidence. To check the validity of the Kikuta-
Ruckle conjecture, other sets of parameters need to be tested. The case n< 2k seems
to be a logical next step.

10.3 Alpern’s Caching Games

The Kikuta-Ruckle conjecture presents a combinatorial problem, it is not a game.
It be turned into a game by adding some geometry. Suppose that a hider places n
objects on a graph and that the searcher wins if and only if he retrieves k of these
objects, but he is not allowed to search the entire graph. This is a difficult game to
solve, even for relatively simple graphs. Elementary examples suggest that if the
searcher is allowed to search a large part of the graph, then the hider wants to put all
the objects in a single place, hoping that the searcher won’t find them. If the searcher
can only search a small part of the graph, then the hider spreads out the objects, so
that they become out of the searcher’s reach. If the game parameter changes to his
advantage, the hider spreads out. This should be compared to the poisoning problem,
in which the poisoner distributes poison over ever more biscuits if the parameter h
changes to his advantage.

Consider the following search game. The hider can place two objects on the line,
at positions x1 and x2. The hider starts from the origin and has to dig a tunnel, so
it takes an effort to place these objects. The hider cannot carry on forever. He can
only dig a tunnel of unit length. This could be a tunnel that goes one way only, from
0 to 1, or from 0 to −1. It can also be a tunnel that goes both ways, from −x to 1−x
for some 0 < x < 1. The hider places the two objects somewhere in the tunnel, and
after he is done, he fills up the tunnels again. One should imagine that the hider is a
squirrel that buries nuts, caching them for later use. Steve Alpern, who first thought
of these games, has coined the term caching game.

Fig. 10.2 The searcher’s dilemma in the caching game

After the hider is done, the searcher looks for these two objects, looks for these
two objects, facing the dilemma that is illustrated in Fig. 10.2. He is at least as
powerful as the hider and can dig a tunnel of total length h ≥ 1. The searcher wins
if he retrieves both objects, otherwise the hider wins. If h ≥ 2 then the searcher
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always wins, by digging a tunnel that runs from −1 to 1. If h < 2 then the hider
ensures a 50 % probability win by putting both nuts either at +1 or −1. Conversely,
if h ≥ 3

2 then the searcher ensures a 50 % probability win by digging either to +1
or −1 all the way, and digging h− 1 in the opposite direction. To see why this
guarantees a 50% probability, observe that the hider wins if he digs in the direction
that contains the hidden object that is farthest away from the origin. If h < 3/2
then the hider places the objects either at {−1,− 1

2} or {− 1
2 ,+

1
2} or {+ 1

2 ,+1},
equiprobably. The distance between these three positions is such that the searcher
can only reach one of these three placements. So the hider wins with probability
two thirds, at least. The searcher, on the other hand, has a strategy that guarantees
that he wins with probability one third, as follows. He digs into one directions, and
if he finds an object, then he continues digging in that direction with probability
2
3 , or he starts digging in the other direction with probability 1

3 . This guarantees
that the searcher finds both objects with probability one third. So the value of the
game, which we define as the probability of a searcher win, is equal to one third if
1 ≤ h < 3/2.

In the caching game with two objects and two directions the hider either places
both objects in the same location, or he places them in such a way that if the
hider finds one object, then the remaining object is optimally placed. Indeed, if
the searcher finds the first object at say + 1

2 , then the remaining object is either at
+1 or at − 1

2 , equiprobably. In the remaining game, the searcher is looking for a
single object, for which he has to dig a distance 1

2 , either to the left or to the right.
The hider has made sure that the remaining object is optimally placed. This seems
to be a general principle that applies to all versions of the caching game that we can
solve.

One can increase the number of directions in which the hider can dig, or the num-
ber of objects that he hides. The game with three tunnels and two objects has been
solved in [3]. The game with four tunnels and two objects appears to be difficult,
and has not been fully solved yet. The value of the game and the optimal strategies
for the players have been determined for a substantial range of the parameter h and
can be found in [8]. The following table for the game value has been taken from that
report:

h value
[0,1) 0
[1, 3

2)
1
10

[ 3
2 ,

5
3 )

3
20

[ 5
3 ,

7
4 )

1
5

[ 7
4 ,2) ?

[2, 11
5 ) 2

5
[ 11

5 , 7
3 ) ?

[ 7
3 ,3)

1
2

[3,4) 3
4

[4,∞) 1
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The solution of the game for h in [ 7
4 ,2)∪ [ 11

5 , 7
3 ) remains open. For all instances

of the game in which the solution has been found, the hider places the two objects
in such a way that once the searcher finds one object, the remaining object is placed
equiprobably in one of the four directions, as far away as possible. Even though the
amount of evidence is not overwhelming, there may be an underlying principle:

A Kikuta-Ruckle Conjecture for Caching Games Let Γ ( j,k,n,h) denote the
caching game in which the hider can dig in n directions for a total length of
one unit, hiding k objects, of which the searcher has to retrieve j and he can
dig a total length h. Then the hider places the objects in such a way that once
the searcher finds a single object at distance x, then the remaining objects are
optimally placed in the remaining game Γ ( j− 1,k− 1,n, h−x

1−x ).

If such a recursive principle exists, it should also apply to the Kikuta-Ruckle
conjecture that we exhibited in the first section, and other versions of that conjecture
which can be found in the papers by Kikuta and Ruckle on accumulation games.
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Chapter 11
Rendezvous Problem

Leszek Gąsieniec

Abstract The rendezvous problem refers to the algorithmic challenge in which two
or more mobile entities (depending on the context) called players, agents or robots,
are expected to meet at the same time and point in space. The meeting challenge
can be a task on its own or it may form a part of a more complex communication
or coordination process in which the agents are involved. The space can be either a
network of discrete nodes between which the agents can move along existing edge
connections, or a geometric environment in which movement of agents is only re-
stricted by topological properties of the space. In order to meet, the agents must
agree in advance on a rendezvous mechanism. The feasibility and efficiency of the
adopted rendezvous solution depends on agents’ ability to move, observe and com-
municate. In this chapter we give a short introduction to the rendezvous problem
including motivation, models of considered networks and participating agents. We
also provide some examples and discuss instances of the considered problem.

11.1 Introduction

With the recent advent of ad-hoc, not well-structured, large, and (very often)
dynamic network environments there is a strong need for more robust, universal,
and inexpensive distributed network protocols. The purpose of these protocols is to
support basic network integrity mechanisms as well as more dedicated tasks such
as information dissemination, network search and discovery, frequent monitoring
including handling emergencies.
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One of the novel, promising, and perhaps challenging alternatives in supporting
such network protocols are dedicated teams of mobile entities that can work inde-
pendently on top of basic network processes. Mobile entities may, e.g., represent
software agents [22] residing in nodes or traversing through network connections,
autonomous mobile robots [27] located in a (real) geometric environment, or a group
of people that have to meet in a city whose streets form a road network [2]. The
structure of the network environment can be stable or it can change in time due
to accidental failures, mobility or instability of objects including malicious perfor-
mance of nodes, unwanted visits of intruders, etc.

Apart from populating network environments, teams of mobile entities can be
also seen as more complex systems on their own. For example, a traditional com-
munication network can be replaced by a more arbitrary environment in which a
collection of networked or free-standing agents representing groups of humans, ani-
mals, vehicles or specialised robots are asked to perform a dedicated computational
task. This could be done in the form of a fully-coordinated effort or as a collection
of (semi-)independent individual (possibly greedy) performances.

Rendezvous of mobile entities (agents, players) is often a goal on its own.
Alternatively, it can be used as a subroutine in a range of basic network integrity and
coordination mechanisms. The agent’s ability to act autonomously including obser-
vation, communication and relocation impels the design and further implementation
of efficient communication and navigation mechanisms.

11.2 Models

In this section we briefly survey basic properties of network environments and
agents populating them. A specific choice of network and agents attributes results
in a certain type of the rendezvous problem. This type refers to the difficulty of the
problem and in turn to the efficiency of possible algorithmic solutions.

11.2.1 Networks

Recall that we consider two types of network environments: graph based and ge-
ometric. In the graph based representation the nodes of the network may not have
distinct identities. In such case we say that the network is anonymous. In anonymous
networks two nodes of the same degree are virtually impossible to distinguish. In
order to enable navigation in such networks all edges incident to a given node are
either explicitly or implicitly arranged in a periodic order.

A network can be either finite or of unbounded in size. In the latter case one needs
to design search protocols that preserve locality of the solution. Otherwise the com-
plexity of the solution could be unbounded. Another important network attributes



11 Rendezvous Problem 169

refer to localisation mechanism (knowledge of the current location) and sense of
direction. For example, in the geometric setting these two refer to the system of
coordinates accompanied by geographic directions. Sense of direction turned out to
greatly effect the solvability and efficiency of solution of a number of problems in
distributed computing [19] and has been shown to be important in rendezvous as
well [8].

Another crucial property refers to global clock availability. In particular, in
a synchronous network one assumes access to the global clock allowing agents
to coordinate their actions, including moves, using time frames. In contrast, in
asynchronous networks the speed with which agent compute and move cannot be
determined. In this case rendezvous is obtained either by adoption of predefined tra-
jectories [29] or through analysis of the current configuration of the network [25].

The network can be reliable or it can report to its users imprecise information. In
such error prone network rendezvous time can be largely elongated or meeting may
prove to be impossible [18].

11.2.2 Agents

One of the major attributes of agents is their identity (e.g., a distinct label) that for
some reason may be missing. Agents without identities are referred to as anony-
mous agents. Anonymous agents must execute the same procedure while agents
with unique identities have the potential to behave differently. Another important
attribute of agents is their initial knowledge. This may refer to the network size and
topology as well as to the number, identities and location of available agents. In this
context it is important whether agents can learn (adapt) throughout the rendezvous
process or whether their control mechanism remains unchanged. In the latter case
we say that the agents are oblivious. The process of learning, adaptivity of agents
depends on their memory as well as on observation and communication abilities.
For example, in some models it is assumed that agents are memoryless, where the
agents rely on the use of random walk procedure [12]. The random walk is an exam-
ple of a randomised procedure requiring access to random bits. As discussed later in
this chapter in some instances of the rendezvous problem feasibility of the solution
relies on symmetry breaking that cannot be implemented without a random number
generator.

Agents may also have zero visibility without being able to communicate re-
motely [14]. In such cases the only way in which agents can learn about presence of
one another is via spatial rendezvous. In some other extreme cases agents can con-
stantly monitor movement of the others as it is assumed in the Look-Compute-Move
model [25].

An interesting aspect of movement coordination of agents equipped with dif-
ferent maximal speeds has been recently studied in the context of network pa-
trolling [13]. The authors proposed a number of algorithms that allow agents to
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patrol linear spaces efficiently. In [5], an alternative performance measure based on
power consumption was used to assess efficiency of proposed rendezvous strategies.

Finally, somewhere between the model of networks and agents is agents ability
to interact with the environment. This includes ability to release special marks in
the form of stationary or mobile tokens [21] or longer messages stored in special
message repositories such as whiteboards [15].

11.3 Rendezvous

Recall that the rendezvous problem refers to the algorithmic challenge in which two
or more agents are expected to meet at the same time and point is space. The first
reference to rendezvous problem is very often attributed to political science mono-
graph [26] by Schelling, which initiated the discussion of coordination problems.
Schelling considered approach in which each of the two players have only one at-
tempt to choose the meeting location, and if they miss each other at the first attempt
they fail.

The rendezvous problem as we now know it was first informally introduced by
Steve Alpern in mid 1970s. He posed several problems including famous two:

Astronaut Problem Two astronauts land on a spherical body that is much
larger than the detection radius (within which they can see each other). The
body does not have a fixed orientation in space, nor does it have an axis of
rotation, so that no common notion of position or direction is available to the
astronauts for coordination. Given unit walking speeds for both astronauts, how
should they move about so as to minimize the expected meeting time T (before
they come within the detection radius)?
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Telephone Problem In each of two rooms, there are n telephones randomly
strewn about. They are connected in a pairwise fashion by n wires. At discrete
times t = 0,1,2, . . . players in each room pick up a phone and say “hello”. They
wish to minimize the time T when they first pick up paired phones and can
communicate. What common randomization procedure should they adopt for
choosing the order in which they pick up the phones?

The field was later popularised by Anderson and Weber in their seminal paper [7]
on discrete location rendezvous. The continuous formalisation of the problem was
later given by Alpern in [1]. Since then, the field grew substantially and attracted
interest of researchers from a number of fields including Mathematics, Opera-
tions Research and Computer Science. A comprehensive collection of rendezvous
problems including their rigorous classification can be found in the second part
(Rendezvous Theory) of the book [4] from Alpern and Gal.

In general, Computer Science (CS) and Operations Research (OR) communi-
ties tend to study different models and aspects of the rendezvous problem. While
OR research focuses mainly on minimisation of the expected time to meet, and
sometimes maximisation of the probability of meeting within a given time, CS
community tends to study efficiency trade-offs based on the use of resources.
Despite differences, both communities expressed strong interest in rendezvous on a
(possibly infinite) line. A number of randomised as well as deterministic rendezvous
strategies have been proposed and analysed in this environment.

Alpern in [1] introduced the symmetric rendezvous search problem on the line
and proposed a strategy with the expected meeting time of 5d, where d is known
and it refers to the original distance between the agents. Alpern’s idea was to it-
erate for as long as it is needed the following procedure. Pick a random direction
and move distance d in this direction and later distance 2d in the opposite direc-
tion, all at speed one. In addition, Alpern and Gal in [3] gave the proof that all
symmetric strategies have expected time of rendezvous at least 3.25 · d. Also in
1995, Anderson and Essegaier in [6] improved the upper bound to 4.5678 ·d using
a novel idea of mixed movements. Baston in [9] further improved the upper bound
to 4.4182 · d by accumulating and using all information before rendezvous takes
place. More recently Uthaisombut in [30] presented tuned up mixed strategy im-
posing a better upper bound of 4.3931 ·d. He also provided argument for the lower
bound 3.9546 ·d. These two bounds were further improved by Han et al. in [20] to
4.2574 ·d and 4.1520 ·d respectively. These two results required strong reference to
Markov chains, fractional quadratic programming and semidefinite programming.
The authors also conjectured that the rendezvous value is asymptotically equal to
4.25 ·d.

The case when the distance d is not known in advance have been discussed in [10]
where the competitive ratios (that compares efficiency of the proposed strategy to
the best possible solution) 17.686 for the total distance traveled and 24.843 for the
total time are established.
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In case of deterministic rendezvous one needs to break symmetry between
agents. For example, if the agents were anonymous (indistinguishable) they would
perform the same moves and be always separated by distance d. The symmetry be-
tween the agents can be broken in many different ways including further informa-
tion about network size and topology, labels given to agents, or through awareness
of their own location.

In the context of the line most of the deterministic rendezvous strategies refer to
asynchronous models, where the cost of the solution corresponds to the cumulative
distance walked by any agent before rendezvous takes place. In [17] the authors dis-
cuss efficient rendezvous strategies for trees which impose rendezvous on the path
of length n with the cost O(n). In [16] agents are labelled and two algorithms for
the infinite line are considered. If d is known to both agents the cost of rendezvous
is O(d|Lmin|2), where Lmin refers to the size of the smaller label. If d is not known
in advance the rendezvous cost rises to O(d3 + |Lmax|3), where Lmax represents the
size of the larger label. Performance of the latter algorithm is improved in [28],
where we find an algorithm with cost O(d · log2 d + d · d logd|Lmax|+ d|Lmin|2+
|Lmax||Lmin| log |Lmin|).

A different approach to rendezvous on the line was adopted by Collins et al. [11],
where they assumed that the agents are not aware of d but they know their own
location on the line. In particular, they proved that two agents in the synchronised
model can always meet in time at most 6d. Further, they also showed that their
approach can be adopted in the asynchronous model with the rendezvous cost O(d).

11.4 Also in This Volume

In this short introduction to the rendezvous problem the emphasis is mainly on major
features of considered models of networks and mobile agents. Two more compre-
hensive survey type documents can be found in Chaps. 12 and 13. The list of ten
open problems from the perspective of Operational Research, including the Astro-
naut Problem and the Telephone Problem, can be found in Chap. 14.

Chapter 12 surveys rendezvous in several models of distributed networks where
the emphasis is on deterministic algorithms for networks with unknown topology.
The authors consider several types of networks including those containing ‘mali-
cious’ nodes (known in literature as black holes) and networks in which no consis-
tent ordering on the edges at each node is imposed. The chapter provides a selection
of algorithmic solutions (upper bounds), non trivial complexity analysis as well as
it introduces more general techniques developed for the worst case scenarios in the
rendezvous problem. This work is a nice complement of the recent survey on the
topic written by Pelc [24] that adopts stronger assumptions about the network en-
vironment including distinct node identifiers, synchronicity, or restricted network
topologies such as the ring, mesh or tree topologies.

Chapter 13 refers to the rendezvous problem in asynchronous networks in which
the oblivious memory Look-Compute-Move model is assumed [25]. The mobile
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entities cannot leave any marks at visited nodes, nor send messages to other robots.
The movement of entities depends solely on snapshots of the network configuration
(position of all entities) taken independently by each entity. This chapter surveys re-
cent results obtained in important network topologies such as rings, grids, and trees.
This work include impossibility results on rings including the case where global-
strong multiplicity detection (ability to detect whether to entities occupy the same
node) is assumed. Further, the global-weak multiplicity detection model is consid-
ered in which all possible gatherable configurations have been determined. Finally,
this survey provides also partial results for the case of local-weak multiplicity de-
tection.

Finally, in Chap. 14 one can find a list of open rendezvous problems asked from
Operations Research perspective, where optimization of the search process is inter-
preted as minimising the expected time to meet, or possibly maximising the proba-
bility of meeting within a given time.

11.5 Further Comments

The readers are strongly encouraged to advance their knowledge in the field. The
book by Alpern and Gal [4] is a jewel on the shelf of any researcher thinking seri-
ously about working on searching games and rendezvous problems. Other recom-
mended survey type sources include a monograph on rendezvous in the ring co-
authored by Kranakis et al. [21] and a more recent survey by Pelc [24] that focuses
on deterministic mechanisms used in efficient rendezvous. The rendezvous problem
has been also discussed in the context of consensus problems in networked dynamic
systems, flocking, fast consensus in small-world networks, Markov processes and
gossip-based algorithms, load balancing in networks, distributed sensor fusion in
sensor networks, and belief propagation [23].
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13. J. Czyzowicz, L. Gąsieniec, A. Kosowski, and E. Kranakis, Boundary Patrolling by Mobile
Agents with Distinct Maximal Speeds, ESA 2011, 701–712.

14. J. Czyzowicz, A. Pelc, and A. Labourel, How to meet asynchronously (almost) everywhere,
ACM Transactions on Algorithms 8(4), paper 37, 2012.

15. S. Das, Distributed computing with mobile agents: solving rendezvous and related problems,
PhD Dissertation, University of Ottawa, 2007.

16. G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro, Asynchronous
deterministic rendezvous in graphs, Theoretical Computer Science 355, 315–326, 2006.

17. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic rendezvous in graphs, ESA 2003,
184–195.

18. Y. Dieudonné, A. Pelc, and D. Peleg, Gathering despite mischief, SODA 2012, 527–540.
19. P. Flocchini, B. Mans, and N. Santoro, Sense of direction in distributed computing, Theoretical

Computer Science 291(1), 29–53, 2003.
20. Q. Han, D. Du, J. Vera, and L.F. Zuluaga, Improved Bounds for the Symmetric Rendezvous

Value on the Line Operations Research 56(3), 772–782, 2008.
21. E. Kranakis, D. Krizanc and E. Markou, The Mobile Agent Rendezvous Problem in the Ring,

Synthesis Lectures on Distributed Computing Theory, 2010.
22. D.B. Lange and M. Oshima, Seven Good Reasons for Mobile Agents, Communications of the

ACM 42(3), 88–89, 1999.
23. R. Olfati-Saber, J.A. Fax, and R.M. Murray, Consensus and Cooperation in Networked Multi-

Agent Systems, Proc. IEEE 95(1), 215–233, 2007.
24. A. Pelc, Deterministic rendezvous in networks: A comprehensive survey, Networks 59(3),

PP. 331–347, 2012.
25. G. Prencipe, Impossibility of gathering by a set of autonomous mobile robots, Theoretical

Computer Science 384, 222–231, 2007.
26. T. Schelling, The strategy of conflict, Oxford University Press, Oxford, 1960.
27. R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile

Robots (2nd Ed.), Intelligent Robotics & Autonomous Agents Series, MIT Press, 2011.
28. G. Stachowiak, Asynchronous Deterministic Rendezvous on the Line. SOFSEM 2009,

497–508.
29. A. Ta-Shma and U. Zwick, Deterministic rendezvous, treasure hunts and strongly universal

exploration sequences, SODA 2007, 599–608.
30. P. Uthaisombut, Symmetric rendezvous search on the line using moving patterns with different

lengths, Working paper, Department of Computer Science, University of Pittsburgh, 2006.



Chapter 12
Deterministic Symmetric Rendezvous
in Arbitrary Graphs: Overcoming Anonymity,
Failures and Uncertainty

Jérémie Chalopin, Shantanu Das, and Peter Widmayer

Abstract We consider the rendezvous problem of gathering two or more
identical agents that are initially scattered among the nodes of an unknown graph.
We discuss some of the recent results for this problem focusing only on determinis-
tic algorithms for the general case when the graph topology is unknown, the nodes
of the graph may not be uniquely labeled and the agents may not be synchronized
with each other. In this scenario, the objective is to solve rendezvous whenever de-
terministically feasible, while optimizing on the amount of movement by the agents
or the memory required (for the nodes or the agents) in the worst case. Further we
also investigate some special scenarios such as (i) when the graph contains some
dangerous nodes or, (ii) when there is no consistent ordering on the edges of a node.
We present positive results, complexity analysis and some general techniques for
dealing with such worst case scenarios for the symmetric rendezvous problem.

12.1 Introduction

The problem of rendezvous requires two or more entities (called agents) located in
distinct vertices of a graph, to meet at one vertex of the graph. This problem oc-
curs in many natural contexts [3] and requires different strategies depending on the
scenario and the particular objective. In the original definition of the problem [2],

J. Chalopin (�)
LIF, CNRS & Aix-Marseille University, Marseille, France
e-mail: jeremie.chalopin@lif.univ-mrs.fr

S. Das
BGU & Technion-Israel Institute of Technology, Haifa, Israel
e-mail: shantanu@tx.technion.ac.il

P. Widmayer
Institute of Theoretical Computer Science, ETH Zürich, Zürich, Switzerland
e-mail: widmayer@inf.ethz.ch

S. Alpern et al. (eds.), Search Theory: A Game Theoretic Perspective,
DOI 10.1007/978-1-4614-6825-7__12, © Springer Science+Business Media New York 2013

175

jeremie.chalopin@lif.univ-mrs.fr
shantanu@tx.technion.ac.il
widmayer@inf.ethz.ch


176 J. Chalopin et al.

the objective was to minimize the expected time to meet. If we are restricted to de-
terministic strategies, the objective may be to minimize the worst-case time to meet,
over all possible starting configurations. Moreover if there is no common notion of
time, we may wish to minimize the total distance traveled by the agents until ren-
dezvous. In some cases, there are other parameters to consider, for example the size
of memory used by the agents or the number of additional resources (e.g. flags for
marking) used by the agents.

This chapter considers the deterministic rendezvous of two or more agents in
a finite connected graph, placed initially at locations chosen by an adversary. The
agents are assumed to be identical and they execute the same algorithm, without
global knowledge about the graph. Other than finiteness and connectivity, we make
no other assumptions about the topology of the graph. In an arbitrary connected
graph, it is not always possible to solve rendezvous using deterministic means. For
instance consider a ring of size n, where two agents are placed at a distance of n/2
from each other; if each agent follows the same strategy (any combination of moving
clockwise, counterclockwise or remaining stationary) the agents may forever be
the same distance apart from each-other. In most cases, the ability to distinguish
vertices in some way allows the agents to rendezvous even if they are using identical
strategies. Given any graph and the starting locations of the agents in the graph, it
is possible to determine whether rendezvous is possible for the particular instance.
Thus, it is possible to characterize the instances where deterministic rendezvous
is feasible. The prior knowledge of certain graph parameters (such as the size or
diameter) or the ability to mark vertices of the graph also influences the feasibility
of rendezvous.

The model considered here is very generic in the sense that we do not assume
any global clock (the agents act asynchronously), nor do we assume unique identi-
fiers for the nodes of the graph or for the agents (the graph and the agents may be
anonymous); and the graph topology is not known to the agents (i.e. the topology
could be any arbitrary connected graph). In stronger models, e.g. when the agents
have distinct identifiers [11, 16] or, when they are synchronous [12, 13], or if the
environment is restricted to specific topologies such as the ring [19, 22], grid [4]
or tree [13] topologies, then it becomes easier to solve rendezvous and the set of
solvable instances may become relatively larger. For results on rendezvous in such
models, please see the recent survey [23]. Another significant difference between
the results in this chapter and those of [23] is that we allow the agents to meet only
at a node, whereas most results from the above paper also allow meeting on an edge
when two agents are traversing it from opposite sides.1 The rendezvous problem
has also been studied in a completely different model where the agents move in a
continuous terrain [18] or in a graph [21] but have global visibility. Finally there
exist many results on solving rendezvous using randomized algorithms (see [3] for
a survey).

1 This difference implies that in our model it is not possible to rendezvous even on the trivial graph
consisting of two nodes and a single edge.
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This chapter is organized as follows. The next section defines the model and
the problem and describes some basic properties of graphs which we use in solving
rendezvous. Section 12.3 provides a characterization of those instances where deter-
ministic rendezvous is possible. In the rest of the chapter, we focus on the problem
of Rendezvous-with-Detect where agents solve rendezvous whenever possible and
otherwise detect the fact that rendezvous is not possible. Section 12.4 provides some
minimum conditions required for solving the problem. We present algorithms for
solving Rendezvous-with-Detect both for the model where agents are not allowed
to mark nodes (Sect. 12.5) and the model where marking is allowed (Sect. 12.6).
In Sect. 12.7, we consider the model where each agent is provided with a pebble,
allowing it to mark at most one node of the graph. We also discuss how to tolerate
failures and uncertainties in this model. Finally, in Sect. 12.8, we study rendezvous
in dangerous environments where some of the agents may disappear (e.g. they are
devoured by some faulty node), and show how to rendezvous the surviving agents.
Section 12.9 concludes this chapter with a discussion of some open directions.

12.2 The Model and Basic Properties

The Environment. The environment is represented by a simple undirected con-
nected graph G = (V (G),E(G)) and a set Q of mobile agents that are located
in the nodes of G. The initial placement of the agents is denoted by the function
p : Q → V (G). We denote such a distributed mobile environment by (G,Q, p) or
by (G,χp) where χp is a vertex-labeling of G such that χp(v) = 1 if there exists an
agent a such that p(a) = v, and χp(v) = 0 otherwise. For simplicity, we assume the
agents to be initially located in distinct nodes, but the algorithms can be generalized
to the case when two or more agents start from the same location (e.g. if two agents
happen to be initially co-located, they will move together as a single merged agent).

For the rest of this chapter, n = |V (G)| and m = |E(G)| denotes the numbers of
vertices and of edges of G, while k = |Q| denotes the number of agents. We shall
use the words vertex and node interchangeably.

In order to enable navigation of the agents in the graph, at each node v ∈ V (G),
the edges incident to v are distinguishable to any agent a at node v. In other words,
there is a bijective function

δa,v : {(v,u) ∈ E(G) : u ∈V (G)}→ {1,2, . . .d(v)}

which assigns unique labels to the edges incident at node v (where d(v) is the degree
of v). The function δa = {δa,v : v ∈ V (G)} is called the local orientation or port-
numbering2 and it is usually assumed that all agents have the same consistent port-
numbering (i.e. δa = δ , ∀a ∈ Q). In Sect. 12.7.2, we shall consider the special case
when this is not true. For the rest of the paper, we assume a common port-numbering
δ (and thus remove the subscript a).

2 The labels on the edges may correspond to port numbers on a network
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The vertices of G are labeled over the set of symbols L by λ : V (G)→ L which is
the labeling function. However, note that this labeling is not necessarily injective, i.e.
two vertices may have the same label. This means that we must design algorithms
that work for any such labeling, and in particular for the constant labeling which
labels all nodes with the same label c ∈ L (in this case, the nodes of the graph are
said to be anonymous).

The environment is thus represented by the tuple (G,λ ,Q, p,δ ) or equivalently
by (G,λ ,χp,δ ). In case the nodes of the graph are anonymous, we shall omit λ .

The Agents. Each agent a starts from the node p(a), called the homebase of a, and
executes a sequence of steps. The agents start from the same initial state but may
not necessarily start at the same time, and every action they perform (computing,
moving, etc.) takes a finite but otherwise unpredictable amount of time (i.e. the
actions of the agents are not synchronized). The actions that an agent a located at
a node v can perform depend on the state of the agent and the state of the node v
(including the degree of v, the label of v, and the presence of other agents or marks
left by other agents). An agent can see another agent only when they are both located
at the same node. However, an agent may not even detect the presence of another
agent if both are traversing the same edge. Two agents may traverse the same edge
at different speeds; thus if agents a and b start traversing the same edge (u,v) one
after the other, it is possible that agent b arrives at the other end-point earlier than
agent a.

Communication model: Whiteboards and Tokens. As mentioned before, two
agents may communicate (i.e. exchange information) directly only when they are
at the same node. To facilitate the task of rendezvous, sometimes the agents may
be allowed to leave marks on a node as a signal for other agents. In the white-
board model, the agents communicate by reading and writing information on public
whiteboards locally available at the nodes of the network. Each node v ∈ G has a
whiteboard (which is a shared region of its memory) and any agent visiting node v
can read or write to the whiteboard. Access to the whiteboard is restricted by fair
mutual exclusion, so that at most one agent can access the whiteboard of a node at
the same time, and any requesting agent will be granted access within finite time.

A more restrictive model is the token model, where no whiteboards are available
but each agent has one or more identical tokens (sometimes called pebbles) to mark
nodes. An agent that contains a token can place it on a node v before leaving the
node; this token will be visible to any agent visiting node v, i.e. the visiting agent
can determine whether or not there is a token at that node. Similar to the whiteboard
model, we assume mutually exclusive access to node; Thus two agents may not
place their tokens at the same node simultaneously, they must do so sequentially.
The tokens are moveable, i.e. an agent can pick up a token, carry the token and
place it on a different node that the agent visits.

Cost Measures. The cost of an algorithm can be the time taken until rendezvous
is achieved. Since we consider the actions of the agents to be asynchronous, a more
useful measure for the efficiency of the algorithm is the amount of movement made
by the agents, called the move complexity. In other words, whenever an agent
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traverses an edge of the graph, this incurs a unit cost and the total cost of the
algorithm is the total number of edge-traversals made by all the agents together,
in the worst case execution of the algorithm.

Other than optimizing on the time or the movement cost, one can consider the
space cost of an algorithm e.g. the memory that needs to be allocated at each node of
the graph, or the memory used by an agent during the algorithm. Thus, we associate
three different cost measures for a rendezvous algorithm: (i) Movement Cost, (ii)
Node Memory, and (iii) Agent Memory.

Problem Definition

Definition 1 (Rendezvous). Given a distributed mobile environment (G, λ , Q, p,
δ ), an algorithm A is said to solve rendezvous if for any distributed execution of
the algorithm by the agents, there exists a node v ∈ G such that all agents in Q
eventually reach node v and do not move thereafter.

In the definition above, we do not require the agents to terminate explicitly (i.e.
an agent may not be aware when rendezvous has been achieved). Note that even
though we consider only deterministic algorithms, the outcome of the algorithm may
depend on the particular sequence of events and actions during the (asynchronous)
execution of the algorithm by the individual agents. We define a distributed execu-
tion of an algorithm as one possible sequence of actions and events that is consistent
with the environment and the algorithm.

We say that rendezvous is feasible in (G,λ ,Q, p,δ ), if and only if there exists a
deterministic algorithm that solves rendezvous in (G,λ ,Q, p,δ ).

Definition 2 (Rendezvous-with-Detect). Given a distributed mobile environment
(G,λ ,Q, p,δ ), an algorithm is said to solve Rendezvous-with-Detect if the follow-
ing holds for any distributed execution of the algorithm. If rendezvous is feasible in
(G,λ ,Q, p,δ ), then all agents in Q must eventually terminate at one unique node
v of G and if not, then each agent must terminate in its homebase and output “Ren-
dezvous is not solvable”.

When there are more than 2 agents, i.e. |Q| > 2, we can define the concept of
partial rendezvous where at least w < |Q| agents are required to gather at a node of
the graph. This will be discussed further in Sect. 12.8.

Properties of Graphs: Coverings and Universal Exploration Sequences

The notions presented in this section were introduced in [6]. Any connected (undi-
rected) graph G can be represented by a strongly connected symmetric digraph
D = Dir(G), where each edge of G is represented by a pair of symmetric arcs in
D, one in each direction. In this section, we present some definitions and results re-
lated to directed graphs and their coverings, which we use to characterize the solv-
able instances for rendezvous. A directed graph (digraph) D = (V (D),A(D),sD, tD)
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possibly having parallel arcs and self-loops, is defined by a set V (D) of vertices,
a set A(D) of arcs and by two maps sD and tD that assign to each arc two ele-
ments of V (D) : a source and a target (in general, the subscripts will be omitted).
A symmetric digraph D is a digraph endowed with a symmetry, that is, an invo-
lution Sym : A(D) → A(D) such that for every a ∈ A(D),s(a) = t(Sym(a)) and
Sym(Sym(a)) = a. Given a simple connected graph G, a vertex labeling function
λ , and a port-numbering δ , we will denote by (Dir(G),λ ,δ ) the labeled digraph
constructed in the following way. The vertices of Dir(G) are the vertices of G and
they have the same labels as in (G,λ ). Each edge {u,v} is replaced by two arcs
a(u,v),a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v,
δ (a(u,v)) = (δu(v),δv(u)), δ (a(v,u)) = (δv(u),δu(v)) and Sym(a(u,v)) = a(v,u) (See
Fig. 12.1).

Fig. 12.1 A graph G, the corresponding digraph Dir(G), and its minimum-base H

A covering projection is a homomorphism ϕ from D to D′ satisfying the fol-
lowing: (i) For each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v)= v′= t(a′) there exists a unique arc a in A(D) such that t(a)= v and ϕ(a) = a′.
(ii) For each arc a′ of A(D′) and for each vertex v of V (D) such that ϕ(v) = v′= s(a′)
there exists a unique arc a in A(D) such that s(a) = v and ϕ(a) = a′. A symmet-
ric digraph D is a symmetric covering of a symmetric digraph D′ via a homomor-
phism ϕ if ϕ is a covering projection from D to D′ such that for each arc a ∈ A(D),
ϕ(Sym(a)) = Sym(ϕ(a)).

A digraph D is symmetric-covering-minimal if there does not exist any graph
D′ not isomorphic to D such that D is a symmetric covering of D′. The notions of
coverings extend to labeled digraphs in an obvious way: the homomorphisms must
preserve the labeling. Given a simple labeled graph (G,λ ) with a port-numbering δ ,
we say that (G,λ ,δ ) is symmetric-covering-minimal if (Dir(G),λ ,δ ) is symmetric-
covering-minimal. For any simple labeled graph (G,λ ) with a port-numbering δ ,
there exists a unique digraph (D,μD) such that (i) (Dir(G),λ ,δ ) is a symmetric
covering of (D,μD) and (ii) (D,μD) is symmetric-covering-minimal. This labeled
digraph (D,μD) is called the minimum base of (G,λ ,δ ) (See Fig. 12.1).

The main result that we will use from the theory of graph coverings is the fol-
lowing. Given an environment (G,λ ,χp,δ ), if the corresponding labeled digraph
(Dir(G),μG) is not symmetric-covering-minimal, i.e. (Dir(G),μG) covers a smaller
digraph (H,μH), then the vertices of G can be partitioned into equivalence classes,
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each of size q = |V (G)|/|V (H)| such that the vertices in the same class are sym-
metric and indistinguishable from each other. This is also related to the concept of
views introduced in [24]. Nodes having the same view belong to the same equiva-
lence class.

Definition 3. Given a labeled graph (G,λ ) with a port numbering δ , the view of a
node v is the infinite rooted tree denoted by TG(v) defined as follows. The root of
TG(v) represents the node v and for each neighbor ui of v, there is a vertex xi in TG(v)
(labeled by λ (ui)) and an edge from the root to xi with the same labels as the edge
from v to ui in (G,δ ). The subtree of TG(v) rooted at xi is again the view TG(ui) of
node ui.

For traversal of an unknown graph we will use the notion of a Universal Explo-
ration Sequence (UXS) [20]. For any node u ∈ G, we define the ith successor of u,
denoted by succ(u, i) as the node v reached by taking port number i from node u
(where 0 ≤ i < d(u)). Let (a1,a2, . . . ,ak) be a sequence of integers. An application
of this sequence to a graph G at node u is the sequence of nodes (u0, . . . ,uk+1) ob-
tained as follows: u0 = u, u1 = succ(u0,0); for any 1≤ i≤ k, ui+1 = succ(ui,(p+ai)
mod d(ui)), where p is the port-number at ui corresponding to the edge {ui−1,ui}.
A sequence (a1,a2, . . . ,ak) whose application to a graph G at any node u contains
all nodes of this graph is called a UXS for this graph. A UXS for a class of graphs is
a UXS for all graphs in this class. For any positive integers n,d, d < n, there exists
a UXS of length O(n3d2 logn) for the family of all graphs with at most n nodes and
maximum degree at most d [1].

12.3 Feasibility of Deterministic Rendezvous

Deterministic rendezvous is not always possible in arbitrary graphs, as we have seen
before (recall the example of the two agents symmetrically placed in a ring). Given
an environment (G,λ ,Q, p,δ ), the feasibility of rendezvous may depend on the
structure of G, the labeling λ , the port numbering δ as well as the initial place-
ment of the agents. When the agents do not have the capability of marking nodes,
the feasibility of rendezvous depends on the labeled graph (G,λ ,δ ) and not on the
starting locations. This is equivalent to the feasibility of electing a leader among the
nodes of a graph, a well-studied problem for which there exists a known characteri-
zation of solvable instances. The following properties are based on the results from
[5, 24, 25].

Theorem 1. Rendezvous is solvable in (G,λ ,δ ) irrespective of the number of agents
and their starting locations if and only if (G,λ ,δ ) is symmetric-covering-minimal
with respect to any covering projection that preserves the edge-labeling δ and the
node-labeling λ .

On the other hand, if the agents are allowed to mark the nodes of the graph then
the placement p of the agents in G influences the solvability of rendezvous. In this
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case, we can assume that the starting locations of the agents are distinctly labeled
by the function χp and thus consider the node-labeling λ ′ = λ × χp.

Theorem 2. Rendezvous is solvable in the environment (G,λ ,Q, p,δ ) if and only if
(G,λ ′,δ ) is symmetric-covering-minimal with respect to any label-preserving cov-
ering projection, where λ ′ = λ × χp.

We can assume that the edge-labeling and node labeling of the graph is given
by an adversary. Thus, it makes sense to characterize the family of graphs where
rendezvous is possible for any labeling (assuming that the labeling provides a local
orientation at each node).

Theorem 3. Given any connected graph G, the following statements are equivalent:

1. For any port-numbering δ , and any placement χp of agents in G, rendezvous
can be solved in (G,χp,δ );

2. For any port-numbering function δ , each vertex of (G,δ ) has a distinct view;
3. There is no partition V1,V2, . . .Vk of V (G) with k ∈ [1, |V (G)|− 1] such that for

any distinct i, j ∈ [1,k], the following conditions hold:

(i) G[Vi] is d-regular for some d, and if d is odd, it contains a perfect matching,
(ii) G[Vi,Vj] is regular.

4. Dir(G) is symmetric-covering-minimal.

12.4 Impossibility Results

From the results of the previous section, we know rendezvous can be solved only
in an environment (G,λ ,Q, p,δ ) where the corresponding labelled graph (G,λ ′,δ )
is symmetric-covering minimal. Given such an instance, it is possible to construct
another instance (H,λ ′

H ,δH) such that |V (H)| = 2|V (G)| and (H,λ ′
H ,δH) covers

(G,λ ′,δ ), and thus, rendezvous is not possible in (H,λ ′
H ,δH). Any algorithm that

solves Rendezvous-with-Detect must be able to distinguish between these two in-
stances. It is not possible to distinguish between these two instances unless the
agents are provided with some prior knowledge which allows them to deduce the
size of the graph with some accuracy. In fact, if the agents know an upper bound B
such that B < 2n this is already sufficient to solve Rendezvous-with-Detect. (Recall
that for any graph H that covers G and is not isomorphic to G, the size of H must be
strictly a multiple of the size of G and thus |V (H)| is at least twice of |V (G)|.)
Theorem 4. The knowledge of only an arbitrary upper bound on n is not sufficient
for solving Rendezvous-with-Detect in an environment (G,λ ,Q, p,δ ).

We now consider the move complexity of Rendezvous-with-Detect. It is easy
to see that each edge of the graph must be traversed by at least one agent. More-
over, in a symmetric environment (e.g. a ring with agents placed equidistant apart)
each agent may need to make O(n) moves before it can detect the impossibility of
rendezvous. This gives us the following lower bound.

Theorem 5. Solving Rendezvous-with-Detect with k agents in an arbitrary graph of
n nodes and m edges requires Ω(m+ nk) moves in the worst case.
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12.5 Rendezvous Without Marking

In this section we assume that the agents have no means of marking the nodes of
the graph (i.e. no whiteboards or tokens are available). The knowledge of n (or, at
least some upper bound on it) is required to even explore the graph unless the graph
happens to be a tree. In asymmetric trees, rendezvous is possible without marking
and without knowledge of n. It is possible to traverse an anonymous tree and find
the central edge or central node in the tree (every tree has either a central node or a
central edge). The usual technique for rendezvous is to gather at the central node or
at one of the endpoints of the central edge. In the latter case, the agent needs to do
a comparison of the subtrees at either end of the central edge e, in order to choose
among the two end-points of e. This problem has been studied for agents having
small memory (see Sect. 12.5.2).

12.5.1 Agents Having Unbounded Memory

When an upper bound on n is known a priori, and the agents have sufficient memory,
it is possible to solve rendezvous in an arbitrary graph (G,λ ,δ ) by constructing
the minimum-base of the labeled graph and then moving to a unique node of the
minimum-base. Note that according to Theorem 1, rendezvous is solvable in this
case only if (G,λ ,δ ) is covering minimal. If that condition is satisfied then the
constructed minimum-base is isomorphic to G and thus all the agents will reach the
same node, hence solving rendezvous.

In case the exact value of n is provided, it is possible to use the same algorithm to
check for symmetric-covering-minimality and thus, solve Rendezvous-with-Detect.
We now discuss the algorithm (see [8] for more details). The first part of the algo-
rithm is a traversal of the graph visiting every vertex of G at least once. The second
part is the classification of the visited vertices into equivalence classes. Initially all
vertices are put in the same class and in subsequent rounds, the algorithm refines
the classes until each class corresponds to one vertex of the minimum-base. For the
traversal we use a UXS U(N,d) where N ≥ n is an upper bound on n and d is some
upper bound on the maximum degree of the graph G. We now describe the class
refinement process.

Given a graph G and node u of G and a sequence of edge-labels

Y = ((p1,q1),(p2,q2), . . . ,(p j,q j)),

we say that Y is accepted from u if there exists a path P = (u = u0,u1, . . . ,u j) in G
such that δ (P) = Y , i.e. for each i, 1 ≤ i ≤ j, (pi,qi) = δ (ui−1,ui). For any k > 0,
two vertices u,v that have the same view up to depth k are said to be k-equivalent; we
denote it by u∼k v. The k-class of u is the set of all vertices that are k-equivalent to u
and this set is denoted by [u]k. Given any two k-classes C,C′, a (C,C′)-distinguishing
path is a sequence of edge-labels YC,C′ = ((p1,q1),(p2,q2), . . . ,(p j,q j)) such that
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Algorithm 1: Class-Refinement(N)
Let v1,v2, . . .vt be the sequence of nodes visited by U(N,d), possibly containing duplicate
nodes ;
Follow U(N,d) and for each node vi do

Store the labels of each edge incident to vi;

Compute the number of 1-classes and store a distinguishing path for each pair of distinct
classes ;
k := 2;
repeat

Follow U(N,d) and for each node vi do
for each edge (vi,w) incident to vi do

Compute the (k−1)-class of w (using the distinguishing paths);
Store the label of (vi,w) and the index of the (k−1)-class of w ;

Compute the number of k-classes and store a distinguishing path for each pair of
distinct k-classes ;
Increment k;

until the number of k-classes is equal to the number of (k−1)-classes;
Move to a vertex of class one;

YC,C′ is accepted from each node u ∈C and it is not accepted from any node v ∈C′.
Given any two distinct k-classes C,C′, either there exists a (C,C′)-distinguishing
path of length at most k, or there exists a (C′,C)-distinguishing path of length at
most k.

For k = 1, it is easy to determine the k-class of any node v by traversing each
edge incident to v and noting the labels. From this information, one can find the
distinguishing paths for any pair of 1-classes. For k ≥ 2, it is possible to identify the
k-classes and the corresponding distinguishing paths (from knowledge of the k− 1
classes) using the properties below.

Property 1. For k ≥ 2, two nodes u and v belong to the same k-class, i.e. [u]k = [v]k,
if and only if (i) [u]1 = [v]1 and (ii) for each i, 0 ≤ i ≤ degG(u) = degG(v), the ith
neighbor ui of u and the ith neighbor vi of v belong to the same (k− 1)-class and
δ (u,ui) = δ (v,vi) = (i, j), for some j ≥ 0.

Theorem 6 ([8]). Algorithm 1 builds the quotient graph of any graph of size n ≤ N
in O(|U(N,d)| · n3d) moves and requires O(n3 logn+ |U(N,d)| logd) memory for
each agent.

There exists a UXS for graphs of size at most N and maximum degree at most d,
that is of length O(N3d2 logN) [1]. Using such a sequence for the traversal gives us
an algorithm of move complexity O(N3n3d3 logN) for solving rendezvous.

12.5.2 Agents Having Little Memory

In the algorithms discussed above, the agent needs to have enough memory to
construct and to remember a map of the graph or a part of it. In this section we
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consider the effect of limiting the memory of the agent. The task of rendezvous in
tree networks has been studied in synchronous environments for agents with small
memory and it was shown that logarithmic memory is required for rendezvous even
on the line [13]. Note that this lower bound does not apply directly in our setting
since the set of solvable instances of rendezvous is strictly larger in a synchronous
environment than in an asynchronous one when the agents cannot mark the vertices.
However, it is well known that o(logn) memory is not sufficient for exploration of
an arbitrary graph with termination, if marking is not allowed. Consequently, if the
agents cannot mark the nodes, one can show that Ω(logn) bits of memory are nec-
essary to solve rendezvous of two agents in an arbitrary graph in an asynchronous
environment.

In a synchronous environment without the ability to mark nodes, it is known [12]
that O(logn) memory is sufficient for rendezvous of two agents starting on asym-
metric positions in an arbitrary graph (even if the agents do not necessarily start at
the same time). The idea of the algorithm in [12] is to obtain a unique ordering on
distinct equivalence classes of nodes (without having to construct the views of the
nodes). Each agent can then use the index given to its initial position as its unique
identifier and rendezvous can be achieved using the standard algorithm for agents
having distinct identifiers in synchronous environments.

In the asynchronous setting, when the agent cannot mark nodes, we know that the
starting positions of the agents cannot be used to break symmetry. Thus, rendezvous
is solvable only if (G,λ ,δ ) is symmetric-covering-minimal. If each agent initially
knows an upper bound on the size of the graph, the agent can execute the first part
of the algorithm of [12] to distinguish between equivalence classes of nodes and
to order them. Thereafter, each agent could move to a node that belongs to the
class appearing first in this ordering. If (G,λ ,δ ) is symmetric-covering-minimal,
this node is unique and the agents would have achie

Theorem 7. Agents with O(logn) memory can solve rendezvous in any environment
(G,λ ,δ ) where deterministic rendezvous is feasible without marking.

12.6 Rendezvous with Marking

In this section, we assume that the agents can write on whiteboards present in the
nodes of G. If we assume no bounds on the memory available to the agent or at a
node then there is an optimal algorithm to solve rendezvous (or Rendezvous-with-
Detect) for two agents using Θ(m) moves. For the general case of k ≥ 2 agents, this
generalizes to an algorithm that requires O(mk) moves to solve Rendezvous-with-
Detect and O(m logk) to solve rendezvous.

The algorithm proceeds in two phases. In the first phase, the agents construct
a spanning forest of the graph using a distributed DFS-type algorithm (described
below as procedure DDFS). At the end of this procedure there is exactly one agent
in each tree in the forest and each agent a has a map of the tree that it belongs to (we
call this the agent’s territory Ta). The second phase of the algorithm is a competition
between neighboring agents, during which each losing agent merges its territory
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with the corresponding winning agent. This process is repeated with the objective
of eventually forming a single tree spanning the graph G so that all the agents gather
at the root of this spanning tree. We show that this is always possible whenever the
condition of Theorem 2 is satisfied.

Procedure DDFS: An agent A starts from its homebase a depth-first search traver-
sal marking the nodes that it visits (unless they are already marked) and labeling
them with numbers 1,2,3, . . . etc. Each node marked by the agent and the edge used
to reach it are added to its tree. If the agent reaches an already marked node, it back-
tracks to the previous node and tries the other edges incident to the node. The agent
stops when there are no unexplored edges incident to the nodes of its tree. This tree
is the territory TA of the agent.

Partial-view (PV): Based on the territory of an agent, we define the Partial-View
PVA of an agent A having territory TA, as the finite rooted tree (see Fig. 12.2), such
that: (i) The root corresponds to the homebase v0 of agent A. (ii) For every other
node vi in TA, there is a vertex xi in PVA. (iii) For each edge (vi,v j) in TA, there is
an edge (xi,x j) in PVA. (iv) For each outgoing edge e = (vi,ui) such that vi ∈ TA

but e /∈ TA, PVA contains an extra vertex yi (called an external vertex) and an edge
ê = (xi,yi) that joins xi to it. (v) Each edge in PVA is marked with two labels, which
are same as those of the corresponding edge in G. (vi) Each vertex xi in PVA is
labeled with λ (vi) and χp(vi), where vi is the node in G corresponding to xi. (vii)
Each vertex is also labeled with the numeric identifier assigned to the corresponding
node during procedure DDFS.
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Fig. 12.2 Territories and Partial-Views: (a) A graph G with ten nodes and two agents A and B
(whose territories are marked by bold edges). (b) The Partial-View PVA for agent A

The algorithm proceeds by comparing the partial-views of neighboring agents
(we use a fixed ordering on the partial-views). We say that an agent A is a neighbor
to agent B, if there exists an edge (u,v) such that u ∈ TA, (u,v) /∈ TA and v ∈ TB.
By this definition, an agent may be its own neighbor. The communication between
neighbors works as follows. To send any information w, the agent writes w on each



12 Deterministic Symmetric Rendezvous 187

whiteboard of its territory (function “WRITE-ALL”). To read the partial-view of
neighboring agents, an agent visits each external node x and reads the contents of the
whiteboard at x (function “READ-PV”). In any round i, if agent A reads a partial-
view PVi,x greater than its own partial-view PVi,A in this round, then agent A is
defeated (i.e. it becomes passive and does not participate in the algorithm anymore)
and the edge connecting node x to the tree TA is used to merge the two trees. This
process is repeated for k iterations or until the territory of an agent spans the whole
graph.

The algorithm assumes the prior knowledge of k = |Q|. Alternately if the value
of n is known (but not k) then the algorithm may be modified accordingly to use
this information. In this case, the main loop of the algorithm will be executed for
at most n iterations and the agent will terminate the algorithm successfully if its
territory contains n nodes.

Algorithm 2: Make-Tree(k)
Execute procedure DDFS to construct the territory TA;
PV1,A ← COMPUTE-PV(TA) ;
for phase i = 1 to k do

if Number of Agents in TA is k then
Collect all agents to root;
Return(“Success”);

WRITE-ALL(PVi,A , i);
S ← READ-PV (i);
State ← COMPARE-PV(PViA , S);
if State = Passive then

SEND-MERGE(i);
WRITE-ALL(“Defeated”, i);
Return to homebase and execute WAIT();

else
RECEIVE-MERGE(i);
execute UPDATE-PV() and continue;

WRITE-ALL(“Failure”);

Lemma 1 ([14]). Algorithm Make-Tree solves Rendezvous-with-Detect using O(mk)
moves in total and requires O(m logn) whiteboard memory for each node.

A modified version of the algorithm solves rendezvous for all solvable instances
in at most O(m logk) moves. The only modification is during the comparison of
the partial-views; if the agent A finds that all neighboring agents have the same
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Partial-view, then agent A returns to its homebase and waits (instead of continuing
with the competition rounds for k iterations). This algorithm would not have an
explicit termination.

Another possible modification to the algorithm is to reduce the memory re-
quired for the whiteboards (see [14]). If the whiteboards at each node are limited
to O(logn) bits, then a modified version of Algorithm Make-Tree can be used to
solve Rendezvous-with-Detect using O(logn) bit whiteboards and O(m2k) moves
in total. The idea of this algorithm is to perform the comparisons of partial-views
by traversing the territories of the neighbors. Thus the agents have to perform addi-
tional moves, but the only information that we need to write on the whiteboards is
the label assigned to the node and a link to its parent in the tree.

12.7 Rendezvous Using Tokens

In this section we consider the rendezvous problem in the token model where each
agent has a token which they can place on any node they visit. Note that tokens used
by all agents are identical (and thus indistinguishable). As opposed to the previous
section, there are no public whiteboards on the nodes. If every agent puts its token on
its starting location, we have a bicoloring on the nodes of the graph representing the
function χp on V (G). The agent can now execute Algorithm 1 with the following
modification. The initial classification partitions the nodes into two classes–those
that contain a token and those that do not! The algorithm will succeed in solving
rendezvous whenever the conditions of Theorem 2 are satisfied. Moreover, the algo-
rithm can solve Rendezvous-with-Detect, if the exact value of n is known. However
this algorithm is not efficient in terms of the moves complexity as we have seen. We
present below a different algorithm which is more efficient [8].

12.7.1 Rendezvous with a Single Unmovable Token

The algorithm for rendezvous presented in this section is for two agents, though
the same idea may be used to rendezvous any k ≥ 2 agents using a more involved
algorithm. We assume that an agent always places the token at its starting loca-
tion. First, suppose there is a single agent exploring a graph G. The fact that the
starting node r of the agent is marked and can be distinguished from other nodes,
makes it easier to perform an exploration of G. The agent can perform a breadth-first
traversal building a BFS-tree T rooted at r. During the traversal, whenever the agent
explores a new edge and reaches a node v, it checks whether v is same as some
node u in its tree. This can be done by successively applying the label-sequences
for the back-paths from each node u ∈ T to the root r, and checking if one of these
hits the marked node. Based on this idea, we have an algorithm for building a map
of G with a single agent starting from a unique marked homebase in G (see Algo-
rithm 3). The algorithm maintain a BFS-tree T containing the visited nodes and a
data structure called ROOT_PATHS that stores the edge-labeled path P in T from



12 Deterministic Symmetric Rendezvous 189

any node v to the homebase r. For such a stored path P, Start(P) refers to the node
v. For any path P = (u0,u1, . . .ut) in the tree T , the label sequence of path P is
Λ(P) = (δ (u0,u1), . . .δ (uk−1,ut)). Other than the tree T , the algorithm also main-
tains the cross-edges which together with T , give the complete map of G.

Algorithm 3: BFS-Tree-Construction
Map := T := {r} ;
Add r to Queue;
ROOT_PATHS := {φ};
while Queue is not empty do

Get next node v from Queue and go to v using Map;
while node v has unexplored edges do

Traverse the next unexplored edge e = (v,u);
for each path P ∈ ROOT_PATHS do

Apply sequence Λ(P) at node u ;
if successfully reached a marked node then

Add to Map a cross-edge from v to Start(P);
Update the number of explored edges at the node Start(P);
Return to node v using T and exit Loop;

else
Backtrack to node u ;

if All path sequences failed to reach a marked node then
Add a new node u to T and Map ;
Add edge (v,u) to T and Map ;
Insert u to Queue ;
ROOT_PATHS := ROOT_PATHS ∪ PathT (u, r) ;
Backtrack to node v ;

When two identical agents execute the Algorithm 3 from marked homebases, it
is clear that the agents will not have a map of the complete graph. However, the
following properties are satisfied.

Lemma 2 ([8]). During algorithm BFS-Tree-Construction: (i) The graph T con-
structed by each agent will be an acyclic connected subgraph of G, and (ii) if the
maps constructed by the two agents are identical then the views from the two home-
bases are identical.

The tree constructed by an agent in the above algorithm, is similar to the terri-
tory of an agent as in Sect. 12.6. Due to the above properties, we know that when
the maps obtained by the two agents are identical, then rendezvous is not solvable
deterministically. So, we only need to consider the case when the maps are distinct.
In this case if we could compare the maps of the agents, we can elect one of the
agents and the agents could rendezvous at the homebase of the elected agent. This
algorithm (called Algorithm RDVwithToken) was presented in [8] and we have the
following result.
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Theorem 8 ([8]). Algorithm RDVwithToken solves Rendezvous-with-Detect for two
agents on a graph of size n and maximum degree d, and requires O(n4d2) moves by
each agent. Each agent requires a private memory of size O(nd logn).

12.7.2 Tolerating Failures and Uncertainty

In this section we consider two special cases. The first scenario is when tokens
placed by the agent are subject to failures (i.e. they may disappear during the exe-
cution). This problem has been studied for the ring [22] and a solution is provided
for f < k failures, assuming certain conditions on the parameters n and k. A more
general solution for arbitrary graphs is provided in [15] which works if at least one
token does not fail (irrespective of the values of n and k). The idea of the algorithm
is the following. If there are no failures then any standard algorithm (e.g. the one
at the beginning of this section) can be used to determine a unique rendezvous lo-
cation, whenever (G,χp,δ ) is symmetric-covering-minimal. On the other hand if
there are 1 ≤ f < k failures, then the agents whose tokens failed are distinguished
from the agents whose tokens are still in their homebase. The former agents (called
Runners) traverse the graph and carry information to each marked homebase, while
the latter agents (called Owners) wait at their homebase to receive information from
each Runner agent. Using this information, each Owner agent can determine the lo-
cation of the missing tokens and thus reconstruct a map of the original environment,
and solve rendezvous. The challenging part of the algorithm is to switch from the
procedure for the fault-free scenario to the procedure for the faulty scenario, in case
faults do occur at arbitrary times during the execution of the algorithm.

Another scenario that has been studied recently is the rendezvous of agents in
graphs having no common port-numbering [7]. Note that all the algorithms consid-
ered so far are based on the fact that any two agents have the same view from any
given vertex v ∈ G. If we consider the situation where two agents a and b may have
distinct port-numbering functions δa and δb, then this assumption is no longer true.
In this case, any agent a may navigate in the graph using its own port-numbering δa

and build a map representing the minimum-base of the environment (G,λ ,χp,δa)
but the maps built by the two agents may not necessarily be identical (though they
will be isomorphic). Thus, the agents may not agree on a unique ordering of the
vertices and rendezvous is not possible without any additional assumptions. Sur-
prisingly, if the agents are provided with an additional token (i.e. each agent now
has 2 identical tokens) then it is possible to solve Rendezvous-with-Detect in all
environments that satisfy the conditions of Theorem 3. The algorithm that achieves
this, works as follows. Once an agent a has built a map of G, the vertices of G
are partitioned into automorphism classes (ignoring the port-numbering δa). The
agents then iteratively refine this partitioning by a process of selective marking of
the nodes, eventually obtaining a total order on the set of nodes. During each phase
of this iterative process, an agent uses one token to mark the selected node and the
other token to synchronize with other agents. The full details of the algorithm can
be found in [7] and we only state the main result here.
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Theorem 9 ([7]). Two tokens per agent are necessary and sufficient to solve
Rendezvous-with-Detect in the absence of common port-numbering in any envi-
ronment (G,λ ,Q, p) such that (Dir(G),λ ′) is symmetric-covering minimal where
λ ′ = λ × χp.

12.8 Rendezvous in Dangerous Graphs

We now consider the scenario where some of the nodes of the graph may be dan-
gerous and inaccessible to the agents. This is inspired by communication networks
where some nodes or links between nodes may develop faults. If an agent attempts
to traverse a faulty link or to move to a faulty node it simply disappears (i.e. the agent
is destroyed without leaving a trace). Given a graph with multiple faulty nodes, we
can merge them all into one dangerous node x, called the black hole. The question
of whether rendezvous can be solved in a graph containing a black hole was first
studied in [17] where an algorithm was provided for ring graphs containing a single
black hole. We study the problem for arbitrary graphs with both faulty nodes and
faulty edges, where the agents do not have prior knowledge of the graph topology or
the possible location of faults. Throughout this section we assume the whiteboard
model of communication, i.e. the agents may write any information on the nodes
they visit.

Since the location of a black hole is unknown and cannot be determined unless
an agent falls into it and is destroyed, this means that rendezvous of all agents is
not possible. Thus, the objective is to achieve rendezvous of as many agents as pos-
sible while avoiding the black hole. It can be shown that in an unknown arbitrary
graph with τ links that lead to a black hole, it is not possible to solve rendezvous
of more than k− τ agents [9]. Note that no agent starts from the black hole (i.e. the
homebases are distinct from the black hole node). For agents starting from arbitrary
locations, rendezvous of any two agents is possible only if the graph obtained af-
ter removing the black hole is connected. We now present some other conditions
that must be satisfied for feasibility of deterministic rendezvous in an environment
(G,λ ,Q, p,δ ,η) where the function η : E(G) → {0,1} denotes which edges are
safe (η(e) = 1) and which are faulty (η(e) = 0). Given a graph with multiple faulty
edges and faulty nodes, we can replace each faulty edge (u,v) with two edges (u,x)
and (v,y) leading to two distinct (dangerous) nodes x and y respectively. We denote
by τ , the number of faulty links (each faulty edge accounts for two faulty links).

We define the extended-map of the environment (G,λ ,Q, p,δ ,η) as the labeled
digraph (H,μH) such that, H consists of two disjoint vertex sets V1 and V2 and a set
of arcs A as defined below:

• V1 =V (G);
• μH(v) = (λ (v),χp(v)), ∀v ∈V1;
• For every safe edge e = (u,v) ∈ E(G), there are two arcs a1,a2 ∈ A such that

s(a1) = t(a2) = u, s(a2) = t(a1) = v, and μH(a1) = (δu(e),δv(e)), μH(a2)
= (δv(e),δu(e)).
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• For every faulty edge e = (u,v), there are vertices u′ and v′ ∈V2 with μH(u′) =
μH(v′)=−1 and arcs (u,u′),(u′,u),(v,v′) and (v′,v) ∈A with labels (δe(u),0),
(0,δe(u)), (δe(v),0), and (0,δe(u)) respectively;

Fig. 12.3 The extended-map of an environment containing faulty edges (marked in dashed lines)
and black-holes (colored black)

The extended-map can be thought of as a canonical representation of the envi-
ronment (see Fig. 12.3). It can be shown that any execution of a deterministic algo-
rithm on the environment (G,λ ,Q, p,δ ,η) can be simulated on the extended-map
(H,μH). Based on this we have the following result from [9].

Theorem 10. It is not possible to rendezvous k− τ agents in an environment whose
extended-map is not symmetric-covering minimal.

In the following we will briefly discuss an algorithm that solves the rendezvous of
k−τ agents in an environment that satisfies the conditions above. We present below
a lower bound on the moves complexity of any algorithm solving rendezvous of
k− τ agents (see [9] for a proof).

Theorem 11. For solving rendezvous of (k− τ) agents in an environment (G,λ ,Q,
p,δ ,η) without any knowledge other than the size of G, the agents need to make at
least Ω(m(m+ k)) moves in total.

We can ensure that no more than one agent dies while traversing the same link,
using the cautious walk technique as in [17]. At each node, all the incident edges are
considered to be unexplored in the beginning. Whenever an agent A at a node u has
to traverse an unexplored edge e = (u,v), agent A first marks link δu(e) as “Being
Explored” and if it is able to reach the other end v successfully, it immediately
returns to node u and re-marks the link δu(e) as “safe”. During the algorithm we
follow the rule that no agent ever traverses a link that is marked “Being Explored”.
This ensures no more than τ agents may die during the algorithm.

The algorithm is based on similar ideas as in Algorithm 2. Recall that the algo-
rithm proceeded with each agent exploring a part of the graph and marking its terri-
tory, followed by comparison between the territories of agents over multiple rounds.
In the present algorithm, several improvisations are required to account for the fact
that some agents may die during the execution of the algorithm. First of all, rounds
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of exploration are alternated with rounds of competition between agents. During an
exploration round, an agent may fall into a black hole and die, without completing
the process of marking its territory. Thus, during the competition an agent can win
over another agent based on either comparison of territories or comparison of round
number (a dead agent would not be able to increment its round number). When an
agent A wins the territory of another agent (that may have died) there may be unex-
plored edges incident to this territory and the agent A needs to expand the territory
during the next exploration round. Recall that it is not possible to distinguish be-
tween a dead agent and an agent that is slow in moving along an edge. This means
that an agent cannot wait for another agent to complete its exploration. Thus, there
could be multiple agents expanding a given territory simultaneously. Those agents
which are in the same territory need to coordinate with each other in the exploration
and competition tasks. This is done by communicating using messages written on
the whiteboard of the root node. The algorithm ensures that there is always a unique
root node in every territory during the execution of the algorithm.

At any stage of the algorithm, there are teams of agents, each team possessing a
territory which is a connected acyclic subgraph of G (disjoint from other territories).
Each team of agents tries to expand its territory until it spans a majority of the nodes.
Once a team is able to acquire more than half the nodes of the network, it wins and
agents from all other teams join the winning team to achieve rendezvous. We call
this algorithm as Algorithm RDV_BH.

Theorem 12 ([9]). Algorithm RDV_BH correctly solves rendezvous for k−τ agents
in any network whose extended-map is symmetric-covering minimal provided the
agents initially knows a bound B such that n ≤ B < 2n. The moves complexity of
algorithm RDV_BH is O(m(m+ k)).

The above result implies that the algorithm described in this section is optimal in
terms of the moves complexity.

12.9 Conclusion

We considered the problem of symmetric asynchronous rendezvous in graphs whose
nodes are anonymous and whose edges are locally ordered. Since the agents are
identical and follow the same deterministic algorithm, solving the problem requires
breaking the symmetry and finding a unique location to meet. This is possible only
if there is some asymmetry in the structure of the graph (for agents that cannot
mark the graph) or if the agents start from asymmetric locations within the graph
(in the case when agents are allowed to mark their starting location). It is possible
determine for exactly which instances rendezvous is feasible and then solve ren-
dezvous in those cases. We presented solutions for rendezvous with detection and
also discussed techniques for dealing with exceptional situations involving faulty
nodes, token failures and inconsistencies in local labelling of the edges. While all
solutions studied here assume that the edges of the graph are bidirectional, some of
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the techniques could be extended to work for (strongly connected) directed graphs
(e.g. see [10]). In general, solving rendezvous in directed graphs is more difficult
due to the inability of agents to backtrack and this is one of directions for future re-
search. Another open problem is solving rendezvous in dangerous graphs assuming
the weaker model of communication when there are no whiteboards and the agents
are only provided with a few pebbles.
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Chapter 13
Gathering Asynchronous and Oblivious
Robots on Basic Graph Topologies Under
the Look-Compute-Move Model∗

Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra

Abstract Recent and challenging models of robot-based computing systems
consider identical, oblivious and mobile robots placed on the nodes of anonymous
graphs. Robots operate asynchronously in order to reach a common node and remain
with it. This task is known in the literature as the gathering or rendezvous problem.
The target node is neither chosen in advance nor marked differently compared to the
other nodes. In fact, the graph is anonymous and robots have minimal capabilities.
In the context of robot-based computing systems, resources are always limited and
precious. Then, the research of the minimal set of assumptions and capabilities re-
quired to accomplish the gathering task as well as for other achievements is of main
interest. Moreover, the minimality of the assumptions stimulates the investigation
of new and challenging techniques that might reveal crucial peculiarities even for
other tasks. The model considered in this chapter is known in the literature as the
Look-Compute-Move model. Identical robots initially placed at different nodes of
an anonymous input graph operate in asynchronous Look-Compute-Move cycles.
In each cycle, a robot takes a snapshot of the current global configuration (Look),
then, based on the perceived configuration, takes a decision to stay idle or to move to
one of its adjacent nodes (Compute), and in the latter case it makes an instantaneous
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move to this neighbor (Move). Cycles are performed asynchronously for each robot.
This means that the time between Look, Compute, and Move operations is finite but
unbounded, and it is decided by the adversary for each robot. Hence, robots may
move based on significantly outdated perceptions. The only constraint is that moves
are instantaneous, and hence any robot performing a Look operation perceives all
other robots at nodes of the ring and not on edges. Robots are all identical, anony-
mous, and execute the same deterministic algorithm. They cannot leave any marks at
visited nodes, nor can they send messages to other robots. In this chapter, we aim to
survey on recent results obtained for the gathering task over basic graph topologies,
that are rings, grids, and trees. Recent achievements to this matter have attracted
many researchers, and have provided interesting approaches that might be of main
interest to the community that studies robot-based computing systems.

13.1 Introduction

The chapter surveys on recent results in robot-based computing systems. Two or
more robots, starting from distinct initial positions, have to meet at some place and
remain there. The problem is known in the literature as the gathering problem while
sometimes it is referred to as the rendezvous problem.

Different assumptions on the capabilities of the robots as well as on the envi-
ronment where they move, lead to very different scenarios. To have an idea of the
work done during the recent years, it is enough to mention that already five different
surveys deal with such a problem from different perspectives. The first distinction
considers the way the robots may take their decisions in order to move towards
some directions. In fact, randomized algorithms can be applied for this purpose or
full determinism might be required. For the former case, there is a comprehensive
survey book [3] which also includes results contained in an older survey paper [2].
The latter case has captured more attention in recent studies. In particular, for the
case where robots are considered to move along the nodes and edges of an input
graph, the survey paper [25] and in a more extended form [26] present various sce-
narios and techniques for different graph topologies. Whereas, the survey book [24]
focuses on the gathering over ring networks. In the literature, many results also con-
cern the gathering of robots moving on a continuous two-dimensional Euclidean
space have been devised. The interested reader may refer to [8, 15, 20, 27, 29] for
the continuous case. However, a recent trend is to study discrete models like the case
where robots move over graphs rather than the continuous case.

In this chapter, the aim is to provide in more details the strategies applied to
accomplish the gathering task on basic graph topologies like rings, grids, and trees,
under a very specific model that has attracted many researchers during the last years.
Very few of such results are already contained in the aforementioned surveys. In
fact, most of the results come from very recent papers and the last section contains
original results for tree topologies.

The model considered in this chapter (sometimes also referred to as CORDA [27])
is known in the literature as the Look-Compute-Move model. Robots asynchronously
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run an operative cycle where first they perceive the global configuration of the robots
over the graph (Look phase). That is, during the Look phase a robot is able to per-
ceive the relative locations of the other robots with respect to its own position on
the graph. The only cases where a robot might be misled concern the so called
multiplicities, i.e., when more than one robot occupy the same node. In this case,
different assumptions might be considered. Based on the perceived configuration
which might reveal the exact disposal of all the robots or just which nodes are occu-
pied, a robot evaluates whether to stay idle or to move towards one of its neighbor-
ing nodes (Compute phase). Note that, since robots are asynchronous, the Compute
phase might be accomplished by a robot based on outdated configurations perceived
while other robots are performing their movements. Finally, the robot enters to the
Move phase, where it simply applies the computed movement. Hence, it either re-
mains on its current position or it moves towards the computed neighboring node.
The only assumption in this phase is that the movements are instantaneous and hence
robots are always perceived over nodes, and never over edges. Robots are all iden-
tical, anonymous, and execute the same deterministic algorithm. They cannot leave
any marks at visited nodes, nor send messages to other robots. The scheduler that
wakes the robots up is assumed to be fair, i.e., all the robots will wake up, eventually,
and perform their Look-Compute-Move cycles infinitely many times.

Another assumption that can be considered concerns the ability for the robots to
perceive information about the number of robots occupying the same node, during
the Look operation. This ability is called the multiplicity detection capability and
it has been sometimes exploited in various forms. In any case, a robot perceives
whether a node is empty or not, but in the global-strong version, a robot is able
to perceive the exact number of robots that occupy each node. In the global-weak
version, a robot perceives only whether a node is occupied by one robot or if a
multiplicity occurs, i.e., a node is occupied by an undefined number of robots greater
than one. In the local-strong version, a robot can perceive only whether a node is
occupied or not, but it is able to perceive the exact number of robots occupying the
node where it resides. Finally, in the local-weak version, a robot can perceive the
multiplicity only on the node where it resides but not the exact number of robots
composing it.

In the context of robot-based computing systems, resources are always limited
and precious. Then, the research of the minimal set of assumptions and capabili-
ties required to accomplish the gathering task as well as for other achievements is of
main interest. Moreover, the minimality of the assumptions stimulates the investiga-
tion of new and challenging techniques that might reveal crucial peculiarities even
for other tasks.

Depending on the multiplicity detection capability version chosen for the robots,
some scenarios may be unsolvable while some others are solvable. Intuitive concepts
like symmetry or periodicity might be involved and sometimes are fundamental to
the feasibility of the studied problems. Depending on the assumptions made, the def-
inition of such concepts may vary and require different approaches. This is why in
what follows, the same concept might be re-defined according to the current scope.
Moreover, the considered scenarios lead to very interesting and different strategies
that can be considered also for other areas of applications.
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Besides the gathering problem, the Look-Compute-Move model has been studied
also for the problem of graph exploration with stop and exclusive perpetual graph
exploration [4–6, 12–14]. In the first problem [12–14], it is required that each node
(or each edge) of the input graph is visited for a finite number of times by at least one
robot and, eventually, all the robots have to stop. This implies that after performing
the exploration step, the algorithms need some mean to empower the robots by the
capability of recording the part of the graph that has been already explored. Since the
robots are oblivious, this task is performed by identifying particular configurations
of the robots indicating that the exploration task has been accomplished. The exclu-
sive perpetual graph exploration [4–6] requires that each robot visits each node of
the graph infinitely many times. Moreover, it adds the constraint that no two robots
should concurrently be on the same node or cross the same edge.

13.1.1 Outline

The chapter is organized in three main sections, dictated by the graph topologies
considered. The next section provides techniques and results for the gathering on
ring networks. In particular, the section is divided in three parts. First, impossibility
results concerning the gathering on rings are summarized. Those hold even though
the global-strong multiplicity detection is assumed. Then, results for the case of
global-weak multiplicity detection are shown. Under such assumptions, all possi-
ble initial gatherable configurations have been addressed. Finally, partial results for
the case of local-weak multiplicity detection are described. In Sect. 13.3, the prob-
lem for grids is fully characterized even when no multiplicity detection is assumed.
Similarly, in Sect. 13.4 a full characterization without any multiplicity detection ca-
pability is provided for tree topologies. This is indeed an original contribution of
the chapter. Finally, Sect. 13.5 concludes the chapter and outlines some possible
research directions for robot-based computing systems.

13.2 Gathering on Rings

In this section, the gathering over ring networks is presented. After providing
some necessary definitions, impossibility results are summarized when the global-
strong multiplicity detection is assumed. Then, differences between the case of
global-weak and local-weak multiplicity detection assumptions are presented. In
particular, when the global-weak multiplicity detection is assumed, a full character-
ization of the gatherable configurations is provided. Whereas, when the local-weak
multiplicity detection is assumed, only some sub-cases are solved. However, the
different techniques used to accomplish the gathering task among the approached
scenarios are very interesting for further investigations in robot-based computing
systems.



13 Gathering Asynchronous and Oblivious Robots on Basic Graphs 201

a cb d

Fig. 13.1 Symmetric and periodic initial configurations on a ring. White nodes are empty while
each black node is occupied by one robot

The model assumes that k robots are placed over the n nodes of a ring, and in the
initial configurations, nodes are occupied by at most one robot. Depending on the
movements imposed by the running algorithms, multiplicities may occur. A config-
uration is called symmetric if the ring admits a geometrical axis of symmetry, that
defines a bijective function among the robots residing in the two halves of the ring
cut by the axis. When the global-weak multiplicity is considered, a configuration
is called symmetric if the ring admits a geometrical axis of symmetry that reflects
single robots into single robots, multiplicities into multiplicities, and empty nodes
into empty nodes. In this case, a configuration might be considered symmetric even
though the two halves of the ring cut by the axis do not contain the same number
of robots. This can happen if two symmetric multiplicities at the two halves are
composed of a different number of robots. If the local-strong (or the local-weak)
multiplicity detection is assumed, then a configuration might result symmetric for
some robots while asymmetric for others. For instance, if robots are part of a mul-
tiplicity and the configuration does not admit an axis of symmetry passing through
such a node, then the configuration would result asymmetric for all the robots com-
posing the multiplicity, while it might be symmetric with respect to the perception
of all the other ones. However, symmetric peculiarities of initial configurations are
invariant with respect to the assumed multiplicity detection, as multiplicities are not
allowed at the beginning.

As shown in Fig. 13.1, a symmetric configuration with an axis of symmetry has
an edge-edge symmetry if the axis goes through two edges (Fig. 13.1a); it has a node-
edge symmetry if the axis goes through one node and one edge (Fig. 13.1a); it has a
node-node symmetry if the axis goes through two nodes (Fig. 13.1c); it has a robot-
on-axis symmetry if there is at least one node on the axis of symmetry occupied by
a robot (both Fig. 13.1b, c).

A configuration is called periodic if it is invariable under non-trivial (i.e., non-
complete) rotations (Fig. 13.1d).

13.2.1 Impossibility Results

In [22], it is proved that the gathering is unsolvable if the multiplicity detection capa-
bility is completely removed in either of its forms. When the multiplicity detection is
assumed, even in its strong and global form, still there are configurations for which
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it is impossible to accomplish the gathering task. More precisely, initial configura-
tions composed of only two robots, periodic configurations, and those admitting an
edge-edge axis of symmetry do not allow to finalize the gathering.

In [21], the case of four robots on a ring of five nodes is pointed out as a case of
symmetric initial configurations with an even number of robots that does not allow
any gathering algorithm. This has been also studied in [16] along with other solvable
cases. In general, symmetric configurations of type node-edge with four robots and
the odd interval cut by the axis bigger than the even one are ungatherable. In the rest
of the chapter these configurations are denoted with the set SP4. The case of four
robots on a five nodes ring belongs to SP4. Actually, some configurations in SP4
could be gatherable but they require strategies that are difficult to generalize.

For all the remaining initial configurations, various gathering algorithms have
been provided, depending also on the assumptions concerning the multiplicity de-
tection capability. Whenever clear by the context, we refer to initial configurations
simply as configurations.

13.2.2 Global-Weak Multiplicity Detection

In this section, a description of the techniques taken from the specific literature are
described. Based on the global-weak multiplicity detection capability, the next algo-
rithms cope with all the cases left from the impossibility results previously shown.

13.2.2.1 Asymmetric Configurations

The asymmetric initial configurations have been firstly handled in [22]. When such
configurations are aperiodic, they were referred to as rigid configurations. The gath-
ering is performed by exploiting the perception of the robots. Perception allows
robots to agree and move exactly one robot at time although the model does not
allow communication. More precisely, each robot detects which one must perform
the next move based on the configuration perceived during the Look phase. This is
done until the first (and only) multiplicity occurs. Since the scheduler that wakes
the robots up is assumed to be fair, the robot that is allowed to move will eventually
wake up and perform all its Look-Compute-Move cycle. This will ensure the robots
perform all required moves until the desired multiplicity is created. Once the mul-
tiplicity has been created, the robots with only free nodes between themselves and
the multiplicity are allowed to move towards the multiplicity, and joining it, until all
the robots gather at the same node.

At each step of the proposed strategy, and before creating the multiplicity, the
robot allowed to move will be chosen in such a way that the configuration will
never lose its original “rigidity”. Once captured the current configuration during the
Look phase, a robot looks for the pair of robots that are at the maximum distance
(in terms of empty nodes in between) from each other. If only one pair of robots
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is detected, the one allowed to move is the robot with the closest neighbor on the
other side of the maximum interval. Possible ties are easily broken by considering
the next intervals and so forth, until a difference occurs. Since the configuration
is asymmetric, there must be a difference somewhere, and one robot is elected to
move. If more than one pair provides the same maximum distance, ties are broken
by considering the global view, hence ordering lexicographically the views (in terms
of sequences of distances) and choosing the interval that appears as first in the largest
view. Once the single robot has been elected to move, it performs the movement that
enlarges the maximum interval. This ensures that in the next step there is exactly one
maximum distance, with one interval at its side smaller than the one at the other side.
Hence, from now on, only the same robot will be allowed to move until creating a
multiplicity.

13.2.2.2 Odd Number of Robots

Another type of initial configurations addressed and solved in [22] concerns all the
configurations with an odd number of robots. In this case, the configuration can
be either asymmetric or symmetric. In the former case, the gathering is solved as
described in the previous section. In the latter case, it can be observed that one
robot resides on the axis of symmetry, necessarily. Then the following property is
exploited:

Property 1 ([22]). Let C be a symmetric configuration with an odd number of
robots, without multiplicities. Let C′ be the configuration resulting from C by mov-
ing the unique robot on the axis to any of its adjacent nodes. Then C′ is either
asymmetric or still symmetric but aperiodic. Moreover, by repeating this procedure
a finite number of times, eventually the configuration becomes asymmetric (with
possibly one multiplicity).

When Property 1 holds, symmetric configurations with an odd number of robots
will allow only one robot to move until either a multiplicity occurs or the configu-
ration becomes asymmetric and the gathering algorithm changes to that described
above.

13.2.2.3 Even Number of Robots

The cases left open by the techniques described above are all the symmetric initial
configurations with an even number of robots. Note that, configurations with only
two robots are ungatherable as well as configurations with four robots in SP4.

A first study that addresses the case of an even number of robots comes from [21].
In that chapter, the authors solved all the symmetric cases with an even number of
robots grater than 18. When robots are on the axis of symmetry it may be possible
to design algorithms which break the symmetry by moving one of the robots located
on the axis, as in the case of an odd number of robots described by Property 1.
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When no robots reside on the axis, the algorithm works in four phases. During
the first phase, since the configuration is symmetric, two robots are always allowed
to move. In order to detect the two symmetric robots that must perform their moves,
the robots have to elaborate the perceived configuration during their Compute phase.
Based on the sequence of distances between robots along the ring, two symmetric
minimal interval are detected and reduced concurrently, until two multiplicities are
created. The number of robots grater than 18 comes from this computational step. In
fact, the need to guarantee to break possible ties among minimal intervals, and the
fact that some robots are needed between the detected intervals and the two poles
defined by the axis of symmetry on the ring, gives a minimal number of required
robots equal to 20.

It is very important to remark that the proposed technique is the first one that
forces robots to maintain the original symmetry rather than breaking it. In fact, based
on the perceived configurations, robots are always able to detect whether the current
configuration is at one step from a reachable symmetry or not. In the latter case,
the algorithm from [22] for asymmetric configurations can be applied. In the former
case, the robot that can re-establish the symmetry will be the only one allowed to
move. Note that, such a robot could have been already started its Look-Compute-
Move cycle concurrently with its symmetric one, or it simply starts later. In any
case, the algorithm guarantees to recover the original symmetry with two steps less
towards the desired configuration with two multiplicities where the second phase
starts.

When two multiplicities have been created, the idea is to move all the remain-
ing single robots but few of them towards the two multiplicities. During the second
phase, it is necessary to decide on one of the two poles of the axis of symmetry
as the gathering point (the North pole). The poles are chosen so that the northern
arc between multiplicities contains more robots than the southern arc; in the case
of a tie, the side on which the nearest robots are closer to the multiplicities is the
northern one. The robots are moved in symmetrical pairs towards their respective
multiplicities, starting from the robots on the northern arc. In this way, North and
South are consistently preserved throughout the phase. The phase ends with two
multiplicities, two symmetric robots located at the southern part far from the multi-
plicities of at least one node, and two symmetric robots located at the northern part
neighbors of the multiplicities. The two robots on the south are called guards.

The third phase is based on the position of the guards that maintain the direction
to the gathering node. During this phase, the remaining single robots and those
belonging to the multiplicities can move towards the North pole. The movement
is performed always maintaining the robots associated to each multiplicity either
as part or as neighbors of it. In this way, the configuration pattern is maintained
throughout the process, until all robots except for the guards gather at the North
pole in a single multiplicity.

The fourth phase simply moves the guards towards the multiplicity, and the
gathering will be eventually finalized.

The algorithm has been also integrated with the one from [22], hence obtaining a
full characterization of the gatherable configurations with an odd number of robots,
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Fig. 13.2 A symmetric configuration and its representation

with an even number of robots but asymmetric, with an even number of robots
admitting a robot-robot axis of symmetry, and with more than 18 robots admitting
a node on the axis of symmetry. This has left open the cases of an even number of
robots between 4 and 18 admitting a node on the axis of symmetry. Note that, the
cases left for few robots might require more effort and different techniques for the
resolution. In fact, lesser the robots lesser the information encoded by their disposal.
This encouraged further investigation on configurations with few robots.

Gatherable configurations with four robots have been addressed in [16, 23]. The
main idea is still to define a North and a South pole on the axis of symmetry (of
type node-node). Then similarly to [21], the two northern nodes are moved while
preserving the symmetry until creating a multiplicity on the North pole. After that,
the other two robots join the multiplicity, hence finalizing the gathering.

The case of six robots is more intriguing as it requires different techniques from
the older ones in order to fully characterize the gatherable configurations. It has
been addressed in [9]. A symmetric configuration can be represented as shown in
Fig. 13.2. In detail, without multiplicities, the ring is divided by the robots into 6
intervals: A, B, C, B′, C′, and D with a, b, c, b, c, and d free nodes, respectively.
In the case of node-edge symmetry, A is the interval where the axis passes through
a node and D is the interval where the axis passes through an edge; in the case
of node-node symmetry, A and D are the intervals such that either a < d or a = d
and b < c; the case where a = d and b = c cannot occur as it generates two axis
of symmetry. Note that, in the case of node-node symmetry, a and d are both odd,
while, in the case of node-edge symmetry, a is odd and d is even. Robots between A
and B (B′, respectively) are denoted by x (x′, respectively); those between B and C
(B′ and C′, respectively) are y (y′, respectively); those between C (C′, respectively)
and D are z (z′, respectively), see Fig. 13.2.

A robot r ∈ {x,y,z,x′,y′,z′} can perform only two moves: it moves up (r↑) if it
goes towards A; it moves down (r↓) if it goes towards D.

The main idea of the algorithm is to perform moves x↑, x′↑, y↑ and y′↑, with
the aim of preserving the symmetry and gathering in the middle node of interval
A, where the axis is directed. In some special cases, it may happen that the axis of
symmetry changes at run time. Before multiplicities are created, the algorithm in a
symmetric configuration allows only two robots to move in order to create a new
symmetric configuration.
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In the general case, the algorithm compares b and d, and performs a pair of moves
such as when b > d, then b is enlarged, while, if b < d, then b is reduced. In this
way, the axis of symmetry and its direction do not change.

Apart from some special cases, the algorithm works as follows. When b > d, x↑
and x′↑ are performed, while, when b < d, y↑ and y′↑ are performed. In both cases,
(apart for some special cases) the ordering between b and d is maintained in the new
configuration. Eventually, either one multiplicity is created at the middle node of the
original interval A by means of robots x and x′, or two symmetric multiplicities are
created on the positions originally occupied by x and x′ by means of the moves of y
and y′, respectively. In the second case, the two multiplicities will move up again to
the middle node of the original interval A by allowing at most four robots to move
all together. Once such a multiplicity has been created, the remaining robots join it,
and conclude the gathering. In the special case of b = d, which can only happen in
the initial configuration, the algorithm tries to break this equality by enlarging or
reducing d by means of either z↑ and z′↑ (when C > 0) or z↓ and z′↓ (when C = 0
and D > 0). The special cases when C = D = 0 require specific arguments that can
be found in [9].

13.2.2.4 Unifying Algorithm

Recently in [11], a new technique has been proposed for addressing all the gather-
able initial configurations by means of a single algorithm that exploits some of the
described strategies while also solving the remaining cases left open. In particular,
existing algorithms are used as subroutines for solving the basic gatherable cases
with four or six robots from [23] and [9], respectively. Also, Property 1 is exploited
in some cases. Then, the main strategy is based on the definition of a particular read
of the configurations perceived by the robots during their Look phase.

The current configuration of the system can be described in terms of the view
of a robot r that is performing the Look operation. A configuration seen by r is
represented as a tuple Q(r) = (q0,q1, . . . ,q j), j ≤ k−1, that represents the sequence
of the numbers of free consecutive nodes broken up by robots when traversing the
ring in one direction, starting from r. Unless differently specified, Q(r) represents
the configuration providing the lexicographical minimum among the two possible
views. For instance, in the configuration of Fig. 13.2a, robot x can read either Q =
(1,2,1,3,1,2) or Q′ =(2,1,3,1,2,1), hence Q(x) =Q. A multiplicity is represented
as qi =−1 for some 0 ≤ i ≤ j, regardless the number of robots composing it.

Given a generic configuration C = (q0,q1, . . . ,q j), let C = (q0,q j,q j−1, . . . ,q1),
and let Ci be the configuration obtained by readingC starting from qi as first interval,
that is Ci = (qi,q(i+1) mod j+1, . . . ,q(i+ j) mod j+1). The above definitions imply:

Property 2. Given a configuration C,

(i) There exists 0 < i ≤ j such that C =Ci iff C is periodic;
(ii) There exists 0 ≤ i ≤ j such that C = (Ci) iff C is symmetric;

(iii) C is aperiodic and symmetric iff there exists only one axis of symmetry.
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The next definition represents the key feature for the gathering algorithm.

Definition 1. Given a configuration C = (q0,q1, . . . ,q j) such that qi ≥ 0, for each
0 ≤ i ≤ j, the view defined as CSM = min{Ci, (Ci), | 0 ≤ i ≤ j} is called the su-
permin configuration view. An interval is called supermin if it belongs to the set
IC = {qi | Ci =CSM or (Ci) =CSM,0 ≤ i ≤ j}.

Once a robot is able to distinguish where a supermin is located, the next lemma
provides a useful mean for computing whether the current configuration is gather-
able or not.

Lemma 1 ([11]). Given a configuration C = (q0,q1, . . . ,q j) with qi ≥ 0, 0 ≤ i ≤ j:
1. |IC|= 1 if and only if C is either asymmetric and aperiodic or it admits only one

axis of symmetry passing through the supermin;
2. |IC| = 2 if and only if C is either aperiodic and symmetric with the axis not

passing through any supermin or it is periodic with period n
2 ;

3. |IC|> 2 if and only if C is periodic, with period at most n
3 .

The above lemma already provides useful information for a robot when it wakes
up. In fact, during the Look operation, it can easily recognize if the configuration
contains only two robots, or if it belongs to the set SP4, or if |IC| > 2 (i.e., the
configuration is periodic), or in case |IC| = 2, if the configuration admits an edge-
edge axis of symmetry or it is again periodic. After this check, a robot knows if
the configuration is gatherable, and proceeds with its computations. Indeed, all the
remaining configurations are shown to be gatherable.

The main strategy allows only the movements which affect the supermin. In
fact, if there is only one supermin, and the configuration allows its reduction, the
subsequent configuration would still have only one supermin (the same as before
but reduced), or a multiplicity is created. In general, such a strategy would lead
asymmetric configurations or also symmetric ones with the axis passing through the
supermin to create one multiplicity where the gathering will be easily finalized by
collecting at turn the closest robots to the multiplicity. This strategy reminds the one
used in [22] but with the difference to deal with the minimum rather than with the
maximum.

For gatherable configurations with |IC| = 2, the algorithm requires more phases
before creating the final multiplicity where the gathering ends. In this case, there
are two supermins that can be reduced. If both are reduced simultaneously, then the
configuration is still symmetric and gatherable. Possibly, it contains two symmetric
multiplicities. In fact, this is the status that one wants to reach even when only one of
the two supermins is reduced. In general, the algorithm tries to preserve the original
symmetry or to create a gatherable symmetric configuration from an asymmetric
one. It is worth to remark that in all symmetric configurations with an even number
of robots, the algorithm always allows the movement of two symmetric robots. Then
after the initial movement, it is possible to obtain a symmetric configuration or an
asymmetric one with a possible pending move. In fact, if only one robot (among the
two allowed to move) performs its movement, it is possible that its symmetric one
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Fig. 13.3 Phases interchanges

either has not yet started its Look phase, or it is taking more time. If there might be
a pending move, then the algorithm forces it before any other decision.

In contrast, asymmetric configurations cannot produce pending moves as the
algorithm allows the movement of only one robot. In fact, it reduces the unique
supermin by deterministically distinguish among the two adjacent robots, until one
multiplicity is created. Finally, all the other robots will join the multiplicity one-by-
one. In some special cases, from asymmetric configurations at one “allowed” move
from symmetry (i.e., with a possible pending move), robots must guess which move
would have been realized from the symmetric configuration, and force it in order to
avoid unexpected behaviors. By doing this correctly, the algorithm eventually brings
the configuration to have two symmetric multiplicities as above. From here, a new
phase that collects all the other robots but two into the multiplicities starts. Still the
configuration may move from symmetric configurations to asymmetric ones at one
move from symmetry. Once the desired symmetric configuration with two multi-
plicities and two single robots is reached, a new phase starts and moves the two
multiplicities to join each other. The node where the multiplicities join represents
the final gathering location. This strategy reminds the one used in [21] as it tries to
preserve the symmetry until the guards can join all the other robots in the gathering
node.

Actually, sometimes the strategy that affects only the supermin cannot be applied,
as a move may produce some undesired “side-effects”, i.e., leading the configuration
to ungatherable cases. In order to cope with such cases, two other moves have been
defined. However, it can be shown that a robot is always able to understand the
correct move to be performed.

An alternative move is to try to reduce the second supermin, i.e., the supermin of
the configuration is evaluated after the real one. Another move, called XN, is applied
when specific configurations occur. The definition of XN and the description of the
cases where it must be applied are not provided in this chapter.

The algorithm works in five phases and depends on the configuration perceived
by the robots, see Fig. 13.3. First, it starts from a configuration without multiplici-
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ties and performs phase MULTIPLICITY-CREATION whose aim is to create one mul-
tiplicity where all the robots will eventually gather, or a symmetric configuration
with two multiplicities. In the former case, phase CONVERGENCE is performed to
gather all the robots into the multiplicity. In the latter case, phases COLLECT and
then MULTIPLICITY-CONVERGENCE are performed in order to first collect all the
robots but two into the two multiplicities and then to join the two multiplicities into
a single one. After that, phase CONVERGENCE is performed. Special cases of six
robots on a seven nodes ring are considered separately in phase SEVEN-NODES.

In each phase, the robots can distinguish the type of configuration and apply the
suitable strategy/move. The way a robot can identify the type of configuration is
based on basic and simple calculations. Given a configuration C = (q0,q1, . . . ,q j),
a robot compute the following parameters:

1. Number of nodes in the ring, n(C);
2. Number of multiplicities, m(C);
3. Number of nodes occupied or number of robots in the case without multiplici-

ties, OCCUPIED(C);
4. Distance between single robots and multiplicities;
5. If C is symmetric;
6. If C is at one move from one of the symmetries allowed by the algorithm.

Parameters 1–3 can be computed by formulas n(C) = ∑qi≥0(qi + 1), m(C) =
|{qi = −1,0 ≤ i ≤ j}|, and OCCUPIED(C) = j + 1−m(C), respectively. The dis-
tance between single robots and multiplicities is easily computed by summing the
intervals between a single robot and a multiplicity. The symmetry of a configuration
is computed by checking whether C =Ci for some 0 ≤ i ≤ j.

To understand when C is at one move from a symmetry allowed by the algorithm,
it is sufficient to simulate such a move backwards and checking whether the obtained
configuration is symmetric.

Based on the perceived configuration, and once calculated the above parameters,
a robot is able to answer to basic questions that check the accomplishment of the
gathering task. In particular, a robot can distinguish if the current configuration is
gatherable, which type of configuration it perceived, which strategy/move should be
applied, if it is allowed to move and towards which direction.

The algorithm solves all the gatherable cases, hence closing also the ones left
open by other strategies. However, different assumptions on the model may consti-
tute very interesting directions for further investigations.

13.2.3 Local-Weak Multiplicity Detection

Using the local-weak multiplicity detection capability, not all the cases has been
addressed so far. In [17], it has been proposed an algorithm for the case of rigid
initial configurations where the number of robots k is strictly smaller than

⌊
n
2

⌋
.

In [18], the case where k is odd and strictly smaller than n− 3 has been solved.
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In [19], the authors provide and algorithm for the case where n is odd, k is even,
and 10 ≤ k ≤ n− 5. The remaining cases are still open and a unified algorithm like
that for the case where the global-weak multiplicity detection capability is allowed
is still not known. In the following, the mentioned algorithms are summarized.

13.2.3.1 Asymmetric Configurations with k <
⌊

n
2

⌋

This algorithm assumes, without loss of generality, that a configuration view seen
by a robot is the lexicographically maximal that the robot can read, instead of the
lexicographically minimal as it was in the case of global-weak multiplicity detec-
tion. These two assumptions are equivalent thus in the rest of the chapter we keep
on using the one in [17]. As the configuration is asymmetric, by Property 2, the
views seen by the robots are all different. Therefore, let C = (q0,q1, . . . ,q j) be the
lexicographically maximal configuration view, j ≤ k, and ri be the robot (or the set
of robots in the case of a multiplicity) before the interval qi of empty nodes. First,
an algorithm to achieve the gathering for the case where q0 ≥ 3 and q1 ≥ 2 is given.
Then, a strategy to create a configuration of the above type starting from a config-
uration where q0 ≥ 3 and q1 < 2 is devised. Finally, the case to increase q0 from
2 to 3 is addressed. As it is assumed that k <

⌊
n
2

⌋
and q0 is the maximal interval,

then q0 cannot be smaller than 2. All the three algorithms keep the configuration
asymmetric and aperiodic. Here, the algorithm for the case where q0 ≥ 3 and q1 ≥ 2
is described, while the details for the other cases can be found in [17].

The idea is to generate a configuration with only two occupied nodes where k− 1
robots are gathered on the same node and the other occupied node contains a single
robot. From this configuration the robots can distinguish which is the node occu-
pied by a single robot by using the local-weak multiplicity detection. Therefore, the
single robot moves towards the multiplicity, eventually achieving the gathering.

The algorithm when at least three nodes are occupied ( j ≥ 2) is as follows.

R1: If q j ≥ 1 move r0 towards q j;
R2: If j 
= 2, q j = 0, and q j−1 ≥ 1

R2-1: If q0 is the only maximum interval of empty nodes, move r j towards
q j−1;

R2-2: Otherwise move r1 towards q1;

R3: If j 
= 2, q j = 0, and q j−1 = 0 move r0 towards q j;
R4: If j = 2 and q2 = 0 move r0 towards q2;

First, it is assumed that q0 is the only maximum interval of empty nodes. The
algorithm allows moves where q0 is increased, q1 is not changed, q j is kept shorter
than q1, and the other intervals are decreased. This ensures that q0 remains the only
maximum interval of empty nodes. The algorithm starts by moving the robots r0

towards q j until they become neighbors of robots in r j (see rules R1 and R3). Then
robots in r j move towards q j−1 until they become neighbors of robots in r j−1 (see
rule R2-1). At this point the robots in r0 join those in r j. By applying these rules,
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Fig. 13.4 Second phase of the gathering algorithm for an odd number of robots with local-weak
multiplicity detection capability. A multiplicity is denotes as a circle around an occupied node

eventually a configuration with only three nodes occupied is achieved where j = 2
and q2 = 0. In this case, all the robots in r0 join those in r2 (see rule R4) achieving a
configuration where k− 1 robots are gathered on the same node. Finally, the single
robot joins the other ones. In the case that q0 is not the only maximum interval
of empty nodes, the algorithm moves r1 towards q1, enlarging q0 (see rule R2-2).
After this moment, q0 is the only maximum interval of empty nodes. It can occur
that q1 becomes smaller than 2 or the maximal configuration view is reversed. For
instance this can happen when q1 = q j. In the first case, the algorithm for q0 ≥ 3
and q1 < 2 is applied and in the second case the algorithm is applied on the new
maximal configuration view.

13.2.3.2 Configurations with an Odd Number of Robots

The description of the algorithm requires some definitions and terminology. Let d
be the size of the minimum interval of empty nodes plus one, a d-block is a maximal
path where there is exactly one occupied node every d edges. The size of a d-block
is the number of robots that it contains.

The algorithm works in two phases. The first phase builds a configuration made
of a single 1-block, and the second phase achieves gathering.



212 G. D’Angelo et al.

In the first phase, the robots move towards the d-blocks with the biggest size.
By using the hypothesis of an odd number of robots, the d-blocks of biggest size
can merge together in order to create a unique d-block. The obtained configuration
is symmetric and, as the number of robots is odd, there is a robot on the axis of
symmetry. The algorithm proceeds by moving the two robots adjacent to that on the
axis of symmetry towards it, achieving a (d−1)-block of size 2 or 3. The algorithm
is then iterated until a single 1-block is achieved.

The second phase starts with a configuration with a single 1-block. Note that
this configuration is symmetric and has a robot r on the axis of symmetry. The
algorithm moves the two robots adjacent to r towards it, creating a multiplicity (see
Fig. 13.4a). If the two robots move synchronously, the configuration achieved is
still symmetric and a multiplicity containing r is created on the axis of symmetry
(see Fig. 13.4c). Due to the asynchronicity, only one of the two robots adjacent to
r can move, creating a configuration made of two 1-blocks separated by an empty
node (see Fig. 13.4b). Such configuration can be distinguished by observing that
this is the only case where the number of occupied nodes is even. Hence the robot
which did not move can easily identify itself and perform the correct move. In the
obtained configuration, the neighbors of the multiplicity on the axis are two empty
nodes followed by two 1-blocks. At this point, the algorithm moves the two robots
on the border of the 1-blocks that are closest to the multiplicity, towards it. For
the hypothesis of asynchornicity, it can occur that three 1-blocks are created (see
Fig. 13.4d). In this case, the robot that has to move can be identified thanks to the
hypothesis that the number of occupied nodes is always smaller that n−3. In fact, in
these configurations, the 1-blocks are interleaved by two single empty nodes and by
a path of empty nodes of size at least three. By iterating this process, a new 1-block

a c

b

Fig. 13.5 Third phase of the gathering algorithm for an even number of robots in an odd ring
with local-weak multiplicity detection capability. A multiplicity is denotes as a circle around an
occupied node

is created with the size reduced by 2 with respect to the original 1-block and where
there is a multiplicity on the axis of symmetry (see Fig. 13.4g). The algorithm is then
iterated until the gathering is achieved. In the final step of the algorithm a single 1-
block of size 2 can be created as a consequence of asynchronicity (see Fig. 13.4i).
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At this point the algorithm exploits the local-weak multiplicity detection capability
and moves the robot which is not on the multiplicity towards the other occupied
node.

13.2.3.3 Configurations with an Even Number of Robots on an Odd Size Ring

In this case, the algorithm is divided into three phases. The first two phases aim at
creating a terminal configuration, i.e., a configuration made of only two 1-blocks
of size k

2 which are separated by exactly one empty node. Finally, the third phase
finalizes the gathering.

The first phase starts from any allowed configuration and creates a configuration
with either a single 1-block or two 1-blocks of size k

2 . The idea is similar to that of
the case of odd robots. First, only d-blocks are created by moving all the isolated
blocks towards the d-blocks until joining them. Then, the robots move with the
aim of creating a unique d-block. When all the robots belong to the same d-block,
some robots move in order to decrease the d and repeat the algorithm until d = 1.
The correctness of the algorithm relies on the fact that the number of nodes in the
ring is odd and the number of robots is even. This implies that if the configuration
is symmetric, then the axis of symmetry passes through exactly one empty node
and one edge. In the second phase, the algorithm moves the two 1-blocks towards
the empty node crossed by the axis of symmetry until a terminal configuration is
created. In the case that the first phase ends with a single 1-block, this is split into
two 1-blocks. All these movements are done by preserving the symmetry of the
configuration. The third phase achieves the gathering from terminal configuration
by moving the two robots that are on the border of the two 1-blocks and that are
neighbors of a single empty node. These two robots move towards the single empty
node. For an example, see Fig. 13.5. When these two robots are moved one of the
following cases (depending on the activation schedule) can occur:

• The two robots move synchronously and create a symmetric configuration with
a multiplicity crossed by the axis of symmetry (see Fig. 13.5c);

• Only one robot moves and creates a configuration with two 1-blocks separated
by a single empty node and whose sizes differ by 2 (see Fig. 13.5b). This con-
figuration is easy to recognize and hence the pending move can be performed,
achieving again a symmetric configuration with a multiplicity crossed by the
axis of symmetry (see Fig. 13.5c).

At this point, the robots on the multiplicity are not allowed to move. The other
robots see an odd number of robots and perform the last phase of the algorithm
for an odd number of robots (see Fig. 13.4c–j), so that the gathering is eventually
achieved. This implies that the maximum number k of allowed robots has to satisfy
k− 1 < n− 3, that is k ≤ n− 5.
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13.3 Gathering on Grids

In this section, results achieved in [10] are reported. The authors consider the gath-
ering problem on an anonymous and undirected grid of n×m nodes, with m ≥ n.
The main assumption that distinguish these results from those obtained on rings is
the lack of any multiplicity detection capability: if a node is occupied by more than
one robot, it is not perceived by the robots, even if they reside on such a node.

Initially, each node is occupied by at most one robot. During a Look operation,
a robot perceives the relative locations on the grid of occupied nodes, regardless of
the number of robots at a node.

The current configuration of the system can be described in terms of the view of
a robot r which is performing the Look operation at the current moment. A configu-
ration seen by r is denoted as an n×m matrix M that has elements belonging ot the
set {0,1}. Value 0 represents an empty node, and 1 represents an occupied node.

Since the grid is anonymous and undirected, each robot can perceive the current
configuration with respect to different rotations and reflections leading to any view
of the grid satisfying the n×m dimension. In particular, when n = m each of the
four rotations and four reflections provides a feasible view.

Definition 2. A configuration is periodic if it is invariant with respect to rotations
of 90◦ or 180◦, where the rotation point coincides with the geometric center of the
grid.

Definition 3. A configuration is symmetric if it is invariant after a reflection with
respect to a vertical, horizontal, or diagonal (in case of square grids) axis passing
through the geometric center of the grid.

13.3.1 Odd×Odd Grids

This case is trivially solvable, in fact in odd× odd grids, a robot can always detect,
during its Look operation, the central node of the grid M[

⌈
n
2

⌉
,
⌈

m
2

⌉
], regardless of

its possible view. This means that all the robots can move toward the center, concur-
rently.

13.3.2 Odd×Even Grids

In this case, the gathering is not always feasible. In fact, similarly to the ring case
on periodic or symmetric configurations of type edge-edge [22], if a configuration
C is periodic, or symmetric with respect to an axis passing through the edges (i.e.,
dividing the grid into two halves from the even side), then C is ungatherable.
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When the starting configuration does not belong to the above ungatherable
configurations, it always possible to devise an algorithm achieving the gathering
without multiplicity detection.

The idea is to distinguish between the two nodes that are the central nodes of
the odd borders of the grid. If m (n, respectively) is odd, then the two mentioned
nodes are given by positions M[1,

⌈
m
2

⌉
] and M[n,

⌈
m
2

⌉
] (M[

⌈
n
2

⌉
,1] and M[

⌈
n
2

⌉
,m],

respectively). The line connecting those two nodes will be denoted as the NS line.
One of the two extreme nodes on the NS line will be the place where the gathering
is finalized. In order to select the gathering node, a robot considers the line passing
through the central edges of the even sides of the grid (denoted as the EW line)
dividing the grid into two halves. The idea is to distinguish a north and a south
part among the two halves and the gathering node will be the one in the north half.
See Fig. 13.6a for a visualization. The north is the half with more nodes occupied
by robots, if any. If the number of occupied nodes in the two halves is the same,
then some more computations are required. In both cases, the robots move from the
south to the north until all the robots will be in the north part. Note that, during such
a stage, if multiplicities are created in the south, then the number of occupied nodes
decreases with respect to the north part. If multiplicities are created in the north, it
means that a robot has moved from the south to the north part, still preserving the
required distinction.

In order to distinguish the north from the south in the case of configurations with
the same number of robots among the two halves obtained by the EW line, a robot
associates to each configuration C a binary string as follows. Starting from each
corner of the grid, and proceeding in the direction parallel to the NS line, a robot
records the elements of M row by row, or column by column (according to the di-
rection specified by the NS line). Once it has computed the four strings, it associates
to C the lexicographically largest one. For instance, starting from corner M[1,1],
and assuming m odd, the corresponding binary string would be composed by the se-
quence M[1,1], M[2,1], . . ., M[n,1], M[1,2], . . ., M[n,2], M[1,m], . . ., M[n,m]. See
Fig. 13.6a for an example.

It is possible to show that if C is a gatherable configuration, then, among the four
possible strings coming from a robot view of the input grid, at most two strings
can be the lexicographically largest ones. If there are two largest strings, then they
represent the views of C starting from two symmetric corners with respect to the
NS line, see Fig. 13.6d. Note that, instances of Fig. 13.6b, c are ungatherable as they
admit an edge-edge symmetry or a periodicity.

Then, the gathering node is defined as the one residing on the same odd side
where the corner(s) providing the lexicographically largest string resides. The gath-
ering node will determine also the directions along the NS line: the gathering node
is called the north pole.

Configurations on odd× even grids that are aperiodic and do not admit an axis
of symmetry passing through edges are always gatherable, and the algorithm is the
following.
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a NS

EW

b NS

EW

c NS

EW

d NS

EW

Fig. 13.6 Case of a 6× 9 grid. (a) The two halves have the same number of nodes. The maximal
binary string is that read from the upper left corner which starts with (0,1,0,0,0,0, . . .). (b)–(d)
Examples of 6× 9 grids with two lexicographically largest strings: (b) The two lexicographically
largest strings correspond to the views starting from two symmetric corners with respect to the
EW line; (c) The two lexicographically largest strings correspond to the views starting from two
corners residing on one of the two diagonals of the grid; (d) The two lexicographically largest
strings correspond to the views starting from two symmetric corners with respect to the NS line

Once the gathering node has been unambiguously identified by a robot during its
Compute operation, if the robot resides on the half grid where the south pole is, then
it moves towards the north pole. Note that, each time a robot in the southern half
of the grid performs such a movement, the gathering node cannot change. In fact,
two following two cases can occur: (1) the number of occupied nodes decreases in
the southern part of the grid, either because a robot moves to the northern part or
because a multiplicity is created; (2) the string associated to the corners in the south
are decreasing due to the robots’ movements. In this case, the corresponding strings
defining the current configuration starting from the northern corners are increasing.
This clearly leaves unchanged the direction on the NS line. Note that the corner to
which the lexicographically largest string was associated might change during the
described process, but the only option is the other corner on the same odd side of
the original one. This preserves the direction on the NS line. By keeping on moving
in the described way, all the robots will reach the northern part. The case in which a
subset of robots from a multiplicity move, increasing the number of occupied nodes,
does not require any special argument. More precisely, since the initial configuration
does not contain multiplicities, either the minimality of the number of robots in one
half of the grid is preserved, or case (2) ensures that the lexicographically largest
string is associated to a corner in the north.
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c1

c4 c3

c2

Fig. 13.7 Case of a 6 × 10 grid. The arrows indicate the horizontal direction of the reading
from corner c1, it gives (6,8,14,10,5,12). The other seven sequences read by the robots are:
(3,6,20,4,9,13) from c1 vertically, (3,10,24,2,5,11) and (16,1,6,26,4,2) from c2 horizontally
and vertically, respectively, (12,5,10,14,8,6) and (13,9,4,20,6,3) from c3, (11,5,2,24,10,3)
and (2,4,26,6,1,16) from c4. The minimal sequence is (2,4,26,6,1,16) and c = c4

Once all the robots belong to one half of the grid, then they are allowed to move,
during their Move operation, towards the gathering node. In fact, such a node is
well-defined and cannot change as the robots are not allowed to move to the other
half of the grid.

13.3.3 Even×Even Grids

In this section, the case of grids whose sides are both even is studied. Also in this
case, there are some configurations which are ungatherable, namely the periodic
configurations and those configurations having a vertical or a horizontal axis of
symmetry. In [10], it is shown that all the other cases are gatherable without any
multiplicity detection, but for the case of 2× 2 grids.

On 2× 2 grids, configurations with two or four nodes occupied are ungather-
able due to periodicity and edge-edge symmetries. If three nodes are occupied with
robots having the local-weak multiplicity detection, the configuration is gatherable
by moving the robot in between the other two occupied nodes arbitrarily, and then
moving the robot not in the multiplicity towards the other occupied node. Hence,
the remaining gatherable configurations are the aperiodic, asymmetric, and those
with only one axis of symmetry passing through the diagonal of a square grid
of dimensions larger than 2× 2. All such configurations are referred to as the set
EG (Even-Gatherable) and it is proved that all the configurations in EG are indeed
gatherable without any multiplicity detection. In order to achieve this results, it is
first assumed that at least one node on the border of the grid is occupied. Then,
the gathering node is identified among the eight sequences of distances (number
of empty nodes) between occupied nodes obtained by traversing the grid starting
from the four corners and proceeding towards the two possible directions (see, e.g.
Fig. 13.7).
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The lexicographically smallest sequence between the two readings from any
corner is associated to the corner itself. In rectangular grids, these two sequences
can be equal but it is possible to distinguish one of them by assuming the reading in
the direction of the smallest side.

The minimal sequence is defined as follows. If the configuration is symmetric, it
is the smallest sequence between the two sequences associated to the two corners
through which passes the axis of symmetry, otherwise it is the smallest among the
four sequences associated to the four corners. In any case there exists a minimal
sequence C = (q0,q1, . . . ,q j) which identifies a single corner c, unambiguously.

An important property of the gathering strategy is that a robot is not allowed to
move to a corner different from c.

First it is proven that for any EG configuration with no corners occupied and at
least one robot on the border there exists a strategy that leads to a configuration with
exactly one corner occupied. The idea is to reduce q0 by moving the robot towards
c (or the two robots, when the configuration is symmetric) on the border which is
(are) closest to c. The authors show that no symmetric configuration, other than the
possible original one, can be created.

Then, it is shown that for any configuration in EG with more than three nodes
occupied and at least two corners occupied there exists a strategy that leads to a con-
figuration with either exactly one corner occupied or exactly three corners occupied.

Finally the main contribution is proven: Aperiodic configurations on even× even
grids larger than 2×2, that do not admit an axis of symmetry passing through edges,
are gatherable, without assuming any multiplicity detection.

To achieve this result, it has been first observed that the set of possible grids can
be restricted by considering the minimal even× even sub-grid which is centered in
the geometrical middle of the original grid and includes all the occupied nodes of it.
Such minimal wrapping grid is still of type even× even and preserves the possible
symmetry of the original one. Moreover, it always has at least an occupied node on
the border. Then it is possible to apply the first partial result mentioned above.

The proposed algorithm only uses such sub-grid without changing its size, i.e.,
it neither enlarges nor reduces the sub-grid by moving robots outside the border or
from the border to the inside.

If no corners are occupied, by reducing q0, a configuration with one corner oc-
cupied can be reached. In this case, all the robots move towards c by reducing the
Manhattan distance to c and then achieving the gathering.

When two corners are occupied, as said above, it is possible to reach a configu-
ration with one or three corners occupied. In the former case the gathering can be
easily finalized, in the latter case all the robots, but those in the corners, are moved
towards the corner that does not share any coordinate with the empty corner. This
process finishes with a symmetric configuration with exactly three corners occu-
pied. In this configuration, c is the corner on the axis of symmetry, and the other
two robots move one step towards c either concurrently or alternately, until creating
a configuration with only one corner occupied.
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If four corners are occupied, the robot which occupies the corner farthest from
c is moved in an arbitrary direction, generating a configuration where only three
corners are occupied.

It remains the case where the minimal wrapping even× even sub-grid which
includes all the occupied nodes of the original grid has dimension 2× 2. The con-
figuration is ungatherable on this sub-grid without multiplicity detection. However,
in the case of exactly three nodes occupied, it is possible to exploit the larger di-
mensions of the original grid in order to avoid the multiplicity detection. The cases
of two or four nodes occupied clearly remain ungatherable. The strategy is then to
move the robot on the corner of the 2×2 grid which is in between the other two oc-
cupied corners towards the external row or column, arbitrarily. The case where the
minimal wrapping grid has dimension 4×4 is obtained and no corners are occupied.

13.4 Gathering on Trees

In this section, gathering results on trees are presented. To the best of our knowl-
edge, these are original contributions as trees were never treated before under the
considered model. Given a tree, a node at minimal distance from all the other ones
is called center. Based on well-known results [28] about the tree topology, within
a tree there is either one center or there are two neighboring centers. In the former
case, no matter the initial distribution of the robots, each of them can move towards
the center, concurrently. The gathering will be eventually finalized, even without any
multiplicity detection assumption. In the latter case, some more specific arguments
are required. In fact, some impossibility results hold.

Lemma 2. If the two subtrees rooted at the centers along with the disposal of the
robots are isomorphic, then the gathering is impossible.

Proof. Any algorithm designed to accomplish the gathering on the tree must work
regardless the delays on the decisions made by robots. In particular, also the syn-
chronous case must be solved. Since the two considered subtrees are isomorphic,
with the same disposal of robots, if one robot is allowed to move within one sub-
tree, there must exist another robot that is allowed to accomplish the same specular
movement. If both robots perform such movements, again a configuration with two
isomorphic subtrees is obtained. In proceeding so, there will not exist any move that
can break such a situation. Hence, the gathering cannot be finalized as it requires to
distinguish one single node belonging to one of the two subtrees.

In the case the isomorphism among the two subtrees along with the disposal of
the robots does not hold, the following strategy can be applied. Let c1 and c2 be
the two centers of the input tree T , and let T1 and T2 be the two subtrees rooted
at c1 and c2, respectively, when the edge connecting c1 and c2 is removed. If the
number of nodes occupied in T1 is smaller than that in T2, then all robots in T1 are
moved towards c2. Once T1 gets empty, all robots in T2 should be moved towards
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c2 in order to end the gathering. If the number of nodes occupied in T1 is equal to
that in T2, it is always possible to determine which subtree is less than the other
with respect to a natural ordering on labeled trees (see [1, 7]). To define the smaller
tree as the one with the robots closer to the root, we associate label 1 to empty
nodes, and label 0 to nodes occupied by robots. Then the algorithm would exploit
this ordering in order to detect the robots to move from one subtree towards the
root of the other one. If a robot moves over a node already occupied, the number
of occupied nodes in the original subtree decreases. As soon as one robot moves
towards the other subtree, the number of robots in the two subtrees is no longer
equal and the previous strategy can be applied. Similarly to what happened in the
case of even× odd grids of Sect. 13.3.2, the occurrence of multiplicities does not
affect the proposed algorithm.

13.5 Conclusion

In this chapter, we surveyed recent results about the gathering problem under the
Look-Compute-Move model in various graph topologies.

For most of the cases under investigation, it turned out that the problem has been
fully characterized. For trees and grids, the multiplicity detection capability does not
strengthen the model, that is, all the cases which admit gathering are still solvable
without such a capability. The only exception is provided by the very specific case
of three robots on a 2× 2 grid. However, the multiplicity detection capability can
strengthen the model in the case of ring topologies. In the literature, the case that
assumes global-weak multiplicity detection has been fully characterized while that
assuming local-weak multiplicity detection still lacks of a unified algorithm, and
there are some open cases that deserve further investigations.

The study of different topologies has required very different and sometimes op-
posite approaches that stimulate main advances in robot-based computing systems.
On the other hand, some of the techniques described for different topologies share
common ideas that can be, therefore, used in other topologies. Infinite grids, tori,
and hypercubes might represent just a sampling set.

Another challenging direction would be that of investigating the minimum num-
ber of steps required by the robots to accomplish the gathering task. So far, the
research has mainly focused on the feasibility of the gathering, while few results
concern the minimization of the robots’ movements. Similarly, low effort has been
spent in order to increase the opportunity to parallelize movements. As we have
seen for ring networks, at most two robots are allowed to move concurrently un-
less robots composing multiplicities must move. Whereas, on grids and trees, less
restrictions are imposed on the robots’ movements.

It would be interesting to investigate how the proposed techniques may affect the
resolution of different tasks, as well as how different assumptions on the capability
of the robots may change the required strategies.
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Chapter 14
Ten Open Problems in Rendezvous Search

Steve Alpern

Abstract The rendezvous search problem asks how two (or more) agents who are
lost in a common region can optimize the process by which they meet. Usually they
have restricted speed (unit speed in the continuous time context; moves allowed to
adjacent nodes in discrete time). In all cases the agents are not aware of each other’s
location. This chapter is concerned with the ‘operations research’ version of the
problem – where optimization of the search process is interpreted as minimizing the
expected time to meet, or possibly maximizing the probability of meeting within a
given time. The deterministic approaches taken by the theoretical computer science
community will not be considered here.

14.1 Introduction

A precursor of the rendezvous problem is the work of Schelling [32] on the coor-
dination of meeting places (focal points). However these one-shot games lack the
main ingredient of search, namely that the process continues after each failure to
meet until (hopefully) the rendezvous is achieved. The rendezvous search problem
was first proposed by the author at the end of a talk on search games given in Vienna
in 1976 [1].

We shall be mainly concerned with the so called symmetric, or player−
symmetric form of the problem, where both players (agents) must adopt the same
rendezvous strategy, though when using mixed strategies they must randomize inde-
pendently. This version is said to have indistinguishable agents. For example if two
players, Tom and Mary, were trying to rendezvous on a circle drawn on the plane,
we would not allow the solution where Tom proceeds clockwise and Mary counter-
clockwise. The symmetric solution could be written in a book on rendezvous so that
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when two people find themselves faced with the rendezvous problem they could
read what to do in this book, without having decided beforehand on which roles
(e.g. clockwise or counter-clockwise) to play. The asymmetric version allows Tom
and Mary to agree beforehand on which roles to take: for example one could wait
while the other searches (the Wait f or Mommy strategy).

14.2 The Problems

We now list some rendezvous problems which are unsolved. When partial solutions,
or solutions to special cases have been found, we will mention this afterwards.

1. The astronaut problem. Two unit speed astronauts land simultaneously
on a small smooth sphere. They walk at the same speed and can detect
each other when they are a given distance apart. What is the least expected
meeting time they can guarantee, and what strategies should they use to
achieve this time?

As far as we are aware, no significant progress has been made on this prob-
lem. An easier version would spin the sphere, so that the two poles would be
focal points. Even the latter problem seems to be open, though some sort of
randomized oscillation between the poles would seem to be useful in the latter
problem. But how long should one wait before heading for the other pole? A
lower dimension analog of this problem is given next.

2. Rendezvous on a circle. Two players are uniformly and independently
placed on a circle, without any common sense of direction (or of up, if
the circle is drawn on a plane). They move at unit speed and must use the
same mixed strategy. Determine the least expected meeting time.

It has been conjectured by the author that the solution of this problem is for both
players to use the so called cohato (coin half tour) strategy: oscillate between
your starting point and its antipode, each time choosing equiprobably and inde-
pendently of prior choices between your clockwise and your counter-clockwise
(or simply choose two directions and do one if Heads and the other if Tails on
the coin). Simpler versions of this problem, where the players have some addi-
tional information or common notions, have been solved by Howard [22] and
Alpern [4, 6].
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3. Rendezvous on the infinite line (agent-symmetric form). In this version
of the rendezvous problem, the two players are randomly placed on a com-
mon line and try to find each other. Even for the apparently simpler version
where the initial distance (taken for simplicity as 2) is known, the problem
is open.

It has been shown by Lim, Alpern and Beck [27] and Qiaoming, Du, Vera and
Zuluaga [31] that the players can optimally restrict their mixing to strategies
which move at unit times along the integer lattice determined by their starting
point. So anyone trying to solve this problem can restrict their search to these
simple strategies.

The author has recently established by a compactness argument that the least
expected time and optimal strategies exist (not just ε−optimal ones). The au-
thor initially [2, 3] suggested the strategy where in each time period of length
3 the players independently chose a forward direction and then move forward,
back, back. This strategy is easily seen to have expected meeting time 5/2. It
has been bettered by strategies using longer sequences of moves, by Anderson
and Essegaier [15], Baston [17], Uthaisombut [34], Alpern [7] and Han et al.
[31]. Currently the best estimates combine to give 2.091≤ Rs ≤ 2.1287.

4. Rendezvous on the infinite line (agent-asymmetric form). In this version
of the problem, the cumulative distribution function F (d) of the initial dis-
tance d between the players is given. In general, this is an easier problem,
though a solution for general F is not known.

In the case where the initial distance d is given, the solution was found by
Alpern and Gal [11], and the least expected meeting time is 13d/8. Further
progress was made when Alpern and Howard [13] showed that the problem
was equivalent to a single agent problem where a single searcher seeks to find
an object hidden at one of two possible locations, where each location must
be searched in a given order and alternation between locations is costless (the
alternating search problem). Using this approach Alpern and Beck [10] were
able to solve the problem for the case where d has a convex distribution on an
interval [0,D] . In these cases the solution is a variation on the so called Wait For
Mommy strategy, where one player (Baby) waits while the other carries out an
optimal search for an immobile hider. In the variation, Mommy doesn’t change
her strategy, but Baby moves to meet Mommy. These solutions don’t apply to
the symmetric problem because they require coordination in the assignment of
roles (Baby, Mommy) to the players.
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5. Mozart Café problem. Two friends agree to meet for lunch on the first day
of the millennium year 2,000 at the Mozart Café in Vienna. When the time
comes, each arrives at Vienna Airport and asks a cab to take them to the
Mozart Café. Each is troubled to hear the answer ‘There are four of them;
Which one do you want?’ On the first day the four cafes are indistinguish-
able so each can do no better than picking one at random. If they don’t
meet on the first day (1 January) then they can choose to return on day 2
to the same cafe, or to go to a random new one. And so on. What is the
best strategy, assuming both players use the same one (with independent
randomization)?

This is the first discrete time rendezvous problem. It remains open if there are at
least n= 4 cafes. If there are only n= 2 cafes, Anderson and Weber [16] showed
that the random strategy (pick randomly every day) is optimal. They proposed
a general strategy AW (n) for the case of n cafes: If you haven’t met on day 1,
do the following in every successive interval of n−1 days; with probability pn,
search the other n− 1 cafes in random order; with probability 1− pn−1, stay
where you are for another n− 1 days. Weber [35] has recently used an elegant
but elaborate argument to show that AW (3) is indeed optimal for the 3 cafe
problem, but that AW (4) is not optimal for n = 4.

6. Mozart Cafe problem with river. Suppose there are 2n cafes, with n of
them on each side of the Danube. The problem has changed, because after
not meeting on day 1 for example, a player has three choices for the next
day: the same cafe, a different one on the same side of the river, a random
cafe on the other side of the river.

Nothing is known about this version of the problem. The players can ignore
the additional information, so they should be able to meet in the same expected
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time as the regular 2n problem. But can they do better? More generally, we
could have n = mr cafes partitioned into m sets of r. (Unequal partitions could
allow coordination on certain sets.)

7. Multiple agent rendezvous. The rendezvous problems can be modified so
that the goal is for n players to all meet at the same location. For example,
n astronauts could land independently with the same distribution on the
sphere.

For these problems it could be assumed that players who meet must stick to-
gether (sticky) or not. One could also look at problems where there are n
players but only k of them have to meet (say, to carry out some task). Some
references to various versions of this problem (including some in the com-
puter science literature which we have been otherwise excluding) are Alpern
[6], Lin, Morse, and Anderson [28, 29], Baston [17], Lim, Alpern and Beck
[27], Alpern and Lim [14, 26], Dessmark, Fraigniaud, Kowalski and Pelc
[20], Marco, Gargano, Kranakis, Krizanc and Pelc [30], Kranakis, Krizanc and
Rajsbaum [25],Kowalski and Malinoski [24], Dobrev, Flocchini, Prencipe and
Santoro [21].

8. Asynchronous rendezvous. All of the above problems assume that the
two (or more) players enter the search region, and begin their search, at the
same time. This allows some coordination.

This problem has received some attention in unpublished work of V. Baston and
A. Beck, and in the alternative optimization criteria of the theoretical computer
science approach of Marco, Gargano, Kranakis, Krizanc and Pelc [30]. See also
Lin, Morse and Anderson [29].

9. Rendezvous without proximity. The classical form of the rendezvous
search problem assumes that the problem is solved (rendezvous achieved)
when the two players meet spatially. That is, when they come within a
specified distance or, in one dimensional scenarios, when they have the
same location. However, other end conditions are possible. More generally
we could posit a subset R of Q×Q, where Q is the search region, where
the game ends when the locations of the two players form a pair in R. The
classical version constitutes the diagonal.

The only problem of this type that has been explored in the literature is by the
author [8], who considered a rendezvous problem in Manhattan, where the two
players rendezvous when they arrive at a common street or avenue (and thus
can see each other without buildings coming between them). It would be useful
to develop a general theory, or perhaps simply explore another example.
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10. When to give up: rendezvous with failure. As stated in the Introduction,
what distinguishes rendezvous search from Schelling’s coordination prob-
lems is that the search continues until coordination (meeting) is achieved.
However it is common that when two people agree to meet in a large area,
one or more may eventually give up, assuming the other didn’t come to the
area. Similarly, searches for missing people are eventually terminated.

There are two ways we could incorporate giving up the search: we could keep
the classical formulations but change the cost function; or we could put in new
ingredients to the problem. For the former, we could postulate a cost function
c(T )+ f ·C, where c is an increasing convex function of search time T and C
is a cost of failure that is incurred if the search is terminated at a time T with-
out meeting (in this case f = 1; otherwise f = 0). Or we could have a value of
meeting which decays exponentially, while the cost is still the search time T.
The later version involves changing the ground rules of the rendezvous problem
itself. We could have a given probability that each player simply does not turn
up to the game. Or this could be implicit: for example the initial distribution of
the players could be uniform on the union of disjoint complete graphs of size 8
and 2. Presumably one would start off in the hope that the other is in the same
component and play optimally within your component. At some point (earlier
if you are in the small component), you have a sufficiently low updated prob-
ability that rendezvous is possible, and you would stop. If the players stop at
different times it is not clear how to allocate costs to search times.

14.3 Further Comments

For more results in the field of the operations research aspects of rendezvous, see
the monograph of the author and S. Gal [12] and the survey of the author [5]. For a
broader approach to search games and search problems, see the monograph of Stone
[33] and the survey of Benkoski, Monticino and Weisinger [18].
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Part IV
Search in Biology



Chapter 15
Interactions Between Searching Predators
and Hidden Prey

Mark Broom

Abstract Predator-prey interactions are among the most fundamental in nature.
In this chapter we look at some existing models of the interaction between preda-
tors and prey, where prey and/or predators have important strategic choices to make.
Firstly we consider situations where both predator and prey are aware of each other,
and the predator is approaching the prey. When should the prey flee? Then we
consider a moving predator which is unaware of a hidden prey individual. Should
the prey stay where it is, or should it flee, and if so when? Finally we consider a
new model of a stationary predator searching for a hidden prey (which may not be
present), where both prey and predator have important decisions to make. Should
the prey flee, and if so when? How long should the predator search before giving
up, and moving elsewhere?

15.1 Introduction

Avoiding predation is a central component of the lives of the majority of animals.
Depending upon the type of prey and predator, there are a number of potential
methods that can be used by the prey to avoid predators. These include physical
defences such as spines or toxins, and such individuals may be able to fight off or
deter a predator attack. Often, as in the cases we shall consider, predators are over-
whelmingly stronger than their prey, and there are two main defences, to run or
to hide.

Consider a prey that has just discovered a predator. Sometimes the optimal
strategy can be to flee immediately, for instance if a ground feeding bird is being
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attacked by a hawk [7]. However, there are also important situations where this is not
the case. The classic case is on open plains where predators are very often present
and where both prey and predators can be clearly visible to each other. To flee on all

occasions would disrupt foraging to an unsustainable extent. Rather the prey must
decide when the level of risk is sufficiently high to make fleeing the best strategy,
and when to continue foraging [12]. A second scenario is when a prey individual
has not yet been observed by the predator, for example an ungulate calf hiding in
long grass. To run will alert the predator to its presence, so it may be best to remain
still if there is sufficient chance that the predator will not discover the individual.
Thus the key decision for the prey here again, is when to run and when not to [2].
These two important cases are related, and we shall look at existing models of both,
although the central focus of this chapter is on the second case. In particular we
shall then introduce a new model of an interesting variant of the second case where
the predator also has key strategic decisions to make.

15.2 Interactions Between Visible Prey and Predators

Avoiding and fleeing from predators is one of the central activities of many animals.
It has been postulated that this task is so important in comparison to foraging (the
threat of death versus an incremental gain in resources) that when there is a predator
threat this always takes precedence over foraging, see for example [9]. Thus when
an approaching predator is detected by a prey individual this should lead to some
immediate anti-predator response, such as flight. Ydenberg and Dill [14] suggested
that this view was incorrect and that detection and response were often not so di-
rectly associated. They introduced an “economic” model, with benefits and costs
associated with fleeing from predators or continuing to forage (with the potential
for later flight).
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15.2.1 The Model of Ydenberg and Dill

The argument of [14] is as follows. Suppose that a prey individual has seen a
predator approaching it. Thus both are aware of each other’s location. If the prey
continues foraging the predator will continue its approach and an attack will occur.
If the prey flees it will lose some foraging time. The earlier it flees, the more foraging
time will be lost. The earlier the prey flees, the more chance it will have of escaping
the predator. There is thus a benefit from fleeing B which decreases with predator
distance, and a cost C which increases with predator distance. They contend that at
every point the prey chooses to flee if the benefit of doing so outweights the cost,
i.e. B > C. B−C decreases with distance, and so increases with time (the distance
decreases with time as the predator approaches), and so the prey should flee at the
critical point when B =C.

It should also be noted that instead of just not fleeing, prey often give responses
short of flight when detecting a predator. This includes lifted tails in squirrels, stand-
ing posture in hares, primate alarm calls and stotting by gazelles. Stotting is where
the gazelle jumps high into the air when faced by a potential predator, and is be-
lieved to be a signal to the predator that the prey is healthy and so should not be
chased, see [4]. These can be signals to the predator that it has been detected, and
that it consequently has low success probability, and so should not waste its time
and energy in an attack.

The model of [14] makes clear predictions which match real observations well,
and consequently has been very influential. The key predictions of the model are as
follows:

(i) Flight distance should increase with the risk of capture.

(ii) Flight distance should decrease with increased cost of fleeing.

(iii) Flight distance changes with the effectiveness of alternative defence
tactics such as crypsis. If a prey is cryptic then perhaps an approaching
predator has not seen it and the level of crypsis may affect flight distance
(see the model of [2] described in Sect. 15.3).

(iv) Flight distance varies with the fitness benefit associated with group mem-
bership. Larger group size may reduce predation risk (but also possibly
foraging efficiency) and so may reduce flight distance.
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15.2.2 The Model of Cooper and Frederick

In the [14] model prey flee when the cost of fleeing precisely matches the benefit.
The concept of benefits and costs here are rather abstract. The cost and benefit of
fleeing immediately can only be evaluated if we know what happens if the prey
does not flee immediately, which in turn depends upon when it does eventually flee.
Similarly between two potential fleeing distances, the actions of the prey may affect
subsequent costs and benefits. A more pertinent consideration is, what is the optimal
time to flee for a prey individual to maximise its fitness?

Cooper and Frederick [3] modelled this by developing a model of the foraging
scenario in [14] using an explicit fitness function. In their model again both prey and
predator can see the other, and the fitness of an individual, if it survives, depends
upon its resource level. It is assumed that the predator approaches the prey at a
constant speed, so that there is a simple relationship between the time since the start
of the encounter and the distance between prey and predator, and the resource level
is given by

F0 +B(d)−E(d), (15.1)

where d is the distance of the predator from the prey, F0 is the fitness at the start
of the encounter (when d = dd), E(d) is the energetic cost of escaping at distance
d, and B(d) is the benefit of waiting from the start of the encounter until the prey
has reached distance d, which is increasing with d (so B(dd) = 0). We note that
this benefit is achieved through extra foraging opportunity, and so more properly
depends upon the time since the start of the encounter rather than the distance. In
this instance, since there is a deterministic relationship between time and distance
this is not problematic, but a more realistic model (e.g. with variable predator speed)
would need to contain time as a separate factor.

When the prey flees is has probability of survival Ps(d) which increases with d.
The total fitness at distance d is thus

F(d) = {F0 +B(d)−E(d)}Ps(d). (15.2)

We note that in reality Ps may also increase with the level of resources, which in-
creases with time (and so decreases with d), and so it is possible that in some situ-
ations Ps might not increase monotonically with d (although this would likely have
to be associated with a very slow predator approach).

Cooper and Frederick [3] used the following example functions

B(d) = B∗
(

1− d
dd

)n

,E(d) =
f

dm ,Ps(d) = 1− e−cd, (15.3)

giving the fitness as

F(d) =

(
F0 +B∗

(
1− d

dd

)n

− f
dm

)
(1− e−cd). (15.4)
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Cooper and Frederick [3] developed a more realistic model, which nevertheless
agreed with the main predictions of the model of [14]. The extra flexibility of their
model meant that they were also able to make new predictions based upon the differ-
ent parameters that they introduced, that we see in (15.4). For instance flight distance
should increase with initial fitness F0, as the fitter the individual initially, the more it
has to lose and the costs associated with predator attack increase, whereas the gain
associated with extra forgaging is unchanged. Conversely if the benefit of foraging
B∗ increases, then the gain associated with remaining increases, but the cost is un-
changed, and so the optimal flight distance is reduced. For each parameter there was
a clear prediction of the effect that altering its size would have on the flight distance.
We should note also that it is of course easy to replace the functions used with al-
ternative ones if they represent a particular scenario better, but that effectively the
same qualitative behaviour is likely to result from most plausible functions.

15.3 Interactions Between Cryptic Prey and a Mobile
Visible Predator

Broom and Ruxton [2] consider prey that are initially stationary and to some extent
cryptic in their environment, such that predators cannot detect them at a distance.
Examples include ungulate calves hiding in long grass, many cryptically coloured
ground-nesting birds and flat fish lying on the sea bottom.

15.3.1 The Predator-Prey Interaction

In their model, a predator-prey encounter begins when the prey detects an approach-
ing predator. Since the predator has yet to detect the prey when the interaction
begins, there is no reason to expect that its trajectory will be taking it directly to-
wards the prey. The closer the predator gets to the prey, the more likely it is to detect
it. The closer the predator is when the prey is detected, the more likely it is that
the ensuing attack by the predator will be successful. Fleeing from the predator will
in most cases alert the predator to the presence of the prey individual. Hence, there
may be a countervailing pressure for the prey to sit tight, rely on its crypsis, and only
flee if it perceives that the predator has detected it, and is attacking. A key difference
between this model and that of [14] is in the cost to the prey associated with fleeing
early; in the model of [14] this cost is the opportunity cost associated with reduced
time spent feeding.

The predator starts at a distance r from the prey, initially at an angle θ to the
prey (so θ = 0 means it is heading straight for the prey). The predator is assumed
to move in an undeviating straight line at a constant speed, unless it detects the prey
individual. Thus, as in Sect. 15.2.2, there is a deterministic relationship between
time and the position of the predator, and we again focus on the predator position.
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This initial position on the trajectory is denoted v =−1, the position when predator
and prey are closest is position v = 0, and the position when the predator is again
at distance r from the prey, and it is assumed that the potential encounter finishes,
is position v = 1. The length of the trajectory is 2r cosθ and the minimum distance
between predator and prey (occurring when v = 0) is r sinθ . At any position v on the
trajectory, the distance between predator and prey can be found by simple triangular
geometry, see Fig. 15.1.

Parameter Meaning
r The maximum distance at which prey can detect predators
θ The angle between the predator’s trajectory and the prey direction
s The speed of movement of the predator prior to an attack

d(v) The distance from predator to prey when the predator is at position v
Δ The distance advantage the prey gets from initiating a chase itself
t The time taken by the predator to reach position v

f (d) The probability of the predator catching the prey from distance d
g(d) The rate that the predator detects the prey at distance d
A(v) The probability that the prey has been detected by position v

c The multiplicative cost of surviving through outrunning a predator

Table 15.1 The parameters for the model of Broom and Ruxton [2]
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Fig. 15.1 The prey hides at point P. (a) The interaction begins when the predator enters the area at
point v=−1, at distance r from the prey, moving in a direction at an angle θ to the most direct route
to the prey. (b) The distance d of the predator from the prey at point v follows from Pythagoras’
theorem using the distances a and c, with distances a = vrcos θ , b = rcosθ , c = r sinθ . (c) If the
prey flees, it gains an extra distance Δ ahead of the predator in the pursuit

Detection of the prey occurs at rate g(d(v)), and the probability that the prey has
been detected by position v is denoted by A(v). Note that the rate of detection is
independent of the speed of the predator, but this speed still affects the probability
of the prey being spotting because it affects how long it will be in range of the prey.
Hence

1−A(v) = exp(−
∫ t

0
g(d(v))dt)⇒ (15.5)
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− ln(1−A(v)) =
r cosθ

s

∫ v

−1
g(d(v))dv. (15.6)

Broom and Ruxton [2] considered three cases, and we shall briefly look at two of
them. A summary of the important model parameters is given in Table 15.1. Rewards
to both predator and prey from the three different possible types of interaction are
shown in Table 15.2.

15.3.2 The Predator Attacks As Soon As the Prey Is Observed

In this version of the model, the predator must attack as soon as it detects the prey,
and can see behind itself (and so may still attack after the closest position).

The payoff for never fleeing unless attacked is given by

R(N) =

∫ 1

−1
{1− f (d(v))}(1− c)

dA(v)
dv

dv+ 1−A(1). (15.7)

Strategy V is to flee if the predator attacks or if the predator reaches position
v=V without attacking, for some position V ∈ [−1,1]. The payoff from this strategy
is

R(V ) =

∫ V

−1
{1− f (d(v))}(1− c)

dA(v)
dv

dv+(1−A(V))(1− c){1− f (d(V)+Δ)},
(15.8)

where Δ is the extra distance that the prey can move when it initiates a chase before
the predator is aware of the fleeing prey (so that effectively the chase starts with a
distance v+Δ between the two individuals, see Fig. 15.1c).

The case of fleeing immediately is simply V =−1 in the above i.e.

R(−1) = (1− f (r+Δ))(1− c). (15.9)

For any V > −1, R(V ) is a weighted average of terms of the form (1− c)(1−
f (d)) that are never bigger than R(−1), and so R(−1)> R(V ).

Situation Prey’s payoff Predator’s payoff
No chase 1 0

Attack-initiated chase (1− c)(1− f (d(v))) f (d(v))
Flight-initiated chase (1− c)(1− f (d(v)+Δ)) f (d(v)+Δ)

Table 15.2 The possible interactions and associated payoffs for the model of Broom and
Ruxton [2]

Thus the optimal strategy is either to run immediately (with payoff R(−1)) or
only to run when the predator initiates an attack (with payoff R(N)).
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15.3.3 The Predator Can Delay Its Attack

In this case, the predator can still see behind it, but need not attack as soon as it
has seen the prey. Now the prey can play the same strategies as considered above,
and the predator plays a strategy U , which involves delaying an attack until position
U ∈ [−1,1] if the prey is detected before this position, or attacking immediately on
detecting the prey, if detection occurs after it reaches this position.

If V ≤U , then the prey will always flee before a predator attacks, and will receive
payoff

R(V,U) = (1− c){1− f (d(V)+Δ)}. (15.10)

The predator receives payoff

P(V,U) = f (d(V )+Δ). (15.11)

If V >U then either the predator will detect the prey before position U and will
initiate an attack at position U , or the predator will detect the prey and thus initiate
an attack at some position between U and V , or the predator will not detect the
prey before position V and the prey will flee at position V . These three possibilities
(respectively) lead to three terms in the payoffs to prey and predator:

R(V,U) = A(U)(1− c){1− f (d(U))}+
∫ V

U
(1− c){1− f (d(v))}dA(v)

dv
dv

+(1−A(V))(1− c){1− f (d(V)+Δ)}, (15.12)

P(V,U) = A(U) f (d(U))+
∫ V

U
f (d(V ))

d(A(v))
dv

dv+(1−A(V)) f (d(V )+Δ).

(15.13)

Similarly if the prey plays strategy N, the rewards are

R(N,U) = A(U)(1− c){1− f ( d (U))}+
∫ 1

U
(1− c){1− f (d(v))}dA(v)

dv
dv

+{1−A(1)}, (15.14)

P(N,U) = A(U) f (d(U))+

∫ 1

U
f (d(V ))

d(A(v))
dv

dv. (15.15)

By a similar argument to that used before, R(−1,U) is greater than the weighted
average of similar terms that constitute R(V,U) for all V > −1. This is true for
any U , so whatever the predator’s strategy, the prey’s best strategy will be to either
never flee unless attacked (Strategy N) or flee immediately on detecting the predator
(strategy -1).

If strategy -1 is adopted, then the payoffs to both parties are independent of the
predator’s strategy. For the case where the prey picks strategy N, It was shown in [2]
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that the value of U which maximises the predator’s payoff P(N,U) is U = 0. Thus
the predator should always wait until the closest position, and the prey should either
flee immediately if R(−1,0)> R(N,0), or never flee otherwise.

15.3.4 Summary

The optimal strategy for the prey is thus either to run immediately or never to initi-
ate a chase. This is true whether the predator attacks immediately on discovering the
prey or whether the predator delays its attack until it has closed the distance to the
prey. We note that in our different models either the predator had no choice, or there
was a clear predator optimal strategy, regardless of whether the prey runs immedi-
ately or never. This reduces the prey’s strategy to a simple optimisation problem,
and thus effectively rules out a mixed strategy. The strategy of immediate flight is
associated with slow predator search speed, a low non-predation cost to running, a
large advantage to the prey in initiating chases, limited ability to spot the predator
at distance, a high ability to spot prey by the predator, and a high probability that
chases will be successful. Note that it was assumed that searching predators never
spontaneously change direction, or do so sufficiently rarely that this situation can
be ignored. If many such directional changes are made, this will affect optimal prey
and predator strategy.

15.4 Interactions Between Cryptic Prey and a Stationary
Visible Predator

In this section we consider a model of a related scenario to the above, where an
ambush predator appears close to a concealed prey individual. The predator does
not move, but begins to scan the environment for hidden prey. An example is a bird
of prey such as an eagle settled at a high vantage point. The prey must choose when
(if at all) to run. This model was developed following experiments by Martin et al.
[8] which we describe below.

15.4.1 Experiments with Hidden Rock Lizards

Martin et al. [8] conducted experiments in central Spain with hidden rock lizards in
their natural habitat, and humans as simulated predators. The experimenter walked
around the study area until a lizard was spotted. Then the experimenter carried out
one of two procedures. In the first case they approached the lizard slowly without
obviously looking at it, and stopped at a short distance from the lizard. The ex-
perimenter then timed how long it took for the lizard to flee to a refuge (usually a



242 M. Broom

crevice in a rock). In the second procedure, the experimenter proceeded as above,
but after stopping ran towards the lizard, simulating an attack. The lizard then fled
to a refuge, after which the experimenter stayed in the local area until the lizard next
left its refuge. When the lizard left, the first procedure was again followed. In each
case the human predators did not discontinue their search until the prey had fled.

Thus in the experiments, two levels of predator threat were displayed. A lower
level threat where the predator had just arrived in the area, was clearly searching but
had not discovered the lizard, and a higher level one where the prey was hiding as a
direct result of a chase, so it was clear that the predator knew it was in the vicinity.
Martin et al. [8] found that the lizards fled after some time, typically of the order
of 3 min or less. This time depended upon the level of danger that they were in. In
the high risk case the time was significantly shorter than in the low risk case. There
were differences between males and females, with males generally fleeing earlier
(males are more brightly coloured so that crypsis is a less reliable defence).

15.4.2 A Model of the Interaction Between a Stationary
Searching Predator and a Hidden Prey

Here we describe a model of this predator prey interaction. A predator arrives at
a location with cover that may conceal hidden prey, and a good vantage point for
searching. The predator begins to search the cover area for prey. It may be that at
some point during the search a hidden prey individual flees. We shall assume that
the cover area does not contain more than one prey individual. It is possible that
there are no prey present. Eventually, if it does not find prey, the predator will give
up and try a new location. The predator must decide when to give up searching if no
prey is found.

A prey individual is in cover when it observes a predator arrive. The prey knows
that there are no other prey nearby, and that the predator is not aware of its presence.
It also knows that the predator is there to hunt and is searching to find prey, and that
eventually if the predator finds nothing it will give up and move elsewhere. The prey
must decide how long to stay in hiding and when to run, if ever.

When the predator arrives, the probability that there is a prey individual present
is 0 < α < 1. If the predator finds the prey it will attack it, the prey surviving with
probability γ . If the prey runs before the predator sees it, it will alert the predator to
its presence, but have an increased chance of survival β , where 0 ≤ γ < β < 1. The
rate that the predator spots a prey individual (conditional on it being there) is given
by g(t) which depends upon how long the predator has been searching, and so the
probability that the prey has been seen by time t is

G(t) =
∫ t

0
g(s)ds. (15.16)
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The predator pays an opportunity cost λ per unit time it spends looking for the prey
i.e. if it leaves, the expected reward it would get elsewhere per unit time is λ . The
model parameters are summarised in Table 15.3.

Parameter Meaning
α The probability that a prey individual is present
β The probability of survival if the prey breaks cover and runs

γ(< β ) The probability of prey survival if the predator spots the prey
G(t) The probability that the predator finds the prey (if present) by time t
g(t) The rate of search success of the predator, the derivative of G(t)
λ The cost paid by the predator per unit time during the search
ν The predator’s discovery rate at t = 0

Table 15.3 The parameters for the stationary predator and hidden prey model

The prey’s strategy is the time s after the predator’s arrival when it will run. The
predator’s strategy is the time t after its arrival to give up if no prey has been found.

For given values of s and t, the prey reward (simply its survival probability) is
R(s, t) where

R(s, t) =

{
G(t)γ +(1−G(t)) s > t

G(s)γ +(1−G(s))β s ≤ t
(15.17)

The predator reward P(s, t) is its probability of catching the prey minus λ times
the expected time spent in the search. This is

P(s, t) =

⎧
⎪⎨

⎪⎩

α{G(t)(1− γ)}−λ{(1−αG(t))t+α
∫ t

0 g(x)xdx} s > t

α{G(s)(1− γ)+ (1−G(s))(1−β )}−λ{(1−α)t

+α(
∫ s

0 g(x)xdx+(1−G(s))s)} s ≤ t

(15.18)

Our game is a type of asymmetric generalized war of attrition. The longer the
predator waits, the greater the conditional probability that in fact there is no prey
in cover, so the predator must eventually stop searching. Thus under most circum-
stances the expected incremental payoff to the predator of waiting extra time will
decrease and there is likely to be a unique point at which it is best for the predator
to leave. We suppose that the predator chooses pure strategy t.

For the prey the risk is high early on, but it knows that it can outwait the predator.
A natural strategy for the prey is to either run immediately, or not at all. In fact,
similarly to the game of [2], there is no point it waiting a short time, and exposing
itself to the risk of being attacked, only then to flee before the predator gives up. The
only possible choices are thus to flee immediately or to choose a leaving time which
is longer than the predator is prepared to wait (and any such time is equivalent to
never to flee). We suppose that the prey chooses s = 0 with probability p, and s = ∞
with probability 1− p. We denote this strategy by p.
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We thus have a game where the predator chooses a time t, and the prey chooses
a probability p. We note that we have not ruled out the possibility of other strategy
combinations associated with a mixed predator strategy. If the predator used a mixed
strategy involving at least two different strategies t1 and t2 > t1, then the payoffs to
playing either of these as a pure strategy would have to be equal in any population
in equilibrium. This in turn means that there must be some probability of the prey
fleeing between times t1 and t2. Why would a prey individual flee at such interme-
diate times, having exposed itself to initial risk of being attacked (similarly to the
argument above)? One reason could be that the predator gets better at searching as
it aclimatises to the location. This cannot be ruled out, so it may be that such mixed
strategies occur (although it is not obvious that they can). As we shall see, under
reasonable assumptions (including that the predator does not get better at searching
the longer it waits) we find a unique strategy of this type for all parameters. We also
assume that if the predator and prey choose to leave at the same time, then an attack
initiated by the prey is the result (i.e. as it prepares to go the predator sees the prey
flee and launches an attack).

The payoffs for prey and predator become

R(p, t) = pβ +(1− p)G(t)γ +(1− p)(1−G(t)), (15.19)

P(p, t) = α {p(1−β )+ (1− p)G(t)(1− γ)}−λ{(1−α)t

+ (1− p)α(

∫ t

0
g(x)xdx+(1−G(t))t)}. (15.20)

Against a given t the optimal prey strategy is the value of p which maximises the
expression for R(p, t) in (15.19), which is p = 0 (p = 1) when

G(t)< (>)
1−β
1− γ

, (15.21)

and all values are equivalent if (15.21) becomes an equality.
The optimal predator strategy occurs where P(p, t) achieves its maximum value

in (15.20). A local maximum of this expression occurs when

dP(p, t)
dt

= α(1− p)(1− γ)g(t)−λ (1−α)−λ (1− p)α(1−G(t))= 0. (15.22)

For most reasonable functions G(t) this decreases with t, so there will be at most one
such value. If there is such a value this is the optimal predator choice of t, otherwise
(if the right hand side of (15.22) is negative at t = 0) then t = 0 is optimal.

We thus look for combinations of t and p which satisfy (15.21) and (15.22). It
is easy to see that there is no stable solution with p = 1, since this means that it is
impossible for prey to be in hiding after time 0, so that t = 0 maximises (15.20), but
for t = 0 it is best for the prey to wait (i.e. p = 0 maximises (15.19)). Similarly no
stable solution can exist involving a mixed strategy 0 < p < 1 and t = 0, again since
p = 0 maximises (15.19) when t = 0. This leaves three possibilities, p = 0, t = 0;
p = 0, t > 0 and 0 < p < 1, t > 0.
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15.4.3 An Example Payoff Function

We shall consider the function g(t) = ν exp(−νt). This represents a predator who
spots a prey individual at constant rate ν , conditional on the fact that there was
initially a prey individual to be spotted, and that it has not already fled or been
spotted by the predator. We obtain the following results, which are illustrated for a
particular choice of parameters in Fig. 15.2.

1. p= 0, t = 0 defines an equilibrium if t = 0 maximises (15.20) when p= 0, (note
that p = 0 automatically maximises (15.19) for t = 0). Using (15.22), this gives

α(1− γ)ν −λ (1−α)−λ α < 0 ⇒ (15.23)

ν <
λ

α(1− γ)
. (15.24)

2. p = 0, t > 0 defines an equilibrium if (15.22) is satisfied for a value of t > 0
when p = 0, and for this t, p = 0 is optimal. For p = 0 (15.22) becomes

α(1− γ)νe−νt −λ (1−α)−λ αe−νt = 0 ⇒ (15.25)

t =
1
ν

ln
α(1− γ)ν −λ α

λ (1−α)
. (15.26)

The value of t in (15.26) is only positive if (15.24) does not hold. p = 0 is
optimal if (15.21) holds i.e.

1− e−νt <
1−β
1− γ

. (15.27)

These two conditions thus yield

λ
α(1− γ)

< ν < λ
(

1
1− γ

+
1−α

α
1

β − γ

)
. (15.28)

3. p > 0, t > 0 defines an equilibrium if (15.21) and (15.22) are satisfied with
equality. These yield

t =
1
ν

ln
1− γ
β − γ

(15.29)

and

p = 1− λ (1−α)(1− γ)
α(β − γ)((1− γ)ν −λ )

,

the second of which requires

λ
(

1
1− γ

+
1−α

α
1

β − γ

)
< ν. (15.30)
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Fig. 15.2 Optimal values of p and t for various values of ν in the stationary predator, hidden prey
game. Other parameters are λ = 1, α = 0.5, γ = 0, β = 0.5

Thus for different values of search efficiency ν we have:

ν small: the prey does not move and the predator gives up immediately (e.g. the
cover is too dense, opportunities are better elsewhere than here).
ν medium: the predator will search for some time before leaving, but the prey will
never run if not found.
ν large: the predator will search for some time before leaving, and the prey will
play a mixed strategy, fleeing immediately with some probability, and otherwise
never running unless attacked.

15.5 Discussion

Initially we looked at existing models of two situations where prey must decide
whether to flee. Sometimes elements of both models will be present. Although the
cost of fleeing considered by Broom and Ruxton [2], energetic costs and risk of
capture, and that considered by Ydenberg and Dill [14] and Cooper and Frederick
[3], loss of foraging time, are not mutually exclusive, we can make predictions about
the relative importance of the two costs.

In cases where predators can see prey from a distance then the Cooper and Fred-
erick [3] model is better. An example is an adult zebra or gazelle grazing on the
savannah during the day, see [13]. This is particularly true if attempted predation is
common, so that costs of flight are significant to the daily energy or time budget of
the prey, or if fleeing causes the prey to lose a valuable food item (e.g. a cheetah
being driven from a kill by approaching lions). There are many instances of prey
not fleeing as soon as a predator is seen; for example [14] gives a number of situ-
ations where flight distance is affected by the speed of a predator’s approach, and
many prey become alert when a cheetah is spotted, but do not take flight until it is



15 Interactions Between Searching Predators and Hidden Prey 247

sufficiently close [6]. However, if the prey is cryptic such that predators can pass
reasonably close to it without detecting it (e.g. a juvenile gazelle lying motionless
in long grass) then the Broom and Ruxton [2] model is better. This will especially
apply to cases where predation attempts (or at least proximate predators) are less
frequent, so that avoiding predation makes up a small part of an animal’s time or
energy budget or if the prey animal can quickly return to its previous feeding be-
haviour as soon as the predator has passed (e.g. many grazers). It may be that more
sophisticated models that take into account different costs to the prey are needed.

We then looked at a new model similar to that developed in [2], inspired by ex-
periments carried out in [8]. In the new model, the predator remains still and has to
decide how long to search for prey before giving up; the prey has to decide whether
to run, and if so when. We found some circumstances, where a particular area was
just too difficult to search, where the predator should give up immediately (and of
course the prey does not run). As the ease of search in a particular area improves,
there comes a critical point when it is worthwhile for the predator to search, but
where the prey should still always stay in cover. As searching becomes easier the
length of time the predator should stay increases. This continues until a point where
it becomes optimal for the prey to play a mixed strategy, sometimes staying in cover,
but sometimes running immediately. As searching becomes easier still, the proba-
bility that the prey runs immediately should increase, and the search time of the
predator starts to decrease again. This is because, given that prey often run immedi-
ately, conditional on not having found prey or seen them run, the probability of there
actually being no prey to find increases with ease of search through the increased
chance of early running.

Why did we not get the results of [8], that the prey sometimes wait before run-
ning? The most obvious reason is that we focused on finding a different kind of
solution, which we considered to be the natural solution to the problem that we con-
sidered. But why did they not find such solutions, but instead have prey that ran
after some time, rather than immediately or not at all? One possible explanation is
that the lost foraging cost of [14] or [3] is sufficiently important, and that the lizards
cannot afford to wait it out.

Interestingly, the “predators” of [8] effectively carried on searching forever, so
did not behave like strategic predators. This provides another possible explanation.
In our model, if prey knew there were a small fraction ε of predators that waited
forever, then if a predator stays beyond time t, they would know that one of the new
predators was present, thus fleeing is then optimal.

Alternatively, what if prey can observe which area is being searched? Thus for
the prey the search rate may be νH or νL < νH , depending on whether the predator
is searching in its vicinity. There would be transitions between these two rates, as
the predator’s search continued. If these transition rates were rHL and rLH from high
risk to low risk and low risk to high risk respectively, then we can show that the
mean search rate ν is found from

ν =
rHL

rHL + rLH
νL +

rLH

rHL + rLH
νH . (15.31)
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Thus it may be that the optimal strategy for a prey individual may be to run if it is in
the more dangerous search phase, and so we simply observe a prey individual run
the first time that this phase is entered.

We note that in the above work the strategic choices of the predators have been
limited i.e. to attack immediately or wait, or when to cease searching. However,
we have not considered the best active searching strategy of the predator. Some
important work on predator searching strategies has been carried out, with examples
including [1, 10, 11] and [5]. The choices of predators in general can of course be
important, and in turn influence the choices of the prey, as we have seen in our model
of the stationary predator and hidden prey. This is likely to be true for a variety of
scenarios, and so the choices of both prey and predators should be considered in our
models.
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Chapter 16
A Discrete Search-Ambush Game
with a Silent Predator

Robert Arculus

Abstract We investigate the problem faced by a searcher attempting to capture a
mobile hider hidden in one of K discrete locations. In each time period the searcher
may either inspect a location or ambush. The hider can attempt to move to a ran-
dom location at any time, but will be captured during the move if the searcher is
ambushing. This game was invented by Steve Alpern, and is an outgrowth of the
recent studies of Alpern et al. (J R Soc Interface 8, 2011), which assume a ‘noisy
predator’, where the prey always knows the fraction of the search area that has
been inspected. The distinguishing feature of the problem addressed here is that the
predator is ‘silent’, so that the prey can only surmise the extent of the current ex-
ploration. The prey, however, remains ‘noisy’, in that the predator is informed if a
successful move occurs. To make the game tractable via computation, the searcher
is constrained to inspect the entire space before some chosen number of periods
elapse. Here, we present general upper and lower bounds on the expected time until
capture, and state solutions to the game for some simple cases; among other results,
we observe that when the search space consists of two locations and the searcher
is unconstrained, the expected capture time is equal to the square of the golden
ratio. We also provide some conjectures concerning optimal behaviour and bounds
on the value of the game for general K with an unconstrained searcher. Our
numerical results are mentioned but not discussed in detail, though they have
potential to provide further insight into the structure of the game.
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16.1 Introduction and Terminology

Consider a zero-sum game played between a hider and a searcher on a search space
consisting of K discrete cells, with the searcher and hider minimising and maximis-
ing, respectively, the time elapsed until capture. In every unit of time the searcher
chooses either to inspect one of the cells, or to ambush in some central location.
Similarly, in each time unit the hider chooses either to remain motionless, or to at-
tempt to move from their current cell to a randomly selected cell (note this includes
the possibility that they may return to the cell they started the period in). If such a
move is attempted while the searcher is ambushing, then the hider is captured; oth-
erwise, the searcher loses all information gained so far regarding which cells do not
contain the hider.

We adopt the following terminology: a period is one discrete unit of time; a
round is a run of periods which ends when the hider is either caught or success-
fully randomises their position; a game consists of a sequence of rounds which ends
whenever there is a round in which the hider is caught. We include a second pa-
rameter, L, which is a limitation on the behaviour of the searcher, such that in any
round the searcher must commit to having searched all K cells by the time L periods
have elapsed. Thus while L limits the length of any round, any particular game can
potentially continue indefinitely. This parameter serves to make the game tractable
for computation purposes.

We assume that the searcher is silent, meaning the hider does not receive
additional information after the start of a round regarding the proportion of cells
that have been inspected. We further assume that the hider is noisy, in that, if cap-
ture does not occur in a period, the searcher is informed whether the hider moved or
remained motionless. The game can thus be modelled using a matrix representing a
simultaneous strategy commitment by both hider and searcher, where a hider strat-
egy involves picking a period in which to move, and a searcher strategy involves
picking K out of the first L periods in which to search. For a game to be non-trivial
and well-defined, we require L > K; if L = K the hider guarantees an infinite payoff
by moving in the first period of every round, and if L < K the searcher’s constraint
cannot be satisfied. We refer to the game in general as the silent search-ambush
game.

We suppose that moving while search is taking place always allows the hider to
escape, even if the searcher is inspecting the cell that the hider was occupying at the
end of the previous period. Note also that when capture occurs, for the purposes of
measuring payoffs it is assumed to take place at the end of the relevant period.

As space available is abbreviated, some proofs will be omitted. Note also that
many of the results here were inspired by numerical solutions obtained computa-
tionally; we make occasional reference to these results, particularly when discussing
our conjecture in Sect. 16.7, but they are not addressed in as much detail as they
might be.
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16.2 Literature Review

The silent search-ambush game was invented by Steve Alpern, and is an outgrowth
of recent work by Alpern et al. [3] on the solution to a very similar game, with
two distinguishing characteristics: first, their search space is continuous, with total
area equal to unity; and second, more crucially, their hider is always aware of what
proportion of the search space has been inspected (i.e., the searcher is “noisy”).
A key result in their game is the “square root law of predation search”: that the
searcher’s optimal probability of searching is equal to the square root of the fraction
of the search space that remains uninspected. Qualitatively, this implies the pace of
search should be rapid at the start of a game, slowing in favour of ambush as the
game progresses.

The issue of the potential usefulness of ambush (in the sense of the searcher
remaining motionless in the hope that the hider will move into them) extends further
back into the search game literature, arising naturally in questions of optimal search
for a mobile hider on a network, especially where the network in question has the
form of a figure-eight or n-leaf clover, or star network: here, it is reasonable to
suspect that the searcher may wish to occasionally remain still at the central node.
This issue was considered in detail by Alpern and Asic [1, 2], finding that such
“loitering” strategies are indeed sometimes advantageous (a useful overview of this
and related issues is provided in Alpern and Gal [4]).

Our game is similar but distinct to games that model the problem of
pursuit-evasion in a continuous space with differential equations or games that con-
sider the geometric problem of optimal ambush locations. Example of this latter
type include a variety of games based on an agent attempting to defend some dis-
crete or continuous search space (see Ruckle et al. [15]; Joseph [12]; Washburn [17]
or Baston and Kikuta [5]). A case which has some interesting parallels to ours is the
one-dimensional evasion game first described by Gal [8] and solved by Lalley [13]
(with several generalisations of the game investigated by other authors); here, an in-
filtrator starts in a safe spot but then must progress incrementally through M discrete
sites within N periods of time without being detected by a defender. One result is
that a min-max strategy for the infiltrator is to play what Lalley terms “Admiral Far-
ragut”1 strategies: waiting for some period of time before progressing through all
sites as rapidly as possible (in Sect. 16.6, we will, less evocatively, term our equiva-
lent of these wait-then-exhaustive strategies).

Trade-offs between searching and ambushing behaviour can be seen in a variety
of real-world contexts. The issue is particularly relevant in biology, with much mod-
ern research following from the observations of different foraging modes made by
Schoener [16]. Some of many possible examples of such behaviour include brook
trout (Grant and Noakes [9]), mantids (Inoue and Marsura [11]), and between differ-
ent species of desert-dwelling lizards (Huey and Pianka [10]). Possible explanations
offered for such behavioural variations include environmental conditions, the threat

1 The reference is to the US Navy flag officer who, among other things, is remembered for the
paraphrased exclamation “Damn the torpedoes, full steam ahead!”.
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of predation on the predator, available food (Olive [14]), and the necessity of either
overwhelming or not alarming the prey (Casas et al. [7]). The suggestion from game
theory is that such variation could represent optimal play if the interaction is mod-
elled as a zero-sum game; this follows from [3], and is also considered elsewhere,
such as in Zoroa et al. [18].

Our game is also somewhat connected with the question of timing when to
flee from an approaching predator, where the probability of successful escape is
increasing the further away the predator is and the quicker they are moving, with an
assumption that the predator’s speed comes at the cost of accuracy; see Broom and
Ruxton [6] for more discussion of this point. This can be linked to our condition that
the hider always escapes against a searching predator, even if the predator inspects
the cell the hider started the round in: this is reasonable if we assume that a moving
hider is “too difficult a target” for a moving searcher to effectively intercept.

16.3 Constructing Payoff Matrices

We start with some additional terminology. We denote the searcher strategy set S,
and the hider strategy set H, with elements of these sets denoted by lower-case s
and h. Specific hider strategies are denoted hi, where i ∈ {1 . . .L,L+}; thus |H| =
L+ 1. Given the searcher’s constraint, the strategy hL+ (which is intended to refer
to moving in any period greater than L) is equivalent to not moving at all. It is
straightforward to show that this is never optimal for the hider – at a minimum, if
period L is reached, it must be sensible to move, since in that period the searcher will
be obligated to search – and thus after this section such strategies will be excluded
from our payoff matrices.

Since every searcher strategy is constructed by choosing K periods out of a total
of L periods, we have |S|= (L

K

)
. When K = 2, we have |S|= L(L−1)

2 , and thus |S|=
O(L2). In general, for any fixed K, we have |S|= O(LK).

The expected time until capture based on a pair of strategies s and h for a game
defined by K and L is denoted TL,K(s,h).

The value of a game, i.e. the expected time until capture under optimal play, is
denoted T̂L,K (see [4] for more discussion of this concept of value in search games).

The optimal (max-min and min-max) hider and searcher strategies are denoted ŝ
and ĥ; we then have T̂L,K = T (ŝ, ĥ), which again may be abbreviated to T̂ . The sub-
scripts L and K will be dropped when they are clear from the context.

We now turn to constructing game matrices, starting by describing how the
expected time until capture (less precisely referred to as the payoff) is calculated
from any pair s ∈ S and h ∈ H. Searcher strategies in general can be difficult to
denote neatly; for this section, we will use the game where K = 2, L = 4 as an
illustrative example, and a search strategy that involves searching in, say, the sec-
ond and fourth periods will be denoted s2,4. In general, a searcher strategy s can be
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interpreted as a binary vector of length L, where a 1 in the n-th position indicates
searching in the n-th period, while a 0 indicates ambushing. Thus s2,4 = {0,1,0,1}.
A subscript on the s represents the relevant vector entry; hence s2,4

2 = 1, s2,4
3 = 0.

Our constraint on the searcher requires ∑L
l=1 sl = K. Any pure hider strategy, hi,

could also be represented by a binary vector, but this rarely proves necessary.
Our notation provides us with a natural ordering for the searcher strategies:

concatenate the relevant binary vectors to create binary numbers, then sort in de-
scending numerical order. Under this approach, strategies that emphasise relatively
“early” search will be listed ahead of those that emphasise “late” search.

To provide a compact formula for the expected payoffs, we define the vector
W m of length L, where W m

j = j if j < m and 0 otherwise; as an example, W 3 =

{1,2,0,0}. Define W L+ =W L+1. The expected time until capture from any combi-
nation of pure hider and searcher strategies is:

T (s,hi) =
1
K

sW i +
K−∑i−1

l=1 sl

K
(T si + i) , (16.1)

Vector multiplication is assumed to proceed appropriately, producing a scalar in
every case, without introducing notation to distinguish row and column vectors.

The interpretation of this formula is not obvious, so some explication follows.
We will first consider the case where the hider plays the suboptimal stratyegy of not
moving before time L, that is, i = L+. In that case the expected time until capture is
1/K multiplied by the search strategy, s, multiplied by W , which will just be a vector
of integers counting from 1 to L (we will have that ∑i−1

l=1 sl = K, so the second term
in the formula is zero). Thus, against the strategy {0,1,0,1}, the expected capture
time in our example game would be 2( 1

2)+ 4( 1
2) = 3.

Consider another case, where the hider moves before the first period in which the
searcher searches. In that case the first term is zero (as sW i = 0), while ∑i−1

l=1 sl = 0.
Since in this case si = 0, the entire equation is simply equal to i. If, however, the
hider moves in the first period in which the searcher searches (so that si = 1), the
payoff is T + i, where T is the payoff obtained by playing the game again assum-
ing the hider and searcher hold their probability distributions over their strategies
constant.

The remaining and most complex case is thus when the hider moves after some
cells have been searched, but not all of them. In this case the term 1

K sW i represents
the proportion of the expected payoff due to the possibility of capture before the

period in which the hider moves.
K−∑i−1

l=1 sl
K represents the probability that the hider

will not have been captured by time i, and thus the probability of obtaining the
payoff T + i (if movement occurs during search) or i (if it does not).

Thus: against {0,1,0,1}, h1 provides a payoff of 1; h2 of 2+T ; h3 of 2( 1
2 )+

3( 1
2) =

5
2 , and h4 of 2( 1

2)+ (4+T)( 1
2 ) = 3+ T

2 .
For a particular game, the payoff matrix is denoted AL,K . The searcher is taken as

the column player (with strategies ordered as described previously) while the hider
is the row player. For our example, we have:
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A4,2 =

⎛

⎜
⎜
⎜
⎜
⎝

s1,2 s1,3 s1,4 s2,3 s2,4 s3,4

h1 1+T 1+T 1+T 1 1 1
h2 (3+T)/2

3/2
3/2 2+T 2+T 2

h3 3/2
(4+T)/2 2 (5+T )/2

5/2 3+T
h4 3/2 2 (5+T)/2

5/2
(6+T)/2

(7+T)/2

h4+ 3/2 2 5/2
5/2 3 7/2

⎞

⎟
⎟
⎟
⎟
⎠

By definition, where q represents the vector of searcher probabilities and p the
vector of hider probabilities, both in row form, we have:

TL,K(s,h) = pAL,KqT , (16.2)

16.4 Some Rudimentary Bounds

We begin by presenting some upper and lower bounds. These bounds are of interest
in their own right, but also serve as a check on our numerical results for large L
and K, especially given that they are substantially easier to compute. First, by con-
sidering the payoff that would result if the hider moves with equal probability in
each of the periods from 1 to L, the folowing can be shown:

Theorem 1. There exists a hider strategy which guarantees the lower bound:

T̂L,K ≥ 2
K(2L−K− 1)

(
K3

3
+

K2

2
+

K
6

)
+

(L−K)(K + 1)
(2L−K− 1)

, (16.3)

Second, consideration of the analogous seacher strategy, where the searcher gives
equal probability to each of their possible strategies, leads to:

Theorem 2. There exists a searcher strategy which guarantees the upper bound:

T̂L,K ≤ max
1≤n≤K+1,n∈N

{
nK(2K + 3− n)
2+ 2n(K− 1)

}
, (16.4)

Note that the parameter L does not influence the value of this bound.
A final bound can be obtained by considering the game as a restricted version of

search on a network structured so that there are K directed (“one-way”) loops from
a central node, i.e. a K-leaf clover. The central node is then taken as the searcher’s
ambush point. We will not go into detail, but using existing techniques from the
search game literature it is possible to conclude the following:

Theorem 3. When L = ∞, there exists a searcher strategy which guarantees the
upper bound:

T̂∞,K ≤ K + 1 , (16.5)



16 Discrete Search-Ambush 255

16.5 Ambush in a Single Cell

We will now present some analytical solutions to versions of the silent
search-ambush game, starting with the case where K = 1 (that is, there is only a
single cell). In this case, movement by the hider does not involve a meaningful
randomisation of the hider’s position from the searcher’s point of view, since the
searcher effectively “knows” which cell the hider is occupying at all times. Rather,
a successful move simply allows the hider to evade capture for one additional period.
The “silent searcher” condition retains its meaning in the sense that strategies are
not changed while a round is in progress, though it is no longer even possible for the
hider to be aware of some fraction of the space search having been searched (either
none of the search space has been searched, or the entirety has. In the latter case
the hider has been caught, and, under the predator-prey interpretation, consumed,
rendering the content of the hider’s information set a moot issue).

Geometrically, some intuition can be gained by imagining the K = 1 case as
a search game on a one-way circular graph that takes unit time to traverse, with
hiding and ambush points placed at antipodean points. If the hider moves while the
searcher inspects, they “chase each other’s tails” around the circle, coming back
to their starting points (this is the simplest instance of the K-leaf clover network
referenced in Sect. 16.4).

16.5.1 The Game with Two Periods

As before, a strategy for the hider is denoted hi ∈ H. Ignoring hL+. We have i ∈
{1 . . .L}. Similarly, a strategy for the searcher will be denoted s j ∈ S where j ∈
{1 . . .L} represents the period of search. The payoffs are defined as follows:

TL,1(h
i,s j) =

{ i+ j
2 + T̂L,1 if i = j

min{i, j} if i 
= j
, (16.6)

That is, if the hider successfully restarts the game, the payoff is equal to the period
in which this occurred plus the value of the restarted game; otherwise, the payoff is
simply in the period in which either the searcher searches before the hider moves,
or the hider moves while the searcher is ambushing. The simplest possible interest-
ing form of the general game with finite L is where K = 1, L = 2, which we will
consider now.

The relevant payoff matrix is symmetric with the form:

A2,1 =

( s1 s2

h1 1+T 1
h2 1 2+T

)
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For instance, suppose the searcher inspects in the first period (that is, plays s1),
while the hider moves (plays h1). No capture occurs in that period; instead the hider
escapes but, at the end of the period, returns to the only hiding place available, while
the searcher returns to their ambush position. The searcher is informed of the hider’s
escape and a new round starts, so the payoff is 1+T .

This game can be solved using basic game theory techniques, with the only
complicating factor being that the value of the game is unknown and is included
in the payoffs. Given the interpretation of the game, any payoff must be strictly
positive, and we therefore have T > 0. As would be expected, there is no equilib-
rium in pure strategies. To solve in mixed strategies: let q(si) represent the prob-
ability attached by the searcher to searching in the i-th period; for simplicity, in
this section we will shorten this to simply qi. For the searcher to make the hider
indifferent between their two remaining strategies, we require:

q1(1+T)+ (1− q1) = q1 +(2+T)(1− q1) , (16.7)

⇒ q1 =
1+T

2T + 1
, (16.8)

By symmetry, an equivalent equation will hold for the probability of the hider mov-
ing in the first period. To solve for T , we can substitute (16.8) into:

q1(1+T)+ (1− q1) = T , (16.9)

which represents the payoff the hider will receive in equilibrium. This provides us
with an expression solely in terms of T :

(1+T)2

2T + 1
+(1− 1+T

2T + 1
) = T , (16.10)

⇒ T̂2,1(ĥ, ŝ) = 1+
√

2 , (16.11)

where we have eliminated the negative root of the quadratic due to T being positive.
Substituting into (16.8), we conclude that the searcher inspects in the first period
with probability:

q1 =
2+

√
2

3+ 2
√

2
=

√
2

1+
√

2
= 2−

√
2 , (16.12)

which by the symmetry of the game is likewise the equilibrium probability that the
hider moves in the first period; and thus the probability of the searcher searching or
the hider moving in the second period is2:

(1− q1) =
1

1+
√

2
=
√

2− 1 , (16.13)

2 For incidental interest, 1/(1 +
√

2) has been known as the silver ratio, which, in conjunction
with the results of Sect. 16.7, seems worth mentioning if only to identify a theme of metallurgical
nomenclature through this chapter.
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16.5.2 The Game with an Arbitrary Number of Periods

For an undefined but finite L, the payoff matrix has the following appearance:

AL,1 =

⎛

⎜⎜
⎜
⎜
⎜
⎝

s1 s2 s3 . . . sL

h1 1+T 1 1 . . . 1
h2 1 2+T 2 . . . 2
h3 1 2 3+T . . . 3
...

...
...

...
. . .

...
hL 1 2 3 . . . L+T

⎞

⎟⎟
⎟
⎟
⎟
⎠

We claim that in equilibrium every hider and searcher strategy must have some
positive weight. If this is the case then every hider strategy must provide the same
expected payoff, and this payoff will be the value of the game. Denoting a generic
searcher strategy s and a generic hider strategy h, where qi again denotes the proba-
bility of the searcher playing strategy si, and pi = p(hi) the probability of the hider
playing hi:

T (h1,s) = q1(1+T)+
L

∑
i=2

qi = T , (16.14)

Since:
L

∑
i=2

qi = 1− q1 , (16.15)

we conclude:

q1 = 1− 1
T

, (16.16)

Similarly, from the second row we obtain:

q2 =
T − 2+ q1

T
= 1− 1

T
− 1

T 2 , (16.17)

These two “boundary conditions” on q1 and q2 will come in handy shortly. The
reader will note that clearly it would be possible to continue in this vein to obtain
every qi as a function of T ; we could then find a formula for T by substituting
into ∑L

i=1 qi = 1. One relatively tidy way of doing this is to note that by taking
the difference-in-differences between rows, we obtain a homogeneous recurrence
relation, which must equal zero in equilibrium:

(T (hx+1,s)−T (hx,s))− (T (hx,s)−T (hx−1,s)) = 0 , (16.18)

⇒ qx−1− 1+ 2T
T

qx + qx+1 = 0 , (16.19)
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Let:

M =

⎛

⎝1+ 2T
2T

− 1
2

((
1+ 2T

T

)2

− 4

) 1
2
⎞

⎠ , (16.20)

and:

N =

⎛

⎝1+ 2T
2T

+
1
2

((
1+ 2T

T

)2

− 4

) 1
2
⎞

⎠ , (16.21)

The solution to our recurrence relation is:

qn =C1Mn +C2Nn , (16.22)

where C1 and C2 are constants. To determine their value, we use our initial con-
ditions, equations (16.16) and (16.17). We thus obtain the constants as functions
of T :

C1 =
1+T −T

√
1+4T

T 2 +T2
√

1+4T
T 2

−1+ 2T2
√

1+4T
T 2 +T

(√
1+4T

T 2 − 4
) , (16.23)

C2 = (−1)
1+T +T

√
1+4T

T 2 −T 2
√

1+4T
T 2

1+ 2T2
√

1+4T
T 2 +T

(
4+

√
1+4T

T 2

) , (16.24)

Note that C1+C2 = 1. So, though we will not write it out in full, we have obtained
an expression in terms of T to express the probability of the hider moving or searcher
searching in any particular period. Using the notation above, and substituting into
∑L

i=1 qi = 1, we conclude:

C1

L

∑
i=1

Mn +C2

L

∑
i=1

Nn = 1 , (16.25)

⇒C1

(
1−ML+1

1−M

)
+C2

(
1−NL+1

1−N

)
−C1−C2 = 1 , (16.26)

Since C1, C2, M and N are all functions of L or T , this equation implicitly solves for
T̂ as a function of L. It can be shown that C1M +C2N is always positive over the
range of values for T we are interested in, and thus qn is always positive and we do
indeed have a valid probability distribution. Since C1, C2, M and N are all functions
of L or T , we conclude the following:

Theorem 4. With C1, C2, M and N as defined previously, the value, T̂ , of the silent
search-ambush game as a function of L (where K = 1) is given implicitly by the
equation:

C1

(
1−ML+1

1−M

)
+C2

(
1−NL+1

1−N

)
= 2 , (16.27)



16 Discrete Search-Ambush 259

16.5.3 The Game with an Infinite Number of Periods

In the case where L is infinite, the above solution for the value of the single cell
simplifies to:

T̂∞,1 = 2 , (16.28)

If qn and pn represents the a priori probability of the hider and searcher electing to
move or search, respectively, in the n-th period, we also find that qn = pn = (1/2)n.
This calculation assumes continuity in the limit of equation (16.27); this can be
shown to be reasonable through an alternate (and much simpler) solution technique,
namely directly solving the following 2× 2 matrix:

(
Search Ambush

Move 1+T∞,1 1
Stay 1 1+T∞,1

)

This formulation models the hider and searcher as making a decision at the
beginning of each period, rather than each round. This is possible since, as noted,
in the infinite one-cell game the hider cannot have any information about the pro-
portion of the space searched, nor is anything gained by knowing what time period
they are in (since there is always an infinite number of periods remaining). This is
not the case for games with higher values of K or finite L.

16.6 Ambush in Two Cells

Once we move into the more complex set of games where K > 1, the situation
is complicated by the rapid growth in the number of strategies available to the
searcher.3 For the case of K = 2, we restrict ourselves to setting L = ∞, rather than
attempting to derive an explicit equation for the value of the game under finite L, as
we did for the case where K = 1. This is not to say that such an equation is impos-
sible; indeed, any game with K = 2 and finite L should theoretically be explicitly
solveable. The solutions, though, tend to involve large sums of high-order polyno-
mial equations, and, given the awkwardness involved in their manipulation, and the

3 As an aside, note that when L is infinite, we can take every searcher strategy from the case where
K = 1, which involved searching in a particular period, and associate it with the subset of searcher
strategies when K = 2 that search for the first time in that same period. That is, we can associate s1

with {s1,2, s1,3, s1,4 . . .}, s2 with {s2,3, s2,4, s2,5 . . .}, and so on. Thus every searcher strategy when
K = 1 can be associated with a subset of searcher strategies when K = 2 of cardinality ℵ0. The
set of searcher strategies when K = 1 is of cardinality ℵ0; the set of all searcher strategies when
K = 2 is thus of cardinality ℵ0 ×ℵ0 = ℵ0. An inductive argument demonstrates that for any K,
the set of searcher strategies is always of countable cardinality: very briefly, given that the searcher
strategy space for K−1 is countable, the addition of a new cell to search in allows each strategy in
the previous space to be associated with a countably infinite subset of strategies (note these subsets
need not be non-intersecting with one another).
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fact that any specific solution would almost certainly be calculated numerically in
any case, it seems preferable to examine instead the comparatively tidy infinite case.

In general, the matrix for the two-cell game, A∞,2, for some suitably large but
finite value of L, has the following form:

A∞,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

s1,2 s1,3 s1,4 . . . s2,3 s2,4 . . .

h1 1+T 1+T 1+T . . . 1 1 . . .
h2 (3+T)/2

3/2
3/2 . . . 2+T 2+T . . .

h3 3/2
(4+T)/2 2 . . . (5+T )/2

5/2 . . .
h4 3/2 2 (5+T)/2 . . . 5/2

6+T/2 . . .
h5 3/2 2 5/2 . . . 5/2 3 . . .
h6 3/2 2 5/2 . . . 5/2 3 . . .
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

It can be shown that there is an equilibrium where the searcher gives positive
weight only to what we term wait-then-exhaustive strategies. These are those such
that, once the searcher starts searching, they do not stop until the entire space has
been inspected; i.e., if they search for the first time in period n, then they also search
in period n+ 1.

Given this behaviour by the searcher, the payoffs faced by the hider are then as
follows:

T∞,2(h
m,sn,n+1) =

⎧
⎨

⎩

m+T if m = n
m+ 1

2 +
T
2 if m = n+ 1

min{m,n+ 1
2} otherwise

, (16.29)

Denote by Ā2,∞the reduced matrix for infinite L that excludes any strategies other
than those that are wait-then-exhaustive. Thus:

Ā2,∞ =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

s1,2 s2,3 s3,4 s4,5 . . .

h1 1+T 1 1 1 . . .
h2 (3+T )/2 2+T 2 2 . . .
h3 3/2

(5+T)/2 3+T 3 . . .
h4 3/2

5/2
(7+T)/2 4+T . . .

h5 3/2
5/2

7/2
(9+T)/2 . . .

h6 3/2
5/2

7/2
9/2 . . .

...
...

...
...

...
. . .

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

This game can be solved using a very similar approach to that which was
employed for the case where K = 1, but, as the resulting equations are substan-
tially more complex and space-consuming, we will omit the details and state only
that it is possible to prove the following, where ϕ is the golden ratio (1.618. . . ), and
Φ is the inverse of the golden ratio (0.618. . . ):

Theorem 5. T̂∞,2, the value of the silent search-ambush game when K = 2, L = ∞,
is equal to 1

1−Φ , or equivalently to ϕ2, that is, approximately 2.618.
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16.6.1 Optimal Searcher and Hider Behaviour

Optimal hider and searcher strategies that support this game value (we do not
address the question of whether the same value can be obtained through alternate
strategies; that is, whether the equilibrium described in the following is unique) are
as follows:

h1 = 1−Φ , (16.30)

h j = Φh j−1, ∀ j > 1 , (16.31)

Again, q(sn,n+1) represents the probability of the searcher playing the wait-then-
exhaustive strategy that commences in period n, which for this section we will
simply shorten to qn. Then, to 3 decimal places:

qn =−0.555(−0.521)n+ 0.555(0.594)n , (16.32)

The presence of the (−0.521)n term in the formula for qn results in the
probabilities attached to the searcher’s strategies oscillating: qn > qn−1 for odd n,
and qn < qn−1 for even n, while we always have qn−2 > qn.

These raw probabilities on their own, however, are not particularly informative.
More revealing questions concern the equilibrium beliefs of the hider: to start with,
in each period the hider must have a certain belief, conditional on that period being
reached, regarding the likelihood that the searcher will search. In the first period
of any round, this is easily calculated: the probability of search is equal to the sum
of the probabilities attached to all searcher strategies that search in the first period.
Where K = 2, the only such strategy with a positive weight is s1,2.

If a round progresses to the second period, however, the hider should discount
their belief in the probability that the searcher is playing s1,2, as the fact of their
survival is evidence against that proposition (and if the third period is reached, the
hider should naturally dismiss any possibility of s1,2).4 An application of Bayes’
Theorem allows us to calculate Ph(s̄|Rz), that is, the belief held by the hider (de-
noted Ph) regarding the probability of any particular searcher strategy (denoted s̄)
conditional on period z being reached (denoted Rz). The a priori probabilities that
the searcher actually attaches to their strategies s∈ S are denoted q(s) (remembering
that in equilibrium the hider can be treated as if they were aware of these probabil-
ities). Reiterating that s j is either 0 or 1, representing whether ambush or search
occurs in the j-th period, for general K the appropriate formula is the following:

Ph(s̄|Rz) =

(
1− ∑z−1

j=1 s̄ j

K

)
q(s̄)

∑s∈S

(
1− ∑z−1

j=1 s j

K

)
q(s)

, (16.33)

4 Under the predator-prey interpretation, the prey is thus employing a variant of the anthropic
principle: that they have not yet been eaten allows them to draw certain conclusions regarding the
likely states of the world (specifically the predator’s choice of strategy).
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For clarity, note that the term ∑z−1
j=1 s j represents the number of times a strategy

s searches before period z is reached. For example, at the start of the second period
when K = 2:

Ph(s
1,2|R2) =

1
2 q(s1,2)

(1− q(s1,2))+ 1
2 q(s1,2)

, (16.34)

On a brief tangent, once we calculate the updated probability the hider attaches
to each strategy, we can calculate the hider’s belief regarding the expected number
of cells remaining unsearched, conditional on any particular period in a round being
reached (essentially, by taking the sum of the cells remaining under each strategy
while using the updated hider beliefs in the likelihood of each strategy as weights).
This is shown in Fig. 16.1, where in the first period the expectation is, naturally, 2,
with a 2-period oscillation converging to a value close to 1.745 in the limit. This is
interesting as when first hearing the description of the game it might seem intuitive
that the hider must believe the searcher is coming ever-closer as time passes, but the
hider’s actual beliefs are in fact substantially more complicated.

A related and in some ways more significant calculation is the hider’s beliefs
concerning the conditional probability that they will be captured in each period as-
suming they remain stationary. To calculate this, suppose we are looking at period
z. Take all the searcher strategies which search in that period. Multiply the condi-
tional probability the hider attaches to each strategy by the probability that, if that
strategy genuinely is what the searcher is playing, the hider will be caught (which
will be equal to 1/(K−m), where m is the number of cells that have been inspected
in periods prior to z under each strategy). The sum of these products is the value
we are interested in, and is depicted, along with the conditional probability that the
searcher is searching, in Fig. 16.2.

This is a rather interesting chart: as with Fig. 16.1, both series oscillate in a cycle
of length 2, converging to values of around 0.558 (for the probability of search) and
0.406 (for the probability of capture if stationary).

There is an intuitive interpretation of this behaviour that is worth emphasising.
Note that the oscillations are out of phase; that is, the probability of search is high
when the probability of capture if stationary is low and vice versa. Since the proba-
bility of search is equal to the probability of successfully starting a new round if the
hider chooses to move, the logic here is that, to keep the hider indifferent between
moving and not moving, the searcher ensures that an increase in the likelihood of
being able to start a new round is balanced by a decrease in the chance of capture
if stationary. The hider always knows that no cells have been inspected at the start
of a round, and thus the searcher is required to attach a relatively high probability
to searching in the first period. The hider’s beliefs then converge to constant values
(which represent a sort of equilibrium within the broader equilibrium of the game),
though in practice the chance of any round in the K = 2 game lasting more than a
handful of periods is remote.

Numerical analysis suggests similar cycles occur for games with higher values of
K, where the cycles are in turn of length K. This is suggested by the results shown
in Fig. 16.3, for values of K between 1 and 6 and L = 18.
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Fig. 16.1 Hider’s expectation of number of cells remaining (K = 2, L = ∞)

The numerical results will be discussed slightly further in the next section.

16.7 Numerical Results and Conjectures

We start by presenting a conjecture concerning the value of the game in the case
where L is infinite.

Conjecture 1 The value of the silent discrete search-ambush game for finite K,
L = ∞, satisfies:

T̂∞,K ≥ 1
1−σK

, (16.35)

where σK is the unique real solution between 0 and 1 to the polynomial:

K

∑
i=1

xi − K
2
= 0 , (16.36)

It should be noted that an earlier version of this conjecture had an equality in
place of this inequality; however, further numerical investigation has made that
possibility seem less likely. The equality does hold, at least, for the cases of K = 1
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Fig. 16.2 Conditional beliefs of hider (K = 2, L = ∞)

and K = 2, where σK is 1
2 and Φ , respectively, ensuring consistency with our

conclusions in Sects. 16.5 and 16.6. For interest, the polynomial that generates
σK only ever has at most two real solutions, and always exactly one real solution
between 0 and 1.

Table 16.1 gives some detail on specific values of σK and the corresponding
conjectured game lower bound up to K = 6, comparing them to the numerical esti-
mates when L = 18.

In the limit, as K → ∞, σK → 1, and in turn the conjectured lower bound on the
game also approaches ∞. This is intuitively sensible: in an infinite search space, the
hider should be able to evade capture indefinitely. In addition, for large K the bound
on the value of the game appears to converge to a linear function, increasing by
around 0.62749 for every unit increase in K.

To convert the discrete search-ambush game into its continuous equivalent, we
can assume that each cell, rather than taking one time period to search, takes time
1/K ; this is equivalent to dividing up a continuous search space of area unity that
takes one time period to search into K subsections. We re-obtain the continuous
search space by taking K → ∞, assuming continuity in the game values in the limit.
If the conjecture is true, this suggests the value of the continuous search-ambush
game with a silent predator is greater than or equal to 0.62749, while Alpern et al.
[3] have previously determined that the value of the game with a noisy predator is
0.666 . . ..

We also make a further conjecture regarding hider and searcher behaviour in
equilibrium.
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Fig. 16.3 Hider’s beliefs in conditional probability that search is occurring (numerical estimates)
(K = 1 to 6, L = 18)

Table 16.1 Conjectured and estimated game values and supporting data

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

σK 0.5000 0.6180 0.6914 0.7413 0.7773 0.8046
1

1−σK
2.0000 2.6180 3.2406 3.8651 4.4905 5.1165

Estimated T̂18,K 2.0000 2.6180 3.2420 3.8715 4.5057 5.1496

Conjecture 2 In any silent discrete search-ambush game for finite K where
L = ∞, ∃x such that for all hider probabilities p j where j > x,

p j
p j−1

= z for some

constant z which is a function of K. Further, ∃y such that all searcher strategies
that involve search in periods i > y are wait-then-exhaustive.

Naturally, substantial work remains to be done regarding investigation of these
conjectures. A reasonable starting step – and one that ought to be achievable using
mathematics no deeper than that used in obtaining the above results – would be
to analytically solve the case where K = 3, L = ∞. This would either substantially
strengthen or undermine the patterns identified above, and in particular determining
a value for the K = 3 case may enable more precise speculation for the value under
general K than Conjecture 1 offers (or even lend weight again to the possibility that
Conjecture 1 holds as an equality).
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Chapter 17
A Model of Partnership Formation with Friction
and Multiple Criteria

Stephen Kinsella and David M. Ramsey

Abstract We present a game theoretical sequential search problem modelling
partnership formation based on two discrete character traits. There are two classes
of individual. Each individual observes a sequence of potential partners from the
other class. The traits are referred to as attractiveness and character, respectively.
All individuals prefer partners of high attractiveness and similar character. Attrac-
tiveness can be measured instantly. However, in order to observe the character of an
individual, a costly interview (or date) is required. On observing the attractiveness
of a prospective partner, an individual must decide whether he/she wishes to proceed
to the interview stage. During the interview phase, the prospective pair observe each
other’s character and then decide whether they wish to form a pair. Mutual accep-
tance is required for both an interview to occur and a pair to form. An individual
stops searching on finding a partner. A set of criteria based on the concept of a trem-
bling hand perfect equilibrium is used to define an equilibrium of this game. It is ar-
gued that under such a general formulation there may be multiple equilibria. For this
reason, we define a specific formulation of the game, the so called symmetric ver-
sion, which has a unique symmetric equilibrium. The form of this equilibrium has
some similarities to the block separating equilibrium derived for classical models of
two-sided mate choice and job search problems, but is essentially different.
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17.1 Introduction

This chapter presents a game theoretical sequential search problem modelling
partnership formation based on two traits. There are two classes of individual, and
each individual wishes to form a partnership with one of the opposite class. Each in-
dividual observes a sequence of potential partners. Mutual acceptance is required for
a partnership to form. On finding a partner, an individual ceases searching. One mea-
sure describes ‘attractiveness’. Preferences are common according to this measure:
i.e. each individual prefers highly attractive partners, and all individuals of a given
class agree as to how attractive individuals of the opposite class are. Preferences are
homotypic with respect to the second measure, referred to as ‘character’, i. e. all
individuals prefer partners of a similar character.

For convenience, it is assumed that individuals know their own attractiveness and
character. Also, the distributions of character and attractiveness are assumed to be
discrete with a finite support, and constant over time.

Together, the attractiveness, character and the class of an individual determine
their ‘type’. Individuals can observe the attractiveness and character of prospec-
tive partners perfectly. However, in order to measure character, a costly interview
is required. In addition, individuals incur search costs at each stage of the search
process.

At each moment an individual is paired with a prospective partner. First, both
individuals must decide whether they wish to proceed to the interview stage on
the basis of the attractiveness of the prospective partner. The final decision on pair
formation is based on both the attractiveness and character of the prospective part-
ners. Mutual acceptance is required for an interview to occur and a pair to form.
At equilibrium, each individual uses a strategy appropriate to their type. The set of
strategies corresponding to such an equilibrium is called an equilibrium profile.

Such a problem may be interpreted as a mate choice problem in which the classes
are male and female, or a job search problem in which the classes are employer and
employee. The assumption that attractiveness can be observed very quickly, but an
interview (dating) is required to observe someone’s character is obviously a simpli-
fication. However, in the case of human mate choice many traits that can be thought
of as defining attractiveness (physical attractiveness, employment, economic sta-
tus) are usually measured quickly, whilst observation of traits defining character
(political and religious views, tastes and emotions) are generally more difficult to
measure.

17.1.1 Related Literature

Our model has a resemblance to ‘speed dating’ models recently developed and
tested by Fisman et al. [16]. The types of preferences we study have been ana-
lyzed (in continuous time) by Marimon and Zilibotti [26]. They found that these
types of preferences, in this context, were quite tractable and somewhat equivalent to
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the formulation with ex post idiosyncratic uncertainty. Other recent directed search
papers in the same vein are Albrecht et al. [2] and Galenianos and Kircher [19],
looking at directed search in job applications.

The benchmark model in this literature is Smith [35], which focuses on
assortative matching and block segregation in ‘marriage’ models (see also Burdett
[7], Burdett and Coles [8], Coles and Burdett [10], Chade and Smith [9]). The costly
application/invitation-stage of the model, follows Shimer [33] . The novelty of our
paper lies in the multi-dimensionality of agents’ types.

In the case of such a model of job search, it is assumed that a job’s attractiveness
(interpreted as pay, conditions, status) can be observed from an advert. The attrac-
tiveness of a job seeker (interpreted as qualifications and experience) are readily
seen from his/her application. It is assumed that in order to observe character a costly
interview is required. In terms of job search, this would seem reasonable when there
is not much information regarding the workers in and the ethos of a firm (e.g. it may
be a small or new firm) and the skills required from a worker rather generic. Simi-
larity of character may be interpreted as the ability of the employer (or department)
and employee to work together as a team. Several labour market studies have found
empirical evidence that employers and employees are happiest with labour market
choices they view as similar to themselves in some respects (e.g. labour market type,
an organisation’s ethos, educational level), see Peterson[30], Beller [6], Albelda [1].

In the literature to date, job search models typically adopt a matching function
approach, where the employer and employee search for the perfect ‘fit’ using a set of
costly criteria, see Coles and Burdett [10]. Equilibrium conditions are derived and
tested for robustness once the model is built, and policy recommendations follow
Burdett [7], Pissarides [31], Drewlanka [14], Shimer and Smith [34]. Jovanovic [24],
Hey [21], and MacMinn [25] are the classic studies. Devine and Piore [12] and
Shimer and Smith [34] survey the more recent developments.

Another strand in the literature is the search-theoretic literature developed by
McCall [27] and extended by Diamond and Maskin [13] and others, where the
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job search problem is conceived of as a dynamic program which has to be solved
in finite time, so labour markets are best described by optimal control problems.
The literature here is vast and well studied.

Job search has also been modelled as a mating or network game, with
representative contributions being Albelda [1], Beller [6], Peterson et al. [30], Coles
and Francesconi [11], Fisman et al. [17], Pissarides [31]. In the biological literature,
mate choice is modelled as sequential observation of prospective mates. The model
presented here is a development of this strand. For models of mutual mate choice
based on common preferences see Johnstone [23], Alpern and Reyniers [4], and
Janetos [22].

For a model of mate choice based on homotypic preferences see Alpern and
Reyniers [3]. Their models assume that the distribution of the value of available
mates changes over time as partnerships form and individuals leave the mating pool.
Ramsey [32] considers a similar problem interpreted as a job search problem.

The general approach is presented in Sect. 17.2. Section 17.3 compares the
approach used here and classical models of two-sided job search and mate choice
problems. It is intended that this section will give an intuitive feel for the approach
to solving such problems and the added complexity involved when common and
homotypic preferences are combined. Section 17.4 describes a model of partnership
formation in which character forms a ‘circle’ and neither the distributions of the
traits nor the search costs depend on the class of a searcher. This model is called
symmetric. Section 17.5 gives the set of criteria that we wish an equilibrium to
satisfy. These conditions are based on the concept of a trembling hand perfect equi-
librium (a refinement of the concept of Nash equilibrium). Section 17.6 describes
a general method for calculating the expected utilities of each individual under a
given strategy profile. Section 17.7 considers the dating subgame (when individuals
decide whether to form a partnership) and the soliciting subgame (when individuals
decide whether to go on to the dating subgame). Section 17.8 presents results on
the existence and uniqueness of a symmetric equilibrium in the symmetric game.
An algorithm for determining this equilibrium is presented, together with an exam-
ple. Section 17.9 illustrates the problems involved in adopting such an approach to
the more general formulation. Section 17.10 gives a brief conclusion and suggests
directions for further research.

17.2 General Formulation

We present a model of a sequential decision process leading to the formation of a
long term partnership. It is assumed that there are two classes of player and indi-
viduals in a partnership have to be of different classes (e.g. in job search problems
employees form partnerships with employers, in mate choice problems males form
partnerships with females). Individuals view a sequence of prospective partners.
It is assumed that costs are incurred during the search process, so in general an
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individual should not continue searching until he finds his/her best possible partner.
The following assumptions are made:

(A) We consider the formation of long term relationships between two classes of
player (e.g. marriage, employment). When a partnership is formed, the two
individuals involved leave the population of searchers. Henceforth, we will
refer to these two classes of players as males and females.

(B) Interactions are bilateral and occur between a male and a female. The length of
an interaction is assumed to be small (effectively of zero length) compared to
the time between interactions. The pair must decide whether to form a partner-
ship or continue searching. Mutual acceptance is required for a partnership to
form. Individuals cannot return to a previously met prospective partner.

(C) When an individual leaves the population, he/she is replaced by a clone, i.e. an
individual of the same sex, attractiveness and character enters the population of
searchers. Hence, the joint distribution of attractiveness and character is fixed.
It might be more realistic to consider a steady-state model in which individuals
enter the pool of searchers at a steady rate according to their sex, attractiveness
and character. However, due to the novelty of the approach used and some of
the issues involved in deriving equilibria, for the present we adopt the simpler
clone replacement approach. It is intended that the steady state approach will
be adopted in future work.

(D) It is assumed that time is discrete and the search costs of males and females per
unit time are c1 and k1, respectively. At each moment in time a player encoun-
ters a prospective partner. We assume random matching, i.e. the attractiveness
and character of the female encountered by a male is chosen at random from
the joint distribution of attractiveness and character among females. Using the
assumption of clone replacement, it is also easy to adapt the model to assume
that encounters occur as a Poisson process. It may be assumed that individu-
als find prospective partners at rate 1 and males and females pay search costs
of c1 and k1 per unit time, respectively. Empirical evidence on search costs
in real-life job search problems abounds in the literature. For instance, Peter-
son et al. [30] consider job search costs to be the primary cause of ‘sticky’
wages and low labour market mobility, when contrasting the European and
US labour markets. Devine and Piore [12] also present empirical evidence on
search costs, and in the extensive literature incorporating job search costs into
macroeconomic models, Andolfatto [5] is representative.

(E) Encounters have two stages. In the first stage, both individuals must decide
whether they wish to date based on the attractiveness of the prospective part-
ner. For convenience, it is assumed that these decisions are made simultane-
ously. Dating only occurs by mutual consent. The costs of dating to males and
females are c2 and k2, respectively. During a date, each observes the character
of the other and decides whether to accept the other as a partner. Again, it is
assumed that these choices are made simultaneously. A partnership is formed
only by mutual consent. In some scenarios—for example, when character is
unimportant—it might pay a female to immediately accept a male without
dating. However, to keep the strategy space as simple as possible, it is assumed
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that individuals must always date before forming a pair. The total utility of an
individual is taken to be the utility gained from the partnership minus the sum
of the search costs and dating costs incurred. It is assumed that utility is not
transferable and individuals maximise their expected total utility from search.

This approach implicitly assumes that there is the same number of males as
females. However, the model can be easily adapted to allow the number of males and
females to differ. Suppose that there are r times as many males as females. In this
case, we may assume that at each moment a proportion (r− 1)/r of males meet a
prospective partner who would give them an expected utility of −∞. In reality, such
males do not meet a prospective partner.

The supergame Γ is defined to be the game in which each player observes a
sequence of prospective partners as described above. An encounter between two
prospective partners will be referred to as the encounter game. The encounter game
is split into two subgames, the soliciting subgame, when players decide whether to
date or not and the dating subgame, when they decide whether to form a partnership
or not.

17.3 Comparison with the Classical Partnership
Formation Game

Two-sided problems are by nature game-theoretic and so we look for a Nash
equilibrium solution at which no individual can improve their expected utility by
changing their strategy. Note that there may be multiple Nash equilibria. For exam-
ple, suppose that mate choice is based only on attractiveness and there are only two
levels of attractiveness: high and low. Suppose individuals of high attractiveness
only accept individuals of low attractiveness as partners. Similarly, individuals of
low attractiveness only accept individuals of high attractiveness as partners. It can
be seen that this is a Nash equilibrium, since e.g. a male of high attractiveness cannot
gain by accepting a female of high attractiveness, since she would not accept him.
Also, he could not gain by rejecting a female of low attractiveness, since he would
not find a partner. However, one would expect that if a male accepts a female of at-
tractiveness x, then he would accept any female of attractiveness>x. McNamara and
Collins [28] derive an equilibrium for a game in which choice is based only on at-
tractiveness which satisfies such a condition, referred to as the optimality criterion.
This criterion states that any individual accepts a prospective partner if and only if
the utility from such a partnership is as least as great as the expected utility of the in-
dividual given that he/she continues searching. Such an equilibrium can be derived
inductively. Consider a female of maximum attractiveness. She will be acceptable
to any male. Hence, such females face a one-sided problem and their equilibrium
strategy is of the form: accept the first male of attractiveness ≥x1. Call such males
first class. It follows that males of attractiveness ≥ x1 are acceptable to any female
(i.e. face a one-sided problem) and their equilibrium strategy is of the form: accept
the first female of attractiveness ≥ y1. Call such females first class. It follows that
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first class males will only pair with first class females. The problem faced by the
rest of the population then reduces to a problem in which first class individuals are
not present. Define x0 = y0 = ∞. Arguing iteratively, it can be shown that k classes
of males and females can be defined, such that a male of attractiveness x is of class
i if x ∈ [xi,xi−1) and a female of attractiveness y is of class j if y ∈ [y j,y j−1). Males
of class i pair with females of class i. There may be a class of males or females who
do not form partnerships.

In the problem considered here, individuals do not always agree on the
desirability of a member of the opposite sex as a partner. It would be natural to
try and reduce the game considered to a sequence of one-sided choice problems.
However, for games within the general framework presented in Sect. 17.2 there are
some technical problems associated with such an approach. For example, consider
a problem in which attractiveness and character are independent, both have a uni-
form distribution over the integers 0,1,2, . . . ,m regardless of sex. It is expected that
individuals of maximum attractiveness, m, and close to median character will have
a higher expected utility from search (i.e. be choosier) than individuals of attractive-
ness m and extreme character, either 0 or m (see Alpern and Reyniers [3]). In the
problem considered by McNamara and Collins [28] it is relatively easy to order in-
dividuals according to how choosy they should be. This ordering is used to derive
the unique equilibrium satisfying the optimality criterion. Such an ordering is not so
easy in the problem considered here. For example, should a male of attractiveness
m and character 0 be more or less choosy than a male of attractiveness m− 1 and
close to median character? Ramsey [32] shows that multiple equilibria may exist in
such a problem, i.e. in general there is no unique sequence of one-sided problems
that can be solved to define an equilibrium.

17.4 The Symmetric Model with Character Forming a Circle

Due to the problems outlined in the previous section, we present a model which
allows us to adopt a similar (but not identical) approach to the one used by
McNamara and Collins [28]. Attractiveness and character are denoted Xa and Xc,
respectively. The population is assumed to be large. It will be assumed that

(a) Xa and Xc are independent. The distribution of Xa does not depend on sex.
The distribution of Xc in both sexes is uniform on the integers 0,1, . . . ,m− 1.

(b) The difference between characters is calculated according to modulo m, i.e.
character can be thought of as a circle with 0 and m− 1 being neighbouring
characters.

(c) Search and dating costs are c1 and c2, respectively, independently of sex.
(d) The utility obtained by a type x = [xa,xc] individual from pairing with a

prospective partner of type y = [ya,yc] is given by g(ya, |xc− yc|), i.e. the utility
function is independent of sex.

Using such an approach, intuitively an individual’s mating prospects do not
depend on his/her character or sex. Such a game will be referred to as symmetric.
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17.5 Equilibrium Conditions

For a game defined within the general framework, introduced in Sect. 17.2, we
require an equilibrium profile to satisfy the following generalisation of the optimality
criterion for the classical two-sided problem. Namely:

Condition 1: In the dating subgame, an individual accepts a prospective partner if
and only if the utility from such a pairing is at least as great as the individual’s
expected utility from future search (ignoring previous costs).

Condition 2: An individual is only willing to date if their expected utility from the
resulting dating subgame minus the costs of dating is as least as great as their
expected utility from future search.

Condition 3: The decisions made by an individual do not depend on the moment at
which the decision is made.

It should be noted that the expected future utility of an individual from search,
and thus the exact form of the dating and soliciting subgames, depends on the strat-
egy profile used in the population as a whole. This dependency will be considered
more fully in Sect. 17.7.

The most preferred prospective partners of a type [xa,xc] individual are those of
maximum attractiveness who have character xc. Condition 1 states that in the dating
subgame an individual will always accept his/her most preferred partner, since an
individual’s future expected utility from search must be less than the utility from
obtaining his most preferred partner. Moreover, if in the dating subgame a male
accepts a female who would give him a utility of k, then he must accept any female
who would give him a utility of at least k. It follows that the acceptable difference in
character is non-decreasing in the attractiveness of a prospective partner.

Condition 3 states that the Nash equilibrium strategy should be stationary. This
reflects the following facts:

(a) An individual starting to search at moment i faces the same problem as one
starting at moment 1.

(b) Since the search costs are linear, after searching for i moments and not finding a
partner, an individual maximises his/her expected utility from search simply by
maximising the expected utility from future search (i.e. by ignoring previously
incurred costs).

We might also be interested in profiles that satisfy the following condition.

(i) In the soliciting subgame, an individual of attractiveness ya is willing to date
prospective partners of attractiveness above some threshold, denoted t(ya), such
that if y1 > y2, then t(y1)≥ t(y2), i.e. the more attractive an individual, then the
choosier he/she is when choosing a dating partner.

However, it seems reasonable that individuals of low attractiveness may not
solicit dates from highly attractive prospective partners, as by doing so they might
incur dating costs while it is expected that such a date will not lead to pair formation.
Hence, we do not require individuals to use threshold rules when deciding whether
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to solicit a date. For example, Härdling and Kokko [20] argue that in certain circum-
stances small males should avoid courting attractive females to avoid the possibility
of attacks from larger males.

Definition 1. An equilibrium profile, denoted π∗, of Γ is a strategy profile under
which the behaviour of all searchers satisfies Conditions 1–3 in each of the possi-
ble subgames. The value function of Γ corresponding to π∗ is the set of expected
utilities of each individual according to type under the strategy profile π∗.

Note that π∗ must define the appropriate behaviour in all possible dating
subgames, even those that do not occur under π∗.

In the particular case of the symmetric game, we wish to find an equilibrium
which is symmetric with respect to character and sex. That is to say:

Condition 4: If an individual of type [xa,xc] is willing to date a prospective partner
of attractiveness ya, then any individual of attractiveness xa is willing to date a
prospective partner of attractiveness ya.

Condition 5: If an individual of type [xa,xc] is willing to pair with a prospective
partner of type [ya,yc] in the dating subgame, then an individual of type [xa,xc+
i] is willing to pair with a prospective partner of type [ya,yc + i] [addition is
carried out mod(m)].

An equilibrium which satisfies Conditions 4 and 5 will be referred to as a
symmetric equilibrium. Note that under a symmetric strategy an individual’s ex-
pected utility from search is independent of sex and character, i.e. only depends on
attractiveness.

Note that at equilibrium, if an individual of type [i,k] is willing to date an
individual of attractiveness j, then he/she must be willing to pair with some prospec-
tive partners of attractiveness j (otherwise unnecessary dating costs are incurred).
Hence, a type [ j,k] prospective partner (the most preferred partner of such
attractiveness) must be acceptable in the corresponding dating subgame.

17.6 Deriving the Expected Utilities Under a Given Strategy
Profile

Consider the symmetric game described above. We will look for a symmetric
equilibrium profile, thus we may assume that the strategy profile used is symmetric
(i.e. satisfies Conditions 4 and 5). Given the strategy profile used by a population,
we can define which pairs of types of individuals proceed to the dating subgame
and which pairs of types of individuals form pairs. From this, it is relatively simple
to calculate the expected length of search and the expected number of dates of an
individual of a given type.

Let p(x) be the probability that an individual is of type x. Define M1(y;π) to be
the set of types of prospective partners that an individual of type y will date (under
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the assumption of mutual acceptance) under the strategy profile π . Define M2(y;π)
to be the set of types of prospective partners that eventually pair with an individual
of type y. By definition M2(y;π)⊆ M1(y;π).

The expected length of search of an individual of type y, L(y;π), is the recip-
rocal of the probability of finding a mutually acceptable partner at any given stage.
The expected number of dates of such an individual, D(y;π), is the expected length
of search times the probability of dating at any given stage. Hence,

L(y;π) =
1

∑x∈M2(y;π) p(x)
; D(y;π) =

∑x∈M1(y;π) p(x)

∑x∈M2(y;π) p(x)
. (17.1)

Note: The number of prospective mates seen and the number of individuals dated
by an individual of type y have geometric distributions with parameters 1/L(y;π)
and 1/D(y;π), respectively.

The expected utility of a type y individual from forming a pair under the strategy
profile π is the expected utility from pairing given that the type of the prospective
partner is in the set M2(y;π). Hence, the individual’s expected total utility from
search, denoted R(ya;π) since this expected utility depends only on an individual’s
attractiveness, is given by

R(ya;π) =
∑x∈M2(y;π) p(x)g(xa, |xc − yc|)

∑x∈M2(y;π) p(x)
− c1L(y;π)− c2D(y;π). (17.2)

Note that it is relatively simple to extend these calculations to non-symmetric
games.

17.7 The Dating and Soliciting Subgames

Since this game is solved by recursion in the manner developed by Spear [36, 37],
we first consider the dating subgame. In this section we consider the general
formulation of the game.

17.7.1 The Dating Subgame

Assume that the population are following a symmetric strategy profile π . The male
and female both have two possible actions: accept the prospective partner, denoted a,
or reject, denoted r. Also, we ignore the costs already incurred by either individual,
including the costs of the present date, as they are subtracted from all the payoffs in
the matrix, and hence do not affect the equilibria in this subgame.
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Suppose the male is of type x and the female is of type y. The payoff matrix is
given by

Female: a Female: r
Male: a
Male: r

(
[g(ya, |xc − yc|),g(xa, |xc − yc|)] [R(xa;π),R(ya;π)]

[R(xa;π),R(ya;π)] [R(xa;π),R(ya;π)]

)
.

Note that the payoff matrix depends on the strategy profile used via the ex-
pected utilities of the individuals involved in a subgame. These expected utilities
were derived in Sect. 17.6.

From Condition 1, at equilibrium an individual accepts a prospective partner if
and only if the utility gained from such a partnership is at least as great as the
expected utility from future search. Hence, the appropriate Nash equilibrium of this
subgame is for the male to accept the female if and only if g(ya, |xc−yc|)≥ R(xa;π)
and the female to accept the male if and only if g(xa, |xc − yc|)≥ R(ya;π).

For convenience, we assume that when g(xa, |xc − yc|) = R(ya;π), a female
always accepts the male (in this case she is indifferent between rejecting and accept-
ing him). Similarly, if g(ya, |xc − yc|) = R(xa;π), it is assumed that a male always
accepts a female. The implications of this assumption are considered at the end of
Sect. 17.8.

Note that if a male rejects a female, then the female is indifferent between
accepting or rejecting the male. Under a rule satisfying Condition 1, a female will
make an optimal response whatever action the male takes. Such an equilibrium is a
trembling hand perfect equilibrium (i.e. robust to the other player making a mistake).
Hence, there is a unique trembling hand perfect equilibrium satisfying Condition 1.
Let v(x,y;π) = [vM(x,y;π),vF(x,y;π)] denote the value of the dating subgame cor-
responding to this equilibrium, where vM(x,y;π) and vF(x,y;π) are the values of
the subgame to the male and female, respectively.

We now consider the soliciting subgame.

17.7.2 The Soliciting Subgame

Once the dating subgame has been solved, we may solve the soliciting subgame
and hence the game G(x,y;π), played when a male of type x meets a female of
type y. As before, we assume that the population is following a symmetric strategy
profile π .

Both players have two actions: a – accept (solicit a date) and r – do not solicit
a date. Since the utility an individual expects from a date is independent of his/her
character, the payoff matrix can be expressed as follows:

Female: a Female: r
Male: a
Male: r

(
[vM(xa,ya;π)− c2,vF(xa,ya;π)− c2] [R(xa;π),R(ya;π)]

[R(xa;π),R(ya;π)] [R(xa;π),R(ya;π)]

)
.
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Here [vM(xa,ya;π),vF(xa,ya;π)] denotes the expected values of the dating
subgame to the male and female, respectively, given the strategy profile used by
the population, the measures of attractiveness of the prospective partners and the
fact that a date followed.

From Condition 2, the female should solicit a date if and only if her expected
utility from such a date is at least as great as the expected utility from future
search, i.e.

vF(xa,ya;π)− c2 ≥ R(ya;π).

Similarly, the male should solicit a date if

vM(xa,ya;π)− c2 ≥ R(xa;π).

Note that Condition 2 requires the players to use a trembling hand perfect
equilibrium in any soliciting subgame.

In the next section we present an algorithm to find a symmetric equilibrium of the
symmetric game, as an algorithmic game in the tradition of Velupillai [38], Nisam
et al. [29].

17.8 A Symmetric Equilibrium of the Symmetric Game

Theorems 1–3 describe the form of a symmetric equilibrium of the symmetric game.
These results do not fully characterize such an equilibrium. However, they do justify
the logic behind the algorithm presented in Sect. 17.8.1. The constructive form of
this algorithm allows us to state the key result of this section, Theorem 5, on the
existence and uniqueness of a symmetric equilibrium in the symmetric game.

Theorem 1. At a symmetric equilibrium π∗ of the symmetric game, the utility of an
individual is non-decreasing in attractiveness.

Proof. Assume that for some i > j, R(i;π∗) < R( j;π∗). Consider the dating
subgame. From Condition 1, a type [ j,k] ([i,k]) male accepts a female of type [i0, j0]
only if the male’s reward is greater than R( j;π∗) (R(i;π∗), respectively). Hence,
males of type [i,k] accept any female that a male of type [ j,k] would accept. Simi-
larly, if a type [ j,k] male is acceptable to a female of type [i0, j0], then such a female
would accept a type [i,k] male (who gives a greater reward from mating). Hence,
M2([ j,k];π∗)⊆ M2([i,k];π∗). It follows that a female who is willing to date a male
of attractiveness j will also be willing to a date one of attractiveness i (who is ex-
pected to be a better partner and at least as likely to be mutually acceptable). Hence,
a searcher of type [i,k] can obtain the same expected utility as a searcher of type
[ j,k] as follows:

(a) In the soliciting subgame, solicit dates with any prospective partner who would
date an individual of attractiveness j.
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(b) In the dating subgame, accept any prospective partner who would pair with an
individual of type [ j,k].

Hence, the expected utility of a searcher at such an equilibrium must be
non-decreasing in his/her attractiveness.

Corollary to Theorem 1. Suppose i ≥ j. In the dating subgame, if an individual
of attractiveness i accepts one of attractiveness j, then acceptance is mutual. This
follows from the fact that the individual of attractiveness j obtains a greater utility
from the pairing than the individual of attractiveness i, but has a lower expected
utility from future search.

Theorem 2. At a symmetric equilibrium π∗ of the symmetric game, searchers of
maximum attractiveness, imax, are willing to date prospective partners of attractive-
ness above a certain threshold.

Proof. From Theorem 1, if a searcher of attractiveness imax accepts a prospective
partner of type [i,k] in the dating subgame, then acceptance is mutual. Hence, the
expected utility of such a searcher from the dating subgame is non-decreasing in
the attractiveness of the prospective partner (since character is independent of at-
tractiveness). A searcher should be willing to date a prospective partner if the ex-
pected utility from such a date is at least as great as the expected utility from future
search. If this condition is satisfied for some level of attractiveness i, then it will
be satisfied for all higher attractiveness levels. Note that a searcher of attractiveness
imax is willing to date a prospective partner of attractiveness imax, since such dates
give the highest possible expected utility.

Theorem 3. At a symmetric equilibrium π∗ of the symmetric game, a searcher
of attractiveness i solicits dates with prospective partners of attractiveness in
[k1(i),k2(i)], where k2(i) is the maximum attractiveness of a prospective partner
willing to date the searcher. In addition, k1(i) and k2(i) are non-decreasing in i and
k1(i)≤ i ≤ k2(i).

Proof. The proof of this theorem is by recursion. Theorem 2 states that for i = imax

the equilibrium strategies are of the appropriate form. Assume that Theorem 3 is
valid for searchers of attractiveness ≥ i+ 1, where i < imax.

First, suppose no prospective partner of attractiveness > i will date a searcher of
attractiveness i. By ignoring meetings with prospective partners of attractiveness> i,
the game faced by searchers of attractiveness i can be reduced to a game in which
they are the most attractive. From Theorem 2, it follows that searchers of attractive-
ness i are willing to date prospective partners of attractiveness in [k1(i),k2(i)], where
k2(i) = i < k2(i+ 1) and k1(i)≤ i < k1(i+ 1).

Now assume that k2(i) > i. It follows that k1(i + 1) ≤ i. Firstly, we show that
searchers are willing to date prospective partners of attractiveness j, where i ≤ j ≤
k2(i). If such a prospective partner finds a searcher of attractiveness i acceptable in
the dating subgame, then acceptance is mutual. It follows that the expected utility of
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the searcher from such a date is greater than the expected utility of the prospective
partner. Hence, from Theorem 1, a searcher of attractiveness i should be willing to
date a prospective partner of attractiveness j.

Secondly, the proof that searchers of attractiveness i should be willing to date
prospective partners of attractiveness j, where j ≤ i, if and only if j is above some
threshold is analogous to the proof of Theorem 2. Also, if a prospective partner of
type [k1(i+ 1), l] is mutually acceptable to a searcher of type [i+ 1,k] in the dating
subgame, then from Theorem 1 a prospective partner of type [k1(i+ 1), l] accepts
a searcher of type [k1(i+ 1),k] (and hence any searcher of the same character and
greater attractiveness) in the dating subgame. Thus, by accepting exactly the same
types of prospective partners of attractiveness k1(i+ 1) in the dating subgame as
searchers of type [i+ 1,k] do, a searcher of type [i,k] will ensure the same expected
utility from a date with a prospective partner of attractiveness k1(i+1) as a searcher
of type [i+1,k] obtains. This expected utility must be at least R(i+1;π∗). It follows
from Theorem 1 that k1(i)≤ k1(i+ 1).

Hence, the general form of the equilibrium of the symmetric game is intuitive.
Individuals date those who are of a similar level of attractiveness. It should also be
noted that at such an equilibrium a type [i, j] male will pair with a type [i, j] female.

Due to the assumption that there are no costs associated with soliciting a date
when dating does not follow, at such an equilibrium a searcher of attractiveness i
is indifferent between soliciting and not soliciting a date with a prospective partner
who is not willing to date. In this case we should check the condition based on the
concept of a trembling hand perfect equilibrium. This states that a searcher should
solicit a date if the expected utility from dating after a ‘mistaken’ acceptance is
greater than the expected utility from future search. Suppose a prospective partner
of attractiveness j would not pair with any searcher of attractiveness i in the dating
subgame. A searcher of attractiveness i should not solicit a date with a prospec-
tive partner of attractiveness j, in order to avoid the dating costs when there is no
prospect of pairing.

It is possible that a prospective partner would wish to pair with a searcher of
lower attractiveness in the dating subgame but, due to the costs of dating and the
risks of obtaining a prospective partner of inappropriate character, would not solicit
a date. This will be considered in the example given in Sect. 17.8.2.

Note: At the equilibrium of the classical problem considered by McNamara and
Collins [28], the population is partitioned into classes, such that class i males only
form pairs with class i females. For the game considered here, such a partition only
exists in very specific cases, e.g.:

1. When the search and dating costs are low enough, type[i,k] males only pair with
type [i,k] females.

2. When the costs of dating are high relative to the importance of character, mate
choice is based entirely on attractiveness.

The difference between the equilibria of these two games is illustrated by the
example in Sect. 17.8.2.
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After deriving some of the properties of an equilibrium, we now describe a
procedure for deriving the equilibrium itself. Individuals of maximum attractive-
ness face a one-sided search problem. They should be willing to date a prospective
partner if and only if the expected utility obtained from such a date minus the dating
costs is at least as great as the expected utility from future search. Similarly, in the
dating game a searcher should accept a prospective partner if and only if the utility
gained from such a partnership is at least as great as the expected utility from future
search. By following such a strategy, such individuals will maximise their expected
utility from search, see Whittle [39]. Individuals of a lower level of attractiveness
face a similar problem given the strategies followed by those of a higher level of
attractiveness.

Since the solution of the corresponding set of inequalities is difficult to present in
an explicit form, in Sect. 17.8.1 we describe an algorithm which derives a symmetric
equilibrium. The constructive nature of this algorithm leads to the key theorem of
the paper on the uniqueness and existence of a symmetric equilibrium in this game.

17.8.1 The Algorithm

Define r = �m
2 �. Since the equilibrium is assumed to be symmetric with respect

to character and sex, it suffices to consider males of character r. The advantage of
considering such individuals is that the difference between character j and character
r is simply the standard absolute difference between the two characters.

The game can be solved as follows

1. Assume that males of maximum attractiveness are only willing to date females
of maximum attractiveness. Consider strategy profiles πt , t = 0,1,2, . . . ,�m/2�,
where under strategy profile πt males of type [imax,r] pair with females whose
characters do not differ by more than t (i.e. as t increases males accept succes-
sively less preferred females). We calculate R(imax;π0),R(imax;π1), . . . in turn
until R(imax;πt) > g(imax, t + 1) (i.e. the expected utility from search is greater
than the utility from mating with any female of maximum attractiveness who is
not acceptable) or t = m/2. This gives us the optimal rule of the form consid-
ered, see Whittle [39], which is a lower bound on R(imax;π∗).

2. If this lower bound is less than the utility obtained by a type [imax,r] male from
pairing with a type [imax−1,r] female minus the dating costs (i.e. the maximum
possible reward from soliciting a date from a female of attractiveness imax − 1),
it may be optimal for males of maximum attractiveness to solicit dates with
females of the second highest level of attractiveness. We can order females of
the top two levels of attractiveness with regard to the preferences of a type
[imax,r] male. By considering strategies under which type [imax,r] males are
prepared to pair with successively less preferred females as in Point 1, we can
derive the optimal strategy of males given they date females of the two highest
levels of attractiveness.



282 S. Kinsella and D.M. Ramsey

3. If required, in a similar way we can derive the optimal strategies of type [imax,r]
males given that they date females of the u highest levels of attractiveness,
where u is at least three and not more than the number of attractiveness lev-
els. Hence, we can derive a strategy maximizing the expected utility of a type
[imax,r] male. This strategy defines what attractiveness levels induce solicitation
of a date from a male of maximum attractiveness and what types of females
should be paired with after such dates (i.e. the pattern of dates and partnerships
exhibited by individuals of maximum attractiveness at equilibrium).

4. The strategy defined in Points 1–3 above should be extended to ensure trembling
hand equilibria in all the possible derived dating subgames involving males of
maximum attractiveness. The set of acceptable females in dating subgames can
be easily found using Condition 1: i.e. a male of maximum attractiveness should
accept a prospective partner in the dating subgame if and only if the utility he
obtains from such a partnership is greater than his expected utility from search.
Note that the behaviour of males in dating subgames that do not occur un-
der the equilibrium profile does not affect their expected utility from search
at equilibrium.

Hence, the problem faced by a male of maximum attractiveness can be solved by
solving a sequence of one-sided problems. The strategies used by other individuals
of maximum attractiveness can be found using the symmetry of the profile with
respect to character and sex. Note that it is assumed that if a male is indifferent
between two strategies, then he uses the strategy which maximizes the number of
attractiveness levels inducing willingness to date, together with the number of types
of female that he will eventually pair with.

Suppose we have found the equilibrium strategies of individuals of attractiveness
> i. The problem faced by a male of type [i,r] reduces to a one-sided problem in
which the set of females of higher attractiveness who are willing to date and pair
with such males has been derived. The optimal response of such a male can be
calculated in a way analogous to the one described in Points 1–4 above, with the
following adaptations (which take into account the form of the equilibrium):

(a) The initial strategy of a type [i,r] male is as follows: (A) solicit a date with
(i) any female of a greater attractiveness who would solicit a date from him,
(ii) any female of the same attractiveness and (iii) females of lower attractive-
ness who would be solicited by males of attractiveness i+ 1, (B) in the dating
game always pair with a female of the same type and any female who gives at
least the same utility as the expected utility of an individual of attractiveness
i+ 1.

(b) The set of prospective partners accepted in the dating subgame and solicited
in the soliciting subgame is extended in an analogous way to the case of indi-
viduals of maximum attractiveness. Firstly, we find the optimal strategy which
involves dating individuals of the attractiveness levels derived in (a). This is
done by including successively less preferred mates into the set of those mated
with in the dating subgame. If required, we then find the optimal rules obtained
when an individual solicits dates with successively less attractive prospective
partners.
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(c) After determining the set of females that a male of type [i,r] solicits a date with
and the females that he would pair with in the dating subgame, the behaviour of
the male in the dating subgames that would not occur under the partial strategy
profile derived as above is determined using the requirement of a trembling
hand equilibrium in the dating subgame.

The full strategy profile can be then defined using the assumption of the
symmetry of the profile with respect to sex and character. It should be noted that
although this algorithm has some similarities to the one presented by McNamara
and Collins [28], it is clearly different. Their algorithm is purely a one-dimensional
search, which derives the sets of attractiveness levels that define a partition of the at-
tractiveness levels for each sex. The value of the symmetric game described here can
be described by a one-dimensional function. However, in order to derive the equi-
librium, a two-dimensional search over levels of both attractiveness and character is
required.

The following theorem shows that the profile derived in this way is a symmetric
equilibrium profile.

Theorem 4. The strategy profile derived using the algorithm given above defines a
symmetric equilibrium profile.

Proof. From the definition of the algorithm, the form of strategy profile derived
satisfies Theorems 2–2. Also, the behaviour of individuals in dating subgames that
do not occur under such a profile explicitly satisfies the equilibrium conditions. This
behaviour has no effect on a searcher’s expected utility from search.

First, consider males of maximum attractiveness. From Whittle [39], if no female
of a given attractiveness level gives a utility as great as the optimal expected reward
from search, then it cannot be optimal to date such a female. The algorithm considers
soliciting dates with prospective partners of successively decreasing attractiveness,
until the most preferred partner of a given attractiveness, say i, gives a lower utility
than the greatest expected utility from search found so far. From Whittle’s condition,
a male of maximum attractiveness should not solicit dates from females of attrac-
tiveness ≤ i. Also, in the dating subgame a male should not pair with a female who
gives a utility less than the optimal expected utility from search. Hence, the algo-
rithm considers all the best strategies based on dating females of attractiveness ≥ j,
for all j > i and picks the strategy which maximises the expected utility from search.
Hence, this maximises the expected utility of males of maximum attractiveness from
search.

Now suppose that this algorithm derives the equilibrium strategy of males of
attractiveness ≥ i. From Theorems 1 and 3 a male of type [i− 1,r] should solicit
dates from any female of attractiveness≥ i who solicits dates with him and pair with
any female of attractiveness ≥ i who would pair with him in the dating game. The
strategy of a male of type [i−1,r] derived by the algorithm extends the sets of those
females solicited and those paired with starting from a strategy which satisfies this
condition. Given the strategies of the females of attractiveness ≥ i, a male of attrac-
tiveness i−1 faces a one-sided search problem and the optimal strategy in this prob-
lem is derived in an analogous way as for individuals of maximum attractiveness
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(using the fact that a male of type [i− 1,r] should pair with any female that a male
of type [i,r] would pair with). Hence, the algorithm derives the equilibrium strategy
of individuals of attractiveness i− 1 given the strategies used by individuals of at-
tractiveness≥ i. It follows by induction, the symmetry of the strategy profile derived
and the form of the equilibrium strategy from Theorems 1–3 that the algorithm gives
a symmetric equilibrium profile.

Due to the form of the equilibrium and the finite number of types, the resulting
strategy profile is well defined and unique. The theorem below follows directly from
the construction of the symmetric equilibrium.

Theorem 5. Assume that if any individual is indifferent between two strategies, then
he/she uses the strategy which maximises the number of attractiveness levels in-
ducing the solicitation of a date, together with the number of types of prospective
partners that he/she will eventually pair with. There exists exactly one symmetric
equilibrium of the symmetric game.

One might ask whether an asymmetric equilibrium exists. Consider a
finite-horizon game where each individual can observe up to n prospective part-
ners. Suppose that in addition to Conditions 1–3, we require that an equilibrium
profile in Γ is the limit of an equilibrium search profile in the finite-horizon game
when n → ∞. When n = 1, at the unique equilibrium profile each individual accepts
any prospective mate (i.e. the equilibrium is symmetric). When n steps remain, an
individual (a) should solicit dates from prospective partners of attractiveness i if the
expected utility from such a date is greater than the future expected utility from
search (i.e. when n− 1 steps remain) and (b) pair with prospective partners in the
dating subgame if the expected utility from pairing is greater than the future ex-
pected utility from search. Given the equilibrium profile in the (n− 1)-step game is
symmetric, all these expected utilities are independent of sex and character. Hence,
the unique equilibrium profile in the n-step game is symmetric. It follows that we
can strengthen Theorem 5 to the following theorem:

Theorem 6. If, in addition to the assumptions of Theorem 5, it is assumed that the
solution to the infinite-horizon game must be the limit of the solution to the appro-
priately defined finite-horizon game, then there is a unique equilibrium profile of the
symmetric game Γ , which itself is symmetric.

One might consider what equilibria are possible when there is equality between
the future expected reward of a searcher of type [i, j] and the reward obtained by
mating with a prospective partner of type [i0, j0]. This will be of importance when
i > i0. If searchers of type [i, j] do not accept prospective partners of type [i0, j0],
then searchers of type [i0, j0] will have a lower expected reward from search than at
the equilibrium considered above and thus become less choosy than at the original
equilibrium. This may well have knock on effects on the equilibrium strategy of
individuals of attractiveness below i0. Suppose i0 > i1 > i2. Those of attractiveness
i1 may become more choosy at such an equilibrium (as those of slightly higher
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attractiveness are more likely to accept them), which in turn might lead to those of
attractiveness i2 becoming less choosy at such an equilibrium (as those of slightly
higher attractiveness are less likely to accept them), and so on.

However, suppose the distribution of the types of individuals is fixed and consider
the space of possible cost vectors [c1,c2] ∈ R+ ×R+. For nearly all cost vectors
(i.e. apart from on a set of measure 0), it is expected that there will be a unique
equilibrium of the game Γ .

17.8.2 Example

Suppose that the support of both Xa and Xc is {0,1,2,3,4,5,6} and the distributions
of attractiveness and character are uniform. The search costs, c1, and the interview
costs, c2 are equal to 1

7 . The utility obtained from a partnership is defined to be the
attractiveness of the partner minus the distance (modulo 7) between the characters
of the pair.

Since the expected payoff of a male does not depend on whether he is willing to
date females who are unwilling to date with him, in order to derive the expected pay-
offs of individuals under any strategy profile it suffices to consider strategy profiles
of the following form: a searcher of attractiveness i is willing to date prospective
partners of attractiveness ≥ ai and in the dating subgame will pair with a prospec-
tive partner who gives a reward of at least bi, i = 0,1,2,3,4,5,6. Denote such a
strategy by {(a6,b6),(a5,b5), . . . ,(a0,b0)}. We derive the equilibrium strategies of
individuals in the order of most attractive to least attractive. Hence, for example, by
{(a6,b6),(a5,b5),•,•,•,•} we denote the set of strategy profiles such that individu-
als of attractiveness levels 5 and 6 use the strategies defined by (a5,b5) and (a6,b6),
respectively, and the strategies of the remaining individuals are undefined, but sat-
isfy Conditions 1 and 3, i.e. a trembling hand equilibrium is always played in the
dating subgame and the strategy profile is stationary. Other similar sets of strategy
profiles will be denoted in an analogous manner.

First we consider males of maximum attractiveness. Suppose they only solicit
dates with females of attractiveness 6. The ordered preferences of a [6,3] male are
as follows: first (group one) – [6,3], second equal (group two) – [6,2], [6,4], fourth
equal (group 3) [6,1], [6,5] and sixth equal (group 4) – [6,0], [6,6]. Group 1, 2, 3
and 4 females give a utility from pairing of 6, 5, 4 and 3, respectively. The sets of
strategy profiles in which type three males mate with (a) only those from group 1,
(b) those from groups 1 and 2, (c) those of groups 1, 2 and 3 and (c) those from
all four groups are {(6,6),•,•,•,•,•}, {(6,5),•,•,•,•,•}, {(6,4),•,•,•,•,•} and
{(6,3),•,•,•,•,•}, respectively. We successively include females into the set of
acceptable partners starting from the most preferred until no female of attractiveness
6 outside this set gives a greater utility than the current expected utility of a type
[6,3] male.
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R(6;{(6,6),•,•,•,•,•}) = 6− 49× 1
7
− 7× 1

7
=−2

R(6;{(6,5),•,•,•,•,•}) = 16
3
− 49

3
× 1

7
− 7

3
× 1

7
=

8
3

R(6;{(6,4),•,•,•,•,•}) = 24
5
− 49

5
× 1

7
− 7

5
× 1

7
=

16
5
.

The expected utility of a type [6,3] male under {(6,4),•,•,•,•,•} is greater than 3.
It follows that [6,0] and [6,6] females should not be accepted in the dating subgame.

Since our lower bound (3.2) on the expected utility of a type [6,3] male is less
than the utility obtained from pairing with a female of the same character and the
second highest attractiveness minus the costs of dating, 34

7 , we now consider strategy
profiles in which type [6,3] males solicit dates with females of attractiveness 5 and
6. We only have to consider:

1. Strategy profiles in which females of type [5,3] are acceptable in the dating
subgame. If this were not the case, then a type [6,3] employer would be incur-
ring unnecessary dating costs.

2. Prospective partners who give a utility higher than the current lower bound on
the expected utility of a type [6,3] male from search.

The ordered preferences of a type [6,3] male among the set of females of
attractiveness at least 5 who satisfy criterion 2 above is given by: group 1 is {[6,3]},
group 2 is {[6,2], [5,3], [6,4]} and group 3 {[6,1], [6,5], [5,2], [5,4]}. We only need
to consider strategy profiles of the following two types: (a) type [6,3] males pair with
females from groups 1 and 2 above, i.e. profiles from the set {(5,5),•,•,•,•,•}, (b)
type [6,3] males pair with females from all three groups, i.e. profiles from the set
{(5,4),•,•,•,•,•}. We have

R(6;{(5,5),•,•,•,•,•}) = 21
4
− 49

4
× 1

7
− 14

4
× 1

7
= 3

R(6;{(5,4),•,•,•,•,•}) = 37
8
− 49

8
× 1

7
− 14

8
× 1

7
=

7
2
.

We now consider strategy profiles in which type [6,3] males solicit dates with
females of attractiveness at least 4. Since the present lower bound on R(6;π∗) is
3.5, we only need to consider strategy profiles in which type [6,3] males pair with
the same types of females as in {(5,4),•,•,•,•,•} with the addition of type [4,3]
females, i.e. strategy profiles from the set {(4,4),•,•,•,•,•}. We have

R(6;{(4,4),•,•,•,•,•}) = 41
9
− 49

9
× 1

7
− 21

9
× 1

7
=

31
9

<
7
2
.

It follows that type [6,3] males should not solicit dates with females of attractiveness
4. Hence, at a symmetric equilibrium, type [6,3] males solicit dates with females of
attractiveness 5 and 6 and pair with females of type in M6, where

M6 = {[6,1], [6,2], [6,3], [6,4], [6,5], [5,2], [5,3], [5,4]}.
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It should be noted that a type [6,3] male should pair with a type [4,3] female given
that they are dating. However, due to the costs of dating, the low probability of find-
ing an acceptable partner of attractiveness 4 and the relatively small gain obtained
from such a partnership compared to the expected utility from future search, a type
[6,3] male should not solicit a date with such a female. Define Mi+[s, t] to be the set
of [k+ s, j+ t] where [k, j] ∈Mi. From the symmetry of the equilibrium with respect
to character and sex, an individual of type [6,3+ t] is willing to date prospective
partners of attractiveness 5 and 6 and pair with those in M6 +[0, t].

Note that searchers are not matched in a block-separated way as in McNamara
and Collins [28]. For example, a type [6,3] male will pair with a type [6,1] female,
who would mate with a type [6,0] male. However, a type [6,3] male will not pair
with a type [6,0] female.

Now we consider males of type [5,3] and assume that individuals of maximum
attractiveness follow the strategies derived above and males of attractiveness 5 so-
licit dates with females of attractiveness 5 and 6. Note that from the form of the
equilibrium, a male should always solicit dates with females of the same attrac-
tiveness, together with females of higher attractiveness who solicit dates with him.
From the symmetry of the game with respect to sex and character, since males of
type [6,3] pair with females of type [5,2], [5,3] and [5,4], it follows that males of
type [5,3] will pair with females of type [6,2], [6,3] and [6,4]. They must also pair
with females of type [5,2], [5,3] and [5,4], as such females give a type [5,3] male a
utility of 4 ≥ R(6;π∗) ≥ R(5;π∗). The expected utility of a type [5,3] male under
such a strategy profile, i.e. from the set {(5,4),(5,4),•,•,•,•}, is

R(5;{(5,4),(5,4),•,•,•,•}) = 29
6
− 49

6
× 1

7
− 14

6
× 1

7
=

10
3
.

This is greater than the expected utility from accepting the next most preferred types
([5,1] and [5,5]). Hence, we can now consider strategy profiles in which males of
type [5,3] solicit dates with females of attractiveness at least 4. The only case we
need to consider is extending the set of acceptable females to include those of type
[4,3], i.e. the set of strategy profiles {(5,4),(4,4),•,•,•,•}. We have

R(5;{(5,4),(4,4),•,•,•,•}) = 33
7
− 49

7
× 1

7
− 21

7
× 1

7
=

23
7

<
10
3
.

It follows that males of type [5,3] should solicit dates with females of attractiveness
5 and 6 and pair with females of a type in {[5,2], [5,3], [5,4], [6,2], [6,3], [6,4]}.
In these cases acceptance is mutual. It should also be noted that males of type [5,3]
should accept females of type [6,1] or [6,5] in the dating subgame. However, in
these cases acceptance is not mutual. Females of type [4,3] would be accepted in
the dating subgame by a type [5,3] male, but such males would not solicit a date
with such a female.

Thus males and females of the top two levels of attractiveness do not date
individuals of any lower level of attractiveness. The problem faced by males of
attractiveness 4 thus reduces to a problem analogous to the one faced by those of
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attractiveness 6 (they are the most attractive of the remaining males). It follows that
M4 = M6 − [2,0]. Arguing iteratively, Mi = Mi+2 − [2,0] for i = 1,2,3,4. Males of
attractiveness 2 or 4 solicit dates with females of the same attractiveness or of attrac-
tiveness one level lower. Males of attractiveness 1 or 3 solicit dates with females of
the same attractiveness or of attractiveness one level higher. We have R(4;π∗) = 3/2
and R(3;π∗) = 4

3 , so in the dating subgame males of attractiveness 3 and 4 accept
any females giving them a utility of at least 2 (in this game the utility from a pairing
is by definition an integer). Also, R(2;π∗) = −1/2 and R(1;π∗) = − 2

3 , so in the
dating subgame males of attractiveness 1 and 2 accept any female giving them a
utility of at least 0.

It follows that the value of the game to a player of given attractiveness from 1 to
6 must be given by the expected reward of such a player under any strategy profile
from the set {(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),•}.

Since females of attractiveness 5 and 6 do not solicit dates with males of
attractiveness 4, such males are indifferent between soliciting and not soliciting
dates with such females. We should check the relevant equilibrium condition based
on the concept of a trembling hand equilibrium, i.e. if a female of attractiveness 6
did ‘by mistake’ accept a date with a male of attractiveness 4, should the male solicit
a date? In the dating subgame, only a female of type [6,3] would accept a male of
type [4,3]. Hence, the expected utility of a type [4,3] male from dating a female of
attractiveness 6 is

vM(4,6;π∗) =
1
7
× 6+

6
7
× 1.5− 1

7
= 2 > R(4;π∗).

It follows that males of attractiveness 4 should solicit dates with females of
attractiveness 6. Arguing similarly, such males should solicit dates with females
of attractiveness 5 and males of attractiveness 2 should solicit dates with females of
attractiveness 3 or 4.

No females of attractiveness 5 or 6 would pair with a male of attractiveness 3 in
the dating subgame. It follows that males of attractiveness 3 should not solicit dates
with females of attractiveness 5 or 6. Arguing similarly, a male of attractiveness 1
should not solicit dates with females of attractiveness above 2.

It remains to determine the strategy used by a type [0,3] male. Since no female
of greater attractiveness will date such a male, we only have to consider strategy
profiles where a male pairs with successively less preferred partners of attractive-
ness 0. Note that R(0;π∗) ≤ R(1;π∗) = −2/3, thus in the dating game individuals
of attractiveness 0 must pair with any prospective partner who gives them a utility
of 0 (i.e. with those of the same type). The expected rewards from the game un-
der a strategy profile where individuals of attractiveness at least 1 use the strategies
derived above and males of type [0,3] pair with females of types in (a) {[0,3]},
(b) {[0,2], [0,3], [0,4]} and (c) {[0,1], [0,2], [0,3], [0,4], [0,5]} are equal to the ex-
pected rewards from the game under the respective strategy profiles
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{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,0)},
{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,−1)},
{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,−2)}

We now have that

R(0;{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,0)}) = −49× 1
7
−7× 1

7
=−8

R(0;{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,−1)}) = −2
3
− 49

3
× 1

7
− 7

3
× 1

7
=−10

3

R(0;{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,−2)}) = −6
5
− 49

5
× 1

7
− 7

5
× 1

7
=−14

5
.

The expected utility of a type [0,3] male under

{(5,4),(5,4),(3,2),(3,2),(1,0),(1,0),(0,−2)}

is greater than the utility obtained from pairing with females of type [0,0] and [0,6].
Hence, at a symmetric equilibrium males of type [0,3] should not accept such fe-
males.

It remains to consider the set of females that a male of attractiveness 0 should
solicit a date with according to the conditions based on the concept of a trembling
hand perfect equilibrium. At equilibrium, no female of attractiveness greater than 2
would ever pair with a male of attractiveness 0 in the dating subgame. Hence, males
of attractiveness 0 should never solicit dates with females of attractiveness above
2. Females of type [2,3] and [1,3] would pair with a type [0,3] male in the dating
subgame. Arguing as in the case of males of attractiveness 4 soliciting dates with
females of attractiveness 5 and 6, males of attractiveness 0 should solicit dates with
females of attractiveness 1 and 2.

Table 17.1 gives a synopsis of the equilibrium strategy profile. Each individual
should accept a prospective partner in the dating subgame if the utility from such a
matching is at least as great as the utility from search. For ease of presentation, the
set of such partners is not presented.

17.9 Generalizing the Model

Suppose that character is placed along a line instead of around a circle, i.e. the
difference between two characters is calculated according to the standard abso-
lute difference. Considering the game presented in Sect. 17.8.2 (with unspecified
search and dating costs), there is still a large degree of symmetry with respect to
sex and character (e.g. the character levels j and 6− j can be interchanged without
essentially changing the game).
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Solicits dates with prospective
Attractiveness partners of attractiveness Expected Utility

6 { 5,6 } 7/2
5 { 5,6 } 10/3
4 { 3,4,5,6 } 3/2
3 { 3,4 } 4/3
2 { 1,2,3,4 } −1/2
1 { 1,2 } −2/3
0 { 0,1,2 } −14/5

Table 17.1 Brief description of the symmetric equilibrium for the example considered

We wish to derive an equilibrium which reflects this inherent symmetry. Suppose
a type [i, j] male solicits a date with a female of attractiveness k and pairs with a
female of type [k, l]. Firstly, a type [i, j] female should be willing to date a male of
attractiveness k and pair with a male of type [k, l]. Secondly, a type [i,6− j] male
should solicit a date with a female of attractiveness k and pair with a female of type
[k,6− l].

It is expected that males of type [6,3] have the highest expected utility from
search and so we can treat the problem they face as a one-sided problem. However,
it is unclear whether in a specific problem individuals of type [6,2] or those of type
[5,3] should have the higher expected utility from search at such an equilibrium.
Hence, it is unclear how the algorithm should proceed.

In order to solve more general problems, the algorithm presented in Sect. 17.8
must be further developed. However, it seems that the general approach of solving a
sequence of appropriately defined one-sided problems could be useful in deriving a
strategy profile which is very similar to an equilibrium strategy profile (see Ramsey
[32] for a similar approach). Also, the form of the general problem and the use-
fulness of such an approach indicate that if there are multiple equilibria, then the
behaviour observed at such equilibria should be qualitatively similar.

17.10 Conclusion and Directions for Further Research

This chapter has presented a model of partnership formation where both common
and homotypic preferences are taken into account. The preferences of all searchers
are common with respect to the attractiveness of prospective partners and homotypic
with respect to character. Attractiveness can be assessed immediately, but in order
to assess character a costly date (or interview) is required.

We have considered a particular type of such problems in which the distribution
of attractiveness and character, as well as search and interview costs, were
independent of the class (sex) of a player. Character was assumed to form a cir-
cle, such that the ’extreme’ levels of character are neighbours. For convenience, the
supports of attractiveness and character were assumed to be finite sets of integers.
The distribution of character is uniform.
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The form of a symmetric equilibrium profile which satisfies various criteria based
on the concept of a trembling hand perfect equilibrium was derived and an algorithm
to find such a profile described. These criteria are a generalization of the optimality
criterion used by McNamara and Collins [28] to define the unique equilibrium in
the classical two-sided job search problem. It is shown that such an equilibrium
exists and is unique (assuming that if an individual is indifferent between accept-
ing or rejecting a prospective partner at any stage, then he/she accepts). Although
the equilibrium derived here does have some similarities to the equilibrium derived
by McNamara and Collins [28], it is essentially different, since it is not a block
separating equilibrium.

The use of this combination of preferences would seem to be logical in rela-
tion to job search and mate choice. Although there is no perfect correlation in in-
dividuals’ assessment of the attractiveness of members of the other class, there is
normally a very high level of agreement, particularly among males in mate choice
problems. These ‘mixed’ preferences seem to be both reasonably tractable within
the framework of searching for a partner within a relatively large population and al-
low a general enough framework to model the preferences of individuals reasonably
well (although it would seem that modelling character as a one-dimensional vari-
able is rather simplistic). By using a larger number of types, we could approximate
continuous distributions of attractiveness and character.

For simplicity, it was assumed that individuals know their own attractiveness and
character, whereas in practice they may have to learn about these measures over
time (see Fawcett and Bleay [15]).

Also, it was assumed that individuals are able to measure attractiveness and
character perfectly, although at some cost. It would be interesting to consider dif-
ferent ways in which information is gained during the search process. For example,
some information about the character of a prospective partner may be readily avail-
able. Hence, an improved model would allow some information to be gained on
both the attractiveness and character of a prospective partner at each stage of an
interaction.

In terms of the evolution of such procedures, it is assumed that the basic
framework is given, i.e. the model assumes that the various search and dating
(interview) costs are given. Hence, this model cannot explain why such a system
has evolved, only the evolution of decisions within this framework.

Individuals may lower their search costs by joining some internet or social group.
Such methods can also lead to biasing the conditional distribution of the character of
a prospective partner in a searcher’s favour. It is possible that dating (interview) costs
are dependent on the types of the two individuals involved. For example, two indi-
viduals of highly different characters might incur low dating costs, as they realize
very quickly that they are not well matched.

Also, the ability to incur dating costs may well transfer information regarding the
attractiveness and/or character of an individual. In this case, it may be more costly
to successfully date highly attractive prospective partners, since they would only
accept partners who can pay high dating costs (i.e. are attractive).
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In addition, it would be useful to investigate how the utility functions, together
with the relative costs of searching and interviewing, affect the importance of at-
tractiveness and character in the decision process. It should be noted that using
attractiveness as an initial filter in the decision process will lead to attractiveness
becoming relatively more important than character, especially if the costs of dating
are relatively high.

It would also be useful to adapt the algorithm to problems in which the
distribution of character is not uniform and/or the set of character levels do not
form a circle. In this case, it is expected that individuals of extreme character will
usually be less choosy than those of a central character for a given level of attrac-
tiveness. Two major problems result from this. Firstly, the form of an equilibrium
will be more complex than the form of the symmetric equilibrium given here. Any
algorithm to derive an equilibrium in this case will certainly be more complex than
the algorithm outlined in this chapter, which uses the fact that the problem can be
reduced to a sequence of one-sided problems. The unique equilibrium derived here
would be useful as a point of reference.

Finally, it would be interesting to consider games in which the distributions of
traits and/or search costs depended on class. In this case, it would be natural to
assume that the equilibrium is asymmetric with respect to class. In the spirit of the
derivation of equilibrium points in the classical matching problem (see Gale and
Shapley [18]), it would be interesting to see whether equilibria analogous to male-
choice and female-choice equilibria exist. For the types of model considered here,
to find a male-choice equilibrium we would try to maximize the expected utility of
males while adapting female choice to male choice.
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Chapter 18
Applications of Search in Biology:
Some Open Problems

Jon Pitchford

Abstract The theory of search and rendezvous can be applied to answer real world
problems which are both interesting and of practical importance. Here I provide
a personal account of where existing theories may need modification in order to
tackle the uncomfortable complexities of biology, and argue that in many cases these
modifications are tractable. Finally, three open problems in the application of search
theory to biological systems are presented: how should a fish swim; how do plant
roots exploit patchy nutrients; and why do animals form groups?

18.1 Introduction

Biology is an exciting place to do research. While Euclid’s mathematical proofs
are immutable, current technological advances force biologists to rewrite their text-
books every few years. The basic elements do not change: life involves things mak-
ing entire-but-imperfect copies of themselves by encoding information chemically
in DNA or RNA. Evolutionary forces within and between species and environment
shape long-term changes. However, our ability to quantify and systematise details
of the underlying processes is expanding at a tremendous rate. The emerging fields
of post-genomic biology are shifting the emphasis away from simply (!) reading
sequences of DNA code, and towards complex systems of feedbacks across a range
of time scales and embedded within heterogeneous and dynamic environments.

The mathematics of search and rendezvous is elegant and compelling in its own
right, and is further enhanced by accurate computations and careful data analysis.
If these methods can be adapted to intersect with questions emerging from biology,
then the prospects for important biological breakthroughs driven by mathematical
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reasoning are bright. Importantly, any such insight would emerge from rigorous
theory, where the assumptions are transparent and the model ingredients precisely
defined (even if they do not perfectly mimic biological reality). This is a useful
counter to the fashion for ever-larger supercomputer simulations of biological sys-
tems, which can be visually compelling but which are prone to statistical misinter-
pretation, hidden parameter assumptions, and errors in computational implementa-
tion. There is room, and need, for both flavours of research.

In this brief article I first try to identify where the existing theories of search
and rendezvous may need rethinking when challenged by the uncomfortably dirty
realities of real-world biology. These are not criticisms. Indeed, many of the issues
raised are readily tackled within the context of existing theory. Where modifications
are needed, there is every chance that these are both tractable and intellectually
satisfying for those with large enough brains.

Finally, three open problems are described. In stark similarity to the “blind”
and “stupid” foragers considered below, these are constrained by the author’s lo-
cal knowledge of the mathematical and biological research environment, and biased
heavily by those with whom he is fortunate to collaborate. Solving these problems
will confer uncertain intellectual fitness benefits within the complex and stochas-
tic research landscape, but is likely to provide avenues into still richer problems
emerging from the flood of technology-driven data.

18.2 Biological Complications Relating to Search
and Rendezvous

Individuals Move in Interesting Ways

Movement in biology was traditionally modelled using biased random walks; the
animal (or cell, or chemical) takes randomly oriented steps of a constant size, and
its location is described via a diffusive process with a Gaussian probability density.
Variations of this paradigm have been applied with much success [8]. However,
where random walks fail, this is likely to be for interesting reasons.

Firstly, organisms can sense their local environment directly, they can make
changes to this local environment, and they may gain more global knowledge via
visual or chemical cues. Global information will always, however, be uncertain
relative to local knowledge [6]. Such elaborations can be built into search theo-
ries; strategies employing ‘tokens’ (see Kiniwa et al., Chap. 8, and Chalopin et al.,
Chap. 12, for games that involve tokens), and the ideas of reinforced random walks,
have been usefully explored. Behaviour also depends on state; a hungry solitary lion
moves differently to a well-fed member of a pride. Again, existing theories can be
adapted (Broom, Chap. 15) or [1, 15].

Simple random walks are challenged by recent literature synthesising the data
and theory behind Lévy walks. Individuals across a broad range of species are ob-
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served to make small local random movements interspersed with rare long-distance
jumps. When the probability distribution for the step size follows a power law the
resulting process is called a Lévy walk. Theory borrowed from theoretical physics
has been used to infer optimality of such super-diffusive movement strategies for
sparse patchily distributed prey. Careful analyses of theory, computation, and infer-
ence from data have cast doubt on any such global assertion of optimality [16, 17].
Nevertheless, search theories should be freed from the constraints of the diffusive
paradigm.

Environments Are Interesting

Biological environments are seldom, if ever, homogeneous, isotropic, and static.
Complex and dynamic structure is visible at scales ranging from the sub-cellular to
the ecological. The consequences of this complexity are intimately related to those
concerning modelling movement as simple random walks versus sub- or super-
diffusive processes outlined above, and there are mathematical analogies in their
methods of solution. Ecology involves, by definition, interactions between life and
environment, and so very often the feedbacks between searcher and search arena
will dictate behaviour.

One exciting direction is to escape Euclidean space in favour of environments
described by graphs; a collection of locations connected by weighted edges. Inter-
actions between biology and complex environments can be captured succinctly and
elegantly in this way (see, for example, Durham et al. [11, 12]) and the expand-
ing theory of search on networks (Chap. 2 of this volume) has great potential to
be applied. Linking such individual-based studies to larger-scale properties at the
population level (sensu [18]) is an important and tractable challenge.

Some Princesses Are Monsters

It is tempting to transfer theories directly between disciplines, for example by taking
the classic Princess and Monster game [14] and identifying the Princess as “prey”
and the Monster as “predator”. However, even a princess must eat, and only the
rarest and most savage monster can safely consider itself invulnerable to attack.
In other words, the actors in biological systems may be motivated by factors not
considered by the modeller, either by choice or through ignorance.

Conversely, observing a particular behaviour in nature and attributing this to op-
timisation of some externally imagined metric could be misleading – ambiguities
between pattern and process are common in the literature. It may be possible to
show compelling statistical differences between the movement of male and female
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butterflies, and to correlate these with environmental factors, but to infer the mech-
anisms driving the observations is a much greater challenge. Further practical chal-
lenges of predicting the conservation consequences of changes in habitat structure
can be answered only speculatively at this stage (Preston et al., [25]). State-based
models offer some natural avenues of progress; the key challenge is more likely to
be the framing of the biological question and interpreting the data, rather than the
mathematical technicalities.

Some Individuals Are Not Individuals

An ant colony might contain thousands of foraging non-reproductive clones, serving
the interests of a single fertile female. In effect the only individual of interest is the
queen, and ecological success of foraging workers needs to be measured in this
context. This is an extreme case, but sociality is common in animal studies and is
perhaps mirrored at smaller scales by quorum sensing in bacteria. This is a large
and active research area (see, for example, [27], which contains excellent ecological
background spanning the remit of this article) and notions of inclusive fitness in
social systems are well developed, though not without controversy [20].

Taking plants as a less obvious example, each root tip could be thought of as
an individual forager (Problem 2, below). Neighbouring roots are not independent,
however, and the metric of interest is the cumulative foraging success of each plant’s
dynamic population of roots. The scope for practical problems and interesting math-
ematics is enormous.

Sometimes Being Optimal Is Not Good Enough

Much of the theory of search and rendezvous concerns finding mathematical solu-
tions which minimise the expected value of some property. This makes sense for
long-lived and “valuable” humans, but is probably too anthropocentric a view for
biology in general. Evolution by natural selection involves, by necessity, probabilis-
tic forces. “Survival of the fittest” is a statement about extremes, not averages. Put
simply, if an individual is almost certain to die soon anyway, then it has no interest
in maximising its long term average fitness – it only needs to get very lucky, very
quickly. This has been long understood in human societies [21], and so-called “risk
sensitive foraging” is not a new theory in ecology [26].

This is not necessarily a difficult problem to overcome mathematically; one sim-
ply optimises the property of interest in the surviving tail of the distribution rather
than globally [9]. However, its consequences are possibly very large (see Problem 1,
below). New technologies are revealing that natural systems can evolve dramatically
so as to exploit stochasticity [2]. In this author’s biased opinion, of the complica-
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tions listed here, this last is likely to require the smallest modifications to existing
theory, but has the potential to provide the most revealing new insights.

18.3 Some Open Problems

These problems benefit from being both practically relevant and mathematically
tractable. The author, with co-workers, has made attempts to solve each of them but
there is wide scope for fresh thinking and new approaches.

Problem 1: How Fast Should a Fish Swim? (Complications 1, 2, 3, and 5)

Fish are important; we eat them, and they play crucial roles in wider ecosystem
function. In a sustainable fishery one would hope that each fish removed from the
adult population (the “stock”) is replaced by a juvenile entering that population
(a “recruit”). Unfortunately, the stock-recruitment relationship is notoriously unpre-
dictable [5, 19]. One of the main reasons for this is the peculiar reproductive strategy
used by many pelagic species, where each female will produce millions of small and
seemingly useless eggs over her lifetime. Only a tiny proportion of these survive the
egg and the larval stages to reach adulthood and contribute to future generations.
Most die of starvation or are devoured by anything with a larger mouth – including
their own brothers and sisters.

So, how fast should a fish larva swim? The problem is ostensibly a simple bal-
ance between energy costs and foraging benefits. For example, swimming twice as
fast might double the predator-prey encounter rate, but may also incur a four-fold
increase in the cost of swimming (assuming Stokes drag, appropriate for small for-
agers in water). Simple optimisation would reveal a quadratic fitness landscape with
a fixed optimal swimming speed.

Reality, however, is more interesting. For a small animal in a large ocean, prey
are not homogeneously distributed and turbulence cannot be ignored. Effectively,
local random stirring brings the predator into contact with prey regardless of active
swimming – perhaps the best strategy is to sit and wait?

The temporal mean-field problem was tackled by Pitchford et al. [22, 23]. They
use a simple multi-scale approach using (appropriately enough) Poisson processes:
the forager, the patches of prey, and the prey individuals are regarded as independent
spheres, with their relative speeds and encounter rates governed by physiology and
physics. A predator finds, forages within, and leaves a patch at Poisson rates which
combine swimming speeds with turbulent speeds at the appropriate length scales
(visual range for forager-prey encounters, patch size for forager-patch encounters).
Pitchford et al. derive analytical expressions for the optimal swimming speeds, and
extend the study to ask when a predator should alter its behaviour according to
whether it thinks it is in a patch.
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These models can be improved. When there is a large number of predator and
prey, then intraspecific competition and population dynamics may play a role, with
consequences for the elusive stock-recruitment relationship. Swimming may be
more saltatory or Levy-like than a simple constant swim [4]. The environment is
also more complex than simple independent spheres; the interaction between in-
dividual swimming and larger-scale fluid flow can induce structures and patterns
requiring modified theory [11]. Also, swimming faster makes the larva more visible
to its predators, a further (but quantifiable) blurring of princesses and monsters.

Evolution adds a further, and potentially large, twist. Typically only <1 % of
hatched larvae survive the early juvenile stage; the average fish is thoroughly dead.
“Optimality” therefore must be firmly rooted in the luckiest tails of the probability
distributions [24]. The mathematical frameworks exist to allow this to be quanti-
fied [9]; all that is needed is a careful definition of the ecological and evolutionary
problem, and intelligence and ambition in framing the research within the context
of sustainable fisheries management.

Problem 2: What Is the Difference Between a Plant
and a Fish?(Complications 2, 4, and 5)

Plants are important; we eat them, and through photosynthesis they are fundamen-
tal to terrestrial life as we know it. The diversity of plant species, and the vari-
ety of elaborate chemicals they produce, is staggering [13]; if plants need simply
to absorb nutrients and eat sunshine, then why is there not some dominant super-
species? Thinking more practically, agricultural use of artificial fertilisers is thought
to be necessary for sustained food production, but if applied inefficiently this is fi-
nancially expensive and incurs severe detrimental downstream ecological costs. A
better knowledge of how plants search for, and exploit, nutrient patches is there-
fore of both practical and intellectual value. There are obvious similarities with fish:
a “predator” (root tip) with only local knowledge moves through a complex and
possibly dynamic environment seeking “prey” (patches of nutrient). However, the
differences cannot be ignored; a plant has many roots and can preferentially prolif-
erate root growth towards regions of higher nutrient concentration, but unlike most
animals it cannot completely relocate itself in response to threat from competitors,
consumers, or the environment.

A simple model by Croft et al. [10] imagines a plant growing in one-dimensional
soil, whose growth is enhanced by finding discrete patches of nutrient, and which
can “choose” to proliferate roots preferentially to the left or right depending on the
location of the most recently acquired patch. For an isolated plant in a uniformly
random environment all proliferation strategies are equal. In a patchy environment
it becomes strongly favourable to proliferate in the direction of the most recently
acquired patch. None of this is surprising. However, when a population of identical
plants competes for resources, things change. Even in a uniformly random environ-
ment there is an evolutionary pressure to proliferate towards the most recent patch.
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This is because, although the environment contains no information per se, the fact
that a patch has been acquired provides implicit information that a competitor has
not already visited this location. In a patchy world the evolutionary pressure for
directed proliferation becomes stronger.

The results in Croft et al. are mainly simulation-driven, and therefore rather nar-
row in scope and limited by the available computational power. Initial analytical
understanding of the foraging problems faced by roots may be possible by analogy
with the fish foraging results above. Perhaps more exciting is the opportunity to ex-
pand the remit to encompass more realism: The soil environment is complex. Mod-
els based on three spatial dimensions allow competitors to overlap. Alternatively,
network-based models of the soil environment may better capture the fractal-like
structure in which roots grow. Roots can also form symbioses with soil fungi (my-
corrhizas), allowing the plant to forage cheaply across a larger area at the cost of
providing carbon to the fungal partner. Finally, while agriculture may rely on mono-
cultures, the plants themselves have typically evolved within complex competitive
communities. How can knowledge of the strategies evolved in the wild be exploited
so as to more efficiently exploit managed crop systems? These issues are described
more thoroughly in [10], but a firm mathematical grasp remains elusive and the
practical problems are unsolved.

Problem 3: Safety in Numbers, or Presenting
a Bigger Target? (Complications 1, 2, 3, 4)

The notion of “safety in numbers” imagines princesses gathering in groups of size
n so that, even if the monster finds the group, each individual only has a probability
1/n of meeting a grisly demise. This verbal reasoning is used to explain many nat-
ural instances of prey aggregation, from minnows to gazelles. There are additional
factors such as the increased vigilance afforded by many sets of eyes, and complica-
tions such as individuals only visiting the periphery of the group when physiology
dictates [3].

These problems have received attention from ecologists and strong theory ex-
ists, but perhaps in directions somewhat orthogonal to the mathematics presented
in this volume. The simple question of when it pays for two princesses to collab-
orate in hiding is naturally game-theoretic, and will generalise naturally to larger
groups, complex environments, or group-induced changes in speed of movement or
detectability.

For small wet princesses, the turbulent encounter theories of Problem 1 allow
quantification of the processes involved. A group of fish larvae or zooplankton is
larger than an individual and therefore subject to faster random turbulent advection;
encounter rates with predators therefore increase. When grouping confers another
advantage, for example navigational precision via a “many wrongs” principle [7],
then further trade-offs emerge; depending on the levels of turbulence a group of lar-
vae reach safety of a coral reef more quickly, but present a larger target whilst doing
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so. In this case, chemical changes downstream may provide further quantifiable cues
for a searching predator.

The problems sketched above are all essentially self-contained; precise questions
can be formulated and solved in an abstract world where, even when complications
exist, they are known and quantifiable. They should, however, be viewed in the
context of the practical challenges motivating them. There is scope for search and
rendezvous theory to make a direct impact on issues such as habitat conservation,
sustainable management, or biodiversity and ecosystem-level function. Similar sets
of problems and opportunities exist at the cellular and microbiological scales, with
rapid technology-driven changes in volume and specificity of data. The challenges
will be both fascinating and important. The key ingredient is the determined, and
possibly slow and painful, communication across the disciplinary boundaries.
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