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   Preface: What’s Old Is New Again 
and Now It’s Red Hot   

 As the worldwide obesity pandemic expands, obesity has been associated with an 
increased risk of more and more cancer types. The original malignancies shown to 
be associated with obesity included esophageal adenocarcinoma, colon cancer, 
renal cell cancer, postmenopausal breast cancer, endometrial cancer, and advanced 
prostate cancer. More recently, obesity has been identifi ed as a risk factor for can-
cers of the pancreas, gall bladder, and ovary and several hematologic malignancies 
including leukemia, lymphomas, and myeloma, and the list continues to grow. 

 From a historical viewpoint, while early studies considered the possibility that 
infl ammation initiated the process of carcinogenesis, this was generally considered 
to be a local effect associated with tissue injury or chronic infection. With elucida-
tion of DNA structure and function and development of the concept of chemical 
carcinogens as mutagens, attention turned to identifi cation of activated oncogenes 
and deactivated tumor suppressor genes in the carcinogenic process. Separate stud-
ies demonstrated that infl ammation extended beyond the local site, mediated by 
cellular and humoral components. As noted above, independent epidemiologic 
studies confi rmed an association of obesity with cancer incidence, morbidity, and 
mortality. Studies to identify the mediators of these processes focused on the effects 
of obesity on growth factors and hormones and the mechanisms of carcinogenesis 
they commonly affect. More recently, it has become apparent that adipose tissue, in 
addition to serving as a fat storage depot, is an intensely active metabolic organ. In 
obesity, low-grade chronic adipose tissue infl ammation occurs, resulting in multiple 
cellular and humoral infl ammatory factors. Seminal studies showing that systemic 
metabolic disorders, such as insulin resistance, could be mediated, in part, by 
infl ammatory cytokines, synthesized and secreted by adipose tissue, resulted in a 
whole new approach to understanding and attempting to control obesity-associated 
comorbidities. Moreover, elucidation of the prostaglandin pathway and its role in 
infl ammation, as well as the observations that anti-infl ammatory agents, especially 
the nonsteroidal anti-infl ammatory drugs (NSAIDs), could prevent the development 
and progression of several forms of neoplasia, provided a major stimulus to the 
fi eld. A major goal of ongoing research is to inhibit infl ammation as an approach to 
cancer prevention and control. 
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 The above brief description traces the complex transdisciplinary evolution of this 
area of research endeavor. Not only does it illustrate the impact of sometimes diver-
gent disciplines on the evolution of a concept, but it also indicates the potential 
value of moving forward in this fi eld with a transdisciplinary approach. Accordingly, 
the goal of this volume of Energy Balance and Cancer, volume 7 in the series, is to 
highlight the cutting-edge transdisciplinary science linking obesity, infl ammation, 
and cancer. We are grateful to all the authors listed below for their contributions to 
this volume and look forward to their collective impact in further advancing this 
rapidly developing fi eld. 

 This volume fi rst provides information on infl ammation as an important link 
between obesity and insulin resistance, which is in itself linked to promotion of 
cancer through hyperinsulinemia. The volume then covers some of the most impor-
tant mechanisms by which obesity leads to infl ammation, including the novel 
infl ammasome concept, alterations in chromatin structure, circulating infl ammatory 
factors, unique cellular interactions between adipocytes and macrophages, and the 
direct link of dietary fat to infl ammation and cancer. Subsequently addressed in this 
volume are a number of target organs and interventional strategies for disrupting 
infl ammation and their effects on cancer prevention and control. 

 In Chap.   1    , Lesley G. Ellies, Andrew Johnson, and Jerrold M. Olefsky (University 
of California, San Diego) describe the mechanisms by which obesity stimulates 
low- grade infl ammation leading to insulin resistance. Chapter   2    , written by Tuo 
Deng, Christopher J. Lyon, Nan Zhang, Helen Y. Wang, Rong-fu Wang, and Willa 
A. Hsueh (Weill Cornell Medical College) and Jun Cui (Sun Yat-sen University), 
reviews the basis for understanding the emerging concept of the infl ammasome and 
its mechanisms of activation and role in obesity. Gerald V. Denis and Deborah J. 
Bowen (Boston University School of Public Health) describe in Chap.   3     chromatin-
based, transcription co-regulatory mechanisms that may link obesity, infl ammation, 
and cancer. Carey Nien-Kai Lumeng (University of Michigan Medical School), in 
Chap.   4    , describes the important role that adipose tissue macrophages play in breast 
and ovarian cancer. In Chap.   5    , Stephanie K. Doerner and Nathan A. Berger (Case 
Western Reserve University School of Medicine) discuss the impact of different 
dietary fatty acids on promoting or suppressing colorectal cancer. In Chap.   6    , 
Anamay Sharma, Ahmed Elebiary, Sonia Chowdhury, and Navtej Buttar (Mayo 
Clinic) describe the contribution of gastric refl ux to infl ammation in Barrett’s 
esophagus and esophageal adenocarcinoma and potential interventions. In Chap.   7    , 
Stephanie K. Doerner (Case Western Reserve University School of Medicine) and 
Jason D. Heaney (Baylor College of Medicine) describe the role of obesity-induced 
intestinal infl ammation on colorectal cancer incidence. In Chap.   8    , Neil M. Iyengar, 
Patrick G. Morris and Clifford A. Hudis (Memorial Sloan-Kettering Cancer Center) 
and Andrew J. Dannenberg (Weill Cornell Medical College) review the emerging 
evidence supporting the contribution of adipose tissue and chronic breast infl amma-
tion to the development of breast cancer. In Chap.   9    , the relation of obesity, infl am-
mation, and hepatocellular cancer is discussed by Naim Alkhouri and Arthur 
McCullough (Cleveland Clinic Lerner College of Medicine at Case Western Reserve 
University), and in Chap.   10    , Jorge Blando, Achinto Saha, Kaoru Kiguchi, and John 
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DiGiovanni (University of Texas at Austin) describes the role of obesity and infl am-
mation in prostate cancer. Louise R. Howe (Weill Cornell Medical College), in 
Chap.   11    , describes the central role of cyclooxygenase-derived prostaglandins as 
potential mediators of obesity- related cancer and outlines how targeting this path-
way may be protective against obesity-associated carcinogenesis. In Chap.   12    , 
Harmony F. Turk, Jennifer M. Monk, Tim Y. Hou, and Robert S. Chapkin (Texas 
A&M University) discuss mechanisms through which n-3 polyunsaturated fatty 
acids interfere with the infl ammatory process to suppress carcinogenesis, and in 
Chap.   13    , Gary Stoner and Li-Shu Wang (Medical College of Wisconsin) describe 
key mechanisms by which naturally occurring dietary compounds reduce the harm-
ful effects of infl ammation and the risk for cancer development. In Chap.   14    , 
Stephen D. Hursting, Nikki A. Ford, Sarah M. Dunlap, and Laura M. Lashinger 
(University of Texas at Austin) and Marcie J. Hursting (Clinical Science Consulting) 
describe the modifi cation of infl ammatory pathways and their impact on cancer by 
diet and caloric restriction. Ahmad Salameh and Mikhail G. Kolonin, in Chap.   15    , 
describe an innovative approach to adipose tissue control by vascular targeting. In 
Chap.   16    , Michael Gleeson (Loughborough University) describes the anti-infl am-
matory effects of exercise. 

 Overall, this volume on Obesity, Infl ammation, and Cancer provides an up-to-
date status report on the latest developments and state-of-the-art understanding of 
the role of infl ammation in mediating the effects of obesity on cancer and describes 
possible strategies for targeting infl ammation as an approach to cancer prevention 
and control. The book should be useful for students, researchers, and clinicians, 
especially those interested in the role of infl ammation and its impact on cancer. It is 
our expectation that this volume will both stimulate research on the role of infl am-
mation in cancer etiology and progression and lead to new approaches and clinical 
trials for cancer prevention and control by targeting obesity-related infl ammation. 

 New York, NY, USA Andrew J. Dannenberg 
 Cleveland, OH, USA Nathan A. Berger  
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    Abstract     Obesity is a pressing public health concern as it leads to a collection of 
abnormalities often termed the metabolic syndrome. Molecular studies are reveal-
ing novel pathways by which obesity-associated hormonal, nutrient, and tissue 
 factors can stimulate the chronic low-grade infl ammation that leads to insulin resis-
tance. Signaling interactions between proinfl ammatory immune cells, particularly 
macrophages and lymphocytes, and insulin target cells in the liver and adipose tis-
sue are key to this process and provide potential opportunities for the development 
of targeted therapies to improve insulin sensitivity and correct energy imbalance.  

  Abbreviations 

   ATM    Adipose tissue macrophage   
  DIO    Diet-induced obesity   
  FFA    Free fatty acid   
  GPCR    G protein-coupled receptor   
  HFD    High-fat diet   
  IL    Interleukin   
  SAT    Subcutaneous adipose tissue   
  SFA    Saturated fatty acid   

    Chapter 1   
 Obesity, Infl ammation, and Insulin Resistance 
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  TNF    Tumor necrosis factor   
  VAT    Visceral adipose tissue   
  WAT    White adipose tissue   

1.1           Introduction 

 Overnutrition leads to energy imbalance and obesity, a precursor to the metabolic 
syndrome and type 2 diabetes, with increased risks of cardiovascular disease and 
certain types of cancer, resulting in a serious global health issue [ 1 – 3 ]. Traits of 
effi cient nutrient storage and responsive immune cell activation that were advanta-
geous during human evolution have become detrimental to human health in times of 
food excess [ 4 ]. In combination with the reduced physical activity and increasingly 
sedentary lifestyles associated with improved technology, the sequelae associated 
with obesity are rapidly increasing. More than one third of adults and almost 17 % 
of youths in the United States are obese as defi ned by having a body mass index 
(BMI, kg/m 2 ) of at least 30 [ 5 ]. Moreover, the most recent data from the National 
Health and Nutrition Examination Survey indicate that 68.3 % of individuals stud-
ied were overweight, having a BMI of at least 25 [ 4 ]. Thus, there is a pressing need 
to understand the molecular mechanisms underpinning obesity so that novel thera-
pies can be developed. 

 Excess nutrients lead to the expansion of adipose tissues throughout the body 
and it is not surprising that adipocytes play a major role in obesity-induced insulin 
resistance [ 6 ,  7 ]. The discovery that low-grade, chronic infl ammation in adipose 
tissue activated proinfl ammatory pathways critical for the development of insulin 
resistance has had a major impact on our understanding of the pathophysiology of 
obesity and type 2 diabetes mellitus. Hotamisligil et al. [ 8 ] provided the fi rst evi-
dence that proinfl ammatory tumor necrosis factor-α (TNFα) produced by adipose 
tissue could impair insulin signaling and that blocking TNFα activity ameliorated 
insulin resistance. Another milestone in this fi eld was the work done by Xu et al. 
and Weisberg et al. [ 9 ,  10 ], who showed that in obesity large numbers of proinfl am-
matory adipose tissue macrophages (ATMs) accumulate in various fat depots. The 
location of adipose tissue is also important in the development of insulin resistance. 
Adipose tissue that is deposited centrally, visceral adipose tissue (VAT), is more 
metabolically detrimental than subcutaneous adipose tissue (SAT) [ 11 ], and central 
obesity is more strongly associated with an increased risk of insulin resistance, the 
metabolic syndrome, and cardiovascular disease than BMI alone [ 12 ,  13 ]. Gender 
differences in fat distribution can also affect the incidence of obesity-associated 
diseases as women have relatively more SAT than VAT compared with men [ 14 ]. 
Men have approximately twice as much VAT as women and this correlates with a 
higher prevalence of the metabolic syndrome [ 15 ]. Estrogen may be a key regulator 
in mediating these effects as postmenopausal women undergo a redistribution of 
adipose tissue with increased amounts of VAT and an increased risk of obesity- 
related metabolic disorders [ 14 ]. Interestingly, epidemiologic studies suggest that 

L.G. Ellies et al.
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obesity in premenopausal women is protective against the development of breast 
cancer, while obesity in postmenopausal women increases the risk for the disease 
[ 16 ]. Regardless of menopausal status, both obesity and type 2 diabetes are associ-
ated with breast cancers that are more aggressive at the time of diagnosis and have 
a poorer prognosis [ 17 ,  18 ].  

1.2     Insulin Signaling 

 Insulin regulates the metabolism of glucose and lipids and insulin signaling is a 
complex cascade of events downstream of the insulin receptor (IR). There are two 
main pathways: the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, which 
mediates glucose uptake and suppresses gluconeogenesis, and the Ras-extracellular 
signal-related kinase (ERK) pathway, which mediates gene expression and also 
interacts with the PI3K-AKT pathway to control cell growth and proliferation [ 19 ]. 
Insulin receptor substrates (IRSs) are key mediators of insulin signaling and include 
four distinct family members, IRS-1–4. IRS-1 and IRS-2 are widely expressed in 
mammalian tissues, while IRS-3 and IRS-4 have a more restricted distribution. 
Tyrosine phosphorylation of IRS by the IR generates binding sites for Src homology 
2 (SH2) domain proteins, including the p85 regulatory unit of PI3K. The IRS- 
dependent activation of PI3K is critical for insulin-mediated regulation of metabo-
lism as it leads to the activation of the serine/threonine kinase AKT. AKT 
phosphorylates key regulatory proteins in multiple tissues, leading to increased glu-
cose transport in muscle and adipocytes, decreased gluconeogenesis and glycoge-
nolysis in hepatocytes, and anti-lipolysis in adipocytes. Shc is another IR substrate, 
which subsequently engages the Grb21-Sos1-Ras pathway. Although IRS and Shc 
proteins are the major substrates of the IR and IGFR tyrosine kinases, other sub-
strates such as Grb2-associated binder (GAB) and downstream of kinases (DOKs) 
can act as tissue- or pathway-specifi c alternatives to IRS [ 19 ]. 

 Insulin resistance can arise when insulin signaling is restricted at any point in 
this signaling cascade. In infl ammation, immune cells release increased levels of 
obesity-associated infl ammatory cytokines which activate serine kinases such as 
c-Jun amino-terminal kinase (JNK) [ 20 ], inhibitor of nuclear factor kappa-B 
kinase subunit β (IKKβ) [ 21 ], and protein kinase Cθ (PKCθ) [ 22 ], resulting in 
serine  phosphorylation of IRS-1. This impairs tyrosine phosphorylation and acti-
vation of IRS- 1, reducing insulin receptor-mediated signaling and leading to 
insulin resistance. 

 The importance of immune cells in the etiology of metabolic disease has led to 
the emergence of a new fi eld termed immunometabolism [ 23 ]. While the precise 
sequence of physiological events initiating infl ammation in obesity remains poorly 
understood, as with other chronic infl ammatory conditions, there is a failure in the 
control mechanisms that rein in overactive immune responses. This review will 
focus on the immune cells regulating early events in obesity-mediated infl ammation 
and how nutrients and infl ammation-related proteins may impact insulin 
sensitivity.  

1 Obesity, Infl ammation, and Insulin Resistance
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1.3     Immune Cells 

 The infl ammatory response that occurs during obesity involves multiple immune 
cell types. Macrophages, neutrophils, CD4 +  and CD8 +  T cells, B cells, natural killer 
T (NKT) cells, eosinophils, and mast cells can all be targeted in ways which either 
positively or negatively regulate infl ammation [ 24 ]. Thus, the immune response 
should be considered as a multifaceted, interactive process whereby many cell pop-
ulations are inter-reliant (Fig.  1.1 ).

1.3.1       Macrophages 

 Tissue macrophage populations encompass a heterogeneous group of cells with 
diverse phenotypes and functions. Canonically, “classically activated” M1 macro-
phages, expressing the integrin CD11c, are proinfl ammatory, whereas “alternatively 
activated” M2 macrophages, which do not express CD11c, are anti-infl ammatory 
[ 25 ]. However, such clear distinction into M1 and M2 phenotypes is not always 
apparent in vivo, and it is likely that a continuum exists between pro- and anti- 
infl ammatory states [ 25 ]. Obesity is characterized by a substantial accumulation of 
CD11c +  macrophages in the VAT and liver and an overall imbalance towards a more 
proinfl ammatory phenotype [ 9 ,  10 ,  26 ,  27 ]. 

 The central role of macrophages in mediating obesity-associated insulin resis-
tance is best demonstrated by the numerous genetic studies targeting macrophages 
and macrophage signaling which ameliorate or exacerbate the insulin-resistant state 
[ 28 ]. For example, the depletion of proinfl ammatory CD11c +  macrophages [ 29 ] or 
the macrophage-intrinsic deletion of the infl ammatory mediators JNK1 [ 30 ] or 
IKK-β [ 31 ] improves insulin sensitivity, whereas increasing infl ammatory macro-
phage polarization via cell-intrinsic deletion of PPARγ [ 32 ] renders mice more 
insulin resistant [ 32 ]. 

 In obesity, adipocytes and endothelial cells secrete chemokines, such as MCP-I 
and leukotriene B4 (LTB 

4
 ), that attract monocytes into the adipose tissue and liver 

where they differentiate into macrophages [ 33 – 36 ]. Once infl ammation is estab-
lished, the production of chemokines and cytokines by infi ltrating immune cells 
including ATMs provides a feed-forward mechanism exacerbating macrophage 
recruitment (Fig.  1.1 ). MCP-1 mediates recruitment by binding to its cognate recep-
tor CCR2 [ 37 ,  38 ]. In diet-induced obesity (DIO) mice,  Ccr2  defi ciency reduced 
ATM accumulation, the infl ammatory profi le of adipose tissue, and ultimately 
improved systemic glucose homeostasis and insulin sensitivity [ 33 ]. In the same 
study, short-term treatment of obese mice with a Ccr2 antagonist also reduced ATM 
content and improved insulin sensitivity. However, these results have not been con-
sistently observed in MCP-I or  Ccr2  knockout (KO) mice [ 39 ,  40 ] suggesting that 
there is a degree of redundancy in chemoattractant pathways in vivo. 

 Leukotriene B4 (LTB4) is a proinfl ammatory lipid mediator generated from 
 arachidonic acid that promotes chemotaxis [ 41 ,  42 ]. Its potent biological actions are 
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mediated primarily through binding to its G protein-coupled receptor (GPCR), 
BLT1 [ 43 ]. Spite et al. [ 35 ] showed that DIO increases the circulating levels of 
BLT1 +  monocytes and genetic ablation of BLT1 reduces ATM accumulation, the 
expression of proinfl ammatory cytokines and chemokines and improves insulin 
sensitivity [ 35 ]. Thus, the LTB 

4
 -BLT1 pathway represents a second chemotactic 

axis promoting macrophage infi ltration to adipose tissue and insulin resistance. 
 Recently, three GPCRs, GPR120, GPR105, and GPR21, have also been impli-

cated in the regulation of macrophage chemotaxis and insulin sensitivity [ 44 – 47 ]. 
The genetic deletion of GPR105 and GPR21 reduces macrophage chemotaxis to 
liver or adipose tissue and thus improves insulin sensitivity in DIO mice [ 44 ,  46 ,  47 ]. 
The ligand for GPR105 is UDP-glucose, released from injured hepatocytes, and 
plasma levels of UDP-glucose are elevated in obese mice [ 44 ]. Therefore, this is 
likely to represent a chemotactic pathway whereby macrophages are recruited to 
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  Fig. 1.1    Initiation of adipose tissue infl ammation in obesity. In the lean state Th2 T cells, Tregs 
and eosinophils secrete cytokines such as IL-4, IL-10 and IL-13 that maintain resident macro-
phages in the M2 state. Early in obesity, there is an infl ux of neutrophils responding to chemotactic 
factors released by stressed adipocytes. Neutrophils release neutrophil elastase that promotes pro-
infl ammatory cytokine release from CD8 +  T cells and Th1 cells that begin to accumulate. This 
initiates the recruitment of proinfl ammatory macrophages that are polarized towards the M1 state. 
In established obesity, M1 macrophages release cyokines that act in a paracrine fashion to maintain 
the abnormal level of infl ammation. Hypoxia and adipocyte cell death fuels the cycle of cytokine 
and chemokine production that results in a loss of Th2 and Treg cells, while increasing CD8 +  T 
cells, B cells and mast cells. Immune cells congregate in regions of adipocyte lysis forming crown- 
like structures (CLSs). Cytokines can act locally to cause insulin resistance and can be released 
into the circulation to promote infl ammation in distant tissues       
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sites of liver damage. In contrast, the ligand for GPR21 at present remains unknown. 
GPR21 KO macrophages are broadly compromised in their cytoskeletal response to 
infl ammatory stimuli, including MCP-1, suggesting a more general defect in their 
capacity to migrate [ 46 ]. GPR120 is a receptor for anti-infl ammatory, omega-3 fatty 
acids. Omega-3 fatty acids inhibit macrophage chemotaxis, ameliorate adipose 
 tissue infl ammation, and enhance insulin sensitivity in a GPR120-dependent man-
ner indicating that this is a potent anti-infl ammatory pathway in vivo [ 45 ,  48 ]. 
Interestingly, a loss of function polymorphism in the human GPR120 gene has 
recently been associated with obesity emphasizing that this pathway has transla-
tional and possibly therapeutic signifi cance [ 48 ].  

1.3.2     Neutrophils 

 Among the fi rst cells to arrive at sites of infl ammation are neutrophils (Fig.  1.1 ). 
Neutrophil deployment is normally tightly regulated since they carry potent cargoes 
of proteases used to dispose of harmful bacteria. Within 3–7 days of initiating a 
high-fat diet (HFD), an increase in neutrophil recruitment to adipose tissue occurs 
[ 49 ], suggesting that neutrophils could play a role in initiating the infl ammatory 
cascade in response to excess nutrients. Examination of adipose tissue neutrophils 
(ATNs) over a longer period of HFD showed that ATN numbers remained elevated 
for up to 90 days [ 50 ]. Expression of neutrophil elastase (NE), a potent serine pro-
tease known to have proinfl ammatory effects [ 51 ], was also higher in the obese 
mice. Pharmacologic or genetic inhibition of the NE improved glucose tolerance of 
obese mice, while administration of recombinant mouse NE to normal chow-fed 
mice caused glucose intolerance [ 50 ]. In concordance with previous studies demon-
strating degradation of IRS by NE in tumor cells [ 52 ,  53 ], NE led to decreased IRS1 
levels in mouse and human hepatocytes with subsequent impaired insulin signaling, 
increased hepatic glucose production, and insulin resistance, indicating that 
 neutrophils may play a previously unsuspected role in the initiation of obesity-
induced insulin resistance [ 50 ].  

1.3.3     CD4 +  T Cells: T-Helper and T-Regulatory Cell Subsets 

 CD4 +  T cells can be separated into distinct subsets with diverse phenotypes and 
functions referred to as T-helper (Th1, Th2, and Th17) cells and T-regulatory (Treg) 
cells, and each of these subsets is present in VAT [ 24 ]. Treg and Th2 cells predomi-
nate in lean VAT where they play a role in preventing the onset of infl ammation 
[ 54 ,  55 ]. Interestingly, the proportion of Treg cells within the VAT (~40 %) is higher 
than in any other tissue in the body other than the colon indicating a strong require-
ment for anti-infl ammatory strategies in this tissue [ 54 ]. The preferential accumula-
tion of Treg cells in lean VAT is mediated by expression of the transcription factor 
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PPARγ [ 56 ]. Treg cell-specifi c PPARγ KO mice have reduced Treg cell numbers in 
VAT and subsequently display enhanced insulin resistance on an HFD [ 56 ]. 
Conversely, treatment of mice with the PPARγ agonist, pioglitazone, enhances 
Treg cell numbers in obese adipose tissue, and this is part of the mechanism 
by which  pioglitazone increases insulin sensitivity [ 56 ]. The precise mechanisms by 
which Treg and Th2 cells act to limit infl ammation in VAT are unknown; however, 
high expression of the anti-infl ammatory cytokine IL-10, especially by Treg cells 
[ 54 ], together with the canonical Th2 cytokines, IL-4 and IL-13, could polarize 
macrophages towards a less infl ammatory state. In contrast, obese adipose tissue is 
characterized by a specifi c accumulation of Th1 cells defi ned by their production of 
proinfl ammatory cytokines, such as IFN-γ and unchanged or declining numbers of 
Th2, Th17, and Treg cells [ 54 ,  55 ,  57 ]. The accumulation of Th1 cells is subsequent 
to macrophage and neutrophil infi ltration (occurring between 4 and 20 weeks after 
HFD feeding in mice), and the relatively narrow T cell receptor repertoire of these 
cells suggests a requirement for antigen presentation [ 55 ]. A reversal of this Th1 
cell dominance either by anti-CD3 antibody treatment [ 55 ] or by pioglitazone-
mediated expansion of Treg cells [ 56 ] increases insulin sensitivity, and so Th1 cells 
are thought to contribute to the insulin-resistant state.  

1.3.4     CD8 +  T Cells 

 CD8 +  T cells also accumulate in obese adipose tissue and this begins within 2 weeks 
of HFD feeding and peaks approximately 9 weeks later [ 58 ]. Depletion of CD8 +  T 
cells either prophylactically or after the onset of infl ammation improves insulin 
sensitivity indicating that CD8 +  T cells contribute to the insulin-resistant state [ 58 ]. 
CD8 +  T cells act to enhance infl ammatory macrophage recruitment and differentia-
tion emphasizing the integration of different immune cell pathways during obesity.  

1.3.5     B Cells 

 B cells are recruited to adipose tissues shortly after initiation of an HFD [ 59 ], and an 
absence of B cells protects mice from the development of insulin resistance [ 60 ]. 
Transfer of IgG antibodies from obese WT mice to B cell-defi cient mice enhances 
TNFα production, proinfl ammatory macrophage polarization and decreases glucose 
tolerance [ 60 ]. Therefore, antibody production is one mechanism by which B cells pro-
mote insulin resistance in DIO mice. In human studies, islet cell autoantibodies have 
been identifi ed in ~10 % of type 2 diabetes patients, and the levels of these antibodies 
correlate with the need for insulin therapy [ 61 ]. Furthermore, autoantibodies against 
glial fi brillary acid protein (GFAP), one of the antigens most strongly associated with 
insulin resistance, occur in approximately 30 % of people with type 2 diabetes [ 62 ]. 
Interestingly, B cells defi cient in the antigen presentation, major histocompatibility 
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molecules (MHC-I and MHC-II), do not promote insulin resistance, indicating that an 
interaction with T cells is a feature of B cell-mediated insulin resistance [ 60 ].  

1.3.6     Natural Killer T Cells 

 NKT cells recognize glycolipid antigens and are present in signifi cant proportions 
in lean VAT and the liver, although their numbers are depleted after the onset of 
obesity [ 63 – 66 ]. A similar depletion is also observed in obese humans [ 65 ]. Studies 
in mice have shown little or no effect of NKT cell defi ciency on the development of 
insulin resistance on an HFD [ 64 – 66 ]. However, a recent study found that NKT cell- 
defi cient mice display reduced glucose tolerance in lean settings suggesting that 
NKT cells might be protective during homeostasis [ 66 ]. Furthermore, activation of 
NKT cells with the model ligand, α-Galactosylceramide, can increase glucose toler-
ance in obese mice by promoting anti-infl ammatory macrophage polarization [ 65 ]. 
However, previous studies in younger NKT cell-defi cient mice did not observe the 
same protective effect [ 63 ], and therefore, the role for NKT cells in regulating insu-
lin sensitivity remains to be clarifi ed.  

1.3.7     Eosinophils 

 Eosinophils migrate into adipose tissue by an integrin-dependent process and pro-
mote M2 macrophage polarization by secretion of IL-4- or IL-13. Eosinophil- 
defi cient mice fed with an HFD develop increased body fat, increased infl ammation, 
impaired glucose tolerance, and insulin resistance, suggesting a role for eosinophils 
in protecting from DIO [ 67 ]. Interestingly, infection by parasitic helminth worms 
induces an adipose eosinophilia that enhances glucose tolerance, suggesting that 
targeting eosinophils to increase their numbers or enhance their function could be a 
useful therapeutic strategy to increase insulin sensitivity [ 67 ].  

1.3.8     Mast Cells 

 Mast cells are typically associated with allergic hyperresponsiveness [ 68 ]. Increased 
numbers of mast cells are found in obese adipose tissues of mice and humans com-
pared with their lean counterparts [ 69 – 71 ], and this is accompanied by increased 
circulating levels of the mast cell protease tryptase [ 69 ]. Genetic depletion of mast 
cells or pharmacologic inhibition of mast cell function reduces body weight gain; 
reduces the levels of infl ammatory cytokines, chemokines, and proteases in serum 
and adipose tissue; increases energy expenditure; and improves glucose homeostasis 
[ 69 ]. Therefore, mast cells function to promote obesity-associated metabolic changes.   
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1.4     Signaling Pathways Linking Infl ammation 
and Insulin Resistance 

1.4.1     Cytokine Signaling 

 The infl ammatory state of obese adipose tissue leads to increased local cytokine 
secretion, which directly causes decreased insulin sensitivity. While a number of 
immune cell types can produce these factors, the macrophage is the major cell type 
behind the release of proinfl ammatory cytokines. TNFα is the most well studied and 
stimulates serine kinases including IKK [ 72 ], JNK [ 20 ], S6 kinase (S6K) [ 73 ,  74 ], 
mammalian target of rapamycin (mTOR) [ 74 ], and double-stranded RNA-dependent 
protein kinase (PKR) [ 75 ] that can phosphorylate IRS1 on serine residues attenuat-
ing downstream insulin signaling (Fig.  1.2 ).

   A variety of interleukins are released during infl ammatory responses, and the 
two most prominent proinfl ammatory interleukins upregulated in obesity are IL-1β 
and IL-6 [ 76 ,  77 ]. IL-1β protein levels are increased in mice on HFD and  Il1r1  KO 
mice are protected from adipose tissue infl ammation [ 78 ].  

1.4.2     Lipid Signaling 

 The association between increased circulating free fatty acid (FFA) levels and insu-
lin resistance is well known [ 79 ]. In the context of obesity, ATMs and other immune 
cells are exposed to high local concentrations of FFAs released by adipocyte lipoly-
sis. The effects of saturated fatty acids (SFAs) are mediated in part through activa-
tion of the pattern recognition receptors (PRRs) Toll-like receptor 4 (Tlr4) and/or 
Tlr2 [ 26 ,  80 ,  81 ]. Tlrs normally recognize pathogen-associated molecular patterns 
(PAMPs) such as bacterial lipopolysaccharides (LPS). SFA-mediated proinfl amma-
tory signaling is attenuated in adipocytes defi cient in Tlr4 [ 82 ] and  Tlr2  or  Tlr4  KO 
mice are partially protected against HFD-induced insulin resistance [ 82 – 85 ]. 

 Early binding studies indicated that SFAs do not interact directly with Tlr4 [ 86 ]. 
Recent evidence suggests that fetuin A (FetA), a liver-derived circulating glycopro-
tein, serves as an adaptor molecule presenting FFAs to Tlr4 and activating the Tlr4 
infl ammatory pathway [ 87 ] (Fig.  1.2 ).  FetA  knockdown in insulin-resistant DIO 
mice resulted in reduced Tlr4-mediated infl ammatory signaling in adipose tissue, 
whereas administration of FetA restored infl ammatory signaling and induced insu-
lin resistance. In addition, fetuin-defi cient mice are protected against aging- 
associated obesity and insulin resistance [ 88 ]. FetA levels are elevated in type 2 
diabetes and could therefore serve as a biomarker for the infl ammatory state, pro-
viding an attractive target to improve glucose homeostasis without affecting immune 
function [ 89 ]. 

 SFAs can also activate the Tlr4 pathway by inducing dimerization and recruit-
ment of Tlr4 into lipid rafts, thereby enhancing its association with adaptor 
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molecules TRIF and MyD88 [ 90 ]. This process is dependent on the production of 
reactive oxygen species (ROS) and leads to activation of downstream signaling and 
increased target gene expression. Other studies have shown that SFAs can alter the 
membrane distribution of c-Src, partitioning it into lipid rafts where it becomes 
activated [ 91 ]. This leads to signaling via JNK and the transcription of proinfl am-
matory genes. SFAs such as palmitate activate a specialized infl ammasome activa-
tion pathway in which SFAs inhibit AMP-activated protein kinase (AMPK) leading 
to defective autophagy, which then activates the infl ammasome, resulting in IL-1β 
cleavage and release [ 92 ]. IL-1β stimulates TNFα production and the lack of NLRP3 
and its adaptor protein, apoptotic speck protein containing a caspase recruitment 
domain (ASC), prevents HFD-induced infl ammation. 

 In addition to stimulating infl ammatory pathways, metabolites of SFAs, such as 
ceramide, can directly inhibit insulin signaling by inhibiting Akt. Virtually all stress 
stimuli increase rates of ceramide synthesis, and numerous studies have 
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  Fig. 1.2    Mechanism for proinfl ammatory saturated fatty acid (SFA) and anti-infl ammatory 
omega-3 fatty acid (ω3 FA) activity. ( a ) Circulating FetA produced by the liver, functions as an 
adaptor between SFAs and toll-like receptor 4 (TLR4) signaling. TLR4 activated by SFAs and 
tumor necrosis factor receptor (TNFR) activated by TNF-α interact with transforming growth fac-
tor β (TGF-β) activated kinase 1 (TAK1) with TAK1 binding protein 1(TAB1), initiating a proin-
fl ammatory signaling cascade by activating nuclear factor kappa B kinase (NF-κΒ) and c-Jun 
N-terminal kinase (JNK). ( b ) Binding of ω3 FAs to GPR120 activates and internalizes the receptor 
which then binds to β-arrestin 2 (β-arr2) and sequesters TAB1, inhibiting infl ammation       
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demonstrated a strong association between intracellular ceramide levels and the 
development of insulin resistance [ 93 – 96 ]. Recent studies have revealed an IKKβ-
dependent pathway whereby Tpl2 or Tnf2 induce expression of the genes driving 
ceramide biosynthesis [ 93 ], indicating an additional mechanism by which infl am-
matory cytokines can act to inhibit insulin signaling [ 93 ,  97 ]. Thus, in addition to 
acting as ceramide precursors, SFAs stimulate ceramide biosynthesis, amplifying 
the effects of ceramide on insulin signaling [ 98 ].  

1.4.3     ER Stress 

 ER stress activates the unfolded protein response (UPR) to restore ER homeostasis 
by inhibiting protein synthesis, increasing the degradation of proteins from the ER, 
and increasing the level of chaperone proteins to assist in protein folding [ 99 ]. If 
these adaptive mechanisms are insuffi cient to restore ER homeostasis, the cell 
undergoes programmed cell death [ 100 ]. Downstream signaling through regulators 
of the UPR, PKR-like eukaryotic initiation factor 2α kinase (PERK), inositol- 
requiring enzyme 1 (IRE-1), and activating transcription factor 6 (ATF-6) can acti-
vate both JNK and IKK, leading to the expression of infl ammatory cytokines [ 101 , 
 102 ]. In addition to protein folding, ER stress response genes play an important role 
in lipid metabolism as indicated by abnormal lipid processing in the absence of 
these genes [ 103 – 105 ]. Numerous studies have shown increased ER stress in fatty 
liver tissues from obese mice. 

 ER chaperones and folding enzymes such as glucose-regulated protein (GRP) 
78, GRP94, protein disulphide isomerase (PDI), calnexin (CNX), and calreticulin 
(CRT) assist in protein folding and prevent aggregation of unfolded or misfolded 
proteins [ 106 ]. Treating obese or diabetic mice with chemical chaperones [ 107 ] or 
overexpressing GRP78 [ 108 ] restores systemic insulin sensitivity and improves 
hepatic steatosis. Mice defi cient in X-box-binding protein-1 (XBP-1), a transcrip-
tion factor, have an aggravated UPR response, develop insulin resistance and glu-
cose intolerance [ 109 ], suggesting that ER stress could be a factor in initiating 
metabolic infl ammation.  

1.4.4     Hypoxia 

 In vivo measurements demonstrate that fat depots in obese animal and human 
 subjects contain distinct regions of microvascularity and exist in a hypoxic state 
[ 110 ,  111 ]. Hypoxic adipose tissue shows a substantial induction of hypoxia- 
inducible factor (HIF). Evidence suggests that HIF-1α can activate infl ammatory 
pathways and Krishnan et al. [ 112 ] have shown in mice that Hif-1α in VAT is critical 
for development of glucose intolerance and insulin resistance in HFD mice.   
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1.5     Anti-infl ammatory Therapies 

 Given the important role of chronic tissue infl ammation in the etiology of insulin 
resistance, anti-infl ammatory therapy may prove clinically effi cacious in type 2 dia-
betes. Promising studies have already been reported using high-dose salsalate, an 
inhibitor of the nuclear factor kappa-B kinase (NFκΒ) pathway in insulin-resistant 
type 2 diabetic patients [ 113 ,  114 ]. Treatment with this agent leads to an improve-
ment in insulin sensitivity and a modest decrease in hemoglobin A1c levels. Given 
the modest nature of these effects, more effi cacious treatments will be needed in the 
future, but these studies provide a potential proof of concept that anti-infl ammatory 
therapy can be a benefi cial antidiabetic approach. 

 TNFα plays a role in insulin resistance [ 115 – 117 ] and TNFα blockade can 
increase insulin sensitivity in mice [ 8 ]. However, in man the process is less clear. 
There is a range of results reported from clinical TNFα neutralization studies on 
relatively small patient populations. For example, little to no benefi t in terms of 
insulin sensitivity was reported with anti-TNFα therapy used in the treatment of 
rheumatoid arthritis patients [ 118 ] or obese patients with features of metabolic syn-
drome [ 119 ]. In contrast, there are reports of improved insulin sensitivity in patients 
receiving long-term treatment with TNF inhibitors [ 120 ,  121 ]. Retrospective analy-
sis of a large cohort of rheumatoid arthritis or psoriasis patients showed that indi-
viduals treated with TNF inhibitors had a reduced risk for developing type 2 diabetes 
[ 122 ,  123 ], suggesting a need for further clinical trials in this area that more directly 
test the hypothesis that long-term anti-TNFα therapy increases insulin sensitivity. 

 IL1β is a circulating cytokine and antibody-mediated inactivation of IL-1β 
improves glycemic control in DIO due largely to increased pancreatic beta cell for-
mation [ 124 ]. Humans treated with an IL-1 receptor antagonist also show reduced 
systemic infl ammation, but with only modest effects in improving glycemia and no 
effects on insulin sensitivity [ 125 ,  126 ]. The lowered glucose levels were accompa-
nied by increased insulin secretion, suggesting that IL-1 blockade inhibits damag-
ing effects of IL-1β on pancreatic islets, improving pancreatic beta cell function and 
increasing insulin secretion [ 125 ,  126 ]. 

 The thiazolidinedione (TZD) group of drugs are currently used in the treatment 
of type 2 diabetes, and although their precise mechanism of action is not fully 
understood, they are agonists for nuclear receptor PPARγ [ 127 ]. Although  adipocytes 
have been considered the primary target cells for the anti-infl ammatory effects of 
TZDs [ 128 ], additional studies indicate an important role for PPARγ in macro-
phages [ 32 ,  129 ], muscle [ 130 ], and the CNS [ 131 ,  132 ]. In addition to the transac-
tivation of genes, PPARγ can also transrepress target genes by antagonizing 
signal-dependent activation of transcription factors such as NFκΒ and AP-1, thereby 
reducing proinfl ammatory signaling [ 133 ]. However, although anti-infl ammatory 
effects are part of the overall mechanism of TZD-induced insulin sensitization, the 
contributions of this to the benefi cial clinical effects of these drugs remain to be 
defi ned [ 134 ]. 
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 The anti-infl ammatory properties of omega-3 FAs have long been known and 
are associated with protection from cardiovascular disease [ 135 ,  136 ]. Fish oil, a 
major source of omega-3 FAs, leads to decreased production of TNFα IL-1 and 
IL-6 by macrophages in mice and man [ 137 – 139 ]. The lipid-sensing receptor 
GRP120, highly expressed in proinfl ammatory macrophages, can mediate the 
effects of omega-3 FAs [ 45 ]. Thus, when WT and GPR120 KO mice were placed 
on an HFD with or without omega-3 FA supplementation, the omega-3 FA treat-
ment inhibited infl ammation and enhanced systemic insulin sensitivity in WT 
mice, but was without effect in  Gpr120  KO mice. Signaling studies demonstrated 
that after ligand stimulation, GPR120 couples to β-arrestin2, which is followed by 
receptor endocytosis and inhibition of TAB1-mediated activation of TAK1, pro-
viding a mechanism for inhibition of both the TLR and TNFα proinfl ammatory 
signaling pathways (Fig.  1.2 ). Importantly, a loss of function mutation in GPR120 
in humans increases the risk for obesity and lends support for the therapeutic tar-
geting of this lipid sensor [ 48 ].  

1.6     Links with Cancer 

 The chronic low-grade infl ammation in obesity is also associated with cancer pro-
gression through a variety of common pathways [ 140 – 142 ]. Mechanisms by which 
infl ammation can contribute to carcinogenesis include induction of genomic insta-
bility, increased DNA damage, alterations in epigenetic events and subsequent inap-
propriate gene expression, enhanced proliferation of initiated cells, and resistance to 
apoptosis. While there is a clear link between obesity, infl ammation, and cancer, 
there are many areas that remain poorly understood. Whether obesity-related 
infl ammation is more important in early events in cancer initiation and how tumor- 
associated macrophages interact with ATMs during tumor progression are questions 
that remain to be answered. Infl ammation-induced insulin resistance is known to be 
tissue selective and the resulting hyperinsulinemia may have direct effects on pro-
moting the growth of tumor cells [ 143 ]. A detailed discussion of the relationships 
between obesity, infl ammation, insulin resistance, and cancer will be covered in the 
following chapters.  

1.7     Conclusions 

    Since the discovery that infl ammation was a critical component of the pathway from 
obesity to insulin resistance, research efforts have been focused on understanding 
the cellular and molecular basis for these changes. It now appears that there are 
multiple cell types and signaling molecules that offer potential drug discovery 
efforts to improve insulin resistance. 
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 Given the important role for immune cells in the initiation of obesity-related 
 disease and our knowledge of their protective role in host defense from studies of 
individuals with genetic abnormalities in immune cell function, fi nding the balance 
between therapies that dampen the deleterious aspects of the immune response while 
maintaining the ability to combat infections and disease will be challenging. For 
example, targeting of TNFα, a major cytokine released by activated macrophages, 
has been an effective therapy for the treatment of infl ammatory disorders such as 
rheumatoid arthritis [ 144 ]. Concerns regarding long-term effects such as an increase 
in cancer risk have been largely dispelled by the results of long-term follow- up; how-
ever, the risk of exacerbating infection remains [ 145 ,  146 ]. Whether these compounds 
can be used in the insulin-sensitizing armamentarium is yet to be determined. 

 Advances in technology and the application of genome-wide association studies 
(GWAS) are likely to identify novel pathways and linkages between existing path-
ways that will aid in our understanding of multifactorial infl ammatory diseases. 
A recent study in mice suggests that less than 10 % of transcripts altered in DIO are 
shared between the classical insulin target tissues, white adipose tissue (WAT), skel-
etal muscle, liver, and heart [ 147 ]. In humans, GWAS have identifi ed novel loci 
associated with fasting insulin and insulin resistance [ 148 ]. These studies and many 
others provide fruitful avenues for future research.     
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    Abstract     Infl ammasomes are a family of protein complexes that recognize diverse 
microbial and endogenous danger signals to promote innate immune responses, tis-
sue infl ammation and injury, or cell death via pyroptosis. Infl ammasome activation 
results in the recruitment and activation of caspase-1, which is required for the pro-
duction of the proinfl ammatory cytokines interleukin-1β (IL-1β) and IL-18 that can 
modulate both adaptive and innate immune responses through effects on leukocyte 
survival, proliferation, differentiation, and migration. Recent studies suggest that 
infl ammasome activity may also play important roles in several nonmicrobial dis-
ease states associated with chronic infl ammation. For example, NLRP3 infl amma-
some expression and IL-1β production are both increased in obesity, and recent 
work has implicated NLRP3 infl ammasome activation in a variety of obesity-linked 
conditions including gout, type 2 diabetes mellitus, metabolic liver disease, athero-
sclerosis, Alzheimer’s disease, cancer and rheumatoid arthritis. Further, many of the 
factors associated with these conditions, including elevated plasma glucose, fatty 
acids, uric acid and cholesterol crystals, and β-amyloid, have been shown to be 
elevated during obesity and to stimulate NLRP3 infl ammasome expression or acti-
vation. Since chronic NLRP3 activation appears to play important roles in several 
common disease states, better understanding of infl ammasome regulation and func-
tion may lead to better therapeutic approaches. Several agents that attenuate NLRP3 
infl ammasome activity or inhibit its primary effector, IL-1β, are currently under 
development or in early clinical trials as therapeutics to treat these common disease 
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conditions. This chapter will review new research on infl ammasome activation, its 
role in obesity and other chronic infl ammatory states, and the status of approaches 
to attenuate NLRP3 infl ammasome activity.  

2.1         Infl ammasomes Are Key Mediators 
of the Innate Immune System 

 The innate immune system serves as a fi rst line of defense against invading 
microbes and other harmful agents by sensing pathogen-associated molecular 
 patterns (PAMPs), such as microbial nucleic acid, lipoproteins, and lipopolysac-
charides (LPSs), or  danger-associated molecular patterns (DAMPs) released dur-
ing cell stress, including ATP, uric acid, heat shock proteins, and other cellular 
components [ 1 ]. The initiation and regulation of innate immune responses to these 
factors are orchestrated by several classes of germline-encoded pattern-recogni-
tion receptors (PRRs), including toll-like receptors (TLRs), RIG-I-like receptors 
(RLRs), NOD- like receptors (NLRs), and AIM2 (absent in melanoma 2)-like 
receptors (ALRs) [ 2 ,  3 ]. NLRs comprise a large protein family of intracellular 
sensors, the members of which share a conserved central nucleotide-binding, 
oligomerization domain (NOD), a leucine-rich repeat (LRR) region, and a vari-
able N-terminal effector domain. NLRs can be classifi ed as receptors (Nod1 and 
Nod2) or by their different central proteins and their diverse functions: negative 
regulators include NLRX1, NLRC5, and NLRP4 and infl ammasome activators 
include NLRP1, NLRC4, NLRP3, and NLRC5 [ 4 – 7 ]. Several NLRs and AIM2 
can form large multi-protein “infl ammasome” complexes upon stimulation by 
PAMP or DAMP signals. 

 Following activation, NLRs oligomerize and recruit pro-caspases through direct 
interaction with the NLR caspase recruitment and activation domain (CARD) and 
through interaction with the pyrin domain (PYD) of the ASC (apoptosis-associated 
speck-like protein containing a CARD) adaptor protein. ASC resides in the nucleus, 
but its movement from the nucleus to the cytosol is required for infl ammasome 
assembly [ 8 ]. Caspase zymogen recruitment into an infl ammasome complex induces 
a conformational change leading to caspase autoactivation. 

 IL-1 and IL-18, generated by capase-1 maturation of pro-IL-1 and pro-IL-18 pep-
tides, are the major functional effectors of infl ammasome activation, inducing mul-
tiple responses to infectious agents. IL-1β induces fever, T cell survival, B cell 
proliferation, and leukocyte migration and promotes polarization of CD4+ T helper 
1 (Th1) cells [ 9 ], while IL-18 synergizes with IL-12 to promote Th1 polarization and 
IFNγ production and facilitates proinfl ammatory Th17 responses [ 10 ]. Caspase-1 
activity is also required for pyroptosis, a proinfl ammatory cell death mechanism for 
self-clearance of infected macrophages and dendritic cells thought necessary to pre-
vent intracellular replication of pathogenic microorganisms (Fig.  2.1  from Zitvogel 
et al. [ 11 ]). Both IL-1 and IL-18 production and pyroptosis have implications for  
many diseases including infections, arthritis, metabolic syndrome, cancer, and 
infl ammatory bowel disease. Caspase-1 also contributes to host defense through 
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additional mechanisms, including secretion of leaderless peptides, cleavage of glyco-
lytic pathway enzymes, restriction of bacterial replication, and augmentation of cell 
repair through control of lipid metabolism (summarized in Lamkanfi  and Dixit [ 12 ]).

   These cytokine- and caspase-1-regulated processes must be tightly controlled 
balancing the ability to curb infection and develop T and B cell memory to pathogen 

  Fig. 2.1    Pyroptosis as a possible outcome of caspase-1 activation. Activation of caspase-1 (casp- 
1) mediated by the infl ammasome or by the supramolecular assembly of ASC dimers known as the 
“pyroptosome” can derive from the proteolytic cleavage of pro-caspase-1 (pro-casp-1) or follow 
less well-understood (perhaps conformational) mechanisms. Both examples of caspase-1 activa-
tion can lead to the proteolytic maturation of caspase-7, followed by the cleavage of several intra-
cellular substrates and pyroptotic cell death. Nevertheless, cleaved caspase-1 is required for the 
processing of pro-IL-1β and pro-IL-18, as well as for the release of mature IL-1β and IL-18 into 
the microenvironment (reprinted with permission from Zitvogel et al. [ 11 ])       
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exposure vs. host injury and damage. Some invading microbes evade various steps 
in IL-1 and IL-18 production to overcome this host defense. However, uncontrolled 
activation of infl ammasomes contributes to autoimmune diseases such as familial 
Mediterranean fever and Muckle-Wells syndrome (reviewed in Ting et al. [ 13 ]). 
Several distinct mechanisms can attenuate infl ammasome-mediated responses [ 14 ]. 
The anti-infl ammatory cytokine IL-10 can inhibit pro-IL-1 synthesis via the STAT3 
signaling pathway, while activation of the STAT1 pathway signaling can inhibit 
IL-1 maturation by blocking caspase-1 processing through an unknown mechanism 
specifi c for NLRP3 and NLRP1 infl ammasomes. IFNγ produced by activated CD4+ 
Th1 cells and CD8+ T cells can also transiently inhibit IL-1 production [ 15 ], which 
has been suggested to serve as negative feedback inhibition upon activation of the 
adaptive immune system. Effector and memory T cells can also inhibit infl amma-
some activity through the CD40L, OX40L, and RANKL signaling pathways [ 16 ].  

2.2     The NLRP3 Infl ammasome is a Major Mediator 
of Human Disease 

 NLRP3 infl ammasomes are among the most highly studied, since  Nlrp3  gene muta-
tions have been linked to the autoinfl ammatory Muckle-Wells syndrome, familial 
cold auto-infl ammatory syndrome, and neonatal-onset multisystem infl ammation 
[ 17 – 19 ]. Most of these  Nlrp3  genetic mutations produce constitutively active 
NLRP3 proteins that promote IL-1β secretion to elicit infl ammatory responses [ 13 ]. 
Inhibition of the IL-1β pathway using an IL-1 receptor antagonist, anakinra, suc-
cessfully ameliorates the severity of these infl ammation-induced diseases, corrobo-
rating the essential role of NLRP3-induced IL-1β their infl ammatory pathologies 
[ 20 ,  21 ]. The NLRP3 infl ammasome is composed of the NLRP3 protein, the adap-
tor molecule apoptosis-associated speck-like protein containing a CARD (ASC), 
and the cysteine protease caspase-1. Human, but not mouse, NLRP3 infl ammasome 
complexes also contain the Cardinal protein, whose function remains unclear [ 22 ]. 

 Similar to other infl ammasomes, the NLRP3 infl ammasome activates caspase-1 
to cleave pro-IL-1β and pro-IL-18 into IL-1β and IL-18. NLRP3 infl ammasome 
activation can also induce pyroptosis and modulate immune responses by regulating 
the secretion of more than 20 leaderless cytokines and growth factors, including 
HMGB1, IL-1α, fi broblast growth factor 2 (FGF2), galectin-1, and galectin-3 [ 23 ]. 
NLPR3 infl ammasome activity thus plays critical roles in infl ammation, host 
defense, and other related activities. 

2.2.1     NLRP3 Infl ammasome-Priming Signals 

 IL-1β, unlike most other cytokines, is regulated by both gene transcription and post-
translational modifi cation. Pro-IL-1β expression in myeloid cells, such as macro-
phages and dendritic cells (DCs), is induced upon exposure to LPS, a bacterial-derived 
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TLR4 ligand, which activates the NF-κB signaling pathway. Many NF-κB pathway 
activators, including TNF-α, CpG, Pam3CSK4, poly(I:C), R848, imiquimod, and 
IL-1β itself, have also been shown to increase pro-IL-1β expression [ 24 – 28 ]. 
However, while NF-κB-activating stimuli are required to induce pro-IL-1β expres-
sion in vitro, it is unclear whether such priming agents are also required to increase 
in vivo pro-IL-1β expression. For example, intraperitoneal injection with alum or 
monosodium urate (MSU) crystals triggers IL-1β secretion without an exogenous 
priming step to induce NF-κB activation [ 29 ,  30 ]. Differences between in vitro and 
in vivo infl ammasome responses could be explained, at least in part, by differences 
in the sensitivity of the responding cell types and their microenvironment. 

 Most NF-κB-dependent “priming” signals induce pro-IL-1β and increase NLRP3 
protein levels, an essential step for infl ammasome formation [ 24 ]. NLRP3 expres-
sion in bone marrow-derived dendritic cells (BMDCs) and macrophages is mark-
edly increased upon TLR stimulation [ 24 ,  28 ], and signaling through the TLR 
adaptor proteins MyD88 and TRIF increases NLRP3 expression [ 24 ,  31 ]. In con-
trast, the infl ammasome complex proteins caspase-1 and ASC are widely expressed 
in most cell types and are not further upregulated upon NF-κB activation.  

2.2.2     The Assembly of the NLRP3 Infl ammasome 

 NLRP3 is highly expressed in primary mouse neutrophils, peripheral blood mono-
nuclear cells (PBMCs), and BMDCs and moderately expressed in established Th2 
and macrophage cell lines [ 28 ,  32 ]. NLRP3 protein is sequestered in an auto- 
inhibitory conformation by heat shock protein 90 (HSP90) and suppressor of G2 
allele of SKP1 (SGT1) in resting cells [ 33 ], but NLRP3 can recognize stimulatory 
signals through its LRR domain and undergo a conformational change, leading to 
ATP-dependent self-oligomerization via its NOD domain. NLRP3 oligomers then 
recruit the adaptor protein ASC via PYD-PYD domain interactions, which then 
recruits caspases-1 via CARD-CARD domain interactions to generate the fi nal 
~700 kDa NLRP3 infl ammasome complex [ 34 ,  35 ]. This multi-protein complex 
assembly activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 to generate 
mature IL-1β and IL-18 cytokines for secretion. 

 It remains unclear how NLRP3 recognizes the diverse range of stimuli that can 
activate NLRP3 infl ammasome assembly and activation. It is plausible that NLRP3 
is not a direct sensor of all the external stimuli and cellular “danger signals” it recog-
nizes. Recent results have identifi ed the non-NLR/ALR protein guanylate- binding 
protein 5 (GBP5) as a sensor for some NLRP3 infl ammasome activators, stimulating 
NLRP3 infl ammasome activation in response to pathogenic bacteria and soluble, but 
not crystalline, infl ammasome-priming agents [ 36 ]. Interestingly, GBP5-defi cient 
mice demonstrate impairments in both host defense and NLRP3- dependent infl am-
matory responses, indicating that proteins other than NLRP3, ASC, and caspase-1 
are involved in sensing pathogenic “danger signals” that activate the NLRP3 infl am-
masome. Moreover, the restricted range of NLRP3 infl ammasome stimuli 
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recognized by GBP5 suggests that more than one sensor is involved in this process. 
These results, however, do not fully preclude the possibility of different sensor pro-
teins giving rise to a common signaling intermediate that directly regulates the 
NLRP3 infl ammasome complex. Given the ability of the NLRP3 infl ammasome to 
regulate critical innate and adaptive immune responses to induce both protective and 
pathogenic responses, future studies are required to characterize signaling small 
molecules and proteins that regulate NLRP3 infl ammasome activation.   

2.3     The Diverse Regulation of NLRP3 
Infl ammasome Activation 

 Notably, the NLRP3 infl ammasome is responsive to a wide array of stimuli, ranging 
from microorganisms of both endogenous and exogenous origin to inorganic agents 
such as asbestos, silica, and alum (Table  2.1 ). Specifi c activators have been identi-
fi ed for the NLRP1, NLRC4, and AIM2 infl ammasomes, but much less is known 
about what triggers the assembly and activation of the NLRP3 infl ammasome [ 37 ]. 
Studies indicate that reactive oxygen species (ROS), potassium effl ux, and lyso-
somal damage are involved in NLRP3 infl ammasome activation. Indeed, regulation 
of NLRP3 infl ammasome activity by many stimuli can be explained by these three 
mechanisms; however, no single mechanism accounts for infl ammasome activation 
by all known stimuli. The following sections summarize and discuss these models 
and the potential metabolic signals that can induce NLRP3 infl ammasome responses.

2.3.1       Reactive Oxygen Species 

 Many NLRP3 agonists induce ROS formation, and reactive oxygen compounds 
such as hydrogen peroxide can induce infl ammasome formation [ 38 ]. NADPH oxi-
dase was initially postulated as the cellular ROS source that activated the NLRP3 
infl ammasome [ 39 – 41 ], since many factors that induce infl ammasome activity also 
induce NADPH oxidase. However, studies performed with cells lacking various 
NADPH oxidase components indicate that NADPH oxidase activity is not required 
for NLRP3 infl ammasome activation [ 42 – 44 ]. 

 More recent studies have implicated mitochondrial ROS in infl ammasome acti-
vation. Mitochondria are the main source of cellular ROS and markedly increase 
mitochondrial ROS production under various stress conditions [ 45 ]. Mitochondria 
also produce ROS during normal respiration, which can eventually alter respiratory 
chain function and lead to increased mitochondrial ROS production [ 46 ]. Such 
damaged mitochondria are continuously removed by a specialized form of autoph-
agy, known as mitophagy, to avoid cellular damage from excess ROS exposure. 
Chemical and genetic manipulations that increase mitochondrial dysfunction and 
ROS production activate NLRP3 infl ammasomes [ 47 ,  48 ], as does pharmacologic 
or genetic inhibition of mitophagy leading to the accumulation of damaged, ROS- 
producing mitochondria [ 46 ,  47 ,  49 ]. Both NLRP3 and ASC relocate to the 
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perinuclear space upon infl ammasome activation to colocalize with endoplasmic 
reticulum mitochondria, further implying a role for mitochondrial ROS in infl am-
masome activation [ 48 ]. 

 However, while ROS have been repeatedly implicated in NLRP3 infl ammasome 
activation, it is still not clear precisely how ROS alter the infl ammasome complex to 
activate capase-1 activity. ROS are toxic, but can also serve as signals for various 
physiologic processes. One recent study found that thioredoxin-interacting protein 
(TXNIP), a binding partner of the antioxidant protein thioredoxin, can directly bind 
NLRP3 and regulate infl ammasome activation in a ROS-inducible manner [ 50 ], and 
similar results were found in a second study, albeit with minor differences [ 51 ]. It is 
possible that NLRP3 is infl uenced directly by ROS, although there is currently no 
experimental evidence to support such a mechanism.  

2.3.2     Cytoplasmic Potassium 

 Intracellular potassium is a common initiator of infl ammasome activity, as inhibi-
tion of potassium effl ux by hyperosmotic potassium can block NLRP3 infl amma-
some activation [ 39 ,  52 ,  53 ]. Cellular potassium concentration can serve as an 

   Table 2.1    Sensing of microbes, pathogen-associated molecular pattern (PAMPs), bacterial toxins, 
and “danger signals” by NLRP3   

 Elicitor  References 

 Microbial motifs 
 MurNAc- L -Ala- D -isoGln (muramyldipeptide)  [ 221 ] 
 Bacterial RNA  [ 26 ] 
 Imidazoquinoline compounds (R837, R848)  [ 26 ] 

 Live bacteria 
  Staphylococcus aureus   [ 27 ] 
  Listeria monocytogenes   [ 27 ] 
  Shigella fl exneri   [ 222 ] 

 Virus 
 Sendai virus  [ 223 ] 
 Infl uenza virus  [ 223 ,  224 ] 
 Adenovirus  [ 225 ] 

 Microbial toxins 
 Aerolysin ( A. hydrophila )  [ 226 ] 
 Maitotoxin ( Marine dinofl agellates )  [ 27 ] 
 Nigericin ( Streptomyces hygroscopicus )  [ 27 ] 
 Listeriolysin O ( L. monocytogenes )  [ 226 ] 

 Danger-associated host components 
 ATP, NAD+ (P2RX7  )  [ 27 ,  28 ] 
 Mitochondrial membrane potential and generation of ROS  [ 47 ,  48 ] 
 Crystalline or aggregated substances (asbestos, silica, uric acid (MSU), etc.)  [ 37 ] 
 Necrotic cell components  [ 227 ] 
 Low intracellular potassium  [ 228 ] 
 Cell volume change  [ 56 ] 
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indicator of membrane integrity, due to its high cellular and low extracellular levels. 
NLRP3 infl ammasomes are activated by disruption of cell membrane integrity, but 
extracellular potassium as low as 20 mM is suffi cient to block NLRP3 infl amma-
some formation [ 54 ]. NLRP3 infl ammasome activity is thus likely regulated at least 
in part by potassium effl ux during loss of membrane integrity, but many stimuli 
markedly induce infl ammasome activity without signifi cantly destabilizing the cell 
membrane. Infl ammasome responses to several such stimuli, including PAMPs, 
DAMPs, and crystals, can be markedly attenuated by the potassium channel inhibi-
tor glibenclamide [ 55 ], however, suggesting that potassium channels mediate many 
of these responses by increasing intracellular potassium effl ux. 

 Changes in cell volume in response to low environmental osmolarity can also 
regulate NLRP3 infl ammasome activation [ 56 ], at least in part by decreasing intra-
cellular potassium concentrations. However, low intracellular potassium is required 
but not suffi cient to induce NLRP3 infl ammasome activation during cell swelling. 
Cell swelling was also found to alter transient receptor potential (TRP) channel 
activity to regulate an intracellular calcium increase that was found to stimulate 
transforming growth factor β-activated kinase 1 (TAK1) to activate the NLRP3 
infl ammasome.  

2.3.3     Phagocytosis and Lysosomal Damage 

 Phagocytosis of crystalline or particulate structures, such as MSU, silica, asbestos, 
amyloid-β, and alum, can lead to the release of proteolytic lysosomal contents into 
the cytosol, resulting in NLRP3 infl ammasome activation [ 42 ,  57 ]. Leakage of the 
lysosomal cysteine protease cathepsin B into the cytoplasm has been proposed to 
result in the cleavage of a putative factor regulating NLRP3 complex activity, since 
specifi c inhibition or genetic ablation of cathepsin B activity impairs infl ammasome 
activation induced by phagocytosis of various particulates [ 42 ,  58 ,  59 ]. However, 
either cathepsin B or cathepsin L defi ciency attenuated NLRP3 infl ammasome acti-
vation in one of these studies, and repression was less pronounced at higher doses 
[ 58 ], implying functional redundancy or alternative protease activities. Further, not 
all studies found cathepsin B defi ciency attenuated NLRP3 infl ammasome  activation 
by crystalline agonists [ 60 ].  

2.3.4     The NLRP3 Infl ammasome is Negatively Regulated 
by IFNγ and T Cell Responses 

 Emerging evidence indicates that cytokine signaling events can inhibit infl amma-
some activation and IL-1β production [ 15 ]. For example, IFNγ transiently inhibits 
LPS-stimulated IL-1β production in mouse macrophages and dendritic cells, although 
not in human cells [ 61 ], but is limited by LPS-induced SOCS1 expression, a negative 
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regulator of the IFNγ signaling cascade. Endogenous IFNγ production in 
 M .  tuberculosis - infected  mice also selectively inhibits IL-1α and IL-1β production by 
monocyte-macrophages and DCs [ 15 ]. IFNγ is a signature cytokine of CD4+ Th1 and 
CD8+ T cells [ 62 ,  63 ], suggesting that T cell IFNγ secretion during adaptive immune 
responses may act to attenuate infl ammasome responses. Similarly, both effector and 
memory T cells can directly attenuate NLRP3 and NLRP1 infl ammasome activity in 
macrophages and DCs through a cell-to-cell contact-dependent mechanism appar-
ently mediated by TNF superfamily ligand-receptor interactions [ 16 ].   

2.4     NLRP3 Infl ammasome Is a Metabolic Regulator 

 Excess weight gain is associated with the dysregulation of multiple metabolic fac-
tors that increase infl ammasome activation. 

2.4.1     Fatty Acids 

 Elevated plasma free fatty acids (FFA) are strongly associated with insulin resis-
tance and type 2 diabetes [ 64 ]. Saturated FFAs can activate toll-like receptor 4 
(TLR4) signaling to induce proinfl ammatory responses in adipocytes, macrophages, 
and pancreatic β-cells to increase insulin resistance in target tissues and reduce 
 pancreatic β-cell function [ 65 ,  66 ]. TLR4-NFκB pathway signaling induces tran-
scription of multiple proinfl ammatory factors, including IL-1β [ 67 ]. Recent work 
indicates that the saturated FFA palmitate can induce NLRP3-infl ammasome activ-
ity by suppressing AMP-activated protein kinase activity, resulting in decreased 
autophagy, accumulation of damaged mitochondria, and increased production of 
mitochondrial-derived ROS [ 68 ]. Thus high FFA levels can provide both the tran-
scription and infl ammasome activation signals required for IL-1β production. 

 Cellular palmitate uptake also induces ceramide accumulation, which can func-
tion as a second messenger in several key signaling pathways [ 69 ]. Plasma cerami-
des are increased in obese patients with type 2 diabetes and positively correlate with 
insulin resistance, implying a potential role for ceramide in obesity- induced insulin 
resistance [ 70 ]. Ceramide has been shown to potently activate NLRP3 infl amma-
somes in isolated macrophages and adipose tissue explants [ 71 ], suggesting a new 
mechanism for ceramide-mediated insulin resistance in target tissues.  

2.4.2     Hyperglycemia 

 Hyperglycemia induces IL-1β production in multiple cell types, including endo-
thelial cells, monocytes, and pancreatic islet β-cells [ 72 – 74 ], and has been shown 
to activate the PKCα-NFκB signaling pathway to stimulate IL-1β gene 
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transcription [ 75 ]. More recent work suggests that TXNIP plays an important role in 
 hyperglycemia- induced pancreatic β-cells IL-1β secretion by directly interacting with 
the NLRP3-infl ammasome in a ROS-dependent manner [ 50 ]. TXNIP  expression is 
consistently higher in β-cells of subjects with type 2 diabetes [ 76 ], and its expression is 
robustly induced in response to high glucose [ 77 ]. Similar results are found in human 
adipocytes, where high glucose markedly induces TXNIP expression, caspase-1 acti-
vation, and IL-1β secretion [ 78 ], and TXNIP knockdown reduces hyperglycemia-
induced IL-1β production, albeit primarily through IL-1β transcription [ 78 ]. Thus, both 
FFA and hyperglycemia appear to act through the NF-κB signaling pathway to stimu-
late IL-1β gene transcription, but use alternate mechanisms to provide the second sig-
nal required for infl ammasome activation, IL-1β processing, and release.  

2.4.3     Uric Acid and MSU Crystals 

 Multiple studies have indicated that uric acid or MSU crystals can stimulate infl am-
masome activity. For example, mice intraperitoneally injected with MSU crystals 
demonstrate NLRP3 infl ammasome activation and develop IL-1β-dependent perito-
nitis [ 79 ]. MSU crystals are frequently found in patients with gout, but uric acid has 
also been implicated in infl ammasome activation in other acute and chronic proin-
fl ammatory disease conditions. For example, during bleomycin-induced acute lung 
injury leading to pulmonary infl ammation and fi brosis, uric acid released from 
injured cells can activate the NLRP3 infl ammasome to induce IL-1β production 
[ 80 ]. Both adipose tissue uric acid levels [ 81 ] and infl ammasome activity [ 82 ] are 
elevated in obesity, suggesting that uric acid may also promote NLRP3 infl amma-
some activation and IL-1β production in adipocytes, although there is no direct 
evidence for such a mechanism. Similarly, since plasma uric acid concentrations 
were one of the original diagnostic criteria for metabolic syndrome, it is tempting to 
speculate on the role of uric acid on systemic complications of obesity. Several 
recent studies have indicated that elevated plasma uric acid confers increased risk 
for multiple disease states associated with metabolic syndrome, including obesity, 
insulin resistance, hypertension, and cardiovascular disease [ 83 ].  

2.4.4     Cholesterol 

 Plasma cholesterol levels are strongly linked to atherosclerosis, and cholesterol 
crystals are a recognized hallmark of advanced atherosclerotic lesions [ 84 ]. 
Cholesterol crystals can induce robust, dose-responsive, and caspase-1-dependent 
macrophage IL-1β secretion by inducing lysosomal damage [ 58 ]. Bone marrow 
NLRP3, ASC, or IL-1α/β defi ciency markedly decreases atherosclerosis and 
infl ammasome- dependent IL-18 levels, suggesting that NLRP3 infl ammasomes 
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play major roles in atherosclerosis [ 58 ]. Recently, autophagosomes were identifi ed 
in atherosclerotic plaques, but autophagy was found to be defective [ 85 ]. Complete 
defi ciency of autophagy in the apolipoprotein E-defi cient mouse led to accelerated 
atherosclerosis with increased IL-1β levels and ASC protein bodies indicative of 
infl ammasome complex formation and activation. These results are consistent with 
observations suggesting that lysosomal cholesterol crystals alter autophagic pro-
cesses [ 58 ,  86 ]. These changes, in addition to increased vascular ROS, contributed 
to infl ammasome activation.  

2.4.5     Amyloid 

 Islet amyloid polypeptide (IAPP), which is co-secreted with insulin, can form amy-
loid deposits in the pancreas during type 2 diabetes. IAPP aggregates have cytotoxic 
properties that are believed to play a key role in β-cell loss and type 2 diabetes pro-
gression [ 87 ]. Recent work now indicates that IAPP crystals can trigger pancreatic 
NLRP3 infl ammasome activation and IL-1β secretion [ 51 ].   

2.5     Obesity and the NLRP3 Infl ammasome 

 Chronic infl ammation and recruitment of macrophages has been recognized as a 
hallmark of obesity for decades. Recent work indicates that innate and adaptive 
immune processes in adipose tissue play central roles in the development of obesity- 
induced infl ammatory responses and indicates potential roles for NLRP3 infl amma-
some activity in these processes. 

2.5.1     Chronic Infl ammation in Adipose Tissue 

 Adipose tissue is an important endocrine organ, which can undergo marked changes 
in both its cellular composition and secretory profi le during the onset of obesity. 
Caloric excess alters adipocyte function and dramatically increases the relative abun-
dance and proinfl ammatory phenotype of adipose-resident immune cells, resulting in 
increased serum levels of proinfl ammatory adipokines [ 88 ,  89 ], while reductions in fat 
mass strongly correlate with serum adipokine decreases [ 90 ], suggesting that adipose 
tissue plays a central role in the systemic proinfl ammatory milieu of obesity. 
Adipocytes are important endocrine cells in this process, and adipocyte secretion of 
proinfl ammatory or pathogenic adipokines, such as TNFα, leptin, plasminogen activa-
tor inhibitor-1, monocyte chemotactic protein-1, IL-6, resistin, angiotensinogen, and 
IL-1β, markedly increases with obesity [ 88 ,  89 ]. Obesity also increases the relative 
adipose abundance of proinfl ammatory CD4 T cells (Th1) and CD8 T cells, resulting 
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in increased adipose expression of IFNγ [ 91 ,  92 ]. The polarization of adipose tissue 
macrophages (ATMs) from an anti- infl ammatory (M2) to a proinfl ammatory (M1) 
phenotype likely results from this increase in adipose IFNγ [ 93 ]. However, other 
immune cells, including B cells [ 94 ], mast cells [ 95 ], eosinophils [ 96 ], and neutrophils 
[ 97 ], have also been reported to regulate obesity-induced infl ammation. The trigger 
signals for immune cell accumulation and polarization are unclear, although adipocyte 
death, hypoxia, and adipokines secreted in response to metabolic overload may all 
direct infl ammatory cells to adipose tissue [ 98 ]. 

 NLRP3 infl ammasome components are highly expressed in ATMs, whose abun-
dance can dramatically increase with the onset of obesity and contribute to the met-
abolic dysregulation and insulin resistance that give rise to obesity-associated 
complications. IL-1β directly inhibits adipocyte insulin signaling by decreasing 
insulin receptor substrate-1 [ 99 ], and both IL-1β and IL-18 can induce adipose- 
resident Th1 and CD8+ T cells [ 71 ,  100 ] to further increase adipose tissue infl am-
mation. NLRP3 infl ammasome activation in preadipocytes inhibits adipocyte 
differentiation and fat accumulation by reducing preadipocyte expression of PPARγ, 
a key regulator of adipogenesis, while caspase-1-defi cient adipocytes are more met-
abolically active, suggesting that obesity-induced changes in NLRP3 infl amma-
some activity can negatively impact adipocyte function [ 82 ]. High-fat diet (HFD)-fed 
IL-1R knockout mice have less adipose infl ammation and better insulin sensitivity 
than wild-type control mice [ 101 ]. Similarly, HFD-fed Nlrp3 −/− , Asc −/− , and Casp1 −/−  
mice demonstrate decreased weight gain and body fat, reduced infl ammation, and 
improved insulin sensitivity [ 71 ,  82 ,  102 ], although both IL-1R and IL-18 defi cien-
cies were subsequently found to induce hyperphagia resulting in delayed-onset obe-
sity and insulin resistance in chow-fed mice [ 103 – 105 ].  

2.5.2     NLRP3 Infl ammasome Expression and Activity 
in Obese Mice 

 Several studies have investigated IL-1β/IL-18 production and infl ammasome activa-
tion in mouse models of diet-induced obesity. Visceral adipose IL-1β and Nlrp3 
mRNA expression is reported to positively correlate with body weight and adiposity 
in mice fed with standard chow diet and to markedly decrease upon caloric restric-
tion [ 71 ], while adipose tissue IL-1β protein is increased in obese db/db and HFD- 
fed C57BL/6 mice relative to their lean controls [ 71 ,  82 ]. Similar to IL-1β, adipose 
tissue and circulating IL-18 protein levels are increased in HFD-fed or genetically 
obese mice [ 71 ,  82 ,  106 ], despite no IL-18 mRNA differences, suggestive of 
increased adipose infl ammasome activity. Caspase-1 mRNA and activity are 
increased in multiple tissues of HFD-fed and genetically obese mice [ 71 ,  82 ]. 
NLRP3 ablation attenuates obesity-induced caspase-1 activity in adipose tissue 
and liver, but not kidney [ 71 ], implying that kidney caspase-1 activation is either 
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NLRP3 independent or complemented by another infl ammasome. NLRP3 
 infl ammasome- dependent IL-1β secretion by the pancreas also increases during obe-
sity and likely mediates chronic obesity-induced pancreatic damage [ 107 ].  

2.5.3     NLRP3 Infl ammasome Expression and Activity 
in Obese Patients 

 Circulating IL-1β concentrations are low in healthy human subjects. Elevated circu-
lating IL-1β levels have been reported in some studies of obese patients [ 108 ,  109 ], 
but it is questionable whether these concentrations, typically <100 pg/mL, can 
induce biologically meaningful systemic effects. IL-1β protein concentrations in 
metabolic tissues, such as adipose tissue and liver, however, are clearly increased in 
obese human subjects, at levels likely to produce pathological effects, and weight 
loss reduces adipose and liver IL-1β mRNA expression [ 71 ,  110 ]. IL-1β secretion 
from human omental fat explants is correlated with the donor’s body mass index 
[ 111 ], while LPS-stimulated IL-1β production from primary monocytes of obese 
alcoholics is correlated with body mass index, percent body fat, abdominal circum-
ference, and total histologic score [ 112 ]. Similar to IL-1β, circulating IL-18 concen-
trations are higher in overweight subjects [ 113 ] and are decreased by weight loss 
[ 114 ]. However, unlike IL-1β, weight loss signifi cantly decreases IL-18 mRNA 
expression in liver, but not in adipose tissue [ 110 ]. 

 Few studies have investigated NLRP3 infl ammasome genes in obese human sub-
jects. In one study, adipose tissue caspase-1 mRNA expression increased in obese 
subjects, while NLRP3, IL-1β, and IL-18 mRNA expressions were not signifi cantly 
different in normal-weight and obese subjects [ 115 ]. Results from weight loss stud-
ies are contradictory, with weight loss reducing NLRP3 expression in one study 
[ 71 ] but having no effect in another [ 110 ], although gender, ethnicity, and adiposity 
differences between these cohorts may explain this discrepancy. 

 No comparable data is available for the effect of weight gain and loss on caspase-
 1 activity in human adipose tissue. However, a recent analysis of paired subcutane-
ous and visceral adipose tissue biopsies from ten overweight subjects found that 
IL-1β and IL-18 production as well as caspase-1 activity was dramatically higher in 
visceral than subcutaneous adipose tissue [ 100 ]. Interestingly, caspase-1 activity 
levels were positively correlated with CD8+ T cell numbers present in both tissues. 
These fi ndings are consistent with well-established results that visceral adipose tis-
sue is more infl ammatory than subcutaneous adipose tissue, and suggest a possible 
role for caspase-1 activity in the infi ltration of CD8+ T cells into human adipose 
tissue. Further, our recent microarray analysis and RT-PCR analyses of high-purity 
human and mouse adipocyte fractions from subcutaneous and visceral adipose tis-
sue indicate that the expression of NLR pathway genes, including NLRP3 and ASC, 
is signifi cantly upregulated during obesity (unpublished data), suggesting that obe-
sity may induce adipocyte infl ammasome activity.  
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2.5.4     Mechanisms of NLRP3 Infl ammasome Activation 
in Adipose Tissue 

 Adipose tissue TLR4 signaling plays an important role in obesity-associated insulin 
resistance [ 66 ]. In obesity, increased FFA levels stimulate adipose tissue TLR4 sig-
naling by increasing adipose expression of fetuin A, an endogenous TLR4 ligand 
[ 116 ]. Since the proinfl ammatory TLR4-NFκB signaling cascade regulates both 
NRLP3 and IL-1β transcription, increased TLR4 signaling may provide the priming 
signal for the increased NLRP3 infl ammasome activity observed in obesity. 
However, while TLR4 signaling may prime the system, it is unclear what triggers 
NLRP3 infl ammasome activation during obesity. Extracellular ATP can active the 
NLRP3 infl ammasome via a P2X purinoceptor 7 (P2RX7)-dependent mechanism 
[ 117 ], but infl ammasome activation and adipose and metabolic phenotypes are sim-
ilar in HFD-fed P2RX7-defi cient and wild-type mice [ 118 ], excluding it from a role 
in this process. Obesity-associated metabolic danger signals, such as elevated FFA 
and ceramide, hyperglycemia, and mitochondrial dysfunction, may trigger NLRP3 
infl ammasome activation, as discussed above. Due to the central role adipose 
infl ammation plays in obesity-related complications, identifi cation of the responsi-
ble signal(s) regulating adipose tissue infl ammasome activity is an important chal-
lenge for future investigation.   

2.6     The NLRP3 Infl ammasome in Metabolic Diseases 
Associated with Obesity 

 The prevalence of obesity has led to the increased incidence of obesity-associated 
metabolic diseases and become a serious threat to public health in the developed 
world. Overweight and obesity are associated with increased risk of atherosclerosis, 
type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), neurodegenerative dis-
ease, and cancer [ 119 ]. Chronic infl ammation, a key feature of obesity, plays an 
important role in the development of many metabolic diseases. As discussed above, 
the NLRP3 infl ammasome has been recognized to mediate infl ammatory reactions 
to several metabolic danger signals that are increased in obesity, implying that these 
stimuli induce NLRP3-driven infl ammation to produce tissue injury in obesity. 
Indeed, the major effectors of infl ammasome activation, IL-1β and IL-18, have been 
linked to infl ammatory responses in various metabolic diseases [ 9 ,  120 ]. However, 
new research has just begun to explain the specifi c stimuli and molecular mecha-
nisms acting on the NLRP3 infl ammasome for individual metabolic diseases. 

2.6.1     Type 1 and Type 2 Diabetes 

 Diabetes is characterized by uncontrolled blood glucose elevations resulting from 
inadequate insulin production due to pancreatic β-cell loss (type 1 diabetes) or 
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insulin resistance in skeletal muscle and other metabolic tissues associated that is 
with a slower decline in pancreatic β-cell function (type 2 diabetes). Mounting evi-
dence now indicates that infl ammasome activity plays critical roles in the dysregu-
lation of both insulin production and insulin signaling. 

 IL-1β production by both pancreatic β-cells and infi ltrating immune cells is 
known to regulate β-cell viability and insulin secretion. IL-1β treatment of both 
rodent and human pancreatic islets potently inhibits pancreatic β-cell-specifi c tran-
scription factors and insulin secretion [ 121 ], while IL-1β secretion from invading 
immune cells induces pancreatic β-cell death during the development of autoim-
mune type 1 diabetes [ 122 ], partially through increased β-cell iNOS expression and 
NO production [ 123 ,  124 ]. Chronic hyperglycemia can also stimulate pancreatic 
β-cells to produce IL-1β, further impairing their viability and insulin secretion [ 73 ], 
through ROS-mediated activation of the NLRP3 infl ammasome [ 50 ]. Finally, dur-
ing type 2 diabetes high insulin secretion can result in the formation of cytotoxic 
IAPP aggregates that induce NLRP3 infl ammasome activation and IL-1β secretion 
to stimulate β-cell apoptosis [ 51 ].  

2.6.2     Metabolic Liver Disease 

 NAFLD is strongly associated with abdominal adiposity, and proinfl ammatory liver 
gene expression increases with adiposity [ 125 ]. NAFLD affects more than one-third 
of the Western world population, but only about 25 % of cases develop nonalcoholic 
steatohepatitis (NASH), which is characterized by chronic infl ammation. NASH is 
a major cause of cirrhosis and liver transplantation, but the mechanism(s) underly-
ing NAFLD progression to NASH remains elusive. Liver expression of NLRP3 
infl ammasome genes, caspase-1 activity, and mature IL-1β is, however, dramati-
cally increased in mouse models of NASH [ 126 ]. NAFLD, the precursor to NASH, 
is also characterized by a marked increase in hepatocyte lipid accumulation (steato-
sis), which is attenuated by genetic ablation of NLRP3 infl ammasome components 
[ 71 ,  82 ]. Saturated fatty acid accumulation in NAFLD may play an important role 
in hepatic infl ammation, since the saturated fatty acid palmitate can induce infl am-
masome activation in cultured hepatocytes [ 126 ]. Hepatic infl ammasome activation 
appears to require TLR2 signaling, which is induced by saturated fatty acids, since 
hepatic caspase-1 activation and serum IL-1β levels are suppressed in TLR2 −/−  mice 
fed with a NASH-inducing choline-defi cient diet [ 127 ]. Finally, a gene regulating 
the elongation of C12- to C16-length saturated and monounsaturated fatty acids, 
Elovl6, has also been reported to regulate NASH development, hepatic NLRP3 
infl ammasome activation, and IL-1β release [ 128 ]. Taken together these results sug-
gest that fatty acid accumulation directly or indirectly stimulates NLRP3 infl amma-
some activity. Genetic or pharmaceutical blockade of IL-1R signaling also attenuates 
NASH progression in mice [ 129 ,  130 ]. However, NAFLD/NASH phenotypes in 
these studies could result from non-hepatic infl ammasome effects on insulin resis-
tance and infl ammation. Liver-specifi c NLRP3 infl ammasome knockouts are 
required to address this argument.  
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2.6.3     Atherosclerosis 

 Chronic infl ammation is a well-known contributor to atherosclerosis. Macrophage 
phagocytosis of modifi ed low-density lipoprotein cholesterol present in the vascula-
ture results in the accumulation of cholesterol-laden foam cells, increased oxidative 
stress, and vascular infl ammation, which can ultimately lead to plaque destabiliza-
tion and thrombosis. Moreover, IL-1β has been shown to participate in both the 
development and destabilization of atherosclerotic lesions. For example, genetic 
ablation of IL-1β or the IL-1 receptor in apolipoprotein E-defi cient (Apoe −/− ) mice, 
a standard mouse model of atherosclerosis, signifi cantly decreased atherosclerosis 
development [ 131 ,  132 ], as did treatment with an IL-1 receptor antagonist [ 133 , 
 134 ]. Results from low-density lipoprotein receptor-defi cient (Ldlr −/− ) mice fed with 
a high-cholesterol diet also indicated that macrophage-derived NLRP3 and IL-1 
were essential for cholesterol-driven atherosclerosis, since these mice revealed sig-
nifi cantly less atherosclerosis after receiving bone marrow transplants from NLRP3- 
or IL-1α/IL-1β-defi cient mice [ 58 ]. Surprisingly, however, NLRP3 infl ammasome 
activity was not required for normal atherosclerosis progression in Apoe −/−  mice, 
since mice defi cient in NLRP3, ASC, or caspase-1 expression revealed no decrease 
in atherosclerosis [ 135 ]. 

 It is not clear why these results differ from those of Apoe −/−  mice lacking IL-1β 
or IL-1 receptor expression or Ldlr −/−  mice with NLRP3- or IL-1α/IL-1β-defi cient 
bone marrow. One possible explanation, however, may be that Apoe −/−  mice, unlike 
Ldlr −/−  mice fed with a high-cholesterol diet, represent a nonobese mouse model of 
atherosclerosis and may therefore lack a metabolic stimulus found in obese mice. 
Furthermore, while this data indicates that infl ammasome activity can play an 
important role in the pathogenesis of atherosclerosis, the agents that trigger NLRP3 
infl ammasome activation remain unclear. Duewell et al. have reported that choles-
terol crystals, detected in early atherosclerotic lesions, induce NLRP3 infl ammasome- 
dependent IL-1β production in murine macrophages [ 58 ], with similar results 
observed for human macrophages [ 86 ]. However, several other factors associated 
with increased atherosclerotic risk or the atherosclerotic microenvironment (hyper-
glycemia, ROS, uric acid) may also impact infl ammasome activation.  

2.6.4     Gout 

 Gout is the accumulation of MSU crystals in the joints, often leading to an infl am-
matory arthritis associated with elevated plasma uric acid. MSU crystals have long 
been identifi ed as the causative agent of gout [ 136 ], but only recently has progress 
been made regarding the mechanism underlying their recognition as a proinfl amma-
tory danger signal. MSU crystals induce the production of infl ammatory cytokines 
from monocytes and macrophages, particularly IL-1β [ 137 – 139 ], but do not induce 
IL-1β production in macrophages with ablations of various NRLP3 infl ammasome 
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components [ 79 ], indicating that infl ammasome activity plays an essential role in 
MSU recognition. Elevated plasma uric acid was proposed as one of the original 
criteria for diagnosis of obesity-associated metabolic syndrome [ 140 ], and obese 
patients are more than twice as likely to develop gout [ 141 ] and develop it about 11 
years earlier than their normal-weight counterparts [ 142 ].  

2.6.5     Alzheimer’s Disease 

 Cerebral accumulation of amyloid-β plaques is one of the main pathologic features 
of Alzheimer’s disease (AD), the most common form of dementia, and this is 
believed to be a critical stimulus for many proinfl ammatory components of AD that 
induce neuronal death and memory loss. Although the role of IL-1β in the patho-
genesis of AD is controversial, numerous studies suggest that IL-1β can induce 
neuronal death and recruit infl ammatory cells into the central nervous system [ 143 ]. 
Amyloid fi brils have been reported to trigger IL-1β release from microglia and 
monocytes [ 144 ,  145 ], suggesting a potential role for infl ammasome activity in AD 
pathology. In keeping with this hypothesis, microglial NLRP3 infl ammasome activ-
ity and IL-1β secretion are activated by phagocytosis of amyloid-β protein [ 57 ], 
while microglia with genetic ablation of caspase-1 or infl ammasome components 
revealed lack of attenuated or defective infl ammatory responses to amyloid-β expo-
sure. Taken together, this data suggests that the infl ammasome may represent a 
novel therapeutic target for the treatment of AD. Small molecule caspase-1 inhibi-
tors such as those currently in clinical trials (see below) appear to be the best candi-
dates for AD therapeutics, due to the diffi culty expected in delivering recombinant 
protein therapeutics across the blood–brain barrier.   

2.7     Cancer, Obesity and Infl ammation 

 Mounting evidence suggests that infl ammation promotes cancer development. 
Infl ammatory responses are associated with 15–20 % of all cancer deaths world-
wide, and infl ammatory cells and factors are present in the microenvironment of 
most tumors, where they are often associated with metastasis and poor prognosis 
[ 146 ]. Proinfl ammatory cytokines, including IL-1β, IL-6, and TNFα, implicated to 
link infl ammation and increased cancer risk, are expressed by adipose tissue and 
demonstrate increased systemic expression in overweight and obese human subjects 
[ 90 ]. Body fat is convincingly associated with colorectal, kidney, esophageal, pan-
creatic, endometrial, and postmenopausal breast cancer, and a recent meta-analysis 
of prospective cancer studies has expanded this list to include thyroid cancer, leuke-
mia, multiple myeloma, and non-Hodgkin lymphoma in both men and women and 
increased risk of malignant melanoma in men [ 147 ]. Body weight is also associated 
with increased cancer mortality, since a prospective analysis of more than 900,000 
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US adults proposed that overweight and obesity may account for 14 % and 20 % of 
cancer deaths in men and women ≥50 years of age, respectively [ 148 ]. Based on the 
growing worldwide obesity epidemic, weight gain may represent the largest avoid-
able cause of cancer in nonsmokers. 

2.7.1     Cell Death and Infl ammasome Activity 

 An important hallmark of cancer is the ability of cancer cells to escape immunosur-
veillance [ 149 ]. Cancer cells are often resistant to various types of programmed cell 
death including apoptosis, programmed necrosis, and mitotic catastrophe [ 150 ]. 
Similarly infl ammasome-mediated cell death, or pyroptosis, also appears to be 
involved in oncogenesis, since dysregulation of pyroptosis is tightly associated with 
tumor progression [ 151 ,  152 ]. Pyroptosis is stimulated by caspase-1 activity and 
plays key roles in anti-pathogen infl ammatory responses, since bacterially infected 
macrophages and dendritic cells are usually eliminated through pyroptosis [ 152 ]. 
Caspase-1 activity can be activated by several mechanisms during pyroptosis. First, 
caspase-1 activity can be induced by classical infl ammasomes, which usually con-
tain NLRP3 or the cytoplasmic DNA sensor protein AIM2 [ 153 ]. Second, ASC can 
be recruited to a single subcellular location and aggregate into a polymer called an 
“ASC focus,” “ASC speck,” or “pyroptosome” that can then recruit and activate 
caspase-1 [ 154 – 156 ]. Finally, the NLRC4 infl ammasome can also activate caspase-
 1 via a nonclassical, ASC-independent mechanism [ 157 ]. 

 In pyroptosis, activated caspase-1 catalyzes the proteolytic activation of caspase-
 7, but not caspase-3, caspase-8, or caspase-9, to initiate programmed cell death 
[ 158 ]. However, while pyroptosis shares certain features with classical programmed 
cell death mediated via apoptosis, recent studies have identifi ed characteristics that 
distinguish pyroptosis from apoptosis. First, apoptotic and pyroptotic cells demon-
strate distinct DNA damage patterns. Both apoptotic and pyroptotic DNA damage 
can be detected by TUNEL staining [ 159 ,  160 ], but pyroptotic cells have a distinct 
nuclear morphology and usually lack the DNA laddering pattern characteristic of 
apoptotic DNA damage [ 159 ,  161 ]. Second, these processes have differential effects 
on cell membrane composition and integrity. For example, apoptosis triggers phos-
phatidylserine translocation from the inner to the outer plasma membrane, resulting 
in a cell surface annexin V-staining pattern. By contrast, during pyroptosis the for-
mation of plasma membrane pores allows annexin V to enter the cell to produce an 
inner cell membrane staining pattern [ 162 – 164 ]. Finally, apoptotic and pyroptotic 
cell debris demonstrate different fates. During apoptosis, dying cells are cleaved 
into spherical membrane-bound structures known as apoptotic bodies that are ulti-
mately cleared by phagocytosis [ 165 ], while the cytosolic contents of pyroptotic 
cells are released into extracellular space [ 159 ]. 

 Similar to apoptosis, pyroptosis is thought to contribute to cell-autonomous 
tumor suppression. In support of this hypothesis, caspase-1 is downregulated in 
most human prostrate cancers, and caspase-1 overexpression in cultured prostate 
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cancer cells enhances their sensitivity to radiation-induced killing [ 166 ]. One study 
has also reported that NLRP3-defi cient mice are more susceptible to colitis- 
associated colon cancer [ 167 ], while another has reported that NLRC4-defi cient 
mice, but not NLRP3-defi cient mice, have more tumor load than wild-type mice 
after exposure to azoxymethane-dextran sulfate sodium (AOM-DSS) [ 168 ]. Thus, 
while the function of specifi c infl ammasomes in tumor suppression remains a mat-
ter of debate, these results appear to support the hypothesis that pyroptosis plays an 
important regulatory role in cancer development.  

2.7.2     The Infl ammasomes and Carcinogenesis 

 Chronic infl ammation is often linked with increased cancer risk, and proinfl amma-
tory cytokines, such as IL-1β, TNF-α, and IL-6, are frequently associated with 
tumor progression [ 169 ]. However, the effect of infl ammasomes on specifi c proin-
fl ammatory processes associated with increased cancer risk, such as colitis and 
colitis-associated cancer, remains controversial. For example, capase-1 or NLRP3 
defi ciency is reported to reduce colitis severity in DSS-treated mice [ 170 ,  171 ]. 
Consistent with these results, high levels of IL-1 in the tumor microenvironment 
usually correlate with a poor prognosis [ 172 ]. However, other authors have reported 
that mice with NLRP3, ASC, caspase-1, NLRP6, or NLRP12 defi ciencies are more 
susceptible to DSS-induced colitis and death [ 167 ,  173 – 177 ]. In one case, an IL-18 
defi cit following AOM-DSS-induced intestinal damage in caspase-1 and ASC- 
defi cient mice caused a systemic spread of commensal bacteria due to the inability 
of these mice to repair the mucosal barrier [ 174 ]. Colitis-associated cancer has also 
been reported to be signifi cantly increased upon genetic deletion of components of 
the NLRP3 infl ammasome (ASC, NLRP3, or caspase-1) [ 167 ,  168 ,  177 ]. These 
contradictory observations for NLRP3 infl ammasome effects on AOM-DSS-
induced colitis may be due to animal facility-dependent differences in gut micro-
fl ora [ 178 ]. 

 Despite contradictory reports on infl ammasome effects on colitis, in vivo experi-
ments suggest that IL-1β and IL-18 play important roles in promoting gastric, 
hepatic, and breast cancer progression [ 179 – 181 ]. Further, gastric-specifi c IL-1β 
expression in transgenic mice induces gastric tumorigenesis [ 182 ], while IL-1β-
defi cient mice have reduced and retarded subcutaneous tumor development in 
response to transdermal 3-methylcholanthrene [ 183 ], suggesting that local IL-1β-
induced infl ammation is strongly associated with carcinogenesis. 

 Based on this link, approaches that inhibit NLRP3, caspase-1, IL-1β, and IL-18 
have been used to develop novel therapies to that have been assessed in a variety of 
experimental cancer systems. Small compounds targeting infl ammasomes or 
NLRP3 have not been successful due to off-target effects [ 184 – 187 ]. However, 
reagents targeting IL-1β and IL-18, including monoclonal antibodies and recombi-
nant derivatives [ 188 ,  189 ], have been more successful. For example, in patients 
with smoldering or indolent multiple myeloma, treatment with anakinra, a 
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recombinant non-glycosylated form of the human IL-1 receptor antagonist (IL-1ra), 
was found to decrease myeloma proliferation rates and high-sensitivity C-reactive 
protein (hsCRP) levels, leading to a chronic disease state with improved progression- 
free survival [ 190 ]. IL-1 inhibitors have also been shown to reduce the side effects 
of anticancer therapy [ 191 ,  192 ]. Based on the ability of IL-1R antagonism to reduce 
tumor burden and metastasis and the relatively low risk of in vivo IL-1 inhibition, 
future preclinical and clinical trials are needed to examine the effect of IL-1 inhibi-
tion on cancer outcomes [ 193 ].  

2.7.3     Infl ammasome-Dependent Anticancer Responses 

 While the infl ammasome has often been linked to innate immunity, chronic infl am-
mation, and carcinogenesis, mounting evidence suggests that the infl ammasome is 
also involved in anticancer responses. Infl ammasomes are hypothesized to inhibit 
tumor progression through several mechanisms, including (1) triggering innate 
immune reactions against potentially carcinogenic microbiota; (2) inducing the 
pyroptotic demise of premalignant, infected cells; and (3) facilitating antitumor 
adaptive immune responses [ 11 ]. 

 IL-1β plays an essential role in stimulating adaptive immune responses and facil-
itating anticancer immunosurveillance [ 194 ]. Anticancer chemotherapies primarily 
eliminate tumors by inducing immunogenic cell death [ 195 ]. The immunogenic 
signals secreted by dying tumor cells not only attract innate immune effector cells 
into the tumor bed but also stimulate P2RX7 receptor-mediated activation of the 
NLRP3 infl ammasome to produce IL-1β [ 196 ]. IL-1β, in conjunction with IL-23, 
then induces IL-17 secretion by γδ T cells [ 197 ,  198 ] and the polarization of CD8+ 
αβ T cell responses toward increased IFN-γ secretion [ 199 ]. Mice lacking P2RX7, 
NLRP3, ASC, caspase-1, or IL-1R1 do not respond to chemotherapies that elicit 
immunogenic cell death signals in wild-type mice [ 196 ]. Similarly, blockade of 
IL-1β signaling signifi cantly impairs the growth-inhibitory effects of tumor chemo-
therapies in a variety of mouse models [ 197 ,  200 ]. Finally, P2RX7-mediated activa-
tion of the NLRP3 infl ammasome is also required for the effi cacy of anticancer 
therapies in patients [ 196 ,  201 – 203 ]. Taken together, these results indicate that 
infl ammasome activity contributes to antitumor adaptive immune responses induced 
during chemotherapy. The study of the precise molecular mechanisms through 
which infl ammasomes modulate anticancer immune responses may therefore yield 
insight into better anticancer therapeutics.   

2.8     Pharmaceutical Interventions Targeting the Infl ammasome 

 Several treatments designed to attenuate complications of metabolic disorders have 
now been developed using approaches that target NLRP3 infl ammasome activity. 
Most of these strategies have focused on the development of therapeutic agents to 
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attenuate IL-1β activity, although other agents that directly target infl ammasome 
function and caspase-1 activity are also under development and may provide alter-
native therapeutic approaches with distinct advantages and disadvantages. One 
major concern of all these approaches, however, is the potential for reduced tissue 
repair and immune surveillance, as a result of excessive suppression of NLRP3 
infl ammasome responses. 

2.8.1     Therapeutics Targeting IL-1β Activity 

 IL-1β can reduce tissue insulin sensitivity and inhibit insulin production by pancre-
atic β-cell [ 204 ,  205 ], while antagonism of IL-1β signaling, by receptor blockade or 
cytokine neutralization approaches, has been shown to ameliorate several proin-
fl ammatory conditions, including type 2 diabetes. For example, short-term treat-
ment of a small cohort of type 2 diabetic patients with anakinra, a recombinant 
non-glycosylated form of the human IL-1 receptor antagonist (IL-1ra) that is FDA 
approved for treatment of rheumatoid arthritis, was found to signifi cantly improve 
glycemia and β-cell function, while decreasing the plasma level of two surrogate 
markers of systemic infl ammation, hsCRP and IL-6 [ 206 ]. These effects occurred 
within 4 weeks of treatment and were sustained at 13 weeks of treatment. However, 
no signifi cant improvements were observed in insulin sensitivity, insulin-regulated 
skeletal muscle gene expression, or serum adipokine levels, indicating anakinra 
treatment effects were due primarily to improvements in β-cell function rather than 
enhanced glucose disposal. Similar results were found in a second study performed 
with a cohort of insulin-resistant but nondiabetic obese human subjects, where 
anakinra also failed to improve insulin sensitivity [ 207 ]. Anakinra-mediated IL-1β 
antagonism does not, therefore, appear to signifi cantly impact skeletal muscle insu-
lin sensitivity, although the reason for this failure is unclear. Adverse events associ-
ated with anakinra usage in these studies were relatively mild, primarily consisting 
of transient injection-site reactions that most likely result from the solution used to 
dissolve the recombinant protein, although this is aggravated by a need for daily 
subcutaneous injections due to the short half-life (<1 h) of anakinra [ 208 ]. 

 IL-1 neutralizing agents provide an alternate means to attenuate the deleterious 
effects of infl ammasome activation. Rilonacept, a recombinant therapeutic agent 
used to neutralize free IL-1α and IL-1β, has been shown to signifi cantly reduce pain 
scores and plasma hsCRP levels in a small study of ten patients with chronic gouty 
arthritis, refractive to standard treatment approaches, and to prevent acute gout 
fl ares during the initiation of urate-lowering therapy [ 209 ,  210 ]. Rilonacept, how-
ever, attenuates both IL-1α and IL-1β activity and thus cannot differentiate between 
infl ammasome-mediated IL-1β effects and those of IL-1α. More recent approaches 
to specifi cally inhibit IL-1β bioactivity in the treatment of human infl ammatory 
disorders have resulted in the production of new agents such as canakinumab, a 
fully human monoclonal antibody that neutralizes IL-1β bioactivity. Canakinumab 
can be administered intravenously or subcutaneously and is FDA approved for the 
treatment of cryopyrin-associated periodic syndromes (CAPS), including familial 
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cold auto-infl ammatory syndrome and Muckle-Wells syndrome [ 211 ], which are 
associated with mutations in NLRP3 [ 13 ]. Canakinumab is also now being used in 
clinical trials for the treatment of a number of infl ammation-related disorders such 
as type 2 diabetes and its derived complications and chronic obstructive pulmonary 
disease, with the CANTOS trial (cardiovascular risk reduction in type 2 diabetes) 
representing the largest trial of any anti-cytokine drug to date [ 212 ]. 

 In addition to these three FDA-approved drugs, a number of agents targeting the 
IL-1 pathway are under preclinical or clinical development. The majority of these 
agents are neutralizing antibodies, such as gevokizumab (XOMA-052) and 
LY2189102, that reduce IL-1β bioavailability [ 212 ], although IL-1 receptor block-
ing antibodies, such as MEDI-8968 and AMG-108 (aka MEDI-78998), are also 
under study as novel therapeutics for treatment of chronic infl ammatory diseases. 
XOMA-052 has been granted orphan drug status by the FDA for the treatment of 
Behçet’s disease, a rare condition where chronic immune-mediated vascular infl am-
mation can result in severe neurological, pulmonary, gastrointestinal, and cardio-
vascular complications [ 213 ]. XOMA-052, LY2189102, MEDI-8968, and 
AMG-108 are all now under investigation in phase II clinical trials: XOMA-052 and 
LY2189102 for the treatment of type 2 diabetes, MDI-8968 for the treatment of 
chronic obstructive pulmonary disease [ 212 ], and AMG-108 for the treatment of 
rheumatoid arthritis. Both MEDI-8968 and AMG-108 are fully human monoclonal 
antibodies that selectively bind IL-1R to inhibit the binding and subsequent signal-
ing of both IL-1α and IL-1β, resulting in inhibition that is not restricted to 
infl ammasome- mediated IL-1β responses. However, a clinical trial of AMG-108 
effects on patients with rheumatoid arthritis or osteoarthritis of the knee found mod-
erate disease improvement coupled with an excellent safety profi le [ 214 ,  215 ], sug-
gesting that an “off-target” suppression of IL-1α may not produce severe side 
effects. Finally, induction of endogenous antibodies by therapeutic vaccines has 
proven to be a safe and effective means of attenuating other disease conditions 
[ 216 ]. Recently, this approach has also been extended to cytokine-induced disease 
conditions, and a vaccine targeting IL-1β (CYT-013) is currently in phase I clinical 
trial in patients with type 2 diabetes [ 212 ].  

2.8.2     Therapeutic Approaches Acting on the Infl ammasome 
or Caspase-1 

 Infl ammasomes play important roles in immune surveillance and tissue repair. 
Thus, approaches designed to directly target pathological infl ammasome activity 
need to maintain a careful balance between attenuating deleterious infl ammatory 
activity and maintaining necessary host defense and tissue repair responses. 
Relatively little is known about the exact mechanisms that regulate infl ammasome 
assembly and caspase-1 activation, however, and these may differ according to the 
stimulus and NLR subtype of the infl ammasome complex. Caspase-1 blockade thus 
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appears to be a far more attractive target for treatment of infl ammasome-related 
disorders due to the greater knowledge base available for caspase-1 inhibition. 

 Two small molecule caspase-1 inhibitors, VX-765 and VX-740 (pralnacasan), 
have been tested in clinical trials for the treatment of chronic plaque psoriasis, rheu-
matoid arthritis, and psoriasis [ 217 ]. VX-765 has also been tested on six patients 
with Muckle-Wells syndrome, resulting from mutations in NLRP3, where it was 
found to signifi cantly reduce infl ammatory markers, recurrent fevers, and arthritis 
[ 212 ]. The rheumatoid arthritis clinical trial using VX-740 was discontinued, how-
ever, due to liver abnormalities in animal toxicology studies [ 217 ]. No caspase-1 
inhibitors are currently approved for clinical use, but other approved drugs with 
known anti-infl ammatory activity may function in part by attenuating infl amma-
some complex activity. For example, treatment with glyburide, a sulfonylurea drug 
frequently used for the treatment of type 2 diabetes [ 51 ,  55 ], has been shown to 
attenuate infl ammation under diabetic conditions by blocking IAPP-stimulated 
NLRP3 infl ammasome activation and IL-1β secretion [ 51 ]. Glyburide has also been 
shown to prevent NLRP3 infl ammasome activation in response to  pathogen- associated 
and DAMP signals and biological crystals [ 55 ]. Glyburide inhibits ATP- sensitive 
potassium channels (K 

ATP
 ) in pancreatic β-cells to induce insulin secretion, but 

NLRP3 activation and glyburide-mediated inhibition were preserved in  macrophages 
lacking K 

ATP
  subunits and ATP-binding cassette transporter proteins, indicating that 

glyburide does not inhibit NLRP3 infl ammasome activity through attenuating 
 potassium effl ux. Moreover, glyburide had no effect on NLRP3 ATPase activity, 
strongly suggesting that glyburide acts upstream of the NLRP3 infl ammasome [ 55 ].  

2.8.3     Other Therapeutic Targets to Attenuate 
Infl ammasome Activity 

 Improved knowledge of the signaling networks involved in infl ammasome activa-
tion has led to the discovery and testing of new therapeutic targets, such as the P2X 
purinoceptor 7 (P2RX7), an ATP receptor that regulates potassium effl ux to induce 
infl ammasome-mediated caspase-1 activation [ 117 ]. However, while several studies 
have now been performed with P2RX7 antagonists, none have shown signifi cant 
action to reduce infl ammation. AZD9056, an oral P2RX7 antagonist, has been eval-
uated in a phase IIa and subsequent phase IIb clinical trial for treatment of rheuma-
toid arthritis, but failed to demonstrate any signifi cant effi cacy [ 218 ]. The P2RX7 
antagonist CE-224,535 also failed to reveal effi cacy in patients with active rheuma-
toid arthritis and an inadequate response to methotrexate [ 219 ]. Finally, the P2RX7 
modulator GSK1482160 was also recently investigated for single-dose safety, toler-
ability, pharmacokinetics, and pharmacodynamics, in healthy human subjects, but 
simulations lead to the conclusion that it was not possible to achieve the desired 
level of pharmacology, resulting in the termination of GSK1482160 development 
for chronic infl ammatory pain [ 220 ].   
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2.9     Summary 

 Increasing evidence indicates multiple metabolic and cellular factors  contribute to 
NLRP3 infl ammasome activation, which plays a key role in adipose tissue infl amma-
tion and resultant obesity-associated tissue injury and metabolic derangement. These 
observations have widespread implications for a variety of diseases that are increased 
in obesity including diabetes, atherosclerosis, NASH, Alzheimer’s disease, and 
 cancer. Better understanding of the roles of NLRP3, IL-1β and IL-18 in mediating 
specifi c tissue injuries coupled with new therapeutics that target infl ammasome activ-
ity may permit the development of novel and more precise interventions to prevent or 
treat these important disease conditions. Therapeutic control of the infl ammasome is 
in our grasp.     
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    Abstract     As the epidemic of overweight and obesity spreads, the number of 
 individuals at risk for metabolic complications of obesity, including cardiovascular 
disease, type 2 diabetes, and cancer, is expected to increase. Importantly, the risks 
of complications are not evenly distributed, because not all obesity is biochemically 
identical. Here we describe “metabolically healthy obese” humans and animal mod-
els that show remarkable protection from insulin resistance and glucose intolerance, 
despite severe obesity. A hallmark of these patients and animals is their reduced 
infl ammatory profi le, which we hypothesize confers protection not only from car-
diometabolic risk in obesity but also from obesity-associated cancers. Research is 
urgently required to investigate the basis for this protection, to identify treatment 
options and prevention strategies for at-risk populations. We explore novel insights 
into chromatin-based, transcriptional co-regulator mechanisms that link apparently 
unrelated diseases, with the idea that certain molecularly targeted strategies could 
moderate multiple risks in obesity. We voice concern that low socioeconomic status 
citizens are particularly at risk for cardiometabolic disease and obesity-associated 
cancer, in part because many such individuals live in infl ammatory and obesogenic 
environments. An integrated and hypothesis-driven approach is needed to study and 
protect these vulnerable and underserved populations from the rising tide of obesity- 
associated cancer.  

    Chapter 3   
 Uncoupling Obesity from Cancer: 
Bromodomain Co-regulators That 
Control Infl ammatory Networks 

                Gerald     V.     Denis       and     Deborah     J.     Bowen     

           G.  V.   Denis ,  Ph.D. ()     
  Section of Hematology Oncology, Department of Pharmacology and Experimental 
Therapeutics and Cancer Research Center ,  Boston University School of Medicine , 
  72 East Concord Street, K520 ,  Boston ,  MA   02118 ,  USA   
 e-mail: gdenis@bu.edu   

    D.  J.   Bowen ,  Ph.D.      
  Department of Community Health Sciences ,  Boston University School of Public Health , 
  801 Massachusetts Avenue 4th fl oor ,  Boston ,  MA   02118 ,  USA   
 e-mail: dbowen@bu.edu  



62

3.1         The Problem of Obesity-Associated Cancer 

 Diet-induced overnutrition that causes unhealthy weight gain, defi ned in humans as 
 overweight  (Body Mass Index [BMI] 25.0–29.9 kg/m 2 ),  obesity  (BMI ≥30.0–39.9 kg/
m 2 ), and  morbid obesity  (BMI ≥40.0 kg/m 2 ), has many medical complications. The real-
ization that obesity had become a serious public health concern was initially driven by 
projected increases in the prevalence of metabolic complications, such as elevated risk 
for stroke, cardiovascular disease, and type 2 diabetes. The complications of obesity also 
include dyslipidemia, hypertension, sleep apnea, hepatosteatosis, and glucose intoler-
ance [ 1 ]. However, attention has been recently focused on a particularly worrisome 
complication: obesity-associated malignancy [ 2 ,  3 ]. Recent epidemiological reports 
have caused serious disquiet that, despite overall declines in cancer rates, particularly the 
rates for tobacco-associated cancers, the rates of obesity-associated cancers are  climbing. 
Obesity is now thought to be one of the most important preventable causes of several 
cancers [ 4 ]; these include esophageal adenocarcinoma, colorectal cancer, breast cancer 
in postmenopausal women (but not premenopausal women), and cancers of the endo-
metrium, kidney, pancreas, liver, and gallbladder [ 3 ,  5 ,  6 ]. The National Cancer Institute, 
American Cancer Society, and American Association for Cancer Research have been 
using their infl uence and expert opinion in recent years to increase the public profi le and 
research portfolio devoted to this problem and its allied risk factors. Obesity- associated 
malignancies have been estimated to account for 14 % of male and 20 % of female US 
cancer mortality, notably colorectal cancer and postmenopausal breast cancer [ 2 ]. This 
chapter will present some of the molecular, cellular, and immunological features that 
link obesity and its complications to cancer. 

 In view of recent data from the US Centers for Disease Control and Prevention 
[ 7 ], showing that all US states now report at least 20 % prevalence of obesity among 
adults, as well as the classifi cation of 1.7 billion people worldwide as overweight 
[ 8 ], obesity-associated cancer is positioned to become one of the defi ning prevent-
able diseases of our time. Diabetes is also a serious complication among the chronic 
disease burdens of obesity. In fact, overweight and obesity are now well established 
to be the direct cause of most cases of type 2 diabetes [ 9 ]. Three hundred and sixty- 
six million cases worldwide was a frequently cited early estimate of the incidence 
of type 2 diabetes by 2030 [ 10 ]. Alarmingly, more recent estimates have adjusted 
upward the anticipated number of diabetic individuals to 439 million by 2030 [ 11 ]. 
Almost all of the incidence will be driven by overweight and obesity. The antici-
pated further increases in BMI worldwide [ 12 ] predict that the seriousness of the 
problem of obesity-associated cancer will also deepen in coming decades.  

3.2     Molecular Features of Insulin-Resistant Obesity 

 The molecular mechanisms that explain how obesity contributes to cancer risk 
are still largely unknown in detail. Early epidemiological investigation of obe-
sity and its comorbidities identifi ed an association between the incidence of 
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type 2 diabetes and obesity [ 13 ]. Some of the key features of insulin-resistant 
obesity include elevated concentrations of blood glucose in fasted subjects and 
impaired glucose tolerance, as well as elevated blood concentrations of insulin 
in fasted subjects and reduced insulin sensitivity. Leptin, which is a critical 
regulator of appetite, is produced by adipocytes and is elevated in obesity in 
proportion to adipose tissue mass [ 14 ]. This hyperleptinemia in obesity has been 
frequently described as “leptin resistance,” a term now thought to lack clinical 
utility [ 15 ]. In addition, insulin-resistant obesity frequently features reduced 
serum concentrations of adiponectin [ 16 ,  17 ], an insulin-sensitizing adipokine 
[ 18 ] that exhibits benefi cial, antiatherogenic effects. These characteristics are 
commonly observed together in obese subjects [ 19 – 21 ] and animal models [ 22 ] 
and refl ect the growing inability of peripheral tissues of the obese subject, such 
as skeletal muscle and fat stores, to transport glucose from blood into cells at 
normal levels of insulin present in the circulation. This state has been described 
as peripheral insulin resistance. Commonly, the pancreatic β-cells of such a 
subject are required to secrete ever higher levels of insulin to compensate for the 
peripheral insulin resistance. In humans and certain rodent models, this chronic 
hyperinsulinemia and accompanying β-cell dysfunction are two of the defi ning 
characteristics of insulin-resistant obesity and are often associated with 
increased serum levels and bioavailability of the related mitogenic factor, insu-
lin-like growth factor (IGF)-1 [ 23 ]. 

 These clinical presentations provoked questions about which biochemical 
features of insulin resistance and type 2 diabetes were important for carcinogen-
esis in obesity. Signal transduction through the insulin receptor and IGF-1 
receptor [ 24 ] is thought to increase cancer risk in obesity [ 25 ,  26 ]. Fasting insu-
lin concentrations have been used convincingly as a prognostic factor for overall 
survival among breast cancer patients, with the highest hazard ratio associated 
with the highest insulin concentrations [ 27 ]. Leptin also promotes mitogenic 
[ 28 – 31 ] and invasive [ 32 ] effects in a variety of human cancer cell lines [ 33 – 35 ] 
and tumor models in animals [ 36 ]. For example, leptin-defi cient mice appear to 
be protected from mammary carcinogenesis [ 37 – 39 ]. Adiponectin not only 
protects insulin-sensitive glucose transport but also appears to be inversely 
correlated with susceptibility to certain obesity-associated cancers [ 40 – 42 ]. 
Furthermore, the leptin-adiponectin ratio has been proposed to be a critical pre-
dictor of cancer risk [ 38 ]. These features have been well summarized elsewhere 
[ 43 – 45 ]. However, the co-occurrence of these multiple factors in obesity has 
made it diffi cult to defi ne the relative importance of each. Overall, rodent mod-
els have tended to show that alteration of any single factor in isolation affects 
mitogenesis, tumor progression, or other relevant parameter of the malignancy. 
Experimental designs that use rodent models in which multiple variables are 
manipulated simultaneously to infl uence cancer risk do not permit straightfor-
ward interpretation; thus, the fi eld remains divided about which cellular and 
molecular factors are of paramount importance for specifi c obesity-associated 
cancers.  
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3.3     Insulin-Resistant Obesity Is Also an Infl ammatory Disease 

 One of the earliest described immunological features of insulin-resistant obesity 
was subclinical, unresolved, chronic infl ammation, which occurs both systemically 
[ 47 ,  67 ] and in white adipose tissue [ 48 ], which is infi ltrated with pro-infl ammatory 
macrophages [ 49 – 52 ]. Specifi cally, such patients demonstrate elevated serum con-
centrations of acute phase proteins and pro-infl ammatory cytokines [ 53 ], such as 
interleukin (IL)-1β, IL-6, and C-reactive protein, that improve over time after inten-
tional weight loss [ 54 ,  55 ,  67 ] or bariatric surgery [ 56 ]. Exposure of glucose- 
transporting cells to the pro-infl ammatory cytokine tumor necrosis factor (TNF)-α 
was demonstrated as long ago as 1993 to promote insulin resistance directly [ 57 ]. 
Adipose tissue depots, composed of white adipocytes, are typically infl amed, that 
is, infi ltrated with Th1- and Th17-polarized T cells [ 58 ] and pro-infl ammatory mac-
rophages, both in obese humans [ 59 – 63 ] and animal models [ 50 ,  51 ,  59 ,  64 – 66 ] of 
diet-induced obesity. In insulin-resistant obesity, the pro-infl ammatory macro-
phages that infi ltrate these depots secrete signifi cant amounts of pro-infl ammatory 
cytokines, which, in addition to TNF-α [ 57 ], include IL-6, IL-8, and monocyte che-
moattractant protein (MCP)-1/chemokine (C–C motif) ligand (CCL)2 [ 46 ,  67 ]. 
Systemic infl ammation is also a feature of insulin-resistant obesity, as indicated by 
elevated serum levels of C-reactive protein [ 68 ] and several of the aforementioned 
and other cytokines [ 61 ]. Furthermore, chemokines such as MCP-1/CCL2 also 
serve to recruit additional leukocytes, such as peripheral blood monocytes that 
express the C–C motif chemokine receptor (CCR) 2 [ 50 ,  51 ,  60 ], to infi ltrate the 
insulin-resistant adipose depot in a deepening cycle of unresolved, chronic 
 infl ammation. Thus, a feed-forward loop is established that is diffi cult for homeo-
static forces in the immune system to oppose [ 58 ]. Failure of the anti-infl ammatory 
balance may also be an independent, critical factor in the emergence of the many 
comorbidities of obesity. 

 Moreover, certain specifi c, histological features defi ne insulin-resistant adipose 
tissue. The adipocytes frequently become stressed as their storage limits are 
exceeded, leading to a large number of apoptotic adipocytes, a process that is 
thought to recruit additional leukocytes [ 59 ]. The dead and dying adipocytes of 
stressed white adipose tissue appear surrounded with a ring of pro-infl ammatory 
macrophages (CD68 +  in humans [ 69 ]) that are histologically termed “crown-like 
structures” [ 59 ] and are associated with fi brosis [ 70 ] and increased metabolic risk 
[ 71 – 74 ]. How these structures arise and are resolved by weight loss or drug treat-
ments is not well understood. In mouse models, the macrophages that infi ltrate 
metabolically unhealthy white adipose tissue tend to express a surface phenotype, 
that is, CD11b +  CD11c +  F4/80 +  by fl ow cytometry, that identifi es them as pro-
infl ammatory. These pro-infl ammatory macrophages have been directly implicated 
in the decline of metabolic health of adipocytes in white adipose tissue in different 
adipose depots in animal models [ 75 ,  76 ] and humans [ 101 ]. Early in the kinetics of 
diet-induced obesity in rodent models, adipocyte death and the development of 
whole-body insulin resistance [ 65 ] also correlate with a switch in macrophage 
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polarization toward the classically activated, pro-infl ammatory (so-called M1) 
 phenotype and away from the alternatively activated, anti-infl ammatory (“M2”) 
phenotype [ 78 ]. The CD11c +  adipose tissue macrophage populations also tran-
siently remodel the white adipose tissue, which then exhibits activities connected 
with M2-associated genes, such as increased expression of arginase, IL-10, IL-4, 
and transforming growth factor (TGF)-β [ 79 ]. The net balance of these M1 and M2 
inputs defi nes the profi le and magnitude of white adipose tissue infl ammation. 
Relatively high expression of M1 cytokines is associated with metabolic complica-
tions of obesity, including insulin resistance. However, in human adipose depots, 
the molecular details of putative M1 phenotypes and function, and the M1/M2 
switch, are less well understood than in animal models. 

 T cells are also recruited to white adipose tissue in diet-induced obesity through 
“regulated on normal T cell expressed and secreted” (RANTES/CCL5) and its 
receptor CCR5 in white adipose tissue [ 80 ,  81 ], where the Th1/Th2 polarization 
and proliferation of T cells are infl uenced by macrophage-produced cytokines 
[ 82 ]. T cells play a major role in insulin resistance [ 62 ] through macrophage 
recruitment [ 83 ]. T cell polarization between the pro-infl ammatory (interleu-
kin-17 producing) subtype (Th17 [ 84 ]) and the anti-infl ammatory (IL-10 produc-
ing) T regulatory subtype (Foxp3 +  Treg [ 85 ]) also infl uences metabolism in white 
adipose tissue. A pro- infl ammatory imbalance in CD4 +  T cell subsets has been 
demonstrated both systemically and in adipose depots of type 2 diabetic subjects 
[ 58 ]. The balance of pro-infl ammatory and anti-infl ammatory cytokines and T cell 
subsets remains perturbed in insulin-resistant obesity; some investigators hypoth-
esize the adipocyte/T cell cross talk is the critical factor that promotes disease 
pathogenesis, whereas others hypothesize that macrophages have primary impor-
tance. The interpretations have remained controversial. Recent data from human 
studies also supports a central role for B cells in the pathogenesis of type 2 diabe-
tes in obese subjects [ 58 ,  86 ,  87 ]. The independent and interdependent roles of T 
cell subsets, B cell subsets, and monocyte/macrophage polarization, and their 
specifi c cross talk with adipocytes that infl uences risks for obesity-associated can-
cer and type 2 diabetes, defi ne a central focus of the exciting new fi eld of immu-
nometabolism [ 58 ]. 

 Outside the adipose depots, the immune system of the obese and insulin-resistant 
subject demonstrates systemic, pro-infl ammatory changes in T cell, B cell, and 
myeloid subset differentiation and function that exacerbate the deepening cytokine/
chemokine imbalance as metabolism deteriorates in diet-induced obesity. Animal 
models demonstrate that stoppage of immune cell-mediated infl ammatory cascades 
by any one of several diverse techniques (e.g., genetic, small molecule, or antibody- 
based) frequently delays or prevents insulin resistance [ 88 ,  89 ]. If metabolic param-
eters improve through dietary intervention, adipose tissue infl ammation also 
typically improves [ 90 ]. The long-established links between chronic, unresolved 
infl ammation and cancer therefore provide a basis to hypothesize that the presence 
of crown-like structures, for example, or elevation of other local and systemic 
infl ammatory markers, is positively associated with cancer risk for obesity- 
associated cancers that have an infl ammatory component.  
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3.4     Insight from Unexpected Results 

 Obesity-associated malignancies are not linked to every type of cancer. Apart from 
lung cancer, which is associated with cigarette smoking [ 91 ,  92 ] or asbestos inhala-
tion and not with obesity [ 3 ], certain other cancers are also clearly not associated 
with obesity, including but not limited to astrocytoma; glioma; Kaposi’s sarcoma; 
neuroblastoma; head, neck, and oral cancer; pituitary cancer; retinoblastoma; sali-
vary cancer; and testicular cancer. A possibly relevant, shared feature of these can-
cers is that they do not originate in or near visceral adipose tissue. Compared to 
subcutaneous depots, the visceral or “central” adipose depot [ 63 ,  93 ,  94 ] is the most 
infl amed in obese insulin-resistant patients [ 95 – 97 ] and is independently associated 
with cardiometabolic risk. In animal models, the epididymal adipose depot of male 
mice is regarded as a good model for visceral adipose tissue infl ammation in diet- 
induced obesity [ 59 ,  65 ,  66 ]. Likewise, many (but not all) of the obesity-associated 
cancers are resident in or likely infl uenced by infl amed visceral adipose tissue. All 
female breast carcinomas, for example, are surrounded by signifi cant adipose depots 
in humans and the mammary fat pad in mice. It is likely that the metabolic and 
infl ammatory properties of this adipose depot are highly relevant to specifi c aspects 
of breast cancer progression, invasiveness, metastasis, or recurrence, although this 
area has not received suffi cient attention from investigators. 

 The observation that insulin-resistant obesity features  systemic  elevations of pro- 
infl ammatory cytokines, as well as systemically elevated glucose, insulin, IGF-1, 
leptin, and depleted adiponectin, raises a problem. Why are not all cancers obesity- 
associated? If the argument is made that insulin and IGF-1 signaling cross talk, as 
well as leptin-promoted, broad-spectrum mitogenesis or diminished protection 
from adiponectin, are critical factors that explain obesity-associated cancers, why 
should so many cancers be unrelated to obesity? Presumably these systemic factors 
affect diverse tissues roughly equally, although different cells of origin of the tumor 
likely respond differently to the complex endocrine and metabolic microenviron-
ment in each tissue. A recent repeated measures study from the Women’s Health 
Initiative suggests that, at least in the case of colorectal cancer risk in postmeno-
pausal women, the most important association is with elevated glucose, not elevated 
insulin [ 98 ]. It seems likely that additional features of the obese subject infl uence 
carcinogenesis and perhaps stratify risk for obesity-associated cancer. 

 Although insulin-resistant obesity is a chronic infl ammatory disease, 20–30 % of 
adult obese individuals preserve a  reduced  infl ammatory profi le. The white adipose 
tissue of these un-infl amed, adult subjects shows lower numbers of infi ltrating leu-
kocytes [ 72 ], while systemically, serum concentrations of pro-infl ammatory cyto-
kine are lower [ 99 ,  100 ] than in insulin-resistant obese adult subjects. These 
un-infl amed subjects exhibit normal or near-normal glucose tolerance [ 72 ] (Fig.  3.1 ), 
reduced cardiovascular disease risk [ 77 ], and lack metabolic syndrome [ 72 ,    102, 169 ]. 
They remain relatively “metabolically healthy” with low-infl ammatory profi les 
despite obesity [   103 ,  104 ,  169 ] and represent an important off-diagonal population 
for which cardiovascular risk appears to be uncoupled from obesity [ 105 ,  106 ]. 
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The well-established association between unresolved, chronic infl ammation and 
cancer [ 107 ,  108 ] (e.g., between Crohn’s disease and colorectal cancer [ 109 ]) sug-
gests that infl amed adipose tissue in insulin-resistant obese adults plays a critical 
role in obesity-associated carcinogenesis. We have previously hypothesized that the 
low-infl ammatory features and preserved glucose tolerance of these subjects  also 
protects against risks for obesity-associated cancers  [ 110 ].

   How do these metabolically healthy obese individuals remain un-infl amed? We 
have focused on a recently described transcriptional mechanism that may link 
chronic infl ammation, obesity, and cancer [ 140 ]. Bromodomain-containing tran-
scriptional co-regulators [ 112 ] bind to acetylated histones [ 113 – 115 ] in the 

  Fig. 3.1    “Metabolically healthy obesity.” ( a ) Glucose infusion rates (GIR) in 237 subjects for a 
broad range of BMI and metabolic health. Insulin sensitivity was determined by GIR during the 
steady state of a euglycemic-hyperinsulinemic clamp. The highest and lowest quintiles of GIR are 
marked ( horizontal boxes ) to show that the frequency of insulin resistance is very low in healthy 
obesity. A regression curve ( dotted line ) of GIR over BMI is based on all available patients. The 
BMI stratum 39–40 identifi es a continuous distribution ( vertical box ) of rates to show that there is 
no clear separation between insulin-sensitive and insulin-resistant obesity. Note that certain, rare 
individuals with unusually high BMI (>60) nevertheless display normal, healthy GIR during the 
clamp. (Subject exclusion criteria were diabetes, hypertension, acute or chronic infl ammatory dis-
ease with leukocyte count >8,000 Gpt/L, CRP >5.0 mg/dL or clinical signs of infection, and other 
relevant criteria as detailed in ref. [ 77 ].) ( b ) Prevalence of insulin-sensitive (GIR >80 μmol glu-
cose/kg/min) and insulin-resistant (GIR <40 μmol glucose/kg/min) healthy obesity (data from 
Blüher M (2010). The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. 
 Curr Opin Lipidol , 21(1):38–43 are reproduced with permission from M. Blüher and Wolters 
Kluwer, publishers)       
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nucleosomal chromatin of mammals and target specifi c genes for transcriptional 
activation or repression. In this way, they functionally resemble SWItch/Sucrose 
NonFermentable (SWI/SNF) nucleosome remodeling complexes, which also con-
tain bromodomain subunits and function to activate or silence coordinated networks 
of genes [ 116 ]. Bromodomains are protein motifs of about 110 amino acids in 
length [ 117 ,  118 ], comprised of four antiparallel α-helices that are linked by con-
necting loops, which form a binding pocket that is specifi c for acetylated lysine 
[ 119 ]. These motifs are found in transcription factors, histone acetylases, and related 
chromatin-directed proteins that are important for gene regulation [ 117 ,  120 ,  121 ]. 
Previous work has shown that the double bromodomain-containing proteins Brd2 
[ 122 ,  123 ] and Brd4 [ 124 ] couple histone acetylation to transcription [ 125 ,  126 ] and 
are critical for transcriptional control of cell cycle genes [ 127 – 131 ]. Increased or 
deregulated expression of either protein is oncogenic. In humans, reciprocal 
chromosomal translocation of  BRD4  [ 132 ] creates a dangerous oncoprotein that 
promotes an aggressive, poorly differentiated, and incurable carcinoma of the mid-
line, called NUT midline carcinoma, that affl icts relatively young people [ 133 ,  134 ]. 
Remarkable recent studies with small molecule inhibitors of the binding interface 
between the acetylated lysines and bromodomain have revealed that the chromatin- 
bromodomain interaction is “druggable” [ 135 ], which came as a surprise to the 
fi eld. Conventional wisdom had held that interactions with such protein motifs in 
chromatin were unappealing targets for the development of small molecule inhibi-
tors. In the case of midline carcinoma [ 136 ] and other human malignancies [ 137 –
 139 ], such drugs appear to have signifi cant anticancer benefi t [ 140 ]. These 
developments linked Brd2 and Brd4 with cancer and chromatin-controlled networks 
of gene expression that are coordinated through shared complexes, analogous to the 
SWI/SNF-regulated array of genes. But the chromatin-based connections between 
cancer, obesity, and infl ammation remained obscure until unexpected results from a 
bromodomain-manipulated mouse model appeared. 

 We initially developed a mouse model for Brd2 transgenic expression [ 141 ] and 
showed that upon B cell-restricted expression of Brd2, mice upregulate B cell mito-
genic responses through cyclin A transactivation [ 131 ] and eventually develop a B 
cell malignancy [ 141 ]. This cancer exhibits a transcriptional fi ngerprint most simi-
lar to the “activated B cell” (ABC) form of diffuse large B cell lymphoma in humans 
[ 142 ], with an infl ammatory signature. Surprisingly, whole-body reduction of Brd2 
in “Brd2 hypomorph” mice, by  lacZ  gene disruption, caused the development of a 
glucose-tolerant type of obesity that features elevated serum adiponectin and a 
remarkably attenuated infl ammatory profi le [ 143 ]. These results suggested that the 
Brd2 hypomorphic mouse might represent a useful model for human subjects who 
are metabolically healthy obese (Fig.  3.1 ) [ 144 ]. These humans share with the Brd2 
hypomorphic mice a low-infl ammatory profi le [ 77 ,  103 ,  105 ] and less reduction in 
serum adiponectin concentrations despite obesity [ 72 ]. The elevated concentrations 
of adiponectin measured in adiponectin transgenic mice are also metabolically pro-
tective [ 170 ], although neither adiponectin expression nor any other loci apart from 
 Brd2  were directly manipulated in Brd2 hypomorphic mice. More signifi cantly, the 
chromatin-directed networks that these bromodomain-containing co-regulators 
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control likely connect cancer, obesity, and infl ammation directly, through 
 coordinated co-activation or co-repression of interacting networks of genes; certain 
diseases likely share the same or overlapping sets of gene expression co-regulators. 
This topic has been reviewed [ 140 ]. 

 In forthcoming work, we show that small molecule inhibitors of these bromodo-
main proteins or shRNA ablation are effective as anti-infl ammatory strategies, act-
ing as global “uncouplers” of signal transduction that normally activate transcription 
of diverse cytokine genes [ 111 ]. Because many cancers have an infl ammatory com-
ponent, it is reasonable to hypothesize that the infl ammatory microenvironment of 
certain tumors will exacerbate carcinogenesis, tumor progression, invasion, metas-
tasis, or recurrence. Targeted uncoupling of signal transduction from transcription 
through bromodomain protein-specifi c small molecule inhibitors [ 140 ] may prove 
to be a novel and effi cacious therapeutic or preventive approach to reduce the 
infl ammatory cascades that contribute to obesity-associated cancer. The combined 
anti-infl ammatory [ 145 ] and anticancer [ 136 – 138 ] effects of bromodomain protein 
inhibition are already established. Our previous work has shown that reduced 
expression of Brd2 protein, equivalent to a haploinsuffi cient phenotype, de-represses 
specifi c genes that are important for metabolism. These reduced levels are suffi cient 
 simultaneously  to stimulate insulin gene transcription in β-cells [ 143 ,  146 ], to 
increase adipogenesis in pre-adipocytes through stimulation of peroxisome 
proliferator- activated receptor (PPAR)γ-directed transcriptional programs [ 143 , 
 147 ]. The hyperadiponectinemia of obese Brd2 hypomorphic mice [ 143 ] suggests 
that Brd2 is also normally required to corepress transcription of the murine adipo-
nectin gene ( Adipoq ), although this hypothesis has not yet been tested. Conversely, 
Brd2 reduction also ablates the production of pro-infl ammatory cytokines in macro-
phages such as TNFα, IL-1β, IL-6, and MCP-1 [ 111 ,  140 ,  144 ]. Taken together with 
the anticancer properties of Brd2 reduction through attenuated cell cycle progres-
sion, as discussed above, these coherent transcriptional and metabolic features 
(stimulated insulin production, increased adipogenesis, and increased adiponectin 
production; and reduced production of multiple pro-infl ammatory cytokines) lead 
us to propose a Brd2 mechanism for broad protection against obesity-associated 
malignancy. Small molecule inhibitors that target this family of transcription co- 
regulators, or naturally occurring single nucleotide polymorphisms in the human 
 BRD2  locus that reduce Brd2 expression, may therefore confer multiple forms of 
metabolic and cancer protection to obese patients. 

 Several phenotypes of unintended weight loss, such as chronic heart failure [ 148 ], 
share a systemic infl ammatory profi le [ 149 ], with marked elevations in serum levels 
of IL-1β, IL-6, and TNFα. These observations suggest a mechanistic relationship 
between the immune system, metabolism, and energy balance, reinforcing the afore-
mentioned argument. Furthermore, it has been noted that “unhealthy aging” [ 150 ] is 
often associated with a pro-infl ammatory, pro-senescent phenotype in somatic cells, 
the local production in skeletal muscle and adipose depots of infl ammatory cytokines 
that are associated with muscle wasting syndromes, and frailty in geriatric patients 
[ 151 – 153 ]. Investigators have been considering the cause and effect relationships 
among unresolved, chronic infl ammation, energy imbalances associated with weight 

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…



70

loss or weight gain, and cancer risk. Many of these  relationships may work in both 
directions. It is reasonable therefore to  hypothesize that a chromatin-based therapeutic 
strategy to treat these connected phenotypes may have broad benefi t for more than one 
type of risk and may be useful for  geriatric patients.  

3.5     Other Links Between Obesity, Infl ammation, 
and Social Determinants 

 One social determinant that plays a role in infl ammatory disease processes is socioeco-
nomic status (SES). Asthma rates in children are two to three times higher in poor fami-
lies than in wealthy families; SES shows a dose response relationship with asthma 
diagnosis and severity [ 154 ]. Public housing residents and inner city dwellers, who are 
among the poorest of urban dwellers in the United States, report higher rates of asthma 
than do private home and apartment dwellers [ 155 ]. This disease arises from allergic 
reactions to irritants and allergens that are commonly found in public housing, including 
dust mites, pets, rodents, mold, and cockroaches [ 156 ]. Massachusetts public housing 
has been linked to some of the highest national rates of asthma [ 157 ]. The prevalence of 
asthma is highest among African American families, with overall prevalence of 40 % of 
adults and 56 % of children [ 158 ]. These same populations, that is, poor and low SES 
individual and public housing residents, report two to three times the obesity rates of 
other residents who are higher along the SES continuum [ 159 ]. According to the 
American Lung Association, there is no evidence that asthma can cause lung cancer. 
However, there is evidence that asthma is associated with obesity [ 155 ,  160 – 162 ]. The 
risk of asthma has been reported in one study [ 163 ] to be up to three times greater for 
obese subjects compared to lean subjects (odds ratio for obese vs. normal BMI = 2.28, 
95 % CI: 1.76, 2.96). These observations suggest that socioeconomic factors also infl u-
ence risk for obesity-associated morbidity, including type 2 diabetes and cancer. 
Specifi cally, there may be a rationale to investigate the relationship between asthma, 
obesity, and obesity-associated cancer. For example, does poverty produce obesity and 
infl ammation, enhancing opportunities for the development of asthma? Are these issues 
causally related or simply comorbidities of living in high poverty settings? If we are able 
to reduce one set of comorbid conditions, as is under investigation now in Boston and 
elsewhere [ 164 – 166 ], will that outcome reduce or alter others? 

 Several sociological, economic, and behavioral factors have been established to 
link obesity and type 2 diabetes incidence to cancer incidence. As discussed above, 
there is strong epidemiological evidence that SES is correlated with both the preva-
lence of obesity and diabetes and with lung cancer mortality, a malignancy that is 
associated with smoking (Fig.  3.2a ). There is no known molecular association 
between lung cancer and obesity [ 3 ]. However, the use of tobacco in cigarette, cigar, 
and pipe smoke is strongly associated with lung, tracheal, and oral  cancers  [ 167 ]. 
Furthermore, low SES individuals suffer disproportionately higher health risks due 
to increased prevalence of smoking [ 168 ]. These correlations among chronic dis-
eases that have no downstream molecular connection suggest that the problem of 
obesity- associated cancer is more complicated in its structural and upstream origins 
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than a one-to-one correspondence between an obesity exposure and a cancer rate. In 
other words, the same causal factors that produce increased levels of obesity might 
also be at work to promote increased rates of lung cancer and lung cancer mortality, 
as well as type 2 diabetes (Fig.  3.2b ). Obesity and cancer are likely to be linked 

  Fig. 3.2    Overlapping morbidities. ( a ) Lung cancer mortality. Mortality among 3,056 United 
States counties for cancer of the lung, trachea, bronchus, and pleura in white males of all ages, 
1970–2004 (age-adjusted 2000 US population). Calculated from  National Cancer Institute data 
drawn from Atlas of Cancer Mortality in the U.S., 1950–1994 ; rates per 100,000 person-years 
presented here in nine equal intervals with a diverging  red / blue  color scheme. The national rate 
was 80.83 (CI 80.73–80.93) per 100,000, with the total number of deaths 2,481,728.   http:// ratecalc.
cancer.gov/ratecalc/    . ( b ) Diabetes and obesity diagnoses. Estimates among 3,141 United States 
counties for age-adjusted rates of both diagnosed diabetes and obesity presented together. Estimates 
were calculated from Census and Behavioral Risk Factor Surveillance System (self- reported) data 
for 2006–2008. The national proportion of US adults who were obese in 2008 was 26.1 %. In 2007, 
8 % of the US population, or 24 million individuals, were diabetic, of which 5.7 million were 
estimated to be undiagnosed.   http://www.cdc.gov/diabetes/pubs/factsheets/countylvlestimates.
htm    . ( c ) Socioenvironmental map of poverty. County-level data from United States Census Bureau 
statistics for 2004. Estimated percentage of population living below the poverty threshold as 
defi ned by US Census methods is defi ned by size of family and ages of members and includes 
information about earnings, unemployment compensation, workers’ compensation, Social 
Security, Supplemental Security Income, public assistance, veterans’ payments, survivor benefi ts, 
pension or retirement income, interest, dividends, rents, royalties, income from estates, trusts, 
educational assistance, alimony, child support, assistance from outside the household, and other 
miscellaneous sources (  http://www.cdc.gov/dhdsp/maps/sd_poverty_2004.htm    ,   http://www. 
census.gov/hhes/www/poverty/about/overview/measure.html    )       
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through their upstream causes: downturns in the economy, the nature of work and 
labor markets, social stratifi cation and economic inequality (Fig.  3.2c ), and lack of 
 opportunity and local infrastructure that set the stage for and contribute to the human 
biochemical mechanisms at work in carcinogenesis. As research identifi es the cen-
tral role of social determinants in chronic disease development, investigators need 
to pay closer attention to the common origins, even if not directly biologically 
linked. The social and structural origins of this problem demand structural solutions 
beyond the power of the prescribing physician’s pen: it is clear that  certain specifi c 
environments are both obesogenic / diabetogenic and carcinogenic . Solutions will 
require focused political will, participation of corporations and community groups, 
entrepreneurs, school districts, and local employers, not just obese Americans and 
their physicians.

3.6        Interactions Among Biological and Social Factors 

 Ultimately, we need to understand both the biology and the social forces that govern 
obesity to reduce this burden in modern, industrialized societies. The movement 
toward tailored or “personalized” medicine may be one way in which both perspec-
tives can be not only accommodated but relied upon as translated intervention tools 
to reduce obesity. For example, identifi cation of an individual’s likelihood of being 
a metabolically unhealthy obese person may provide additional motivation to 
engage in healthy behaviors. Alteration of the shape of environments for individuals 
and groups, such that there are clear and accessible food and activity choices, will 
help families facing both obesity- and asthma-related health issues. Increasing the 
opportunity for non-obesogenic activities might be a necessary investment for indi-
viduals who become infl amed if they become obese or maintain obesity. It may be 
helpful for the current conditions to consider obesity as a health problem that, for 
some, causes clear measurable changes related to a variety of chronic diseases, but 
that is ultimately preventable. Translating the basic research on vulnerability to 
infl ammation with obesity into usable interventions will require new ways of think-
ing about environment, motivation, and human behavior. From the discussion in this 
chapter, it is clear that we have begun to consider the broad, powerful mechanistic 
connections among infl ammation, obesity, and cancer and the need to link the cel-
lular, serological, and dietary environments of obese, at-risk individuals to expo-
sures in the built environment, urban infrastructure, and economic policy. Without 
transdisciplinary, innovative, “out-of-the-box” thinking, the problem of obesity- 
associated cancer will prove too diffi cult to address effectively. We therefore call for 
additional funding and research to investigate these unexpected connections among 
important variables, with focused conversation among molecular biologists, immu-
nologists, geneticists, cancer and endocrine clinicians, epidemiologists, sociolo-
gists, public housing offi cials, and public health offi cials. In view of the increasing 
seriousness of the obesity epidemic, time is running out for this conversation to plan 
for research and policy priorities.     

G.V. Denis and D.J. Bowen



73

  Acknowledgements   The authors thank the National Institutes of Health (DK090455, GVD and 
DK0704192, DJB), the US Centers for Disease Control and Prevention (U48 DP001922, DJB), the 
American Cancer Society (RSG-05-072-01, GVD), the Leukemia and Lymphoma Society (6023- 09, 
GVD), the Boston University Clinical and Translational Science Institute (UL1-TR000157, GVD), 
and the Evans Center for Biomedical Research. The authors are members of an Evans Center-
sponsored, multidisciplinary research collaborative, entitled “Obesity, Infl ammation and Cancer” 
based at Boston University. GVD is a former Chair of the Basic Science Section of The Obesity 
Society and gratefully acknowledges the intellectual and fi nancial support of the Society and its 
demonstrated and ongoing commitment to address the problem of obesity-associated cancer. 

 The authors report no confl icts of interest.  

      References 

    1.    Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, Wiedmeyer HM, 
Byrd-Holt DD (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucose 
tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–
1994. Diabetes Care 21(4):518–524  

     2.    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mor-
tality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 
348(17):1625–1638  

       3.    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and 
proposed mechanisms. Nat Rev Cancer 4(8):579–591  

    4.    Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer 
Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a 
global perspective. Proc Nutr Soc 67(3):253–256  

    5.    Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23(38):6365–6378  
    6.    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and inci-

dence of cancer: a systematic review and meta-analysis of prospective observational studies. 
Lancet 371(9612):569–578  

    7.   Centers for Disease Control and Prevention (CDC) (2010) Vital signs: state-specifi c obesity 
prevalence among adults—United States, 2009. MMWR Morb Mortal Wkly Rep 59(30):951–
955. Most recent update:   http://www.cdc.gov/obesity/downloads/DNPAO_State_Obesity_
Prevalence_Map_2011_508.pdf      

    8.    Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209  
    9.    Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world—a 

growing challenge. N Engl J Med 356(9):213–215  
    10.    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates 

for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053  
    11.    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 

2010 and 2030. Diabetes Res Clin Pract 87(1):4–14  
    12.    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez 

HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M, Global Burden of Metabolic Risk 
Factors of Chronic Diseases Collaborating Group (Body Mass Index) (2011) National, 
regional, and global trends in body-mass index since 1980: systematic analysis of health 
examination surveys and epidemiological studies with 960 country-years and 9.1 million 
participants. Lancet 377(9765):557–567  

    13.    Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS (2003) Prevalence 
of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79  

    14.    Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels 
refl ect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat 
Med 1(12):1311–1314  

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…

http://www.cdc.gov/obesity/downloads/DNPAO_State_Obesity_Prevalence_Map_2011_508.pdf
http://www.cdc.gov/obesity/downloads/DNPAO_State_Obesity_Prevalence_Map_2011_508.pdf


74

    15.    Myers MG Jr, Heymsfi eld SB, Haft C, Kahn BB, Laughlin M, Leibel RL, Tschöp MH, 
Yanovski JA (2012) Challenges and opportunities of defi ning clinical leptin resistance. Cell 
Metab 15(2):150–156  

    16.    Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003) Adiponectin expression 
from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α 
expression. Diabetes 52(7):1779–1785  

    17.    Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J et al (2002) Disruption of 
adiponectin causes insulin resistance and neointimal formation. J Biol Chem 
277(29):25863–25866  

    18.    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) 
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance 
and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935  

    19.    Matsubara M, Maruoka S, Katayose S (2002) Inverse relationship between plasma adiponec-
tin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol 
147(2):173–180  

   20.    Mojiminiyi OA, Abdella NA, Al Arouj M, Ben Nakhi A (2007) Adiponectin, insulin resis-
tance and clinical expression of the metabolic syndrome in patients with type 2 diabetes. Int 
J Obes (Lond) 31(2):213–220  

    21.    Snijder MB, Heine RJ, Seidell JC, Bouter LM, Stehouwer CD, Nijpels G, Funahashi T, 
Matsuzawa Y, Shimomura I, Dekker JM (2006) Associations of adiponectin levels with inci-
dent impaired glucose metabolism and type 2 diabetes in older men and women: the Hoorn 
Study. Diabetes Care 29(11):2498–2503  

    22.    Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernández-Vázquez G (2012) Melatonin 
improves glucose homeostasis in young Zucker diabetic fatty rats. J Pineal Res 52(2):203–210  

    23.    Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like 
growth factor (IGF)-1, IGF binding protein-3 and cancer risk: systematic review and meta- 
regression analysis. Lancet 363(9418):1346–1353  

    24.    Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R (2009) Diabetes and cancer. Endocr 
Relat Cancer 16(4):1103–1123  

    25.    Cohen DH, LeRoith D (2012) Obesity, type 2 diabetes and cancer: the insulin and insulin-like 
growth factor connection. Endocr Relat Cancer 19(5):F27–F45  

    26.    Lautenbach A, Budde A, Wrann CD, Teichmann B, Vieten G, Karl T, Nave H (2009) Obesity 
and the associated mediators leptin, estrogen and IGF-1 enhance the cell proliferation and 
early tumorigenesis of breast cancer cells. Nutr Cancer 61(4):484–491  

    27.    Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman 
B, Hood N (2002) Fasting insulin and outcome in early-stage breast cancer: results of a pro-
spective cohort study. J Clin Oncol 20(1):42–51  

     28.    Aparicio T, Kotelevets L, Tsocas A, Laigneau JP, Sobhani I, Chastre E, Lehy T (2005) Leptin 
stimulates the proliferation of human colon cancer cells in vitro but does not promote the 
growth of colon cancer xenografts in nude mice or intestinal tumorigenesis in ApcMin/+ 
mice. Gut 54(8):1136–1145  

   29.    Frankenberry KA, Skinner H, Somasundar P, McFadden DW, Vona-Davis LC (2006) Leptin 
receptor expression and cell signaling in breast cancer. Int J Oncol 28(4):985–993  

   30.    Laud K, Gourdou I, Pessemesse L, Peyrat JP, Djiane J (2002) Identifi cation of leptin recep-
tors in human breast cancer: functional activity in the T47-D breast cancer cell line. Mol Cell 
Endocrinol 188(1–2):219–226  

    31.    Valle A, Sastre-Serra J, Oliver J, Roca P (2011) Chronic leptin treatment sensitizes MCF-7 
breast cancer cells to estrogen. Cell Physiol Biochem 28(5):823–832  

    32.    Attoub S, Noe V, Pirola L, Bruyneel E, Chastre E, Mareel M, Wymann MP, Gespach C (2000) 
Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 
3-kinase-, rho-, and rac-dependent signaling pathways. FASEB J 14(14):2329–2338  

    33.    Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno ML, Andò S (2003) Leptin 
enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem 
278(31):28668–28676  

G.V. Denis and D.J. Bowen



75

   34.    Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP (2009) Effects of adiponectin 
and leptin co-treatment on human breast cancer cell growth. Oncol Rep 21(6):1611–1619  

    35.    Price RS, Cavazos DA, De Angel RE, Hursting SD, deGraffenried LA (2012) Obesity-related 
systemic factors promote an invasive phenotype in prostate cancer cells. Prostate Cancer 
Prostatic Dis 15(2):135–143  

    36.    Zheng Q, Hursting SD, Reizes O (2012) Leptin regulates cyclin D1 in luminal epithelial cells 
of mouse MMTV-Wnt-1 mammary tumors. J Cancer Res Clin Oncol 138(9):1607–1612  

     37.    Cleary MP, Phillips FC, Getzin SC, Jacobson TL, Jacobson MK, Christensen TA, Juneja SC, 
Grande JP, Maihle NJ (2003) Genetically obese MMTV-TGF-α/LepobLepob female mice do 
not develop mammary tumors. Breast Cancer Res Treat 77(3):205–215  

    38.    Grossmann ME, Cleary MP (2012) The balance between leptin and adiponectin in the control 
of carcinogenesis—focus on mammary tumorigenesis. Biochimie 94(10):2164–2171  

    39.   Zheng Q, Dunlap SM, Zhu J, Downs-Kelly E, Rich J, Hursting SD, Berger NA, Reizes O 
(2011) Leptin defi ciency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice 
and abrogates tumor initiating cell survival. Endocr Relat Cancer 18(4):491–503. Erratum in 
Endocr Relat Cancer 18(5):X1  

    40.    Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Lukanova A et al (2007) Plasma 
adiponectin levels and endometrial cancer risk in pre- and post-menopausal women. J Clin 
Endocrinol Metab 92(1):255–263  

   41.    Fenton JI, Birmingham JM (2010) Adipokine regulation of colon cancer: adiponectin attenu-
ates interleukin-6-induced colon carcinoma cell proliferation via STAT-3. Mol Carcinog 
49(7):700–709  

    42.    Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, Papadiamantis 
Y, Markopoulos C, Spanos E, Chrousos G, Trichopoulos D (2004) Adiponectin and breast 
cancer risk. J Clin Endocrinol Metab 89(3):1102–1107  

    43.    Dalamaga M, Diakopoulos KN, Mantzoros CS (2012) The role of adiponectin in cancer: a 
review of current evidence. Endocr Rev 33(4):547–594  

   44.    Jardé T, Caldefi e-Chézet F, Goncalves-Mendes N, Mishellany F, Buechler C, Penault-Llorca 
F, Vasson MP (2009) Involvement of adiponectin and leptin in breast cancer: clinical and 
in vitro studies. Endocr Relat Cancer 16(4):1197–1210  

    45.    Jardé T, Perrier S, Vasson MP, Caldefi e-Chézet F (2011) Molecular mechanisms of leptin and 
adiponectin in breast cancer. Eur J Cancer 47(1):33–43  

      46.    Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B (2000) 
Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of 
obese women after weight loss. J Clin Endocrinol Metab 85(9):3338–3342  

    47.    Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P (2004) Circulating mono-
nuclear cells in the obese are in a proinfl ammatory state. Circulation 110(12):1564–1571  

    48.    Wellen KE, Hotamisligil GS (2003) Obesity-induced infl ammatory changes in adipose tis-
sue. J Clin Invest 112(12):1785–1788  

    49.    Anderson EK, Gutierrez DA, Hasty AH (2010) Adipose tissue recruitment of leukocytes. 
Curr Opin Lipidol 21(3):172–177  

     50.    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is 
associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808  

     51.    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic infl ammation in fat 
plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 
112(12):1821–1830  

    52.    Zeyda M, Gollinger K, Kriehuber E, Kiefer FW, Neuhofer A, Stulnig TM (2010) Newly 
identifi ed adipose tissue macrophage populations in obesity with distinct chemokine and che-
mokine receptor expression. Int J Obes (Lond) 34(12):1684–1694  

    53.    Dalmas E, Rouault C, Abdennour M, Rovere C, Rizkalla S et al (2011) Variations in circulat-
ing infl ammatory factors are related to changes in calorie and carbohydrate intakes early in 
the course of surgery-induced weight reduction. Am J Clin Nutr 94(2):450–458  

    54.    Cancello R, Clément K (2006) Is obesity an infl ammatory illness? Role of low-grade infl amma-
tion and macrophage infi ltration in human white adipose tissue. BJOG 113(10):1141–1147  

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…



76

    55.    Clément K, Viguerie N, Poitou C et al (2004) Weight loss regulates infl ammation-related 
genes in white adipose tissue of obese subjects. FASEB J 18(14):1657–1669  

    56.    Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, Alcaraz-Tafalla MS, Aragón-Alonso A, 
Pascual-Díaz M, Pérez-Paredes M, Lozano-Almela ML (2012) Obesity and infl ammation: 
change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 
after bariatric surgery. Obes Surg 22(6):950–955  

     57.    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis 
factor-α: direct role in obesity-linked insulin resistance. Science 259(5091):87–91  

        58.    Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV (2012) The outliers become a stampede 
as immunometabolism reaches a tipping point. Immunol Rev 249(1):253–275  

        59.    Cinti SMG, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, 
Obin MS (2005) Adipocyte death defi nes macrophage localization and function in adipose 
tissue of obese mice and humans. J Lipid Res 46(1):2347–2355  

    60.    Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, 
Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infi ltration into 
adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 
116(6):1494–1505  

    61.    Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Erickson KL, Yu R 
(2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and asso-
ciated with obesity-related parameters. Int J Obes (Lond) 30(9):1347–1355  

    62.    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M et al (2008) T-lymphocyte 
infi ltration in visceral adipose tissue: a primary event in adipose tissue infl ammation and the 
development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 
28(7):1304–1310  

     63.    Lê KA, Mahurkar S, Alderete TL, Hasson RE, Adam TC, Kim JS, Beale E, Xie C, Greenberg 
AS, Allayee H, Goran MI (2011) Subcutaneous adipose tissue macrophage infi ltration is 
associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of 
NF-κB stress pathway. Diabetes 60(11):2802–2809  

    64.    Rausch ME, Weisberg S, Vardhana P, Tortoriello DV (2008) Obesity in C57BL/6J mice is 
characterized by adipose tissue hypoxia and cytotoxic T-cell infi ltration. Int J Obes (Lond) 
32:451–463  

     65.    Strissel KJ, Stancheva Z, Miyoshi H, Perfi eld JW II, DeFuria J, Jick Z, Greenberg AS, Obin 
MS (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 
56(12):2910–2918  

     66.    Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS, Obin MS (2010) T-cell recruit-
ment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. 
Obesity (Silver Spring) 18(10):1918–1925  

    67.    Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) 
Recent advances in the relationship between obesity, infl ammation, and insulin resistance. 
Eur Cytokine Netw 17(1):4–12  

    68.    Kahn SE, Zinman B, Haffner SM, O’Neill MC et al (2006) Obesity is a major determinant of 
the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. 
Diabetes 55(8):2357–2364  

    69.    Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, 
Peterson CA, McGehee RE, Kern PA (2005) Expression of CD68 and macrophage chemoat-
tractant protein-1 genes in human adipose and muscle tissues: association with cytokine 
expression, insulin resistance, and reduction by pioglitazone. Diabetes 54(8):2305–2313  

    70.    Keophiphath M, Achard V, Henegar C, Rouault C, Clément K, Lacasa D (2009) Macrophage- 
secreted factors promote a profi brotic phenotype in human preadipocytes. Mol Endocrinol 
23(1):11–24  

     71.    Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, 
Joseph L, Gokce N (2008) Adipose macrophage infi ltration is associated with insulin resis-
tance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 
28(9):1654–1659  

G.V. Denis and D.J. Bowen



77

       72.    Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, Stumvoll M, Blüher M 
(2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299(3):E506–E515  

   73.    Permana PA, Menge C, Reaven PD (2006) Macrophage-secreted factors induce adipocyte 
infl ammation and insulin resistance. Biochem Biophys Res Commun 341(2):507–514  

    74.    Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, Wabitsch M, O’Brien 
PE, Harrison LC (2010) Pro-infl ammatory CD11c + CD206 +  adipose tissue macrophages are 
associated with insulin resistance in human obesity. Diabetes 59(7):1648–1656  

    75.    Lumeng CN, Deyoung SM, Saltiel AR (2007) Macrophages block insulin action in adipo-
cytes by altering expression of signaling and glucose transport proteins. Am J Physiol 
Endocrinol Metab 292(1):E166–E174  

    76.    Westcott DJ, Delproposto JB, Geletka LM, Wang T, Singer K, Saltiel AR, Lumeng CN (2009) 
MGL1 promotes adipose tissue infl ammation and insulin resistance by regulating 7/4hi 
monocytes in obesity. J Exp Med 206(13):3143–3156  

     77.    Blüher M (2010) The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. 
Curr Opin Lipidol 21(1):38–43  

    78.    Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose 
tissue macrophage polarization. J Clin Invest 117(1):175–184  

    79.    Duffi eld J (2003) The infl ammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 
104(1):27–38  

    80.    Surmi BK, Hasty AH (2010) The role of chemokines in recruitment of immune cells to the 
artery wall and adipose tissue. Vascul Pharmacol 52(1–2):27–36  

    81.    Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL et al (2007) T-cell accumulation 
and regulated on activation, normal T cell expressed and secreted upregulation in adipose 
tissue in obesity. Circulation 115(8):1029–1038  

    82.    Loke P, MacDonald AS, Robb A, Maizels RM, Allen JE (2000) Alternatively activated mac-
rophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J 
Immunol 30(9):2669–2678  

    83.    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al (2009) CD8 +  effec-
tor T cells contribute to macrophage recruitment and adipose tissue infl ammation in obesity. 
Nat Med 15(8):914–920  

    84.    Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, Dosch HM (2009) Obesity pre-
disposes to Th17 bias. Eur J Immunol 39(9):2629–2635  

    85.    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfi ne AB, Benoist 
C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population 
of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939  

    86.    Jagannathan M, McDonnell M, Liang Y, Hasturk H, Hetzel J, Rubin D, Kantarci A, Van Dyke 
TE, Ganley-Leal LM, Nikolajczyk BS (2010) Toll-like receptors regulate B cell cytokine 
production in patients with diabetes. Diabetologia 53(7):1461–1471  

    87.    Nikolajczyk BS (2010) B cells as under-appreciated mediators of non-auto-immune infl am-
matory disease. Cytokine 50(3):234–242  

    88.    Perreault M, Marette A (2001) Targeted disruption of inducible nitric oxide synthase protects 
against obesity-linked insulin resistance in muscle. Nat Med 7(10):1138–1143  

    89.    Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, Verma IM, Olefsky 
JM (2009) Hematopoietic cell-specifi c deletion of toll-like receptor 4 ameliorates hepatic and 
adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10(5):419–429  

    90.    Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, 
Guerre-Millo M, Clément K (2009) Human adipose tissue macrophages: m1 and m2 cell 
surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol 
Metab 94(11):4619–4623  

    91.    Centers for Disease Control and Prevention (2004) Cigarette smoking among adults—United 
States, 2000. MMWR Morb Mortal Wkly Rep 53:427–431  

    92.    U.S. Department of Health and Human Services (2004) The health consequences of smoking: 
a report of the Surgeon General. U.S. Department of Health and Human Services, Centers for 
Disease Control and Prevention, Atlanta, GA  

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…



78

    93.    McLaughlin T, Lamendola C, Liu A, Abbasi F (2011) Preferential fat deposition in 
s ubcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol 
Metab 96(11):E1756–E1760  

    94.    Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS et al (2010) Abdominal subcutane-
ous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity 
(Silver Spring) 18(11):2191–2198  

     95.    Berg AH, Scherer PE (2005) Adipose tissue, infl ammation, and cardiovascular disease. Circ 
Res 96(9):939–949  

   96.    Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):
881–887  

    97.    Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, Czech MP 
(2011) Body mass index-independent infl ammation in omental adipose tissue associated with 
insulin resistance in morbid obesity. Surg Obes Relat Dis 7(1):60–67  

    98.    Kabat GC, Kim MY, Strickler HD, Shikany JM, Lane D, Luo J, Ning Y, Gunter MJ, Rohan 
TE (2012) A longitudinal study of serum insulin and glucose levels in relation to colorectal 
cancer risk among postmenopausal women. Br J Cancer 106(1):227–232  

    99.    Bonora E, Willeit J, Kiechl S, Oberhollenzer F, Egger G, Bonadonna R, Muggeo M (1998) 
U-shaped and J-shaped relationships between serum insulin and coronary heart disease in the 
general population. The Bruneck Study. Diabetes Care 21(2):221–230  

    100.    Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, Sowers 
MR (2008) The obese without cardiometabolic risk factor clustering and the normal 
weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 pheno-
types among the US population (NHANES 1999–2004). Arch Intern Med 168(15):
1617–1624  

    101.    Blüher M, Bashan N, Shai I, Harman-Boehm I, Tarnovscki T et al (2009) Activated Ask1-
MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link 
 macrophage infi ltration to whole-body insulin sensitivity. J Clin Endocrinol Metab 
94(7):2507–2515  

    102.    Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G (1997) Insulin resistance 
and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). 
J Clin Invest 100(5):1166–1173  

     103.    Romano M, Guagnano MT, Pacini G, Vigneri S, Falco A, Marinopiccoli M, Manigrasso MR, 
Basili S, Davì G (2003) Association of infl ammation markers with impaired insulin sensitivity 
and coagulative activation in obese healthy women. J Clin Endocrinol Metab 88(11):
5321–5326  

     104.   Sims EA (2001) Are there persons who are obese, but metabolically healthy? Metabolism 
50(12):1499–1504. Erratum in Metabolism 51(4):536 (2002)  

     105.    Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D, Rabasa-Lhoret R 
(2005) The metabolically healthy but obese individual presents a favorable infl ammation 
profi le. J Clin Endocrinol Metab 90(7):4145–4150  

    106.    Succurro E, Marini MA, Frontoni S, Hribal ML, Andreozzi F, Lauro R, Perticone F, Sesti G 
(2008) Insulin secretion in metabolically obese, but normal weight, and in metabolically 
healthy but obese individuals. Obesity (Silver Spring) 16(8):1881–1886  

    107.    Karin M, Greten FR (2005) NF-kappaB: linking infl ammation and immunity to cancer devel-
opment and progression. Nat Rev Immunol 5(10):749–759  

    108.    Karin M (2009) NF-κB as a critical link between infl ammation and cancer. Cold Spring Harb 
Perspect Biol 1(5):a000141  

    109.    Kraus S, Arber N (2009) Infl ammation and colorectal cancer. Curr Opin Pharmacol 
9(4):405–410  

    110.    Denis GV (2010) Bromodomain coactivators in cancer, obesity, type 2 diabetes, and infl am-
mation. Discov Med 10(55):489–499  

      111.      Belkina AC, Nikolajczyk BS, Denis GV (2013) BET protein function is required for infl am-
mation: Brd2 genetic disruption and BET inhibitor JQ1 impair macrophage infl ammatory 
responses. J Immunol. 2013 Feb 18. E-pub ahead of print  

G.V. Denis and D.J. Bowen



79

    112.    Denis GV, Green MR (1996) A novel, mitogen-activated nuclear kinase is related to a 
 Drosophila  developmental regulator. Genes Dev 10(3):261–271  

    113.    Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K (2004) Selective recognition 
of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 
13(1):33–43  

   114.    Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M et al (2007) Crystal structure of 
human  BRD2  bromodomain: Insight into dimerization and recognition of acetylated histone 
H4. J Biol Chem 282(6):4193–4201  

    115.    Umehara T, Nakamura Y, Jang MK, Nakano K, Tanaka A, Ozato K, Padmanabhan B, 
Yokoyama S (2010) Structural basis for acetylated histone H4 recognition by the human 
BRD2 bromodomain. J Biol Chem 285(10):7610–7618  

    116.    Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander 
ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 
95(5):717–728  

     117.    Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB (1992) The bromodomain: 
a conserved sequence found in human,  Drosophila  and yeast proteins. Nucleic Acids Res 
20(10):2603  

    118.    Tamkun JW, Deuring R, Scott MP, Kissenger M, Pattatucci AM, Kaufman TC, Kennison JA 
(1992) Brahma—a regulator of  Drosophila  homeotic genes structurally related to the yeast 
transcriptional activator SWI2/SNF2. Cell 68(3):561–572  

    119.    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou M-M (1999) Structure and ligand 
of a histone acetyltransferase bromodomain. Nature 399(6735):491–496  

    120.    Jeanmougin F, Wurtz J-M, Le Douarin B, Chambon P, Losson R (1997) The bromodomain 
revisited. Trends Biochem Sci 22(5):151–153  

    121.    Sanchez R, Zhou M-M (2009) The role of human bromodomains in chromatin biology and 
gene transcription. Curr Opin Drug Discov Dev 12(5):659–665  

    122.    Beck S, Hanson I, Kelly A, Pappin DJC, Trowsdale J (1992) A homologue of the  Drosophila 
female sterile homeotic (fsh)  gene in the class II region of the human MHC. DNA Seq 
2(4):203–210  

    123.    Guo N, Faller DV, Denis GV (2000) Activation-induced nuclear translocation of RING3. 
J Cell Sci 113(pt17):3085–3091  

    124.    Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K (2003) The double bromodomain protein 
Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 
100(15):8758–8763  

    125.    LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 
couple histone acetylation to transcription. Mol Cell 30(1):51–60  

    126.    Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 
and transcriptional regulation. J Biol Chem 282(18):13141–13145  

    127.    Denis GV, Vaziri C, Guo N, Faller DV (2000) RING3 kinase transactivates promoters of cell 
cycle regulatory genes through E2F. Cell Growth Differ 11(8):417–424  

   128.    Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S, Lippincott-Schwartz 
J, Ozato K (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and 
affects G 

2
 -to-M transition. Mol Cell Biol 20:6537–6549  

   129.    Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, 
Hurwitz J, Ozato K (2002) A Mammalian bromodomain protein, Brd4, interacts with replica-
tion factor C and inhibits progression to S phase. Mol Cell Biol 22(18):6509–6520  

   130.    Peng J, Dong W, Chen L, Zou T, Qi Y, Liu Y (2007) Brd2 is a TBP-associated protein and 
recruits TBP into E2F-1 transcriptional complex in response to serum stimulation. Mol Cell 
Biochem 294(1–2):45–54  

     131.    Sinha A, Faller DV, Denis GV (2005) Bromodomain analysis of Brd2-dependent transcrip-
tional activation of  cyclin A . Biochem J 387(pt 1):257–269  

    132.    Kubonishi I, Takehara N, Iwata J, Sonobe H, Ohtsuki Y, Abe T, Miyoshi I (1991) Novel 
t(15;19)(q15;p13) chromosome abnormality in a thymic carcinoma. Cancer Res 51(12):
3327–3328  

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…



80

    133.    French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA (2003) 
 BRD4- NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 
63(2):304–307  

    134.    French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ et al (2008) BRD-NUT 
oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation 
and maintain the growth of carcinoma cells. Oncogene 27(15):2237–2242  

    135.    Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert 
Rev Mol Med 13:e29  

     136.    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM et al (2010) 
Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073  

    137.    Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al (2011) 
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukae-
mia. Nature 478(7370):529–533  

    138.    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al (2011) BET bromodo-
main inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917  

    139.    Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims 
RJ III (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc 
Natl Acad Sci U S A 108(40):16669–16674  

       140.    Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, infl ammation and can-
cer. Nat Rev Cancer 12(7):465–477  

     141.    Greenwald R, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis 
GV (2004) Eμ- BRD2  transgenic mice develop B cell lymphoma and leukemia. Blood 
103(4):1475–1484  

    142.    Lenburg ME, Sinha A, Faller DV, Denis GV (2007) Tumor-specifi c and proliferation-specifi c 
gene expression typifi es murine transgenic B cell lymphomagenesis. J Biol Chem 
282(7):4803–4811  

       143.    Wang F, Liu H, Blanton WP, Belkina A, LeBrasseur NK, Denis GV (2009)  Brd2  disruption 
in mice causes severe obesity without type 2 diabetes. Biochem J 425(1):7–83  

     144.    Belkina AC, Blanton W, Wang F, Liu H, Denis GV (2010) Whole body Brd2 defi ciency pro-
tects obese mice from insulin resistance by creating a low infl ammatory environment. Obesity 
18:S58  

    145.    Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R et al 
(2010) Suppression of infl ammation by a synthetic histone mimic. Nature 468(7327):
1119–1123  

    146.    Wang F, Deeney JT, Denis GV (2013) Brd2 gene disruption causes ‘metabolically healthy’ 
obesity: epigenetic and chromatin-based mechanisms that uncouple obesity from type 2 dia-
betes. Vitam Horm 91:49–75  

    147.    Denis GV, Nikolajczyk BN, Schnitzler GR (2010) An emerging role for bromodomain- 
containing proteins in chromatin regulation and transcriptional control of adipogenesis. 
FEBS Lett 584:3260–3268  

    148.    Rauchhaus M, Koloczek V, Volk H, Kemp M, Niebauer J, Francis DP, Coats AJ, Anker SD 
(2000) Infl ammatory cytokines and the possible immunological role for lipoproteins in 
chronic heart failure. Int J Cardiol 76(2–3):125–133  

    149.    Plata-Salamán CR (2000) Central nervous system mechanisms contributing to the cachexia- 
anorexia syndrome. Nutrition 16(10):1009–1012  

    150.    Jensen GL (2008) Infl ammation: roles in aging and sarcopenia. JPEN J Parenter Enteral Nutr 
32(6):656–669  

    151.    Leng S, Chaves P, Koenig K, Walston J (2002) Serum interleukin-6 and hemoglobin as physi-
ological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc 
50(7):1268–1271  

   152.    Leng SX, Cappola AR, Andersen RE, Blackman MR, Koenig K, Blair M, Walston JD (2004) 
Serum levels of insulin-like growth factor-1 (IGF-1) and dehydroepiandrosterone sulfate 
(DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of 
frailty. Aging Clin Exp Res 16(2):153–157  

G.V. Denis and D.J. Bowen



81

    153.    Leng SX, Xue QL, Tian J, Walston JD, Fried LP (2007) Infl ammation and frailty in older 
women. J Am Geriatr Soc 55(6):864–871  

    154.    Lobstein T, Baur L, Uauy R, IASO International Obesity Task Force (2004) Obesity in chil-
dren and young people: a crisis in public health. Obes Rev 5(S1):4–104  

     155.    Figueroa-Munoz JI, Chinn S, Rona RJ (2001) Association between obesity and asthma in 
4–11 year old children in the UK. Thorax 56(2):133–137  

    156.    Morgan WJ, Crain EF, Gruchalla RS, O’Connor GT, Kattan M, Evans R III, Stout J, 
Malindzak G, Smartt E, Plaut M, Walter M, Vaughn B, Mitchell H, Inner-City Asthma Study 
Group (2004) Results of a home-based environmental intervention among urban children 
with asthma. N Engl J Med 351(11):1068–1080  

    157.    Digenis-Bury EC, Brooks DR, Chen L, Ostrem M, Horsburgh CR (2008) Use of a population- 
based survey to describe the health of Boston public housing residents. Am J Public Health 
98(1):85–91  

    158.    Brugge D, Rice PW, Terry P, Howard L, Best J (2001) Housing conditions and respiratory 
health in a Boston public housing community. New Solut 11(2):149–164  

    159.    Booth KM, Pinkston MM, Poston WS (2005) Obesity and the built environment. J Am Diet 
Assoc 105(5 suppl 1):S110–S117  

    160.    Gennuso J, Epstein LH, Paluch RA, Cerny F (1998) The relationship between asthma and 
obesity in urban minority children and adolescents. Arch Pediatr Adolesc Med 
152(12):1197–1200  

   161.    Luder E, Melnik TA, Dimaio M (1998) Association of being overweight with greater asthma 
symptoms in inner city black and Hispanic children. J Pediatr 132(4):699–703  

    162.    Stenius-Aarniala B, Poussa T, Kvarnstrom J, Gronlund EL, Ylikahri M, Mustajoki P (2000) 
Immediate and long term effects of weight reduction in obese people with asthma: ran-
domised controlled study. BMJ 320(7238):827–832  

    163.    Ma J, Xiao L, Knowles SB (2010) Obesity, insulin resistance and the prevalence of atopy and 
asthma in US adults. Allergy 65(11):1455–1463  

    164.    Battaglia TA, Murrell SS, Bhosrekar SG, Caron SE, Bowen DJ, Smith E, Kalish R, Rorie JA 
(2012) Connecting Boston’s public housing developments to community health centers: 
who’s ready for change? Prog Community Health Partnersh 6(3):239–248  

   165.    Conroy K, Sandel M, Zuckerman B (2010) Poverty grown up: how childhood socioeconomic 
status impacts adult health. J Dev Behav Pediatr 31(2):154–160  

    166.    Trotter LJ, Bowen DJ, Beresford SA (2010) Testing for racial/ethnic differences in the asso-
ciation between childhood socioeconomic position and adult adiposity. Am J Public Health 
100(6):1088–1094  

   167.    American Cancer Society (2000) Cancer facts and fi gures 2000. American Cancer Society, 
Atlanta, GA  

   168.    Barbeau EM, Kreiger N, Soobader MJ (2004) Working class matters: socioeconomic disad-
vantage, race/ethnicity, gender, and smoking in NHIS 2000. Am J Public Health 
94(2):269–278  

   169.    Blüher M (2012) Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes 
19(5):341–346  

   170.    Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA et al (2004) A transgenic mouse with a 
deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin 
and improved insulin sensitivity. Endocrinology 145(1):367–383    

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…



83A.J. Dannenberg and N.A. Berger (eds.), Obesity, Infl ammation and Cancer, 
Energy Balance and Cancer 7, DOI 10.1007/978-1-4614-6819-6_4,
© Springer Science+Business Media New York 2013

    Abstract     The chronic low-grade infl ammation induced by obesity is a key connec-
tion between obesity and disease. It is now understood that the supporting stromal 
cells in adipose tissue contribute to this infl ammatory response in signifi cant ways. 
Of these, adipose tissue macrophages (ATMs) are major effectors of infl ammation 
in hypertrophic adipose tissue. However, we now know that ATMs are diverse in 
their phenotypes and have functions that may contribute directly and indirectly to 
impact cancer risk. This review will summarize our current understanding of the 
phenotypic diversity in ATMs and how this is altered in obesity. The potential role 
that ATMs play in breast and ovarian cancer pathogenesis will also be discussed 
given the close association between adipose tissue and these cancer types.  

4.1         Introduction 

 Adipose tissue has been traditionally thought of as being a static organ composed of 
only adipocytes, specialized cells designed for the storage of excess nutrients as lipid 
(primarily triglyceride). By mass, adipocytes make up the bulk of adipose tissue and can 
drastically enlarge and contract in times of nutrient excess and demand. However, by 
number, adipocytes may be a minority cell population in adipose tissue as demonstrated 
in Fig.  4.1 . A major advance in the last 5–10 years in obesity research has been the real-
ization that adipose tissue has a complex and dynamic range of cellular components 
beyond adipocytes that play critical roles in the maintenance of nutrient homeostasis.

   Importantly, it is now known that alterations in the non-adipocyte stromal cells 
in fat form crucial links between obesity and many of its associated diseases. The 
advancements in understanding obesity-induced infl ammation are illustrative of the 
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new directions that are being explored in obesity research. As this fi eld expands, it 
provides opportunities to identify novel mechanisms by which obesity modifi es 
cancer risk. 

 This review will summarize the current understanding of adipose tissue macro-
phages (ATMs), a leukocyte in fat that is fairly well characterized in animal models 
and in humans. I will review the state of the art view of ATM function and diversity 
in adipose tissue and how this is altered by obesity. In this framework, I will present 
the current views of how ATMs promote adipocyte dysfunction and contribute to 
metabolic dysregulation. This will lead to a better understanding of the ways that 
ATM activation may both directly and indirectly contribute to the link between obe-
sity and cancer.  

4.2     Adipose Tissue Macrophages as Infl ammatory 
Engines in Obesity 

 When nutrient intake outpaces energy utilization, the only tissue that is designed to 
effi ciently store excess nutrients is adipose tissue. Adipose tissue expands by produc-
ing new adipocytes (hyperplasia) and enlarging existing adipocytes (hypertrophy). 

  Fig. 4.1    Adipose tissue architecture in obesity. Confocal microscopy image of visceral/gonadal 
fat depot in C57Bl/6 mice fed with a high-fat diet (60 %) for 16 weeks. Tissue was stained with 
antibodies against caveolin ( blue ) and F4/80 (macrophages,  green ) and co-stained with DAPI ( red ) 
to indicate nuclei. Crown-like structure (CLS) of ATMs ( asterisks ) is shown. Adipocytes (Ad) are 
identifi ed by caveolin staining. Blood vessels (BV) are shown       
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   For reasons that are still elusive, the chronic and excessive expansion of adipose 
 tissue is associated with the activation of infl ammation in fat. Such infl ammation was 
initially identifi ed by the elevated expression of infl ammatory cytokines and chemo-
kines such as tumor necrosis factor-α (TNFα) [ 1 ], interleukin (IL)-6 [ 2 ], monocyte 
chemoattractant protein 1 (MCP-1) [ 3 ,  4 ], and plasminogen activator inhibitor-1 
(PAI-1) [ 5 ] from obese adipose tissue. Given the large mass of adipose tissue in 
obese subjects, such tissue-specifi c cytokine production likely contributes greatly to 
the systemic elevations of these cytokines in obesity. 

 Based on these observations, initial studies focused on how these infl ammatory 
mediators were generated by adipocytes. However, in 2003, two papers demon-
strated that most of the infl ammatory factors were made not by the adipocytes, but 
by the non-adipocyte stromal cells which were enriched in macrophages [ 6 ,  7 ]. This 
led to a series of studies that demonstrated that macrophages accumulate in adipose 
tissue in obese subjects, are prominent in visceral over subcutaneous fat depots, are 
associated with measures of metabolic dysfunction, and are decreased with weight 
loss [ 8 – 11 ]. 

 The evidence for a role of macrophages as a contributor to metabolic disease has 
been reinforced by many clinical and preclinical studies. In a systems biology study 
in humans, expression profi ling of blood and adipose tissue was combined with 
genetic dissection of expression quantitative trait loci (eQTL) to fi nd genes associ-
ated with obesity and metabolic disease [ 12 ,  13 ]. This unbiased approach identifi ed 
a gene expression signature in adipose tissue associated with metabolic dysfunction 
that was enriched for genes typically found in the spleen- and bone marrow-derived 
macrophages. This macrophage-enriched metabolic network (MEMN) of genes 
includes  Cd68 ,  Emr1  ( F4 / 80 ),  Cd14 , and  C3ar1  and emphasized the link between 
infl ammatory networks in fat and the complex trait of metabolic disease. Follow-up 
studies validated the importance of many of these genes to metabolic traits using 
loss of function mouse models [ 14 ]. 

 Rodent models of obesity have been instrumental in demonstrating that macro-
phage activation plays a substantial role in the link between obesity and insulin 
resistance. Mouse models defi cient in receptors critical for infl ammatory mono-
cyte/macrophage traffi cking have impaired accumulation of ATMs in adipose tis-
sue. These include mice defi cient for C-C chemokine receptor type 2 (CCR2) 
[ 15 ], macrophage galactose-type C-type lectin (MGL1) [ 16 ], and C-C chemokine 
receptor type 5 (CCR5) [ 17 ]. These models share the similar phenotype when 
exposed to high-fat diets where adipocyte hypertrophy occurs in the absence of an 
accumulation of ATMs in crown-like structures (CLS). Despite obesity and 
increased fat mass in these models, the mice demonstrate an improved metabolic 
profi le (e.g., improved insulin sensitivity and glucose tolerance) and a decrease in 
hepatic steatosis. 

 These studies suggest that the ATM activation and infl ammation in fat play a 
major role in impairing the function of fat as an effi cient nutrient store (Fig.  4.2 ). Fat 
dysfunction promotes lipid and chemokine release as opposed to storage and places 
pressure on other organs to store the excess nutrient load. Attenuation of ATM accu-
mulation produces “healthier” fat with a sustained capacity to store excess nutrients 
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and partition lipids away from other organs such as the liver. A similar phenotype 
was seen in leptin-defi cient mice with transgenic overexpression of adiponectin [ 18 ]. 
Despite morbid obesity, these mice had no evidence of metabolic abnormalities. 
This was associated with a lack of visceral fat and a preferential expansion of sub-
cutaneous fat depots containing small adipocytes and few ATMs. Overall, these 
studies have supported the concept that ATMs contribute to the development of 
insulin resistance and type 2 diabetes with obesity by promoting chronic fat 
dysfunction.

4.3        Adipose Tissue Macrophage Diversity 

 A simplifi ed interpretation of the observations above is that all macrophages in fat 
are deleterious. This generalization is hard to reconcile with the observation that 
macrophages are found in all fat depots in lean insulin-sensitive subjects [ 19 ,  20 ]. 
Based on this and other observations, current evidence supports a model where both 
quantitative and qualitative changes occur in ATMs with obesity. While it is likely 
that these two events (macrophage accumulation and changes in their activation 

  Fig. 4.2    Direct and indirect contributions of ATMs to cancer biology. Overweight and obesity 
status is associated with expansion of adipose tissue. Triggers concurrent hypertrophy of adipo-
cytes and accumulation of M1-like macrophages in fat. M1 ATMs generate infl ammatory cyto-
kines that may have direct effects upon the local tumor environment. ATMs also promote adipocyte 
dysfunction triggering adipocyte death and release of free fatty acids (FFA). Chronically this pro-
cess promoted metabolic dysfunction associated with systemic insulin resistance and lipotoxicity. 
Such metabolic regulation and its associated hormonal changes are downstream of ATM activation 
and function as a promoter of “sick” adipose tissue       
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profi le) are coupled together, there is also growing evidence that ATMs are active 
sensors of the fat environment and can alter their infl ammatory output in situ in 
response to metabolic and infl ammatory cues [ 21 ,  22 ]. 

4.3.1     Macrophage Activation States 

 Around the time when ATMs were fi rst described, there was a rapid evolution in the 
understanding of the different activation states that macrophages can assume 
 dependent on the local context. In vitro these have been classifi ed based on the dif-
ferential responses of macrophages to Th1 and Th2 signals. M1 or classically acti-
vated macrophages are generated upon exposure to lipopolysaccharide (a bacterial 
component) and interferon-γ (IFNγ) and have the capacity to express high levels of 
pro-infl ammatory cytokines/factors (e.g., iNOS, TNFα) that promote killing of for-
eign pathogens. The M1 program also induces a variety of metabolic changes in 
macrophages that include an increase in glucose utilization, decreased fatty acid 
utilization, and an increase in iron uptake to increase their “killing” capacity [ 23 ]. 
In contrast, when macrophages are stimulated with Th2 cytokines such as IL-4 or 
IL-13, they assume a very different profi le. These alternatively activated or M2 
macrophages have low production of infl ammatory cytokines and instead generate 
IL-10 and arginase which dampen infl ammatory responses and promote repair. 
Metabolically these cells are different as well and preferentially utilize fatty acids 
for energy and promote iron release. These metabolic changes and M2 profi le 
appear to be coupled by nuclear transcription factors peroxisome proliferator- 
activated receptors (PPAR) γ and δ via signal transducer and activator of  transcription 
6 (STAT6) activation [ 24 – 26 ]. 

 The M1/M2 dichotomy is an in vitro simplifi cation of a complex range of 
 macrophage activation profi les. While the M1/M2 paradigm is useful in many 
 contexts, including that of ATM biology, it is clear that macrophages in vivo assume 
states along a continuum between these extreme states. In addition, many aspects of 
the M1/M2 axis differ substantially between human and murine models as gene 
profi ling has shown that there is only 50 % commonality between human and mouse 
macrophages treated with M1 or M2 stimuli [ 27 ].  

4.3.2     The M1/M2 Paradigm in Obesity 

 Despite the limitations noted above, there is evidence to support the concept that the 
balance between M1 and M2 states is altered by obesity and can explain many of the 
features of obesity-associated infl ammation [ 28 ,  29 ]. In lean animals and humans, 
the resident population of ATMs is M2-like based on surface marker and gene 
expression profi les [ 9 ,  20 ,  30 ,  31 ]. Animal models with impaired generation of an 
alternatively activated M2 state demonstrate an exaggerated infl ammatory response 
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to obesity and have a more pronounced insulin resistance phenotype. Examples of 
this include macrophage-specifi c knockout of  Pparg  and  Ppard  [ 24 – 26 ]. In addi-
tion, mice defi cient in GPR120, a receptor for omega-3 fatty acids on macrophages, 
have an impaired M2 gene expression in their ATMs and have an exaggerated pro- 
infl ammatory response to obesity [ 32 ,  33 ]. 

 On the other side of the coin, obesity induces many changes in ATMs consistent 
with an activation of an M1 profi le. At the gene expression level, this includes the 
induction of  Tnfa  and  Nos2  genes in mice [ 20 ,  34 ]. In both mice and humans, obe-
sity induces the expression of receptors that promote the capacity of ATMs to func-
tion as antigen-presenting cells (e.g., CD40, CD11c, and MHC class II), a feature of 
M1 activation [ 9 ,  30 ]. In addition, mice defi cient for critical M1 macrophage activa-
tion components have attenuated obesity-induced infl ammation. Examples of this 
include knockout mice for toll-like receptors 2 and 4 (TLR2, TLR4) and mice defi -
cient in IFNγ production [ 35 – 38 ]. Attenuation of IκB kinase β (IKKβ) signaling 
pathways in macrophages leads to a substantial reduction in infl ammation and pro-
tection of mice from insulin resistance [ 39 ,  40 ]. Based on this, novel anti- 
infl ammatory treatments for type 2 diabetes are under clinical trial to target pathways 
that lead to NFκB activation, a key component in the generation of an M1 activation 
profi le [ 41 ,  42 ].  

4.3.3     The Nature of the Phenotypic Shift from M2-Like 
to M1-Like ATMs in Obesity 

 The mechanisms by which the qualitative and quantitative changes in ATMs are 
induced are under active investigation. What has become clear is that the changes in 
the infl ammatory profi le in fat with obesity are driven by alterations in the balance 
between at least two distinct types of ATMs (Fig.  4.3 ). A resident ATM population 
is found between adipocytes and along blood vessels in fat and is established early 
in adipose tissue development [ 43 ]. These have many features of M2 macrophages 
and appear to interact with eosinophils and other cells in fat that secrete Th2 cyto-
kines such as IL-4 [ 44 ,  45 ]. The recruitment of the resident M2-like ATMs (type 2 
[ 46 ]) appears to be independent of traditional chemokine pathways as they are pres-
ent in normal numbers in  Ccr2 - and  Ccl2 -defi cient mice [ 30 ].

   In obesity, this resident ATM population is retained with similar distribution and 
surface markers; however, a distinct type of ATM is superimposed on this popula-
tion. The “phenotypic shift” is generated by an increase in the ratio of these recruited 
M1-like (type 1) ATMs relative to the resident (type 2) ATMs. In mice and humans, 
the ATMs induced by obesity preferentially express the surface marker CD11c and 
have lipid-laden features similar to foam cells in atherosclerosis [ 47 ,  48 ]. The 
recruitment of CD11c +  ATMs to fat is rapid compared to type 2 ATMs and is con-
centrated in CLS seen on standard histology preparations [ 30 ]. CLS are dense accu-
mulations of ATMs that form around lipid remnants of dead adipocytes and are also 
sites of fi brosis and accumulation of collagen fi bers [ 49 ,  50 ]. 
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 The weight of evidence suggests that the accumulation of type 1 CD11c +  ATMs 
is linked to the enhanced traffi cking of specifi c infl ammatory monocyte populations 
from the circulation [ 51 ,  52 ]. In mice, monocytes that express the surface marker 
Ly6c are induced with obesity and tightly correlate with M1-like ATM accumula-
tion [ 16 ,  53 ]. The specifi c mediators that promote monocyte traffi cking to fat are 
incompletely understood but include chemokine-dependent (MCP1 [ 54 ]) and 
chemokine- independent (lipolysis) pathways [ 21 ].   

4.4     ATM Functions 

 The list of functions of ATMs is incomplete. There is evidence that ATMs contribute 
to normal physiologic regulation of adipose tissue (e.g., fat development) in addition 
to their function in pathophysiology (e.g., obesity). In lean subjects, resident ATMs 
integrate systemic and local fat signals to maintain homeostasis. Macrophage 

  Fig. 4.3    Model of ATM phenotypic changes in obesity. In lean states, M2-like resident ATMs are the 
dominant ATM population ( blue cells ).    These ATMs express M2 surface markers in mice (e.g. MGL1) 
and are located between adipocytes. With dietary obesity, a distinct type of ATM accumulates with 
features of M1 macrophages ( red ) that express CD11c and have low MGL1 expression in mice. These 
ATMs are concentrated in CLS and generate pro-infl ammatory cytokines that cause local adipocyte 
dysfunction which contribute to systemic cytokines. The appearance of M1-like ATMs is coupled to 
a population of Ly-6c hi  monocytes in the circulation that are induced with obesity       
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 depletion during development impairs angiogenesis in the developing fat pads [ 43 ]. 
This function may relate to the capacity of ATMs to remodel the extracellular matrix 
surrounding adipocytes by secretion of proteinases and protease inhibitors [ 55 ]. 
Resident ATMs are also able to rapidly sense and respond to acute changes in 
 nutrient status suggesting a dynamic function for ATMs in metabolism [ 22 ]. 

 In obesity, an association between ATMs and adipocyte death exists that supports 
the notion that ATM accumulation is driven by a response to adipocyte stress/death 
with hypertrophy [ 50 ,  56 ]. Clearly, an interplay exists between ATMs and adipocytes 
as there is no increased death observed with hypertrophied fat in models where type 
1 ATM accumulation is attenuated. However, there is also evidence to suggest that 
adipocyte death and ATM accumulation are independent unrelated processes [ 57 ]. 

 The active production of M1 cytokines from CLS sends signals to adipocytes 
that impair their function. In vitro studies have shown that M1 ATMs are capable of 
decreasing insulin sensitivity of adipocytes by direct and indirect (secreted) mecha-
nisms [ 58 ]. In addition, M1 ATMs impair adipogenesis while M2 ATMs have little 
to no effect on adipogenesis [ 59 ]. Therefore, the shift toward an M1 profi le impairs 
two crucial functions of adipocytes that can buffer chronic states of nutrient 
excess—the ability to take up nutrients and the ability to generate new fat cells. By 
antagonizing both processes, M1 signals promote adipocyte dysfunction and break-
down, the normal homeostatic mechanisms that permit proper nutrient storage. 

 Additional postulated functions for ATMs in obesity include the regulation of 
hypoxic responses [ 60 ], the control of adipose tissue fi brosis [ 61 ], and the function 
as dendritic cells to activate T cells in fat [ 62 ]. All of these may contribute to alter 
tissue environments in a way that may impact tumor formation, growth, and meta-
static disease.  

4.5     Links Between Adipose Tissue Macrophages and Cancer 

 The link between increased adiposity, high BMI, and cancer likely fl ows through 
several overlapping mechanisms related to systemic and local factors [ 63 ] (Fig.  4.2 ). 
These include impaired fatty acid storage in adipocytes, alterations in adipokine 
secretions (e.g., leptin, adiponectin), shunting of lipids for storage in non-adipose 
tissues causing lipotoxicity (e.g., hepatic steatosis), systemic elevations in infl am-
matory cytokines, local production of infl ammatory cytokines in tumor-associated 
adipose tissue, and local activation of leukocytes in adipose tissue near tumor sites 
(e.g., mammary gland). ATMs have been shown to partially contribute to the devel-
opment of all of these processes; therefore, one may think of direct and indirect 
connections between ATM activation and cancer risk. 

 The relative contributions of these factors to the links between cancer and obe-
sity are still poorly understood and will likely be tissue specifi c. The systemic alter-
ations in nutrient metabolism (e.g., insulin resistance) will be reviewed in other 
chapters in this book. I will next discuss the potential for local ATM involvement in 
cancer progression and metastatic disease by highlighting recent data regarding 
breast and ovarian cancer biology that intersects with ATM function. 
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4.5.1     ATMs and Breast Cancer 

 As in other adipose tissue depots, ATMs are present in normal breast tissue and are 
critical for the physiologic remodeling that occurs in and around the mammary epi-
thelial cells. Macrophage depletion blocks post-lactation remodeling in the mouse 
mammary gland [ 64 ]. These remodeling changes are associated with an M2-like 
polarization of the ATMs that contribute to clearance of apoptotic mammary epithe-
lial cells and may modify cancer risk [ 65 ]. Similar M2-like changes have been 
observed in other mouse models where extensive adipose tissue remodeling is 
induced [ 66 ]. 

 The importance of tumor-associated macrophages (TAMs) in breast cancer 
progression is well described; however, the importance of local ATMs in this pro-
cess is incompletely understood. Like in adipose tissue, there is signifi cant hetero-
geneity in the TAMs seen in breast cancer [ 67 ]. Macrophages along the invasive 
front along the tumor periphery in mouse models demonstrate a high degree of 
motility and migration suggesting that local ATMs may contribute to TAMs [ 68 ]. 
Work in our lab using intravital microscopy corroborates these observations and 
fi nds extensive patrolling behavior of ATMs in multiple fat depots (C.N.L., unpub-
lished observation). The function of ATMs at the invasive front may include 
remodeling of the extracellular matrix, promotion of angiogenesis, direct enhance-
ment of tumor invasion, and blockade of antitumor infl ammatory responses by 
their M2 polarization [ 65 ,  69 ]. Overall, these observations suggest that ATMs 
from the surrounding adipose tissue stroma may contribute in critical ways to 
breast cancer induction and metastasis. 

 These observations also suggest that alterations in ATM phenotypes with obesity 
may contribute to the association between obesity and breast cancer risk and prog-
nosis [ 70 ,  71 ]. Recent studies have demonstrated a strong association between the 
density of CLS in the breast and BMI, adipocyte size, infl ammation, and aromatase 
expression [ 72 ]. In mouse models, obesity led to an increase in infl ammatory cyto-
kine production in mammary ATMs consistent with an M1 profi le that was capable 
of inducing aromatase expression in preadipocytes [ 73 ]. Therefore, the induction of 
infl ammatory ATMs in the breast with obesity may be a component of the link 
between obesity and breast cancer development. This activation may be related to 
the role that colony stimulating factor 1 (CSF1) appears to play in macrophage acti-
vation and the promotion of metastasis [ 74 ]. In addition, hormonal regulation and 
metabolism within ATMs may be important as macrophages express aromatase and 
are capable of generating estrogen at physiologic levels [ 75 ]. 

 Future studies will be required to understand how resident ATMs contribute to 
the local tumor environment and the leading edge. The idea that ATM accumula-
tion may be a biomarker for disease risk will also deserve further study. Besides 
ATMs, the possibility that other leukocyte types in obese tumor-associated adipose 
tissue will need to be studied as potential modifi ers of the mammary epithelial 
environment.  
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4.5.2     ATMs and Ovarian Cancer 

 Epithelial ovarian cancer morbidity and mortality is related to the fact that diagnosis 
of cancer is often delayed until the disease has reached an advanced stage [ 76 ]. 
Primary tumor cells leave the ovarian capsule and are disseminated via the perito-
neal fl uid. Within this space, the greater omentum, a major visceral adipose tissue 
depot, is a preferential site of attachment of tumors and a supportive environment 
for aggressive tumor growth [ 77 ]. The interface between the tumors and the omen-
tum is not diffuse but appears to be localized to structures known as milky spots—
immune aggregates on the surface of the omental fat pad. Milky spots are collections 
of immune cells that include large numbers of macrophages and lymphocytes [ 78 ]. 
These regions are highly vascularized and may provide a rich angiogenic environ-
ment to support tumor growth. Work from our lab has demonstrated a signifi cant 
enlargement in milky spots with aging in mice due to an expansion of CD4 +  T cells 
[ 79 ] which may play a role in peritoneal immune surveillance and age-related insu-
lin resistance. Milky spots are not limited to the omentum as we have identifi ed 
them in multiple visceral adipose tissue depots [ 80 ]. 

 The nature and function of milky spot ATMs are poorly understood. Evidence 
suggests that these ATMs play an important role in immune surveillance of the peri-
toneal cavity as guardians against pathogens as well as tumor cells [ 81 ,  82 ]. Animal 
models have demonstrated that tumor cells rapidly accumulate in milky spots and 
then are cleared presumably by the active innate immune system [ 83 ]. Cells that 
escape this clearance can migrate away from the milky spots where they are capable 
of forming tumors. In vitro studies suggest that communication between ovarian can-
cer cells may directly infl uence the function of milky spot macrophages and T cells 
to promote a tumorigenic environment [ 84 ]. This appears to be linked to the ability of 
ovarian cancer cells to enhance regulatory T cell function and promote macrophage 
scavenger receptor expression and cytokine production that enhance tissue repair. 

 The unique nature of milky spots have led some to hypothesize that enhancement 
of milky spot ATMs (e.g., enhancement of antigen presentation capacity) may be a 
future tool in cancer treatment and prevention [ 82 ]. It has been speculated that milky 
spots may provide a supportive environment for cancer stem cells and that enhanced 
ATM function may promote cancer clearance [ 85 ]. Given the involvement of the 
omentum in metastatic colon and stomach cancer, milky spot ATMs may have a 
broader function outside of ovarian cancer.   

4.6     Conclusions 

4.6.1     Current Needs in the Field 

 While this review has centered around the role of ATMs in the infl ammatory response 
to obesity, it is clear that ATMs are one part of a network of leukocytes in adipose 
tissue that cooperate to initiate and sustain infl ammation in fat with nutrient excess. 
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Essentially all types of leukocytes have been described in fat including  regulatory 
CD4 +  T cells, effector/memory CD4 +  T cells, CD8 +  T cells, activated B cells, eosino-
phils, mast cells, neutrophils, and NK cells. Given this, it is unclear if ATMs are 
initiators and/or effectors of adipose tissue infl ammation in obesity. In addition, 
while we know a reasonable amount about the events that sustain fat infl ammation 
in obesity, little is known about the events that lead to a resolution of this infl amma-
tion. Understanding how weight loss resolves infl ammatory processes may provide 
insight into new interventions and prevention strategies in cancer biology.  

4.6.2     Future Directions 

 Currently, the descriptive phase of evaluating adipose tissue leukocyte biology is 
closing. The current need in the fi eld is to integrate the biology of adipose tissue 
infl ammation and understand how the different types of adipose tissue leukocytes 
communicate as it is unlikely that they are each operating in a vacuum. This chal-
lenge is coupled to the need to increase our understanding of human ATMs which 
have very different activation profi les than those seen in animal models of obesity. 

 Part of the challenge in human studies is the limitation of most studies to the 
examination of subcutaneous fat depots and a limited assessment of visceral fat or 
tumor-associated adipose tissue. Expanding our understanding of tumor-associated 
adipose tissue and the contribution of leukocytes derived from adipose tissue is a 
future need. The conceptual shift that adipose tissue is a dynamic infl ammatory 
organ is still young. Given the importance of infl ammatory cytokines and pathways 
in the initiation and maintenance of tumor biology [ 86 ,  87 ], signals from ATMs 
around tumor sites may have a signifi cant impact upon cancer biology. Advancements 
in this concept provide new opportunities in human and animal studies to investigate 
the contribution of ATMs to tumor biology and to identify new treatment approaches.      
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    Abstract     Obesity and associated low-grade infl ammation are clearly risk factors 
for development of diabetes, cardiovascular disease, and cancer; however, the 
mechanisms and pathways by which obesity and infl ammation lead to these disor-
ders are not clearly defi ned. Since obesity is largely determined by levels of energy 
expenditure as well as quantities and composition of consumed nutrients, especially 
fats and carbohydrates, the question exists as to whether obesity and/or dietary com-
ponents contribute directly to development of infl ammation and/or associated 
comorbidities including diabetes, cancer, and cardiovascular disease. In this chap-
ter, we examine the evidence supporting a role for dietary fats in the development of 
infl ammation and intestinal tumorigenesis. We also compare different fats and dif-
ferent diets for their ability to promote or prevent intestinal tumorigenesis and 
explore possible mechanisms of action. These considerations are important for the 
potential prevention and control of intestinal cancer, since overall diet and specifi c 
dietary components are modifi able risk factors and increasing numbers of dietary 
and pharmacologic interventions are becoming available to control both infl amma-
tory and carcinogenic processes.  
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5.1         Introduction 

 Dietary fat was once considered to simply be a source of fatty acids to fuel energy 
needs and to support development of adipose tissue to serve as an energy reserve, 
with fatty acid oxidation supplying as much as 2 times the amount of energy that can 
be derived from equal amounts of carbohydrates or proteins. It is now apparent that 
dietary fatty acids provide key structural elements for cellular and organelle mem-
brane structure, function and fl uidity; support proper growth and development; facil-
itate absorption of fat-soluble molecules including vitamins A, D, E, and K; and 
insulate internal organs and neural processes [ 1 ,  2 ]. Fatty acids and their derivatives 
are critical in regulating and contributing to organogenesis, body temperature, the 
immune and infl ammatory responses, and unique signaling pathways such as those 
mediated by prostaglandins, phospholipids, sphingolipids, ceramides, and others. 
Fatty acid consumption and metabolism is regulated by a complex series of ecologic, 
ethnic and environmental factors, and biobehavioral processes. Disorders of fatty 
acid intake and metabolism contribute to a wide variety of metabolic, immunologic, 
and neoplastic disorders including obesity, infl ammation, diabetes, and cancer. 

 Obesity is clearly associated with an increased risk for a number of malignancies 
including colon cancer, esophageal adenocarcinoma, postmenopausal breast cancer, 
renal cell carcinoma, uterine cancer, and pancreatic cancer, and the list continues to 
expand [ 3 ,  4 ]. 

 In addition to its association with metabolic and neoplastic disorders, obesity is 
now recognized as a chronic low-grade infl ammatory disorder, where both dietary 
fats and the increase in adipose tissue contribute to the infl ammatory state and asso-
ciated comorbidities [ 5 ]. Although not consistently confi rmed, there is substantial 
evidence linking dietary fats as contributing factors to a variety of malignancies 
including breast, pancreatic, hepatic, colon, prostate and others    [ 6 – 17 ]. However, 
because of the complex interactions between diet, obesity, infl ammation, and can-
cer, it is frequently diffi cult to separate the etiologic contribution of each in the 
process and their independent role in carcinogenesis. In particular, the fact that high 
dietary fat leads to both obesity and infl ammation makes it diffi cult to determine 
which component leads to cancer. Defi ning these relations is further confounded by 
the fact that all fats are not equal, in that fatty acids of different lengths and degrees 
of saturation may have different biologic and pathophysiologic effects, which some-
times may be additive or complimentary, and at others may be competitive or antag-
onistic. In this regard, it is important to remember that although large studies such 
as the Women’s Health Initiative, in which a total of 48,835 postmenopausal partici-
pants were randomized to a diet modifi cation where 19,541 were assigned to con-
sume 20 % lower fat compared to 29,294 women who consumed a usual diet, there 
was no signifi cant reduction in risk for colorectal cancer (CRC) [ 18 ,  19 ]. In con-
trast, other studies, outlined below, do show changes in CRC risk in association with 
different levels of consumption of specifi c fatty acids. 

 In this chapter, we focus on the relation of dietary fats to infl ammatory processes 
and to colon cancer. First, we provide a brief outline of fatty acid structure and 
nomenclature. We next review the epidemiologic and nutritional evidence 
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supporting a role for dietary fatty acids and selected diets in the promotion and pre-
vention of colon cancer. We subsequently review the pro- and anti-infl ammatory 
effects of specifi c fatty acids and diets and their possible contribution to colon can-
cer. Finally, we address potential mechanisms and mediators of this relation and 
how they may serve as targets for cancer prevention and control.  

5.2     Fatty Acid Structure and Nomenclature 

 Fatty acids are hydrocarbon chains with a methyl group at one terminus and a car-
boxyl at the other. As indicated in Table  5.1 , they vary in chain length of carbon 
atoms connected by bonds that may be saturated or unsaturated [ 20 ]. Those with a 
single unsaturated bond are designated monounsaturated fatty acids (MUFAs), 
whereas those with more than one double bond are polyunsaturated fatty acids 
(PUFA). When multiple double bonds exist, they are never adjacent. The hydrogen 
atoms on either side of the double bond, in naturally occurring fatty acids, are 
almost always in the  cis  confi guration, whereas in synthetic fatty acids, the hydro-
gen atoms on either side of the double bond may be in the  trans  confi guration pro-
viding the basis for trans fats. Fatty acids are numbered with the carbon atom in the 
carboxyl group designated number one, and subsequent numbers progressing 
sequentially through consecutive carbons to the methyl group at the other end of the 
molecule which is designated the omega (ω) carbon. The (ω) carbon is sometimes 
designated as n for its position at the end. In the case of unsaturated fatty acids, the 
location of the fi rst double bond is counted from the ω carbon atom of the methyl 
group at the end of the hydrocarbon chain.

   Table 5.1    Structure and nomenclature of dietary fatty acids with important impact on colon cancer   

 Symbol  Common name  Structure  CRC impact 

 Saturated fatty acids 
 C12:0  Lauric  CH 3 (CH 2 ) 10 COOH  ↑ 
 C14:0  Myristic  CH 3 (CH 2 ) 12 COOH  ↑ 
 C16:0  Palmitic  CH 3 (CH 2 ) 14 COOH  ↑ 
 C18:0  Stearic  CH 3 (CH 2 ) 16 COOH  ↑ 
 Monounsaturated fatty acids 
 C16:1n-7  Palmitoleic  CH 3 (CH 2 ) 5 CH=CH(CH 2 ) 7 COOH 
 C18:1n-9  Oleic  CH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COOH  ↓ 
 Polyunsaturated fatty acids 
 C18:2n-6  Linoleic  CH 3 (CH 2 ) 4 (CH=CHCH 2 ) 2  (CH 2 ) 6 COOH  ↑ 
 C18:3n-3  Linolenic  CH 3 CH 2 (CH=CHCH 2 ) 3  (CH 2 ) 6 COOH  ↓ 
 C20:4n-6  Arachidonic  CH 3 (CH 2 ) 4 (CH=CHCH 2 ) 4  (CH 2 ) 2 COOH  ↑ 
 C20:5n-3  Eicosapentaenoic  CH 3 CH 2 (CH=CHCH 2 ) 5  (CH 2 ) 2 COOH  ↓ 
 C22:6n-3  Docosahexaenoic  CH 3 CH 2 (CH=CHCH 2 ) 6  CH 2 COOH  ↓ 

  Symbol provides number of carbon atoms in fatty acid chain: followed by number of double bonds 
for unsaturated fatty acids, n-x provides position of fi rst double bond relative to the ω carbon at the 
terminal methyl end [ 20 ]. Impact on colorectal cancer (CRC), ↑ = promoter, ↓ = suppressor  
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   Structure and function of fatty acids are determined by the hydrocarbon chain 
length and the number, location, and geometric confi gurations of the double bonds. 
The saturated fatty acids are the most fl exible, with unsaturated fatty acids being 
more rigid and angled at their double bonds. The long-chain fatty acids of biologic 
signifi cance usually contain an even number of carbon atoms, between 14 and 22, 
with 16–18 being most abundant. Lauric and myristic acids are medium-chain satu-
rated fatty acids; palmitic and stearic acids are long-chain saturated fatty acids. 
Among the unsaturated fatty acids, the most abundant are oleic, linoleic, linolenic 
and arachidonic acids. The biologically important MUFAs, palmitoleic and oleic 
acids, can be synthesized in animal tissues from the saturated fatty acids, palmitic 
and stearic acids by process of fatty acid desaturation, whereas other biologically 
important MUFAs, linoleic or linolenic, cannot be synthesized by mammalian tis-
sues, must be derived from exogenous sources, and are consequently designated 
essential fatty acids. Polyunsaturated fatty acids (PUFA) contain more than one 
double bond. Their composition in the cell membrane can be determined by diet, 
and they drastically affect membrane function and intracellular signaling [ 21 ,  22 ]. 
There are two general groups of PUFAs, both are important to general health and 
disease and specifi cally to colon cancers. They are the ω3 PUFAs and the ω6 PUFAs. 
They are not interconvertible and dietary substitution of one results in a competitive 
reduction in the other [ 21 ,  23 ]. Omega 3 fatty acids, containing unsaturated, double 
bonds after the third carbon from the methyl end, include eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA) which are common in marine plants and 
fi sh, are generally not made in mammalian tissues, and are also considered essential 
fatty acids. Another ω3 fatty acid, linolenic acid, is derived from a number of plant 
seeds and green leafy vegetables. The n6 or ω6 fatty acids, in which the fi rst unsatu-
rated double bond is located after the sixth carbon atom from the methyl end, of 
biologic importance, include arachidonic acid and linoleic acid, commonly found in 
corn, soybean, sunfl ower, sesame, and palm oils [ 24 ].  

5.3     Epidemiology of Dietary Fat and Colon Cancer 

 Early observations implicating dietary fats in the etiology of colon cancer were 
based on differences in the incidence of malignancy where signifi cant anthropologi-
cal and/or ecological differences existed in diet or occurred in association with diet 
change, particularly in migrating populations [ 25 – 27 ]. Anthropologic studies indi-
cate that our Paleolithic ancestors consumed a diet high in fi ber and carbohydrates, 
with abundant protein from fruit and vegetable sources, fi sh, and wild game [ 28 , 
 29 ]. In contrast, current diets in affl uent Western countries are composed of calorie- 
dense, nutrient-poor foods that are rich in fat, oil, and sugar [ 30 ]. This dietary com-
position is implicated in the increased risk of colon cancer and other malignancies 
characteristic of many Western countries [ 31 ,  32 ] and, in particular, the increased 
cancer risk in populations that migrate from countries that consume low amounts of 
these same detrimental nutrients [ 33 ]. 
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 Studying geographic differences, Wynder et al. reported the high incidence of 
colon cancer in the USA compared to the lower incidence in Japan [ 27 ]. They noted 
also that the increase in colon cancer that occurred in Japan in the 20-year post- 
World War II period occurred in association with relatively high consumption of 
eggs, milk, meat, fat, and fruit [ 27 ]. They also postulated that the difference might 
be associated with different intestinal bacteria associated with either the different 
ethnic groups and/or different diets. Also on the basis of geographic differences in 
food consumption, especially comparing African to Western countries, Burkitt 
found that CRC incidence was associated with high dietary fat consumption but low 
dietary fi ber [ 26 ]. Based on these observations, he introduced the concept that spe-
cifi c foods could be protective against the carcinogenic effects of others and recom-
mended consumption of diets containing reduced fats and increased fi ber to protect 
against colon cancer, especially in Western countries [ 26 ]. 

 Comparison of environmental factors and relation to cancer in 30 countries by 
Armstrong and Doll [ 25 ] showed that colon cancer incidence correlated with per 
capita consumption of meat, animal protein, and total fat, with the United States and 
New Zealand showing both the highest per capita consumption and the highest 
colon cancer incidence compared to Japan and Nigeria with the lowest. These 
observations were subsequently confi rmed and refi ned to demonstrate that correla-
tion of colon cancer with fat was more specifi cally associated with animal fat [ 12 ]. 

 An important example of emigrational epidemiology involving diet change and 
cancer risk is shown by the observation that Japanese men born in Japan had a 
reduced risk of CRC compared with US-born white men, whereas Japanese men 
born in the USA experienced CRC rates twice as high as foreign-born Japanese men 
[ 34 – 36 ]. US-born Japanese women had higher rates of CRC than Japanese-born 
Japanese women or US white women. Colon cancer mortality was also increased in 
US-born Japanese patients [ 34 ,  37 ]. Evidence suggests that the increase in colon 
cancer development and mortality is due to an increased consumption of Western 
dietary components, mainly high dietary fat [ 35 ]. Similar observations of increased 
risk for colon cancer in association with diet change have been made in population 
groups moving to the United States from South Korea, Vietnam, Cuba, Puerto Rico, 
and Mexico [ 38 – 40 ]. 

 Another example of the impact of dietary composition on cancer incidence is 
provided by comparison of Pima Indians who have migrated from Mexico to 
Arizona [ 41 ,  42 ]. The Pima Indians living in Arizona are exposed to energy-dense 
foods and a decreased need for physical labor. They have a high prevalence of obe-
sity, metabolic syndrome, diabetes, and multiple malignancies including colon can-
cer, when compared to the Pima Indians that still live in Mexico, who follow a 
traditional diet and customs and have a lower prevalence of these diseases [ 43 ]. 
Compared to the general population, Pima Indians have a strong genetic susceptibil-
ity to obesity, metabolic syndrome, and signifi cantly higher mortality from heart 
disease and malignancies. The increase in these disorders associated with migration 
from Mexico to Arizona demonstrates a powerful impact of environment, especially 
diet on these conditions. 
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 Another series of studies supporting an association of dietary fat with colon can-
cer comes from comparing the so-called Mediterranean diet to Western diets. In 
general, Mediterranean countries have lower rates of colon cancer compared to 
Western countries [ 44 ,  45 ]. As much as 76 % of the intercountry variation in colon 
cancer incidence rates have been attributed to three dietary factors, meat, fi sh, and 
olive oil, with meat and fi sh showing a positive association and olive oil showing a 
negative association with colon cancer [ 46 ]   . Other studies, including three out of six 
case–control studies in Mediterranean populations, show an inverse association 
between monounsaturated and saturated fatty acid ratio with CRC [ 47 ].  

5.4     Animal Studies Supporting Involvement of Fatty 
Acids in Colorectal Cancer 

 As detailed in this section and for each fatty acid, multiple studies in animal models 
now support the association between high-fat diets and intestinal tumor develop-
ment. These models usually examine the effects of varying dietary fat quantity and/
or quality in rodents treated with primary intestinal carcinogens such as azoxymeth-
ane (AOM) or dimethylhydrazine (DMH) or in rodents with hereditary genetic 
mutations predisposing to intestinal tumorigenesis [ 48 ]. A common model used in 
the latter situation is the APC Min  mouse containing a mutation in the FAP gene, the 
same gene that leads to familial adenomatous polyposis in humans and also shows 
spontaneous mutations in a high percentage of sporadic cancers [ 49 ,  50 ]. 

 Initial studies to defi ne the specifi c effects of different fats showed that increased 
amounts of dietary fat increased intestinal tumorigenesis in rats treated with DMH, 
and that both corn oil, high in unsaturated fats, and lard, high in saturated fats, each 
promoted increased intestinal tumorigenesis [ 51 ]. Subsequent studies showed dif-
ferential effects of fat on intestinal tumorigenesis based on source, with corn oil, 
lard, or beef fat causing an increase in intestinal tumorigenesis in DMH-treated rats, 
whereas supplementation with olive oil reduced tumors in DMH-treated rats. 
Similarly, supplementation with fi sh oil (Menhaden oil) reduced tumors in AOM- 
treated rats [ 10 ,  11 ]. Dietary fats may also infl uence carcinogen-induced intestinal 
tumorigenesis by altering intestinal microbiota. Germ-free rats treated with DMH, 
which is actually a procarcinogen, showed less tumorigenesis than conventionally 
housed animals. In contrast, tumorigenesis in germ-free rats treated with the pri-
mary carcinogen  N -methyl- N -nitro- N ′-nitrosoguanidine (MNNG) showed slightly 
increased tumorigenesis, relative to MNNG-treated conventionally housed animals 
[ 52 ]. Since DMH is a procarcinogen, requiring metabolic activation, whereas 
MNNG is a direct-acting carcinogen, these studies suggest a role for intestinal 
microfl ora in carcinogen activation and/or tumor promotion. These and similar 
results led to an extensive expansion of studies, summarized below, to defi ne the 
intestinal tumorigenic effects of specifi c fatty acids from multiple sources.  
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5.5     Effects of Specifi c Fatty Acids 

5.5.1     Saturated Fatty Acids 

5.5.1.1     Lauric and Myristic Acids 

 Lauric acid (C12.0) and myristic acid (C14.0) are saturated, medium-chain fatty 
acids (MCFA) found in high concentration in tropical plants such as coconuts and 
in dairy fats. They appear to promote colon tumorigenesis and signifi cant increases 
in lauric, and myristic acids have been identifi ed in subjects at high risk for colon 
cancer [ 53 ]. At least one case–control study noted a signifi cant increase in lauric 
acid intake with colon cancer risk [ 54 ]. These two saturated MCFAs have been 
shown to induce proinfl ammatory factors in murine and human macrophages and 
colon cell lines. Treatment of a murine monocyte macrophage cell line, RAW 264.7, 
with lauric or myristic acid independently increased NF-κB activation, which serves 
as a transcription factor for multiple proinfl ammatory cytokines including 
interleukin-1β (IL-1β), IL-6, TNF-α, and C-reactive protein (CRP) as well as 
increased expression of cyclooxygenese-2 (COX-2) [ 55 ]. COX-2 is a major enzyme 
involved in synthesis of prostaglandin E 2  (PGE 2 ), the latter playing an important 
role in development of colon cancer    [ 56 – 58 ]. Many studies show higher PGE 2  levels 
in human CRC samples compared to paired tissue samples of normal colon mucosa 
from the same patient [ 59 ]. These latter studies suggest that elevated tumor levels of 
PGE 2  are determined by specifi c processes within the tumor that increase PGE 2  and 
auto-promote tumor growth. PGE 2  levels are regulated both by COX-2-mediated 
synthesis and degradation by 15-prostaglandin dehydrogenase (15-PGDH). 
15-PGDH is an NAD+-linked dehydrogenase that oxidizes the hydroxyl group at 
the 15 position, reducing the level and biologic consequences of PGE 2 . 15-PGDH, 
the rate-limiting enzyme catalyzing degradation of PGE 2 , is commonly inactivated 
in colon tumors providing a partial explanation for elevated levels of PGE 2  in the 
tumor tissue [ 60 ,  61 ]. PGE 2  is a proinfl ammatory mediator that decreases produc-
tion of IL-2 and IFN-α leading to production of proinfl ammatory T helper cells. 
PGE 2  also has direct effects on stimulating growth-promoting pathways, increasing 
cell proliferation and decreasing apoptosis in intestinal epithelial cells [ 58 ,  62 ]. 

 Treatment of cultures of human nonmalignant colon epithelial cells (HCEC) and 
multiple human colon cancer cell lines, including HCT 116, SW48, SW480, HT29, 
and HCA-7, with lauric or myristic acids increases NF-κB, COX-2, and prostaglan-
din production [ 63 – 65 ]. 

 Further studies suggest that the effects of fatty acids on NF-κB activation and 
COX-2 expression may result from incorporation of saturated fatty acids into lipo-
polysaccharide (LPS) followed by signaling through stimulation of Toll-like recep-
tors (TLRs) [ 66 ]. These studies show that lauric and myristic acid act on both 
intestinal epithelial and immune cells to promote increases in infl ammatory factors, 
some of which promote growth in normal and malignant colon tissues.  
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5.5.1.2     Palmitic and Stearic Acids 

 Palmitic (C16:0) and stearic acids (C18:0) are long-chain saturated fatty acids found 
in both animal and plant sources. Epidemiologic studies on the association of palmitic 
and stearic acids with colon cancer are controversial with many reporting no relation 
with colon cancer risk [ 67 ,  68 ]. However, in a national prospective case–control study 
in Scotland that included 1,455 incident cases and 1,455 matched controls, palmitic 
acid was dose-dependently associated with increased colon cancer risk [ 69 ]. In the 
Apc Min/+  murine model, levels of erythrocyte membrane palmitic acid were signifi -
cantly associated with the development of intestinal tumors [ 70 ]. Several studies have 
demonstrated an increase in stearic acid intake and colon cancer risk, increased stea-
ric acid in the plasma of colon cancer patients compared to controls [ 67 ], and increased 
stearic acid in colon cancer specimens compared to normal tissue [ 53 ,  71 ]. 

 Stearic acid has been shown to increase proliferation of HT-29 human colon 
cancer cell lines [ 72 ] and stearic acid has been shown to promote colon carcinogen-
esis in male Sprague Dawley rats injected with colon carcinogens [ 73 ]. Examination 
of membrane phospholipids in these rodents showed signifi cantly higher amounts 
of stearic acid in the tumor-bearing mice compared to controls [ 73 ]. From a mecha-
nistic viewpoint, at least one study demonstrated that high levels of membrane stea-
ric acid in tumor cells could inhibit the immune response and subsequent apoptosis 
[ 74 ]. Concentrations of fi brinogen, another marker of infl ammation, were shown to 
be elevated after high dietary consumption of stearic acid [ 75 ]. Although not spe-
cifi c to palmitic or stearic acids, examination of the 1999–2000 National Health and 
Nutrition Examination Study (NHANES 1999–2000) showed a modest association 
of elevated CRP with consumption of saturated fatty acids [ 76 ].   

5.5.2     Monounsaturated Fatty Acids 

5.5.2.1     Palmitoleic Acid 

 Palmitoleic acid (C16:1n-7), an omega MUFA, commonly found as a minor compo-
nent of many animal and vegetable oils and in higher concentration in macadamia 
nuts, has been shown to have anti-infl ammatory properties, to reduce hypercholes-
terolemia, and to have a benefi cial effect on muscle insulin resistance; however, its 
effects on cancer and especially on CRC remain to be investigated [ 77 ,  78 ].  

5.5.2.2     Oleic Acid 

 Oleic acid (C18:1n-9) is a MUFA that is the major component of olive oil and can 
also be found in meats, nuts, and dairy products. Several studies have suggested that 
the ratio of oleic acid to stearic acid is important in determining disease outcome. In 
two human studies, a decreased erythrocyte oleic/stearic acid ratio was reported in 
patients with CRC, and similar changes were shown in their cancer tissues [ 71 ,  79 ]. 
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 To test the ability of oleic acid to interfere with the procarcinogenic effect of 
stearic acid, mice that were treated with DMH and fed diets high in stearic acid were 
supplemented with oleic acid. The latter mice showed reduction in intestinal polyp 
multiplicity and size relative to those without the oleic acid supplement [ 80 ]. 
In human cell culture, it has been shown that oleic acid can inhibit the proliferative 
effects of stearic acid as well as inhibit stearic acid-induced NF-κB activation and 
intercellular adhesion molecule-1 (ICAM-1) expression [ 81 ]. Studies conducted 
with human colon cancer cell lines show that treatment of HT-29 and Caco-2 cells 
with oleic acid results in decreased proliferation and increased apoptosis. Oleic acid 
has been shown to decrease factors associated with infl ammation and tumorigenesis 
such as COX-2 and Bcl-2 [ 82 ]. Raising dietary levels of oleic acid showed a trend 
to lower circulating infl ammatory markers including CRP, IL-6, and E-selectin 
compared to diets enriched for saturated fatty acids, trans fatty acids, or stearic acids 
[ 75 ,  76 ]. Oleic acid has also been shown to inhibit calcium infl ux pathways impor-
tant for proliferation and infl ammation as well as for calcium-induced apoptosis in 
HT-29 colon cancer cells [ 83 ]. Interestingly, olive-oil-fed mice showed reduced pro-
duction of nitric oxides and other infl ammatory mediators [ 84 ].   

5.5.3     Polyunsaturated Fatty Acids 

 PUFA composition of the cell membrane can drastically change intercellular signal-
ing and can be modulated by diet [ 22 ]. Two general groups of PUFAs that play criti-
cal roles in health and disease are the omega-3 and omega-6 PUFA. They are not 
interconvertible, and dietary substitution of one results in a competitive reduction in 
concentration of the other in all tissues [ 21 ,  23 ]. Omega-3 (ω-3) PUFAs are essential 
fatty acids commonly found in plant and marine oils that include α-linolenic, eicos-
apentaenoic, and DHAs [ 21 ]. Omega 6 (ω-6) PUFA are essential fatty acids com-
monly found in corn, soybean, sunfl ower, and palm oils and include arachidonic, 
linoleic, and γ-linoleic acids [ 24 ]. Comparing tumor tissue to normal intestinal 
mucosa in patients undergoing surgery for colon cancer showed that tumor tissue 
contained elevated PUFA levels, including arachidonic acid and its derivative PGE 2  
which serves to promote both infl ammation and proliferation. These studies also 
showed elevated levels of the lipid peroxidation product, malondialdehyde, which 
serves as a potential DNA-targeted mutagen [ 85 ]. 

5.5.3.1     Linoleic Acid 

 Linoleic acid (LA) C18:2n-6 is an essential ω6 fatty acid derived mostly from corn 
oil but also from saffl ower and sunfl ower oils; it is the predominant PUFA of the 
Western diet common in America [ 86 ,  87 ]. Diets high in corn oil have been shown 
to signifi cantly increase polyp multiplicity in various rodent studies [ 88 – 90 ]. 
However, data surrounding the effect of LA on intestinal tumorigenesis is com-
plicated by the fact that early studies did not differentiate between LA and an 
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alternative set of isomers, designated conjugated linoleic acid (CLA). Without 
 differentiating between specifi c LA isomers, numerous studies demonstrated that 
LA had a benefi cial effect on colon cancer outcome [ 67 ,  68 ,  91 ,  92 ], whereas more 
recent studies suggest that different LA isomers could have contrasting effects [ 93 ]. 

 Supplementation of AOM-treated rats with linoleic acid resulted in a signifi cantly 
higher incidence of colon tumors, with histology showing greater malignant differ-
entiation [ 94 ]. Further studies of dietary supplementation with LA and/or glucose in 
Fischer 344 rats treated with the carcinogen AOM showed that both LA and glucose 
each increased intestinal tumor frequency, multiplicity, and metastasis and the great-
est increase occurred in rats treated with the combination of LA and glucose. This 
increase was associated also with greater weight gain in rats [ 95 ]. Several meta-
analyses in normal individuals have not shown a relation between linoleic acid intake 
and levels of infl ammation except for an increased level of PGE 2  excretion [ 96 ,  97 ]. 

 Levels of LA have been found to decrease with advanced stages of cancer [ 22 ]. 
In contrast, patients with normal colon exhibited high mucosal LA content com-
pared to those with colon adenomas or colon cancer [ 91 ]. Circulating LA concentra-
tion have been shown to be decreased in colon cancer patients compared to 
hospital-based controls [ 67 ] and decreased in patients with familial adenomatous 
polyposis compared to healthy controls [ 98 ]. 

 The Netherlands Cohort Study, which comprised 123,852 individuals, of which 
531 were diagnosed with colon cancer, detected that LA intake was associated with 
increased colon tumors. Specifi cally, this group observed a signifi cant association 
of LA with tumors that contained KRAS mutations [ 99 ,  100 ]. In contrast, there 
were no signifi cant associations for CRC with dietary differences in total fat, satu-
rated fats, MUFAs, or linoleic acid [ 99 ]. These observations could be explained by 
lipid peroxidation of ω6 PUFAs with the generation of mutagenic by-products lead-
ing to procarcinogenic changes in the K-ras oncogene [ 99 ]. Human Caco-2 colon 
cancer cell lines supplemented with LA showed increases in cell growth and prolif-
eration [ 101 ]. Similarly, human SW480 colon cancer cells treated with LA showed 
signifi cant elevations in cell proliferation and prostaglandins, including PGD 2  and 
PGE 2 , none of which were observed in cells treated with CLA [ 102 ]. 

 LA serves as a precursor for the biosynthesis of AA and subsequent proinfl am-
matory prostaglandins, such as PGD 2  and PGE 2 . Thus, many of the consequences of 
dietary supplementation with LA are probably mediated through its conversion to 
arachidonic acid [ 103 ].  

5.5.3.2     Conjugated Linoleic Acid 

 CLAs, C18:2, are a series of 28 different isomers of linoleic acid that vary in the 
location of their unsaturated double bonds and geometric arrangements [ 104 ]. 
Molecular arrangements around these unsaturated double bonds may be either in 
the  cis  (c) or  trans  (t) confi guration. As such, they provide a source of naturally 
occurring trans fatty acids derived primarily from dairy products and meat from 
ruminant animals. The different isomers may have similar and/or opposing effects 
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associated with their unique geometries accounting for confl icting reports of their 
consequences. Of the various CLA isomers, those most abundant in natural prod-
ucts are the  cis -9,  trans -11 isomer, (c9, t11 CLA) and the  trans -10,  cis -12 isomer 
(t10, c12-CLA) [ 105 ]. In natural products, the c9, t11 CLA usually exceeds the t10, 
c12 variety; however, they are commonly present in equal amounts in commercially 
available CLA supplements used to reduce obesity or build lean body mass [ 106 ]. 

 Numerous studies have been conducted in rodent and human cell lines and ani-
mal models to examine the outcomes of CLA associated with infl ammation and 
colon cancer development. t10, c12 CLA induces an infl ammatory response in cul-
tured adipocytes from Caucasian and African-American women as demonstrated by 
increased levels of IL-1β, IL-6, IL-8, and COX-2, with the induced infl ammatory 
response being much greater in fully differentiated adipocytes compared to preadi-
pocytes [ 106 ]. In contrast, treatment of RAW264.7 murine macrophages with a 
series of CLAs, both  cis  and  trans , signifi cantly suppressed IL-1β, TNF-α, INF-γ, 
COX-2, PGE 2 , and iNOS. Many of these effects were eliminated by peroxisome 
proliferator-activated receptor gamma (PPARγ) mutation, suggesting PPARγ as an 
important mediator of CLA effect [ 107 ]. 

 CLA treatment in tissue culture has also been shown to affect cell growth and 
other tumor-associated properties. Several studies show that treatment with c9, t11- 
CLA results in time- and dose-dependent decrease in proliferation in HT-29 and 
Caco-2 human colon cancer cell lines [ 101 ,  108 – 110 ]. Treatment of Caco-2 cells 
with an equal mixture of c9, t11 and t10, c12 reduced their viability, but the effect 
was blocked by inhibitors of PPARγ, again indicating a role for PPARγ as mediator 
of the CLA effects [ 110 ]. In addition, treatment in tissue culture with c9, t11 CLA 
but not t10, c12 CLA reduced migration of SW480 human colon cancer cells, and 
both agents decreased pulmonary metastasis of IV-administered CT-26 mouse colon 
cancer cells in BalbC mice [ 111 ]. 

 Multiple studies show that dietary supplementation with t10, c12 CLA promotes 
infl ammation in murine white adipose tissue [ 112 ] whereas c9, t11 CLA reduces 
infl ammation [ 113 ] and reduces colonic aberrant crypt formation (ACF) and tumor-
igenesis in DHM- or AOM-treated murine models [ 114 – 116 ]. The decreased tumor 
formation in the treated animals was associated with decreased levels of PGE 2 , 
thromboxane A2, arachidonic acid, increased apoptosis, decreased infi ltrating mac-
rophages, and increased regulatory T cells in mesenteric lymph nodes [ 114 – 116 ]. 
CLA supplementation of AOM-treated rats reduced formation of both ACF and 
tumors and increased PPARγ in tumors and surrounding normal mucosa [ 117 ]. 
Mice, genetically defi cient in PPARγ, showed similar polyp numbers and infi ltrat-
ing immune cells when treated with CLA, demonstrating again that the antitumor 
effect can be modulated through PPARγ signaling [ 118 ]. 

 Similarly, in AOM-treated Sprague Dawley rats, supplementation with CLA 
containing approximately equal concentrations of the c9, t11 and t10, c12 isomers 
showed decreased cancer incidence and decreased tumor multiplicity (number of 
cancers/rat) along with increased apoptosis. The antitumor effect of the CLA sup-
plement was associated with decreased COX-2 and PGE 2 . Administration of CLA 
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as free fatty acids was more effective than when they were administered as conju-
gated triglycerides [ 119 ]. 

 Although evidence for benefi cial effects of CLA in humans has been hard to 
establish, given the complications surrounding the LA isomers, the Swedish 
Mammography Cohort examined 60,708 women and observed that women who 
consumed high amounts of CLA-containing foods, such as dairy products, showed 
a signifi cant reduction in colon cancer risk. Each increment of two servings of high- 
fat dairy foods corresponded to a 13 % reduction in the risk of CRC [ 120 ].  

5.5.3.3     Arachidonic Acid 

 Arachidonic acid (AA), 20:4n-6, contained in a variety of dietary food sources and 
synthesized in the body by desaturation and elongation of linoleic acid, is an ω6 
PUFA associated with detrimental effects on disease outcome. Two independent 
studies demonstrated signifi cantly increased AA levels in plasma and intestinal tis-
sue of colon cancer patients compared to controls, and AA levels were signifi cantly 
elevated in patients with FAP [ 98 ]. In DMH-treated rats, supplementation with AA 
resulted in a signifi cant increase in colon cell proliferation and tumors [ 121 ]. Studies 
in APC Min/+  mice demonstrate that dietary supplementation with AA can increase 
intestinal AA content, increase PGE 2  formation, but not increase intestinal tumori-
genesis. In contrast, EPA supplementation decreased intestinal AA content and 
PGE 2  production. Supplementation of dietary EPA with AA restored the intestinal 
AA content, returned capacity for PGE 2  production, and abolished the antitumori-
genic effect of EPA [ 122 ]. Thus, dietary supplementation with AA did not increase 
intestinal tumorigenesis in normal-diet-fed mice, but AA was able to overcome the 
antitumorigenic effect of EPA. 

 Arachidonic acid is metabolized to PGE 2  and related eicosanoids by the cyclo-
oxygenase system, including COX-1 and COX-2. As noted earlier, COX-2 is upreg-
ulated under infl ammatory conditions. PGE 2  is degraded by 15-PGDH whose level 
is decreased in colon neoplasia [ 56 ,  57 ,  60 ,  61 ]. Thus, increased COX-2 and 
decreased PGDH, each contribute to the elevated PGE 2  in colon cancer. 

 Elevated levels of intestinal PGE 2  lead to increased infl ammatory processes, 
stimulate increased replication of intestinal epithelial cells, prolong their survival 
due to decreased apoptosis, and increase tumor-associated angiogenesis and neo-
vascularization [ 123 ]. The proinfl ammatory and procarcinogenic effects of arachi-
donic acid and PGE 2  are further supported by the demonstration that nonsteroidal 
anti-infl ammatory drugs (NSAIDs), which interfere with PGE 2  synthesis, are effec-
tive agents in rodents and humans for suppressing development of colorectal adeno-
mas and carcinomas [ 124 ] and reducing mortality in patients being treated for CRC 
[ 125 ]. In addition, n-3 PUFA supplementation, especially with EPA and DHA, 
interfere with the cancer-promoting effects of PGE 2 , and knockdown of PGE 2  recep-
tors block development of intestinal tumors in carcinogen-treated rodents. 

 Although numerous experimental approaches in rodents have been used to dem-
onstrate that AA supplementation and elevated PGE 2  levels promote both local 
 gastrointestinal and systemic proinfl ammatory states and increased intestinal 
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tumorigenesis, all of these models require either a predisposing genetic mutation, 
such as the APC Min/+  model of familial adenomatous polyposis; a carcinogen- 
induced mutation, induced by treatment with agents such as AOM or DMH; or 
spontaneous mutation as expected to occur during free radical generation associated 
with infl ammatory bowel disease [ 48 ]. These observations indicate that AA and its 
growth-promoting derivatives such as PGE 2  function to promote progression of 
tumors that are initiated by primary mutagenic changes. Overall, we are unaware of 
rodent studies showing that arachidonic acid initiates tumorigenesis in animals 
without preexisting genetic alterations. Moreover, while some epidemiologic stud-
ies have identifi ed an increase in CRC in association with increased arachidonic 
acid consumption [ 126 ], most studies have not supported this association [ 54 ,  69 , 
 127 – 130 ]. These observations may account for the lack of any signifi cant increase 
in reports of adverse effects in populations where diets in the young or the elderly 
are supplemented with AA [ 103 ,  131 ]. The protumorigenic effects of AA and its use 
as a dietary supplement in infants and adults are an interesting paradox.  

5.5.3.4     Alpha Linolenic Acid 

 Alpha linolenic acid (ALNA) 18:3n-3 is an essential ω-3 PUFA found in high quan-
tities in vegetable oils, seeds, nuts, and dark green leafy vegetables. Common 
sources include perilla oil, fl axseeds, kiwi fruit seeds, walnuts, and canola oil. As an 
n-3 fatty acid, ALNA has similar properties to EPA and DHA and can be converted 
in the body at limited rates to EPA 20:3n-3 and DHA 22:6n-3. 

 Dietary supplementation in rodents with perilla oil, walnut oil, or fl axseed oil, all 
high in ALNA, resulted in increased circulating and tissue ω-3 fatty acids compared 
to control-fed animals and decreased intestinal ACF, tumor incidence, and tumor 
load in animals treated with  N -methyl- N -nitrosourea or AOM [ 132 – 134 ]. Similar 
effects were seen in APC Min/+  mice where a fl axseed oil supplemented diet decreased 
small and large intestine tumor number and size [ 135 ]. 

 Further studies in rodents and man showed that diets supplemented with walnuts, 
fl axseed oil, or purifi ed ALNA decreased circulating and tissue levels of proinfl am-
matory factors including IL-1β, IL-6, TNF-α, myeloperoxidase, CRP, NF-κB, 
COX-2, and urinary PGEM. ALNA supplementation also decreased oxidative stress 
as measured by decreased urinary 8 isoprostanes [ 136 – 141 ]. Interestingly, fl axseed- 
dependent lowering of infl ammatory factors in rats was further enhanced by exer-
cise [ 138 ]. The ALNA lowering of infl ammatory factors is similar to those produced 
by EPA and DHA [ 141 ]. While fi sh oil supplementation increases circulating EPA 
and DHA, fl axseed supplementation increases ALNA [ 142 ]. Flaxseed oil has also 
been shown to reduce adipocyte size and monocyte chemoattractant protein 1 in 
obese rats [ 143 ]. The combination of fl axseed oil and fi sh oil in healthy volunteers 
produced greater suppression of infl ammatory factors than either agent alone [ 144 ]. 

 In rodents with infl ammatory bowel disease, ALNA decreased infl ammatory 
cytokines and intestinal infl ammatory disease. Increased intake of ALNA reduced 
infl ammatory death rate in patients with infl ammatory disease, whereas dietary 
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intake of supplementary fi sh oil was associated with no changes in death from 
infl ammatory diseases [ 145 ]. 

 An ALNA-supplemented diet in men and women compared to a linolenic acid- 
supplemented diet or the average American diet resulted in decreased circulating 
CRP, decreased intercellular cell adhesion molecule 1 (ICAM-1), and decreased 
E-selectin which serve as attractants for infl ammatory monocytes and macrophages 
[ 146 ]. ALNA caused an increase in apoptosis and dose-dependent decreases in pro-
liferation in human Caco-2 colon cancer cell lines.  

5.5.3.5    Eicosapentaenoic Acid and Docosahexaenoic Acid 

 EPA (20:5n-3) and DHA (22:6n-3) are essential ω-3 long-chain PUFAs found in 
marine fi sh and in some seaweeds with multiple health benefi ts against cardiovascu-
lar disease, and with anti-infl ammatory, antihypertensive, antiarthritis, antioxida-
tive, and anticancer effects. Numerous studies have demonstrated that EPA and 
DHA have an inverse relationship with colon cancer [ 67 ,  147 ]. Although EPA and 
DHA are metabolized differently, nearly all studies which address the association 
between ω-3 fatty acids and colon cancer in humans use a mixture of EPA and 
DHA. Because most clinical studies supplement them together, they will be dis-
cussed concurrently. 

 Signifi cantly decreased EPA levels were observed in the mucosa and plasma 
phospholipid profi les of patients with colon adenomas or colon cancer compared to 
healthy controls [ 91 ]. DHA, but not EPA, was signifi cantly lower in serum from 
FAP patients compared to controls [ 98 ]. Several trials have observed signifi cantly 
low intake and plasma concentrations of DHA and EPA among colon cancer patients 
as well as individuals at high risk for developing colon cancer [ 67 ,  147 ]. In a 
12-week randomized control trial on the effect of ω-3 fatty acids, specifi cally EPA, 
in 20 subjects at risk for colon cancer, a signifi cant reduction was found in the 
abnormal cell proliferation in the experimental group receiving EPA. EPA supple-
mentation (4.1 g per day for 6 months) increased mucosal composition of this fatty 
acid and signifi cantly decreased intestinal proliferation in cancer patients [ 148 , 
 149 ]. Similar to results with EPA, treatment of colon cancer patients with DHA 
(1.1 g per day) led to a reduction in cell proliferation in rectal mucosa [ 148 ,  149 ]. 

 The distinct benefi cial effects of DHA have been investigated in more detail in 
animal models and human colon cancer cell lines. DHA decreased aberrant crypt 
foci (ACF), which are precursors to colon polyps, and decreased polyp number by 
40 % in rats treated with DMH and signifi cantly reduced ACF and tumor multiplic-
ity in rats treated with AOM [ 150 ,  151 ]. 

 In human colon cancer cells, DHA was shown to activate many genes involved 
in apoptosis, such as cytochrome c and caspases 5, 8, 10, and 15, while decreasing 
expression of anti-apoptotic, Bcl-2 family members as well as components of the 
prostaglandin synthesis pathway such as COX-2 and PGE 2 . In human HT-29 and 
HCT116 colon cancer cells, DHA reduced the levels of PPARγ, which regulates 
fatty acid storage and glucose metabolism [ 152 ,  153 ]. 
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 Comparing the effect of PUFA treatment on NCM 460 normal colon cells, DHA, 
but not arachidonic acid, palmitic acid, or oleic acid, selectively stimulated growth, 
whereas in Caco-2 colon tumor cells, DHA was the only fatty acid that stimulated 
apoptosis, as demonstrated by cleavage of caspase 3 and poly ADP-ribose poly-
merase (PARP). Moreover, DHA was the only PUFA tested that reduced viability of 
Caco-2 cells. This change occurred in association with increased DHA membrane 
concentration, decreased PI3K, due to decreased concentration of its p85 regulatory 
subunit, and decreased PTEN phosphorylation, resulting in increasing negative con-
trol of PI3K. In addition, DHA and oleic acid signifi cantly decreased Ser 473  phos-
phorylation of AkT, thereby interfering with the PI3K/AkT growth-promoting 
pathway [ 154 ]. Additionally, DHA in combination with the saturated fat, butyrate, 
has been shown to enhance mitochondrial lipid oxidation and calcium-dependent 
apoptosis in human HCT116 cells [ 155 ]. 

 From a mechanistic viewpoint, EPA is a competitive inhibitor of the proinfl amma-
tory effects of arachidonic acid mediated through COX-1 and COX-2, yielding PGE 
3 which is less infl ammatory than PGE 2 . EPA and DHA reduce TNF-α, IL-1, IL-6, 
IL-8, resistin, plasminogen activator inhibitor 1, and monocyte chemoattractant pro-
tein 1. The ω-3 PUFAs also increase adiponectin which reduces infl ammation [ 156 ]. 

 EPA has been independently investigated in more mechanistic detail and in asso-
ciation with its benefi cial effects on colon cancer. Prostaglandin synthesis and 
PPARγ expression were signifi cantly reduced in human HT-29 cells after treatment 
with EPA. These same studies demonstrated a signifi cant decrease in proliferation 
and induction of apoptosis in the HT-29 human cancer cell line [ 157 ,  158 ]. Treatment 
of human HCT116 colon cancer cells with EPA resulted in reduction in DNA poly-
merase activity and cell cycle arrest at the G1 checkpoint [ 159 ]. AOM-treated F344 
male rats supplemented with fi sh oil diets enriched for EPA and DHA decreased 
intestinal tumor incidence and multiplicity [ 160 ]. 

 Studies conducted in APC Min/+  mice demonstrated that DHA and EPA supple-
mentation decreased polyp multiplicity and size by 50 % and signifi cantly reduced 
proinfl ammatory prostaglandin levels [ 23 ,  161 ,  162 ]. Apc Min/+  mice and AOM- 
treated rats fed diets supplemented with EPA showed signifi cantly fewer polyp num-
bers as well as decreased levels of COX-2 and PGE 2  [ 161 ,  163 ,  164 ]. Interestingly, 
APC Min/+  mice provided with supplemental dietary EPA were protected from the 
cachexia that usually accompanies intestinal tumorigenesis in these mice [ 163 ].  

5.5.3.6    Importance of the Omega-3 to Omega-6 Ratio 

 Many studies have shown that changes in the omega-3/omega-6 (ω-3/ω-6) ratio may 
contribute to the early development of human colon cancer. Competition occurs 
between these fatty acids in the COX-signaling pathway which gives rise to a series 
of prostaglandins, some pro- and others anti-infl ammatory. Based on their competi-
tive nature, clinical guidelines recommend a 1:1 ratio between ω-3 and ω-6 fatty 
acids for optimal health [ 165 ]. In contrast to recommendations, it is estimated that 
Westernized diets are composed of an ω-3/ω-6 ratio of 1:10–25 [ 166 ]. 
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 A randomized clinical trial examined the plasma phospholipid ω-3/ω-6 ratio as a 
nutritional marker for the prevention of colonic tumor development and metastasis in 
27 patients. A signifi cant increase in the plasma phospholipid content of ω-3 and ω-6 
ratio was found in the experimental group which correlated with inhibition of the 
mucosal neoplastic proliferation, thus associating an increase in an ω-3/ω-6 ratio 
with decreased cancer risk [ 167 ]. In an ecological study in Belgium, ω-3/ω-6 ratios 
were examined in 11,302 individuals for correlations with mortality associated with 
colon cancer. A signifi cant inverse relationship was established between colon cancer 
and high ω-3/ω-6 ratios [ 168 ,  169 ]. Similarly, another study that examined 363 cases 
of patients with colon adenomas and 498 adenoma-free controls also observed an 
inverse relationship between an increased ω-3/ω-6 ratio and colon cancer risk [ 170 ]. 

 In a prospective study of 73,242 Chinese women participating in the Shanghai 
Women’s Health Study, there was no association of CRC with total ω-6 PUFA or 
total ω-3 PUFA consumption. There was, however, a dose-dependent association of 
CRC with arachidonic acid consumption and a strong association of CRC with 
increasing ratio of ω-6/ω-3 with the highest relative risk of 1.95 comparing highest 
to lowest quintiles of ω-6 to ω-3 ratios. Interestingly, the risk for rectal cancer was 
greater than that for colon [ 126 ]. In a nested case–control study of 150 cases and 
150 controls in women, the ω-6/ω-3 ratio correlated with urinary metabolites of 
PGE 2  suggesting the possibility that the association between ω-6/ω-3 ratio and CRC 
is mediated by PGE 2 .    

5.6     Specifi c Diets 

5.6.1     Animal Fats 

 Studies supporting an association of CRC with diets containing high intake of red 
meats and processed meats have been contradictory. A meta-analysis of articles 
published from 1973 to 1999, examining the relation of meat consumption to CRC, 
found no signifi cant association for CRC with total meat consumption (red, white, 
and processed). In contrast, the relative risk of CRC was increased with consump-
tion of red meat and was even greater for processed meat [ 171 ,  172 ]. Results from 
the Nurses’ Health Cohort Study, 121,700 women, provided further support that 
dietary animal fat, but not vegetable fat consumption, was associated with increased 
risk for colon cancer. Red meat and processed meats were associated with increased 
risk, whereas fi sh and chicken were associated with decreased risk [ 14 ]. Some stud-
ies show an inverse or no relation between total dietary fat and colon cancer [ 173 , 
 174 ], although an increased risk for colon cancer was associated with increased red 
meat consumption [ 173 ]. 

 The presumptive carcinogenic effects associated with meats have been attributed 
to proteins, fats, pyrolysis products including heterocyclic aromatic amines and 
polycyclic aromatic hydrocarbons associated with cooking, and  N -nitroso 
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compounds used as preservatives in processed meats. An interesting example of the 
effect of diet and genetic interactions on cancer causation is provided by the obser-
vation that the rapid acetylator phenotype, associated with NAT2 genetic polymor-
phisms, contributes to activation of the mutagenic potential of heterocyclic aromatic 
amines generated by cooking meat at high temperatures, and increases the associa-
tion of dietary meat consumption with CRC [ 175 ]. 

 Rats treated with the carcinogen DMH and fed beef tallow as primary fat source 
showed signifi cantly increased intestinal tumor incidence and tumor numbers per 
rat compared to rats fed fi sh oil diets. The beef tallow-fed rats showed less apopto-
sis and more PGE 2  in intestinal mucosa compared to rats on the fi sh oil diet. 
Interestingly, supplementation of either diet with CLA increased the percentage of 
cells undergoing apoptosis, decreased PGE 2 , and decreased tumorigenesis in DMH-
treated animals    [ 176 ]. 

 In a case–control study in North Carolina, involving 945 cases and 959 controls, 
oversampled for African Americans, with diet analyzed retrospectively for the past 
year, the highest intake of red meat was associated with decreased risk of distal CRC 
(sigmoid, rectosigmoid, or rectal) in both Caucasians and African Americans that 
only reached signifi cance in Caucasians. There was no statistical difference in distal 
CRC with total fat, MUFA or PUFA in either race, although a signifi cant trend was 
noted for decreased risk in African Americans for saturated fat measured as percent 
energy but not as total fat. The highest level of PUFA intake in African Americans 
was associated with lower risk, but this did not reach statistical signifi cance [ 177 ]. 
No estimates were provided of absolute amounts or ratios of ω-3/ω-6 PUFAs.  

5.6.2     Mediterranean Diet 

 The Mediterranean diet has high amounts of whole grains, fruits, vegetables, fi sh, 
and olive oil, moderate amounts of alcohol and dairy products, low amounts of red 
or processed meats, and low glycemic loads. As indicated earlier, Mediterranean 
countries have lower rates of colon cancer compared with other Western countries. 
For example, colon cancer mortality in Greece is about 40 % lower than that in the 
United Kingdom [ 44 ,  45 ]. A large meta-analysis of 12 studies examining the health 
benefi ts of the Mediterranean diet showed a decreased risk of all cause mortality, 
cardiovascular disease mortality, and cancer mortality [ 178 ]. Another more recent 
meta-analysis of 19 observational studies, including patients from both 
Mediterranean and non-Mediterranean countries, showed that the group with the 
highest consumption of olive oil compared to the lowest had lower odds of having 
any cancer and specifi cally lower odds for breast and digestive cancers [ 179 ]. More 
specifi cally, some, but not all, studies indicate that adherence to the Mediterranean 
diet is associated with reduced risk of CRC in both men and women [ 180 ]. When an 
altered Mediterranean diet was compared to the DASH diet (Dietary Approach to 
Stop Hypertension), with higher intake of whole grains, decreased red and pre-
served meats, and moderate amounts of low-fat dairy products, in two very large 
cohort studies, The Nurses’ Health Study (NHS), 87,256 women, and The Health 
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Professionals Follow-Up Study (HPFS), 45,490 men, adherence to the altered 
Mediterranean diet resulted in a reduction in CRC that did not reach statistical sig-
nifi cance, whereas adherence to the DASH diet resulted in a statistically signifi cant 
reduction in CRC in both men and women [ 181 ,  182 ]. 

 Olive oil has been shown to be an important contributor to the cancer preventative 
effects of the Mediterranean diet [ 179 ]. A case–control study conducted in the 
Marseilles region of southern France examined 399 patients with colon cancer and 
observed a reduction in olive oil intake compared to age-and sex-matched controls 
[ 183 ]. The relationship between various seasoning fats and colon carcinoma risk was 
investigated using data from a second case–control study conducted in six Italian 
areas. Cases were 1,953 patients with histologically confi rmed colon carcinomas, 
while the controls were 4,154 subjects with no history of cancer. This study found 
that olive oil intake was negatively associated with risk of colon carcinomas [ 184 ]. 

 Rats, chemically treated with DMH, fed a higher olive oil-based diet, developed 
a signifi cantly lower number of ACF than rats fed a low concentration of olive oil. 
Olive oil dose-dependently downregulated the expression of both Bcl-2 and COX-2 
in colonic mucosa and also abrogated the upregulation of Bcl-2 by DMH [ 185 ]. 
Rats treated with AOM and supplemented with 5 % dietary olive oil showed signifi -
cant decreases in ACF and PGE 2  [ 186 ].  

5.6.3     Western Diet 

 The Western-style diet, high in fat, red meat, sugary deserts, low in fi ber, fresh fruits, 
vegetables, whole grains, seafood, and calcium and vitamin D content [ 30 ], is asso-
ciated with increased risk of CRC in both humans and rodents [ 33 ,  187 ]. The 
Western diet in rodents is both proinfl ammatory and procarcinogenic; however, 
supplementation with calcium and cholecalciferol diminishes tumorigenesis [ 187 ]. 
Mice fed a normal lab chow supplemented with 20 % corn oil to simulate a Western 
diet showed infl ammatory changes in their intestinal mucosa including increased 
F4/80-staining macrophages in the lamina propria, with increased IgA, CRP, fi brin-
ogen, myeloperoxidase, serum amylase, monocyte chemoattractant protein, and 
macrophage infl ammatory protein-1 [ 188 ]. Corn oil-supplemented diets clearly pro-
mote intestinal tumorigenesis in APC Min/+  mice and in AOM-treated F344 rats [ 10 ].   

5.7     Summary of Dietary Fatty Acid Effects on Colon Cancer 

 On the basis of epidemiologic studies conducted in multiple countries, with differ-
ent dietary patterns and with different populations, especially those undergoing sig-
nifi cant dietary change, there is a convincing evidence to support the concept that 
fatty acids and their concentrations in different tissues have important effects on 
CRC risk, where specifi c dietary fatty acids can increase the risk of CRC while 
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others can suppress it. Studies in tissue culture and animal models as well as those 
in patients demonstrate that differences in the effects of fatty acids can be related to 
variations in their structure, intake, biochemical consequences, and their concentra-
tions in different tissues, especially those obtained from patients with colon cancer 
compared to individuals free of malignant disease. However, before commenting 
further on mechanistic and differential effects of fatty acids on CRC, it is important 
to emphasize that almost all studies in animals require the presence of a carcino-
genic or hereditary genetic mutation before the effects of fatty acids can be identi-
fi ed. In general, the fatty acids do not produce colorectal tumors in rodents without 
preexisting mutations. In contrast, diets supplemented with protumorigenic fatty 
acids, in rodents treated with AOM or DMH or in mice with the APC Min  mutation, 
result in increased tumorigenesis, including earlier time of onset, higher incidence, 
greater multiplicity, larger size, and higher tumor load, compared to non-diet- 
supplemented animals. These studies indicate that protumorigenic fatty acids act 
primarily as tumor promoters contributing to increased tumor growth but not pri-
mary carcinogenesis. Conversely, the reduced tumorigenicity or protective effects 
of other dietary fats appear to be associated with either a direct or indirect effect on 
suppression of tumor growth as opposed to any anticarcinogen effect. Since human 
colorectal adenomas and carcinomas are routinely associated with a series of hered-
itary and/or spontaneous mutations that serve as initiators of the carcinogenic pro-
cess, it is expected that, as in rodent studies, fatty acids will serve as tumor promoters 
or suppressors. Some mutations leading to initiation of CRC in humans include 
DNA alterations leading to inactivation of tumor suppressors such as FAP, TP53, 
and TGF-β or activation of oncogene pathways including RAS/RAF, PI3K, and 
PTEN [ 58 ]. As detailed previously and summarized below, fatty acids that function 
as tumor promoters stimulate cell proliferation through infl ammatory pathways. 
The infl ammatory pathways enhance cell proliferation which in turn fi xes muta-
genic DNA alterations in a population of cells establishing the basis for tumor 
growth and progression [ 189 ]. 

 Figure  5.1  summarizes the results discussed in this section, where medium-chain 
saturated fatty acids, lauric and myristic acid; long-chain saturated fatty acids, pal-
mitic and stearic acids; and ω6 PUFAs including linoleic and arachidonic acids have 
detrimental proinfl ammatory, protumorigenic effects as tumor promoters increasing 
colon cancer risk, development, and outcome. Conversely, oleic, conjugated lin-
oleic, and ω-3 PUFAs including eicosapentaenoic, docosahexaenoic, and linolenic 
acids serve as tumor suppressors with benefi cial effects, mediated by protecting 
against infl ammation, reducing incidence, and retarding growth in colon cancer.

   Overall, it is important to note that the fatty acids that promote infl ammation also 
promote intestinal tumorigenesis, whereas those that suppress infl ammation also 
reduce intestinal tumorigenesis. Moreover, in studies, where tested, the fatty acids 
that promote or protect against infl ammatory bowel disease show similar effects for 
colon cancer. Ongoing studies in our group are focused on defi ning the separate 
contributions and mediators of obesity and infl ammation on fatty acid-induced 
intestinal tumorigenesis and identifying the individual mechanisms [ 190 ]. 
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 As shown in Fig.  5.1 , the specifi c dietary fatty acids differentially modulate 
plasma markers and mediators of infl ammation in tissue and in circulation. Thus, 
diets enriched in the fatty acids listed as promoters stimulate synthesis, activation, 
and release of multiple infl ammatory factors including NF-κB, IL-1β, IL-6, TNF-α, 
E-selectin, fi brinogen, CRP, COX-2, and PGE 2  in both immune system cells and 
intestinal epithelium. PGE 2  serves as a modulator of infl ammation and promotes 
tumor growth and angiogenesis. PGE 2  levels are determined by its synthetic rate via 
COX-2 and its catabolic rate determined by 15-PGDH. Elevated levels of PGE 2  in 
colon cancer are due in part to induction of COX-2 and depression of 15-PGDH in 
tumor tissue. The increased PGE 2  stimulates proliferation of normal and initiated 
colon epithelial cells. However, failure of the normal process of apoptosis provides 
a further basis for unrestricted tumor growth. In addition, fatty acid stimulation of 
infl ammation leads to increased levels of myeloperoxidase indicating increased 
infi ltration by neutrophils and increased synthesis of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) which may provide additional opportunities for 
ongoing mutagenic DNA damage. 

 The protective fatty acids, including the MUFA, oleic acid, and the ω-3 PUFAs, 
including EPA, DHA, ALNA, and CLA, inhibit infl ammation in tissue culture, 
murine models, and humans, resulting in decreased COX-2, decreased PGE 2 , and, 
consequently, decreased promotion of cell growth and tumorigenesis. Mechanisms 

  Fig. 5.1    Impact of dietary fatty acids on colorectal cancer. Dietary fatty acids are divided into 
cancer promoters ( green box ) and cancer suppressors ( red box ).  Green arrows  show positive or 
stimulatory effects on the indicated process.  Red arrows  show negative or inhibitory effects on the 
indicated process.  ROS  reactive oxygen species;  RNS  reactive nitrogen species;  PGE   2   prostaglan-
din E 2 ;  COX-2  cyclooxygenase 2;  NSAIDs  nonsteroidal anti-infl ammatory drugs;  15-PGDH  
15-prostaglandin dehydrogenase       
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by which ω3 fatty acids downregulate NF-κB and COX-2 include transcriptional 
regulation and changes in membrane fl uidity leading to alterations in growth-factor 
sensitivity [ 191 ]. In addition to preventing increases in COX-2, these fatty acids 
serve as competitive inhibitors to block metabolism of AA to PGE 2 . Moreover, 
these fatty acids also stimulate apoptosis in normal and transformed intestinal tis-
sues thereby retarding tumor promotion and possibly tumor growth. 

 While the effects described above are direct consequences of fatty acids, their 
consumption in high quantities leads also to obesity, which itself is a low-grade 
infl ammatory disorder [ 5 ] and forms the basis for a feed-forward cycle that contin-
ues to promote infl ammation and tumor development and growth. From the view-
point of cancer prevention, it is noteworthy that weight loss in obese premenopausal 
women was associated with signifi cant reduction of circulating and rectosigmoid 
infl ammatory markers [ 192 ]. Moreover, obesity is responsible for increased circu-
lating growth factors including insulin and leptin, decreased adiponectin, and other 
changes which further stimulate tumor promotion and growth through cell surface 
receptors such as the insulin receptor, the leptin receptor, and the IGF-1 receptor as 
well as their downstream intracellular pathways [ 193 ].  

5.8     Dietary Fatty Acid-Targeted Interventions in Colon Cancer 

5.8.1     Prevention and Control 

 While physical activity, sleep, and genetics are all important contributors that need 
to be addressed to maintain healthy body mass, the observations outlined above 
indicate the importance of not only controlling quantity of fats but also the quality 
and composition of dietary fats to prevent cancer, especially CRC. Both saturated 
and unsaturated fats are needed for comprehensive structure and functional devel-
opment; however, CRC prevention strategies favor dietary consumption of the 
unsaturated fats relative to saturated fats. As indicated above, there is a signifi cant 
relationship between increased ratios of ω3 to ω6 fatty acids and reduced colon 
cancer risk, indicating the importance of maintaining this ratio, either through natu-
ral food stuffs or with dietary supplements. Since tumor promotion and progression 
progresses over many years, it would be useful to adopt these dietary habits early 
and maintain them on a lifelong basis. Interestingly, dietary supplementation with 
ω3 fatty acids is more effective in suppressing infl ammatory cytokine production in 
older than younger women [ 194 ]. However, since dietary supplements can change 
circulating and tissue levels of fatty acids over short periods, days to weeks, it seems 
advisable to change whenever possible. In this regard, it would be helpful to have a 
single or few easily measured circulating or excreted metabolites that could be used 
to judge healthy level, balance, and infl ammatory status, demonstrated to be predic-
tive of reduced risk of CRC. CRP is an easily measured component of infl ammation 
that has been considered and rejected as a diagnostic and prognostic marker for 
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CRC, since it is too nonspecifi c and is refl ective of a broad range of disorders 
encompassing infl ammation and tissue damage [ 195 ]. Nonetheless, the criteria for 
such marker(s) have been described [ 195 ], and this remains an ongoing goal. 

 The demonstration that many of the effects of fatty acids are mediated through 
infl ammatory pathways, particularly through COX-2, provides the basis for the use 
of NSAIDs for prevention of colon cancer. This approach and the associated cardio-
vascular risk factors that compromise their use have been detailed in previous 
reviews [ 56 – 58 ,  60 – 62 ]. However, the success of NSAIDs in preventing CRC pro-
vides proof of principle and points to the need for better understanding of the path-
ways connecting fatty acids to infl ammation as a focus for developing innovative 
cancer prevention strategies [ 196 ]. For example, studies showing that fatty acid-
mediated effects are controlled by G protein receptors [ 197 ,  198 ] and fatty acid-
binding proteins [ 199 ,  200 ] that regulate cellular uptake suggest these molecules as 
important targets for preventing CRC. As indicated above, NAT2 gene genetic vari-
ations [ 175 ] contribute signifi cantly to interindividual variations in fatty acid-
induced synthesis and secretions of cytokines. These genetic polymorphisms may 
govern pro- and anti-infl ammatory responses to fatty acids and may serve as the 
basis for focused neutriceutical-based interventions [ 201 ]. 

 TLRs, proteins that act as LPS and nutrient-sensing regulatory proteins, activate T 
cell infl ammation proteins, including NF-κB. Fatty acids may infl uence this infl am-
matory pathway by direct effect on TLRs as well as by altering intestinal microbiota 
so as to alter synthesis and availability of LPS interacting with TLR [ 202 ].  

5.8.2     Therapy 

 While ω3 PUFAs have generally been used to prevent colon cancer, they may also 
have benefi cial effects as adjunctive neutriceutical approaches to enhance more tra-
ditional therapeutic interventions with chemo- or radiation therapy [ 203 ]. Since the 
ω3 PUFAs reduce levels of PGE 2  and infl ammatory factors, they may be expected 
to reduce colon cancer growth, increase apoptosis, and reduce tumor angiogenesis. 
In addition, ω3 PUFAs have been shown to potentiate cytotoxicity of chemothera-
peutic agents in multiple human colon cancer cell lines in tissue culture and in 
tumor-bearing animals [ 204 – 206 ]. Interestingly, n-3 PUFAs have been shown to 
reduce cachexia in mice with colon adenocarcinoma [ 206 ]. In addition, pretreat-
ment with ω-3 PUFAs decreases cancer cell survival following both UV and X 
irradiation [ 207 ]. Clearly, clinical trials of n-3 PUFA supplementation of conven-
tional chemoradiation therapy are warranted for CRC.   

5.9     Cholesterol Metabolism and Statin Therapy 

 To this point, we have focused on the fatty acid components of dietary fats and their 
contribution to CRC. Cholesterol, a polycyclic steroid molecule, is another impor-
tant component of dietary fat, derived from animal sources. Originating from both 
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exogenous, dietary sources, and endogenous synthesis, overall cholesterol levels 
have long been a public health concern, especially from a cardiovascular viewpoint 
[ 208 ]. Cholesterol synthesis can be interfered with by a group of agents collectively 
identifi ed as statins, which are competitive inhibitors of the enzyme 3-hydroxyl- 3-
methylglutaryl coenzyme A reductase (HMGCoA reductase), a key enzyme in the 
cholesterol synthesis pathway. A recent study, assessing the effect of statin use over 
a 12-year period (1995–2007), in the entire population of Denmark, showed a sig-
nifi cant decrease among statin users in overall cancer-related mortality [ 209 ]. An 
earlier population-based case–control study in Israel showed statin use to be associ-
ated with a signifi cant reduction in CRC [ 210 ]. Other population-based studies and 
meta-analysis have found divergent results, with those showing protective results 
being associated with longer statin use (≥4 years) [ 211 ] whereas those with shorter 
statin use have tended to not show protective effects [ 212 ]. 

 By inhibiting HMGCoA reductase, statins block synthesis of mevalonic acid 
which serves as a precursor for farnesyl pyrophosphate, the immediate precursor for 
cholesterol. Farnesyl pyrophosphate is also the precursor for geranylgeranyl pyro-
phosphate which is required for protein prenylation and activation of proteins includ-
ing Ras, Rho, and nuclear lamins [ 213 ]. Thus, by inhibition of farnesylation, statins 
could interfere with Ras activation and colon cancer growth. Interestingly, in addition 
to their effect on cholesterol metabolism, statins have been shown to have anti-infl am-
matory effects preventing activation of NF-κB; lowering TNF-α, CRP, IL-1β, and 
IL-6; and acting synergistically with NSAIDs [ 214 – 219 ]. Further research is required 
to defi ne the role of and potential use of statins in CRC prevention and therapy.     
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    Abstract     Esophageal adenocarcinoma arising in metaplastic Barrett’s esophagus 
is one of the most rapidly increasing cancers in Western countries. Accumulating 
epidemiological evidence provides support that both chronic refl ux injury and being 
overweight are strongly associated with the risk of esophageal adenocarcinoma. It 
is proposed that being overweight could contribute to increased predisposition to 
refl ux by mechanically disrupting the physiological mechanisms that prevent refl ux 
injury to the esophagus. Furthermore, mechanistic investigations also provide a link 
between being overweight to the risk of esophageal adenocarcinoma through 
increased loco-systemic injury response and metabolic syndrome. Together these 
observations provide the basis for the hypothesis that being overweight could be a 
key early trigger for the initiation and an ongoing stimulus for the progression of 
esophageal adenocarcinoma. In this chapter we will summarize the existing data 
that supports this hypothesis and discuss ongoing and future investigations to 
address this hypothesis that links obesity to risk of esophageal adenocarcinoma.  

6.1         Introduction, Obesity, and Esophageal Adenocarcinoma: 
Guilt by Association 

 The anthropometry of population of Western countries, particularly in the United 
States, is rapidly changing with an alarming increase in the incidence of obesity or 
being overweight. Of late there has been a sharp increase in the prevalence of obe-
sity, almost to epidemic proportions, and the rate of increase in esophageal adeno-
carcinoma has essentially mirrored this rising rate of obesity [ 1 ,  2 ]. Several recent 
studies found close associations between the risk of esophageal adenocarcinoma 
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and being overweight [ 3 – 7 ]. However, the conclusion drawn by these studies does 
differ depending upon how the obesity is defi ned or characterized. Interestingly, a 
study examining the relationship between obesity and Barrett’s esophagus, a pre-
cursor of esophageal adenocarcinoma, noted that when BMI is used as a continuous 
variable and adjusted for central adiposity, the BMI did not appear to be associated 
with increased risk of Barrett’s esophagus [ 8 ]. According to WHO defi nition, obe-
sity is defi ned as BMI of 30 or more but this does not take into account variation in 
body fat distribution [ 9 ]. Several parameters like waist circumference, waist to hip 
ratio, or imaging techniques like CT and DEXA have been used to assess the body 
fat distribution [ 10 ]. Male preponderance of central obesity as well as esophageal 
adenocarcinoma suggests that the association between being obese and esophageal 
adenocarcinoma could be through central adiposity [ 11 ,  12 ]. Indeed, several studies 
have found stronger relationships between abdominal obesity and esophageal  disorders 
like gastroesophageal refl ux disease (GERD) and Barrett’s esophagus [ 3 ,  4 ,  10 ,  13 ]. 
Further studies examined and suggested that instead of BMI, there exists a closer 
association between the risk of esophageal adenocarcinoma and how the fat is dis-
tributed in the body [ 4 ,  14 ]. Patients with truncal accumulation of fat, as determined 
by hip to waist ratio, are more likely to develop esophageal adenocarcinoma [ 4 ]. 
Recent, carefully undertaken studies using CT of the abdomen to examine the 
relative contribution of visceral vs. subcutaneous fat suggest that the excess visceral 
fat, compared to subcutaneous fat, more likely predict the risk of esophageal adeno-
carcinoma [ 3 ]. In summary, it appears that being overweight is one of the important 
pathogenic processes that predispose patients to the development of esophageal 
adenocarcinoma. The development of esophageal adenocarcinoma is a long pro-
tracted process, and its risk can be infl uenced at several steps. Being obese could 
facilitate the degree of refl ux or the consequence of the refl ux by altering local or 
systemic infl ammatory response that could facilitate the development of premalig-
nant Barrett’s esophagus. Finally, being overweight could also activate pro- 
oncogenic pathways or interfere with tumor-suppressive mechanisms in Barrett’s 
mucosa. In the following paragraphs we will discuss these issues and the putative 
mechanisms.  

6.2     Obesity and Degree of Refl ux: Disruption 
of Mechanical Barrier 

 Long-standing refl ux injury is associated with replacement of normal squamous 
mucosa of the esophagus by premalignant metaplastic Barrett’s columnar mucosa 
that, in a subset of patients, progress to esophageal adenocarcinoma. It has been 
postulated that the pressure effect of abdominal obesity could change the relation-
ship between the gastroesophageal junction and diaphragmatic anti-refl ux mecha-
nisms. These changes could decrease in LES (lower esophageal sphincter) pressure 
to below 10 mmHg from the usual 10–35 mmHg that leads to increase in refl ux, 
eventually causing Barrett’s esophagus and esophageal adenocarcinoma [ 10 ,  15 ]. 
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This possibility along with the fi ndings that obese patients are known to have an 
increased incidence of asymptomatic refl ux might explain how the neoplastic 
 progression can go undetected in obese patients [ 16 ]. Several studies have demon-
strated increased association between obesity and drop in LES pressure and 
increased incidence of hiatal hernia eventually leading to more refl ux. Kuper et al. 
conducted manometric studies on 47 obese patients without refl ux symptoms and 
15 normal-weight individuals and found that obesity is associated with a signifi cant 
drop in LES pressure as well as disruption of normal esophageal motility [ 17 ]. 
Similarly, in a large study conducted by Ayazi et al., where 24-h pH monitoring as 
well as esophageal manometry was performed, obesity was correlated with low 
esophageal pH and lower LES pressure. This suggests that obesity likely increase 
the refl ux of acidic gastroduodenal contents by altering LES relaxation leading to a 
drop in LES pressure [ 18 ]. Schneider et al. did a manometric and pH monitoring 
study in patients where they had groups with obesity, GERD without obesity, dif-
fuse esophageal spasm, and normal controls and found that obese patients and 
GERD patients without obesity showed signifi cantly increased transient LES relax-
ation [ 19 ]. In a novel manometric study Pandolfi no et al. found that obesity is posi-
tively correlated with the disruption of esophageal gastric junction and higher value 
of gastroesophageal pressure gradient. This study supports the mechanical basis of 
increased refl ux and hiatal hernia in patients with obesity [ 20 ]. Therefore it appears 
that augmented relaxation of the LES is one of the underlying mechanisms for 
refl ux in the obese. Together these fi ndings support the idea that by increasing the 
degree of refl ux, truncal obesity could play a role in the development of esophageal 
adenocarcinoma. In addition, being obese could also make the esophageal mucosa 
more vulnerable to injury as discussed below.  

6.3     Obesity and Altered Composition of Refl ux: Facilitating 
Injury and Carcinogenesis 

 Contents of refl ux, particularly bile acids in a pH-dependent manner infl ict muco-
sal injury as well as facilitate neoplastic progression in Barrett’s esophagus. Bile 
acids are derived from hepatic metabolism of cholesterol. Dietary and systemic 
derangements that are associated with being obese could potentially modify com-
position and the amount of bile salts in refl ux. In a systematic review McQuaid 
et al. found that obese patients with GERD had higher concentration of bile acid 
in their esophageal aspirate [ 21 ]. Development of Barrett’s esophagus is consid-
ered a protective mechanism against refl ux injury as intestinal columnar cells are 
more resistant to toxic insults compared to squamous cells. Continued injury 
leads to release of increased concentration of pro-infl ammatory cytokines, prosta-
glandins, reactive oxygen species (ROS) which through various signaling path-
ways induce cell proliferation and mutagenesis and inhibit apoptosis that likely 
facilitate the neoplastic transformation [ 22 ]. In various in vivo/in vitro studies it 
is noted that bile acids stimulate metaplastic and squamous esophageal cells to 

6 Infl ammation, Obesity, Barrett’s Esophagus, and Esophageal Adenocarcinoma



136

produce pro-carcinogenic infl ammatory mediators like IL-8/COX-2 and cause 
oxidative stress and DNA damage [ 43 ]. Obesity-associated changes in bile acid 
composition and subsequent generation of free radicals have been advocated to 
play an important role both in perpetuation of infl ammation as well as induction 
of various signaling pathways which eventually promote growth, angiogenesis, 
and tumor development. These free radicals include ROS like superoxide anion, 
hydrogen peroxide, and hydroxyl radical and reactive nitrogen species like per-
oxynitrite [ 22 ]. In experimental studies, bile acid-induced intracellular ROS 
mediate proliferation, DNA damage, and apoptosis through activation of tyrosine 
kinase, ERK1/2, and AKT as well as through protein kinase C signaling pathways 
[ 23 ,  24 ]. Song et al. in a study on Barrett’s and EAC cell lines found that uncon-
jugated bile acids induced COX-2 through ROS- mediated activation of PI3K/
AKT and ERK1/2 and their downstream effectors CREB and AP-1 to facilitate 
neoplastic transformation [ 45 ]. These experiments were replicated in vivo in rats 
where it was found that bile acid-associated COX-2, p-AKT, and p-CREB overex-
pression induced metaplastic and neoplastic changes in the esophagus [ 45 ]. In an 
in vitro study performed by our group on Barrett’s cell lines, we found that COX-2 
inhibition signifi cantly decreases proliferation of Barrett’s esophageal cells, 
whereas treatment of these cells with PGE2 (product of COX-2 activity) restored 
proliferation of the cell lines, suggesting a possible role of COX-2 inhibitors for 
chemoprevention in Barrett’s esophagus [ 25 ]. We further tested the role of COX-2 
inhibitors in an animal model, where refl ux injury was induced by performing 
esophagojejunostomy, and the animals were then randomized to groups receiving 
a COX-2 inhibitor vs. placebo [ 26 ]. After 28 weeks it was found that COX-2 inhi-
bition signifi cantly decreased the degree of infl ammation and PGE2 biosynthesis 
with a parallel decline in the risk of development of esophageal cancer giving 
direct evidence for the chemopreventive role of anti-infl ammatory agents in 
Barrett’s esophagus [ 26 ]. Based on these fi ndings and epidemiological evidence 
supporting the role of anti-infl ammatory agents with reduced risk of esophageal 
adenocarcinoma, we conducted a multicenter double blind, randomized, placebo-
controlled, phase 2 clinical trial where 114 patients with Barrett’s esophagus were 
randomized in three groups [ 27 ]. Patients received 40 mg esmoprazole twice daily 
with either placebo or low-dose aspirin (81 mg) or 325 mg aspirin daily for 28 
days, and esophageal endoscopic biopsy was performed pre- and post- intervention 
to measure PGE2 levels as a biochemical surrogate marker of neoplastic progres-
sion [ 27 ]. We noted that the higher dose of aspirin in combination with esmopra-
zole signifi cantly reduced tissue concentrations of PGE2 while low-dose aspirin 
and placebo did not have a signifi cant effect [ 27 ]. No effect with low-dose aspirin 
might be due to small sample size and a short trial period [ 27 ]. Further trials will 
be needed to establish the role of aspirin and other NSAIDS for chemoprevention 
of Barrett’s esophagus. Epigenetic changes like DNA methylation and histone 
modifi cations also occur secondary to pro-infl ammatory signals that obesity 
induces and could facilitate neoplastic transformation [ 52 ]. In summary, altered 
bile acid composition in response to being obese appears to be an attractive 
hypothesis;  however, this premise needs further investigation.  
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6.4     Obesity and Mucosal Response to Injury: Role of Altered 
Systemic and Local Cytokine Levels 

 Infl ammation plays a very important role in mounting an immune response against 
various environmental triggers and when such triggers persists, such as refl ux 
injury, a state of chronic infl ammation develops [ 23 ]. Virchow proposed the asso-
ciation of infl ammation with cancer in 1850s as cancer being a local infl ammation 
resulting from humoral stasis and injury [ 28 ]. Infl ammation has been linked to 
various cancers including breast cancer, endometrial cancer, colon cancer, gastric 
cancer, and esophageal cancer [ 29 ]. Infl ammation is increasingly being recog-
nized as an important link between obesity, insulin resistance, tissue injury, and 
carcinogenesis [ 10 ]. 

 Two important aspects of esophageal infl ammation include the injury-inducing 
refl ux and mucosal response to this injury. Obesity results in systemic and local 
pro- infl ammatory state where adipocytes release high circulating concentrations of 
infl ammatory cytokines like TNF-α, IL6, IL1B, IL10, CRP, etc. [ 30 ]. These 
 cytokines create a pro-infl ammatory state that has been proposed as an important 
connecting link between obesity and various cancers including esophageal adeno-
carcinoma [ 30 ]. Several other pro-infl ammatory factors like interferon-γ, mono-
cyte chemotactic protein (MCP-1), PAI-1, and fi brinogen have also been found to 
be associated with adiposity [ 31 ]. In a translational study on patients with esopha-
geal adenocarcinoma, Lysaght et al. found higher concentrations of activated 
infl ammatory cells particularly CD8+ cells in the visceral adipose tissue compared 
to the subcutaneous adipose tissue [ 32 ]. Specifi cally, IFN-γ was the dominant cyto-
kine produced by the activated T cells resulting in upregulation of adipose tissue 
infl ammation and TNF-α production [ 32 ]. It is proposed that systemic increase as 
well as increased esophageal stromal TNF-α promotes esophageal infl ammation 
[ 32 ]. We have shown that neutralizing antibodies against TNF-α in the setting of 
ongoing refl ux injury nearly completely mitigate esophageal infl ammation [ 33 ]. 
We induced refl ux in Sprague–Dawley rats ( n  = 25) and randomized animals at 2 
months receive to either specifi c rat anti-TNF-α Ab (1× week, intraperitoneal, 
monoclonal mouse IgG2a,K Ab 15 mg/kg) or PBS control injection for 8 weeks 
(time to develop Barrett’s). We found that the inhibition of TNF-α with anti-TNF-α 
Ab for 2 months in rats with chronic refl ux signifi cantly reduced PGE2 
(4,907 ± 1,200 vs. 116 ± 18 pg/mg,  p  < 0.001) and cPLA2α (0.87 ± 0.2 vs. 0.32 ± 0.02 
OD450  p  = 0.02) in Barrett’s mucosa compared to controls. The histology showed 
marked reduction in stromal response to injury. Commonly seen squamous hyper-
plasia and hyperkeratinization was also absent in anti-TNF-α-treated rats. We 
 further performed in vitro assays that showed that compared to control, exogenous 
TNF-α treatment increased the number of viable cells by 20 % ( p  < 0.05) in pri-
mary Barrett’s cells. These fi ndings suggest a chemopreventive role of anti-TNF-α 
Ab on esophageal carcinogenesis. We also show that TNF-α increases prostaglan-
din biosynthesis in Barrett’s mucosa, which increases cell growth and facilitate 
development of esophageal adenocarcinoma [ 24 ]. 
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 Emerging evidence supports the hypothesis that TNF-α switches stromal  macrophage 
phenotype to modulate infl ammation in target tissues including  esophagus. These 
 observations along with increasing expression of both the ligand and the receptor of 
TNF-α during carcinogenesis in Barrett’s esophagus [ 34 ] and an increased expression of 
TNF-α in adipose tissue of obese rats compared to controls [ 35 ] suggest that in over-
weight patients, TNF-α could be one of the mechanistic links where adipocytes in a 
paracrine manner infl uence systemic and local infl ammatory response and the facilita-
tion of neoplastic transformation. The repertoire of pro-infl ammatory cytokines that link 
obesity-infl ammation-carcinogenesis is rapidly expanding. Dvorakova et al. did the tis-
sue analysis of Barrett’s esophagus, duodenum, and squamous epithelium distant from 
metaplastic area and found an increased concentration of IL-6 in metaplastic tissue [ 36 ]. 
Chronic infl ammation creates and maintains a tumor microenvironment where there is 
migration and relative abundance of immune infl ammatory cells like neutrophils, den-
dritic cells, macrophages, and lymphocytes [ 52 ]. It has been found that compared to 
refl ux esophagitis, there is a higher concentration of Th1 cells (macrophages and CD8+ 
T cells) and Th2 cells (plasma cells and mast cells) in the Barrett’s mucosa further sug-
gesting the role of infl ammation in metaplastic change in the esophagus [ 37 ]. Similarly, 
studies have established higher concentration of cytokines like TNF-α, IL-6, IL1B, IL-4, 
IL-8, and IL-10 in the Barrett’s tissue as well as in esophageal adenocarcinoma [ 34 ,  38 , 
 54 ]. Obesity-associated pro-infl ammatory mediators like TNF-α and IL-1 are also 
known to upregulate inducible nitric oxide synthase (iNOS) leading to increased pro-
duction of nitric oxide that is typically seen during infl ammation and carcinogenesis in 
Barrett’s esophagus [ 38 ]. The resulting pro- infl ammatory state disrupts the balance 
between oxidant and antioxidant pathways, and levels of antioxidants are decreased 
[ 52 ]. Congruent with this, biopsy specimens from Barrett’s esophagus and esophageal 
adenocarcinoma have shown low levels of antioxidant enzymes like glutathione 
S-transferase and glutathione peroxidase. This altered oxidative tissue state favors muta-
genesis to promote neoplasia [ 39 ], and it is further compounded by impaired 
 anti-oxidative defense in obese patients. There is relative defi ciency of antioxidant 
micronutrients like vitamin C, β carotene, and lycopene in obese patients [ 40 ]. 
Interestingly, consumption of vegetables and fruits rich in natural antioxidant is 
 associated with decreased risk of esophageal cancer [ 41 ]. 

 The pro-infl ammatory state, due to altered cytokine profi le, along with several 
hormonal mediators as discussed below, together constitute a state named as meta-
bolic syndrome [ 30 ], which provide multifaceted link between obesity and cancer 
progression. Therefore, being obese not only disrupts mechanical barriers that pre-
vent refl ux but also makes refl ux more pro-infl ammatory and oncogenic.  

6.5     Obesity and Pro-neoplastic Signaling: Role of Hormonal 
Mediators in Growth Deregulation 

 Being obese is a clinical condition of endocrine derangement. Therefore, various 
hormonal mediators have been studied as possible links between obesity and esopha-
geal disorders. Of particular note are insulin resistance, IGF1, leptin, and adipokines. 
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As discussed earlier, obesity-induced metabolic state is associated with increased 
circulating pro-infl ammatory cytokines, many of which lead to an insulin resistance 
state [ 42 ]. Specifi cally, cytokines like TNF alpha, IL6, and IL1B released by adipo-
cytes are thought to contribute to insulin resistance [ 43 ]. The IGF-1 axis consists of 
two ligands, IGF-1 and IGF-2; three cell-membrane receptors, IGF-1R, IGF-2R, 
and insulin receptor; and six IGF-binding proteins IGFBP-1 to IGFBP-6 [ 44 ]. 
Obesity and metabolic syndrome leads to deregulation of the IGF-1 axis, and it has 
a key role in cell proliferation, apoptosis, and tumor cell differentiation [ 45 ]. 
Deregulation of the IGF-1 axis leads to a decreased level of IGF-binding proteins 
and hence a high concentration of free IGF-1, insulin resistance, and eventually 
hyperinsulinemia [ 44 ,  45 ]. High IGF-1 concentration and overexpression of IGF-1R 
have been implicated in the transformation of Barrett’s metaplasia to esophageal 
adenocarcinoma [ 45 ]. Binding of IGF-1 and IGF-2 to IGF-1R through various sig-
naling pathways leads to cell proliferation and arrest of apoptosis [ 46 ]. High insulin 
level associated with insulin resistance also leads to cancer as insulin has growth- 
promoting effect, though it is argued that insulin probably mediates its action 
through IGF-1 receptors as well as insulin receptors. Binding of IGF-1 and insulin 
to their receptors lead to activation of extracellular-signal-regulated kinase (ERK) 
and phosphatidylinositol-3 kinase (PI-3K) pathways which in turn result in cell pro-
liferation and arrest of apoptosis [ 46 ]. Doyle et al. in a study on esophageal cancer 
cell lines and tissue from esophageal cancer patients found relative upregulation of 
IGF-1 levels in esophageal adenocarcinoma compared to squamous cell carcinoma 
of esophagus [ 11 ]. The study also established linear relationship between visceral 
adiposity and IGF-1 levels; however, relationship with BMI alone was not linear 
[ 11 ]. Similarly in an animal study, Wu et al. found that diet-induced obese mice had 
increase in local tumor growth as well as metastasis whereas IGF-1-defi cient mice 
did not have increased tumorigenicity [ 47 ]. Ounis et al. in their study on the effect 
of exercise training and diet restriction found that resultant weight loss was also 
associated with decrease in the level of IGF-1 and infl ammatory markers [ 48 ]. 

 Obesity and metabolic syndrome also lead to downregulation of adipokines like 
adiponectin and ghrelin and increased leptin, together these changes result in an 
increased infl ammatory response and abnormal cell survival [ 46 ,  49 ,  50 ]. Leptin is 
a hormone controlled by the weight-regulating gene (ob gene) and is increased in 
obese patients [ 51 ]. Leptin is primarily secreted from fat cells and plays an impor-
tant role in inhibiting weight gain and appetite through action on the hypothalamus 
[ 52 ]. Ogunwobi et al. studied the effect of leptin on Barrett’s derived esophageal 
adenocarcinoma cell lines. They found that leptin stimulates the proliferation of 
esophageal adenocarcinoma cells and inhibits their apoptosis, which involves COX-
2-dependent PGE2-mediated activation of EGFR and activation of c-Jun NH2-
terminal kinase [ 53 ]. This was further supported by the experiment that leptin 
defi ciency causes extreme obesity in rodents [ 54 ]. Several retrospective studies and 
clinical trials show that leptin levels decrease in response to weight loss achieved by 
either exercise and/or caloric restriction whereas they increase in response to high- 
caloric diet [ 55 – 59 ]. Insulin has a positive feedback action on leptin gene expres-
sion (whereas IGF-1 has negative control) and hence, in well-fed condition, insulin 
stimulates leptin release which suppress appetite [ 60 ]. The fact that visceral obesity 
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in patients is associated with very high levels of leptin suggests resistance to its 
action. Leptins have been found to be mitogenic for various tissues [ 47 ]. Somasundar 
et al. in their study on Barrett’s associated esophageal adenocarcinoma cell lines 
found that exogenous leptin signifi cantly increased cell growth in cancer cell lines 
[ 51 ]. They also found that mitogenic effect of leptin does not affect apoptotic path-
ways which is in contrast to earlier study by Beales and Ogunwobi where it was 
found that leptin has synergistic action with acid in suppressing apoptosis and activ-
ity of caspase 3 [ 61 ]. 

 Adiponectins and resistins are adipokines almost exclusively secreted by mature 
adipocytes [ 31 ]. Adiponectins through their receptors AdipoR1 and AdipoR2 regu-
late various metabolic processes [ 62 ]. Epidemiological studies have also found that 
adiponectin levels are increased after weight loss in patients either through exercise, 
caloric restriction, or surgical intervention, and its level is decreased in obese patients 
[ 63 – 66 ]. Certain dietary modifi cations without caloric restriction, like the use of fi sh 
oil, have also been found to increase the level of adiponectin which indicates these 
may prove to be anti-infl ammatory and carcino-protective [ 67 ]. They regulate lipid 
and glucose metabolism by increasing tissue sensitivity to insulin [ 62 ]. Adiponectins 
also suppress production and action of TNF alpha and are considered 
 anti-infl ammatory [ 68 ]. By virtue of their anti-proliferative, pro-apoptotic, and anti-
angiogenic action, adiponectins are considered protective against malignancies [ 31 , 
 62 ]. Studies have suggested that obesity downregulates adiponectin levels, and low 
adiponectin levels are associated with esophageal cancers [ 49 ,  50 ]. Moreover, higher 
levels of adiponectins have been associated with low incidence of Barrett’s esopha-
gus. The mechanism of cancer protective role of adiponectin has been complex and 
unclear. However it has been proposed that adiponectins stimulate apoptosis through 
induction of p53, Bax expression, and suppression of Bcl-2 [ 69 ,  70 ]. Adiponectins 
also suppress Toll-like receptor-induced activation of nuclear factor κB (NF-κB) and 
prevent interaction of various growth factors [ 31 ]. Adiponectins also exert their 
tumor-inhibiting action by inactivation of MAPK kinase 1 and 3 and ERK 1 and 2 
and concomitant reduced glucose uptake [ 70 ]. Anti-angiogenic action of adiponec-
tins occurs through activation of apoptosis in vascular endothelial cells and inhibi-
tion of cell migration [ 31 ]. Resistins and RELMs (resistin-like molecules) are 
adipokines which are secreted from adipocytes as well as non-adipocyte sources and 
are believed to have a role in carcinogenesis of esophageal adenocarcinoma, but the 
mechanism is unclear [ 62 ]. Leptin and adiponectin receptors have also been corre-
lated with esophageal adenocarcinoma, and it was found that upregulation of ObR 
(leptin receptor) was associated with advanced disease and more aggressive tumor 
in gastric cancer [ 71 ]. Adiponectin receptors, ADIPOR1 and ADIPOR2, were 
downregulated in Barrett’s mucosa compared to normal esophagus [ 69 ]. However 
receptor levels did not correlate signifi cantly with the serum concentrations of their 
ligands suggesting the complexity of molecular mechanisms involved as well as a 
possibility that the these adipokines might have paracrine action too [ 72 ]. 

 Metabolism and infl ammatory pathways converge on many signaling pathways 
which are important for homeostasis and body functions like immunity. For  example, 
Toll-like receptors which recognize lipoproteins and lipopolysaccharides in 
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bacterial wall also recognize nutrients like fatty acids [ 23 ]. Similarly hormones 
involved in metabolic pathways like leptins and adiponectins have a role in 
immunity [ 23 ]. Prolonged nutritional imbalances or chronic infl ammation can 
disrupt the equilibrium between metabolism, immunity, and infl ammation and 
lead to metabolic syndrome, obesity, and multiple cancers. The role of nuclear 
factor kappa B signaling pathway and JNK mitogen-activated protein kinase 
pathway (JNK MAPK) needs special mention as it has a central role in linking 
obesity to infl ammation, insulin resistance, and also in oncogenesis and cell 
proliferation [ 73 ]. Various metabolic stressors like lipids, oxidative stress, and 
cytokines activate IKK/NF-κB signaling pathway and JNK MAPK pathway. 
IKKβ-mediated activation of NF-κB leads to macrophage recruitment, activa-
tion, and differentiation which maintains pro-infl ammatory status. It also leads 
to insulin resistance by phosphorylation of insulin receptors. Its activation is 
also believed to disrupt the central leptin pathway leading to overnutrition and 
weight gain. It is important to note that activation of IKKβ/NF-κB creates a 
vicious cycle where infl ammation and imbalance in nutrition lead to further 
infl ammation and overnutrition. 

 Various epidemiological studies have also found that obesity is associated 
with pro-infl ammatory state and weight loss leads to decrease in  pro-infl ammatory 
markers. In a recent randomized controlled trial on the effect of caloric  restriction 
diet/exercise on infl ammatory biomarkers in obese postmenopausal women, 
Imayama et al. found that caloric restriction diet and/or exercise led to decrease 
in hsCRP (high-sensitive C-reactive protein) as well as anthropometric 
 parameters [ 74 ]. Cintra et al. also found that CRP level decreased in obese 
patients after post- bariatric abdominoplasty though the weight remained stable, 
indicating that diet might have a direct role in causing infl ammation [ 75 ]. In a 
longitudinal evaluation of effect of weight loss on cancer-related biomarkers, 
Linkov et al. found that weight loss leads to decreased level of E-selectin and 
IL-6 and increased level of GH, adiponectin, and IGFBP-1 [ 63 ]. Similarly 
Ackermann et al. in their study on relationship between metabolic syndrome 
and infl ammatory biomarkers found that waist circumference is positively cor-
related with infl ammatory markers like TNF-α and IL-6 and negatively corre-
lated with anti-infl ammatory adiponectin [ 64 ]. In another study on obese/
overweight breast cancer survivors, it was found that a weight loss intervention 
led to a fall in the levels of IL-6 and TNF-α [ 76 ]. 

 To conclude, obesity in general, and central obesity in particular, leads to 
enhanced loco-regional infl ammatory response in the lower esophagus by both 
refl ux-dependent as well as refl ux-independent mechanisms eventually causing 
Barrett’s esophagus and esophageal adenocarcinoma. Adipocytes alter the cir-
culating levels of various cytokines, growth factors, hormonal factors creating a 
pro- infl ammatory state, and increased risk of esophageal adenocarcinoma. 
Study of various molecular pathways associating obesity and refl ux-induced 
infl ammatory response to the neoplastic changes in the lower esophagus is 
ongoing research which will likely uncover useful targets for screening and 
therapeutic intervention.     
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    Abstract     The general focus of this chapter is to overview the contribution of 
obesity- induced intestinal infl ammation to colorectal cancer (CRC) incidence. 
Using infl ammatory bowel disease as a model, the mechanisms by which gastroin-
testinal microbes and obesity-associated, adipose-derived mediators of infl amma-
tory increase CRC risk will be discussed. Particular emphasis will be placed on the 
direct impact of these factors on intestinal epithelial cell proliferation, survival, and 
neoplastic transformation. Additionally, the infl uence of infl ammatory factors on 
immune cell function and the indirect effect of altered immunity on intestinal epi-
thelial cell proliferation and survival, and CRC risk will be explored.  

7.1         Background 

 Colorectal cancer (CRC) is the third most commonly diagnosed malignancy in 
both men and women in the United States and is the second leading cause of 
cancer- related deaths. In the United States alone, 141,380 colon cancer (71,850 
in men, 69,360 in women) cases were diagnosed in 2011. The National Cancer 
Institute estimates that there will be 51,690 CRC-related deaths in 2012, which 
is 5 % higher than the estimated deaths in 2011 [ 1 ,  2 ]. The lifetime risk for 

    Chapter 7   
 Infl ammation, Obesity, and Colon Cancer 

             Stephanie     K.     Doerner      and     Jason     D.     Heaney     

        S.  K.   Doerner, Ph.D.      
  Department of Genetics, Case Western Reserve University School of Medicine, 
10900 Euclid Avenue   ,   Cleveland ,  OH   44106-4915 ,  USA   
 e-mail: stephanie.doerner@case.edu   

    J.  D.   Heaney ,  Ph.D. ()     
  Department of Molecular and Human Genetics ,  Baylor College of Medicine , 
  One Baylor Plaza, MS BCM225 ,  Houston ,  TX   77030 ,  USA   
 e-mail: Heaney@bcm.edu  



148

individuals to develop colon cancer is approximately 6 %, but the risk increases 
to 18 % among individuals who have a fi rst-degree relative (parent, sibling, or 
child) with CRC [ 1 ,  3 ]. Most CRCs begin as foci of intestinal or colonic epithe-
lial cells (IECs) that have accumulated mutations in oncogenes (   aberrant crypt 
foci) [ 4 ,  5 ]. These cells have the capacity to transform into benign adenomas 
(polyps) with additional mutations or in response to environmental queues [ 4 ]. 
If left untreated, adenomas progress to more invasive and malignant carcinomas 
[ 6 ]. Many factors increase CRC risk, including genetics, diabetes, preexisting 
adenomas, obesity, diet, microbial profi le, and infl ammatory diseases [ 4 ,  7 ,  8 ]. 
Understanding how these factors infl uence tumor development will lead to new 
diagnostic screens, intervention paradigms, and treatment options that may 
reduce CRC-related deaths. 

 In this chapter, we will discuss the contribution of two interconnected CRC risk 
factors, infl ammation and obesity, to cancer incidence. We will discuss the contribu-
tion of intestinal microbes to chronic infl ammation in infl ammatory bowel diseases 
(IBDs) and obesity and their contributions to increased CRC risk. Additionally, we 
will highlight the infl ammatory mediators and mechanisms through which IBD pro-
motes CRC risk and discuss how obesity-associated systemic infl ammation simi-
larly increases CRC susceptibility. A model will be proposed whereby obesity 
promotes a proinfl ammatory intestinal milieu that directly induces the neoplastic 
transformation of IECs and indirectly promotes tumor progression through activa-
tion and recruitment of immune cells.  

7.2     Genetic Risk Factors for CRC 

7.2.1     Hereditary Forms of Colon Cancer 

 It is estimated that about 15 % of colon cancer cases can be attributed to specifi c 
inherited gene mutations [ 9 ]. Genetic mutations have been identifi ed as the 
cause of inherited cancer risk in some colon cancer-prone families, and these 
mutations are estimated to account for only 5–6 % of colon cases overall [ 10 ]. 
It is likely that other undiscovered genes and background genetic factors con-
tribute to the development of familial colon cancer in conjunction with nonge-
netic and environmental risk factors such as diet [ 11 ]. One of several 
well-described hereditary forms of colon cancer is familial adenomatous pol-
yposis (FAP), which is characterized by the presence of hundreds, sometimes 
thousands of benign polyps in the colon, rectum, or lower regions of the small 
intestine [ 12 ]. The polyps usually begin to form at puberty, and colon cancer 
almost always develops later in life. FAP is inherited as an autosomal- dominant 
trait caused by a mutation in the tumor suppressor, adenomatous polyposis coli 
( APC ) [ 13 ,  14 ]. Individuals with FAP have a 90–100 % lifetime risk of develop-
ing colon cancer. Surgery is routinely used to remove the colon in order to pre-
vent the development of cancer.  
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7.2.2     Sporadic Causes of Colon Cancer 

 Approximately 75–90 % of colon cancer cases are considered sporadic, with no 
known family history or hereditary genetic mutation [ 15 ]. It is now well established 
that all cancers result from an accumulation of mutations that enhance a tumor cell’s 
ability to proliferate, evade growth suppressors, avoid immune destruction, replicate 
indefi nitely, induce infl ammation, metastasize, induce angiogenesis, accumulate 
additional mutations, resist cell death, and deregulate cellular energetics [ 16 ]. For 
example, somatic mutations can result in the inactivation of tumor suppressors (i.e., 
 APC ,  P53 , or  SMAD4 ) and activation of oncogenes (i.e.,  KRAS ,  BRAF ,  PI3KCA , or 
 PTEN ) that drive proliferation and progressive transformation of normal IECs to 
malignant derivatives or inactivate genes necessary for the maintenance of genome 
stability (i.e., DNA repair factor  MLH1  or  MSH2 ) [ 17 ,  18 ].  

7.2.3     APC, Wnt Signaling, and CRC 

 Mutations in the Wnt signaling pathway are common in CRC patients [ 19 ,  20 ]. The 
Wnt signaling pathway is crucial for an immense number of biological processes 
during various stages of development [ 21 ,  22 ]. Activation of canonical Wnt signal-
ing results in increased cytosolic levels of β-catenin, which then localizes to the 
nucleus to initiate transcription of Wnt target genes important for cellular develop-
ment [ 21 ]. In the absence of Wnt activation, β-catenin is degraded to downregulate 
expression of genes involved in cell growth and proliferation. A complex of proteins 
(APC, GSK3β, AXIN, and CK1α) forms a “degradation machine” that functions to 
bind and tag β-catenin for destruction by the proteasome [ 21 ,  22 ]. Mutations in Wnt 
pathway proteins increase the levels, stability, and nuclear localization of β-catenin 
protein causing constitutive transcription of Wnt targets. Alterations in direct target 
genes like c-Myc ( Myc ), cyclin D1 ( CCND1 ),  VEGF , c-Jun ( JUN ), matrix metal-
loproteinase 7 ( MMP7 ), and claudin-1 ( CLDN1 ) have all been shown to induce 
colon cancer in humans [ 21 ,  23 – 25 ]. The infl uence of    APC on intestinal tumor 
development can be modeled in mice with inactivating mutations of  Apc  [ 26 ]. In 
particular, the  Min  mutation of  Apc  (    Apc   Min  ), which approximates the most common 
 APC  mutation in humans, has been useful for characterizing the pathogenesis of 
CRC [ 26 ]. Importantly, in both CRC patients and  Apc   Min   mice, CRC risk factors 
such as intestinal infl ammation and obesity interact with genetic mutations in the 
Wnt signaling pathway to increase cancer susceptibility.   

7.3     Intestinal Infl ammation: A CRC Risk Factor 

 When pathogens invade a host and tissues undergo physical trauma, the immune 
system reacts with a coordinated response involving immune and nonimmune cell 
types (the infl ammatory response). Cross talk between immune and nonimmune 
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cells eradicates the invading pathogen and initiates a tissue repair response  involving 
the release of cytokines (immunomodulating factors), growth factors, and 
e xtracellular matrix (ECM) remodeling proteins, which promote cell proliferation, 
differentiation, and migration [ 27 ]. In some instances, the immune system elicits an 
exaggerated and chronic response that fails to be resolved, resulting in cellular 
hyperplasia, disorganization of the surrounding tissue, and eventually fi brosis [ 27 ]. 
IBDs such as Crohn’s disease (CD) and ulcerative colitis (UC) are a group of 
chronic infl ammatory disorders of the intestine [ 28 ]. Infl ammation in CD patients 
affects all parts of the gastrointestinal tract but usually affl icts the distal small intes-
tine and colon. UC involves infl ammation of the colon. 

 The prevalence for both CD and UC in the United States is greater than 200 cases 
per 100,000, with the total number of individuals with IBD approaching 1.5 million 
[ 29 ,  30 ]. Clinical symptoms typically involve diarrhea, abdominal pain, gastrointes-
tinal bleeding, and weight loss [ 31 ]. In addition, development of CRC is a serious 
long-term complication associated with IBD. Epidemiologic and clinical studies 
indicate that patients affected by UC and CD have an increased risk of developing 
colon cancer by as much as 18 % and 3 %, respectively, with risk of CRC signifi -
cantly higher among patients with long-standing disease [ 32 ,  33 ]. How immune 
responses in IBD patients alter IEC homeostasis and induce tumorigenesis is an 
area of intensive investigation.  

7.4     Obesity: A CRC Risk Factor 

 In the past 50 years, the worldwide occurrence of obesity in humans has risen at an 
alarming rate. The World Health Organization (WHO) generally defi nes obesity as hav-
ing a body mass index (BMI) equal to or higher than 30, as calculated by weight divided 
by height squared (kg/m 2 ). The United States has one of the highest percentages of 
obese individuals (BMI ≥30), with 33.9 % of the adult population (18 years or over) 
classifi ed as obese [ 34 ,  35 ]. Shockingly, it has been estimated that in the United States, 
over one-third of children and young adults (age 6–19) and over 40 million children 
under the age of 5 are obese [ 36 ,  37 ]. Although genetic factors contribute to obesity, 
increased energy intake and decreased energy expenditure are the major causes of the 
disease and probably contribute largely to the rapid increase in obesity cases [ 38 ,  39 ]. 

 Obese individuals have an increased risk for developing heart disease,  hypertension, 
infertility, obstructive sleep apnea, dyslipidemia, nonalcoholic fatty liver disease, type 
2 diabetes, and metabolic syndrome (MetS) [ 40 ,  41 ]. There is also a strong link 
between obesity and many malignancies. Several epidemiological studies have linked 
obesity to cancers of the esophagus, pancreas, prostate, renal, postmenopausal breast, 
endometrium, kidney, and colon and rectum [ 40 ,  42 ]. For CRC specifi cally, every 2.4 
unit increase in BMI increases cancer risk by 7 % [ 43 ]. Additionally, a recent meta-
analysis predicted that for every additional inch in waist circumference, there is a 5 % 
increase in CRC risk [ 44 ]. Therefore, given the increased prevalence of and lifetime 
exposure to obesity, it is imperative to identify the mechanisms by which obesity 
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increases CRC risk so that effective treatment and preventative options can be 
 delivered to a growing, at-risk population. Similar to intestinal infl ammation in IBD 
patients, infl ammation caused by increased adiposity and consumption of a high-fat 
diet is likely to contribute to increased CRC susceptibility in obese individuals.  

7.5      The Intestinal Microbiota Contributes to Infl ammation 
and CRC Risk 

7.5.1      The Microbiota and IBD 

 There are approximately 10 12  microorganisms in the human gastrointestinal track that 
belong to greater than 500 different species, which are collectively referred to as the 
microbiota [ 45 ,  46 ]. In both mice and humans, the majority of the microbiota consists 
of bacteria belonging to the Firmicutes (gram-positive bacteria) and Bacteriodetes 
(gram-negative bacteria) phyla [ 47 ,  48 ]. Probacteria (including  Helicobacter  and 
 Escherichia ) and Actinobacteria are also signifi cant contributors to the gut microfl ora 
[ 31 ]. The symbiotic relationship between humans and enteric microorganisms is 
essential to important processes such as digestion, regeneration of the IEC barrier, and 
immune responses [ 49 ,  50 ]. While the microbiota provides benefi cial protective, tro-
phic, nutritional, and metabolic signals for the host, it may become a risk factor for 
disease depending on context and host susceptibility [ 50 – 52 ]. 

 What were once thought to be diseases involving chronic immune response 
 targeting self-antigens (autoimmunity), IBDs, specifi cally CD, are now considered 
to be caused by a loss of tolerance to commensal organisms and enhanced immune 
response to bacterial antigens [ 53 ]. In almost all rodent models of IBD, treatment 
with antibiotics or elimination of the intestinal microbiota (germfree rodents) sig-
nifi cantly alleviates disease pathology [ 54 ,  55 ]. Similarly, in human CD patients, 
antibiotics and diversion of the fecal stream from the distal colon into an ileostomy 
facilitate disease remission [ 56 – 58 ]. Therefore, abnormal interactions between 
bowel constituents, specifi cally intestinal microbes, and the mucosal immune sys-
tem appear to initiate CD pathology. 

 What underlying pathologies lead to the aberrant immune response to the com-
mensal microbes of the gastrointestinal system? One possibility may be alterations 
to the makeup of the microbiota itself and alterations to intestinal physiology by 
specifi c bacterial species. In colon biopsies from CD patients, an increase in 
Bacteroidetes and Proteobacteria has been observed [ 59 ]. However, analysis of the 
microbial population in the intestines of CD, UC, and non-IBD controls demon-
strated that specifi c fl ora is not enriched in the small bowel or colon of IBD patients, 
suggesting that there is not one specifi c change to the microbiota that contributes to 
IBD pathology in all patients [ 60 ]. Interestingly, a subset of IBD patients do have 
depletions in certain commensal bacteria, notably members of the phyla Firmicutes 
and Bacteroidetes, suggesting that, at least in some instances, particular alterations 
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to the intestinal microfl ora infl uences disease progression [ 31 ]. Metabolic by-products 
that are generated from gut bacteria can have benefi cial or detrimental effects on 
host diseases. For example, butyrate is a fermentation product of anaerobic bacteria 
(Clostridium strains) and has been shown to increase apoptosis, decrease prolifera-
tion, and have anti-infl ammatory properties in IECs and immune cells [ 61 ,  62 ]. IBD 
patients have defi ciencies in many strains of butyrate-producing Clostridium, such 
as  Faecalibacterium prausnitzii , and have impaired butyrate metabolism in the 
colonic mucosa [ 63 ,  64 ].    Oral and intraperitoneal administration of  F .  prausnitzii  in 
a mouse model of IBD reduced colitis and mortality, respectively, and increased 
anti-infl ammatory cytokines such as IL-10 [ 63 ]. Importantly, immune responses 
and infl ammation induced by non-commensal invasive species of  Escherichia coli  
and enterotoxigenic subclasses of  Bacteroides fragilis  also enhanced infl ammation 
and disease pathology in IBD [ 65 ,  66 ]. 

 Although evidence suggesting that specifi c commensal microbes trigger abnor-
mal immune responses in IBD patients is somewhat limited, there is a signifi cant 
amount of experimental evidence demonstrating that altered sensitivity to the 
microbiota contributes to IBD. The lamina propria is a thin layer of tissue that lies 
beneath the intestinal epithelium [ 67 ]. Mononuclear immune cells, including mac-
rophages and dendritic cells (antigen-presenting cells or APCs) and T cells, within 
the lamina propria, which are collectively referred to as LPMNCs, act as a fi rst line 
of defense against pathogens that penetrate through the epithelial barrier following 
infection or tissue trauma. Importantly, due to their physical separation from intes-
tinal contents by the epithelial barrier, immune cells normally do not come into 
contact with or react to commensal microbes. Additionally, under normal physio-
logical conditions, IECs express low levels of toll-like receptors (TLRs), which 
recognize bacterial antigens to induce proinfl ammatory responses (e.g., gram- 
negative lipopolysaccharide [LPS] induction of TLR 4 signaling) [ 68 ]. However, 
when the intestinal epithelium is damaged, microbes can transit through the IEC 
barrier and come into contact with LPMNCs. Through     TLR-mediated activation of 
APCs, phagocytosis and antigen presentation by APCs, and ultimately T cell activa-
tion, a proinfl ammatory response is induced that promotes wound healing [ 5 ,  49 ,  69 ]. 
Once the damage is repaired, the immune response normally subsides. 

 Importantly, in IBD patients, both genetic and environmental factors increased 
IEC barrier permeability, which causes chronic infl ammation [ 70 – 73 ]. This barrier 
defect allows for continuous mixing of luminal contents with LPMNCs and chronic 
proinfl ammatory immune responses [ 74 ]. Interestingly, several of the proinfl amma-
tory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma 
(INF-γ), interleukin (IL)-6, IL-1β, and IL-13, that are expressed in the intestines of 
IBD patients also induce increased barrier permeability by activating nuclear factor 
kappa B (NF-κB)-mediated transcription and altering the expression of tight junc-
tion proteins in IECs (Fig.  7.2 ) [ 74 – 77 ]. Thus, there is a self-amplifying cycle of 
barrier dysfunction, immune cell activation, cytokine release, and additional IEC 
barrier permeability [ 74 ]. Adding to this defect, IEC expression of TLR4 is elevated 
in IBD patients, allowing for LPS stimulation of NF-κB-mediated transcription and 
alterations in tight junction protein expression (Fig.  7.2 ) [ 68 ,  69 ,  78 ,  79 ].  
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7.5.2      Infl ammatory Responses to the Microbiota 
Increase CRC Risk 

 Studies of infl ammation and intestinal cancer in humans and mice have led to a 
model that proposes a proinfl ammatory intestinal environment increases CRC risk 
by inducing tissue repair responses (Figs.  7.1  and  7.2 ) [ 80 – 82 ]. In this model, it is 
hypothesized that accumulation of mutations in IECs and the formation of aberrant 
crypt foci damages the surrounding intestinal mucosa. The microbiota penetrates 
the IEC barrier and induces immune cells to release proinfl ammatory cytokines that 
elicit tissue repair responses (e.g., proliferation) in IECs [ 49 ,  83 ]. Normally the tis-
sue repair response fi xes damage done to the affected area of the epithelium. 
However, IECs found within the aberrant crypt foci have developed genetic predis-
positions to tumor formation, which interact with tissue repair responses to promote 
the progression of precancerous lesions to adenomas, adenoma growth, and addi-
tional tissue damage and infl ammatory responses. Secondary conditions such as 
IBD exacerbate this effect by promoting a chronic, proinfl ammatory state in the gut 
that persistently induces IEC hyperplasia.

  Fig. 7.1    Model for the role of intestinal infl ammation in colorectal cancer progression. Colorectal 
cancer (CRC) susceptibility is induced by the acquisition of genetic mutations (e.g.,  APC  muta-
tions) that predispose IECs to neoplastic transformation. Preneoplastic IECs form aberrant crypt 
foci. Barrier defects caused by the aberrant crypt foci allow luminal contents to cross the epithelial 
barrier and commensal bacteria to interact with immune cells in the lamina propria to induce 
infl ammation. Infl ammation induces tissue repair responses (e.g., proliferation and migration) in 
IECs that are normally involved in wound healing. In pre-neoplastic IECs, tissue repair responses 
induced by infl ammation interact with genetic predispositions to CRC to induce tumor progression 
to adenomas. Chronic infl ammation induced by infl ammatory bowel diseases (IBDs) and obesity/
high-fat diets (HFD) causes additional infl ammation in the intestine to further increase cancer 
susceptibility       
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  Fig. 7.2    Initiation of colorectal cancer. Susceptibility to CRC initiates from hereditary or somatic 
mutations that increase tumorigenic potential. Once acquired several factors interact with these 
genetic predispositions to increase CRC risk. ( 1 ) Genetic predispositions induce the formation of 
aberrant crypt foci, which disrupt the epithelial barrier and allow commensal bacteria in the intesti-
nal lumen to interact with immune cells in the lamina propria to induce proinfl ammatory cytokine 
production. These cytokines induce gene expression changes in IECs and tumor cells that cause 
additional barrier permeability and increased survival and proliferation. Additionally, immune cells 
produce radical oxygen species (ROS) and radical nitrogen intermediates (RNI) that induce addi-
tional DNA damage and tumor promoting mutations. Chronic infl ammation caused by IBDs 
increases cytokine production and CRC risk. ( 2 ) Obese adipose tissue releases proinfl ammatory 
leptin and decreases the production of anti-infl ammatory adiponectin, resulting in immune cell acti-
vation in the intestine, proinfl ammatory cytokine production, and ROS and RNI release. ( 3 ) In addi-
tion to inducing proinfl ammatory responses from immune cells, bacterial antigens can interact with 
toll-like receptors (TLR) on IECs and tumor cells to alter the expression of tight junction 
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    As observed with IBD, particular enterotoxic and invasive species increase CRC 
risk in humans and mouse models [ 5 ,  84 ]. However, reduced IEC barrier integrity 
and mixing of commensal bacteria with LMPCs are the most likely mechanism 
through which intestinal microbes increase CRC susceptibility. Germfree rats and 
mice provided the fi rst direct evidence that the microbiota contributes to intestinal 
tumorigenesis. In mice treated with the carcinogen azoxymethane (AOM) to induce 
genetic mutations and dextran sodium sulfate (DSS) to induce CD-like infl amma-
tion, which together cause colitis-associated tumor formation, the absence of the 
microbiota decreases tumor burden [ 85 ]. Similar effects on tumor formation were 
observed in AOM-DSS-treated rats [ 86 ,  87 ]. Importantly, even in the absence of 
IBD-like infl ammation microbes contribute to tumorigenesis. In the  Apc   Min   mouse 
model of CRC, which does not develop IBD-like pathologies, the absence of gut 
microbes reduces intestinal polyp burden [ 85 ]. Importantly, new evidence suggests 
that aberrant crypt foci and adenomas themselves decrease barrier integrity. In mice 
genetically engineered to be defi cient for  Apc  in the colon, loss of IEC barrier integ-
rity at the site of tumor development allowed for penetration of microbial products 
into lamina propria and induction of T cell-mediated proinfl ammatory responses 
that promote tumor growth [ 83 ].  

7.5.3     The Microbiota, Obesity, and CRC Susceptibility 

 The intestinal microbiota can be manipulated by a variety of metabolic factors, 
changes in energy balance, or through the consumption of specifi c nutritional 
regimes. Importantly, changes in the gut microbial profi le can strongly infl uence the 
development of obesity. Germfree mice are resistant to body weight gain induced by 
a high-fat diet, and transfer of a normal microbiota into germfree mice induced 
weight gain [ 46 ,  88 ]. Transfer of gut microbiota from an obese mouse to a lean 
mouse also induced weight gain in mice [ 45 ]. Together these studies suggest that the 
gut microbiota affects energy balance by infl uencing the effi ciency of calorie har-
vest from the diet and how this harvested energy is used and stored. Human studies 
of lean or obese monozygotic or dizygotic twins showed that microbial profi les are 
shared among families on a general level (i.e., phyla), but each individual has a 
unique profi le when examined in more detail (i.e., species) [ 89 ,  90 ]. However, it has 
been demonstrated that Bacteroidetes are found in lower numbers in obese 

Fig. 7.2 (continued) proteins and further increase the permeability of the epithelial barrier, resulting 
in more infl ammation. TLR activation also induces gene expression changes that promote tumor 
growth. ( 4 ) Leptin and proinfl ammatory cytokines released from obese adipose tissue can directly 
interact with receptors on IECs and tumor cells to promote survival and proliferation. A reduction in 
anti-proliferative adiponectin production also promotes cell growth. ( 5 ) Environmental factors, such 
as saturated fats, interact with IECs and tumor cells to increase barrier permeability (and infl amma-
tion) and cell growth and can induce additional genetic mutations that promote tumorigenesis       
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individuals and that the percentage of Firmicutes is signifi cantly elevated with 
increased body fatness [ 91 ]. A similar fi nding was observed in obese mice [ 45 ]. In 
contrast, in rats fed with a high-fat diet, Bacteroidetes increased in number [ 92 ]. 
Thus, it is unclear if specifi c strains modulate obesity (i.e., increase food digestion 
or absorption) or if obese conditions select distinct families of microbes. 

 Intestinal bacteria contribute to obesity and cancer susceptibilities in humans and 
mice, and obesity, diet, and colon cancer can have an effect on the microbial profi les 
[ 46 ]. However, the relationships between host genetics, diet, obesity, susceptibility to 
colon cancer, and the relative numbers and kinds of intestinal bacteria have not been 
carefully studied. As discussed above, immune responses to particular bacterial spe-
cies may be less important than increased immune cell sensitivity or exposure to the 
microbiota. If this hypothesis is true, a mechanism must exist by which obesity, or 
diets associated with obesity, increases immune cell–microbiota interactions. 

 Interestingly, consumption of diets high in saturated fats (HFD) induces low- 
grade endotoxemia (i.e., increased levels of circulating bacterial-derived LPS), 
which is indicative of increased IEC barrier permeability [ 93 ,  94 ]. Importantly, 
saturated fatty acids (SFAs) directly infl uence barrier integrity by altering the 
expression of claudin and occludin tight junction proteins in IECs using the same 
cell signaling pathways as bacterial antigens in IBD (Fig.  7.2 ) [ 92 ,  95 ]. The activity 
of the gram-positive and gram-negative bacterial antigens on TLR2 and TLR4 sig-
naling, respectively, is dependent on their saturated fatty acyl moieties [ 96 ]. SFAs 
mimic these moieties and induce both TLR2-depedent and TLR4-depedent 
responses [ 96 ]. SFA stimulation of TLR4 and NF-κB activity alters the expression 
of tight junction proteins in IECs, resulting in reduce barrier integrity, and induces 
the expression of proinfl ammatory cytokines, such as TNF-α, IL-6, and IL-1β, that 
also decrease IEC barrier integrity [ 68 ,  69 ,  74 – 79 ]. Importantly, as discussed with 
infl ammation induced by barrier defects in IBD patients, increased IEC barrier per-
meability following a meal high in saturated fat allows for the mixing of luminal 
contents (i.e., the microbiota) with immune cells in the lamina propria. Under nor-
mal physiological conditions and diet consumption, an HFD temporarily induces 
intestinal infl ammation, which is resolved with reduced SFA exposure. However, in 
obese individuals, chronic consumption of HFDs continuously compromises the 
integrity of the IEC barrier, which in turn induces a chronic, proinfl ammatory state.   

7.6     Proinfl ammatory Cytokines Contribute to CRC 
Susceptibility 

7.6.1     T Cell-Mediated Infl ammation Drives IBD Pathology 

 Studies of Crohn’s disease patients and CD-like colitis in mice have established 
that CD is a T helper (Th)1 and Th17 cell-mediated infl ammatory disease 
(Tables  7.1  and  7.2 ) [ 97 – 99 ]. In CD, APCs that have phagocytosed intestinal 
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microbes induce Th1 cell production of chemokines (immune cell recruiting mol-
ecules), such as CCL5, and cytokines, such as INF-γ and TNF-α [ 100 ]. Together 
Th1-derived factors recruit additional APCs and induce APCs to release addi-
tional proinfl ammatory cytokines (e.g., IL-6, IL-1β, TNF-α, IL-12) and chemo-
kines (e.g., IL-8) [ 101 ]. These factors enhance APC activity (major 
histocompatibility class [MHC] molecule expression, release of proinfl ammatory 

     Table 7.1    Intestinal immune cells and function   

 Cell type  Function 

 T cells (Th, NK, Tc)  Cytokine/chemokine production: Th1 (INF-γ, TNF-α, IL-2, various 
chemokines), Th17 (IL-17, IL-23, various chemokines), Th2 
(IL-4, IL-13), NK (IL-13). Cytotoxicity and APC activation 

 Treg cells  Cytokine production: (IL-20, TGF-β). Anti-infl ammatory, 
immunosuppression 

 APCs (macrophages 
and dendritic cells) 

 Cytokine/chemokine production: TNF-α, IL-6, IL-1β, IL-23, IL-12, 
IL-8, various chemokines. Phagocytosis, antigen presentation, T 
cell activation, granulocyte recruitment 

 Neutrophils  Cytokine/chemokine production: IL-6, IL-1β, IL-8. Phagocytosis, 
nitrogen and oxygen reactive species production, degranulation 

 Epithelial and tumor cells  Cytokine/chemokine production: TNF-α, IL-6, IL-1β, IL-8, PGE2, 
various other chemokines 

     Table 7.2    Intestinal immune cells and function   

 Cytokine/chemokine  Function and pathways in cancer and immune cells 

 TNF-α  Survival, growth, epithelial barrier permeability, ISEMF activation, 
monocyte recruitment and activation, T cell activation. MAPK, 
NF-κB 

 IL-6  Proliferation, survival, epithelial barrier permeability, ISEMF 
activation, Th17 cell differentiation, monocyte and granulocyte 
recruitment. JAK/STAT, ERK/MAPK, PI3K/AKT, NF-κB 

 IL-1β  Survival, growth, epithelial barrier permeability, ISEMF activation, 
Th17 cell activation, cytokine and chemokine production by APCs 
and IECs. MAPK, NF-κB 

 IL-23  Th17 cell differentiation, induction of IL-22 and IL-17A/F production, 
Treg inhibition. JAK/STAT 

 IL-22  Survival, tissue repair responses in IECs, ISEMF activation. JAK/
STAT, MAPK, NF-κB 

 IL-17A/F  Survival, growth, epithelial barrier permeability, ISEMF activation, 
cytokine and chemokine production by APCs and IECs, monocyte 
and granulocyte recruitment. JAK/STAT, MAPK, NF-κB 

 IL-4  Proliferation, survival, metastasis, wound healing, reduced Th1 and 
APC production of INF-γ, reduced IL-12 production from 
dendritic cells, B cell class switching. JAK/STAT, MAPK 

 IL-13  Similar to IL-4 
 IL-10  Anti-infl ammatory, Treg stimulation. JAK/STAT, MAPK 
 IL-8  Neutrophil recruitment, angiogenesis. PI3K/AKT, PLC, JAK/STAT, 

MAPK, NF-κB 
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cytokines, and oxygen and nitrogen reactive species production) and recruit 
 additional immune cell types, such as granulocytes (neutrophils, basophils, and 
eosinophils), to the site of infl ammation [ 74 ]. To control the immune reaction, 
immunosuppressive regulatory T (Treg) cells produce anti-infl ammatory IL-10 
and TGF-β to suppress APC and Th1 activation [ 5 ,  102 ]. Importantly, following 
the Th1 response, TGF-β  produced by Treg cells and IL-6 and IL-23 released by 
APCs induce the differentiation and expansion of Th17 cells [ 103 ]. Th17 cells 
produce IL-17A and F, which induce the production of cytokines (e.g., IL-6, 
IL-1β, and TNF-α) and several neutrophil (e.g., IL-8 and CXCL1) and monocyte 
(e.g., CXCL2) chemokines in a variety of immune and nonimmune cell types to 
promote infl ammation [ 100 ,  104 ]. Additionally, Th17 cells produce IL-22, which 
induces tissue repair responses in IECs [ 101 ,  103 ]. Importantly, transition from 
Th1- to Th17-mediated immunity has a signifi cant impact on CRC risk and dis-
ease prognosis. Expression analysis of CRC specimens revealed that patients with 
the highest level of Th1-related genes expression had the best disease prognosis, 
whereas patients with the highest level of Th17-related gene expression had the 
worst prognosis [ 105 ].

    The T cell response involved in UC was more diffi cult to classify because IL-5 
and IL-13, two defi ning effector cytokines produced by Th2 cells, were produced 
by T cells in the lamina propria, but a third Th2-related cytokine, IL-4, was not 
(Tables  7.1  and  7.2 ) [ 101 ]. Important evidence for what type of Th cell-mediated 
immunity is involved in UC came from mice treated with oxazolone (OXA), 
which causes colitis and initially increases the expression of IL-4 [ 106 ]. 
Importantly, further studies using the OXA model of UC showed that, overtime, 
IL-13 production is stimulated in the lamina propria [ 107 ]. Interestingly, IL-13 
originated from natural killer (NK) CD4+ T cells rather than conventional CD4+ 
T cells [ 107 ]. NK T cells have cytotoxic activity and are activated by antigens 
presented on CD1 molecules rather than MHC molecules [ 101 ]. In UC patients, 
NK T cells also appear to be the source of IL-13 production [ 108 ]. Thus, chronic 
infl ammation in UC involves a Th2-like immune response involving IL-13, which 
may contribute to CRC susceptibility [ 105 ]. Importantly, unlike CD, the glyco-
lipid (either bacterial- or self- derived) that induces NK T cell responses and 
infl ammation has not been identifi ed [ 100 ]. 

 Bridging the Th1/Th17/Th2 responses in CD and UC is a group of well-known 
cytokines that contribute to IEC barrier defects and mediate many of the pathologies 
of IBD. Both APCs and IECs release TNF-α, IL-1β, and IL-6 in response to the 
cytokines produced by Th1, Th17, and NK T cells (Tables  7.1  and  7.2 ) [ 55 ,  109 ]. 
Through the activation of mitogen-activated protein kinase (MAPK) signaling path-
ways and the stimulation of NF-κB-mediated transcription, TNF-α, IL-1β, and IL-6 
activate additional APCs. Furthermore, TNF-α, IL-1β, and IL-6 feedback on T cell 
function. IL-6 and possibly IL-1β induce Th17 differentiation in CD [ 110 ,  111 ]. 
Additionally, TNF-α enhances APC production of IL-12, which promotes Th1- 
mediated responses [ 101 ]. Importantly, these cytokines promote additional infl am-
mation and stimulate IEC proliferation and survival, which contributes to the 
pathology of IBD and CRC susceptibility.  
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7.6.2         Proinfl ammatory Cytokines Directly Infl uence Epithelial 
Cell Development and CRC Risk 

 Several studies have established that the proinfl ammatory cytokines elevated in IBD 
directly interact with their respective receptors on IECs to initiate signaling 
cascades involved in tumor formation (Table  7.2  and Fig.  7.2 ). IL-6, IL-1β, and 
TNF-α, which are produced by APCs and IECs in the intestines of IBD and CRC 
patients, promote IEC proliferation through several cell signaling pathways involv-
ing    Wnt, Janus kinase/signal transducer and activator (JAK/STAT), MAPK, and 
NF-κB [ 27 ,  112 – 118 ]. Similarly, IL-22, IL-17, and TNF-α produced by Th17 cells 
in CD and CRC patients induce JAK/STAT, MAPK, and NF-κB signaling in IECs 
to promote proliferation, survival, and tissue repair responses associated with 
tumorigenesis [ 83 ,  115 ,  117 – 119 ]. The Th2 cell-derived cytokines also modulate 
IEC function. IL-4 and IL-13 through MAPK-mediated cell signaling induce IEC 
proliferation and survival [ 120 ,  121 ]. Furthermore, evidence suggests that IL-4-/
IL-13-mediated signaling alters colon cancer cell adhesion and contributes to can-
cer cell invasion and metastasis [ 122 ,  123 ]. 

 Importantly, Th1-/Th17-mediated immune response cytokines found in CD (IL- 
22, IL-23,    IL-17A/F), Th2-mediated immune response cytokines found in UC (IL-4 
and IL-13), and cytokines associated with both types of T cell responses and innate 
immunity in IBD (TNF-α, IL-6) have all been shown to increase CRC risk in humans 
or tumor burden in mouse models of CRC [ 83 ,  113 ,  114 ,  120 ,  121 ,  123 – 130 ]. 
As discussed previously, these proinfl ammatory mediators likely interact with 
preexisting genetic abnormalities to increase cancer susceptibility (Fig.  7.1 ). 
Importantly, many of these cytokines infl uenced tumor burden in  Apc  mutant mice. 
IBD-like infl ammation is not observed in  Apc  mutant mice; however, as discussed 
in Sect.  7.5.2 , precancerous lesions can reduce intestinal barrier integrity, allow 
microbes to interact with LPMNCs, and induce localized infl ammation, which pro-
motes epithelial cell proliferation and survival [ 83 ]. Therefore, infl ammatory cyto-
kine production in the intestine can contribute to CRC risk even in individuals 
without preexisting infl ammatory diseases.  

7.6.3     Epithelial TLR4 Activation Promotes IEC Proliferation 
and Tumorigenesis 

 Similar to IBD, TLR4 receptor expression increases in CRC patients and promoted 
intestinal tumorigenesis in mice (Fig.  7.2 ) [ 80 ,  131 ]. Interestingly, microbial activa-
tion of TLR4 receptors on IECs promoted tumor development, in part, by inducing 
expression of cyclooxygenase-2 (COX-2) [ 131 ]. COX-2 is an inducible mediator of 
proinfl ammatory prostaglandin E2 (PGE2) synthesis, both of which are increased in 
both human and experimental models of CRC [ 132 – 137 ]. PGE2 through its recep-
tors (EP family of receptors) induces proinfl ammatory responses in dendritic cells, 
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Th17 cells, Th1 cells, and IECs [ 138 ]. As with all other activators of immune cells, 
PGE2 promotes tumorigenesis through its proinfl ammatory effects. PGE2 induces 
IECs to express amphiregulin, a member of the epidermal growth factor (EGF) fam-
ily [ 131 ]. Interestingly, amphiregulin interacts with EGFR receptors on IECs to 
promote proliferation and tumorigenesis [ 131 ]. Therefore, IECs can promote their 
own proliferation and neoplastic transformation through PGE2 synthesis.  

7.6.4      Infl ammation Induces Proinfl ammatory Cytokine 
Production by IECs 

 In addition to directly promoting IEC proliferation and tumorigenesis, cytokines 
can also induce proinfl ammatory gene expression in IECs. Through MAPK-, JAK/
STAT-, and NF-κB-mediated signaling, IL-17, TNF-α, IL-6, and IL-1β induce CRC 
cell lines to express a variety of cytokines and chemokines that recruit and activate 
APCs and granulocytes [ 5 ,  139 ,  140 ]. The activation of these cell types to the intes-
tine causes additional cytokine production and infl ammation, which promotes IEC 
proliferation and increased tumor risk. Additionally, chronic accumulation of acti-
vated granulocytes, macrophages, and dendritic cells is accompanied by the release 
of oxygen and nitrogen reactive species (RONS), which promote dysplasia by 
inducing DNA modifi cations and genetic mutations in proliferating IECs (Fig.  7.2 ) 
[ 141 ,  142 ]. Infl ammation-induced DNA damage has been linked to altered expres-
sion of genes involved in CRC such as p53, APC, KRAS, and BCL-2 [ 143 ,  144 ]. In 
the DSS mouse model of CD-like infl ammation, defi ciency for base-excision repair 
enzymes induces tumor formation, providing direct evidence that the pro- 
tumorigenic effects of chronic infl ammation are partially mediated through DNA 
damage [ 145 ,  146 ].  

7.6.5       Infl ammation Induces Tumorigenesis by Altering 
the IEC Stem Cell Niche 

 Cytokine action on cells that regulate IEC homeostasis may also infl uence tumor 
development (Fig.  7.3 ). Intestinal subepithelial myofi broblasts (ISEMFs) are posi-
tioned subjacent to the basement membrane in the intestinal mucosa, juxtaposed 
against the bottom of IECs in intestinal crypts. ISEMFs have a profound infl uence 
on the intestinal stem cell niche [ 147 ]. Following infection or trauma to the intesti-
nal mucosa and activation of infl ammation, ISEMFs release factors that alter IEC 
homeostasis and induce a tissue repair response [ 147 – 149 ]. Proinfl ammatory cyto-
kines such as IL-1β, TNF-α, IL-17A/F, and IL-22 induce NF-κB and MAPK signal-
ing in ISEMFs, resulting in ISEMF proliferation and the production and release of 
ECM components (e.g., type I and IV collagen), basement membrane remodeling 
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factors (matrix metalloproteinases [MMPs] and tissue-specifi c inhibitors of    MMPs 
(TIMPs)), proinfl ammatory cytokines (IL-6, IL-13, and IL-23), chemokines 
(CXCL1 and CXCL2), and growth factors (vascular endothelial growth factor 
[VEGF], keratinocyte growth factor [KGF], EGF, and Wnt proteins), which induce 
tissue remodeling and proliferation of IECs [ 27 ,  147 ,  150 ,  151 ]. In the chronic pro-
infl ammatory state of IBDs, cytokines cause an expansion in ISEMF numbers and 
induce ISEMFs to continuously release factors that result in IEC proliferation, tis-
sue disorganization, and eventually fi brosis [ 27 ,  149 ]. Importantly, the uncontrolled 
tissue repair response induced in IECs of IBD patients is the mechanism by which 
infl ammation is proposed to promote adenoma development. Therefore, induction 
of ISEMFs by infl ammatory factors may be an additional mechanism through which 
infl ammation increases CRC risk.

  Fig. 7.3    Intestinal subepithelial myofi broblasts (ISEMFs) infl uence the intestinal stem cell niche 
during infl ammatory responses.    In response to proinfl ammatory cytokines released by macro-
phages and T cells, ISEMFs express and release additional proinfl ammatory cytokines (IL-6, 
IL-13, IL-23), ECM remodeling factors (matrix metalloproteinases [MMPs], tissue-specifi c inhib-
itors of MMPs [TIMPs], and collagens) and growth factors (VEGF, KGF, and EGF), and cell sig-
naling ligands (Wnts) into the stem cell niche of the intestinal crypt. Together, the factors released 
by ISEMFs induce tissue repair responses in IECs that stimulate proliferation and migration. 
Normally this response repairs tissue damage associated with infection. In CRC-susceptible mice 
and humans, tissue repair responses interact with genetic predispositions to CRC to further increase 
cancer risk       
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7.6.6        Adipocytokines: Infl uence of Obesity on IEC Homeostasis 
and CRC Risk 

 Obesity is characterized by the accumulation of lipid in white adipose tissue (WAT). 
What was once thought to be a simple storage depot for lipid molecules, adipose 
tissue is now understood to be a complex endocrine organ consisting of adipocytes, 
connective and nervous tissue, immune cells (T cells, B cells, and macrophages), 
chondrocytes, osteocytes, and myocytes [ 42 ]. Obese adipose tissue is characterized 
by immune cell infi ltration, with macrophages representing the majority of cell 
types recruited [ 152 ,  153 ]. A growing body of evidence suggests that adipocyte 
death resulting from hypertrophy and hypoxia induces the release of chemoattrac-
tants that recruit macrophages to adipose tissue (see Chap.   6     for a detailed explana-
tion of these interactions) [ 154 ,  155 ]. The T cell population within obese adipose 
tissue also changes, potentially due to the infl uence of leptin on CD8+ cytotoxic T 
(Tc) cell activation and CD4+ Th1 cell polarization [ 156 ]. Tc cell numbers increase, 
the number of immunosuppressive Treg cells decreases, and production of the Th1 
proinfl ammatory cytokine INFγ increases [ 157 – 159 ]. Together changes in the T cell 
and cytokine content of obese adipose tissue create an infl ammatory milieu condu-
cive to classical (M1) macrophage activation [ 152 ,  153 ]. Once established, the 
obese adipose tissue-associated M1 macrophages secrete a variety of proinfl amma-
tory cytokines (IL-1β, IL-6, and TNF-α) and chemokines (monocyte chemoattrac-
tant protein-1 [MCP-1] and IL-8) and reduce expression of anti-infl ammatory 
IL-10, which together maintain an unresolved proinfl ammatory state in the adipose 
and a subclinical, chronic infl ammatory state systemically [ 42 ,  152 ,  153 ]. 

 As discussed in the previous sections, the same cytokines released into circula-
tion by obese adipose tissue also modulate intestinal infl ammation and CRC suscep-
tibility. Obesity and HFDs interact with DSS and AOM-DSS treatment in mice to 
increase the severity of intestinal infl ammation and CRC incidence, respectively 
[ 160 ,  161 ]. DSS-mediated infl ammation and diet-induced obesity interacted to 
increase LPMNC expression of proinfl ammatory cytokines (TNF-α, IL-6, and INF- 
γ), LPMNC and IEC expression of TLR4, and intestinal helper T cell number [ 160 , 
 161 ]. However, the mechanism by which diet-induced obesity increased DSS- 
mediated infl ammation was not clearly demonstrated.    In the study of AOM-DSS 
mice, the increase in intestinal infl ammation and CRC incidence was associated 
with increases in expression of leptin receptor in the colon [ 161 ]. As discussed in 
Sect.  7.7 , leptin signaling induces infl ammation and IEC proliferation, which may 
have increased tumor incidence. In the study of DSS-treated mice fed with a high- 
fat diet, intestinal infl ammation was not linked to a specifi c mechanism. DSS and 
SFA likely increased the permeability of the intestinal epithelial barrier and allowed 
LPMNCs to interact with intestinal microbes, which may have induced proinfl am-
matory cytokine production in the intestine. Thus, whether proinfl ammatory cyto-
kines released into circulation by obese adipose contributed to intestinal infl ammation 
in these studies is an open question. Importantly, TNF-α and IL-1β circulate at very 
low levels in lean and obese individuals [ 162 ]. Therefore, whether these cytokines 
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function as endocrine factors is debatable. In contrast, circulating levels of IL-6 are 
substantial in obese individuals and, therefore, may have endocrine effects on distal 
tissues [ 162 ].   

7.7      Leptin: A Proinfl ammatory Adipokine Associated 
with Increases CRC Risk 

 In addition to cytokines, adipocytes produce a variety of hormones (adipokines) that 
regulate several systemic processes, including food intake, metabolism, insulin sen-
sitivity, reproduction, blood pressure, angiogenesis, and infl ammation [ 163 ]. Leptin 
(LEP) is an adipokine secreted by white adipocytes in a proportion approximately 
linear to adipose tissue weight [ 42 ]. Leptin plays a key role as a satiety factor and 
regulator of energy homeostasis through binding to the lepton receptor (LEPR or 
Ob-R) in the hypothalamus [ 164 ].  LEPR  encodes several splice variants called the 
long (Ob-Rb), short (Ob-Ra, c, and d), and soluble (Ob-Re) forms [ 165 ]. Full-length 
Ob-Rb retains the intracellular domains necessary to induce downstream signaling 
events following activation by leptin binding. The short isoform (Ob-Ra) is the most 
abundant in many tissues and may retain some of intracellular signaling capacities 
of full-length Ob-Rb. Ob-Re appears to be a carrier molecule for circulating leptin. 

 As adiposity increases, leptin is released from adipocytes and into circulation to 
reduce dietary intake and enhance energy expenditure. Interestingly, leptin signal-
ing may have biological functions that reach beyond its normal role in energy 
homeostasis. Leptin receptor expression and signaling have been reported for a vari-
ety of cell and tissue types [ 165 ]. Specifi cally, the leptin receptor is expressed 
throughout the colonic epithelium, and leptin has been shown to induce proinfl am-
matory innate and adaptive immune cell responses [ 156 ,  166 ,  167 ]. Epidemiological 
studies have established that obese individuals have higher circulating levels of 
leptin compared to normal-weight individuals [ 168 ]. Furthermore, several studies 
have observed an association between higher leptin levels and increased risk of 
colorectal adenomas [ 169 ,  170 ] and colon cancer [ 171 ]. Thus, given the evidence of 
associations between obesity, chronic infl ammation, and CRC risk [ 172 – 175 ], 
leptin signaling may play an important role in mediating pathophysiological events 
that lead to intestinal neoplasia. 

7.7.1     Leptin and Epithelial Cell Function 

 Previous reports have established that the leptin receptor is expressed by mouse 
and human colonic epithelial cells, colon cancer cells, and a variety of human 
epithelial colon cancer cell lines [ 166 ,  167 ,  176 ]. In vitro leptin mediates the sur-
vival, proliferation, and metastatic capacity of human colon cancer cell lines 
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through several cell signaling pathways (Fig.  7.2 ). Stimulation of colon cancer 
cell lines with leptin induces leptin receptor tyrosine phosphorylation and the 
activation of a variety of cell signaling cascades [ 176 ]. Leptin increased cell num-
ber and reduced apoptosis in Caco-2 and HT-29 cultures by inducing extracellular 
signaling kinases (ERK1/2), PI3-kinase/protein kinase B (PKB or AKT) AKT 
phosphorylation, c-Jun NH(2)-terminal kinase (JNK), and JAK/STAT-mediated 
pathways [ 177 ,  178 ]. An additional study of HT-29 response to leptin demon-
strated that colon cancer cell proliferation and survival are dependent on NF-κB 
nuclear translocation and activation [ 179 ]. Importantly, the leptin receptor is 
expressed by both normal and tumorigenic epithelial cells in vivo [ 176 ,  180 ]. 
However, the proliferative and anti-apoptotic effect of leptin demonstrated in vitro 
was contradicted by in vivo studies of the  Apc   Min /+  and AOM mouse models of 
CRC. Curiously, leptin failed to increase intestinal polyp number or size in  Apc   Min /+  
mice treated with leptin [ 181 ]. Furthermore, leptin-defi cient, obese  ob / ob  and 
leptin receptor-defi cient, and obese  db / db  mice showed increased numbers of 
aberrant crypt foci (markers of precancerous lesions) relative to controls follow-
ing AOM treatment despite the absence of leptin signaling [ 182 ]. 

 Two studies may have resolved the differences observed in the in vitro and 
in vivo studies. Endo et al. examined normal and tumorigenic colonic epithelium at 
various stages of development in leptin-defi cient, obese  ob / ob , and wild-type mice 
treated with the carcinogen AOM [ 183 ]. In  ob / ob  mice normal epithelial cell prolif-
eration and the number or precancerous aberrant crypt foci were similar to AOM- 
treated wild-type controls. However, when cancer adenoma polyps were examined, 
a signifi cant reduction in tumor proliferation and size, but not number, was observed 
in the AOM-treated  ob / ob  mutants. Thus, leptin appears to promote growth subse-
quent to tumor initiation. This conclusion is in agreement with studies by Fenton 
et al. who demonstrated that stimulation of a normal mouse IEC line (YAMC), 
which has two functional copies of  Apc , with leptin reduced epithelial cell prolifera-
tion and induced apoptosis [ 184 ]. In stark contrast, the pre-neoplastic mouse IEC 
line (IMCE), which was derived from mice harboring the  Apc   Min   mutation, exhibited 
increased proliferation and survival after leptin stimulation [ 184 ]. Thus, the infl u-
ence of leptin on IECs is likely to be dependent on preexisting genetic risk factors 
that already initiated tumorigenesis.  

7.7.2     Leptin and the Modulation of Epithelial Cell-Derived 
Infl ammation 

 In addition to promoting colon cancer proliferation, survival, and migration, the role 
of leptin in promoting proinfl ammatory responses in epithelial cells may signifi -
cantly contribute to CRC risk. In vitro leptin, through the activation of NF-κB-
mediated transcription, induced CRC cells to express several proinfl ammatory 
cytokines and chemokines, including IL-1β, which are associated with chronic 
intestinal infl ammation, innate immune cell infi ltration, and increased CRC risk 
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[ 5 ,  180 ]. As previously described in Sects.  7.6.2  and  7.6.5 , IL-1β can act directly on 
epithelial cells or indirectly through ISEMF to promote epithelial cell proliferation 
and neoplastic transformation. By contrast, leptin reduced CRC cell line expression 
of anti-infl ammatory cytokines, such as IL-10, that downregulate immune responses 
to gut microbes and reduced tumorigenesis (Sect.  7.5.1 ) [ 180 ]. Furthermore, Fenton 
et al. used their normal IEC line and preneoplastic IEC line to demonstrate that 
leptin induces IL-6 expression from precancerous but not normal epithelial cells 
[ 184 ]. These results are in agreement with the postulated role of IL-6 in inducing 
IEC and promoting CRC risk in individuals with IBDs (Sect.  7.6.2 ). Therefore, 
induction of IEC expression of IL-1β and IL-6 by leptin may be a shared mecha-
nism by which obesity and chronic infl ammation increase CRC susceptibility. 

 Leptin also induces the production of chemokines in epithelial cells, which may 
contribute to CRC incidence. Intraperitoneal injections of leptin induced the expres-
sion of the neutrophil chemoattractant CXCL1 in the mouse colonic epithelium 
[ 185 ]. Neutrophils express IL-1β, IL-6, and IL-8, which are associated with IBD 
and CRC susceptibility, and generate nitrogen and oxygen reactive species that 
induce DNA damage (Sect.  7.6.4 ) [ 141 ,  156 ]. Interestingly, CXCL1 and IL-8 are 
both potent angiogenic compounds that may promote tumor growth through vascu-
larization [ 186 ,  187 ]. Therefore, leptin may increase CRC risk by promoting neu-
trophil recruitment.  

7.7.3     Leptin and the Activation of Immune Cells 

 Similar to proinfl ammatory effects on IECs, leptin may induce intestinal tumorigen-
esis by directly activating and recruiting immune cells (Fig.  7.2 ). In humans, it has 
been suggested that reduced leptin levels are associated with impaired immune 
function [ 188 ]. Similarly, leptin-defi cient  ob / ob  mice are resistant to various experi-
mental models of infl ammation, which can be corrected by exogenous administra-
tion of leptin [ 189 – 191 ]. Conversely, increased leptin levels may be responsible for 
the altered T/B cell function, increased monocyte and granulocyte activity, and 
increased white blood cell counts observed in obese individuals with active leptin 
signaling [ 192 ]. The leptin receptor shares signifi cant similarity to members of the 
class I cytokine receptor (gp130), which includes the receptor for IL-6 [ 193 ]. In 
fact, Ob-R stimulates many of the same downstream signaling cascades (JAK/
STAT, PI3K/AKT, MAPK, and NF-κB) as IL-6, suggesting a potential function for 
leptin in regulating immune cell function [ 192 ,  194 ]. Importantly, Ob-R is expressed 
on the surface of several cell types involved in innate immunity [ 195 ]. 

 Studies of leptin- and leptin receptor-defi cient mice have revealed the effects of 
leptin on antigen-presenting cell (APC) function. Leptin signaling in macrophage 
induces activation, increases phagocytosis capacity, promotes proinfl ammatory 
cytokine production (e.g., IL-6, TNF-α, and granulocyte chemoattractants), and 
activates proliferation [ 192 ,  196 ,  197 ]. Leptin also increases the survival of den-
dritic cell (DC) and induce DC production of IL-8, IL-6, and TNF-α [ 156 ,  198 ,  199 ]. 

7 Infl ammation, Obesity, and Colon Cancer



166

Leptin also downregulates DC expression of anti-infl ammatory IL-10 [ 199 ]. On a 
functional level, leptin drives DC cells to promote cell-mediated immunity by 
inducing Th1 differentiation and enhancing Tc cell function [ 198 – 200 ]. 

 Leptin signaling also directly modulates adaptive immune cell function. Mouse 
and human lymphocytes express the leptin receptor [ 194 ,  201 ]. However, leptin 
alone cannot activate lymphocytes in vitro [ 202 ,  203 ]. However, leptin enhances 
proliferation, inhibits apoptosis, and promotes the activation of primed Th cells and 
Tc cells [ 204 ,  205 ]. Leptin appears to regulate T cell development at two stages. 
First, immature helper T cells from  ob / ob  mice showed impaired development of 
both Th1 cells and Th2 cells in vitro [ 206 ]. Second, evidence suggests that leptin 
drives helper T cell differentiation toward Th1 cells. In mice, leptin promotes Th1 
cytokine production [ 156 ,  201 ,  204 ]. 

 Importantly, leptin modulates many immune cell function and infl ammatory 
responses in the colon, which could have a profound infl uence on CRC risk. The 
leptin receptor is expressed by LPMNCs [ 207 ]. Intraperitoneal injections of leptin 
in mice induced APCs in the lamina propria to express IL-6, IL-1β, and TNF-α 
[ 185 ]. Together, these cytokines represent key infl ammatory mediators of IBD and 
increased CRC risk (Sects.  7.6.2  and  7.6.5 ). The infl uence of leptin on T cell func-
tion can also promote intestinal tumorigenesis. Using the OXA-induced mouse 
model of Th2-like UC, Batra et al. demonstrated that leptin-defi cient  ob / ob  mice are 
protected against colitis, which was attributed to a decrease in the production of the 
Th2 cytokine IL-13 in the lamina propria [ 206 ]. As discussed in Sect.  7.6.2 , the two 
Th2-related cytokine, IL-4 and IL-13, induce CRC cell survival, proliferation, and 
metastasis [ 120 – 123 ].   

7.8     Adiponectin: An Anti-infl ammatory Adipokine Associated 
with Reduced CRC Risk 

 Adiponectin (APN) circulates as a low molecular weight (LMW) trimer, a middle 
molecular weight (MMW) hexamer, and a high molecular weight (HMW) multimer 
of full-length (fAb) protein [ 208 ]. An additional truncated form of APN containing 
only a C-terminal globular domain (gAb) is produced by proteolytic cleavage and is 
also found in circulation [ 208 ,  209 ]. All circulating forms of APN are biologically 
active but have different target tissues and varying biological effects that are not 
well delineated [ 210 ,  211 ]. APN induces intracellular signaling through its interac-
tions with two receptors (ADIPOR1 and ADIPOR2). ADIPOR1 is predominately 
located in skeletal muscle whereas ADIPOR2 localizes to the liver [ 191 ]. APN 
regulates a variety of metabolic processes including glucose and fatty acid catabo-
lism and increases glucose uptake by stimulating the translocation of the GLUT4 
receptor to plasma membranes [ 191 ]. Binding of APN to its receptors activates a 
variety of cell signaling cascades involving ERK1/2 MAPKs, PI3-K/AKT, NF-κB, 
and JAK/STAT [ 209 ]. However, APN primarily exerts its effects through the activa-
tion of the    AMP-activated protein kinase (AMPK) signaling cascade [ 209 ]. 
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 Unlike most other adipose-derived factors, circulating APN levels are reduced in 
obese individuals and negatively correlate with BMI, waist circumference, and vis-
ceral fat mass [ 212 – 215 ]. Although the inverse relationship between circulating 
APN levels and obesity makes biological sense given its infl uence on metabolic 
functions in muscle and liver, chronically low levels of APN may have more far 
reaching physiological consequences. Both APN receptors are expressed in a vari-
ety of tissue including IECs and immune cells [ 209 ]. Importantly, epidemiological 
evidence suggests that CRC risk is inversely associated with circulating APN levels; 
men with the highest levels of APN had a 60 % reduced CRC risk after adjusting for 
body size, activity, and waist circumference [ 216 ]. Thus, the reduction in APN lev-
els associated with obesity appears to be an important factor in promoting CRC 
development. 

7.8.1     Adiponectin and Epithelial Cell Function 

 IECs express ADIPOR1 and ADIPOR2 in both mice and humans [ 166 ,  217 – 219 ]. 
Benign adenomas and malignant carcinomas in humans and adenomas in  Apc   Min /+  
mice also express APN receptors [ 209 ,  218 ,  219 ]. Thus, APN signaling has the 
potential to regulate both normal and neoplastic epithelial cell function (Fig.  7.2 ). 
Several in vitro studies have demonstrated that APN signaling restricts the prolif-
eration and survival of CRC cell lines. APN decreases proliferation and induces 
apoptosis in several CRC cell lines [ 220 – 224 ]. Importantly, the effect of APN on 
CRC cell line growth appeared to be predominately mediated by activation of 
AMPK signaling, which resulted in the inhibition of the tuberous sclerosis protein 
2/mammalian target of rapamycin/S6 kinase (TSC2/mTOR/S6 kinase) cell signal-
ing axis and repression of translation and cell growth [ 209 ,  220 ,  224 ,  225 ]. In addi-
tion, AMPK activated the G1/S cell cycle control checkpoint by promoting the 
expression of cell-dependent kinase inhibitors p21 and p27 and the G2/M cell cycle 
checkpoint by inducing p53 expression [ 220 ,  226 ]. Although most in vitro studies 
suggest an anti-proliferative and pro-apoptotic role for APN in cancer, the results of 
two studies imply that APN positively infl uences CRC cell line proliferation and 
survival [ 222 ,  226 ]. Interestingly, these contrasting responses appear to be depen-
dent on culture conditions. The pro-proliferative response to APN occurred in the 
presence of fetal bovine serum (FBS), and the pro-survival effect occurred in 
glucose- deprived medium [ 222 ,  226 ]. Therefore, the infl uence of APN on intestinal 
tumorigenesis may be dependent on the nutritional and hormonal content of the 
tumor microenvironment. 

 The preponderance of evidence from mouse models of CRC also suggests that 
APN signaling negatively regulates intestinal cancer development. Studies of  Apn - 
defi cient  mice harboring the  Apc   Min   mutation and  Apn -defi cient mice treated with 
AOM or DSS and dehydroheliotridine (DSS-DHH) demonstrated that  Apn  defi -
ciency increases cancer burden, which was associated with reduced AMPK activa-
tion, an increase in mTOR and S6 kinase activity, increased JAK/STAT and AKT 
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activity, and increased cell proliferation [ 222 ,  227 – 229 ]. Importantly, exogenous 
administration of APN to  Apc   Min /+  mutant mice suppressed intestinal tumorigenesis, 
providing clear evidence of the anti-tumorigenic properties of APN [ 219 ]. 
Interestingly, one study reported that  Apn  defi ciency reduced tumor burden in 
AOM-treated mice fed with a high-fat, but not a low-fat, diet [ 228 ]. As observed 
in vitro, the nutritional and hormonal milieu of the intestinal mucosa may determine 
the infl uence of APN on IEC growth.  

7.8.2     Adiponectin and the Modulation of Colonic Epithelial 
Cell-Derived Infl ammation 

 In addition to inhibiting colon cancer proliferation, survival, and migration, the 
regulation of infl ammatory responses in IECs by APN may contribute to CRC risk. 
However, unlike the clear proinfl ammatory infl uence of leptin on IECs, the 
 contribution of APN to infl ammation is less clear.    In one in vitro experiment, it was 
demonstrated that APN inhibits IL-8 production by LPS-stimulated colon cancer 
cells, suggesting that APN signaling has an anti-infl ammatory and anti-angiogenic 
effect on IECs [ 217 ]. In the mouse adenoma cell line IMCE, Fenton et al. 
 demonstrated that APN blocked the ability of leptin to induce IL-6 production 
[ 230 ]. Given the role of cytokines, in particular IL-6, in inducing IEC proliferation 
and promoting CRC risk, the anti-infl ammatory infl uence of APN on IECs may 
inhibit tumor development. However, other studies suggest that APN signaling has 
a proinfl ammatory effect on IECs. Ogunwobi and Beales demonstrated that APN 
induces CRC cell line expression and secretion of IL-8 and MCP-1 [ 222 ]. In agree-
ment with these fi ndings, APN induced colonic explants from DSS-treated mice to 
increase IL-6 and granulocyte chemoattractant CXCL2 production [ 231 ]. It is cur-
rently unclear as to why the reported infl ammatory effects of IECs are so variable. 
   Differences in cell culture conditions, such as the isoform of APN (full length or 
globular) used in the medium, may have infl uenced results. Therefore, future exper-
iments will need to delineate the effects of APN isoforms on IEC infl ammatory 
responses under different culture conditions.  

7.8.3     Adiponectin and the Activation of Immune Cells 

 In contrast to its ambiguous roles in regulating IEC infl ammatory responses, the 
infl uence of APN on immune cell function is undoubtedly immunosuppressive 
(Fig.  7.2 ) [ 217 ,  232 ,  233 ]. The ADIPOR1 and ADIPOR2 receptors are expressed on 
the majority of monocytes, many B cells and natural killer cells, and a small per-
centage of T cells [ 234 ]. Mice defi cient for  Apn  present with a heightened immune 
response in several infl ammatory disease models, including microbial sepsis, trans-
plant rejection, and DSS-induced colitis [ 217 ,  232 ,  233 ,  235 ]. In the DSS mouse 
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model of CD,  Apn  defi ciency causes a dramatic increase in the number of 
 macrophages that infi ltrate the affected colon, resulting in increased fi brosis, break-
down of the intestinal crypts, and destruction of the IEC barrier [ 217 ]. As discussed 
in Sect.  7.5 , breakdown of the IEC barrier allows commensal microbes to come into 
contact with LPMNCs, which induces infl ammation and increases CRC susceptibil-
ity. Importantly, the expression of several cytokines associated with the progression 
of IBD and CRC risk, including IL-1β, IL-6, and TNF-α, is higher in  Apn -defi cient 
mice treated with DSS [ 217 ]. Although the cell types producing these factors were 
not identifi ed in this study, these results clearly demonstrate that  Apn  expression 
within the intestine is immunosuppressive. 

 APN has immunosuppressive effects on APCs. Macrophages from  Apn -defi cient 
mice have increased production of IL-6, TNF-α, and MCP-1 and reduce expression 
of anti-infl ammatory IL-10 [ 236 – 239 ]. In agreement with these fi ndings, several 
additional studies have shown that APN induces anti-infl ammatory IL-10 produc-
tion and inhibits LPS activation of phagocytosis and production of chemoattractants 
by macrophages [ 236 – 243 ]. A limited number of studies have identifi ed subtle 
infl uences of APN on cell types associated with adaptive immunity. In one study, 
APN was shown to negatively regulate antigen-activated CD8+ T cell function by 
reducing INF-γ, TNF-α, and IL-2 production and to promote T cell apoptosis [ 244 ]. 
Supporting these fi ndings, T cells from     Apn -defi cient mice have an increased capac-
ity for activation and expansion [ 244 ]. 

 Obesity is associated with lower circulating levels of APN, which may contrib-
ute to chronic infl ammatory and increased CRC susceptibility in individuals geneti-
cally predisposed to tumor development. This model is supported by a study of 
DSS-DHH-treated,  Apn  knockout mice [ 227 ]. Both tumor number and size increased 
in  Apn  knockout mice exposed to DSS-DHH when compared to wild-type controls 
treated with DSS-DHH. Importantly, in  Apn -defi cient mice, DSS-DHH increased 
expression of several proinfl ammatory and tumorigenic cytokines, including IL-6, 
TNF-α, IL-1β, and COX-2, and decreased expression of anti-infl ammatory and 
tumor suppressing IL-10 in the intestinal mucosa. Therefore, reduced APN levels 
are likely to increase CRC risk through the dysregulation of infl ammatory responses 
in the gastrointestinal tract.   

7.9     CRC Prevention and Therapeutics: Targeting 
Infl ammation 

 Although the link between infl ammation and CRC risk is well established, this 
knowledge is just now being translated to the clinic. Results from initial studies 
using anti-infl ammatory agents as a component of CRC treatment are promising. 
Intestinal infl ammation plays an important role in CRC risk and progression. 
Nonsteroidal anti-infl ammatory drugs (NSAIDs) such as aspirin and sulindac, 
which inhibit COX-2 production of PGE2, are currently being used to treat CRC 
or prevent cancer relapse in CRC patients [ 245 – 247 ]. Additionally, several 
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anti- infl ammatory reagents targeting TNF-α, IL-6, IL-12/23, IL-2, and IL-17 have 
been shown to be e ffective in treating IBD patients or individuals with autoimmune 
disorders [ 5 ,  248 ,  249 ]. These same cytokine targets play central roles in mediating 
CRC progression and, therefore, may prove to be effective targets for anticancer 
 treatment. However, the immune system possesses antitumor activity, and it will be 
important to select anti-infl ammatory treatment options that block tumor-promoting 
infl ammation without reducing antitumor immune responses. In addition to 
 pharmacological interventions, modulation of the diet might prove as equally  effective 
at reducing intestinal infl ammation and CRC risk. High-fat diets increase intestinal 
infl ammation and CRC risk. Importantly, several other dietary  components, including 
carbohydrates, unsaturated n-3 fatty acids, vitamins, minerals, and phytochemicals 
(e.g., resveratrol), have been shown to reduce CRC susceptibility [ 250 ]. Although the 
molecular mechanisms by which these dietary factors reduce cancer risk are not well 
established, there is evidence to suggest that reduced intestinal infl ammation plays an 
important role [ 5 ,  251 ]. Therefore, when used with existing chemotherapy and radio-
therapy, agents or lifestyle changes that reduce intestinal infl ammation may improve 
treatment outcomes and reduce tumor relapse in CRC patients.     
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    Abstract     Obesity, which is rising in incidence worldwide, is important with regard 
to the treatment of breast cancer, disease progression, and carcinogenesis. Obesity 
is a risk factor for the development of hormone receptor-positive breast cancer in 
postmenopausal women and is associated with reduced benefi ts from treatment. 
Furthermore, irrespective of breast cancer subtype, obesity is associated with worse 
outcomes after diagnosis. There is increasing evidence of specifi c biological under-
pinnings for these observations, including higher circulating estrogen levels, insulin 
resistance, altered levels of adipokines, and the consequences of chronic in-breast 
infl ammation. Increasing adiposity also has important implications for local therapy 
including surgery and radiotherapy. This chapter reviews the complex interactions 
between obesity and breast cancer.  
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   AMPK    5′-Adenosine monophosphate-activated protein kinase   
  BCSS    Breast cancer-specifi c survival   
  BMI    Body mass index   
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  DFS    Disease-free survival   
  ER    Estrogen receptor   
  FFA    Free fatty acid   
  HER2    Human epidermal growth factor receptor-2   
  HR    Hazard ratio   
  hsCRP    High-sensitivity C-reactive protein   
  IGF-1    Insulin-like growth factor-1   
  IL-1α    Interleukin-1α
IL-1β Interleukin-1β   
  IL-6    Interleukin-6   
  NSAID    Nonsteroidal anti-infl ammatory drug   
  OR    Odds ratio   
  OS    Overall survival   
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   Prostaglandin E

 2    

  PPAR-γ    Peroxisome proliferator-activated receptor-γ   
  PR    Progesterone receptor   
  RR    Relative risk   
  SERM    Selective estrogen receptor modulator   
  SHBG    Sex hormone-binding globulin   
  TLR-2    Toll-like receptor-2   
  TLR-4    Toll-like receptor-4   
  TNF-α    Tumor necrosis factor-α   
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8.1           Introduction 

 Worldwide, the incidence of overweight and obesity are increasing. One widely 
used metric of adiposity is the body mass index (BMI), calculated using the formula 
[(weight in kilograms)/(height in meters) 2 ]. This is a continuous variable but can be 
divided into categories. According to this scale, underweight is defi ned as BMI less 
than 18.5 kg/m 2 , normal as 18.5–24.9 kg/m 2 , overweight as BMI 25.0–29.9 kg/m 2 , 
and obese as BMI 30 kg/m 2  or greater. Almost 1.5 billion adults in the world are 
overweight (BMI ≥ 25 kg/m 2 ), and more than 500 million of these are obese 
(BMI ≥ 30 kg/m 2 ) [ 1 ,  2 ]. In the United States, the majority (>60 %) of adults are 
overweight, and obesity rates are increasing [ 1 ,  2 ]. Recent projections estimate that 
as much as 65 % of the US population in several states may be obese by 2030 [ 3 ]. 

 Obesity has a range of clinical consequences and is a risk factor for the develop-
ment of several epithelial malignancies, including estrogen receptor (ER)- and pro-
gesterone receptor (PR)-positive (“hormone sensitive”) breast cancer in 
postmenopausal women, the most common presentation of the disease [ 4 – 8 ]. 
Obesity and overweight present a number of challenges for the management of 
breast cancer, including potential limitations on diagnostic imaging, as well as 
changes in local and systemic therapeutic options. In addition, obesity is a negative 
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prognostic variable irrespective of breast cancer subtype. In this chapter, we discuss 
the complex interactions between obesity and breast cancer in terms of epidemiol-
ogy, biology, and treatment.  

8.2     Epidemiology of Obesity and Breast Cancer 

 In epidemiologic studies, obesity has been linked to several subtypes of breast can-
cer. This is most consistently seen with regard to the most common presentation of 
breast cancer, hormone-sensitive (ER and/or PR positive) disease in postmeno-
pausal women [ 4 – 10 ]. In a pooled analysis of eight prospective studies including 
over 2,000 women, the relative risk (RR) of developing breast cancer in postmeno-
pausal females associated with each 5 kg/m 2  increase in BMI was 1.19 (95 % con-
fi dence interval [CI], 1.05–1.34) [ 8 ]. A similar effect was also observed in a larger 
pooled analysis of several prospective cohort studies including over 300,000 women 
in which the RR of developing breast cancer was 1.43 (95 % CI, 1.21–1.67) specifi -
cally in overweight postmenopausal women with BMI 27–29 kg/m 2  compared to 
those who were leaner (<21 kg/m 2  ) (Table  8.1 ) [ 6 ].

   Normally, following menopause, circulating estradiol levels decline rapidly as 
the ovaries no longer produce appreciable amounts of estrogen. Instead, lower lev-
els of estrogen are produced noncyclically from androgen precursors peripherally, 
primarily in the adipose tissue [ 11 ]. The critical step in this process is catalyzed by 
the enzyme aromatase, a cytochrome P450 enzyme encoded by the  CYP19  gene. 
Although ER-positive breast cancer makes up the largest proportion of the disease 
in all ages, the incidence of this subtype increases with age [ 12 ]. For example, in a 

   Table 8.1    Selected epidemiologic studies reporting signifi cant association between overweight/
obesity and the development of breast cancer in postmenopausal women   

 References  Subjects  Number 

 BMI in 
“normal” 
category 
(kg/m 2 ) 

 BMI in 
“overweight 
and obese” 
category 
(kg/m 2 ) 

 Magnitude 
of effect 

 95 % 
confi dence 
interval   P  value 

 Trentham- 
Dietz 
et al. [ 7 ] 

 Case
Control 

 6,548  12.9–21.2  27.6–57.1  1.41 a   1.25–1.60  <0.001 
 9,057 

 Van den 
Brandt 
et al. [ 6 ] 

 Cohort
 (pooled) 

 337,819  <21  27 to <29  1.43 b   1.21–1.67  0.001 

 Key et al. 
[ 8 ] 

 Case
Control
 (pooled) 

 624  <22.5  ≥30  1.36 b   1.00–1.85  0.004 
 1,669 

 La Vecchia 
et al. 
[ 10 ] 

 Case
Control
 (pooled) 

 3,108  <21.8  >28.4  1.4 a   1.2–1.7  <0.001 
 2,664 

   a Odds ratio 
  b Relative risk  
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population-based study in the United States, approximately 55 % of breast cancer in 
women in their 20s was ER positive, rising to almost 85 % in women in their 80s 
[ 12 ]. This leads to a paradox, whereby ER-positive breast cancer incidence increases 
with age despite the falling circulating levels of estrogen. Increasing adiposity with 
advancing age has been suggested as one of the underlying mechanisms to explain 
this phenomenon, but the specifi cs of this effect are not fully elucidated.  

8.3     Obesity and Breast Carcinogenesis 

 Although the mechanisms remain incompletely understood, the link between obe-
sity and ER-positive breast cancer in postmenopausal women is thought to be par-
tially due to two related factors: increased adipose tissue and elevated aromatase 
expression in adipose tissue [ 8 ,  13 ]. Given that the incidence of ER-positive breast 
cancer increases with age as discussed above, it is not surprising that the majority of 
postmenopausal breast cancers associated with obesity are ER positive [ 4 ,  5 ]. In 
obesity, growth of hormone-sensitive tumors within the breast is dependent on 
locally produced estrogens and, possibly, ligand-independent activation of estrogen 
receptor-α or other paracrine-mediated effects that may drive carcinogenesis. If, as 
noted, peripheral aromatization in adipose tissue is thought to be largely responsible 
for estrogen production after menopause, the question remains: where do the estro-
gens that drive breast cancer in this age group arise? [ 11 ]. If they are produced 
locally, this has important implications for breast carcinogenesis as estrogens can 
have stimulatory effects on cell growth within the breast but also have genotoxic 
effects and stimulate angiogenesis (Fig.  8.1 ). These actions suggest a broader poten-
tial role for estrogen than merely stimulating ER in hormone-sensitive breast tumors.

   Additional clinical observations suggest other linkages between obesity and 
breast carcinogenesis. In premenopausal women, BMI > 30 kg/m 2  has also been 
associated with an increased risk of hormone receptor-negative breast cancers 
[ 14 ,  15 ]. This association could be related to estrogen-independent pathways such 
as obesity-associated altered glucose metabolism and increased levels of insulin and 
bioavailable insulin-like growth factor-1 (IGF-1) (Fig.  8.1 ). Furthermore, increased 
leptin and decreased adiponectin can lead to altered cellular proliferation and sur-
vival. Finally, obesity is now recognized to be a systemic infl ammatory condition 
with known associations with elevated proinfl ammatory mediators that promote 
tumorigenesis and growth [ 5 ,  16 ,  17 ]. This complex biological interaction between 
obesity and breast cancer is reviewed in greater detail below. 

8.3.1     Dysfunctional Adipose Tissue and Metabolism 

 Although perhaps not conventionally considered as such, adipose tissue is an active 
endocrine organ. Adipocytes secrete a variety of factors, known as adipokines, 
including leptin and adiponectin—which are known to have angiogenic properties—
as well as several growth factors [ 18 ]. 

N.M. Iyengar et al.



185

8.3.1.1     Adiponectin 

 Metabolic conditions, such as obesity, that alter adipose stores modify adipokine 
production. Increased adiposity is associated with enlarged adipocytes [ 5 ] and the 
enhanced production of chemotactic factors that attract myeloid cells such as mac-
rophages into adipose tissue [ 19 ]. This promotes an infl ammatory cascade leading to 
decreased production of adiponectin, release of free fatty acids (FFAs), and the 
development of insulin resistance, characterized, clinically, by hyperinsulinemia 
[ 20 ]. Decreased levels of adiponectin, an adipocyte-secreted hormone, are associ-
ated with hyperinsulinemic states including obesity and type II diabetes mellitus 
[ 21 ]. Furthermore, decreased adiponectin levels have been associated with increas-
ing breast cancer risk [ 22 ]. The mechanism underlying this relationship is not com-
pletely understood but adiponectin has been shown to inhibit the growth of several 
breast cancer cell lines in vitro [ 23 ]. Additionally, adiponectin activates the 
5′- adenosine monophosphate-activated protein kinase (AMPK) pathway leading to 
upregulation of p53 and p21, important regulators of the cell cycle and apoptosis [ 5 ]. 
Other signaling pathways downstream of the adiponectin receptors, AdipoR1 and 
AdipoR2, have been implicated in breast cancer cell growth including regulation of 
aromatase expression, and the PTEN/PI3K/mTOR and MAPK pathways [ 24 ].  

Obesity

Estrogen Synthesis Insulin Resistance

Insulin, IGF-1

Altered Adipokine and
Cytokine Production

Adipocytes Macrophages

Adiponectin
Leptin

IL-6, IL-1b
TNFaEstradiol

Plasma
SHBG

Estradiol Bioavailability VEGF Induction

Angiogenesis Cell Proliferation Cell Survival

Breast Cancer Cell

  Fig. 8.1    Relationship between obesity and promotion of breast cancer.  IGF-1  insulin-like growth 
factor-1;  IL-6  interleukin-6;  IL-1β  interleukin-1β;  TNF-α  tumor necrosis factor-α;  SHBG  sex 
hormone- binding globulin;  VEGF  vascular endothelial growth factor (Sinicrope F et al.: J Clin 
Oncol Vol. 72(9), 2010:4–7. Reprinted with permission. © 2010 American Society of Clinical 
Oncology. All rights reserved)       
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8.3.1.2     Leptin 

 Elevated leptin levels have also been associated with increased risk of breast cancer 
development and progression [ 25 ,  26 ]. Leptin is known to stimulate breast tumor cell 
proliferation via several different signaling pathways including PI3K/Akt, MAPK, and 
STAT3 [ 24 ]. Additionally, leptin acts via alteration of cell cycle checkpoints to pro-
mote proliferation via upregulation of the cdk2 and cyclin D1 genes that advance cells 
from G1 to S phase [ 27 ]. Caldefi e-Chezet et al. have demonstrated that leptin is not 
found in normal breast tissue, whereas it is expressed in the healthy tissue surrounding 
malignant ductal lesions [ 28 ]. Furthermore, these same investigators demonstrated that 
the leptin receptor, Ob-R, is co-expressed with leptin in human breast cancer tissue 
[ 25 ]. Interestingly, Ob-R expression by the breast carcinoma was positively correlated 
with expression of the estrogen receptor ( p  = 0.028) and tumor size ( p  = 0.045). 
Consistent fi ndings were reported in several other studies [ 29 ,  30 ]. Therefore, leptin 
exerts both paracrine and autocrine effects on breast carcinoma growth.  

8.3.1.3     Insulin Resistance and IGF-1 

 Obesity is associated with insulin resistance characterized by elevated plasma levels 
of insulin and IGF-1. The development of insulin resistance is complex and has 
been implicated, in part, in the relationship between obesity and breast cancer. In a 
cohort of over 500 women with early-stage breast cancer, elevated fasting insulin 
was found to be associated with distant breast cancer recurrence (hazard ratio [HR] 
2.0; 95 % CI, 1.2–3.3) and death (HR 3.1; 95 % CI, 1.7–5.7) [ 31 ]. Additionally, 
insulin level was correlated with BMI ( p  < 0.001). Insulin has important mitogenic 
effects on breast cancer cells that have not yet been completely elucidated. Binding 
of insulin and IGF-1 to their respective receptors promotes cell proliferation and 
inhibits apoptosis via downstream signaling effects of the PI3K/Akt and Ras/Raf/
MAPK systems [ 32 ]. Interestingly, IGF-1 has been found to be expressed at higher 
levels in ER-positive tumors than in cancers that do not express the estrogen recep-
tor [ 33 ]. Additionally, IGF-1 and insulin, to a lesser degree, have been shown to 
stimulate aromatase activity in adipose tissue [ 34 ]. Beyond this paracrine- mediated 
effect on aromatase, increased serum insulin levels can stimulate androgen synthe-
sis by the ovaries and reduce hepatic synthesis of sex hormone- binding globulin 
(SHBG) [ 5 ]. As suggested by the name, SHBG is a protein synthesized in the liver 
that tightly binds testosterone, dihydrotestosterone, and estradiol and transports 
these hormones in the blood in a biologically inactive state. Changes in SHBG lev-
els affect the amount of hormone available to cells that carry the respective recep-
tors. In a sample of over 1,000 postmenopausal women randomly selected from the 
Melbourne Collaborative Cohort Study, BMI was positively correlated with 
increased levels of plasma estradiol and associated with decreased SHBG plasma 
concentrations [ 35 ]. Therefore, IGF-1 and insulin, which are increased in obese 
patients, are involved in multiple complex systems that are associated with breast 
carcinogenesis and tumor progression.   

N.M. Iyengar et al.



187

8.3.2     Obesity and Infl ammation 

 A primary function of white adipose tissue is to store energy as lipid. Excess 
 adipose tissue is associated with elevated serum triglyceride levels. Increased adi-
posity is accompanied by adipocyte hyperplasia and hypertrophy, which in turn 
lead to adipocyte stretch and death. Indeed, increasing BMI has been correlated 
with adipocyte hypertrophy in the breast [ 36 ]. It is well known that obesity is asso-
ciated with chronic, subclinical infl ammation [ 5 ,  17 ,  37 – 39 ]. There is evidence that 
adipocyte hypertrophy leads to cell wall stretch, and subsequently, the adipocyte 
releases several proinfl ammatory cytokine mediators, including tumor necrosis 
factor-α (TNF-α) and interleukin-6 (IL-6). This attracts and activates immune cells 
including macrophages [ 40 ]. Additionally, lipolysis occurs within the stretched 
adipocytes resulting in release of FFAs that stimulate multiple infl ammatory path-
ways in the activated immune cells including activation of the transcription factor 
NF-κB [ 41 ]. Activation of NF-κB, a contributor to infl amed adipose tissue, is medi-
ated by Toll- like receptor-4 (TLR-4) [ 42 ]. 

 The interactions between adipocytes and immune cells in the stromal vascular 
fraction of adipose tissue are complex and incompletely understood. Dead and 
dying adipocytes, described above, interact with macrophages and stimulate pro-
duction of several proinfl ammatory cytokines including TNF-α, interleukin-1β 
(IL- 1β), and IL-6 [ 17 ,  38 ]. Increased circulating levels of these cytokines are com-
monly found in obese women and have been associated with breast cancer develop-
ment and progression [ 43 – 45 ]. In addition, FFAs are believed to activate 
macrophages residing in the adipose tissue via a series of receptors including Toll-
like receptor 2 (TLR-2) and TLR-4 [ 46 ]. Furthermore, macrophage-adipocyte asso-
ciations are histologically apparent as crown-like structures (CLS) in which 
macrophages encircle the dead adipocyte [ 47 ]. These CLS have been observed in 
the mammary gland adipose tissue of obese mice, and their presence has been asso-
ciated with NF-κB-induced production of several proinfl ammatory mediators 
including TNF-α, IL-1β, and Cox-2 [ 48 ]. In both dietary and genetic mouse models 
of obesity, the number of CLS has been positively correlated with body weight, in 
addition to tissue levels of proinfl ammatory mediators. Importantly, the presence of 
CLS was associated with increased aromatase levels and activity. These fi ndings 
have been translated to the human, and CLS of the human breast (CLS-B) have been 
recently described (Fig.  8.2 ) [ 36 ,  49 ]. The severity of breast infl ammation, mani-
fested as the CLS-B index (proportion of slides with histological evidence of 
CLS-B), correlated with increasing BMI. Consistent with the mouse models, the 
presence of CLS-B was associated with activation of NF-κB, and increased levels of 
proinfl ammatory mediators including TNF-α, IL-1β, COX-2, and COX-2 derived 
prostaglandin E 

2
  (PGE 

2
 ). Also mirroring the preclinical fi ndings, the presence of 

CLS-B and elevated tissue levels of these proinfl ammatory cytokines paralleled 
increased transcription of the  CYP19  gene encoding aromatase, leading to elevated 
aromatase levels and activity [ 50 ]. One of the key consequences of this infl amma-
tory pathway was increased expression of the progesterone receptor (PR). Notably, 
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the extent of CLS-B had a stronger correlation than BMI with aromatase activity, 
implicating infl ammation specifi cally, rather than obesity alone, as the key inducer 
of aromatase in the breast. These fi ndings demonstrate an obesity-infl ammation-
aromatase axis that occurs in the female breast and provide a mechanistic link 
between obesity and the increased risk of ER-positive breast cancer in 

  Fig. 8.2    Crown-like structure in human breast adipose tissue (CLS-B). ( a ) Hematoxylin and eosin 
stain. ( b ) Anti-CD68 immunostain identifi es macrophages (reprinted from Morris P et al.: Cancer 
Prev Res Vol. 4(7), 2011:1021–9)       
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postmenopausal women (Fig.  8.3 ). In addition, since many of these same proinfl am-
matory mediators have been linked to worse outcome after breast cancer diagnosis, 
these fi ndings might offer insights into the mechanism underlying this phenomenon 
(discussed below).

8.3.3         Estrogen 

 As noted, after menopause, the ovaries are no longer very active in hormone biosyn-
thesis, and peripheral aromatization of adrenal-produced androgens in adipose tis-
sue is largely responsible for estrogen production [ 11 ]. In the Health, Eating, 
Activity and Lifestyle (HEAL) study, which included 505 postmenopausal women 
with early-stage breast cancer, circulating estradiol levels were found to be 130 % 
higher in obese women compared to women with BMI < 22 ( p  = 0.002) [ 51 ]. As 
discussed above, in addition to increased adipose mass, obesity-related infl amma-
tory factors appear to induce aromatase in adipose tissue contributing to increased 
estrogen production. Transcriptional regulation of aromatase expression is com-
plex. Tissue-specifi c promoters within the  CYP19  gene give rise to unique mRNA 
species which are translated to the same aromatase enzyme [ 52 ]. Each of these 
promoters is regulated by distinct signaling patterns, and increased activation of 
promoters I.3, II, and I.7 is observed in breast cancer in contrast to mRNA derived 
from promoter I.4 in normal breast tissue [ 53 ]. Several infl ammatory mediators, 

  Fig. 8.3    Paracrine interactions between macrophages and other cell types establish an obesity-
infl ammation-aromatase axis in breast tissue of obese women and mice. TNF-α tumor necrosis 
factor-α; IL-1β interleukin-1β; PGE2 prostaglandin E2       
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including TNF-α, IL-6, and PGE 
2
 , upregulate aromatase expression via specifi c 

 promotor regions [ 50 ,  54 ]. Collectively, these observations offer critical insights 
into the mechanisms linking increased adiposity and breast carcinogenesis.   

8.4     Clinical Implications 

8.4.1     Obesity and Breast Cancer Stage 

 At the time of breast cancer diagnosis, obesity has been associated with more 
advanced stage of disease, manifested both by larger primary tumor size and greater 
propensity for involved lymph nodes [ 55 – 58 ]. In a study of nearly 1,000 women 
with newly diagnosed breast cancer, compared to underweight/normal weight 
women, those with BMI of 27.3 or greater were 1.5 times more likely to have stage 
II or beyond disease at diagnosis, characterized by tumors greater than 2 cm in 
maximum diameter, and/or those in which cancer has spread to axillary lymph 
nodes [ 58 ]. In a retrospective review of 88,346 consecutive screening mammo-
grams, tumor size was found to be progressively larger with increasing adiposity. 
Mean tumor diameter was 11 mm in the lowest-weight cohort, compared with 
19 mm in the heaviest-weight cohort ( p  < 0.02) [ 59 ]. Given the fact that obesity is a 
risk factor for the development of breast cancer, as expected, increasing body weight 
was also associated with an increased cancer detection rate. Finally, obesity has also 
been associated greater incidence of lymph node involvement at the time of diagno-
sis [ 55 – 57 ]. Consistent with this observation, in the study by Hunt et al., the propor-
tion of patients with stage II disease or higher at diagnosis increased with increasing 
weight ( p  = 0.046) [ 59 ]. Collectively, these fi ndings highlight the challenges in diag-
nostic imaging in obese and overweight women.  

8.4.2     Challenges with Diagnostic Imaging 

 Increasing BMI presents a series of challenges for the diagnosis and treatment of 
breast cancer. In the developed world, most breast cancers are diagnosed at an early, 
and potentially curable, stage. Improvements in the early detection of breast cancer, 
leading to a decline in breast cancer mortality, have occurred partially as a result of 
screening mammography [ 60 ,  61 ]. This technique relies on 2-dimensional X-ray 
technology to detect calcifi cations or architectural distortion associated with prein-
vasive and small breast tumors, which may not otherwise be detectable by clinical 
examination. Obesity is associated with higher mammographic false-positive rates, 
which may result in unnecessary distress for patients and additional biopsies and 
other interventions. It has been suggested that greater amounts of adipose tissue 
within the breast of obese women interfere with the radiologist’s interpretation of 
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mammograms. The largest study to date to examine the diagnostic performance of 
mammography reported more than a 20 % increased risk of false-positive fi ndings 
in obese women compared with normal and underweight women [ 62 ]. In the study 
by Hunt et al., discussed above, increasing body weight was associated with 
increased biopsy and recall rates (the proportion of women undergoing screening 
who have to return for further assessment due to suspicious fi ndings) [ 59 ].  

8.4.3     Obesity and Breast Cancer Prognosis 

 In addition to being a risk factor for breast carcinogenesis and being associated with 
higher stage at diagnosis, obesity is a poor prognostic factor after breast cancer 
diagnosis [ 9 ,  13 ,  63 – 67 ]. This effect appears to be independent of both menopausal 
status and of tumor subtype [ 9 ,  63 ,  65 – 67 ]. Furthermore, this association cannot 
simply be explained by the observation that obese women are more likely to present 
with higher-stage disease at diagnosis as obesity has been shown to be indepen-
dently associated with an increased risk of developing distant metastases and breast 
cancer-specifi c mortality [ 68 ]. 

 Seminal observations from key studies are discussed below (Table  8.2 ). In a 
study of 3,924 younger women, age 20–54, Whiteman et al. report a signifi cantly 
higher likelihood of breast cancer-related death in obese women [ 63 ]. At a median 
follow-up of 14.6 years, women with BMI ≥ 30 kg/m 2  were more likely to die from 
breast cancer than lean women (HR 1.34; 95 % CI, 1.09–1.65) [ 63 ]. The inclusion 
of younger women in this study suggests that obesity has broad implications for 
breast cancer prognosis, irrespective of other factors. Similar results linking obesity 
to adverse outcomes were seen in the largest cohort study published to date [ 9 ]. In 
this study of nearly half a million women, elevated BMI was associated with 
increased death rates for all cancers combined as well as for individual tumors 
including breast cancer [ 9 ]. Importantly, Calle et al. report an RR of death from 
breast cancer in overweight (BMI 25.0–29.9 kg/m 2 ) and extremely obese women 
(BMI 35–39.9 kg/m 2 ) of 1.34 (95 % CI, 1.23–1.46) and 1.70 (95 % CI, 1.33–2.17), 
respectively, compared to lean individuals ( p  < 0.001). This rigorous analysis pro-
vides the evidence in detail that increasing BMI is associated with breast cancer- 
specifi c mortality, as opposed to increased death from other obesity-related illnesses 
such as cardiovascular disease. Second, this important study shows clear evidence 
of a dose–response effect for increasing BMI on mortality.

   In a large retrospective study from the Danish Breast Cancer Cooperative Group 
database of 53,816 patients, BMI data were available for 18,967 patients. As 
expected, obese patients (BMI ≥ 30 kg/m 2 ) were more likely to have high-risk dis-
ease at the time of breast cancer diagnosis (including larger primary tumors of 
higher grade and more positive lymph nodes) as compared to women with 
BMI < 25 kg/m 2 . After 10 years, the risk of developing distant metastases was sig-
nifi cantly increased by 46 % for patients with BMI > 25 kg/m 2  when compared to 
women with BMI < 25 kg/m 2  (HR 1.46; 95 % CI, 1.11–1.92;  p  = 0.007) [ 68 ]. In a 
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multivariate analysis adjusted for stage at presentation, obesity emerged as an inde-
pendent predictor of distant recurrence. At 3 years of follow-up, risk of distant 
metastases began to show a clear trend of increasing risk with increasing BMI. At 
10 years, the cumulative incidence of distant metastases for patients with a BMI of 
30 kg/m 2  or more was 24.3 % (95 % CI, 22.1–26.5 %) compared to 20.1 % in 
patients with a BMI less than 25 kg/m 2  (95 % CI, 19.2–20.9 %). Strikingly, at 30 
years of follow-up, the cumulative risks of breast cancer-related death were 57.2 % 
for patients with BMI of 30 kg/m 2  or more (95 % CI, 51.8–62.2 %) compared with 
46.4 % for patients with BMI less than 25 kg/m 2  (95 % CI, 44.8–48.0 %). For over-
weight women with a BMI of 25–29 kg/m 2 , mortality was also higher compared to 
women with BMI less than 25 kg/m 2  with a 53.4 % (95 % CI, 50.5–56.2 %) cumula-
tive incidence of cancer-related death at 30 years follow-up. Overall the risk of 
dying as a result of breast cancer after 10 years was signifi cantly increased for obese 
women compared with women with a BMI of less than 25 kg/m 2  (HR 1.38; 95 % 
CI, 1.11–1.71). Notably, the risk of dying as a result of other causes not related to 
breast cancer was also increased after 10 years in obese patients (HR 1.31; 95 % CI, 
1.05–1.63). 

 These fi ndings are consistent with several other population studies. In a French 
population of over 14,000 patients who were prospectively followed after early- stage 
breast cancer diagnosis, more advanced tumor at the time of diagnosis was associated 
with BMI over 30 kg/m 2  [ 65 ]. Additionally, obesity was associated with higher rates 
of distant relapse (HR 1.32; 95 % CI, 1.19–1.48), shorter disease-free interval (HR 
1.20; 95 % CI, 1.08–1.32), and shorter OS (HR 1.43; 95 % CI, 1.28–1.60). The 
International Breast Cancer Study Group reported similar fi ndings in over 6,000 
patients with a median follow-up time of 14 years [ 69 ]. Women with BMI of 30 kg/
m 2  or greater had a 10 % higher risk of distant relapse ( p  = 0.04) and 14 % higher risk 
of death ( p  < 0.01) when compared to women with normal BMI. Obesity was associ-
ated with worse 10-year disease-free survival (DFS) (HR 1.17; 95 % CI, 1.07–1.28; 
 p  < 0.01) and OS rates (HR 1.25; 95 % CI, 1.13–1.38;  p  < 0.01) when compared to 
women of normal weight. Additionally, elevated BMI was associated with more 
advanced tumor at the time of breast cancer diagnosis (specifi cally tumor size of 
2 cm or greater), as well as greater incidence of lymph node involvement. Furthermore, 
Daling et al. report an association between larger tumors in obese women and higher 
tumor proliferation rate, characterized by the Ki-67 proliferative index [ 14 ]. In this 
population-based study of just over 1,000 women with breast cancer identifi ed from 
the Cancer Surveillance System of the Surveillance, Epidemiology and End Results 
(SEER) cancer registry, the heaviest quartile of women (BMI of 25.8 kg/m 2  or 
greater) were 2.5 times more likely to succumb to breast cancer-related death than 
women in the lowest quartile of BMI (20.6 kg/m 2  or less) (95 % CI, 1.6–3.9). Women 
in the heaviest quartile presented with larger tumor size (2 to less than 5 cm odds ratio 
(OR) 2.2; 95 % CI, 1.5–3.1, and 5 cm or greater OR 2.7; 95 % CI, 1.5–4.8). The 
authors suggest that this may be related to faster growing tumors in heavier women. 
Compared to the lowest quartile of body weight, tumors 2 cm or larger in the obese 
women were more likely to have a Ki-67 proliferative index of 25 % or greater (OR 
1.9; 95 % CI, 1.1–3.3) and a high mitotic rate (OR 1.6; 95 % CI, 0.9–3.1). Notably, 
lymph node status did not vary by BMI in this study.  
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8.4.4     Impact of Weight Change After Breast Cancer Diagnosis 

 In addition to the negative effect of pre-morbid obesity on cancer-specifi c mortality, 
weight change after breast cancer diagnosis may also have prognostic signifi cance 
[ 70 – 72 ]. Consistent with other reports, in a study of 5,042 patients identifi ed through 
the population-based Shanghai Cancer Registry, women who were obese 1 year 
prior to cancer diagnosis in this study had 1.6 times higher total mortality than 
women with a normal BMI. As expected, shorter OS and DFS associated with obe-
sity was independent of hormone receptor status. Critically, women who gained 
5 kg (approximately 10 lb) or more within 18 months of breast cancer diagnosis had 
higher breast cancer-specifi c (HR 1.90; 95 % CI, 1.23–2.93) and total mortality (HR 
1.71; 95 % CI, 1.12–2.60) rates compared with women who maintained their weight 
within 1 kg (approximately 2 lb). Similar results were seen in the Nurses’ Health 
Study, which included 5,204 patients diagnosed with non-metastatic breast cancer 
at the time of accrual. In this study, nonsmoking women whose BMI increased more 
than 2.0 kg/m 2  (approximately 11 lb for a woman of an average height of 64 in.) 
during a median follow-up time of 9 years after diagnosis had an elevated risk of 
death as a result of breast cancer compared with women whose weight remained 
stable (RR 1.64; 95 % CI, 1.07–2.51) [ 72 ]. Critically, this association was particu-
larly accentuated in premenopausal vs. postmenopausal women. Weight gain after 
diagnosis was also associated with worse outcomes in premenopausal women 
undergoing treatment for early breast cancer in a study by Camoriano et al. [ 71 ]. In 
this study of 646 women with node-positive disease, patients who received adjuvant 
chemotherapy gained more weight compared to those who did not [ 71 ]. Among 
women treated with chemotherapy, weight change at 60 weeks was greater for 
women who were premenopausal (median gain 5.9 kg) than postmenopausal 
(median gain 3.6 kg) ( p  < 0.001). Among premenopausal women treated with che-
motherapy, those who surpassed the median weight gain at 60 weeks had a 1.5 times 
higher risk of distant relapse (covariate  p  = 0.17) and 1.6 times greater risk of death 
(covariate  p  = 0.04) at median follow-up of 6.6 years. In addition, similar trends in 
increased relapse and shorter OS were seen in postmenopausal women, although 
these results did not reach statistical signifi cance. Conversely, a stronger association 
between weight gain and poorer outcomes by menopausal status was not observed 
in the Shanghai study [ 70 ]. Although defi nitive conclusions from these studies are 
limited by their design, these fi ndings collectively suggest that weight gain in the 
fi rst year after breast cancer diagnosis may have a deleterious effect on breast can-
cer-specifi c outcomes. In some studies, these effects appear to be independent of the 
negative effects of preexisting obesity [ 70 ,  72 ]. Although the effect of long-term 
weight gain cannot be delineated from these studies, it is likely to be similarly det-
rimental, given the known biological consequences of weight gain. 

 There are studies that do not confi rm any negative effect on breast cancer- specifi c 
outcomes associated with weight gain after diagnosis [ 73 ,  74 ]. In a study investigat-
ing the psychologic and behavioral functioning related to exercise and eating habits 
in women undergoing adjuvant chemotherapy for breast cancer, an average weight 
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gain of approximately 6 kg at 2 years follow-up was reported. However, this weight 
gain did not translate into a greater risk of breast cancer recurrence, albeit in a very 
limited sample ( n  = 32) [ 73 ]. Similarly, weight gain up to 4 years after breast cancer 
diagnosis was not associated with increased risk of relapse or death in a larger pro-
spective cohort study of 1,692 breast cancer survivors [ 74 ]. It is important to note 
that consistent with other studies, obesity 1 year before diagnosis was associated 
with increased risk of death from any cause (HR 1.6; 95 % CI, 1.1–2.3) and an 
increased risk of breast cancer-related death (HR 1.6; 95 % CI, 0.9–2.7), although 
the latter result was not statistically signifi cant. Therefore, while it is clear that obe-
sity is associated with worse breast cancer-related outcomes, not all studies demon-
strate a signifi cant effect for weight gain after breast cancer diagnosis. Nonetheless, 
available evidence shows consistent trends towards a negative effect of weight gain 
on breast cancer outcomes.   

8.5     Obesity and Breast Cancer Treatment 

8.5.1     Breast Surgery 

 Obesity is associated with greater rates of complications after breast cancer surgery 
and breast reconstruction [ 75 – 85 ]. In a retrospective analysis of potential factors 
that affected postoperative hospital stay for 73 patients who underwent modifi ed 
radical mastectomy, patients with stays under 5 days had a signifi cantly lower BMI 
than that of patients who required a longer hospitalization, although obesity was not 
found to be an independent predictor of longer hospital stay in multivariate analysis 
[ 75 ]. In a study conducted by the National Surgical Quality Improvement Program 
Patient Safety in Surgery, El-Tamer et al. reported morbidity and mortality data for 
1,660 women undergoing mastectomy and 1,447 women undergoing lumpectomy 
with an axillary procedure [ 76 ]. Wound infection was the most frequent morbid 
complication and occurred at a higher rate in patients undergoing mastectomy 
(4.34 %) vs. lumpectomy (1.97 %). Importantly, BMI greater than 30 kg/m 2  was an 
independent predictor of wound infection. With specifi c regard to axillary lymph 
node procedures, lymphedema (swelling of the arm) is a well-known complication 
after axillary node dissection and may occur years after the procedure. In a report of 
137 patients with breast cancer who underwent sentinel lymph node dissection, of 
whom 85 underwent immediate completion axillary lymph node dissection, BMI 
greater than 30 kg/m 2  was associated with a greater risk of developing lymphedema 
within 2 years of surgery compared to patients with BMI less than 25 (OR 2.93; 
95 % CI, 1.03–8.31;  p  = 0.003) [ 77 ]. Recently, neo-adipogenesis and adipocyte 
hypertrophy have been implicated in the development of lymphedema in animal 
models [ 86 ,  87 ]. Using a mouse tail model, Zampell et al. demonstrated a twofold 
increase in fat thickness ( p  < 0.01) in response to lymphatic fl uid stasis [ 86 ]. 
Additionally, a marked infl ammatory response consisting of a fi vefold increase in 
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CD45+ mononuclear cells ( p  < 0.001) and a greater than threefold increase in F4/80- 
stained monocytes and macrophages ( p  < 0.001) in the subcutaneous mouse-tail fat 
was associated with adipogenesis in response to lymphatic fl uid stasis. In part two 
of this study, Aschen et al. went on to demonstrate concurrent upregulation of sev-
eral adipogenic factors including adiponectin, CCAAT/enhancer binding protein-α 
(CEBP-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) in response 
to lymphatic fl uid stasis [ 87 ]. Both CEBP-α and PPAR-γ are key transcription fac-
tors involved in adipogenesis and promote adipocyte differentiation. Therefore, adi-
pogenesis, adipocyte hypertrophy, and upregulation of adipogenic factors appear to 
be integrally involved in the development of lymphedema and in turn promote an 
infl ammatory response within subcutaneous fat. 

 Breast reconstruction after breast cancer surgery may also be challenging in 
obese and overweight patients. In a retrospective analysis of 1,195 abdominal fl ap 
reconstruction procedures performed in 952 patients, Mehrara et al. reported that 
obesity, defi ned as greater than 25 % of ideal body weight, was the major indepen-
dent predictor of postoperative complications with up to a threefold increased inci-
dence of adverse events [ 78 ]. Specifi cally, in patients who underwent free transverse 
rectus abdominis myocutaneous (TRAM) fl ap reconstruction, BMI ≥ 30 kg/m 2  was 
signifi cantly associated with partial fl ap loss (OR 2.6,  p  < 0.03), donor-site compli-
cations (OR 3.0,  p  < 0.03), and hernia and/or laxity (OR 2.5,  p  = 0.05). In univariate 
analysis, obesity was associated with fat necrosis, a benign complication of surgery 
or trauma, but this association was not signifi cant on multivariate analysis. Strikingly, 
obesity was associated with signifi cantly increased risk of arterial thrombosis (OR 
1.7,  p  = 0.06) although this did not translate to a higher rate of fl ap loss. It has been 
hypothesized that increased rates of arterial thrombosis in obese patients may be 
related to the increased diffi culty of deep microsurgical anastomosis within the 
axilla. Similar fi ndings were reported by Chang et al. in 718 patients who underwent 
TRAM fl ap breast reconstruction [ 85 ]. Obese and overweight patients had higher 
rates of total fl ap loss, fl ap hematoma, fl ap seroma, mastectomy skin fl ap necrosis, 
donor-site infection, donor-site seroma, and hernia compared with patients of nor-
mal weight. These results suggest that morbidly obese patients are at very high risk 
of fl ap failure and other complications and that procedures such as TRAM fl ap 
breast reconstruction should be avoided in such patients. In an attempt to minimize 
these complications, an alternative approach to breast reconstruction in overweight 
and obese patients might be the use of a deep inferior epigastric perforator fl ap [ 88 ]. 

 Elevated BMI can also complicate other reconstruction surgical techniques. 
Obesity is an independent risk factor for the development of perioperative compli-
cations in patients undergoing expander/implant reconstruction (OR 1.8; 95 % CI, 
1.1–3.0;  p  = 0.02) [ 80 ]. These complications include mastectomy fl ap necrosis, 
seroma/hematoma, infection, failed expansion, and expander/implant exposure. 

 It is important to note, however, that the overall rate of complications associated 
with reconstructive surgery is low and that the majority of overweight and even 
obese patients complete reconstruction successfully. Most investigators agree that 
overweight and obese women should be counseled and informed about risks and 
benefi ts of reconstruction, including higher complication rates associated with 
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elevated BMI despite its overall safety, to aide in their choice of approach [ 78 ,  85 ]. 
It is useful to note that in a study of patient satisfaction in US patients undergoing 
breast reconstruction, obese patients with expander/implants were signifi cantly less 
satisfi ed with aesthetic outcome than normal weight patients (OR 0.14,  p  = 0.02) 
[ 83 ]. There was no signifi cant difference in aesthetic satisfaction between obese and 
normal weight women undergoing TRAM fl ap reconstruction. Taken together, these 
data underscore the importance of careful patient counseling, including a detailed 
discussion of the risks and benefi ts involved.  

8.5.2     Breast Radiation 

 In addition to greater rates of postoperative complications, increasing BMI and 
large breast size have been associated with greater toxicity following adjuvant 
radiotherapy [ 89 – 94 ]. Pragmatically speaking, very morbid obesity may preclude 
the use of radiation therapy given the upper weight limit that currently manufac-
tured treatment tables are capable of supporting. For those who do undergo radia-
tion, several studies have demonstrated higher complication rates in overweight and 
obese patients. Allen et al. report a case control study of women who underwent 
adjuvant radiotherapy after lumpectomy or mastectomy followed by chemotherapy 
[ 89 ]. In total, 200 patients received radiotherapy to the breast and/or chest wall, with 
or without inclusion of regional lymph nodes. This analysis identifi ed BMI as the 
only signifi cant factor associated with the development of radiation pneumonitis 
(multivariate  p  < 0.01). The mean BMI for 14 (7 %) patients who developed radia-
tion pneumonitis was 31.2 vs. 26.3 for patients whose course was not complicated 
by radiation pneumonitis. These fi ndings could be explained by heterogeneity in 
dose delivery as a result of increased chest wall separation in obese patients, result-
ing in higher maximum radiation dose delivered. Indeed, in this study, maximum 
delivered dose correlated with BMI. Additionally, the known link between obesity, 
asthma, and other pulmonary comorbidities may predispose this population to 
development of radiation pneumonitis. It is also possible that circulating proinfl am-
matory mediators associated with asthma and other atopic conditions may contrib-
ute to the increased radiation pneumonitis risk. For example, elevated circulating 
IL-6 and interleukin-1α (IL-1α) levels prior to radiotherapy have been identifi ed as 
markers of increased radiation pneumonitis risk [ 95 ,  96 ]. As discussed above, ele-
vated circulating IL-6 levels are found in overweight and obese individuals. 
Therefore, it is possible that obesity-related infl ammation may be a key mechanism 
underlying the increased risk of radiation pneumonitis in obese patients who 
undergo breast irradiation. 

 As with breast surgery, elevated BMI increases the risk of ipsilateral arm edema 
following radiotherapy [ 90 ]. In a series of 282 patients with stage I or II breast 
cancer who underwent breast surgery followed by radiation at Memorial Sloan- 
Kettering Cancer Center, Werner et al. reported BMI as the most important factor 
associated with posttreatment arm edema [ 90 ]. Larger breast size was also a 
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signifi cant independent risk factor in the development of this complication. Greater 
breast volume has also been associated with more fi brosis and poorer cosmetic 
outcome [ 91 ] as well as increased skin toxicity [ 92 ] following radiotherapy. 
Finally, increased radiation dose heterogeneity within larger-volume breasts may 
result in increased maximum dose, or “hot spots” within the radiated breast, 
although the incidence of this problem with more modern radiotherapy techniques 
is less clear [ 93 ,  94 ].  

8.5.3     Systemic Therapies 

 Irrespective of the possible interaction between BMI and cancer biology, over-
weight and obese patients are more likely to have less favorable outcomes with 
adjuvant chemotherapy than women of normal weight. A number of contributory 
factors have been identifi ed and largely fall into two categories—underdosing and 
decreased effi cacy. Most cytotoxic chemotherapy is dosed based on body surface 
area, which, like BMI, is calculated based on height and weight. Many clinicians 
limit chemotherapy dosing for some drugs in obese patients, by using a maximum 
weight, due to concerns regarding an increased risk of toxicity in obese patients if 
treated with doses based on actual body weight. In a US survey of 1,243 community- 
based practitioners that extracted data from 20,799 early-stage breast cancer 
patients, Lyman et al. observed that due to dose reductions and/or treatment delays, 
55.5 % of all patients received a relative dose intensity of less than 85 %, a threshold 
that has been linked to inferior effi cacy [ 97 ]. In this study, increasing BMI was 
associated with greater dose reductions ( p  < 0.001) although there were no differ-
ences in the need for unplanned dose modifi cations due to toxicity. Importantly, 
body surface area greater than 2 m 2  emerged as an independent predictor of dose 
reduction (OR 1.71; 95 % CI, 1.59–1.85;  p  < 0.001). Consistent with these observa-
tions, another community-based study of 9,672 women treated with anthracycline- 
based chemotherapy found increasing BMI to be independently associated with 
fi rst-cycle dose reduction, i.e., the administration of doses below that from the cal-
culated body surface area [ 98 ]. First-cycle dose reduction of 10 % or more was seen 
in 11 %, 20 %, and 37 % of overweight, obese, and severely obese women, respec-
tively, compared with 9 % of normal weight women. After initial dose reduction, it 
was uncommon (3 % patients) for dose escalation (to a level based on actual weight) 
to occur in subsequent cycles for obese and overweight patients even if chemo-
therapy was well tolerated. Contrary to concerns regarding excessive toxicity, an 
increased hospital admission rate for febrile neutropenia was associated with higher 
administered dose rather than being overweight or obese. In fact, severe obesity 
(BMI ≥ 35) was associated with lower likelihood of hospitalization for febrile neu-
tropenia (OR 0.61; 95 % CI, 0.38–0.97), although this could have been because the 
majority of these patients received attenuated doses. 

 Other studies have also demonstrated that overweight and obese patients who 
receive doses based on actual body weight do not experience excessive toxicity 
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compared with women of normal weight [ 99 – 104 ]. For example, in the Cancer and 
Leukemia Group B (CALGB) 8541 randomized trial, which examined the schedule 
and dose of adjuvant anthracycline-based chemotherapy in 1,435 women with 
node- positive breast cancer, no evidence of increased toxicity was experienced by 
obese women who received chemotherapy based on actual body weight [ 100 ]. In 
this retrospective analysis, obese women who received cycle 1 doses below 95 % of 
the calculated weight-based dose had shorter DFS than women who received within 
5 % of actual body weight-based doses. The risk of treatment failure for women in 
the 5 % group was two-thirds the risk of obese women whose dose was reduced 
below 95 %, although this effect did not reach statistical signifi cance in multivariate 
analysis (HR 0.67: 95 % CI, 0.38–1.20;  p  = 0.25). Taken together, these fi ndings 
suggest that dosing of most commonly used drugs based on actual body weight does 
not increase toxicity and may result in improved outcomes in obese patients. The 
importance of these observations led to a new guideline from an expert panel con-
vened by the American Society of Clinical Oncology (ASCO) [ 105 ]. The main 
recommendations from this panel include the dosing of chemotherapy by actual 
body weight in the treatment of obese cancer patients, particularly when prescribed 
with curative intent (Table  8.3 ) [ 105 ].

8.5.4        Preoperative Chemotherapy in Obese Patients 

 Apart from the underdosing of chemotherapy in overweight and obese patients, it 
appears that current preoperative systemic therapies may be less effective in these 
patients compared with women of normal weight [ 68 ,  99 ,  106 – 108 ]. In a study of 
over 1,000 breast cancer patients who received neoadjuvant (preoperative) chemo-
therapy at the MD Anderson Cancer Center, overweight and obese patients were 
less likely to achieve a pathologic complete response (pCR) at the time of breast 
surgery than normal-weight patients (OR 0.67; 95 % CI, 0.45–0.99) [ 106 ]. However, 
this observation should be interpreted cautiously as chemotherapy dosing for these 
patients could not be verifi ed in this study. Given the prevalence of underdosing for 
overweight and obese patients, the lower rates of pCR may be a function of chemo-
therapy exposure. In a different study, 307 Chinese women with breast cancer 

   Table 8.3    Cytotoxic chemotherapy dosing for obese adult patients with cancer   

 American Society of Clinical Oncology clinical practice guideline 

 Use full weight-based chemotherapy dosing for obese patients, particularly when treatment intent 
is curative 

 Respond to treatment-related toxicity similarly for both obese and nonobese patients 
 Dose reductions, if needed, should be done similarly for obese and nonobese patients; consider 

resuming full weight-based dose on subsequent cycles if feasible 
 Fixed dosing should only be used for select agents (e.g., carboplatin, bleomycin) 
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treated at the Shanghai Cancer Hospital all underwent neoadjuvant chemotherapy 
dosed by actual weight [ 107 ]. Women with a BMI of 25 kg/m 2  or greater were less 
likely to achieve a pCR at the time of breast surgery after neoadjuvant chemother-
apy compared to women with BMI less than 25 kg/m 2  (OR 0.45; 95 % CI, 0.22–0.94; 
 p  = 0.03). Notably, BMI was identifi ed as an independent predictor of pCR after 
neoadjuvant chemotherapy in postmenopausal and hormone receptor-negative sub-
groups ( p  = 0.004 and  p  = 0.038, respectively).  

8.5.5     Postoperative Chemotherapy in Obese Patients 

 Less favorable responses to adjuvant (postoperative) breast cancer treatment have 
also been reported [ 68 ,  99 ,  108 ]. In the Danish Breast Cancer Cooperative Group 
study, Ewertz et al. report shorter OS after adjuvant therapy that became evident 
after 10 years of follow-up in patients with BMI of 30 kg/m 2  [ 68 ]. Again, in this 
study, chemotherapy dosing was not addressed limiting our ability to interpret the 
results. However, several other studies have reported decreased OS for obese and 
overweight patients after completing adjuvant therapy [ 99 ,  108 ]. Bastarrachea et al. 
report a greater risk of disease recurrence after adjuvant chemotherapy dosed by 
actual body weight in obese vs. nonobese patients (HR 1.33; 95 % CI, 1.05–1.68) 
[ 99 ]. In a post hoc analysis of the Breast International Group (BIG) 02-98 study, 
which was a randomized phase III trial in which docetaxel was added to adjuvant 
anthracycline-based chemotherapy, BMI of 30 kg/m 2  or greater was associated with 
shorter 5-year OS and DFS (HR 1.34,  p  = 0.013, and HR 1.20,  p  = 0.041) [ 108 ]. 
Taken together, these studies suggest a decreased effi cacy of chemotherapy in obese 
patients; however, underdosing remains a potential confounder. As the ASCO clini-
cal practice guidelines for the dosing of chemotherapy in obese patients become 
increasingly incorporated into clinical practice, the effi cacy of chemotherapy in 
overweight and obese patients will likely become more apparent.  

8.5.6     Obesity and Endocrine-Targeted Therapy 

 For patients with ER-positive breast cancer, endocrine therapy, which aims to disrupt 
the tumor supply of estrogen or change the receptor-ligand interactions, is an impor-
tant aspect of treatment. For obese patients, concerns about the dosing and resultant 
effi cacy have been raised with regard to the use of endocrine therapy [ 109 ]. 
Importantly, in the randomized phase III Arimidex, Tamoxifen, Alone or in 
Combination (ATAC) trial, proportionately worse outcomes were seen in obese vs. 
lean women who were treated with the aromatase inhibitor, anastrozole [ 109 ]. 
Treatment with anastrozole was less effi cacious in women with BMI ≥ 35 kg/m 2  
when compared to women with BMI < 23 kg/m 2  in multivariate analysis (HR 1.53; 
95 % CI, 1.01–2.32;  p  = 0.001). In contrast, tamoxifen appeared to be equally effec-
tive across all BMI groups. While recurrence rates were overall lower in the post-
menopausal women treated with anastrozole compared to tamoxifen, the benefi t of 
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anastrozole was greater in leaner women. The adjusted HR comparing anastrozole 
with tamoxifen for distant plus local recurrences in the lowest BMI group was 0.64 
(95 % CI, 0.45–0.91) in contrast to 0.84 (95 % CI, 0.61–1.14) for the heaviest women. 

 Reassuringly, use of the selective estrogen receptor modulator (SERM), tamoxi-
fen, was also found to be equally effi cacious in obese and nonobese women with 
node-negative ER-positive breast cancer in a cohort of 3,385 women enrolled in the 
National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 protocol 
[ 110 ]. However, obesity was found to be associated with increased risk of contralat-
eral breast cancer, second primary cancers, and increased overall mortality. 
Therefore, these fi ndings are consistent with the hypothesis that there is a worsened 
prognosis for obese patients, but suggest that tamoxifen may be relatively more 
effective in obese women. To be precise, the effi cacy advantages of aromatase inhi-
bition over tamoxifen appear to diminish with increasing weight. However, anastro-
zole was not inferior to tamoxifen, and, in particular among overweight patients, its 
toxicity profi le may make it preferable despite the lack of superior effi cacy in the 
obese patients. 

 In terms of overall outcomes, Sparano et al. reported inferior DFS, defi ned as the 
length of time after completing cancer treatment that a patient lives without any 
signs or symptoms of that cancer, and OS, defi ned as the proportion of patients still 
alive after starting cancer treatment, in obese vs. lean women with operable breast 
cancer who received chemotherapy followed by endocrine therapy with tamoxifen 
[ 111 ]. In this pooled outcomes analysis of three adjuvant trials conducted by the 
Eastern Cooperative Oncology Group (ECOG), all patients received anthracycline-
based chemotherapy dosed by actual body weight. There were no signifi cant differ-
ences in dose delivered to obese vs. nonobese patients, except in the group that 
received weekly or every 3-week paclitaxel. In one of the three included ECOG 
trials (E1199), patients received either tamoxifen or tamoxifen followed by an aro-
matase inhibitor after adjuvant chemotherapy. In multivariate modeling, BMI > 30 kg/
m 2  vs. BMI < 30 kg/m 2  was associated with inferior DFS (HR 1.24; 95 % CI, 1.06–
1.46;  p  = 0.0079), inferior OS (HR 1.37; 95 % CI, 1.13–1.67;  p  = 0.0015), and infe-
rior breast cancer-specifi c survival (BCSS) (HR 1.40; 95 % CI, 1.11–1.76; 
 p  = 0.0042) in women with hormone receptor-positive, human epidermal growth 
factor receptor-2 (HER2)-negative (or unknown) disease. Similar fi ndings were 
observed in the E5188 trial in which premenopausal women with ER-positive breast 
cancer received no endocrine therapy, ovarian suppression, or ovarian suppression 
plus tamoxifen after chemotherapy. Survival rates were  signifi cantly worse for 
obese patients (DFS HR 1.41, 95 % CI 1.19–1.67,  p  < 0.0001; OS HR 1.51, 95 % CI 
1.24–1.83,  p  < 0.0001; BCSS HR 1.54, 95 % CI 1.26–1.88,  p  < 0.0001). In sum, 
these fi ndings demonstrate worse survival rates in obese women treated with che-
moendocrine therapy, including tamoxifen, for hormone receptor- positive breast 
cancer, but they do not indicate a superior treatment approach for such patients. 

 A likely explanation for the reduced effi cacy of hormone therapies in obese 
women is that elevated estrogen levels, which are commonly seen in obese patients, 
may not be adequately suppressed by aromatase inhibitors such as anastrozole. 
In support of this, using sensitive estradiol assays, a recent study has demonstrated 

8 Obesity, Infl ammation, and Breast Cancer



204

that higher levels of circulating estrogens are commonly seen in obese women 
[ 112 ]. In this study, Folkerd et al. reported a positive correlation between circulating 
estradiol level and increasing BMI ( ρ  = 0.57,  p  < 0.001), noting that values were 
almost 3 times higher in women with BMI > 35 kg/m 2  compared to women with 
BMI < 25 kg/m 2 . Suppression of estrogens was greater with the newer aromatase 
inhibitor, letrozole, compared with anastrozole. This raises the question of whether 
dose escalation or other strategies, such as using more potent aromatase inhibitors, 
would be useful in these patients. Prospective clinical trials are needed to adequately 
address these issues and develop a risk-stratifi ed approach for obese patients. 
Another possible explanation for the reduced effi cacy of aromatase inhibitors in the 
obese is ligand-independent activation of ER-α. This could occur for a variety of 
reasons including elevated levels of circulating IGF-1 or the effects of proinfl amma-
tory mediators and warrants investigation. 

 Additionally, dosing adequacy remains a concern for obese patients treated with 
molecular and other targeted therapies (e.g., the monoclonal antibody trastuzumab 
and the tyrosine kinase inhibitor lapatinib). Several of these agents are delivered as 
predetermined doses that are not weight based (e.g., lapatinib). Appropriate dosing 
of these agents is a subject of ongoing investigation and has not yet been addressed 
by current guidelines [ 105 ].   

8.6     Interventional Strategies and Future Directions 

 Having reviewed the pathogenesis, poor outcomes, and treatment implications con-
ferred by increased adiposity on women with breast cancer, we now address potential 
strategies to reduce these risks. These approaches range from behavioral interven-
tions, including lifestyle modifi cations such as diet and exercise, to pharmaceutical 
interventions that target the pathophysiology of dysregulated metabolism and obe-
sity-related infl ammation. In terms of breast cancer prevention, there is extensive 
interest in research to better characterize specifi c points along the route of carcino-
genesis where interventions may be benefi cial. Similarly, much work is being done 
to understand the reasons for poorer prognosis after breast cancer diagnosis, many of 
which have been discussed above, in order to determine specifi c interventions that 
may be used as an adjunct to cancer-directed therapy to improve outcomes. 

8.6.1     Weight Loss 

 Weight loss or maintenance of a normal BMI, achieved by dietary modifi cation and/
or physical activity, has been associated with improved outcomes after breast cancer 
diagnosis [ 113 – 121 ]. Much of these data, however, are observational, which will 
hopefully set the stage for the development of adequately powered randomized 
clinical trials. In a prospective observational study reported by Holmes et al., 
 exercise was associated with improved outcome after breast cancer diagnosis [ 117 ]. 

N.M. Iyengar et al.



205

Nearly 3,000 nurses with early breast cancer (stage I to III) who enrolled in the 
Nurses’ Health Study were surveyed about their levels of physical activity and were 
followed for breast cancer mortality [ 117 ]. Women whose physical activity was the 
equivalent of walking 3–5 h per week at an average pace had the greatest benefi t in 
terms of breast cancer-related death (RR 0.50; 95 % CI, 0.31–0.82). A consistent 
association between physical activity and reduced breast cancer mortality has been 
reported in similar observational studies [ 118 – 120 ]. 

 With regard to the effects of dietary interventions on breast cancer-specifi c out-
comes, the Women’s Intervention Nutrition Study (WINS) randomly assigned 
women to a low-fat diet, in which fat accounted for 20 % of total calories, vs. nor-
mal diet [ 121 ]. Women in the low-fat diet group lost an average of 6 lb and, after 5 
years of follow-up, had a 24 % reduction in the risk of relapse (HR 0.76; 95 % CI, 
0.60–0.98;  p  = 0.034). Although studies have failed to confi rm a consistent benefi t 
of diet on breast cancer-specifi c outcomes, the results of this randomized trial do 
suggest that diet is one important strategy to reverse the negative effects of obesity 
on breast cancer mortality. Importantly, reduction in breast cancer recurrence was 
greater in women with hormone receptor-negative breast cancer than in women with 
hormone receptor-positive disease. This again suggests that estrogen-independent 
mechanisms are involved in regulating the growth of breast cancer, such as insulin 
signaling as discussed above. 

 Importantly, several studies demonstrate signifi cant associations between weight 
loss and/or dietary modifi cation with improvements in circulating biomarkers that 
have been implicated in breast cancer development and progression. A weight loss of 
7.1 % after consumption of a hypocaloric diet, defi ned by a 250–350 kcal/day defi cit, 
for 6 months has been associated with signifi cant decreases in circulating levels of 
leptin and insulin [ 122 ]. In a recent study, weight loss of 5 % or more within 12 
months via caloric restriction and/or exercise was associated with signifi cant reduc-
tions in circulating markers of infl ammation including high-sensitivity C-reactive 
protein (hsCRP), IL-6, and serum amyloid A [ 123 ]. Furthermore, reductions in circu-
lating estradiol levels and elevation of SHBG levels have been associated with diet 
and exercise [ 115 ]. In the Nutrition and Exercise for Women (NEW) trial, circulating 
estradiol decreased by 20.3 % ( p  < 0.001) and SHBG increased by 25.8 % ( p  < 0.001) 
in postmenopausal women with BMI > 25 kg/m 2  who were randomized to reduced-
calorie diet and moderate- to vigorous-intensity aerobic exercise [ 115 ]. Reduced 
serum levels of insulin, CRP, and leptin and increased adiponectin were also observed. 
Additionally, TNF-α levels and insulin release after glucose challenge signifi cantly 
fell after diet-induced weight loss [ 44 ]. The magnitude of this decline is associated 
with baseline body weight, again suggesting that obese women in particular benefi t 
most from weight loss. Reductions in serum IL-6 and CRP and a rise in adiponectin 
levels have also been associated with diet-induced weight loss [ 124 ,  125 ]. Additionally, 
reduced levels of infl ammatory markers within subcutaneous white adipose tissue 
have been demonstrated after weight loss [ 37 ]. Collectively, these fi ndings suggest 
that diet-induced weight loss can have desirable effects on infl ammatory mediators, 
known to be involved in breast cancer  development and progression. 
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 With our current understanding of obesity-related infl ammation and breast 
 cancer risk and prognosis, these changes induced by weight loss help elucidate spe-
cifi c pathogenic targets for possible intervention. Importantly, the feasibility of 
long- term weight loss interventions in cancer survivors was recently demonstrated 
in the Reach Out to Enhance Wellness (RENEW) trial [ 114 ]. In this study, 641 
overweight and obese patients with a history of locoregional colorectal, breast, and 
prostate cancer underwent diet and exercise counseling via mailed printed material 
and telephone. Improvements in diet quality, physical activity, and BMI were dem-
onstrated at 2 years of follow-up. Therefore, the observational data associating 
weight loss with improved survival and biomarkers of breast cancer prognosis, 
coupled with the durability of weight loss intervention, set the stage for a prospec-
tive randomized trial investigating the effect of dietary and exercise interventions on 
breast cancer outcomes in selected subsets of patients, using biomarkers known to 
be dysregulated in overweight and obese women with breast cancer.  

8.6.2     Medications 

 The use of several medications has been associated with attenuation of processes 
involved in breast cancer development and progression. One attractive investiga-
tional agent is metformin, which has benefi cial effects on insulin levels. Use of met-
formin has been suggested to both reduce the risk of breast cancer and improve 
prognosis. In the preclinical setting, when human breast adipose stromal cells are 
treated with metformin, aromatase expression is inhibited via activation of AMPK 
[ 126 ]. Furthermore, metformin has been demonstrated to downregulate breast-spe-
cifi c aromatase expression by inhibiting  CYP19  gene promoters I.3 and II [ 127 ]. 
Goodwin et al. reported a small clinical trial of 22 women with early-stage breast 
cancer in which treatment with 6 months of metformin resulted in signifi cant reduc-
tion in fasting insulin level [ 128 ]. In addition, diabetic patients treated with metfor-
min were found to achieve pCR at the time of breast surgery more often than diabetic 
patients who were not treated with metformin after undergoing neoadjuvant chemo-
therapy for early-stage breast cancer [ 129 ]. In a retrospective analysis, 2,529 patients 
who received neoadjuvant chemotherapy were identifi ed as nondiabetic patients 
( n  = 2,374), diabetic patients taking metformin ( n  = 68), and diabetic patients not tak-
ing metformin ( n  = 87). Patients taking metformin had a signifi cantly higher propor-
tion of pCR at the time of surgery (24 %; 95 % CI, 13–34 %) compared to diabetic 
patients not taking metformin (8.0 %; 95 % CI, 2.3–14 %) and nondiabetic patients 
(16 %; 95 % CI, 15–18 %;  p  = 0.02). In multivariate analysis adjusting for diabetes 
status, neoadjuvant metformin use was an independent predictor of pCR (OR 2.95; 
95 % CI, 1.07–8.17;  p  = 0.04). This clinical evidence in conjunction with the known 
preclinical antiproliferative effects of metformin has generated signifi cant interest in 
investigating metformin in ongoing randomized, prospective clinical trials. A signifi -
cant challenge in determining the optimum use of metformin in breast cancer will be 
developing biomarkers to select the patients most likely to benefi t from this agent. 
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 Use of nonsteroidal anti-infl ammatory drugs (NSAIDs) for the prevention of 
breast cancer is an attractive approach given the role of infl ammation in breast car-
cinogenesis and the reduced risk of other tumors such as colon cancer associated 
with NSAID use [ 130 – 133 ]. Epidemiologic data, however, are confl icting with 
regard to the benefi ts of aspirin and COX-2 inhibitors in breast cancer prevention. 
In a large cohort analysis of the Nurses’ Health Study, Zhang et al. prospectively 
observed 84,602 postmenopausal women for the development of breast cancer with 
a follow-up period of 28 years [ 134 ]. A total of 4,734 cases of invasive breast cancer 
were identifi ed, and no statistically signifi cant difference was observed between 
regular aspirin users and nonusers. The lack of benefi t with aspirin consumption 
was independent of tumor phenotype, dose, or either past or current aspirin use. The 
authors also examined use of acetaminophen and other NSAIDs and similarly failed 
to demonstrate any risk reduction. Notably, however, a moderately lower risk of 
hormone receptor-positive breast cancer was observed in women who consumed six 
or more tablets of aspirin per week for at least 10 years. While this prospective study 
provides important information, the question remains as to why a preventative effect 
associated with NSAIDs is observed in several other epidemiologic studies [ 135 , 
 136 ]. Aside from study design limitations, one possible explanation for this incon-
sistency is the heterogeneity of patients studied. It is possible that a specifi c popula-
tion, such as those with breast infl ammation and elevated tissue levels of COX-2, is 
most likely to derive particular benefi t from the use of NSAIDs and specifi c COX-2 
inhibitors [ 137 ]. 

 A number of other potential therapeutic strategies and targets are at different 
stages of evaluation. Statins possess anti-infl ammatory properties and are the sub-
ject of ongoing investigation as data regarding their use and impact on cancer devel-
opment and evolution are currently confl icting [ 138 – 146 ]. In preclinical ER+ breast 
cancer cell lines, use of small molecule MEK inhibitors has been shown to counter 
the anti-apoptotic effects of IGF-1 [ 147 ]. Other approaches to IGF-1 inhibition 
include the use of antibodies or small molecules directed against the IGF-1 receptor 
[ 148 – 150 ].   

8.7     Conclusion 

 The increasing worldwide problem of overweight and obesity has critical implica-
tions for breast cancer. First, increasing adiposity is a risk factor for the develop-
ment of hormone receptor-positive breast cancer in postmenopausal women. 
Second, irrespective of breast cancer subtype, obese women have a worse prognosis 
after breast cancer diagnosis. As obesity rates continue to rise, we are likely to see 
a concomitant rise in both breast cancer incidence and mortality rates, unless this 
trend can be reversed. Overweight and obesity have important implications for the 
local treatment of breast cancer, including surgery and radiotherapy, as well as for 
the use of systemic therapies such as chemotherapy, endocrine therapy, and novel 
targeted agents. Critical to the development of effective strategies to prevent 
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increasing mortality with greater obesity prevalence is an understanding of the 
 biological mechanisms by which rising BMI promotes breast cancer development 
and progression. As such, a wealth of recent studies have identifi ed several mecha-
nisms, which mediate this link, including dysregulated metabolism, insulin resis-
tance, altered adipokine levels, as well as the emerging role of chronic infl ammation 
of the breast. Tailoring currently available interventions to circumvent the pathways 
by which infl ammation and dysfunctional metabolism cause treatment resistance 
may be one strategy to improve outcomes in obese and overweight patients. 

 The development of effective lifestyle modifi cations may also be important in 
risk reduction and improving breast cancer-specifi c outcomes. Finally, identifying 
specifi c patient populations that may benefi t from pharmaceutical intervention is a 
subject of ongoing research. It is likely that a comprehensive, multimodality 
approach that incorporates all of these strategies will prove to provide the greatest 
benefi t and redefi ne breast cancer treatment in the coming era. Hopefully, in the 
future, a greater understanding of obesity-breast cancer biology will translate into 
improvements in patient outcomes. Furthermore, a better understanding of obesity- 
mediated infl ammation may offer broad implications for scientifi c progress in the 
many other diseases associated with infl ammation and obesity.     
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    Abstract  

•     Hepatocellular carcinoma (HCC) is a common malignancy worldwide that is 
increasing in incidence in the United States.  

•   Viral and alcohol-related liver diseases account for most cases; however, a sig-
nifi cant number of patients with HCC do not have a known underlying chronic 
liver disease.  

•   New evidence suggests that obesity and type 2 diabetes may play a signifi cant 
role in the development of HCC.  

•   Nonalcoholic fatty liver disease (NAFLD) is very common in patients with obe-
sity and diabetes and may progress to cirrhosis and HCC.  

•   Insulin resistance, adipose tissue infl ammation, adipokines, and infl ammatory cyto-
kines comprise mechanistic pathways that link obesity with NAFLD and HCC.     

9.1         Introduction: The Changing Epidemiologic 
Pattern of HCC 

 Primary liver cancer is the sixth most common liver cancer worldwide and the third 
most common cause of cancer-related death [ 1 ]. Hepatocellular carcinoma (HCC) 
accounts for approximately 90 % of all primary liver cancers, and these two terms are 
frequently used interchangeably [ 2 ]. Each year, 20,000 new cases of HCC are diag-
nosed in the United States with an incidence that has tripled over the past 2 decades 
making HCC the fastest growing cause of cancer death in the male  population [ 3 ]. 
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Liver cirrhosis is present in approximately 70–90 % of HCC cases. Although chronic 
hepatitis B virus (HBV) infection is the major risk factor for HCC worldwide, 
 infection with hepatitis C virus (HCV) is the causal factor in the majority of cases in 
the United States and Japan [ 4 ]. Other etiologies of chronic liver disease/cirrhosis 
associated with HCC include alcoholic liver disease, exposure to afl atoxin, heredi-
tary hemochromatosis, α1-antitrypsin defi ciency, primary biliary cirrhosis, and 
autoimmune hepatitis. However, a signifi cant number of patients with HCC (15–
50 %) do not have a known underlying chronic liver disease (cryptogenic) [ 5 ]. 

 New evidence suggests that obesity and obesity-related complications, such as 
type 2 diabetes (DM2), metabolic syndrome (MetS), and nonalcoholic fatty liver 
disease (NAFLD), play a signifi cant role in the development of HCC in susceptible 
patients. 

 In fact, epidemiological data have demonstrated a parallel increase in prevalence 
of HCC and obesity. In multiple population-based cohort studies from the USA and 
Europe [ 6 – 8 ], HCC was approximately twice as likely to develop in obese individu-
als as in those who were not obese, and similar results were found in patients with 
DM2 compared to nondiabetic subjects [ 9 ,  10 ]. NAFLD is the hepatic manifestation 
of MetS, and its prevalence (33 % of the adult US population) has been increasing 
with the growing epidemics of obesity and DM2. In addition, NAFLD appears to be 
a signifi cant factor in the tumorigenesis of HCC in the setting of obesity [ 11 ].  

9.2     Mechanistic Pathways Liking Obesity and Infl ammation 
to Chronic Liver Disease and HCC 

 It has become clear that a state of low-grade chronic infl ammation is typically associ-
ated with obesity and plays a crucial role in the development of insulin resistance (IR) 
[ 12 ,  13 ]. An important initiator of this infl ammatory response is the adipose tissue, 
which actively secretes a variety of products such as cytokines, adipokines, and fatty 
acids into the circulation [ 14 ]. Abnormal adipose tissue metabolism has also been 
identifi ed as a critical mechanistic link between obesity and NAFLD [ 15 ,  16 ]. As 
shown in Fig.  9.1 , the increased release of free fatty acids (FFA) from adipose tissue 
due to a state of insulin resistance, which is characteristic of obesity, represents the 
main source of FFA during development of hepatic steatosis and progressive liver 
injury in NAFLD [ 17 ]. A surplus of FFA in non-adipose cells (ectopic fat deposition) 
may enter deleterious pathways leading to hepatocyte dysfunction (lipotoxicity) and 
apoptotic cell death (lipoapoptosis) [ 18 ,  19 ] which can occur through death receptors, 
the mitochondrial-lysosomal pathway, and endoplasmic reticulum (ER) stress [ 17 ]. 
The ensuing responses of cell repair, infl ammation, regeneration, and fi brosis may all 
be triggered by apoptosis of adjacent cells [ 20 ]. Of these processes in the liver, hepatic 
fi brosis has the potential to be the most deleterious, as progressive fi brosis may result 
in cirrhosis and end-stage liver disease [ 21 ,  22 ].

   Liver fi brosis is strongly associated with the development of HCC; in fact, up to 
90 % of HCC cases arise in cirrhotic livers [ 23 ]. As shown in Fig.  9.2 , excess 
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  Fig. 9.1    The role of insulin resistance, free fatty acids, obesity, and diabetes in the development 
and progression of nonalcoholic fatty liver disease (NAFLD)       

  Fig. 9.2    The importance of fi brosis and the immune system for creating an environment in the 
liver conducive for the development of hepatocellular carcinoma (HCC)       
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extracellular matrix and stiffness in cirrhotic livers provides a reservoir for bound 
growth factors, promotes angiogenesis, enhances survival of pre-neoplastic hepato-
cytes and activated hepatic stellate cells (HSCs), and reduces the activity of natural 
killer and natural killer T cells that have critical roles in tumor surveillance [ 24 ].

9.3        Obesity and Insulin Resistance in the Pathogenesis of HCC 

9.3.1     Insulin Resistance/IGF Axis and HCC 

 IR is frequently present in obese individuals and can lead to a state of compensatory 
hyperinsulinemia in order to maintain normal metabolic functions. As shown in 
Fig.  9.3 , hyperinsulinemia activates downstream pathways through the insulin receptor 
substrate-1 (IRS-1), which inhibit apoptosis and increase mitogenesis promoting 
tumorigenesis. IRS-1    plays an important role in cytokine signaling pathways and is 
upregulated in HCC [ 25 ]. The c-Jun amino-terminal kinase 1 (JNK1) has emerged as a 
key link between obesity and IR [ 26 ]. Obesity is associated with increased release of 
FFA, pro-infl ammatory cytokines, and reactive oxygen species, all potent activators of 
JNK, which lead to phosphorylation of IRS-1 and IR. JNK1 plays a signifi cant role in 
the development of nonalcoholic steatohepatitis (NASH) [ 27 ] and was found recently 
to be associated with the development of HCC as more than 50 % of human HCC 
samples were observed to have increased activation of JNK1 [ 11 ,  28 ,  29 ].

   The liver synthesizes and secretes insulin-like growth factors (IGFs), in 
response to growth hormone. Insulin upregulates hepatic growth hormone recep-
tors, which in turn increase the activation of IGFs.    Accumulating nascent data 
suggest that dysregulation of the IGF axis, which consists of IGF-1 and IGF-2, 
their receptors IGF1R and IGF2R, and their binding proteins (IGFBP1–6), plays 
a role in the development of HCC in animal models and human HCC cell lines 
[ 30 ,  31 ]. Binding of IGF-1 and IGF-2 to their cell surface receptor results in the 
activation of the    Ras-mitogen-activated protein kinase (MAPK)-ERK path-
way and the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway, which are 
major signaling pathways in cellular proliferation and apoptosis [ 32 – 34 ]. 
Hyperinsulinemia decreases liver production and blood levels of IGFBPs leading 
to increased bioavailability of IGFs [ 35 ]. Indeed, decreased expression of 
IGFBP-3 in HCC was found to be signifi cantly associated with portal vein inva-
sion and poor prognosis [ 36 ], while the treatment of HCC cells with IGFBP-3 
in vitro controlled cell  proliferation [ 37 ].  

9.3.2     Infl ammatory Cytokines and HCC 

 Obesity is associated with the upregulation of pro-infl ammatory cytokines such as 
tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), both of which can stimulate 
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normal and malignant hepatocyte proliferation [ 38 ,  39 ]. The binding of TNF-α to its 
receptor activates the nuclear factor-κB pathway (NF-κB), which is considered a 
major factor in determining the ability of pre-neoplastic and malignant cells to avoid 
apoptosis and therefore providing a link between infl ammation and cancer [ 40 ]. After 
activation, NF-κB translocate dimers to the nucleus where they affect transcriptional 
activation of hundreds of target genes. By using the Mdr-2 knockout mouse model, 
which spontaneously develops cholestatic hepatitis leading to dysplasia and eventu-
ally HCC, Pikarsky et al. demonstrated that TNF-α expression was upregulated in 
adjacent infl ammatory and endothelial cells, triggering NF-κB signaling in hepato-
cytes, thereby promoting survival and the ultimate formation of HCC [ 41 ]. 
Furthermore, anti-TNF treatment suppressed NF-κB activation resulting in apoptosis 
of transformed hepatocytes and failure to progress to HCC. In contrast with the tumor-
promoting role of NF-κB pathway in the animal model described above, the inactiva-
tion of the pathway at an early stage in other models can also promote carcinogenesis 
because of increased hepatocyte apoptosis which triggers compensatory hyperplasia, 
regeneration, and fi brosis leading to malignant transformation [ 42 ]. 

 Another important infl ammation-associated pathway is the signal transducer and 
activator of transcription 3 (STAT3) which is triggered by IL-6 and inhibited by 

  Fig. 9.3    The transcriptional factors and adipokines currently considered the most important car-
cinogenic in NAFLD       
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SOCS3 (suppressor of cytokine signaling 3) [ 43 ]. In a study by He et al., 
 hepatocyte-specifi c STAT3-defi cient mice (    Stat3  Δhep ) exhibit more than sixfold reduc-
tion in HCC load relative to  Stat3  F/F  in response to the chemical procarcinogen dieth-
ylnitrosamine (DEN)-induced liver tumorigenesis [ 44 ]. The authors also examined 
the status of STAT3 activation in a large number of human HCC specimens and found 
that approximately 60 % exhibited activated nuclear STAT3, with STAT3-positive 
tumors being more aggressive. Furthermore, hepatocyte-specifi c SOCS3 deletion in 
mice with DEN-induced HCC leads to larger and more numerous tumors [ 45 ].  

9.3.3     Adipokines and HCC 

 Leptin is a specialized peptide hormone produced mainly by adipocytes (adipokine) 
and is the product of the obese (ob) gene. Leptin regulates energy intake and expen-
diture through binding to its receptors in the central nervous system [ 46 ,  47 ]. In 
overweight and obese subjects, leptin levels are elevated indicating a state of leptin 
resistance. Using HCC cell lines, Saxena et al. demonstrated that leptin promoted 
HCC through concomitant activation of the STAT3 and PI3K/Akt pathways and that 
blocking these signaling pathways can effectively block leptin-mediated migration 
and invasion of HCC cells [ 48 ]. Moreover, leptin can promote tumorigenesis by 
protecting HCC cells from apoptosis induced by transforming growth factor-β 
(TGF-β), which occurs by downregulating the pro-apoptotic Bax gene [ 49 ]. 

 Adiponectin is another adipokine mainly secreted by visceral adipose tissue. 
Adiponectin has three receptors, AdipoR1, AdipoR2, and T-cadherin, with AdipoR2 
being the one predominantly expressed in the liver [ 50 ]. Unlike leptin, adiponectin 
levels are markedly decreased in obesity, DM2, NAFLD, and atherosclerosis indi-
cating a protective effect of adiponectin against obesity-related disorders [ 51 – 53 ]. 
Similarly, reduced plasma or hepatic adiponectin correlates closely with the devel-
opment of HCC with an inverse relationship between adiponectin expression and 
tumor size [ 54 ,  55 ]. Interestingly, adiponectin may inhibit tumor growth induced by 
leptin by reducing STAT3 and PI3K/Akt activity and increasing SOCS3 which is a 
negative regulator of leptin signaling [ 56 ].   

9.4     HCC and Obesity 

9.4.1     Obesity and HCC in the General Population 

 Obesity has been established as a risk factor for HCC by multiple large cohort 
studies [ 57 ]. This increased risk may be related to the increased prevalence of 
NAFLD and NASH in obese individuals, and the carcinogenic potential exerted 
by obesity alone, as discussed above. In a large Danish study of nearly 44,000 
obese individuals, Moller et al. found an overall 16 % increased incidence of 
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cancers and a relative risk of 1.9 for liver cancer [ 7 ]. Wolk et al. found that obe-
sity was associated with a threefold increase in HCC risk in a large Swedish 
study that included more than 28,000 obese patients [ 8 ]. A Korean study that 
followed 781,283 males without a prior diagnosis of cancer for over a 10-year 
period found a relative risk for HCC of 1.53 in obese patients compared to nor-
mal controls after controlling for HBV infection (the most common cause of 
HCC in Korea) [ 58 ]. A mortality study conducted by the American Cancer 
Society that followed more than 900,000 US adults initially free from cancer for 
16 years demonstrated that the relative risk of dying from liver cancer was 1.68 
times higher in women and 4.52 times higher in men who had a BMI ≥ 35 kg/m 2  
compared to lean controls with normal BMI (18.5–24.9 kg/m 2 ) [ 6 ]. Of note, the 
relative risk of liver cancer mortality among males was the highest of all the 
cancers studied. A meta-analysis that included 11 cohort studies found that 
compared to normal-weight individuals, the relative risk of liver cancer was 
1.17 (95 % CI, 1.02–1.34) for overweight patients and 1.89 (95 % CI, 1.51–
2.36) for obese patients [ 57 ].  

9.4.2     Obesity and HCC in Patients with Cirrhosis 

 In addition to the association between obesity and HCC in the general population, 
obesity is an independent risk factor for HCC in patients with cirrhosis of different 
etiologies. A review of the United Network of Organ Sharing (UNOS) database that 
included 19,271 cirrhotic patients who had liver transplantation between 1991 and 
2000 revealed that the overall incidence of HCC was higher in obese patients com-
pared to non-obese patients (4.0 % vs. 3.0 %,  p  = 0.013) [ 59 ]. In the multivariate 
analysis of this study, obesity was an independent predictor of HCC in cryptogenic 
cirrhosis (OR = 11.1, 95 % CI, 1.5–87.4) and alcoholic cirrhosis (OR = 3.2, 95 % CI, 
1.5–6.6) but not in cirrhosis due to viral hepatitis or autoimmune liver disease. 
A prospective 7-year study in France that followed 771 patients with alcohol- or 
HCV- related cirrhosis demonstrated that a BMI ≥ 30 kg/m 2  was associated with a 
hazard ratio for HCC of 2.8 [ 60 ]. 

 Beyond the effect of obesity (assessed by BMI) on the risk of HCC, it appears 
that visceral fat accumulation per se may play a role in tumor initiation and progres-
sion. Visceral adipose tissue is a highly active endocrine organ that produces mul-
tiple pro-infl ammatory cytokines (such as TNF-α and IL-6), promotes insulin 
resistance, and causes hepatocyte fat accumulation with ensuing hepatocyte injury 
and possibly carcinogenesis through FFA toxicity [ 31 ]. Ohki et al. studied the effect 
of visceral fat area, as measured by contrast-enhanced dynamic CT, on the recur-
rence of HCC after curative ablation [ 61 ]. They found that patients with high vis-
ceral fat area (defi ned as >130 cm 2  in male and >90 cm 2  in female) had a cumulative 
recurrence rates at 1 and 3 years of 15.9 % and 75.1 %, respectively, compared to 
9.7 and 43.1 % in the control group ( p  = 0.018).   
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9.5     HCC and Type 2 Diabetes Mellitus (DM2) 

 Establishing the causal relationship between diabetes and HCC has proven diffi cult 
for multiple reasons. First, cirrhosis and end-stage liver disease can cause impaired 
glucose tolerance and overt diabetes [ 62 ] introducing potential bias in case–control 
studies. Second, some etiologies of chronic liver disease such as HCV and hemo-
chromatosis are associated with increased diabetes risk [ 63 ]. Finally, diabetes is a 
strong risk factor for NAFLD and NASH which can progress to cirrhosis and HCC 
[ 64 ]. However, several large cohort studies have established the presence of DM2 as 
an independent risk factor for the development of HCC. Earlier population-based 
studies from Sweden and Denmark [ 65 ,  66 ] have shown a signifi cant increase in 
HCC risk among patients with diabetes alone and in the presence of viral hepatitis, 
alcoholic liver disease, and cirrhosis. A large longitudinal study from the USA fol-
lowed 173,643 diabetic patients and 650,620 patients without diabetes for 10–15 
years and found that diabetes was associated with a hazard ratio for HCC of 2.16 
(95 % confi dence interval [CI], 1.86–1.09;  p  < 0.0001) even after excluding patients 
with HCV, HBV, and alcoholic liver disease [ 67 ]. Importantly, this study provided 
evidence for a causal association between DM2 and HCC by demonstrating that 
diabetes preceded the development of chronic liver disease, as well as an increased 
risk for HCC in patients with longer duration of diabetes. Similar fi ndings were 
reported from a hospital-based case–control study with diabetes being present in 
87 % of cases before the diagnosis of HCC and patients with diabetes duration >10 
years having an adjusted hazard ratio for HCC of 2.2 (95 % CI, 1.2–4.8) compared 
to those with a diabetes duration of 2–5 years. More robust support for diabetes as 
a risk factor for HCC came from a meta-analysis of 13 cohort studies that aimed to 
assess the association between diabetes and HCC. The analysis revealed a statisti-
cally signifi cant 2.5-fold increase in HCC incidence among diabetic patients (95 % 
CI, 1.9–3.2;  p  < 0.01) [ 9 ]. A more recent meta-analysis that included a total of 17 
case–control studies and 32 cohort studies confi rmed the association between dia-
betes and risk of HCC with a pooled relative risk of 2.31 for HCC among diabetic 
patients (95 % CI, 1.87–2.84) [ 68 ]. 

9.5.1     Association of Diabetes Treatment with HCC Risk 

 Several lines of evidence suggest that the type of antidiabetic therapy may increase 
or decrease HCC risk contingent upon mechanism of action [ 68 ]. 

 On one hand, insulin sensitizers such as metformin can improve insulin sensitiv-
ity and suppress cell growth by activating the AMP-activated protein kinase yield-
ing a protective effect on cancer risk [ 69 ]. A retrospective study from Italy that 
included 465 patients with HCC, 618 cirrhotics, and 490 controls found a statisti-
cally signifi cant reduction in HCC risk for diabetics receiving metformin (OR = 0.33; 
95 % CI, 0.1–0.61) [ 70 ]. Another study from the University of Texas reported a 
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similar decrease in the risk for HCC with metformin (OR = 0.3; 95 % CI, 0.2–0.6) 
[ 71 ]. Moreover, a recent study demonstrated that metformin decreased the risk of 
HCC in diabetic patients in a dose-dependent manner with a 7 % risk reduction of 
HCC for each incremental year increase in metformin use [ 72 ]. Interestingly, met-
formin inhibited hepatoma cell line proliferation by inducing cell cycle arrest at the 
G0/G1 phase via AMP-activated protein kinase. Furthermore, metformin had che-
mosensitizing effect in combination with doxorubicin to accelerate HCC regression 
in a mouse xenograft model. 

 On the other hand, exogenous insulin and sulfonylureas lead to an increase in 
circulating insulin levels promoting carcinogenesis and increasing the risk for HCC. 
   Donadon et al. found a statistically signifi cant increase in HCC risk for diabetics 
receiving sulfonylureas or insulin (OR = 2.99; 95 % CI, 1.34–6.65), and similar 
fi ndings were also reported by Hassan et al. (insulin use was associated with HCC 
OR of 1.9; 95 % CI, 0.8–4.6, and sulfonylurea use was associated with HCC OR of 
7.1; 95 % CI, 2.9–16.9) [ 70 ,  71 ]. 

 Overall, in the meta-analysis by Wang et al., the pooled risk estimates for devel-
oping HCC were 0.31 (95 % CI, 0.19–0.49) for diabetics treated with metformin 
and 4.0 (95 % CI, 1.94–8.24) for those treated with sulfonylurea or exogenous insu-
lin [ 68 ]. 

 In addition to the effects of antidiabetic therapy on the risk for liver cancer, statin 
use in diabetics appears to have a protective effect against HCC. Proposed mecha-
nisms include the inhibition of downstream products of the mevalonate pathway 
which are important for the growth of malignant cells [ 73 ] and the inhibition of HSC 
proliferation and their production of collagen [ 74 ]. In a nested, matched, case–control 
study in diabetics, El-Serag et al. examined 1,303 cases and 5,212 controls and found 
a risk reduction for the development of HCC that ranged between 25 and 40 % provid-
ing evidence of the cancer-preventive effect of statins specifi c to HCC [ 75 ].   

9.6     HCC and Nonalcoholic Fatty Liver Disease 

9.6.1     The Epidemic of NAFLD 

 NAFLD is considered the hepatic manifestation of MetS and as such has become 
the most common form of chronic liver disease in the world [ 76 – 78 ]. NAFLD 
encompasses a wide histological spectrum of disease ranging from simple steatosis 
characterized by lipid accumulation in the liver in the form of triglyceride (TG) to 
NASH characterized by the association of lipid accumulation with evidence of 
hepatocyte injury, infl ammation, and various degrees of fi brosis [ 79 ]. NASH is a 
serious condition that can progress to cirrhosis and its feared complications of por-
tal hypertension and end-stage liver disease requiring liver transplantation. It is esti-
mated that in the United States, NAFLD affects 30–45 % of the general population 
and as high as 90 % of the morbidly obese [ 80 ,  81 ]. Furthermore, the aggressive 
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form of NASH affects between 5 and 13 % of Americans, making this entity a rising 
cause of liver-related morbidity and mortality and potentially the main indication 
for liver transplantation in the next decade [ 82 ]. A recent study found that among 
diabetic patients, NAFLD was present in 74 % and NASH in 22.2 % [ 81 ].  

9.6.2     HCC and Cryptogenic Cirrhosis 

 When NASH progresses to cirrhosis, most of the classic histological features of the 
disease disappear, making the diagnosis of the underlying etiology diffi cult [ 83 ]. It 
has been proposed that NASH accounts for the majority of cases of cryptogenic cir-
rhosis (CC) because these patients have a signifi cantly higher prevalence of condi-
tions associated with NASH including obesity and diabetes compared to patients 
with cirrhosis of well-defi ned etiology [ 84 ,  85 ]. Three landmark studies published 
in 2002 expanded the spectrum of NAFLD from CC to HCC. In the fi rst study, 
Bugianesi et al. retrospectively identifi ed 646 Italian patients with cirrhosis- 
associated HCC and found that the prevalence of CC was 6.9 % compared to 55 % 
for HCV-cirrhosis, 16 % for HBV-cirrhosis, and 13 % for alcoholic cirrhosis [ 86 ]. 
Interestingly, the prevalence of pre-cirrhotic obesity, DM2, and dyslipidemia were 
more than twice as prevalent in patients who had CC as in the control group ( p  value 
<0.05 for all metabolic factors). The second study by Marrero et al. demonstrated 
that CC was the second most common etiology of underlying liver disease (29 %) 
after HCV (51 %) in a group of 105 patients with HCC from Michigan likely related 
to the high prevalence of obesity in the United States [ 87 ]. The third study by Ratziu 
et al. in France found CC in 27 % of HCC patients and corroborated the association 
between DM2, IR, and dyslipidemia with both CC and HCC [ 88 ].  

9.6.3     HCC and NASH-Cirrhosis 

 Several studies have directly examined the incidence of HCC in patients with 
NAFLD or NASH-cirrhosis (Table  9.1 ). In a large cohort study that included 7,326 
patients discharged with a diagnosis of fatty liver from Danish hospitals over a 
16-year period, Sorensen et al. found that the risk for primary liver cancer was sig-
nifi cantly elevated in NAFLD patients compared to the Danish general population 
with a standardized incidence ratio of 4.4 (95 % CI, 1.2–11.4) [ 89 ]. A large prospec-
tive US study compared 152 patients with NASH-cirrhosis (median age of 55 years) 
with 150 matched patients with HCV-cirrhosis. Those with NASH-cirrhosis had 
signifi cantly lower risk of developing HCC over a 10-year follow-up period (6.7 % 
vs. 17 %, respectively,  p  < 0.01) [ 90 ]. Hashimoto et al. conducted a case-controlled 
study that included 34 NASH patients with HCC and 348 patients NASH patients 
without HCC [ 91 ]. Risk factors for HCC in this study included older age, low AST 
level, low NAFLD activity score, and advanced fi brosis stage. A prospective cohort 
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study of 137 NASH patients with advanced fi brosis was included in that same study; 
this prospective cohort demonstrated that the 5-year cumulative incidence of HCC 
was 7.6 % [ 91 ]. Finally, a study from the Cleveland Clinic compared 195 patients 
with NASH-cirrhosis to 315 patients with HCV-cirrhosis that were evaluated for 
liver transplantation between 2003 and 2007 [ 92 ]. The yearly cumulative incidence 
of HCC in cirrhotic patients with NASH was 2.6 % compared to 4.0 % for those 
with hepatitis C infection. Interestingly, older age at the time of cirrhosis diagnosis 
and any alcohol consumption were independently associated with the development 
of HCC in the multivariate analysis (hazard ratio of 1.08 and 3.8, respectively; 
 p  < 0.005), supporting the notion that alcohol intake even in small quantities may 
increase the risk of HCC development in the setting of cirrhosis.

9.6.4        HCC and Non-cirrhotic NAFLD 

 New data indicate that HCC can arise in steatotic livers in the absence of cirrhosis. 
In fact, several case series have described the occurrence of HCC in non-cirrhotic 
NAFLD patients. In a Japanese study that included 9 patients with HCC in the set-
ting of NAFLD, one third of patients only had mild hepatic fi brosis and no evidence 
of cirrhosis [ 93 ]. Hashimoto et al. confi rmed these fi ndings by demonstrating that 
12 % of their patients with NASH-HCC had mild fi brosis (fi brosis stage 1–2) [ 91 ]. 

 In a large nationwide survey of 14,530 HCC patients in Japan, NAFLD-HCC and 
unknown HCC accounted for 7.1 % of all cases, but only 62 % of NAFLD-HCC had 
cirrhosis [ 94 ]. A European study by Ertle et al. that enrolled 150 patients with HCC 
(including 36 with NAFLD) intriguingly found that only 58 % of patients with 
NAFLD-HCC had evidence of cirrhosis [ 95 ]. These studies underscore the impor-
tance of HCC screening in high-risk NAFLD patients such as those with family 
history of HCC.   

   Table 9.1    Studies that evaluated the incidence of hepatocellular carcinoma (HCC) in patients with 
nonalcoholic fatty liver disease (NAFLD)   

 References  NASH patients ( n ) 
 Follow-up 
(years) 

 HCC 
incidence (%)  Risk factors 

    Sanyal et al. [ 90 ]  152  10   6.7  None stated 
 Hashimoto et al. 

[ 91 ] 
 34 (case-controlled study) 
 137 (prospective study) 

 5   7.6  Older age 
 Low AST 

 Low NAFLD 
activity score 

 Advanced fi brosis 
 Ascha et al. [ 92 ]  195  3.2  12.8  Older age 

 Any alcohol 
consumption 
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9.7     Summary 

 NAFLD has emerged as the most prevalent chronic liver disease. Population-based 
studies in the United States estimate that the prevalence of NAFLD is at least 30 % 
in adults and as high as 80 % in obese patients and in patients with type 2 diabetes. 
Of additional concern is the fact that the incidence of NAFLD has increased from 
4.5/100,000 to 38/100,000 over the epoch of 1980–1999. Consistent with these data 
is the recognition that obesity and diabetes are risk factors for both NAFLD and 
HCC. Although viral and alcohol-related liver disease account for the majority of 
HCC, the increased incidence of HCC has occurred in parallel with incidences of 
NAFLD, obesity, and diabetes, with the latter two being risk factors for both the 
development and progression of NAFLD. This increased incidence of HCC in 
NAFLD and the fact that there is a predilection for HCC to develop in NAFLD even 
in the absence of cirrhosis has important clinical implications that may change the 
current paradigms for cancer surveillance in these patients. Finally, our increased 
knowledge of the mechanistic pathways that link obesity and diabetes to the patho-
genesis of HCC in NAFLD (discussed above) provide strategies for both the clinical 
management of NAFLD and the development of targeted treatments for HCC asso-
ciated with NAFLD.     
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    Abstract     Obesity and the associated metabolic syndrome produce a complex set of 
alterations both systemically and locally in tissues that support cancer development 
and progression. In prostate cancer (PCa), the weight of evidence suggests that obe-
sity is primarily associated with more aggressive disease and increased risk of bio-
chemical failure following prostatectomy or radiation treatment. Infl ammation 
processes and infl ammation-associated signaling pathways are upregulated in the 
obese state, and both human and mouse studies support an important role for infl am-
mation in obesity-driven PCa progression. Infl ammation signaling pathways along 
with other signaling pathways (e.g., growth factor signaling pathways) altered in the 
obese state represent promising targets for both lifestyle and pharmacologic inter-
ventions to prevent or control PCa progression.  
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10.1         Introduction 

10.1.1     Obesity 

 The prevalence of obesity, defi ned as a body mass index (BMI) ≥30 kg/m 2 , has 
increased dramatically in recent decades in the United States, and nearly 35 % of 
adults and 20 % of children are now obese [ 1 ]. Worldwide, an estimated 1.1 billion 
adults are overweight and 500 million adults are obese (  http://www.iaso.org/policy/
aboutobesity    ). The obese state is characterized by an excessive expansion of adi-
pose tissue mass, which manifests as adipocyte hypertrophy (increased size), hyper-
plasia (increased number), and increased intracellular lipids. Excessive adiposity 
per se can exert untoward structural and biomechanical effects on organs (such as 
the lungs, liver, and pancreas), blood vessels, musculoskeletal system, and other 
tissues [ 2 ]. In addition, the resulting adipocyte hyperplasia and hypertrophy are 
associated with adipocyte dysfunction that can trigger local and systemic changes 
characteristic of the metabolic syndrome that increase risk and worsen prognosis of 
several cancers and other chronic diseases [ 3 ]. 

 Among obese adults, approximately 60 % meet the criteria for the metabolic 
syndrome, a state of metabolic dysregulation characterized by insulin resistance, 
hyperglycemia, dyslipidemias (particularly hypertriglyceridemia), and hypertension 
[ 4 ]. In obesity and/or metabolic syndrome, alterations also occur in circulating levels 
of insulin, bioavailable insulin-like growth factor (IGF)-1, adipokines (e.g., leptin, 
adiponectin, monocyte chemotactic factor), infl ammatory factors (e.g., cytokines 
such as interleukin 6 [IL-6]), and angiogenesis factors (e.g., vascular endothelial 
growth factor [VEGF] and plasminogen activator inhibitor [PAI]-1) [ 5 ,  6 ]. Through 
these mediators, obesity and metabolic syndrome are linked to various chronic 
 diseases [ 5 ,  7 ] such as cardiovascular disease, type II diabetes, and cancer, including 
prostate cancer (PCa) that is the focus of this chapter.  

10.1.2     Obesity and Cancer 

 Overall, an estimated 15–20 % of all cancer deaths in the USA are attributable to 
overweight and obese body types [ 8 ]. Obesity is associated with increased mortality 
from cancer of the prostate and stomach in men; breast (postmenopausal), endome-
trium, cervix, uterus, and ovaries in women; and kidney (renal cell), colon, esopha-
gus (adenocarcinoma), pancreas, gallbladder, and liver in both genders [ 8 ]. While 
the relationships between metabolic syndrome and specifi c cancers are less well 
established, fi rst reports from the Metabolic Syndrome and Cancer Project, a 
European cohort study of approximately 580,000 adults, confi rm associations 
between obesity (or BMI) in metabolic syndrome and risks of colorectal, thyroid, 
and cervical cancer [ 9 ]. 
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 In this chapter, we discuss possible mechanisms underlying the links between 
obesity, metabolic syndrome, and PCa, with an emphasis on obesity-associated adi-
pocyte dysfunction, infl ammation, and growth factor signaling. Specifi cally, we 
describe the dysregulation of growth signals (including insulin, IGF-1, and down-
stream signaling pathways), adipokines (including leptin and adiponectin), infl am-
matory cytokines (including IL-6 and tumor necrosis factor-α [TNFα]), and 
angiogenesis factors (including VEGF and PAI-1) in the obese state that may con-
tribute to more aggressive disease and higher mortality in PCa patients.   

10.2     Relationship Between Obesity and PCa 

10.2.1     Summary of Data from Epidemiologic Studies 

 Worldwide, PCa is the second most commonly diagnosed non-cutaneous cancer in 
men and the sixth most common cause of death [ 10 ]. In the United States, it is the 
most frequently diagnosed non-cutaneous cancer and the second leading cause of 
cancer-related mortality in this population [ 11 ,  12 ]. An estimated 241,740 new 
cases will be diagnosed in 2012. 

 Data associating obesity and PCa risk have been inconclusive [ 13 ,  14 ]; however, 
recent studies have shown increased risk of biochemical failure and metastasis, as 
well as poorer survival among obese PCa patients with androgen-dependent tumors, 
especially those who experienced rapid weight gain [ 15 ]. Men with low-volume 
PCa have a lower BMI, less body fat, and a smaller waist-to-hip ratio than men with 
high-volume PCa, which agrees with other reported fi ndings [ 16 – 18 ]. Fat is the 
most energy dense component and has been the focus of most PCa dietary epide-
miologic investigations. High consumption of energy and fat, especially saturated 
fat [ 19 – 21 ], is associated with advanced stage PCa and mortality [ 19 ,  22 ]. Several 
biologic mechanisms have been postulated to explain the role of obesity in PCa 
progression and these will be discussed in more detail in the sections that follow.   

10.3     Mechanisms Associated with Obesity and PCa 

 As noted above, several biological mechanisms have been postulated to explain the 
association between obesity and aggressive disease in PCa patients, including 
increases in circulating levels of growth factors (i.e., IGF-1 and leptin), hyperinsu-
linemia, and infl ammation as well as diet-induced alterations in adiponectin, steroid 
hormones, and possibly other factors (e.g., angiogenesis-related factors). These 
mechanisms will be discussed in more detail below. 
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10.3.1     Growth Factor Signaling 

10.3.1.1     Insulin and Insulin-Like Growth Factor 1 

 Insulin is a peptide hormone, produced by beta cells of the pancreas, and is critical for 
the regulation of glucose and fat metabolism in the body. Metabolic dysfunction, 
mainly hyperinsulinemia and insulin resistance, is commonly associated with Western 
lifestyle and obesity and is considered as one of the risk factors for more aggressive 
PCa [ 23 – 26 ]. Insulin promotes cell division and proliferation in PCa and facilitates 
the expression of other growth factors and their regulators and acts as a cell survival 
factor inhibiting apoptosis [ 27 – 32 ]. Evidence suggests that serum level of C-peptide, 
a marker of insulin secretion, is positively correlated with obesity, and higher levels 
of this marker have been associated with high-grade PCa and PCa- specifi c mortality 
[ 33 ]. In obesity, adipose tissue releases increased amounts of free fatty acids, TNFα, 
resistin, and reduced amounts of adiponectin, which leads to the development of 
insulin resistance and chronic hyperinsulinemia. The higher levels of insulin in turn 
decrease the synthesis of insulin-like growth factor-binding protein 1 (IGFBP1) from 
the liver and possibly from other tissues and also decrease its blood levels. 
Hyperinsulinemia is also associated with reduced blood levels of IGFBP2. The 
IGFBPs normally bind and inhibit the action of IGF-1. So the resultant reduction in 
IGFBPs leads to increased levels of bioavailable, free IGF-1 in the circulation. Both 
the insulin and IGF-1 receptors (IGF-1Rs) are expressed in normal and neoplastic 
prostatic tissue [ 34 – 36 ], and physiological doses of insulin and IGF-1 act as mitogens 
for a variety of cancer cells, including PCa cells. Insulin and IGF-1 signal through the 
insulin receptors (IRs) and IGF-1R, respectively, to promote cell proliferation and 
inhibition of apoptosis, contributing to cancer progression. Binding of IGF-I or insu-
lin to their cognate receptors leads to activation of a number of downstream signaling 
pathways following phosphorylation of insulin receptor substrates (e.g., IRS-1, IRS-
2) and Src homology 2 domain-containing adapter protein (Shc). Phosphorylated Shc 
activates the Ras/Raf/mitogen-activated protein kinase (MAPK) pathway and ulti-
mately stimulates cell growth and proliferation. Phosphorylated IRS-1 activates the 
phosphatidylinositol 3′ kinase (PI3K)/Akt pathway, leading to inhibition of apoptosis 
and stimulation of cell proliferation through downstream mediators including BAD, 
mTOR, P70S6K, and nuclear factor-κB (NF-κB). Akt is normally inhibited by the 
tumor suppressor gene phosphatase and tensin homolog (PTEN), which is often lost 
in advanced PCa [ 32 ,  34 ,  37 ]. Thus, changes in this signaling pathway associated 
with obesity may be exacerbated in the presence of PTEN defi ciency.  

10.3.1.2     Sex Steroids 

 Androgens are essential for normal development, differentiation, and proliferation of 
prostatic tissue [ 38 ], and it is generally believed that higher concentrations of andro-
gens are associated with increased PCa risk. Testosterone and its metabolite 
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dihydrotestosterone (DHT) bind to the androgen receptor (AR) which then binds to 
androgen response elements in the DNA of prostate cells to initiate changes in gene 
expression [ 39 ]. Adipose tissue produces the enzyme aromatase, which catalyzes the 
conversion of androgens to estrogens (note that DHT is not converted to estrogens by 
aromatase). Thus, obesity is generally associated with modestly lower serum concen-
trations of testosterone, lower concentrations of sex hormone-binding globulin, and 
higher concentrations of estrogens [ 40 – 42 ]. Interestingly, recent data suggest that 
higher serum testosterone levels are associated with a reduced risk of high-grade PCa 
but an increased risk of low-grade tumors [ 43 ]. It has been hypothesized that lower 
androgen concentrations may provide a microenvironment, which favors more aggres-
sive and/or androgen-independent tumor growth and ultimately disease progression 
[ 32 ]. Another explanation is that individuals with low serum testosterone levels are at 
an increased risk of developing metabolic syndrome. However, it is not clear whether 
low serum testosterone levels associated with obesity and insulin resistance or insulin 
alone, in the absence of high serum testosterone, is suffi cient to trigger progression of 
PCa to higher-grade tumors. Alternatively, lower testosterone concentrations are asso-
ciated with a reduced risk of low-grade tumors because low-grade tumors are slow 
growing and need androgen stimulation for progression [ 44 ]. Note that intraprostatic 
conversion of testosterone to DHT, which is not strongly related to circulating androgen 
levels, may be more infl uential in PCa progression than androgens in the circulation.   

10.3.2     Adipokines 

 Two kinds of adipose tissues are present in mammals: white adipose tissue (WAT) 
and brown adipose tissue. WAT is the most abundant and is considered as the major 
site of energy storage [ 45 ]. In addition to adipocytes, adipose tissue also contains 
pre-adipocytes, endothelial cells, fi broblasts, leukocytes, and, most importantly, 
macrophages. Macrophages infi ltrate adipose tissue and they remain in increased 
numbers in association with obesity [ 46 ]. Adipose tissue is no longer considered to 
be an inert tissue functioning only as energy storage, but plays an important role in 
the regulation of many pathological processes. Polypeptide hormones derived from 
adipocytes are known as adipokines. Currently more than 50 different types of adi-
pokines are recognized such as leptin, adiponectin, resistin, serpin, lipocalin 2, 
retinol- binding protein 4 (RBP4), zinc-α2, glycoprotein, vaspin, visfatin, omentin, 
apelin, TNFα, IL-6, IL-1, CC chemokine ligand 2, and mediators of the clotting 
process, such as PAI-1 and chemerin [ 45 ,  47 ]. Adipokines may exert their biologic 
effects either at a local level via autocrine/paracrine pathways or in an endocrine 
manner by entering the circulation and activating receptors on more distant target 
cells. Paracrine effects of adipokines are important in cases of PCa progression 
where extracapsular extension and invasion of the retropubic fat pad occurs [ 48 ]. 
This could result in the exposure of malignant cells to high concentrations of poten-
tially proangiogenic, survival, and proliferative factors, which may enhance their 
capacity for further growth and metastasis. Adiponectin and leptin are the most 
abundant and most studied adipokines produced by adipocytes. 
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10.3.2.1     Leptin 

 Leptin, fi rst described by Zhang et al. in 1994 [ 49 ], is a 16-kD adipokine produced 
predominantly by adipocytes in WAT. Circulating leptin concentrations exhibit a 
positive correlation with total body fat, so that serum leptin is elevated in obese 
individuals compared to lean individuals [ 50 ]. Although numerous epidemiologic 
studies have investigated the relationship between obesity, circulating leptin levels, 
and PCa [ 51 – 57 ], results from these studies are still inconclusive. The risk for PCa 
in individuals with higher levels of leptin has not been demonstrated [ 51 – 57 ]. 
However, it was found that higher leptin levels were linked to tumor progression 
and advanced disease [ 51 ,  52 ,  54 – 57 ]. Collectively, the current data suggest that 
leptin may be predominantly involved in PCa progression. 

 Several in vitro studies have shown that leptin induces proliferation, cell migra-
tion, and invasion and/or prevents apoptosis in androgen-independent human PCa 
cell lines [ 58 ]. Leptin also induces expression of several angiogenic growth factors 
including VEGF, transforming growth factor-beta1 (TGF-β1), and basic fi broblast 
growth factor (bFGF) that may contribute to its action in PCa progression [ 59 ,  60 ]. 
These responses to activation of the leptin receptor are mediated by several signaling 
pathways including the Janus kinase-signal transducer and activator of  transcription 
(JAK/STAT) (especially Stat3), phosphatidylinositol 3-kinase (PI3-K)/Akt, and 
c-Jun NH2-terminal kinase (JNK) pathways [ 61 ]. Alterations in these signaling 
pathways are not only critical in prostate carcinogenesis and malignant transforma-
tion, but also important in obesity, diabetes, and insulin resistance [ 59 ,  62 ].  

10.3.2.2     Adiponectin 

 Adiponectin, also known as 30-kD adipocyte complement-related protein (Acrp30), 
adipoQ, APM-1, or gelatin-binding protein 28 (GBP28), is the most abundant cir-
culating adipokine synthesized mainly by adipocytes but also expressed by skeletal 
muscle cells, cardiac myocytes, and endothelial cells [ 45 ,  48 ]. In contrast to other 
adipokines, circulating levels of adiponectin are negatively correlated with central 
obesity, BMI, visceral fat accumulation, and insulin resistance. Epidemiological 
studies show more consistent inverse associations between circulating adiponectin 
levels and cancer [ 47 ]. Reductions in the levels of plasma adiponectin have also 
been observed in obesity-related conditions such as type 2 diabetes, cardiovascular 
disease, hypertension, and metabolic syndrome [ 63 ]. Adiponectin has antiprolifera-
tive, anti-angiogenesis, and proapoptotic activity, and the plasma levels are found to 
be lower in patients with PCa compared to patients with benign prostate hyperplasia 
(BPH) [ 47 ]. 

 Although the exact mechanism of antitumor activity of adiponectin is not clearly 
understood, it is thought to act by modulation of signaling pathways including 
AMP-activated protein kinase (AMPK), MAPK, NF-κB, Stat3, and p53 [ 47 ,  48 , 
 62 ]. Two receptor isoforms are known to exist for adiponectin: adiponectin receptor 
1 (Adipo-R1) and adiponectin receptor 2 (Adipo-R2). Activation of the receptor(s) 
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by adiponectin stimulates the activation of AMPK, peroxisome  proliferator- activated 
receptor-α (PPARα), and p38 MAPK. Activation of AMPK is considered to be one 
of the most important signaling events for metabolic effects of adiponectin and has 
also been implicated in prostate carcinogenesis [ 48 ]. Adiponectin regulates the 
expression of several pro- and anti-infl ammatory cytokines. Its main anti- 
infl ammatory function might be related to the suppression of the synthesis of TNFα 
and interferon-γ (IFNγ) and to induce the production of anti-infl ammatory cyto-
kines such as interleukin-10 (IL-10) and IL-1 receptor antagonist (IL-1RA). 
Activation of PPARs also exerts anti-infl ammatory effects through inhibition of the 
transcriptional activation of proinfl ammatory response genes [ 45 ]. Recent evidence 
suggests that the ratio of adiponectin to leptin levels is critical for the overall effects 
of these two important adipokines [ 64 ].   

10.3.3     Angiogenesis Factors 

10.3.3.1     VEGF 

 VEGF, a heparin-binding glycoprotein produced by adipocytes and tumor cells, has 
angiogenic, mitogenic, and vascular permeability-enhancing activities specifi c for 
endothelial cells [ 65 ]. Circulating levels of VEGF are increased in obese, relative to 
lean, humans and animals, and increased tumoral expression of VEGF is associated 
with poor prognosis in several obesity-related cancers [ 66 ]. The need for nutrients 
and oxygen triggers tumor cells to produce VEGF, which leads to the formation of 
new blood vessels to nourish the rapidly growing tumor and facilitate the metastatic 
spread of tumor cells [ 65 ]. Adipocytes communicate with endothelial cells by pro-
ducing a variety of proangiogenic and vascular permeability-enhancing factors. 
These include VEGF, IGF-1, PAI-1, leptin, hepatocyte growth factor, and fi broblast 
growth factor-2 [ 67 ]. In the obese, nontumor setting, these factors stimulate neovas-
cularization in support of the expanding fat mass. These adipose-derived factors 
may also contribute to obesity-associated enhancement of tumor angiogenesis. 

 In PCa, VEGF plays a major role in endothelial cell differentiation, proliferation, 
migration, and vessel formation [ 68 – 71 ]. In addition to adipocytes, VEGF is pro-
duced by PCa cells and tumor-infi ltrating lymphocytes [ 72 ,  73 ]. Systemic VEGF 
was found to be signifi cantly elevated in PCa patients [ 74 ] and patients with meta-
static disease [ 70 ]. In a cohort of 50 radical prostatectomy specimens, El-Gohary 
et al. [ 75 ] showed that VEGF expression correlated signifi cantly with angiolym-
phatic invasion and Gleason score. Clinical studies comparing PCa with BPH 
revealed that VEGF expression was correlated with increased levels of angiogenesis 
[ 76 ]. The levels of VEGF in serum, plasma, or urine are correlated with patient 
outcome in both localized and disseminated PCa [ 70 ,  77 ,  78 ]. In addition, the levels 
of the VEGFR were correlated with a poorer grade of tumor differentiation and 
prognosis in PCa [ 79 ]. Normal prostate tissue expresses minimal to no VEGF, 
unlike PCa tissue that stains positively for VEGF in areas of increased microvessel 
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density (MVD) [ 73 ]. PCa cells express VEGF in vitro and in vivo [ 80 ]. VEGF 
expression by PCa specimens [ 81 ] and human PCa cell lines (LNCaP, PC-3, and 
DU145) is far greater than that by stromal cells of the normal prostate [ 73 ,  82 ]. 
VEGF expression may also contribute to PCa-induced osteoblastic activity in vivo. 
Using a TRAMP model, Isayeva et al. demonstrated that inhibitors of the VEGFR-2 
delayed tumor progression only when administered in the early stages of PCa, 
before a signifi cant rise in VEGF levels was observed [ 83 ]. In a preclinical study 
using a xenograft model, injecting human DU145 cells in nude mice, inhibition of 
VEGF resulted in decreased tumor proliferation [ 84 ].  

10.3.3.2     Plasminogen Activator Inhibitor-1 

 PAI-1 is a serine protease inhibitor produced by endothelial cells, stromal cells, and 
adipocytes in visceral WAT [ 85 ]. Increased circulating PAI-1 levels, frequently 
found in obese subjects, are associated with increased risk of atherogenesis and 
cardiovascular disease, diabetes, and several cancers [ 6 ,  85 ]. PAI-1, through its inhi-
bition of urokinase-type and tissue-type plasminogen activators, regulates fi brinoly-
sis and integrity of the extracellular matrix. PAI-1 is also involved in angiogenesis 
and thus may contribute to obesity-driven tumor cell growth, invasion, and metasta-
sis [ 6 ]. Although PAI-1 levels in obese individuals may be reduced via weight loss 
or TNFα blockade [ 86 ,  87 ], the role of PAI-1 in tumorigenesis remains controversial 
[ 85 ]. Plasminogen activator activities are elevated in PCa compared with BPH [ 88 ]. 
Swiercz et al. demonstrated that exogenously applied recombinant PAI-1 is a pow-
erful inhibitor of angiogenesis in three different in vitro models and is a powerful 
anticancer agent in a SCID mice inoculated with LNCaP cells [ 89 ]. Therefore, fur-
ther study is warranted to determine the exact role of PAI-1 in PCa and other 
cancers.   

10.3.4     Infl ammation and Infl ammatory Mediators 

 Chronic infl ammation is now considered one of the major risk factors linking obe-
sity and the development of PCa [ 90 – 92 ]. The infl ammatory response is character-
ized by increased synthesis of various cytokines, acute-phase reactants such as 
C-reactive protein (CRP), and the activation of proinfl ammatory signaling pathways 
[ 45 ]. Adipose tissues in obese individuals and in animal models of obesity are infi l-
trated by a large number of macrophages, and this is associated with systemic 
infl ammation and insulin resistance as noted above [ 93 ]. Macrophages are also the 
main source of soluble mediators such as TNFα. In addition to macrophages, adipo-
cytes are also responsible for the production of IL-6, CCL2, and other infl ammatory 
mediators that further contribute to macrophage infi ltration and proinfl ammatory 
cytokine production from the adipose tissue. 

J. Blando et al.



243

 IL-6 is a proinfl ammatory cytokine and is involved in the regulation of various 
cellular functions including proliferation, apoptosis, angiogenesis, differentiation, 
and regulation of the immune response [ 94 ]. Clinically, plasma IL-6 levels posi-
tively correlate with adiposity and insulin resistance in human populations [ 93 ]. 
Although not exclusively secreted by adipocytes, as much as one-third of circulat-
ing IL-6 originates from adipose tissue, and expression and secretion of IL-6 is 2–3 
times greater in visceral relative to subcutaneous adipose tissue [ 48 ]. 

 In PCa patients, serum IL-6 levels are higher in those patients with metastatic 
disease compared to those with localized disease [ 46 ,  95 ]. It has also been reported 
that serum IL-6 levels >7 pg/mL are associated with a poor prognosis in men with 
PCa [ 96 ]. 

 Various in vitro studies have shown that IL-6 is secreted by androgen- independent 
PCa cells suggesting an autocrine effect on tumor cells and paracrine effects on 
normal cells in the tumor microenvironment [ 94 ]. High expression of IL-6 in vari-
ous organs particularly lung, liver, brain, and bone attracts the circulating tumor 
cells and therefore promotes metastasis [ 97 ]. In one study it was reported that IL-6 
levels were signifi cantly higher in PCa patients with bone metastasis compared to 
patients without metastasis [ 98 ]. In another study, serum IL-6 levels were found to 
be higher in castration-resistant PCa compared to normal controls as well as patients 
with BPH, prostatitis, and localized or recurrent disease [ 99 ]. Higher IL-6 levels in 
obese individuals also contribute to PCa progression. The periprostatic adipose tis-
sue (adipose tissue surrounding the prostate) is frequently invaded by prostate tumor 
cells. Studies have suggested that periprostatic adipose tissue produces signifi cantly 
higher local IL-6 and that may contribute to PCa progression in obese individuals 
[ 100 ,  101 ]. 

 The biological activity of IL-6 is mediated by binding with the IL-6R/gp130 
receptor complex. Dimerization of IL-6/IL-6R/gp130 leads to the initiation of intra-
cellular signaling, through the JAK/STAT, mitogen-activated protein kinase 
(MAPK), and phosphatidylinositol 3-kinase/Akt kinase (PI3-K/AKT) pathways 
[ 102 ]. This leads to the expression of various genes involved in infl ammation and 
cancer development. Binding of IL-6 to its receptor also leads to increased receptor 
activator of nuclear factor kappa B ligand (RANKL) expression. IL-6 may also 
activate AKT via increased JAK-dependent PI3K activity resulting in cell survival 
and anti- apoptosis signaling. Concomitantly, increased MAPK activity downstream 
of JAK activation can lead to upregulated cell growth, proliferation, and mitosis. In 
some cases, IL-6 also acts through soluble IL-6R which binds to gp130 and initiates 
signal transduction [ 94 ]. Recent studies have also revealed a role of IL-6 in regula-
tion of the AR [ 103 – 105 ]. In the absence of androgen, IL-6 causes activation of the 
AR. In low-concentration conditions, androgen action is potentiated by IL-6, lead-
ing to  synergistic activation of the AR [ 106 ]. These observations demonstrate a 
cross talk between the IL-6 pathway and AR that may play a signifi cant role during 
PCa  progression leading to androgen independence. 

 TNFα is a cytokine involved in systemic and acute infl ammation. TNFα is syn-
thesized as a 26-kD membrane-bound protein and cleaved into a 17-kD soluble 
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protein by TNF-converting enzyme (TACE) [ 107 ]. TNFα is predominantly  produced 
by macrophages, CD4+ T cells, and natural killer (NK) cells, although nonimmune 
cells such as fi broblasts, smooth muscle, and tumor cells have also been reported to 
secrete low amounts of this cytokine [ 108 ]. TNFα is regulated by the proteolytic 
activity of stromal metalloproteinases, secreted from the membranes of somatic 
cells [ 109 ], and is directly produced by tumor-associated macrophages (TAMs) 
[ 110 ]. Signifi cantly elevated levels of TNFα are found in patients with metastatic 
disease compared to those with localized disease [ 95 ]. According to Nakashima 
et al. [ 111 ], serum TNFα activity was positive in 76 % of the patients with relapsed 
disease who had a signifi cantly higher mortality rate than those with undetectable 
serum TNFα levels. Obesity-related TNFα levels could thus potentially enhance 
PCa progression. 

 NF-κB has been shown to be activated by reactive oxygen species and many 
carcinogens, in addition to proinfl ammatory chemokines and cytokines such as 
TNFα [ 112 – 114 ]. Recently, Huerta-Yepez et al. showed that TNFα has a role in 
conveying resistance to Fas-induced apoptosis through a similar pathway involving 
NF-κB in human PCa cells [ 112 ]. Cyclooxygenase-2 (COX-2), upregulated during 
the infl ammatory response, is thought to be inducible by a number of proinfl amma-
tory cytokines, including TNFα [ 115 ,  116 ]. Subbarayan et al. found that TNFα 
could induce COX-2 expression in both normal prostate and androgen-unresponsive 
PCa cells where upregulation of COX-2 was related to increases in cellular levels of 
prostaglandins [ 117 ]. COX-2 expression has been suggested to be dependent on 
infl ammatory cytokine/NF-κB pathways in PCa [ 118 ], supporting a possible posi-
tive feedback between infl ammatory mediators, prostaglandin production, and PCa 
progression. Wang et al. [ 119 ] found that foci of chronic infl ammation within 
human samples of BPH were associated with accumulation of infl ammatory cells. 
Moderate to high accumulation of these cells, particularly T lymphocytes and mac-
rophages, was highly correlated with positive staining for COX-2.   

10.4     Lessons Learned from Animal Models of PCa 

10.4.1     Animal Model Studies on Obesity and PCa 

 PCa research has been greatly aided by the development and use of relevant animal 
models, particularly transgenic and knockout mouse models [ 120 – 123 ]. Only a few 
reports have appeared dealing with the effects of obesity, per se, on PCa development 
and progression using animal models. In earlier studies using the TRAMP model, 
mice with higher body weight and body fat content had larger and more aggressive 
tumors compared to those with lower body weight and body fat content [ 124 ]. 
Although the TRAMP mice in this study were not “obese,” the mice with the highest 
body fat content had higher levels of leptin and lower levels of adiponectin. Additional 
studies using TRAMP mice fed a “Western-type” diet enriched in both fat and cho-
lesterol showed accelerated prostate tumor growth and increased  histological grade 
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of tumors [ 125 ]. This diet also increased lung metastases. It is not clear whether there 
were differences in body weight between the “Western diet” group and control diet 
group in this study as body weight and fat mass data were not reported. However, 
these data would appear to support epidemiological studies showing that fat, and, in 
particular, saturated fat, is an independent predictor of disease progression [ 19 ,  21 , 
 22 ]. These data are also supported by another study using the HiMyc mouse model 
of PCa [ 126 ]. In this regard, Kobayashi et al. [ 127 ] showed that if HiMyc mice were 
maintained on a low-fat (LF, 12 kcal %) diet vs. a high-fat isocaloric (HF, 42 kcal %) 
diet, the transition from prostate intraepithelial neoplasia (PIN) to PCa was delayed, 
and there was a decrease in prostatic Akt activity as well as a decrease in phosphory-
lation of the downstream targets p-70S6K and GSK3β. Again, there were no differ-
ences in body weight between the HF and LF diet groups in this study. 

 We recently reported a study to evaluate the impact of dietary energy balance on 
PCa progression using HiMyc mice [ 126 ]. In this study, we compared the effect of 
different body phenotypes from lean to obese using diets of different caloric density. 
Diet-induced obesity (DIO) enhanced PCa progression in the ventral prostate (VP) 
of HiMyc mice [ 126 ]. Notably, DIO (mice fed a diet containing 60 kcal % fat) 
increased the incidence of invasive adenocarcinomas as well as the severity of these 
tumors compared to HiMyc mice on control diet (i.e., modifi ed AIN76 diet contain-
ing 10 kcal % fat). In contrast, calorie restriction (30 % CR) completely prevented 
the formation of invasive adenocarcinomas in these mice. These dietary energy 
balance-induced alterations in PCa progression in HiMyc mice were associated with 
differences in circulating levels of insulin, IGF-1, leptin, adiponectin, and resistin. 
In particular, obese mice had higher levels of insulin, IGF-1, leptin, and resistin and 
lower levels of adiponectin compared to lean mice on a 30 % CR diet. Further analy-
sis revealed that both growth factor (i.e., Akt/mTOR) and especially infl ammatory 
signaling (i.e., Stat3, NF-κB, IL-1, IL-6, IL-7, IL-23, IL-27, NF-κB1, and TNFα) 
pathways were upregulated in VP of mice on the obesity-induced diet. Dramatic 
increases in infl ammatory cell infi ltrates (macrophages and T cells) were also 
observed in the VP of HiMyc mice on the obesity-induced diet. In addition to these 
changes, there were dramatic increases in angiogenesis (increased number and size 
of blood vessels in the VP) accompanied by dramatic increased in expression of all 
VEGF family members. These data provide strong support for a role of local infl am-
mation in the effects of obesity on PCa progression using this model system. 

 Ribeiro et al. [ 128 ] evaluated the infl uence of genetically induced obesity on PCa 
cell growth and angiogenesis in vivo. In these studies, the androgen-insensitive 
murine PCa cell line, RM1, when inoculated in obese, hyperleptinemic  db / db  mice 
produced small tumors with a low proliferation index and angiogenesis. In contrast, 
when these cells were injected into obese, leptin-defi cient  ob / ob  mice, larger tumors 
were produced with a higher proliferation index when compared to control mice. 
These data suggested that high leptin levels are not favorable for the androgen- 
insensitive PCa cell line and it may limit the growth of these tumor cells. While 
these studies do not shed light on the role of infl ammation in PCa progression, they 
demonstrate the complexity of genetic models of obesity for such studies. In addi-
tion, evaluating serum levels of individual factors such as leptin may not adequately 
predict local changes in prostate tissues. In a recent study, Zhang et al. [ 129 ] reported 
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that WAT can directly mediate cancer progression by serving as a source of cells 
(adipose stromal cells, ASCs) that migrate to tumors and promote neovasculariza-
tion. Recruitment of ASCs by tumors was suffi cient to promote tumor growth. In 
this study, ASCs injected subcutaneously at a distant site migrated to the site of 
DU145 xenografts promoting tumor growth and angiogenesis. 

 In other studies, serum obtained from obese Zucker rats that harbor a leptin 
receptor mutation was shown to stimulate proliferation of human PCa cells (i.e., 
LNCaP cells) but not rat PCa cells (AT3B1) [ 130 ]. This was attributed to higher 
concentrations of VEGF in the serum of the obese rats. In further studies using 
C57BL/6 mice on an obesity-induced diet, serum from these mice was found to 
contain higher levels of leptin, VEGF, PAI-1, and IL-6 and lower levels of testoster-
one compared to mice fed a control diet [ 131 ]. Serum from these obese mice 
increased proliferation of LNCaP and PacMetUT1 cells but had no effect on PrEc 
and DU145 cells. Furthermore, serum from obese mice induced increased invasion, 
migration, and MMP-9 activity in LNCaP, PacMetUT1, and DU145 cells and 
showed increased expression of EMT-related markers. These later two studies 
emphasize the potential local effects of circulating factors, including infl ammatory 
cytokines, altered in the obese state on PCa cells localized within the prostate or at 
other sites.   

10.5     Strategies for Reversing the Effects of Obesity on PCa 

 Obesity is clearly associated with increased morbidity and mortality. Weight loss in 
overweight and obese individuals reduces risk factors for diabetes and cardiovascu-
lar disease. Weight loss and calorie restriction may also be an important strategy for 
preventing or reducing progression of PCa. A variety of effective options exist for 
reducing weight including dietary therapies such as low-calorie diets and lower-fat 
diets, exercise, behavior therapy techniques, medications, surgery, and combinations 
of these techniques [ 132 ]. Losing weight can reduce the risk of many cancers, even 
a weight reduction of only 5–10 % may be benefi cial and improve health [ 133 ]. 

 Although the relationship between physical activity and obesity is undisputed, 
the putative association between physical activity and PCa is inconclusive [ 134 –
 136 ]. Postulated mechanisms include the ability of physical activity to modulate 
testosterone levels and immune function, insulin sensitivity, and reduce obesity 
[ 137 ,  138 ]. Physical activity increases insulin sensitivity and decreases actual insu-
lin secretion. Increased serum levels of IGFBP-3 are also associated with greater 
physical activity. Some studies suggested an association between physical activity 
and leptin levels [ 139 – 141 ]. Exercise appears to lower circulating levels of IGF-1 
and insulin and increase levels of sex hormone-binding globulin [ 142 ]. In vitro 
 studies have shown that serum from men participating in exercise intervention pro-
grams can induce apoptosis and decrease the overall growth of prostate carcinoma 
(LNCaP) cells [ 143 ]. In a study of PCa patients on “watchful waiting,” Ornish et al. 
reported that those in the experimental group (vegan diet, moderate aerobic 
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exercise, vitamin supplements, and a stress management program) had lower levels 
of PSA than did those in the control group, suggesting that intensive lifestyle 
changes may affect the progression of early, low-grade PCa [ 144 ]. 

 Weight loss strategies and increased physical activity could provide a decrease in 
obesity and parameters associated with metabolic syndrome with potentially benefi -
cial effects on PCa progression in certain individuals. However, it may not be pos-
sible for most individuals to undergo extensive dietary manipulation and/or perform 
rigorous physical exercise. Thus, another important approach to offsetting the 
effects of obesity on PCa and other cancers is to identify novel agents that can pro-
duce some of the same benefi cial effects of CR. Such agents or combination of 
agents could be combined with lifestyle changes as an optimal prevention strategy. 
An ideal agent for this purpose should produce metabolic, hormonal, and physio-
logical effects similar to CR, without signifi cant reduction in long-term food intake, 
and activate stress response pathways similar to CR and fi nally extend life span and 
reduce or delay the onset of age-related diseases [ 145 ]. Several compounds, espe-
cially naturally occurring phytochemicals, have been examined as promising agents 
in this regard. These include resveratrol, curcumin, epigallocatechin gallate 
(EGCG), quercetin, ursolic acid, rapamycin, and metformin. 

 Resveratrol, a plant-derived polyphenol in the skin of red grapes, is one of the 
most studied CR mimetics. Resveratrol has been shown to activate SIRT1 in cells 
and thus mimic the actions of CR without restriction of food intake. Treatment with 
resveratrol produces a transcriptional response in cells similar to CR and in obese 
mice; it has been shown to increase insulin sensitivity [ 146 ,  147 ]. A recent report 
suggested that dietary resveratrol prevents high-grade PIN development in the PTEN 
knockout mouse model of PCa by modulating mTORC1 and SIRT1 [ 148 ]. Curcumin 
is a major chemical component of turmeric ( Curcuma longa ) and widely used as a 
food additive in the Indian subcontinent. Various in vitro and in vivo data have sug-
gested a potential chemopreventive role of curcumin in PCa. For example, curcumin 
was found to inhibit tumor development in TRAMP model either alone or in combi-
nation with phenethyl isothiocyanate (PEITC) [ 149 ]. The green tea polyphenol 
EGCG, another potential CR mimetic agent, decreased PCa progression in the 
TRAMP mouse model by inhibiting IGF-1 signaling [ 150 ]. All these observations 
indicate that phytochemicals can be considered as potential CR mimetics that might 
be benefi cial in reversing the development and/or progression of obesity- related PCa. 

 Recently, it has been shown that diabetic patients taking metformin have reduced 
cancer incidence for a number of cancers [ 151 – 153 ]. Metformin is a biguanide class 
of antidiabetic agent widely used for the treatment of type II diabetes for its insulin- 
sensitizing effects. Recent studies also suggest that metformin has benefi cial effects 
on PCa [ 153 ]. For example, in one study use of metformin produced 44 % reduction 
in PCa cases in Caucasian men compared to the control population [ 152 ]. Various 
in vitro and animal studies have also demonstrated the anticancer activity of metfor-
min in PCa [ 154 ,  155 ]. Metformin activates AMPK which is thought to be the pri-
mary mechanism through which it exerts its anticancer effects. Thus, metformin 
may be a promising CR mimetic compound for reversing the effects of obesity on 
PCa as well as other cancers.  
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10.6     Concluding Remarks 

 Obesity and the associated metabolic syndrome produce a complex set of altera-
tions both systemically and locally in tissues that support cancer development and 
progression. Adipose tissue dysfunction, along with multiple hormones, growth 
factors, infl ammatory cytokines, and other mediators associated with the obese 
state, enables cross talk between macrophages, adipocytes, endothelial cells, and 
epithelial cells that contribute to cancer-related processes (including growth and 
proliferation signaling, infl ammation, and vascular alterations). Infl ammation pro-
cesses and infl ammation-associated signaling pathways are upregulated in the obese 
state, and both human and mouse studies support an important role for infl ammation 
in obesity-driven PCa progression. Infl ammation signaling pathways along with 
other signaling pathways altered in the obese state represent promising targets for 
both lifestyle and pharmacologic interventions to prevent or control PCa progres-
sion. Figure  10.1  summarizes some of these pathways that may represent targets for 
offsetting the effects of obesity on cancer and in particular PCa progression. 

  Fig. 10.1    Summary of growth factor and infl ammation-associated signaling pathways that may 
represent targets for reversing the effects of obesity on PCa progression       
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A particular promising approach is the search for, and development of, CR mimetic 
compounds. Combinatorial approaches (e.g., lifestyle and pharmacologic) may ulti-
mately lead to rational approaches to prevent obesity-driven PCa progression.
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    Abstract     Obesity as a determinant of increased cancer risk and poorer cancer 
outcome is well established for cancers of several organ sites, including colorectal 
and postmenopausal breast cancer. Obesity-associated adipose infl ammation leads 
to local and systemic accumulation of infl ammatory mediators and hormones, 
which have multiple proneoplastic effects. Key among these from a pharmacologi-
cal perspective are cyclooxygenase (COX)-derived prostaglandins (PGs), since 
COX enzymes are the primary target for nonsteroidal anti-infl ammatory drugs 
(NSAIDs). Overexpression of the inducible PG synthase COX-2 occurs in the 
majority of colorectal neoplasias and ~40 % of breast cancers and is also evident in 
infl amed adipose tissue from obese mice and humans. COX/PG signaling has mul-
tiple protumorigenic consequences, which provide at least a partial explanation for 
epidemiologic and experimental observations of reduced cancer risk associated 
with NSAID use. Notably, COX/PG-mediated upregulation of estrogen biosynthe-
sis and signaling offers a plausible target for NSAID-mediated risk reduction with 
respect to breast and other hormone-sensitive cancers. Additionally, “off-target” 
NSAID effects including modulation of NFκB and AMP kinase activity may be of 
particular signifi cance in the context of obesity. NSAID-mediated amelioration of 
obesity- related metabolic dysfunction has been reported, and it seems likely that 
NSAIDs will be similarly protective for obesity-associated carcinogenesis.  
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11.1         Introduction 

 It is becoming increasingly apparent that the molecular aberrations characterizing 
chronic infl ammation may impact many, if not all, of the hallmark capacities intrinsic 
to the neoplastic process. Thus, logically, anti-infl ammatory approaches may be of 
benefi t in abrogating the increased cancer risk associated with infl ammation. This 
may be of particular relevance in the context of obesity, an established risk factor for 
cancers of many organ sites [ 1 – 3 ], and now understood to be an infl ammatory 
condition [ 4 ]. 

 The classic signs of acute infl ammation (pain, heat, redness, and swelling) refl ect 
the ingress and activation of myeloid cells, with consequent release of infl ammatory 
mediators that elicit pain, vasodilatation, and exudation of blood vessel contents 
into the surrounding tissue. Initial response to injury or pathogenic insult is orches-
trated by resident macrophages and recruited antimicrobial granulocytes, whereas 
persistent infl ammation is characterized by monocytic and lymphocytic accumula-
tion. On a molecular level, infl amed tissues exhibit elevated levels of cytokines, 
chemokines, and eicosanoids. Key among these from a pharmacological perspective 
are cyclooxygenase (COX)-derived prostaglandins, which can elicit vasodilation, 
pain, and fever. Inhibition of COX enzymes is the primary mechanism of analgesics 
of the nonsteroidal anti-infl ammatory drug class (NSAIDs). 

 Signifi cantly, obesity is now recognized as an infl ammatory condition, with 
leukocyte infi ltration of white adipose tissue depots resulting in increased production 
of infl ammatory mediators, including adipokines, cytokines, and prostanoids, as 
well as increased release of fatty acids [ 4 ,  5 ]. Adverse systemic consequences of 
adipose infl ammation include both insulin resistance, leading to type II diabetes, 
and increased cancer risk. Notably, NSAIDs have been reported to both ameliorate 
insulin resistance and attenuate cancer risk (discussed below). While intuitively this 
might appear predictable given the relationship between these diseases and infl am-
mation, the mechanistic basis by which NSAIDs afford protection is likely complex 
and multifactorial and not predicated solely on COX inhibition. This chapter reviews 
the evidence for NSAIDs as anticancer agents, considers likely mechanisms, and 
discusses the relevance of these in the context of obesity-driven neoplasia.  

11.2     Cyclooxygenases and Cancer 

 The established anticancer activity of NSAIDs, with respect to both human disease 
and experimental models, is best understood in terms of their activity as COX inhib-
itors. COX enzymes are prostaglandin (PG) synthases, responsible for conversion 
of arachidonic acid (AA) to the intermediary prostanoid PGH 

2
 , which then serves 

as substrate for a range of synthases, ultimately resulting in production of numerous 
eicosanoids, including PGD 

2
 , PGE 

2
 , PGF 

2α , PGI 
2
  (prostacyclin), and thromboxanes 

(TXs) [ 6 ]. The complexion of prostanoid production by a given cell type is predicated 
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by the unique expression pattern of terminal synthases. Thus platelets are a rich 
source of TXA 

2
 , whereas endothelium is an important site of prostacyclin synthe-

sis. PGE 
2
 , the isoform most strongly implicated in pain, infl ammation, and neopla-

sia, is produced both by infl ammatory and epithelial cells. COX expression levels 
are also important determinants of prostanoid production. COX-1 (encoded by the 
 PTGS1  gene) is constitutively expressed and believed to serve an important func-
tion in protecting the gastrointestinal (GI) mucosa, NSAID-mediated impairment 
of which is associated with GI bleeds. In contrast, the  COX - 2  (or  PTGS2 ) gene 
exhibits a highly restricted pattern of constitutive expression, notably in specifi c 
regions of kidney and brain, but induction is elicited by a wide variety of stimuli 
including cytokines, growth factors, and oncogenes [ 7 – 9 ]. COX-2-derived eico-
sanoids play key roles in the infl ammatory response and thus provide a major focus 
for pharmacological intervention. 

 A driving role for COX-2 in neoplasia was initially suggested by parallel fi ndings 
of COX-2 overexpression in cancers and epidemiological data linking analgesic use 
with reduced cancer incidence. Notably, the most consistent associations between 
NSAID use and diminished cancer risk have been identifi ed for colorectal cancer 
both in epidemiological and interventional studies. Thus this chapter focuses 
predominantly on two main cancer sites, colorectal, based on the epidemiological 
evidence, and breast, based on plausible mechanisms for NSAID-mediated protec-
tion in the context of obesity for this latter disease. 

11.2.1     Cyclooxygenase Expression in Intestinal 
and Breast Tissues 

 A general theme with respect to COX expression and epithelial cancers has emerged: 
 COX - 1  expression tends to be relatively constant in normal and cancerous tissues, 
while  COX - 2  is frequently upregulated in precancers and cancers relative to benign 
epithelium. For example, evaluation of  COX  expression in human colorectal neo-
plasms revealed unaltered expression levels of  COX - 1  in colorectal carcinomas rela-
tive to adjacent normal mucosa [ 10 – 12 ], whereas  COX - 2  is virtually undetectable in 
normal colonic mucosa, but highly expressed in adenocarcinomas, with detectable 
expression in epithelial, endothelial, and stromal components [ 10 – 13 ]. Consistent 
with human data,  COX - 2  upregulation is also evident in intestinal tumors from both 
genetic ( Apc  mutant) and carcinogen-driven rodent models [ 14 – 18 ]. Given the pres-
ent focus on infl ammation as a driver of carcinogenesis, it is noteworthy that, while 
in adenocarcinomas  COX - 2  expression is predominantly epithelial, in the precursor 
polyps COX-2 is primarily localized in infl ammatory cells in the lamina propria [ 15 , 
 19 ,  20 ]. These data suggest potential paracrine interactions between  COX - 2 -
expressing macrophages and enterocytes as early drivers of intestinal neoplasia. 
Intriguingly, a single study has identifi ed an association between rectal mucosal 
PGE 

2
  levels and body mass index (BMI) in patients with a history of polyps, 
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although the cell type from which PGE 
2
  derived was not identifi ed [ 21 ]. Nevertheless, 

these data provide provocative evidence for a link between BMI and upregulated 
prostaglandin production in the intestine, potentially mediated via increased 
infl ammation. 

 In breast carcinomas,  COX - 2  overexpression is less prevalent than in CRC, 
although elevated PG levels were fi rst reported in human breast tumors over 30 
years ago [ 22 – 24 ]. In aggregate, immunohistochemical (IHC) studies have estab-
lished that approximately 40 % of breast carcinomas exhibit epithelial  COX - 2  over-
expression, with negligible COX-2 in benign epithelium [ 25 – 38 ]. Increased 
frequencies of  COX - 2  overexpression (63–85 %) are evident in precursor ductal 
carcinoma in situ (DCIS) lesions relative to invasive disease [ 25 ,  29 ,  33 ,  34 ,  36 ,  39 , 
 40 ], and COX-2 has also been observed in normal-looking epithelium adjacent to 
neoplastic tissue [ 28 ,  29 ,  34 ,  36 ,  39 – 41 ]. Additionally, COX-2 is expressed in mor-
phologically normal breast epithelium in association with  p16   INK4a   hypermethyl-
ation, perhaps identifying very early foci of precancerous cells [ 42 ], and is associated 
with high mammographic density [ 43 ], an index of increased breast cancer risk. 

 Several studies identify COX-2 overexpression in breast cancer epithelium as a 
poor prognostic indicator, and COX-2 is associated with large tumor size, high 
grade, and the presence of nodal metastases [ 26 ,  28 ,  32 ,  35 ,  44 ]. COX-2 overexpres-
sion in DCIS precancers also has prognostic signifi cance in association with p16 INK4a  
and Ki67 status [ 45 ]. Additional correlations have been observed with overexpres-
sion of HER2/neu (human epidermal growth factor receptor 2) and with hormone 
receptor-negative status of carcinomas, both of which are independently associated 
with poor prognosis [ 25 ,  28 ,  32 ,  37 ,  46 ], although one recent study identifi ed selec-
tive expression of COX-2 in estrogen receptor (ER)-positive breast cancers [ 44 ]. In 
contrast, COX-1 is ubiquitously expressed in mammary tissue and is not of prog-
nostic signifi cance [ 28 ,  34 ,  38 ]. Rodent models provide parallel observations with 
respect to COX expression in breast epithelium, including ubiquitous COX-1 
expression [ 47 ], and upregulated COX-2 expression in mammary tumors from both 
transgenic and carcinogen-induced models [ 48 – 52 ]. 

 Most recently, attention has focused on COX-2 expression in normal breast 
tissue as a function of obesity. Specifi cally, both in human and murine breast adi-
pose tissue, PGE 

2
  and COX-2 levels increase with increasing BMI [ 53 ,  54 ]. Striking 

correlations are evident between COX-2/PGE 
2
  levels and the presence of infl amma-

tory foci, comprising adipocytes encircled by macrophages [ 54 ]. These crown-like 
structures (CLS), fi rst identifi ed in white adipose tissues of non-mammary origin 
from obese mice and humans, have emerged as hallmark lesions of obesity- 
associated infl ammation [ 55 – 57 ]. In both human and rodent breast tissue, CLS 
abundance increases as a function of body mass [ 53 ,  58 ,  59 ]. Simplistically, macro-
phages can be divided into two classes. Classically activated, or M1-polarized, 
macrophages secrete proinfl ammatory mediators including PGE 

2
 , interleukin-1β 

(IL-1β), IL-6, and tumor necrosis factor-α (TNFα), whereas alternatively activated 
(M2) macrophages triggered by Th2 cytokines are associated with tissue remodeling 
and immunosuppression. While resident macrophages in lean adipose tend to be 
M2-polarized, infl ammatory M1 macrophages predominate in CLS. Importantly, 
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these morphologic entities likely correspond to the functional unit responsible for a 
signifi cant component of obesity-related pathologies. Paracrine interaction between 
necrotic adipocytes and associated M1-polarized macrophages results in increased 
synthesis of PGE 

2
 , IL-1β, IL-6, and TNFα in the macrophage compartment [ 53 ]. 

These proinfl ammatory mediators can have both local and systemic actions, which 
likely contribute both to insulin resistance and to the increased cancer incidence 
associated with overweight/obesity [ 1 ,  2 ].  

11.2.2      Animal Models: Genetic Evidence for COX 
Contributions to Cancer 

 The fact of COX-2 overexpression in colorectal, breast, and other cancers, and the 
observed correlations between epithelial COX-2 overexpression and prognosis, 
argue strongly for a protumorigenic role of COX-2 in neoplasia. This thesis is sup-
ported by a wealth of data from animal models including several defi nitive genetic 
studies, as well as pharmacological studies (described below; Sect.  11.3.1 ). The 
Taketo lab pioneered the genetic approach, demonstrating substantial reduction 
(86 %) in intestinal tumor incidence in an  Apc  mutant mouse strain ( Apc   Δ716  ) conse-
quent on homozygous inactivation of the  COX - 2  gene [ 15 ]. Of note,  Apc  mutant 
strains are widely used to model human colorectal neoplasia because mutational 
inactivation of the  APC  tumor suppressor gene is the initiating event in the vast 
majority of human sporadic colorectal neoplasms, as well as in some familial 
polyposis syndromes. 

 We subsequently employed a genetic strategy modeled on the Taketo approach 
to explore the contribution of COX-2 to breast cancer, using a mouse strain with 
mammary-targeted  HER2 / neu  transgene expression that develops multiple DCIS 
lesions in each mammary gland to model the HER2-COX-2 relationship observed 
in the human disease. Decreased mammary tumor multiplicity was observed in the 
context of  COX - 2  defi ciency in our study [ 60 ].  COX - 2  nullizyogosity was associ-
ated with reduced DCIS tumor formation and growth, and with substantial diminu-
tion in mammary gland vascularization, unequivocally demonstrating a role for 
COX-2 in mammary neoplasia. 

 Further knockout studies have implicated both COX isoforms in experimental 
neoplasia. Similar magnitudes of intestinal and epidermal tumor abrogation can be 
achieved by disruption of either  COX - 1  or  COX - 2 , suggesting that perhaps the sum 
total of COX activity is the key determinant of tumorigenesis, rather than unique 
contributions of either enzyme [ 61 ,  62 ]. 

 Hla and colleagues adopted a genetic overexpression approach to provide elegant 
proof of the in vivo oncogenicity of COX-2 through generation of a  COX - 2  trans-
genic mouse strain. Mammary-targeted expression of a  COX - 2  transgene drives 
tumor formation in multiparous mice [ 63 ]. Increased microvessel density and 
angiogenic gene expression are evident prior to discernible tumor formation, and 
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 COX - 2  overexpression retards mammary involution in post-weaning dams via 
 suppression of apoptosis, providing mechanistic insights into COX-driven neoplasia 
[ 63 ,  64 ]. Furthermore, transgenic  COX - 2  overexpression in skin increases sensitivity 
to carcinogen-induced neoplasia, again providing evidence for a proneoplastic role 
of COX-2 [ 65 ]. In aggregate, genetic knockout and overexpression approaches, 
together with pharmacological data discussed below, fi rmly substantiate the role of 
COXs and COX-derived prostanoids in cancer. 

 Follow-up studies have focused on evaluating alternative molecular targets for 
anti-infl ammatory intervention that retain the effi cacy of NSAIDs while minimizing 
corollary toxicity. A central role for PGE 

2
  as an effector of COX-mediated tumori-

genesis has been established. PGE 
2
  administration reverses aspirin-induced adenoma 

regression and enhances carcinogen-induced tumor incidence, whereas genetic 
deletion of PGE 

2
  receptors (EPs) confers resistance to formation of aberrant crypt 

foci, polyps, and cancers in the intestinal tract [ 66 ]. Importantly, genetic deletion of 
the terminal enzyme responsible for PGE 

2
  synthesis (microsomal PGE 

2
  synthase- 1, 

mPGES-1) suppresses the growth of both intestinal [ 67 ] and mammary tumors 
(Howe et al., manuscript in preparation), identifying mPGES-1 as a candidate target 
for antineoplastic intervention.  

11.2.3       Cyclooxygenases and Cancer: Mechanisms 

 COX/PG signaling impacts many of the capabilities highlighted by Hanahan and 
Weinberg as essential for tumor growth and metastatic dissemination [ 68 ], including 
increased proliferative potential, resistance to apoptosis, enhanced invasiveness, 
immune suppression, and angiogenesis (Fig.  11.1 ). Self-evidently, as a key compo-
nent of the infl ammatory response, the “enabling characteristic” of tumor- promoting 
infl ammation is also encompassed by COX-2 overexpression.

11.2.3.1       Prostanoid Effects on Proliferation and Immune Suppression 

 Prostaglandin stimulation of proliferation is well established for multiple cell types, 
such as mammary epithelial cells and fi broblasts [ 69 – 71 ]. PGE 

2
  can also stimulate 

growth of human colorectal adenoma cells, although it has been suggested that 
response may vary as a function of EP4 receptor expression level [ 72 ]. Notably, 
reported PG-mediated stimulation of stem cells [ 73 ] may have important ramifi ca-
tions for cancer, and indeed recent studies suggest that PGE 

2
  released from stromal 

fi broblasts plays a key role in paracrine regulation of cancer stem cells [ 74 ,  75 ]. 
Numerous pro-proliferative signaling pathways are implicated in mediating PG 
effects including activation of phosphatidylinositol 3-kinase (PI3K)/AKT and Wnt/
β-catenin signaling pathways [ 76 ] and activation of epidermal growth factor recep-
tor (EGFR) signaling [ 77 ,  78 ]. 
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 In contrast to these pro-proliferative PG effects, certain immune cells respond to 
PGs with attenuated proliferative responses, which may be parlayed into an immune 
evasion strategy in the neoplastic setting [ 79 – 81 ]. Both B and T lymphocytes are 
subject to PGE 

2
 -mediated growth suppression. PGE 

2
  also induces biased cytokine 

production from T cells towards Th2 cytokine release, downregulates Th1- 
associated cytokine synthesis, and promotes IL-10 expression, all of which may 
favor immune suppression. Furthermore, COX-2 is implicated in skewing macro-
phages towards a tumor-promoting M2 phenotype and averting the potential protec-
tion afforded by M1 polarization [ 82 ,  83 ]. Of note, while macrophages comprising 
CLS in infl amed adipose tend towards M1 polarization, tumor-associated macro-
phages are M2-like and are thought to favor cancer progression by promoting tissue 
remodeling and immune suppression [ 84 ]. Prostanoids also impact the function and 
development of dendritic cells [ 85 ,  86 ] and enhance accumulation and activity of 
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  Fig. 11.1    Nonsteroidal anti-infl ammatory drug (NSAID) effects on cancer hallmarks. 
Cyclooxygenase/prostaglandin signaling impacts many of the capabilities suggested by Hanahan 
and Weinberg to be essential for tumor growth and metastatic dissemination [ 68 ]. In turn, NSAID- 
mediated COX inhibition affords the possibility of reversing the majority of these protumorigenic 
traits. Persuasive evidence supports positive effects of COX/PG signaling and hence reciprocal 
NSAID-mediated suppression on the indicated parameters. Additional data suggest the possibility 
that NSAIDs may suppress genome instability via reducing microsatellite instability [ 316 ] and may 
also antagonize replicative immortality through downregulating telomerase expression [ 317 ]       
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myeloid-derived suppressor cells (MDSCs), which can inhibit both innate and adap-
tive immunity [ 80 ]. Thus, undermining the host immune response is likely to be a 
key protumorigenic property of COX-derived prostanoids.  

11.2.3.2     Suppression of Apoptosis 

 In addition to eliciting tumor-favoring pro-proliferative effects in epithelial cells, 
COX overexpression may also tip the balance towards cell survival through 
suppressing apoptotic cell death. Forced overexpression of  COX - 2  in epithelial cells 
suppresses apoptosis both in vitro and in vivo [ 63 ,  87 ]. Consistent with these obser-
vations, NSAIDs commonly induce apoptosis of cultured cells, although both COX- 
mediated and COX-independent mechanisms have been proposed to account for 
NSAID proapoptotic effects (see Sect.  11.5.2 ). The dual effects of COX overexpres-
sion on proliferation and apoptosis may be important for promoting survival of 
damaged cells with acquired mutations that would otherwise trigger cytoprotective 
cell death machinery.  

11.2.3.3     Invasion and Metastasis 

 COX signaling is also strongly implicated in invasiveness and hence metastatic 
potential. In vitro studies have established increased cellular invasiveness as a 
consequence of  COX - 2  overexpression, with corollary upregulation of matrix 
metalloproteinases which can promote extracellular matrix remodeling and hence 
tumor invasion [ 88 ,  89 ]. Consistent with a prometastatic function, correlations are 
evident between  COX - 2  expression and both lymph node metastases and prognosis 
in human breast cancer [ 26 ,  28 ,  32 ,  35 ], and pulmonary metastasis of breast cancer 
xenografts and allografts can be suppressed by COX inhibitors [ 90 – 92 ]. Furthermore, 
COX-2 is also implicated in osteoclast differentiation, a key step in bone metastasis, 
which requires osteoclast-mediated bone resorption to provide a niche for tumor 
cells. PGE 

2
  stimulates both osteoclast differentiation and bone resorption, and 

osteoclastogenesis is impaired in bone marrow from  COX - 2 -defi cient mice [ 93 – 95 ]. 
Additionally, in an experimental model of sarcoma bone invasion, COX-2 inhibition 
reduces osteoclast proliferation and hypertrophy, tumor-induced bone resorption, 
and tumor burden [ 96 ]. These data are consistent with early observations from 
Powles et al. that aspirin treatment reduced the in vitro osteolysis-inducing activity 
of human breast carcinomas [ 97 ]. In aggregate, these data suggest that COX-derived 
PGs may regulate cancer cell invasion and metastasis.  

11.2.3.4     Angiogenesis 

 Angiogenesis, the process of tumor neovascularization that ensures adequate blood 
supply, is another intrinsic feature of neoplasia in which COX/PG signaling plays a 
role.  COX - 2 -defi cient mice exhibit substantial reductions in mammary gland 
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vascularization and expression of proangiogenic genes, with reduced vessel den-
sity evident not only in mammary tumors but also in morphologically normal mam-
mary gland, implying a broad role for COX-2 in vascularization of the mammary 
gland [ 60 ]. In contrast, knockout studies using intestinal cancer models suggest that 
in the intestine  COX - 2  contributes primarily to growth and vascularization of tumors 
beyond 1 mm in diameter [ 98 ,  99 ]. Contribution of stromal  COX - 2  is well illustrated 
by the impaired growth and diminished vascular density of Lewis lung carcinoma 
xenografts when implanted into  COX - 2 -null hosts [ 100 ]. Nevertheless, epithelial 
COX-2 can also promote angiogenesis: transgenic  COX - 2  overexpression in 
mammary epithelium induces substantial remodeling of mammary gland vascular 
architecture [ 64 ]. Together these genetic approaches demonstrate a clear role for 
COX-2 in angiogenesis. Pharmacological approaches yield similar data: in vivo 
angiogenesis is reduced by administration of non-selective NSAIDs or selective 
COX-2 inhibitors (COXibs) in multiple models [ 64 ,  90 ,  91 ,  101 – 107 ], while in vitro 
COXibs decrease endothelial tube formation [ 108 ,  109 ]. COX-1 is also implicated, 
since NSAIDs can have similar effects in experimental systems lacking COX-2 
expression [ 106 ,  108 ,  109 ]. COX-regulated production of proangiogenic factors 
such as vascular endothelial growth factor (VEGF) provides a clear mechanistic 
basis for the COX- angiogenesis relationship [ 110 ,  111 ] and likely explains observed 
correlations between COX-2 and microvessel density/VEGF expression in human 
breast cancers [ 26 ,  27 ,  31 ,  41 ]. 

 The COX-2/VEGF interrelationship might also provide insight into the increased 
cancer incidence and poorer outcome associated with obesity. Human studies have 
identifi ed positive correlations between circulating levels of VEGF and BMI 
[ 112 – 114 ]. This could refl ect increased adiposity, given that adipose tissue is a rich 
source of VEGF. Additionally, based on the increased COX-2 levels observed in 
visceral and mammary adipose depots from obese subjects [ 53 ,  54 ], COX-dependent 
upregulation of VEGF could induce elevated adipose VEGF expression per wet 
tissue weight in obese vs. lean adipose. Indeed both adipose and circulating VEGF 
levels are elevated in a mouse model of postmenopausal obesity [ 115 ]. Furthermore, 
Hung and colleagues recently reported that murine mammary tumor sensitivity to 
the VEGF antagonist bevacizumab is increased in the context of obesity [ 116 ]. 
Thus, obesity-associated disproportionate increases in adipose VEGF synthesis 
may contribute to tumor angiogenesis. 

 Evidence is also available to support a role for COX-2 in regulation of lymphan-
giogenesis, the formation of new lymphatic vessels. COX-2 expression correlates 
with that of VEGF-C, the primary driver of lymphangiogenesis, in breast cancer cell 
lines and tissues, and COXib treatment suppresses tumor expression of a lymphan-
giogenic marker in vivo [ 117 ,  118 ].  

11.2.3.5      Regulation of Peripheral Estrogen Biosynthesis 

 COX-2 overexpression may have consequences of particular signifi cance for breast 
neoplasia, based on the ability of prostaglandins to regulate transcription of the 
 CYP19  gene, which encodes the estrogen synthase cytochrome P-450 aromatase. 
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Approximately two-thirds of human breast carcinomas express estrogen receptor-α 
(ERα), and the importance of estrogen in breast neoplasia is well illustrated by the 
demonstrated clinical effi cacy of antiestrogen approaches including selective estro-
gen receptor modulators (SERMs) and aromatase inhibitors (AIs) as breast cancer 
therapeutics. 

 Prior to menopause, the ovary is the primary site of estrogen synthesis from 
androgens. However, post climacteric, peripheral sources assume increased impor-
tance, particularly adipose tissue as well as breast cancer epithelium [ 119 – 123 ]. 
Notably, a switch in  CYP19  promoter usage occurs in breast cancers and cancer- 
proximal stromal tissue, involving selective utilization of cAMP-sensitive promoters 
[ 124 – 127 ]. Consistent with the ability of PGE 

2
  to elicit cAMP accumulation [ 128 ], 

PGE 
2
  signaling stimulates aromatase transcription [ 129 – 133 ]. Furthermore, posi-

tive correlations between  COX  and  CYP19  expression have been identifi ed in human 
breast cancers [ 134 – 136 ]. Defi nitive in vivo evidence for a causal basis for these 
fi ndings is provided by transgenic and knockdown approaches: aromatase activity is 
increased in the mammary glands of  COX - 2  transgenic mice and, conversely, 
decreased in  HER2 / neu -overexpressing mammary tissues that are  Cox - 2  nullizy-
gous [ 137 ]. Together these fi ndings establish COX-2 as an important determinant of 
aromatase expression in mammary tissues and hence likely to regulate neoplastic 
growth through increasing tumor-proximal estrogen tissue levels. A further predic-
tion from these data is that COX-inhibiting NSAIDs may regulate circulating 
hormone levels in postmenopausal women, and indeed some (though not all) 
studies have identifi ed correlations between NSAID use and serum estradiol in 
postmenopausal women [ 138 ,  139 ]. 

 Importantly, the COX-aromatase-estrogen pathway may not only be relevant for 
driving breast cancer progression but may also be a component of the increased 
breast cancer risk associated with obesity. Based on the importance of adipose as an 
estrogen source in postmenopausal women, it has long been assumed that increased 
adiposity should be associated with elevated estrogen synthesis, and indeed BMI is 
an established determinant of serum estradiol in postmenopausal women [ 140 – 142 ]. 
However, it is becomingly increasingly apparent that not only the quantity but also 
the quality of fat is altered in obesity, and this has important ramifi cations for adi-
pose estrogen production. As described above, white adipose tissue from obese 
mice and humans is distinguished by the presence of infl ammatory foci, or CLS, 
consisting of macrophage-encircled adipocytes [ 55 – 57 ]. These are characteristic 
not only in visceral fat but also in breast adipose tissue [ 53 ,  54 ,  58 ,  59 ]. Activated 
M1-polarized macrophages in these foci provide a rich source of proinfl ammatory 
factors, including PGE 

2
  as well as TNFα and IL-1β, which can induce increased 

aromatase transcription in the surrounding adipose tissue (Fig.  11.2 ). Thus, obesity 
drives adipose infl ammation leading to local induction of aromatase expression in 
breast tissue. Delineation of this pathway provides a clear explanation for the earlier 
observation that BMI is a determinant of aromatase transcript levels in visceral fat 
[ 143 ] and offers mechanistic insight into the positive correlation between post-
menopausal obesity and breast cancer risk.
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11.2.3.6         Mutagen Synthesis 

 A fi nal procarcinogenic consequence of COX-2 overexpression, independent of 
prostanoid production, hinges on the ability of COX-2 to generate mutagens. For 
example, malondialdehyde produced from PGH 

2
  can induce frameshifts and base- 

pair substitutions through adduct formation with deoxynucleosides and thus drive 
mutagenesis [ 144 ]. COX-2-mediated oxidation of aromatic amines, heterocyclic 
amines, and dihydrodiol derivatives of polycyclic hydrocarbons also generates 
carcinogens. Thus, COX-2-dependent DNA damage may play a role at the earliest 
stages of neoplasia.    

11.3     NSAID-Mediated Suppression of Neoplasia 

 NSAIDs can be divided into broad functional classes based on their relative selec-
tivity for COX-1 vs. COX-2. Conventional NSAIDs (e.g., indomethacin, ibuprofen) 
inhibit both COX isoforms, although relative potencies for each enzyme vary 
between individual drugs. COX-2-selective inhibitors (celecoxib, rofecoxib, 

  Fig. 11.2    Paracrine interactions between macrophages and other cell types establish an infl amma-
tory milieu in obese breast adipose tissue, resulting in elevated estrogen biosynthesis. Saturated 
fatty acids, liberated from adipocytes as a result of obesity-associated lipolysis, stimulate NFκB- 
driven induction of infl ammatory mediators in macrophages including TNFα, IL-1β, and COX-2. 
Additionally, bacterial toxins entering systemic circulation as a consequence of obesity-induced 
impairment of gut mucosal integrity may elicit NFκB activation through TLR4 ligation. Cytokines 
and COX-2-derived PGE 

2
  activate transcription of the  CYP19  gene encoding aromatase in neigh-

boring cells, including preadipocytes, leading to elevated expression and activity of aromatase. 
Consequently, estrogen biosynthesis is enhanced, leading to increased expression of ER target 
genes, including PR       
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nimesulide, etc.) were developed with the goal of circumventing GI toxicity associ-
ated with prototypic NSAIDs. By contrast, the marked activity of aspirin towards 
COX-1 provides the basis for widespread use for antiplatelet prophylaxis. 
Intriguingly, some NSAID metabolites such as sulindac sulfone, the hepatic oxida-
tion product of the prodrug sulindac, have anticancer activity in the absence of dis-
cernible COX inhibition, highlighting the functional signifi cance of NSAID 
off-target effects (discussed below, Sect.  11.5 ). 

 Myriad studies have evaluated NSAID-mediated tumor suppression in animal 
models, epidemiological analyses, and clinical interventions. Consensus fi ndings 
include convincing inhibition of experimental intestinal and breast neoplasia by 
multiple NSAID classes, strong epidemiological support for NSAID-mediated 
reduction in colorectal cancer risk, similar but less robust epidemiological evidence 
for a protective effect with respect to breast neoplasia, and compelling evidence 
from interventional studies focusing on both neoplasia and cardiovascular disease 
as primary endpoints. These data are reviewed in the following sections. 

11.3.1      NSAID-Mediated Tumor Suppression in Animal Models 

 COX inhibitor effi cacy for suppression of experimental neoplasia has been evalu-
ated in a variety of animal models (for detailed reviews, see [ 9 ,  145 – 147 ]). For 
assessing intestinal cancer prophylaxis, the range of model systems encompasses 
carcinogen-treated rodents (AOM, azoxymethane; DMH, dimethylhydrazine),  Apc  
mutant mouse strains ( Apc   Min  ,  Apc   Δ716  ,  Apc   Δ474  , and  Apc1638 ), and mismatch repair-
defi cient mice ( Msh2 -defi cient). Experimental endpoints include aberrant crypt 
foci, adenomas, and colon carcinomas in carcinogen-treated rodents, and predomi-
nantly small intestinal polyps in  Apc  mutant mice. Early studies of aspirin and non-
selective NSAIDs (e.g., sulindac, piroxicam) were succeeded by analyses of 
selective COX-2 inhibitors (nimesulide, MF tricyclic, celecoxib, NS-398, JTE-522, 
rofecoxib) as these became available and most recently NSAID phospho- and NO 
derivatives. Substantial chemopreventive effi cacy with respect to experimental 
intestinal neoplasia has been reported for all NSAID classes, consistent with human 
epidemiologic observations (see Sect.  11.3.2.1 ), although dosing issues in some 
cases preclude direct interspecies comparisons [ 8 ]. 

 Increasing interest has also focused on combination drug approaches, with dual 
goals of maximizing anticancer effi cacy and minimizing NSAID cardiovascular and 
GI toxicity. COXibs have been tested in combination with EGFR inhibitors 
[ 148 ,  149 ], the HER2/neu-neutralizing antibody trastuzumab [ 150 ], fi sh oil [ 151 ], 
atorvastatin [ 152 ,  153 ], as well as the ornithine decarboxylase (ODC) inhibitor difl uo-
romethylornithine (DFMO) [ 154 ], with generally promising combinatorial effi cacy. 

 Comparable analyses have been performed in rodent breast cancer models, again 
with a prominent emphasis on chemoprevention, although therapeutic effi cacy has 
also been tested [ 9 ,  147 ]. Protective effects of conventional NSAIDs (e.g., 
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indomethacin, fl urbiprofen) with respect to carcinogen-induced breast cancer were 
fi rst established 30 years ago, with subsequent validation of selective COX-2 inhibi-
tors in carcinogen models. Additionally, using  HER2 / neu  transgenic rodents to 
model the correlation between HER2/neu and COX-2 overexpression observed in 
the human disease, celecoxib has been shown to effect modest retardation of HER2/
neu-driven tumor formation [ 50 ,  155 ,  156 ]. As in intestinal cancer models, combi-
nation approaches have been explored. For example, coadministration of celecoxib 
with the retinoid X receptor ligand LGD1069 achieved a greater degree of tumor 
retardation than either agent singly [ 157 ]. The demonstrated chemopreventive effi -
cacy of COX inhibitors in breast cancer models is consistent with general fi ndings 
from human epidemiologic analyses (see Sect.  11.3.3.1 ). 

 Increasing appreciation of the relationship between obesity and elevated cancer 
risk is likely to prompt additional evaluation of NSAIDs with respect to obesity- 
associated cancer, both experimentally and epidemiologically. This is particularly 
germane given that COX-2/PG levels are elevated in breast adipose tissue of obese 
mice and humans in association with infl ammation [ 53 ,  54 ]. To date, no reports of 
NSAID effi cacy in obesity-driven intestinal cancer models are available. However, 
emerging data are starting to address this issue in breast cancer. The accelerated 
growth rate of E0771 mammary tumors implanted into diet-induced obese mice, 
relative to that in lean mice, is reversed by aspirin treatment [ 116 ], implying a selec-
tive anti-infl ammatory action of aspirin in the obese cohort. Future studies will no 
doubt substantiate this fi nding in other models and provide mechanistic insight.  

11.3.2     NSAIDs and Human Colorectal Neoplasia 

 Epidemiological analyses of NSAID use and colorectal cancer incidence yield fi nd-
ings consonant with those from rodent studies. Numerous analyses of both large 
prospective cohorts and smaller case–control studies have been performed, which 
variously consider adenoma or carcinoma as an endpoint. Inverse associations 
between NSAID use and risk of CRC have been fairly consistently identifi ed, with 
the most abundant datasets for aspirin, based in part on widespread aspirin use for 
cardiovascular prophylaxis [ 158 ]. Randomized clinical trials also provide compel-
ling evidence of suppression of colorectal neoplasia by NSAIDs. 

11.3.2.1      Epidemiologic Findings 

 Bosetti et al.’s recent meta-analysis of aspirin and cancer risk provides an updated 
overview of observational studies [ 159 ]. Thirty studies which considered aspirin use 
and CRC were evaluated: 15 case–control studies (21,414 total cases) and 15 cohort 
studies (16,105 cases). Overall, regular aspirin use was associated with a 27 % 
reduced risk of CRC (relative risk [RR], 0.73; 95 % confi dence interval [CI], 
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0.67–0.79;  P  < 0.001). In general, stronger protective effects were observed in case–
control studies (RR, 0.63; 95 % CI, 0.56–0.70) than in cohort studies (RR, 0.82; 
95 % CI, 0.75–0.89). Similar protection was afforded by aspirin with respect to 
colon and rectal cancer. Bosetti et al. concluded from their analysis that use of regu-
lar/high- strength aspirin for at least 5 years is necessary to confer protection against 
colorectal cancer [ 159 ]. Similar or greater risk reductions have also been identifi ed 
in aspirin users considering adenomas as an endpoint. Of note, although many 
observational studies to date have focused solely on aspirin, others have consid-
ered combined aspirin and NSAID use. Comparative analyses suggest that non-
aspirin NSAIDs afford similar protection [ 160 – 163 ]. Furthermore, use of selective 
COX-2 inhibitors (rofecoxib, celecoxib) is also associated with reduced risk of 
colorectal neoplasia [ 162 ,  164 ,  165 ].  

11.3.2.2      Findings from Randomized Clinical Trials 

 Complementing the epidemiological fi ndings, interventional approaches have also 
identifi ed reduced colorectal neoplasia in groups assigned to NSAID. Aspirin has 
been evaluated on colorectal adenoma and carcinoma endpoints in a variety of 
clinical settings, including patients with prior adenoma, prior carcinoma, and Lynch 
syndrome patients (i.e., individuals with hereditary predisposition to colorectal 
cancer due to mutations in DNA repair genes) [ 158 ]. Additionally, cancer outcome 
data have recently become available from several large-scale clinical trials of aspirin 
primarily intended to evaluate cardiovascular (CV) disease prevention [ 166 – 168 ]. 
Effects on colorectal adenoma/carcinoma endpoints of several non-aspirin NSAIDs 
have also been evaluated, most notably sulindac and selective COX-2 inhibitors (see 
Sect.  11.3.2.5 ). 

 Early proof-of-principle data for NSAID-mediated suppression of colorectal 
neoplasia were provided by demonstration of sulindac-mediated reduction in polyp 
burden in familial adenomatous polyposis (FAP) patients over a 9 month treatment 
period [ 169 ]. Importantly in mechanistic terms, sulindac treatment caused signifi -
cant reductions in rectal mucosal prostanoid levels (PGE 

2
 , PGF 

2α , TXB 
2
 ) [ 170 ]. 

More recently, substantial suppression of adenoma recurrence has been achieved 
using sulindac in combination with the ODC inhibitor DFMO for 3 years [ 171 ]. 

 Aspirin effi cacy for suppression of colorectal adenomas has been evaluated in 
four placebo-controlled, randomized trials in patients with a history of colorectal 
adenoma or carcinoma [ 172 – 175 ]. Meta-analysis of these trials showed that aspirin 
at daily doses ranging from 81 to 325 mg reduced the risk of colorectal adenoma by 
17 % (RR, 0.83; 95 % CI, 0.72–0.96) over a median post-randomization follow-up 
of 33 months [ 176 ], although one of the four trials subsequently reported negative 
fi ndings with 4 years follow-up [ 177 ] contrasting with the positive 1-year fi ndings 
included in the meta-analysis [ 176 ]. Notably, aspirin is capable of suppressing 
mucosal PGE 

2
  levels over this dose range, when administered for 2 weeks to 3 

months [ 178 – 182 ]. 
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 In contrast to studies of colorectal adenoma recurrence, few trials have evaluated 
aspirin with carcinoma as the primary endpoint. One notable exception is the 
CAPP2 trial, in which 600 mg/day aspirin has been shown to reduce CRC incidence 
in Lynch syndrome patients who completed 2 years of intervention (hazard ratio 
(HR), 0.41; 95 % CI, 0.19–0.86;  P  = 0.02) [ 183 ]. Importantly, recent meta-analyses 
of several randomized trials of aspirin for CV disease reduction have identifi ed 
reduced risk in aspirin cohorts not only of colon cancer incidence but also of metas-
tasis and mortality [ 166 – 168 ]. Initial analysis of four trials (Thrombosis Prevention 
Trial, British Doctors Aspirin Trial, Swedish Aspirin Low-Dose Trial, and UK-TIA 
Aspirin Trial) identifi ed a reduced 20-year risk of colon cancer incidence and 
mortality (incidence: HR, 0.76; 95 % CI, 0.60–0.96;  P  = 0.02; mortality: HR, 0.65; 
95 % CI, 0.48–0.88;  P  = 0.005), with no evidence for increased benefi t at doses 
greater than 75 mg/day [ 167 ]. Increasing benefi t was associated with longer dura-
tions of scheduled treatment. Consistent data for death due to several common can-
cers were obtained through analysis of eight aspirin trials [ 166 ]. Further analysis of 
fi ve UK-based trials of aspirin for CV disease prevention revealed aspirin-associ-
ated reduction in adenocarcinoma metastasis, both at initial diagnosis and on subse-
quent follow-up, particularly in patients with CRC [ 168 ]. 

 At odds with data from the CV prevention trials, two large US-based intervention 
studies of aspirin failed to see reduced CRC risk [ 184 ,  185 ]. The basis for the 
discrepant observations in the Physicians’ Health Study and Women’s Health Study 
relative to other studies remains unclear, but may be a function of insuffi cient expo-
sure. Both studies used an alternate day dosing schedule. Additionally, insuffi cient 
duration of treatment or follow-up may have limited the capacity to detect protec-
tive effects. This possibility is supported by the clear signal of increased effi cacy as 
a function of increased duration of aspirin use in both observational and interven-
tion studies [ 159 ,  166 ,  167 ,  186 – 189 ].  

11.3.2.3     NSAIDs and CRC Mortality: Determinants of Sensitivity 

 As mentioned above, it is increasingly apparent that aspirin/NSAID use not only 
decreases colorectal adenoma and carcinoma occurrence but may also be associated 
with reduced CRC mortality. In the Nurses’ Health Study, regular aspirin use was 
associated with reduced risk of death from CRC (RR, 0.72; 95 % CI, 0.56–0.92), 
although greater protection was afforded for death from CV disease (RR, 0.62; 95 % 
CI, 0.55–0.71) [ 190 ]. Several analyses have identifi ed an association specifi cally 
between prediagnosis NSAID use and CRC-specifi c survival [ 191 ,  192 ], although 
fi ndings are not consistent in all studies [ 191 ,  193 ]. Associations between postdiag-
nosis aspirin use and reduced CRC-specifi c mortality have also been observed in 
several cohorts [ 194 – 196 ]. Consistent with the protective effect of aspirin/NSAIDs 
observed in epidemiologic analyses, the recent Rothwell meta-analyses of multiple 
randomized clinical trials with a primary CV endpoint have also revealed reduced 
colon cancer mortality in patients allocated to aspirin [ 166 ,  167 ]. 
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 Tumor COX-2 expression is emerging as a molecular determinant of CRC 
sensitivity to aspirin. In the Health Professionals Follow-Up and Nurses’ Health 
Study cohorts, aspirin-mediated risk reduction was apparent for COX-2-
overexpressing cancers, but not for those with weak or absent COX-2 expression 
[ 197 ]. Subsequent analysis of these cohorts was designed to determine the relation-
ship between aspirin use post diagnosis, CRC-specifi c mortality, and tumor COX-2 
expression. Strikingly, regular aspirin use after diagnosis was associated with a 
lower risk of CRC-specifi c mortality among patients whose primary tumors overex-
pressed COX-2 (HR, 0.39; 95 % CI, 0.20–0.76), but not in patients with primary 
tumors with weak or absent expression (HR, 1.22; 95 % CI, 0.36–4.18) [ 194 ]. 
Stromal COX-2 expression has also been identifi ed as predictive of adenoma recur-
rence, although in this study adenoma COX-2 expression did not correlate with 
aspirin responsiveness [ 198 ]. 

 Contrasting with the CRC data, COX-2 expression in breast carcinoma has not 
been found to be a determinant of aspirin sensitivity. In the Nurses’ Health Study, 
tumor COX-2 expression was associated with higher diagnostic stage [ 44 ], consis-
tent with earlier studies in which COX-2 expression in breast cancers was identifi ed 
as an indicator of poor prognosis [ 26 ,  28 ,  32 ,  35 ]. However, the relative risk of 
breast cancer death for current aspirin use was similar for patients with COX-2-
positive and COX-2-negative disease [ 44 ]. 

 A recently reported analysis of the Health Professionals Follow-Up and Nurses’ 
Health Study cohorts suggests that mutational activation of PI3K signaling may also 
confer aspirin sensitivity [ 199 ]. Specifi cally, mutation analysis of the gene encoding 
the catalytic α subunit ( PIK3CA ) was performed on colorectal cancers from 964 
patients, and survival was compared with aspirin use as a function of mutational 
status. Use of postdiagnosis aspirin was found to selectively confer a survival 
advantage for patients with  PIK3CA -mutant tumors. Thus, in aggregate, molecular 
analyses from the Health Professionals Follow-Up and Nurses’ Health Study sug-
gest both COX-2 expression and  PI3KCA  mutation in colorectal cancers as determi-
nants of sensitivity to aspirin [ 194 ,  197 ,  199 ].  

11.3.2.4     Obesity and NSAID-Mediated Suppression of Human 
Colorectal Neoplasia 

 To date, little epidemiologic data exists addressing obesity as a modifi er of, or 
sensitizer to, NSAID action in human colorectal neoplasia, although, as discussed 
below (Sect.  11.5.4 ), there are abundant potential functional intersections between 
NSAID actions and obesity-related procarcinogenic mechanisms. Furthermore, an 
association between BMI and rectal mucosal PGE 

2
  levels has been identifi ed in 

patients with a history of polyps, implying increased activation of COX/PG signaling, 
the primary target of NSAIDs, in association with obesity [ 21 ]. Nevertheless, the 
relationship between BMI and NSAID effi cacy remains largely unaddressed in 
observational studies. Specifi cally, stratifi cation by BMI with comparative analysis 
of relative risk in each BMI category has rarely been reported. One puzzling report 
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from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial identifi ed 
protective NSAID effects with respect to polyp formation in women limited to those 
with BMI < 25 [ 200 ]. Furthermore, reductions in colon cancer risk associated with 
aspirin use were not found to be modifi ed by BMI in the Health Professionals 
Follow-Up Study or the Nurses’ Health Study [ 201 ]. In contrast, the Aspirin/Folate 
Polyp Prevention Study suggested that aspirin may be more effective in preventing 
colorectal adenomas in patients with higher BMI [ 202 ]. Among obese subjects (i.e., 
BMI ≥ 30), the risk for advanced adenomas in aspirin users (325 mg/day) compared 
with placebo was 0.44 (95 % CI, 0.17–1.10) vs. RR = 1.23 (95 % CI 0.55–2.77) 
among those with normal weight (BMI < 25). These data suggest a selective protec-
tive effect of aspirin in obese individuals and offer a possible path forward for 
amelioration of elevated cancer risk in association with obesity.  

11.3.2.5      Clinical Evaluation of COXibs for Suppression 
of Colorectal Neoplasia 

 The associated GI toxicity of aspirin and conventional NSAIDs represents a clear 
limitation and provided rationale for development of selective COX-2 inhibitors for 
anti- infl ammatory applications. Evaluation of these latter agents for cancer prophy-
laxis was logical, based on the substantial epidemiologic evidence for anti-CRC 
effi cacy of NSAIDs. Initial evaluation of celecoxib in FAP patients demonstrated a 
substantial reduction in polyp multiplicity with 400 mg twice daily for 6 months 
(28 % vs. 4.5 % reduction in placebo cohort) [ 203 ]. Three subsequent large-scale 
trials, the Adenoma Prevention with Celecoxib (APC), PRevention of Colorectal 
Sporadic Adenomatous Polyps (PreSAP), and Adenomatous Polyp Prevention On 
Vioxx (APPROVe) trials, all demonstrated COXib effi cacy (both celecoxib and 
rofecoxib) for suppression of recurrent adenomas [ 204 – 206 ]. Relative risks achieved 
with 3 years treatment were 0.55 (95 % CI, 0.48–0.64;  P  < 0.001) with 400 mg cele-
coxib twice daily in the APC trial [ 206 ], 0.64 (95 % CI, 0.56–0.75;  P  < 0.001) with 
400 mg celecoxib once daily in the PreSAP trial [ 204 ], and 0.76 (95 % CI, 0.69–
0.83;  P  < 0.0001) with 25 mg rofecoxib daily in the APPROVe trial [ 205 ]. 
Suppression of advanced adenomas was also observed. 

 Analysis of patient tissue samples from the APC trial revealed a novel determi-
nant of sensitivity to celecoxib—expression of the 15-hydroxyprostaglandin 
dehydrogenase (15-PGDH) enzyme [ 207 ]. 15-PGDH catalyzes conversion of PGE 

2
  

to a relatively inactive keto derivative, 15-keto-PGE 
2
 , and hence terminates PGE 

2
  

signaling. In the APC trial, in all cases tested, those individuals who developed new 
adenomas while taking celecoxib uniformly exhibited low colonic mucosal 
 15-PGDH  transcript levels. These data suggest that both adequate  15-PGDH  
expression and pharmacological COX inhibition are required to achieve suffi cient 
PGE 

2
  suppression to effectively prevent polyp formation. Intriguingly, several 

NSAIDs reportedly elevate  15 - PGDH  expression [ 208 ], which may be an integral 
component of their anticancer action. 
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 Excitement generated by positive fi ndings in the COXib polyp prevention trials 
was attenuated by the revelations of CV toxicity associated with the use of selective 
COX-2 inhibitors [ 209 – 213 ]. In aggregate these data led the US Preventive Services 
Task Force to conclude that the risk-benefi t ratio did not favor chemoprevention in 
average- risk individuals [ 214 ]. Nevertheless, it may be possible to identify patients 
with a low CV risk profi le for whom COXib-based prophylaxis of colorectal 
neoplasia is associated with a favorable risk-benefi t ratio. Post hoc analysis of the 
APC trial identifi ed the circulating infl ammatory marker high-sensitivity C-reactive 
protein (hsCRP) as a potential predictor of celecoxib-associated CV toxicity [ 215 ]. 
Among patients with high hsCRP, the RR of CV events compared with placebo was 
2.27 (95 % CI, 0.72–7.14) for those in the 200 mg celecoxib cohort and 3.28 (95 % 
CI, 1.09–9.91) in the 400 mg cohort, whereas no increase in CV risk was associated 
with assignment to celecoxib in patients with low hsCRP. Thus, it may be possible 
to identify patients for whom COXib use for chemoprevention is associated with 
minimal increase in CV risk.   

11.3.3     NSAIDs and Human Breast Cancer 

 Broadly similar epidemiologic fi ndings have been made with respect to NSAIDs 
and breast cancer as those discussed above for colorectal neoplasia. One important 
caveat is that the magnitude of risk reduction tends to be less, which could refl ect 
the reduced prevalence of COX-2 overexpression in breast cancer vs. CRC. 
Furthermore, few data are available from interventional studies. Nevertheless, several 
recent meta-analyses of observational studies have identifi ed a consistent signal of 
protection associated with NSAID use [ 159 ,  216 ,  217 ]. 

11.3.3.1     Epidemiologic Findings 

 Bosetti et al.’s recent meta-analysis of aspirin and cancer risk considered 10 case–
control studies and 22 cohort studies of breast cancer, including a total of 25,835 
and 27,091 breast cancer cases, respectively, and observed a modest but highly sig-
nifi cant RR of 0.90 (95 % CI, 0.85–0.95;  P  < 0.001) associated with aspirin use 
[ 159 ]. A similar magnitude of aspirin protection was identifi ed in a separate meta- 
analysis (odds ratio (OR), 0.86; 95 % CI, 0.81–0.92) which included 13 case–
control studies, 19 cohort studies, and 1 randomized clinical trial [ 216 ]. The fi ndings 
of both these studies were consistent with an earlier report from Takkouche et al., in 
which not only aspirin but other NSAIDs were considered [ 217 ]. Use of any NSAID 
was associated with reduced breast cancer risk (RR, 0.88; 95 % CI, 0.84–0.93), with 
protective effects for both aspirin and ibuprofen when considered individually (RR, 
0.87, and RR, 0.79, respectively). In contrast, the vast majority of studies have 
reported null associations for breast cancer risk and acetaminophen, consistent with 
this drug having a distinct analgesic mechanism from aspirin and commonly used 
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NSAIDs [ 218 – 222 ], although a couple of studies have identifi ed acetaminophen- 
associated protection [ 223 ,  224 ]. 

 Several studies have identifi ed reduced breast cancer risk associated with selec-
tive COX-2 inhibitor use [ 218 ,  220 ,  225 ], although null associations have also been 
reported, and a single study reported increased risk in COXib users [ 226 ]. Consistent 
with preclinical studies, Valsecchi et al. observed a reduced frequency of bone 
metastasis in users of COXibs [ 227 ]. In high-risk patients, the calculated OR for 
bone metastases was 0.10 (95 % CI, 0.01–0.78). 

 Of note, although meta-analyses reveal a consistent protective NSAID effect, 
several individual studies have reported negative fi ndings, or even increased breast 
cancer risk associated with NSAID use [ 228 – 230 ]. A population-based analysis of 
Danish women failed to observe associations between breast cancer incidence and 
NSAID use [ 231 ]. Furthermore, no NSAID-mediated protection was observed in 
the Nurses’ Health Study [ 232 – 234 ]. Interestingly, the Nurses’ Health Study cohorts 
included predominantly premenopausal women, suggesting that NSAIDs could 
mediate protection selectively in the postmenopausal setting. Mechanistically, this 
could relate to the ability of COX-derived prostaglandins to regulate estrogen 
biosynthesis. As discussed above (Sect.  11.2.3.5 ), PG-mediated upregulation of 
aromatase expression likely assumes greater signifi cance in postmenopausal women 
after cessation of ovarian estrogen synthesis. Thus, if suppression of COX-dependent 
estrogen synthesis is a key mechanism for NSAID-mediated protection with respect 
to breast cancer, superior NSAID effi cacy in postmenopausal women would be 
anticipated. 

 The hypothesis that NSAID-mediated suppression of postmenopausal estrogen 
synthesis is central to NSAID effi cacy in the context of breast cancer provides the 
basis for several further predictions. Most notably, one might expect that NSAID 
protection would be abrogated by postmenopausal hormone replacement therapy 
(HRT). Consistent with this notion, neither aspirin use nor total NSAID use was 
associated with breast cancer incidence in the Cancer Prevention Study II Nutrition 
Cohort, of which over half were users of hormone therapy [ 235 ]. Similarly, in the 
Danish Diet, Cancer and Health Cohort, NSAID protection was also not detected, 
but almost 50 % of women were HRT users, with higher hormone use in women 
using NSAIDs [ 229 ]. These data support a model in which NSAIDs are selectively 
effective in postmenopausal women who are not users of hormonal therapy, although 
clearly further data are required to validate this concept. 

 If NSAID-mediated decreases in estrogen biosynthesis are genuinely mechanis-
tically important, one might also anticipate selective suppression of those tumors 
that express hormone receptors (HRs). This possibility has been addressed in several 
epidemiologic studies to date, which have yielded mixed results. In the Long Island 
Breast Cancer Study, aspirin-associated breast cancer risk reduction was selectively 
observed in women with HR-positive tumors (OR, 0.74; 95 % CI, 0.60–0.93), 
whereas no benefi t was detected for HR-negative tumors (OR, 0.97; 95 % CI, 0.67–
1.40) [ 222 ]. A similar selective benefi t of daily aspirin use for risk reduction of 
ER-positive breast cancer was identifi ed in the NIH-AARP Diet and Health study 
(RR, 0.84; 95 % CI, 0.71–0.98) [ 236 ]. Additionally, although overall protective 
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effi cacy of aspirin was not observed in the Nurses’ Health Study, there was some 
signal of response of HR-positive breast cancers to high-dose, long-term aspirin 
exposure [ 234 ]. Other studies have also provided suggestive evidence for HR status 
as a determinant of aspirin sensitivity [ 237 ,  238 ], although aspirin/NSAIDs have not 
been uniformly observed to confer selective protection against hormone receptor-
positive tumors [ 228 ,  239 – 242 ]. Nevertheless, in aggregate the data suggest that 
NSAIDs may afford increased protection with respect to HR-expressing tumors, 
which could refl ect NSAID-mediated decreases in estrogen biosynthesis. 

 Finally, given the observation that breast adipose tissue exhibits infl ammation in 
the context of obesity leading to increased estrogenic signaling [ 53 ,  54 ,  58 ,  59 ], it 
seems likely that NSAIDs might afford increased breast cancer risk reduction in 
obese vs. lean postmenopausal women. BMI is an established determinant of serum 
estradiol in postmenopausal women [ 140 – 142 ]. Thus, obesity-associated increases 
in aromatase expression and hence estrogen signaling in breast tissue might provide 
a target for NSAIDs. Additional infl ammation-associated pathways may also be 
subject to NSAID-mediated amelioration (discussed below in Sect.  11.5.4 ). 
Stratifi cation of NSAID effects according to BMI in cohort and case–control studies 
may furnish insights into the relative importance of obesity as a determinant of 
NSAID sensitivity in breast cancer.  

11.3.3.2    Interventional Studies 

 A consensus fi nding from the epidemiologic studies discussed above is that NSAID 
use is associated with reduced breast cancer risk, albeit with lesser magnitude of 
protection than observed for colorectal neoplasia. However, in contrast to CRC, 
substantial randomized clinical trial data are not available to support these fi ndings. 
As discussed above (Sect.  11.3.2.2 ), recent meta-analyses of trials with the primary 
goal of evaluating aspirin for CV disease prevention have yielded exciting data con-
cerning aspirin protective effects on CRC incidence, mortality, and metastasis [ 166 –
 168 ]. However, too few women were included in these trials with long-term 
follow-up to determine the effect of aspirin on breast or gynecological cancers in the 
Rothwell analyses. Thus, the major prospective trial of aspirin with breast cancer as 
a measured endpoint remains the Women’s Health Study, a prospective trial of 
100 mg aspirin every other day vs. placebo for an average of 10 years. In this trial, 
no effect of aspirin was observed on total cancer (RR, 1.01; 95 % CI, 0.94–1.08; 
 P  = 0.87), colorectal cancer (RR, 0.97; 95 % CI, 0.77–1.24;  P  = 0.83), or breast can-
cer (RR, 0.98; 95 % CI, 0.87–1.09;  P  = 0.68) [ 185 ]. Null results in this study have 
been widely interpreted as indicating that 100 mg aspirin on alternate days is an 
insuffi cient dose to achieve meaningful risk reduction. Consistent with this interpre-
tation, several epidemiologic analyses have failed to observe protective effects with 
respect to breast cancer of low-dose (<100 mg/day) aspirin [ 220 ,  221 ,  225 ]. Also 
worth noting with respect to the Women’s Health Study was the high proportion of 
HRT use, approximately 55 %, which could also have obscured protective effects 
contingent on modulation of estrogenic signals. Nevertheless, at present there is a 
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dearth of clinical trial data to substantiate epidemiologic fi ndings of NSAID-
mediated breast cancer risk reduction.  

11.3.3.3    NSAIDs and Breast Cancer Recurrence/Mortality 

 Associations have been identifi ed between NSAID use and not only decreased breast 
cancer risk but also improved outcome following breast cancer diagnosis. Several 
studies have identifi ed decreased breast cancer recurrence and/or mortality in breast 
cancer patients who used NSAIDs following diagnosis [ 243 – 245 ]. In the Life After 
Cancer Epidemiology study, use of ibuprofen and non-aspirin NSAIDs was associ-
ated with decreased breast cancer recurrence, although aspirin did not afford protec-
tion [ 245 ]. In contrast, in the Nurses’ Health Study, aspirin use was associated with 
a decreased risk of breast cancer mortality [ 244 ]. Interestingly, the association was 
not modifi ed by menopausal status, BMI, or tumor ER status, and as discussed 
above, tumor COX-2 expression was also not a determinant of aspirin sensitivity 
[ 44 ,  244 ], providing few clues as to the responsible mechanisms underlying aspirin 
effects. Of note, confl icting data were provided by the Collaborative Women’s 
Longevity Study and the Western New York Exposures and Breast Cancer study, 
neither of which identifi ed a relationship between NSAID use and either all- cause or 
breast cancer-specifi c mortality [ 246 ,  247 ]. Further studies will undoubtedly provide 
greater clarifi cation concerning NSAID use and breast cancer outcome.  

11.3.3.4    Therapeutic Interventions with COX-2 Inhibitors 

 A handful of trials have tested COXibs as therapeutics or performed biomarker 
studies. Celecoxib has been evaluated in early phase tolerability/effi cacy trials in 
combination with the HER2/neu-directed monoclonal antibody trastuzumab, the 
aromatase inhibitor exemestane, or the antimetabolite capecitabine in patients with 
advanced breast cancer [ 248 – 252 ]. Where comparator arms were included, no 
increase in time to progression (TTP) resulted from addition of celecoxib [ 250 ]; 
however, one study identifi ed a longer TTP in celecoxib/capecitabine-treated 
patients whose tumors overexpressed COX-2 [ 251 ]. Window trials comparing 
molecular endpoints pre and post intervention have been relatively uninformative to 
date. Celecoxib-mediated decreases in nipple aspirate fl uid PGE 

2
  levels have been 

reported in postmenopausal women and in women with newly diagnosed breast 
cancer [ 253 ]. However, neither proliferation nor apoptosis in ER-positive DCIS was 
altered by 14-day celecoxib treatment, whereas the AI exemestane signifi cantly 
suppressed proliferation [ 254 ]. Similarly, 14-day celecoxib treatment did not effect 
a signifi cant alteration in proliferation (Ki67 staining) in breast carcinoma tissue 
relative to that observed in the no-treatment group and also did not signifi cantly 
affect apoptosis, COX-2, ER, or progesterone receptor (PR) expression [ 255 ]. 
However, statistically signifi cant decreases in carcinoma ER, PR, Ki-67, and COX-2 
expression have been achieved by coadministration of celecoxib with exemestane, 
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although aromatase protein levels were unaltered by exemestane or combination 
therapy [ 256 ]. Given the link between obesity, infl ammation, and neoplasia, it 
would obviously be of interest to determine if BMI is a determinant of clinical 
response of breast cancers to anti-infl ammatory drugs.    

11.4     Dysregulated Signaling in Obesity: Implications 
for Neoplasia 

 Many of the signaling pathways dysregulated in obesity likely contribute to the 
associated increase in cancer risk and moreover provide targets for NSAID-mediated 
intervention. Thus, this section provides a simplifi ed overview of signaling abnor-
malities associated with obesity and infl ammation to generate a framework for 
considering obesity-related mechanisms of NSAID anticancer action. For increased 
detail, the reader is directed to accompanying chapters in this book. Since mecha-
nistic contributions of COX/PG signaling to neoplasia are extensively discussed 
above (Sect.  11.2.3 ), these are largely not reiterated in this section. 

 Obesity is defi ned by increased BMI (≥30) and characterized by disproportionate 
adipose accumulation. Importantly, as discussed above, adipose tissue from obese 
individuals exhibits marked infl ammation, defi ned by infi ltration of leucocytes, 
including macrophages, as well as CD8-positive T lymphocytes and mast cells [ 4 ]. 
Infl ammatory foci consisting of M1-like macrophages surrounding necrotic adipo-
cytes, the so-called CLS, are observed in breast and other adipose depots from obese 
mice and humans and increase as a function of body mass [ 53 ,  55 – 59 ]. Adipose 
tissue macrophages can comprise up to 40 % of cells in obese adipose tissue and 
represent a rich source of cytokines, chemokines, and fatty acids, which are key 
mediators of the increased risk of insulin resistance and neoplasia associated with 
obesity [ 4 ]. Proinfl ammatory molecules released from activated macrophages 
include COX-2-derived PGE 

2
 , TNFα, and IL-1β (Fig.  11.2 ), synthesis of which is 

driven by increased NFκB (nuclear factor of kappa light polypeptide gene enhancer 
in B cells) signaling induced by ligation of cell-surface toll-like receptor 4 (TLR4). 
These cytokines may have both local and systemic effects. Key consequences 
include attenuation of insulin signaling through kinase-mediated covalent modifi ca-
tion of insulin receptor substrate-1 (IRS-1) and decreased expression of the GLUT4 
glucose transporter. Thus, obesity-associated cytokine overproduction can drive 
insulin resistance, hyperinsulinemia, and ultimately type II diabetes. Importantly, 
tissue infl ammation is evident not only in adipose but in all classical insulin target 
tissues, including liver and muscle. 

 Obesity-induced cytokine overproduction has important proneoplastic sequelae 
[ 257 ]. Cytokines and chemokines can induce DNA damage via reactive oxygen 
species and inhibit DNA repair. Furthermore, they may act as paracrine growth and 
survival factors for malignant cells, as well as inducing angiogenesis via microenvi-
ronment remodeling and upregulation of proangiogenic factors. Tissue remodeling 
may also contribute to cancer cell migration and invasion. Additionally, 
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obesity- induced cytokines may be important in subverting host immune responses 
and hence optimizing tumor cell survival. Thus, excessive levels of proinfl amma-
tory mediators may impact both tumor initiation and progression. 

 Key signal transduction pathways activated by PGE 
2
 , TNFα, and IL-1β include 

protein kinase A, mitogen-activated protein kinase (MAPK), and NFκB signaling, 
all of which are implicated in carcinogenesis. Additionally, as previously discussed, 
an important local effect in obese adipose tissue is paracrine induction of aromatase 
expression in neighboring cells (Fig.  11.2 ), likely increasing breast cancer risk via 
upregulated estrogenic signaling. Increased circulating estradiol levels in obesity 
may also promote neoplasia in other hormone-responsive tissues including uterine 
endometrium. 

 In parallel with hyperinsulinemia in obesity, increased production of other 
growth factors and endocrine agents is observed, including the satiety hormone 
leptin and insulin-like growth factor 1 (IGF-1) [ 258 ]. Increased IGF-1 synthesis and 
decreased expression of IGF-binding proteins lead to a net increase in bioavailable 
IGF-1. Both insulin and IGF-1 can induce cell growth and proliferation via PI3K/
AKT signaling, a pathway that is of central importance in neoplasia [ 259 ,  260 ]. 
Additionally, both ligands can induce β-catenin/TCF signaling [ 261 ], another highly 
important pathway in cancer [ 262 ]. 

 The peptide hormone leptin emanates from adipocytes and thus is positively 
correlated with adipose stores. In lean animals, leptin functions as a satiety factor, 
but leptin overproduction in obesity is accompanied by diminished hypothalamic 
responsiveness to the leptin signal. In contrast, leptin-regulated JAK/STAT, MAP 
kinase, and PI3K signaling in other tissues can promote cancer progression. Animal 
studies have identifi ed leptin signaling as important for mammary tumorigenesis, 
and it appears that the ratio of leptin to adiponectin (which decreases with increasing 
BMI) may be a key determinant of breast cancer risk [ 258 ,  263 ]. 

 Several signaling pathways are thus emerging as key mediators of obesity- 
associated infl ammation, both for insulin resistance and cancer risk. NFκB is a 
central regulator of adipose cytokine synthesis. Saturated fatty acids, and poten-
tially bacterial toxins ingressing via leaky gut mucosa, induce NFκB activation via 
TLR4, resulting in increased production of cytokines, many of which in turn signal 
through NFκB. Central importance of NFκB in systemic insulin resistance has been 
demonstrated via genetic manipulation in rodents, which has further established 
myeloid NFκB as the key determinant [ 264 – 267 ]. Hyperactivation of PI3K/AKT 
signaling to mTOR (mammalian target of rapamycin) is apparent in obesity, conse-
quent on overproduction of infl ammatory cytokines and hormones (e.g., insulin, 
IGF-1, leptin). mTOR is a central regulator of cell growth, responsible for integrat-
ing growth factor signaling, nutrient, energy, and oxygen availability and translating 
the net signal to provide the appropriate level of translational activity within the cell 
[ 268 ]. Balancing the progrowth signals initiated by hormones and growth factors, 
AMP kinase (AMPK) serves as an energy sensor activated by increased AMP:ATP 
ratio that can signal the need for decreased metabolic activity by providing critical 
input to mTOR. AMPK activation initiates a switch from glucose to fat utilization 
and shuts down energy-intense processes. Of note, antidiabetic agents including 
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metformin function in part through activation of AMPK via decreasing oxidative 
phosphorylation and hence ATP production. Altered balance between PI3K and 
AMPK signaling in obesity may prove to be a key regulator of the neoplastic 
process via control of tumor cell growth. 

 Thus, obesity is associated with activation of multiple key proneoplastic path-
ways including NFκB, PI3K/AKT/mTOR, Wnt/β-catenin, JAK/STAT, and MAP 
kinase signaling and may also effect protumorigenic changes by skewing the 
cellular energy balance in favor of continued cell growth. Notably these processes 
are deemed most likely to contribute to cancer progression after acquisition of 
precursor mutations that induce cell transformation, although infl ammatory cyto-
kines may also regulate tumor initiation via increasing DNA damage.  

11.5      NSAID Anticancer Mechanisms 

11.5.1     NSAIDs Suppress Hallmark Characteristics of Cancer 

 Consideration of the key signaling abnormalities associated with obesity provides a 
foundation for reviewing NSAID anticancer mechanisms, although clearly many of 
these mechanisms are generalizable to the carcinogenic process independent of BMI. 
As discussed above, COX/PG signaling regulates a number of the intrinsic, or 
“ hallmark”, capabilities suggested as essential for tumor growth and metastatic 
dissemination; thus, NSAID-mediated PG suppression can impact neoplasia via 
multiple effector pathways (Fig.  11.1 ). Intriguingly, NSAIDs can decrease PG lev-
els not only via modulation of their synthesis (i.e., COX inhibition) but also through 
increased catabolism achieved via  15 - PGDH  upregulation [ 208 ]. Nevertheless, con-
siderable controversy has focused on the mechanistic basis for the protective effi -
cacy of NSAIDs with respect to cancer, based in part on the existence of NSAID 
derivatives such as sulindac sulfone that lack COX inhibitory activity but are still 
active in animal tumor models [ 269 ], as well as demonstrated activity of NSAIDs 
towards COX-2-null cells [ 270 – 272 ]. This has been resolved by genetic approaches 
which provide incontrovertible evidence for the importance of COX/PG signaling in 
rodent neoplasia (Sect.  11.2.2 ). Facets of tumorigenesis that can be regulated by 
prostaglandins and are thus susceptible to NSAID-mediated attenuation include cell 
proliferation and apoptosis avoidance, invasiveness, angiogenesis, immune sup-
pression, and regulation of estrogen biosynthesis (Sect.  11.2.3 ; Fig.  11.1 ). 
Additionally, recent data identify a key role for stromal fi broblast-derived PGE 

2
  in 

regulating cancer stem cells [ 74 ,  75 ]. Nevertheless, it is evident that NSAIDs 
suppress tumorigenesis through a combination of both COX-dependent and COX- 
independent effects. NSAID regulation of programmed cell death provides a key 
illustration of utilization of parallel COX-dependent and COX-independent 
pathways to effect a response.  
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11.5.2      NSAID-Mediated Suppression of Apoptosis 

  COX - 2  overexpression in epithelial cells suppresses apoptosis both in vitro and 
in vivo [ 63 ,  87 ], providing a clear mechanism for NSAID-mediated apoptosis via 
COX inhibition. Antiapoptotic consequences of elevated COX-2/PG include 
increased expression of the antiapoptotic gene  Bcl - 2  [ 273 ] and decreased 
arachidonate- driven apoptosis consequent on increased conversion of arachidonic 
acid to PGs [ 274 ,  275 ]. Furthermore, COX-derived prostacyclin may act to suppress 
apoptosis via direct interaction with the nuclear receptor peroxisome proliferator- 
activated receptor (PPAR) δ [ 276 ,  277 ]. However, a multiplicity of additional COX- 
2-independent NSAID-regulated pathways can also impact apoptosis, as illustrated 
by NSAID induction of cell death in  COX - 2  null cells [ 270 – 272 ] and by non-COX-
inhibiting drugs [ 278 ]. NSAIDs can stimulate induction of multiple proapoptotic 
effectors, including 15-lipoxygenase-1 (15-LOX-1) [ 279 ,  280 ], NSAID-activated 
gene-1 (NAG-1) [ 281 ], and prostate apoptosis response 4 (Par-4) [ 282 ]. NSAID- 
mediated abrogation of antiapoptotic pathways via inhibition of PPARδ and 
3- phosphoinositide-dependent protein kinase-1 (PDPK1) signaling has also been 
described [ 283 ,  284 ]. Several mechanisms have been advanced to explain PPARδ 
suppression, including disruption of PPARδ binding to target sequences, and down-
regulated PPARδ expression, which can be a consequence of increased synthesis of 
the 15-LOX-1 product 13-S-HODE [ 283 ,  285 – 287 ]. NSAID-elicited suppression of 
apoptosis likely occurs through combination effects on these pathways. Intriguingly, 
a selective proapoptotic effect of sulindac on intestinal stem cells has been sug-
gested, implying that NSAIDs could selectively impact the biology of cancer stem 
cells with activation of Wnt/β-catenin signaling [ 288 ], which could relate to the 
previously reported ability of PGE 

2
  to regulate stem cells [ 73 – 75 ,  289 ].  

11.5.3     Cyclooxygenase-Independent NSAID Effects 

 The Wnt/β-catenin pathway has itself been identifi ed as an NSAID target: suppres-
sion of β-catenin/TCF transcription can be elicited by multiple NSAIDs including 
aspirin, indomethacin, and sulindac [ 290 – 292 ]. Strikingly, reduced nuclear β-catenin 
is evident in adenomas from NSAID users [ 290 ,  293 ]. Aspirin-mediated inhibition 
of phosphatase 2A has been posited as one mechanism for attenuating Wnt/β-
catenin signaling [ 291 ]. However, regulation of β-catenin signaling by PGE 

2
  via 

modulation of glycogen synthase kinase 3β has also been described [ 76 ,  294 ], 
suggesting that NSAIDs may regulate this pathway via both COX-dependent and 
COX-independent routes. 

 An emerging target of interest in the NSAID fi eld is cGMP phosphodiesterase 
(PDE). Sulindac metabolites inhibit cGMP PDE, resulting in increased cGMP and 
protein kinase G activity in CRC and breast cancer cell lines [ 295 – 297 ]. Selective 
expression of cGMP PDE5 in cancer cell lines and tissues suggests this isoform as 
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the target for sulindac and other NSAIDs [ 296 ,  297 ]. Parallel NSAID effects on 
cGMP PDE5 activity, apoptosis, and suppression of β-catenin/TCF signaling sug-
gest that cGMP PDE5 regulates these latter responses, and causal relationships have 
been established using knockdown approaches. 

 The ability of COX inhibition to directly impact carcinogenesis through 
diminished COX-mediated activation of procarcinogens was discussed above 
(Sect.  11.2.3.6 ). However, NSAIDs can also regulate carcinogen metabolism 
independent of COX enzymes. For example, the major aspirin metabolite salicylic 
acid inhibits P phenolsulfotransferase, which mediates sulfation activation of car-
cinogens [ 298 ]. Additional COX-independent effects of NSAIDs of particular 
relevance with respect to obesity are described in the following section.  

11.5.4       Key COX-Independent NSAID Effects 
in the Context of Obesity 

 Of the numerous “off-target” NSAID effects described to date, suppression of the 
NFκB pathway is strikingly relevant to obesity. Inhibition of NFκB transcriptional 
activity has been described for both aspirin and other NSAIDs, with a variety of 
proposed mechanisms that dictate NFκB protein localization such that it remains 
transcriptionally inactive [ 299 – 304 ]. NSAID-mediated suppression of NFκB 
signaling is likely to have profound consequences for obesity and neoplasia, given 
the key role of NFκB in both the upregulation and signaling of macrophage-derived 
infl ammatory mediators in obese adipose. 

 Notably, salicylate treatment attenuates experimental insulin resistance in rodent 
models, and this has been attributed to NFκB suppression [ 265 ,  267 ]. Furthermore, 
selective COX-2 inhibitors (celecoxib, nimesulide) reduce parameters of metabolic 
disease in rats fed high-fat diets [ 305 ]. Clinically, improved insulin sensitivity and 
glycemia has been achieved through administration of aspirin, salicylate, salsalate 
(a non- acetylated prodrug of salicylate), and COXibs [ 306 – 310 ]. Intriguingly how-
ever, NSAID modulation of NFκB may only represent part of the explanation for 
these fi ndings. Emerging data suggest probable involvement of AMPK as an addi-
tional mediator of aspirin/salicylate improvement of metabolic dysfunction. 
Salicylate has recently been shown to activate AMPK, and salicylate-induced 
decreases in plasma fatty acids and increased fat utilization are abrogated in  AMPK -
defi cient mice [ 311 ,  312 ]. Thus, salicylate-elicited amelioration is likely to refl ect 
modulation of both NFκB and AMPK. 

 Several other pathways that are altered in obesity-associated infl ammation are 
also targeted by NSAIDs. Multiple lines of evidence support the ability of NSAIDs 
to attenuate PI3K/AKT signaling and growth control. NSAIDs can suppress PI3K/
AKT signaling via COX inhibition, since PGE 

2
  induces activation of PI3K/AKT 

through G protein-β/γ subunits [ 76 ]. Additionally, NSAID-mediated inhibition of 
the upstream AKT activator 3-phosphoinositide-dependent protein kinase-1 
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(PDPK1) has been reported [ 284 ]. Reduced phosphorylation levels of ribosomal 
protein S6 and S6 kinase in rectal mucosa from aspirin-treated patients are 
 consistent with attenuation of PI3K/AKT signaling [ 312 ], these proteins being key 
downstream mediators that regulate protein synthesis and hence cell growth. 
Furthermore, indomethacin activates the eIF2a kinase PKR in CRC cells, inducing 
a translation block [ 313 ]. Notably, a recent survey of cellular proteins acetylated by 
aspirin identifi ed 33 substrates including metabolic enzymes, histones, and ribo-
somal and mitochondrial proteins [ 314 ]. These provocative fi ndings suggest that 
aspirin-mediated acetylation of cellular proteins could have far-reaching metabolic 
consequences. Of note, aspirin-acetylated COX-2 synthesizes a novel class of lipid 
mediators, lipoxins, which actively promote resolution of acute infl ammation 
[ 315 ], although the role of these lipid moieties in chronic infl ammation is less 
well-defi ned. 

 The available evidence suggests that aspirin compounds can favorably impact 
pleiotropic pathways to improve metabolic health. Thus, NSAID-mediated attenua-
tion of systemic infl ammation might also be expected to translate into reduced risk 
of neoplasia through reducing the parameters of infl ammation and thereby modulat-
ing the biology of the neoplastic cell.   

11.6     Conclusions 

 Obesity as a determinant of increased cancer risk and poorer cancer outcome is now 
well established for cancers of multiple organ sites, including CRC and postmeno-
pausal breast cancer. Obesity-associated systemic infl ammation is likely to be a key 
driver of elevated neoplastic risk, with numerous plausible mechanisms consequent 
on elevated levels of infl ammatory mediators and hormones. Both circulating and 
local tissue levels of these molecules can drive cancer progression and may also 
contribute to tumor initiation via increased DNA damage. Induction of numerous 
key protumorigenic signaling pathways may be elicited as a consequence of obesity- 
associated infl ammation, including NFκB, Wnt/β-catenin, MAPK, JAK/STAT, as 
well as the PI3K/AKT/mTOR axis which is central to cell growth and homeostasis. 
Strikingly, many of these pathways are targeted by NSAIDs, and this drug class has 
demonstrated clinical effi cacy for ameliorating metabolic dysfunction. Importantly, 
clinical fi ndings support the antineoplastic activity of NSAIDs with respect to both 
colorectal and breast cancer, and consistent data have been obtained using animal 
models. To date there is limited epidemiologic evidence for selective protective 
effects of NSAIDs in obese individuals. Clinical evidence for a selective signal of 
NSAID utility for cancer prophylaxis in the context of obesity is mixed for CRC and 
completely absent for breast cancer. This may refl ect the pleiotropic mechanisms, 
both COX-dependent and COX-independent, through which NSAIDs can attenuate 
the cancer process, which may confer protection in both lean and obese individuals. 
Nevertheless, NSAID-mediated suppression of COX/PG signaling, NFκB activity, 
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and the PI3K/AKT/mTOR axis, as well as activation of AMPK signaling, are likely 
to have profound consequences for obesity-associated neoplasia. Furthermore, 
COX/PG-mediated upregulation of estrogen biosynthesis and signaling offers a 
plausible target for NSAID-mediated risk reduction with respect to breast and other 
hormone-sensitive cancers in the context of obesity.     
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    Abstract     Long-chain n-3 polyunsaturated fatty acids (PUFA) have been shown 
to provide health benefi ts in a number of diseases including several forms of 
cancer. In this chapter we will discuss in detail some of the prominent mecha-
nisms through which n-3 PUFA and its metabolites are believed to function in 
the prevention of colon tumorigenesis. At the plasma membrane, n-3 PUFA 
antagonize the production of infl ammatory and procarcinogenic n-6 PUFA (i.e., 
arachidonic acid)-derived metabolites. Additionally, the highly unsaturated 
nature of n-3 PUFA impacts cell membrane properties and dynamics thereby 
altering numerous cellular functions, including intracellular signaling, cell 
growth, survival, and proliferation. Due to the sterically incompatible relation-
ship between docosahexaenoic acid, sphingolipids, and cholesterol, the major 
constituents of lipid rafts, n-3 PUFA modulate these crucial membrane microdo-
mains and perturb effi cient signal transduction thereby eliciting the same bio-
logical effects exploited by some anti-cancer therapies. Moreover, we discuss 
how alterations in lipid rafts and downstream signaling impact both epithelial 
cells and the activation of immune cells. This is noteworthy, because chronic 
infl ammation plays a critical role in tumorigenesis. Therefore, we also present an 
overview regarding the anti-infl ammatory and immunomodulatory mechanisms 
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through which n-3 PUFA perturb the tumor microenvironment and downregulate 
the activation of critical transcription factors and target genes with an established 
role in cancer development. Finally, we discuss recent evidence suggesting that 
n-3 PUFA in combination with other dietary bioactive nutrients, such as soluble 
fi ber and curcumin, could be benefi cial in cancer prevention. Collectively, we 
demonstrate that dietary n-3 PUFA have utility in the prevention of cancer devel-
opment through mechanisms centered at both the molecular, cellular (plasma 
membrane), and tissue level.  

12.1         n-3 PUFA 

 Numerous health benefi ts have been attributed to fi sh oil. The most notable bioac-
tive components of fi sh oil are the long-chain omega-3 polyunsaturated fatty 
acids (n-3 PUFA), eicosapentaenoic acid (EPA, 20:5 Δ5,8,11,14,17 ), and docosahexae-
noic acid (DHA, 22:6 Δ4,7,10,13,16,19 ). Fatty acids that have the last double-bond three 
carbons from the terminal methyl group are characterized as n-3 fatty acids. 
Mammals lack the desaturases that are required to synthesize n-3 PUFA, so they 
must be acquired through the diet. The major dietary source of long-chain n-3 
PUFA is fatty, cold-water fi sh, which ingest zooplankton and phytoplankton rich 
in EPA and DHA [ 1 ]. Another shorter-chain n-3 PUFA, α-linolenic acid (α-LNA, 
18:3 Δ9,12,15 ), can be obtained from plant sources, including walnuts, seeds (fl ax-
seed), dark green leafy vegetables, and soybeans. Humans express the enzymes 
required for conversion of α-LNA to EPA and EPA to DHA; however, conversion 
rates are extremely low. Kinetic analyses suggest that conversion of α-LNA to 
EPA to be as low as 0.2 %. Further conversion to DHA is calculated to be as low 
as 0.05 % [ 2 ]. Therefore, the optimal way to increase tissue levels of long-chain 
n-3 PUFA is by directly ingesting foods or supplements high in both EPA and 
DHA.  

12.2     n-3 PUFA in Cancer 

 As mentioned above, EPA and DHA have been shown to provide health benefi ts in 
a number of diseases. Of interest, there is growing evidence that n-3 PUFA may 
prevent multiple forms of cancer, including some of the top causes of cancer mortal-
ity: breast, lung, prostate, and colon cancer [ 3 – 6 ]. In this chapter, we will focus on 
the evidence for the role of n-3 PUFA in the prevention and treatment of colon 
cancer. Importantly, many of the mechanisms of action of n-3 PUFA that we will 
discuss are common between multiple cancer types.  
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12.3     Human Data 

12.3.1     Observational Studies 

 It is important to fi rst appreciate the mounting human data documenting the role on 
n-3 PUFA in colon cancer prevention. Numerous epidemiological studies have 
demonstrated distinct trends in which an increase in consumption of n-3 PUFA is 
associated with reduced risk of colon cancer. Studies have established a signifi cant 
risk reduction of colorectal cancer (CRC) with increased consumption of fi sh, n-3 
PUFA, and DHA or EPA [ 7 – 9 ]. A recent study found that dietary intake of marine 
n-3 PUFA was associated with a decreased risk of adenomatous polyps in women 
[ 10 ], and another described an inverse relationship between the intake of n-3 PUFA 
and the risk of colon cancer in the proximal colon in both men and women [ 11 ]. 
Additionally, a Scottish study described a dose-dependent reduction in colon cancer 
risk with increased intake of total n-3 PUFA, EPA alone, and DHA alone [ 12 ]. 
A 22-year prospective study established that intake of fi sh and fatty acids from fi sh 
may decrease the risk of colon cancer [ 13 ]. Similarly, a meta-analysis of prospective 
cohort studies additionally found that fi sh consumption reduces colon cancer risk 
[ 14 ]. Furthermore, data from 24 European countries established an inverse correla-
tion between fi sh and fi sh oil consumption with CRC mortality [ 4 ]. Other studies 
have shown that individuals with the highest percentage of circulating n-3 PUFA 
display the lowest risk of colon cancer [ 15 – 17 ]. Historically, a very low prevalence 
of colon cancer existed in Asian countries, which was attributed to a high consump-
tion of fi sh. However, recent lifestyle changes of these populations have resulted 
in similar rates of colon cancer to the population of the United States [ 18 ]. 
These trends indicate a role of diet in colon cancer risk.  

12.3.2     Clinical Studies 

 Due to the abundance of data suggesting a protective role of n-3 PUFA, numerous 
clinical trials have been undertaken to further clarify these effects. A short-term trial 
demonstrated that fi sh oil reduces mucosal proliferation, which may protect high- 
risk subjects from colon cancer [ 19 ]. Additionally, a double-blind, cross-over trial 
further indicated a reduction in mucosal proliferation as well as reduced PGE 

2
  

 synthesis in test subjects receiving fi sh oil [ 20 ]. Another study conducted by Anti 
et al. demonstrated that fi sh oil supplementation has both short-term and long-term 
normalizing effects on the abnormal proliferation patterns associated with increased 
colon cancer risk [ 21 ]. Very few studies have focused specifi cally on purifi ed DHA 
or EPA. However, two studies have shown a positive effect of purifi ed EPA. One of 
these investigations found that highly purifi ed EPA reduces crypt cell proliferation 
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and increases apoptosis in subjects with a history of colorectal adenomas [ 22 ]. In a 
complementary study, the administration of EPA to a population of genetically pre-
disposed subjects for colon cancer exhibited a reduction in the number and diameter 
of colonic polyps, which can serve as precursors to colon cancer [ 23 ]. Overall, 
human clinical trials have demonstrated a potential use of n-3 PUFA in colon cancer 
prevention.  

12.3.3     Nutrigenetics 

 Although many studies have demonstrated the benefi cial effect of n-3 PUFA in 
regard to colon tumorigenesis, a subset of studies have failed to show any effect. 
The answer to some of these differences may lie in the fi eld of nutrigenetics. 
Nutrigenetics is the study of how certain genes are affected by nutrients, especially 
with regard to disease. Recently, it has been reported that a single nucleotide poly-
morphisms (SNPs) within a DNA repair gene modifi ed the effect of marine n-3 
PUFA on colon cancer risk [ 24 ]. Further developments in this fi eld of research will 
likely enhance our understanding of the role of n-3 PUFA in colon cancer 
prevention. 

 In cancer, many different abnormalities can contribute to the formation of a 
tumor. Therefore, not all patients will respond to the same type of therapy. If a nutri-
ent is going to be effective for prevention or treatment of cancer, the mechanism of 
action will elucidate the patients most likely to respond to a given therapy. Therefore, 
we will now discuss the mechanisms by which n-3 PUFA are believed to function 
in the prevention of colon tumorigenesis.   

12.4     Membrane Effects of n-3 PUFA 

 Multiple studies have been undertaken to elucidate the mechanisms of action of n-3 
PUFA, and the current literature contains evidence of various interactions to explain 
the antineoplastic activity of DHA and EPA. Of interest, long-chain n-3 PUFA have 
been shown to alter membrane dynamics, which could explain the pleiotropic 
effects of these fatty acids. DHA and EPA are both long, highly unsaturated fatty 
acids, which can directly affect many of the properties of the plasma membrane. 
Modifi cation to cell membranes can extensively alter numerous cellular functions, 
including cellular signaling, growth, survival, and proliferation. For example, both 
EPA and DHA have been shown to increase membrane fl uidity [ 25 ,  26 ], and mem-
brane fl uidity can directly affect protein diffusion within the membrane. This can 
then modify multiple cell signaling events which require specifi c spatiotemporal 
regulation of protein–protein interactions. n-3 PUFA have additionally been shown 
to alter permeability, phase behavior, fusion, and fl ip-fl op of the plasma membrane 
[ 26 ,  27 ]. These effects on the membrane directly contribute to the ability of n-3 
PUFA to alter important membrane microdomains. In fact, recent evidence clearly 
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demonstrates that EPA and DHA can perturb highly crucial microdomains known 
as lipid rafts [ 28 – 31 ]. 

 Lipid rafts are extremely small membrane microdomains that can vary between 
5 and 200 nm [ 32 ]. Lipid rafts are further characterized as dynamic plasma mem-
brane domains enriched with cholesterol and sphingolipids [ 33 ]. These domains 
contain highly ordered lipid assemblies and exhibit liquid-ordered characteristics 
due to the interaction between cholesterol and sphingolipids. Furthermore, lipids 
that are localized to these domains comprise mostly saturated, long hydrocarbon 
chains and hydroxylated ceramide backbones [ 34 ,  35 ]. The composition of lipid 
rafts imparts two distinguishing characteristics: detergent-resistance and low- 
buoyant density [ 36 ]. These qualities have been exploited by researchers to explore 
the protein composition of lipid rafts. It is important to note that lipid rafts are highly 
heterogeneous [ 37 ]. Additionally, the structure of lipid rafts is decidedly dynamic, 
and lipid rafts constantly alter their composition of both lipids and proteins. These 
properties of rafts facilitate the ability of cells to respond to external stimuli and 
activate intracellular signaling pathways that originate at the cell surface. 

 The dynamics and heterogeneity of lipid rafts allow for a large number of signals 
to be transduced from the extracellular environment to intracellular domains. 
Membrane rafts play a fundamental role in mediating multiple cell functions, 
including signal transduction [ 38 – 42 ]. Many proteins that function as signaling 
partners accumulate in lipid rafts, which serve as a platform to support highly effi -
cient signal transduction. Although lipid rafts are small, they can be stimulated to 
coalesce and form large, stable platforms for signaling [ 43 ,  44 ]. Many important 
signaling proteins have been shown to be highly enriched in lipid raft domains, 
including epidermal growth factor receptor (EGFR), G-protein-coupled receptors 
(GPCR), platelet-derived growth factor receptor (PDGFR), nerve growth factor 
receptor (NGFR), vascular endothelial growth factor receptor (VEGFR), H-Ras, 
and many more [ 33 ,  45 – 47 ]. In many cases, the function of proteins depends greatly 
on their localization within lipid rafts [ 48 ]. These lipid raft-mediated signaling 
events are essential for a plethora of cell functions. 

 Lipid rafts have been found to participate in a variety of cellular events. For 
instance, extensive studies have been performed to elucidate the role of lipid rafts in 
the activation of T lymphocytes, which requires clustering of signaling components 
in a large, stable lipid raft domain at the immunological synapse (IS, [ 49 ,  50 ]). 
Furthermore, extrinsic induction of apoptosis relies on signaling through lipid rafts, 
and the composition of lipid rafts has been shown to affect apoptotic responses 
[ 48 ,  51 ,  52 ]. Of interest, recent evidence suggests that lipid rafts may modulate the 
malignant transformation process. In fact, the levels of lipid rafts are increased in 
many types of cancer [ 53 – 55 ]. Additionally, lipid rafts mediate many of the cell 
signaling events that are often constitutively or hyperactivated in cancer [ 56 – 61 ], 
including EGFR, Akt, Ras, Src, and HER2. Research suggests that disruption of 
lipid rafts may enhance responsiveness to anti-cancer therapies [ 62 ]. Furthermore, 
some anti-cancer drugs have benefi cial effects through alteration of the protein con-
tent of lipid rafts [ 48 ]. In colon cancer, lipid rafts have been shown to function in 
cell death-mediated signaling [ 63 ,  64 ], entry of bioactive compounds [ 65 ], and 
localization of key proteins involved in immune response [ 66 ]. 
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 Extensive studies have demonstrated that DHA, due to its high degree of unsat-
uration, is sterically incompatible with cholesterol [ 27 ], a major constituent of 
rafts. Additionally, DHA displays nonideal mixing with sphingomyelin, another 
major component of lipid rafts, in model membranes [ 31 ]. Conceivably, disrup-
tion of lipid rafts could be caused by the lack of affi nity of n-3 PUFA for lipid raft 
components. As mentioned above, several critical processes involve lipid rafts, 
including T cell activation, signal transduction, and protein and lipid traffi cking 
[ 33 ]. Many of these lipid raft-mediated processes play an integral role in colon 
tumorigenesis. Signaling pathways emanating from lipid rafts, frequently exacer-
bated in cancer, mediate a variety of tumor-promoting activities, including cell 
proliferation, migration, and invasion [ 55 ]. Additionally, chronic infl ammation, 
central to the process of tumorigenesis [ 67 ], involves excessive lipid raft-medi-
ated T cell activation. Numerous recent discoveries highlight the role of n-3 PUFA 
in the regulation of lipid rafts and lipid raft-mediated signaling in both immune 
cells and epithelial cells. Due to the extensive cross-talk between immune and 
epithelial cells, the ability of n-3 PUFA to alter signaling in both cell types likely 
contributes to a greater effect with respect to cancer prevention than targeting 
either cell type on its own (Fig.  12.1 )   .

  Fig. 12.1    Cross-talk between immune and epithelial cells in infl ammation and cancer. Immune 
cells, e.g., T lymphocytes and epithelial cells engage in constant cross-talk to monitor and survey 
the physiological environment for foreign antigens and protect the host. Since EPA- and DHA- 
containing phospholipids are incorporated into membranes of many cell types and affect their 
signaling, understanding the molecular mechanisms by which n-3 PUFA impact signaling in both 
immune and epithelial cells will serve to elucidate the effects of n-3 PUFA on infl ammation and 
carcinogenesis       
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12.5        Effect of n-3 PUFA on Epithelial Cell Lipid Rafts 

12.5.1     Epithelial Raft Size 

 Lipid raft size is an important feature in lipid raft function [ 68 ] and has been shown 
to be altered by n-3 PUFA [ 28 ]. Lipid raft size is integral for dynamic lateral segre-
gation of signaling proteins into microdomains. Partitioning of proteins into rafts 
can increase specifi c protein–protein collision rates to facilitate effi cient signaling. 
However, to maximize this essential, biologically relevant function, rafts must be 
mobile and small, with a diameter up to 14 nm [ 68 ]. Therefore, altering the size of 
a lipid raft would likely have adverse effects on signaling. In HeLa cells and T lym-
phocytes, treatment with DHA resulted in enhanced clustering of lipid raft domains 
compared to untreated cells [ 28 ]. Additionally, DHA treatment was found to 
increase the height of lipid rafts, while reducing the overall number of lipid rafts 
[ 69 ]. Altering lipid raft size has implications with regard to the regulation of mul-
tiple signaling events associated with these microdomains.  

12.5.2     Lipid Raft Composition 

 In addition to the size of lipid rafts, the composition of rafts is important for their 
function. Interestingly, n-3 PUFA have been found to alter the composition of lipid 
rafts. Upon feeding mice a diet enriched in n-3 PUFA, the cholesterol content of 
lipid rafts in colonocytes was reduced by 46 % compared to mice fed a diet enriched 
in n-6 PUFA [ 70 ]. Furthermore, treatment of both endothelial and breast cancer 
cells with DHA was also found to reduce raft sphingomyelin and cholesterol con-
tent [ 71 ,  72 ]. These n-3 PUFA-induced modifi cations of lipid raft composition are 
signifi cant because cholesterol and sphingomyelin are major building blocks of 
lipid rafts that promote the formation of hydrophobic liquid-ordered molecular 
packing. 

 In addition to altering the lipid composition of rafts, n-3 PUFA have been shown 
to modulate raft protein composition. This effect of DHA on Ras is highly important 
due to the central role that Ras signaling plays in colon carcinogenesis [ 73 ]. Feeding 
mice a diet enriched in n-3 PUFA was found to reduce the localization of H-Ras to 
colonocyte lipid rafts [ 70 ]. Moreover, treating immortalized young adult mouse 
colonocytes (YAMC) with DHA was also found to decrease the localization of 
H-Ras to lipid raft domains [ 70 ]. DHA was then further shown to not only reduce 
the localization of H-Ras to lipid rafts but also to inhibit the plasma membrane 
 targeting of H-Ras [ 74 ]. 

 EGFR is a transmembrane receptor tyrosine kinase that mediates multiple 
 oncogenic signaling pathways and is enriched in lipid raft domains. Localization of 
EGFR to lipid rafts is essential for effi cient signal transduction. Interestingly, treat-
ment of breast, lung, and colon cell lines with DHA or EPA was found to reduce the 

12 Omega-3 Fatty Acids in Cancer Prevention and Control: A Membrane Perspective



312

localization of EGFR to lipid rafts [ 71 ,  75 ,  76 ]. In addition to Ras, Src and Fyn are 
two other important lipid raft localized signaling mediators. Treatment of the colon 
cancer cell line, Caco-2, with DHA led to a delocalization of these proteins from 
rafts [ 77 ]. The effect of n-3 PUFA on localization of these signaling proteins to lipid 
rafts directly altered cell signaling.  

12.5.3     Lipid Raft-Mediated Cell Functions 

 The n-3 PUFA-induced alterations to lipid raft size and composition culminate in the 
modifi cation to lipid raft-mediated cell functions. For example, n-3 PUFA have been 
found to alter protein function and signaling. In the case of EGFR, n-3 PUFA 
increase EGFR phosphorylation [ 71 ,  75 ,  76 ]. EGFR phosphorylation is a canonical 
precursor to EGFR signaling. However, n-3 PUFA have been found to paradoxically 
disrupt EGFR signal transduction [ 75 ,  76 ]. n-3 PUFA have also been shown to 
reduce activation of Ras [ 76 ,  78 ], which is a lipid raft-mediated process [ 79 – 81 ]. 
Lipid rafts have also been shown to play a central role in the activation of STAT3 
[ 82 ], another important signaling mediator that is often hyperactivated in colon 
 cancer. Both in vivo and in vitro activation of STAT3 have been shown to be signifi -
cantly reduced in colonocytes by n-3 PUFA [ 76 ,  83 ]. Collectively, these signaling 
events are important for mediating cell proliferation and apoptosis. The altered lipid 
raft-mediated cell signaling caused by n-3 PUFA has been shown to reduce cell pro-
liferation and increase apoptosis in multiple epithelial cell lines [ 69 ,  76 ,  84 ]. 
Interestingly, calcium infl ux is also a lipid raft-mediated process. It has been shown 
that DHA decreases oxidative-stress-induced calcium infl ux [ 72 ]. These data signify 
the implicit role of n-3 PUFA in the regulation of lipid raft-mediated cell processes.   

12.6     Additional Mechanisms of Action 

 Although there is signifi cant evidence for the role that n-3 PUFA plays in altering 
the plasma membrane, there are likely multiple mechanisms by which these fatty 
acids function. Research has identifi ed additional mechanisms of n-3 PUFA action. 
These mechanisms may be dependent or independent of the effects of n-3 PUFA on 
lipid rafts (described below).  

12.7     The Role of Infl ammation and Cancer 

 Infl ammation plays a critical role in tumorigenesis, and an infl ammatory microen-
vironment is an essential component of all tumors, including those in which a 
direct causal relationship with infl ammation has not been elucidated [ 85 ]. It is 
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well accepted that infl ammation facilitates the initiation and progression of  normal 
cells to malignancy through production of infl ammatory cytokines (i.e., IL-1, 
TNFα, and IL-6) and an array of reactive oxygen and nitrogen species [ 86 ,  87 ]. 
Downstream, these mediators subsequently activate transcription factors 
(i.e., NF-κB), inducible nitrogen synthase, and cyclooxygenase-2-related signal-
ing pathways, which generally delay or suppress apoptosis in intestinal epithelial 
cells and modulate angiogenesis and drug-metabolizing enzymes, especially 
phase II enzyme induction [ 87 – 89 ]. Additionally, arachidonic acid metabolites 
are also capable of stimulating oncogenic pathways which favor tumor growth, 
invasiveness, and metastasis. Therefore, anti-infl ammatory agents hold promise 
for decreasing the incidence of colon and other epithelial cancers [ 90 ]. A promi-
nent hallmark of cancer-related infl ammation is the presence of various types 
of immune cells and infl ammatory mediators (cytokines, chemokines, growth 
 factors, eicosanoids, reactive oxygen, and nitrogen species) which interact with 
each other by direct contact or by cytokine and chemokine production (autocrine 
or paracrine signaling), ultimately promoting tumor cell growth, progression, and 
metastasis [ 90 ]. 

 The interrelationship between chronic infl ammation and carcinogenesis is per-
haps best documented in the colon. CRC is the third most common malignancy 
and fourth most common cause of cancer mortality worldwide [ 91 ]. Approximately 
only 20 % of CRC cases have a familial basis, i.e., familial adenomatous polypo-
sis and hereditary nonpolyposis CRC [ 92 ]; therefore, environmental causes rather 
than heritable genetic changes represent the largest contributor and modifi able 
risk factor for CRC development. Chronic intestinal infl ammation both precedes 
and promotes tumor development. Chronic infl ammatory conditions such as 
infl ammatory bowel disease (IBD) are associated with highly enhanced colon 
mucosa carcinogenesis [ 93 ]. Colitis-associated cancer represents a CRC subtype 
that is associated with a high mortality rate [ 94 ] and develops over time in more 
than 20 % of IBD patients following disease onset [ 95 ]. Typically colitis- 
associated chronic infl ammation promotes cancer development by inducing oxi-
dative damage to DNA, contributing to p53 mutations in both tumor cells and the 
infl amed but nondysplastic epithelium [ 96 ,  97 ]. Experimentally, this condition is 
recapitulated by the combination of a procarcinogen (azoxymethane, AOM) pre-
ceding repeated cycles of dextran sodium sulfate (DSS) administration to induce 
chronic colonic infl ammation. Importantly, n-3 PUFA exert anti-infl ammatory 
and immunomodulatory actions through several molecular pathways crucial for 
the development of infl ammatory processes [ 93 ]. 

12.7.1     COX-2-Mediated Effects 

 A number of studies have addressed the role that n-3 PUFA plays in regulating 
cyclooxygenase (COX)-2, a key enzyme involved in production of prostaglandins. 
Arachidonic acid (AA; 20:4 n-6) serves as the precursor to 2-series prostaglandins 
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which are generally considered to be proinfl ammatory. Importantly, PGE 
2
 , one of 

the most well-studied prostaglandins synthesized from AA, is directly linked to 
colon cancer risk (described below). Besides antagonizing AA, n-3 PUFA can serve 
as precursors for prostaglandin synthesis; however, the 3-series prostaglandins are 
anti-infl ammatory [ 98 – 100 ]. For example, PGE 

3
  produced from EPA mediates mul-

tiple anti-infl ammatory actions. As mentioned above, infl ammation is intimately 
linked to colon cancer risk; therefore, formation of anti-infl ammatory compounds is 
of critical importance in colon cancer prevention. Consumption and subsequent 
incorporation of fi sh oil (FO)-derived n-3 PUFA into infl ammatory cell phospholip-
ids occur at the expense of n-6 PUFA, thereby decreasing the amount of AA sub-
strate available for synthesis of AA-derived eicosanoids resulting in an altered 
eicosanoid profi le with reduced levels of 2- and 4-series prostaglandins and leukot-
rienes in infl ammatory/immune cells [ 101 – 105 ]. Therefore, one anti-infl ammatory 
mechanism of n-3 PUFA is to inhibit the production of AA-derived eicosanoids. 

 In several types of cancer, including most colon tumors, COX-2 is overexpressed, 
and subsequently nonsteroidal anti-infl ammatory drugs (NSAIDs) and selective 
inhibitors of COX-2 (celecoxib) have been demonstrated to be highly effective colon 
cancer chemopreventive agents [ 106 ,  107 ]. Aberrant expression of COX-2 leads to 
an increase in PGE 

2
  levels, which activates the  Wnt  signaling pathway in CRC and 

plays a well-established role by enhancing intestinal cell proliferation, angiogenesis, 
cell migration, and invasion while inhibiting protective apoptotic signaling pathways 
[ 108 – 111 ]. Additionally, PGE 

2
  levels are elevated in human colon carcinomas com-

pared to normal mucosa [ 112 ] and in the colonic mucosa of rats injected with AOM 
during the initiation and post initiation stages of carcinogenesis [ 113 ]. Interestingly, 
a novel null mouse model, in which tissue AA mass is reduced to near undetectable 
levels via systemic disruption of the  Fads1  (Δ5 desaturase) gene, exhibits reduced 
colon cell proliferation and suppressed PGE 

2
  levels in the colonic mucosa in null 

mice compared to wild-type littermates [ 114 ]. Future work is needed in order to 
determine if these mice are resistant to the induction of colon cancer. 

 n-3 PUFA decrease expression of COX-2 both in vitro and in vivo. In rodents, 
dietary n-3 PUFA has been shown to reduce COX-2 expression in the colonic 
mucosa [ 115 ,  116 ]. Moreover, n-3 PUFA have been shown to suppress infl amma-
tory eicosanoid production by suppressing COX-2 activity [ 117 ,  118 ]. Additionally, 
 Fat - 1  (omega-3 desaturase) transgenic mice have lower expression of COX-2 than 
wild-type littermates [ 119 ]. In two distinct human colon cancer cell lines, EPA and 
DHA have been shown to reduce COX-2 expression [ 120 ,  121 ]. Furthermore, nude 
mice injected with human colon cancer cells and fed either DHA or EPA exhibit a 
decrease in both COX-2 expression, PGE 

2
  synthesis, and tumor growth [ 120 ]. 

Additionally, a combination of DHA with celecoxib, a selective COX-2 inhibitor, 
was shown to decrease COX-2 expression in a human colon cancer cell line, and the 
combination was more effective than either treatment alone [ 122 ]. COX-2 inhibitors 
have been found to have benefi cial effects for colon cancer, but they can have detri-
mental side effects that limit their applicability. Therefore, utilization of n-3 PUFA, 
i.e., innocuous dietary lipids with very minor side effects, could provide the benefi ts 
of COX-2 inhibitors without the medical complications.  
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12.7.2     Effects of n-3 PUFA Metabolites 

 In addition to the anti-infl ammatory metabolites produced by COX-2-mediated 
metabolism, other enzymes can produce additional anti-infl ammatory and pro- 
resolving compounds from n-3 PUFA. Included among these anti-infl ammation and 
pro-resolution metabolites are resolvins and protectins, which have been shown to 
elicit potent anti-infl ammatory effects on infl ammatory/immune cells [ 123 – 125 ]. 
DHA is the precursor for the D-series resolvins and protectin D1 (PD1), whereas 
EPA serves as the origin for resolvins E1 (RvE1) and E2 (RvE2) [ 125 – 127 ]. These 
novel DHA- and EPA-derived metabolites were fi rst observed during the resolution 
phase of acute infl ammation [ 123 ,  125 ]. The resolvins can stimulate the resolution 
phase of infl ammation to begin at an earlier time point, which reduces the overall 
exposure to infl ammation [ 128 ]. Generally, resolvins actively contribute to the reso-
lution of infl ammation via the removal of infl ammatory cells and the restoration of 
tissue integrity, and these processes can be further facilitated by the presence of 
aspirin [ 90 ]. RvE1 has been found to reduce infl ammation, dendritic cell migration, 
and the production of infl ammatory cytokines [ 129 ]. Furthermore, PD1 protects tis-
sues from oxidative damage [ 128 ]. PD1 also exhibits anti-infl ammatory properties 
by reducing neutrophil infi ltration and production of proinfl ammatory cytokines, 
specifi cally during the resolution phase of infl ammation [ 130 ]. These recently dis-
covered metabolites of DHA and EPA serve as an additional mechanism by which 
dietary fatty acids can facilitate reduction of infl ammation, which is an important 
aspect of cancer prevention.   

12.8     n-3 PUFA and Transcriptional Regulation 

 Since the majority of factors perturbed in cancer are signaling molecules, their 
downstream effectors, transcription factors, hold promise for cancer therapy [ 131 ]. 
Moreover, oncogenic transcription factors represent a useful class of therapeutic 
targets since they often have increased expression and activity in a variety of cancer 
types. One mechanism through which n-3 PUFA exert their anti-infl ammatory and 
anti-cancer effects is through modulation of transcription factor activity and/or 
expression, thereby altering the downstream gene expression profi le as discussed 
below. Aberrant NF-κB activation has been detected in more than 50 % of colorectal 
and colitis-associated tumors using animal models, establishing a role for NF-κB in 
CRC development [ 132 ,  133 ]. NF-κB activation promotes tumorigenesis by inhibit-
ing apoptosis (via activation of Bcl2, Bcl-xL cFLIP, and other genes), increasing 
cell proliferation, angiogenesis, and promoting cell invasion and metastasis [ 134 , 
 135 ]. Moreover, aberrant NF-κB signaling has been proposed to be one of the mech-
anisms through which chronic infl ammation leads to cancer [ 135 ]. 

 Most tumor-promoting cytokines are activated by NF-κB directly or in conjunc-
tion with other infl ammatory stimuli in premalignant cells and immune/infl amma-
tory cells [ 136 ]. In this context, deletion of IKKβ within myeloid cells (i.e., dendritic 
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cells, macrophages, and neutrophils) resulted in a 50 % decrease in tumor incidence 
and a substantial reduction in tumor size [ 137 ], thereby inhibiting infl ammation- 
induced enterocyte proliferation and infl ammation-stimulated growth of colitis- 
associated tumors. Therefore, activation of NF-κB in lamina propria-residing 
myeloid cells results in the production of cytokines that can act as growth factors for 
premalignant enterocytes, since several proinfl ammatory cytokines and chemokines 
(such as TNF, IL-1, IL-6, and CXCL8) are encoded by target genes of the IKKβ- 
dependent NF-κB activation pathway and are associated with tumor development 
and progression [ 132 ]. Infl ammatory cytokines play crucial roles in colon cancer. 
For example, TNFα and IL-6 serum levels are associated with increased risk of 
colorectal adenoma development [ 138 ]. Additionally, injection of neutralizing anti-
bodies specifi c for the IL-6 receptor has been shown to decrease both tumor number 
and size, thereby demonstrating the critical role of the IL-6 signaling pathway in 
colon cancer development [ 139 ]. 

 In vitro studies have shown that n-3 PUFA exert inhibitory effects on NF-κB by 
decreasing IκB phosphorylation and activation, subsequently reducing infl amma-
tory cytokine production (IL-1β, IL-6, and TNFα) [ 140 – 143 ]. In a colitis-associated 
cancer model,  Fat - 1  transgenic mice, which endogenously produce long-chain n-3 
PUFA de novo, exhibited a suppression of tumorigenesis compared to wild-type 
mice. This was associated with a reduction in tumor incidence and coincided with 
lower colonic NF-κB activity and increased mRNA expression of the antiprolifera-
tive cytokine TGF-β [ 144 ]. The suppression of NF-κB in the chronic colitis/malig-
nant transformation model mirrored the anti-infl ammatory effect of n-3 PUFA 
during acute colitis, wherein NF-κB activation and mRNA expression of key infl am-
matory makers (inducible nitric oxide synthase [iNOS], IL-1β, and TNFα) were 
suppressed in the  Fat - 1  mouse [ 145 ]. 

 Following splenic CD4 +  T cell activation, either dietary FO or a diet enriched in 
DHA ethyl esters inhibited the DNA-binding activity of both NF-κB and AP-1 [ 146 ]. 
Similarly, both NF-κB and AP-1 DNA-binding activity were modestly affected in 
human fi broblasts by EPA treatment in comparison to AA [ 147 ]. AP-1 is overex-
pressed and has been shown to have increased activity in several types of cancer 
including breast, ovarian, cervical, and colorectal, consistent with its fundamental role 
in oncogenesis [ 148 – 151 ]. Functionally, AP-1 is implicated in biological processes 
integral to cellular transformation including proliferation, apoptosis, differentiation, 
invasion, and motility [ 152 ]. Collectively, these data suggest that n-3 PUFA can poten-
tially impact AP-1-mediated early and late events in carcinogenesis [ 153 ]. 

 Another infl ammatory transcription factor whose colonic activation and 
 expression is reduced by n-3 PUFA is STAT3 [ 83 ,  154 ]. STAT3 is constitutively 
activated in biopsies from cancer patients and cell lines. Numerous cytokines, 
growth factors, and oncogenic proteins activate STAT3, leading to cell transforma-
tion and tumorigenesis, as STAT3 target genes are involved in multiple steps of the 
metastatic process, including invasion, cell survival, self-renewal, angiogenesis, and 
tumor cell immune evasion [ 155 ,  156 ]. Moreover, STAT3 activation functionally 
links infl ammation and cancer wherein aberrant phosphorylated STAT3 expression 
in infl ammatory cells residing within the tumor microenvironment triggers an 
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epithelial cell survival and growth response that promotes the overgrowth of 
 neoplastic cells [ 156 ]. In summary, STAT3-mediated reciprocal interactions 
between tumor, infl ammatory, and stromal cells collectively make up and prime the 
infl ammatory tumor cellular microenvironment. Therefore, suppressed STAT3 acti-
vation by n-3 PUFA represents a potential therapeutic target for the purpose of 
transcriptional repression. 

12.8.1     Role of n-3 PUFA as Receptor Ligands 

 DHA and EPA have been shown to act as ligands for peroxisome proliferator- 
activated receptors (PPARs) and retinoid X receptor alpha, which are both nuclear 
receptors [ 157 ,  158 ]. Binding of ligand to these nuclear receptors stimulates their 
activity as transcription factors, which alters gene expression. Collectively, these 
outcomes mediate numerous biological functions, including lipid metabolism, cell 
differentiation, and cell death. In this context, PPARγ, one of the isoforms of PPAR, 
was found to mediate DHA-induced apoptosis [ 159 ]. The ability of PPARγ to pro-
mote differentiation and maturation of epithelial cells has led to studies of its poten-
tial role in the cause of CRC, and animal studies suggest both pro- and anti-cancer 
properties in the colon [ 160 – 162 ]; however, the majority of studies point to PPARγ 
ligands as chemopreventive agents [ 163 ]. 

 PPARs are also involved in the regulation of the production of infl ammatory 
mediators, thereby exerting anti-infl ammatory effects [ 164 ]. PPARs can physically 
interact and thereby interfere with other transcription factors involved in proinfl am-
matory signal transduction pathways including AP-1, STAT-1, NF-κB, and NFAT 
[ 164 ,  165 ]. The ability of activated PPARs to transrepress infl ammatory responses 
mediated by NF-κB represents an important functional mechanism for n-3 PUFA, 
since NF-κB links infl ammation and immunity to cancer development and progres-
sion [ 132 ,  166 ,  167 ]. PPARs further regulate infl ammatory processes by suppress-
ing the expression of iNOS thereby inhibiting NO production, infl ammatory 
cytokines (TNFα, IL-6, IL-1β, and IL-12), reducing macrophage recruitment to 
infl ammatory sites by repressing transcription of MCP-1 and its receptor CCR2, 
inducing T cell anergy, and increasing the formation and suppressive function of 
regulatory T cells [ 164 ,  165 ]. Therefore, it has been proposed that n-3 PUFA exert 
their anti-infl ammatory and immune suppressive effects through binding to PPARs 
[ 168 – 170 ]. However, with respect to ligand-binding specifi city, this class of nuclear 
receptor binds n-3 and n-6 PUFA with equal affi nity and lacks fatty acid class (n-3 
vs. n-6) specifi city [ 157 ,  171 – 173 ]. Therefore, the anti-infl ammatory/chemoprotec-
tive effects of n-3 PUFA are likely not mediated directly via PPARs alone. 

 n-3 fatty acids have additionally been found to serve as ligands for the G-protein-
coupled receptor GPR120. Binding of n-3 PUFA to GPR120 results in multiple 
anti-infl ammatory effects suppressing NF-κB activation and reducing infl ammatory 
cytokine production in monocytes and macrophages [ 174 ]. Moreover, in GPR120 
knockdown cells, the inhibitory effect of DHA on the response to endotoxin was 
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abolished, thereby indicating that the inhibition of NF-κB by n-3 PUFA occurs via 
a GPR120-dependent mechanism [ 174 ]. However, there is concern that the effects 
of fatty acids on GPR120 are not restricted to n-3 PUFA [ 175 ]. Therefore, its activa-
tion in vivo using biologically relevant delivery models requires further 
investigation. 

 Metabolites of DHA and EPA have been found to function as ligands for some 
receptors. The PGE 

2
  EP4 receptor is involved in signaling events that are integral in 

colonic tumorigenesis [ 176 ,  177 ]. Interestingly, PGE 
3
  (an EPA-derived metabolite) 

can also bind to this receptor but with reduced affi nity and effi cacy compared to 
PGE 

2
  [ 178 ]. Furthermore, PGE 

3
  can act as an antagonist to EP4 signaling in human 

CRC cells [ 178 ], and DHA and EPA can reduce EP4 signaling due to the reduced 
production of COX-2-derived PGE 

2
  as discussed above. Likewise, RvE1 can serve 

as a ligand for the ChemR23 receptor. Binding of RvE1 to this receptor has been 
shown to attenuate NF-κB [ 129 ]. RvE1 can also bind to the leukotriene B4 receptor 
1, where it serves as a partial agonist and hinders receptor signaling [ 179 ]. RvD1 
can interact with the lipoxin A 

4
  receptor ALX and the orphan receptor GPR32 on 

phagocytes [ 180 ]. This interaction stimulates phagocytosis to aid in the resolution 
of acute infl ammation. Overall, n-3 PUFA can directly serve as ligands, as well as 
precursors of ligands (DHA- and EPA-derived protectins and resolvins), which can 
directly regulate cell signaling and infl ammation biology.  

12.8.2     n-3 PUFA and T Cell Activation 

 Understanding how T cell activation is modulated by n-3 PUFA, specifi cally with 
respect to the dampening of uncontrolled T cell-mediated infl ammatory responses, 
could benefi cially impact the carcinogenic process. T cells isolated from mice fed 
an n-3 PUFA-enriched fi sh oil diet exhibit an altered phospholipid distribution in 
the liquid-ordered phase compared to mice fed an n-6 PUFA-enriched control diet. 
Specifi cally, the percentage of sphingomyelin in the liquid-ordered phase of T cells 
isolated from the n-3 PUFA-enriched fi sh oil group exhibited a 50 % decrease com-
pared to the n-6 PUFA-enriched corn oil group. Furthermore, n-3 PUFA such as 
EPA and DHA are readily incorporated into the phosphatidylserine and glycero-
phosphoethanolamine in the liquid-ordered phase [ 181 ]. These results are consis-
tent with fatty acid changes seen in the aforementioned cell types. Since lipid–lipid 
interaction and the formation of liquid-ordered and disordered phases are dependent 
on the composition of not only the fatty acid species but also the phospholipid com-
position [ 182 ], the perturbation of plasma membrane composition by n-3 PUFA 
could directly infl uence T cell activation. 

 T cell activation depends on the formation of an immunological synapse (IS) 
which requires lipid raft (i.e., cholesterol, sphingomyelin, and saturated phosphati-
dylcholine) accumulation at the IS [ 183 ]. Interestingly, disruption of the liquid- 
ordered phase of the plasma membrane by oxysterol 7-ketocholesterol (7KC) 
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resulted in suppressed lipid condensation upon T cell activation [ 184 ]. Since dietary 
n-3 PUFA such as EPA and DHA can be incorporated and disrupt lipid-ordered 
phase of the plasma membrane [ 185 ], it is not surprising that n-3 PUFA impact the 
lipidomic rearrangement upon CD4 +  T cell activation. In CD4 +  T cells isolated from 
transgenic mice that generate n-3 fatty acids de novo ( Fat - 1  mice), the lipid- ordered 
phase at the IS was increased [ 29 ], demonstrating how n-3 PUFA are capable of 
disrupting the lipidomic rearrangement of the IS, impacting downstream T cell sig-
naling and activation. 

 Another lipidomic impact exerted by n-3 PUFA is observed at the level of phos-
phatidylinositol-(4,5)-bisphosphate [PI(4,5)P 

2
 ], a “phospholipid” in the inner leafl et 

of the plasma membrane [ 186 ]. Hydrolysis by phospholipase C generates the second 
messengers inositol-1,4,5-trisphosphate (IP 

3
 ) and diacylglycerol (DAG), which medi-

ate calcium signaling and protein kinase C (PKC) recruitment, respectively. Recent 
research has focused on the role of PI(4,5)P 

2
  as a second messenger itself, recruiting 

and/or activating effector proteins to various  PI(4,5) P 
2
 - enriched compartments (i.e., 

plasma membrane, nucleus). The presence of n-3 PUFA such as EPA and DHA is 
correlated to a decrease in the n-6 PUFA arachidonic acid (20:4 Δ5,8,11,14 ) content, 
which is the predominant fatty acid species at the  sn - 2  position of PI(4,5)P 

2
  [ 187 ]. 

Thus, it is expected that n-3 PUFA can antagonize the synthesis of PI(4,5)P 
2
 . Indeed, 

the platelet 1-acyl-glycero 3-phosphoinositol acyltransferase that remodels PI(4,5)P 
2  

 at the  sn -2 position prefers n-6 PUFA over n-3 PUFA, suggesting a competitive inhi-
bition by EPA and DHA [ 188 ]. Consistent with the acyltransferase specifi city, in the 
 Fat - 1  CD4 +  T cells, PI(4,5)P 

2
  was decreased by 50 % compared to wild-type control, 

leading to defects in PI(4,5)P 
2
  metabolism upon T cell activation [ 189 ]. This pheno-

type was recapitulated in a dietary model, in which CD4 +  T cells isolated from ani-
mals fed a 4 % DHA- triglyceride diet exhibited a 25 % decrease in basal PI(4,5)P 

2
 . 

Defects in PI(4,5)P 
2
  metabolism were also observed in DHA-triglyceride-enriched 

CD4 +  T cells upon activation. Interestingly, the kinetics of DAG, the hydrolysis prod-
uct of PI(4,5)P 

2
 , was suppressed upon activation by concanavalin A in lymphocyte 

population from mice fed an EPA- or DHA-enriched diet [ 190 ]. 
 Proteomic rearrangements and their contribution to the formation of the IS begin 

with the activation of the tyrosine kinases lymphocyte-specifi c protein tyrosine 
kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70). Their activa-
tion results in the phosphorylation of linker for activation of T cells (LAT) and the 
assembly of the signalsome composed of effector proteins such as GADS, SLP76, 
NCK, ITK, VAV, PAK, and PLC-γ1 [ 191 ,  192 ]. Protein localization to specifi c 
membrane compartments (i.e., lipid raft-enriched IS) can be affected by two non- 
mutually exclusive mechanisms: (1) alterations in posttranslational  modifi cations 
and (2) disruption of membrane microdomains. Proteins may be posttranslationally 
modifi ed to incorporate fatty acids into various amino acid residues to stabilize their 
association to specifi c membrane microdomains. Therefore, it is of interest to note 
that in Jurkat T cells incubated with EPA, src kinase Fyn failed to localize to the 
detergent-resistant membrane by inhibiting its palmitoylation [ 193 ]. This was cor-
related with the presence of posttranslational modifi cation by monounsaturated and 
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polyunsaturated fatty acids [ 194 ], demonstrating that n-3 PUFA are capable of mod-
ulating posttranslational fatty acid modifi cation and therefore displace proteins 
from appropriate membrane compartments. Disruption of membrane microdomains 
by n-3 PUFA can also affect protein localization. Indeed, LAT, an important protein 
recruited early to the signalsome, was displaced from the detergent-resistant mem-
brane after treatment with n-3 PUFA [ 195 ]. This appeared to be the fi rst proteomic 
perturbation induced by n-3 PUFA, as PUFA had no effect on the phosphorylation 
of the CD3ζ by LCK or the binding and phosphorylation of ZAP-70 [ 196 ]. The 
localization of PLC-γ1 and subsequent phosphorylation was also suppressed in 
CD4 +  T cells enriched in n-3 PUFA, demonstrating additional proteomic effects 
induced by n-3 PUFA [ 29 ]. 

 Actin reorganization is required for traffi cking of the T cell receptor to the site of 
contact with antigen-presenting cells in order to survey antigens presented in 
MHCII. Upon antigen recognition by the TCR, actin stabilizes the IS to allow for 
protein complex formation and downstream signaling [ 197 – 199 ]. Actin-regulatory 
proteins that are important for T cell activation and are also known to be regulated 
by PI(4,5)P 

2
  include the Wiskoff-Aldrich syndrome protein (WASP), ERM pro-

teins, talin, WAVE, and ADF/cofi lin [ 200 – 204 ]. The decrease of PI(4,5)P 
2
  by n-3 

PUFA has been correlated with suppressed actin remodeling upon T cell activation 
in n-3 PUFA-enriched CD4 +  T cells [ 29 ,  189 ]. It was further shown that the recruit-
ment of WASP to the IS was suppressed in  Fat - 1  CD4 +  T cells, elucidating one 
pathway in which the effects of n-3 PUFA on actin remodeling could be mediated. 
These results indicate that n-3 PUFA such as DHA suppress early T cell activation 
events by antagonizing PI(4,5)P 

2
  and subsequent PI(4,5)P 

2
 -dependent signaling 

processes such as actin remodeling [ 189 ]. This is consistent with results seen in the 
human Jurkat T cell line E6-1 incubated with either EPA or DHA, where the local-
ization of F-actin upon IS formation was suppressed in cells exposed to individual 
n-3 PUFA [ 205 ]. Actin cytoskeleton can also be regulated by the nucleotide 
exchange factor VAV, which is recruited to the IS upon T cell activation. EPA treat-
ment of T cells showed an inhibition of VAV phosphorylation, leading to instability 
of the IS and antigen-presenting T cell conjugates [ 205 ]. These observations dem-
onstrate the immunosuppressive pleiotropic effects of n-3 PUFA with respect to the 
actin cytoskeleton, cell lipidomics, and proteomics. 

 The assembly of the signalsome allows for further downstream signaling and the 
activation of transcription factors for sustained T cell activation. Signal transduction 
from the plasma membrane to the nucleus includes the translocation and activation 
of PKCθ [ 206 ], translocation of the mitochondria to the IS [ 207 ,  208 ], Ca 2+  signaling 
[ 209 ], and ultimately the activation of transcription factors such as NFAT, NF-κB, 
and AP-1 to induce specifi c gene expression required for cell proliferation and 
 differentiation [ 210 – 212 ]. Similar to LAT, which was displaced from detergent- 
resistant membranes, the colocalization of PKCθ to GM1-enriched lipid rafts was 
decreased in splenic T cells isolated from mice fed an n-3 PUFA-enriched diet, lead-
ing to the suppression of PKCθ to the IS [ 146 ]. In parallel, downstream  signaling 
events such as mitochondrial translocation and Ca 2+  signaling were also suppressed 
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  Fig. 12.2    Pleiotropic effects of n-3 PUFA on CD4 +  T cell and APC activation. Upon the formation 
of the immunological synapse, several early signaling events are perturbed in both the CD4 +  T cell 
and the APC. For the APC, n-3 PUFA perturbs the organization of the lipid microdomains, leading 
to changes in the conformation, lateral organization, and traffi cking of MHCII and adhesion pro-
teins such as ICAM-1. This results in alterations in the downstream signaling of APC. For the 
CD4 +  T cells, incorporation of n-3 PUFA leads to changes in the lipidomic (i.e., suppression of 
sphingomyelin and PI(4,5)P 

2
 , changes in lipid microdomains) and proteomic (i.e., decreased LAT 

and PLC-γ1 localization) rearrangements that occur upon immunological synapse formation. 
These effects lead to decreased actin remodeling and downstream events such as (1) mitochondrial 
translocation and Ca 2+  signaling, (2) DAG metabolism and PKCθ recruitment, (3) activation of 
transcription factors, and (4) cellular processes such as proliferation, differentiation, and infl am-
matory cytokine secretion       

in CD4 +  T cells enriched in n-3 PUFA. Importantly, the upstream suppression by n-3 
PUFA has been linked to a decrease in AP-1 and NF-κB activation and ultimately the 
IL-2 secretion and proliferation of CD4 +  T cells following activation [ 29 ,  146 ] 
(Fig.  12.2 ).
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12.9         n-3 PUFA, Th17 Cells, and Cancer 

 Th17 cells, an infl ammatory T cell subset identifi ed to be the major cellular source 
of IL-17, play a critical role in the pathogenesis of many infl ammatory and autoim-
mune diseases including IBD [ 213 ]. Since tumor development involves chronic 
infl ammatory processes [ 214 ], determining the contribution of Th17 cells to this 
process represents an active area of research. Assessment of tumor-infi ltrating lym-
phocytes isolated from skin (melanoma), breast, ovarian, and colon cancer tumors 
revealed that the proportion of CD4 +  IL17 +  T cells was markedly elevated, suggest-
ing that the development of tumor-infi ltrating Th17 cells is a general feature of 
cancer [ 215 ,  216 ]. Additionally, increased expression of Th17 cells has also been 
documented in patients with gastric, prostate, ovarian, renal cell, and pancreatic 
cancers [ 217 – 219 ], and IL-17 mRNA expression is high in tumor samples from 
prostate and ovarian cancer patients [ 220 ,  221 ]. Interestingly, the cells comprising 
the tumor microenvironment (tumor cell and tumor-derived fi broblasts) were shown 
to mediate the recruitment of Th17 cells and to support both the generation and 
expansion of Th17 cells by secreting both chemotactic factors and proinfl ammatory 
cytokines [ 216 ]. A study conducted in gastric cancer patients revealed that the 
increased number of Th17 cells was correlated with cancer stage, thereby suggest-
ing that Th17 cells contribute to cancer pathogenesis [ 219 ]. Moreover, both human 
cancer patients and experimental tumor models revealed that IL-17 favors tumor 
growth and exhibits a signifi cant angiogenic effect [ 220 ,  222 ,  223 ]. Despite confl ict-
ing reports surrounding the functional role of IL-17 as either an antitumor or tumor- 
promoting factor in different types of human cancers [ 224 ], recent evidence supports 
a role for IL-17A in colorectal carcinogenesis. Human CRC tissue exhibits increased 
IL-17A expression, which was found to adversely impact the clinical outcome and 
patient prognosis [ 225 – 227 ]. In animal models, IL-17A was shown to promote 
colon cancer development [ 228 – 230 ] and functionally blocking IL-17A resulted in 
decreased formation of hyperplasia and cancer [ 228 ]. Overexpression of IL-17 in 
tumors leads to increased angiogenesis and tumor growth [ 222 ], and IL-17 −/−  and 
IL-17R −/−  mice exhibit reduced tumor growth [ 231 ,  232 ]. Additionally, in a mouse 
model of colon cancer (AOM + DSS), both tumor size and number of colonic 
tumors per mouse were reduced in IL-17A-defi cient mice [ 233 ]. Interestingly, in the 
same cancer model, dietary fi sh oil reduced the total number of colonic tumor enti-
ties (adenomas + adenocarcinomas) per mouse and exhibited a greater percentage of 
animals that were nonresponsive in terms of tumor formation (48 % vs. 18 %), as 
compared to mice fed a control diet (5 % corn oil) [ 83 ]. Moreover, colonic mucosal 
mRNA expression of both the Th17 cell signature cytokines (IL-17A and IL-17F) 
and infl ammatory cytokines supporting Th17 cell differentiation (IL-6) and pheno-
type maintenance (IL-23) was signifi cantly reduced by dietary FO [ 83 ]. Lastly, acti-
vated (i.e., phosphorylated) STAT3 colonic protein levels were reduced by dietary 
FO [ 83 ], which is signifi cant because T cell expression of STAT3 plays a critical 
role in Th17 cell differentiation [ 234 ] and promotes a procarcinogenic Th17 cell 
response [ 230 ,  235 ]. Interestingly, the tumorigenic effects of IL-17 are mediated, at 
least in part, by IL-6 via a STAT3-dependent mechanism [ 232 ], and all three of 
these mediators were reduced in the colon by dietary fi sh oil [ 83 ]. n-3 PUFA also 
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exhibited a suppressive effect on colonic IL-23 and IL-23R mRNA expression, a 
key cytokine that not only promotes pathogenic Th1 and Th17 responses in the 
intestine [ 236 ] but also represents an important molecular link between chronic 
infl ammation and carcinogenesis as demonstrated by IL-23p19 −/−  mice which are 
resistant to tumor induction [ 237 ]. Therefore, this research demonstrates that within 
the colonic tumor microenvironment, expression of critical factors impacting 
aspects of Th17 cell polarization and function, which have independent procarcino-
genic roles, was collectively suppressed by dietary fi sh oil, resulting in reduced 
colonic tumor  formation. Although the molecular mechanisms of n-3 PUFA action 
on Th17 cells have not been elucidated, these data provide insight into the underly-
ing anti- infl ammatory and chemopreventive actions of n-3 PUFA. 

12.9.1     Oxidative Stress and the Induction of Apoptosis 

 Studies in several types of cancer, including breast, prostate, and colon, have estab-
lished that oxidative stress modulates both cancer initiation and progression [ 238 ]. 
In cancer cells, high levels of reactive oxygen species (ROS) can result from 
increased metabolic activity, mitochondrial dysfunction due to hypoxia or mitoph-
agy, peroxisome activity, uncontrolled growth factor or cytokine signaling, and 
oncogene activity in addition to enhanced activity of known ROS sources (e.g., 
NADPH oxidase, COX, and LOX) [ 238 – 241 ]. Moreover, ROS can promote many 
aspects of tumor onset and progression towards a malignant phenotype [ 238 ]. Thus, 
if the cellular oxidative state increases, ROS form and can cause both cellular and 
DNA damage. n-3 PUFA, due to their high levels of unsaturation, are oxidatively 
susceptible lipids [ 242 ,  243 ]. Interestingly, formation of lipid peroxidation products 
can activate the “intrinsic” mitochondrial apoptosis pathway, which serves as a sen-
sor for damage and oxidative stress [ 244 ]. This is noteworthy, because the balance 
between proliferation and apoptosis is critical for the maintenance of steady-state 
number for cell populations, particularly in the colon. Feeding a diet containing fi sh 
oil can increase oxidative stress and activate apoptosis [ 243 ]. In cell culture, treat-
ment with DHA increased lipid oxidation and reduced mitochondrial membrane 
potential, which resulted in increased apoptosis [ 245 ]. Furthermore, in genetically 
oxidatively stressed mice, feeding fi sh oil enhanced apoptosis and altered mitochon-
drial metabolic activity [ 246 ]. These fi ndings support the contention that n-3 PUFA 
alters cellular oxidation to enhance apoptosis and thereby prevent colon cancer.   

12.10     Combined Bioactive Nutrients 

 There is also a wealth of data suggesting a synergistic effect of n-3 PUFA with other 
dietary compounds. It is important to note that no nutrient is ever consumed in isola-
tion. Therefore, it is imperative to understand how nutrients function in combination 
with each other. 
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12.10.1     n-3 PUFA and Fiber 

 In addition to n-3 PUFA, fi ber is another commonly studied nutrient in the context 
of colonic health. In colonocytes and colon cancer cells, treatment with the combi-
nation of DHA and butyrate, a fi ber fermentation product, has been shown to induce 
apoptosis and alter mitochondrial-to-cytosolic Ca 2+  levels [ 247 ,  248 ]. This effect 
was specifi c to the combination of DHA and butyrate, i.e., other fatty acids com-
bined with butyrate did not exert the same effects. DHA and butyrate have also been 
shown to synergistically increase lipid oxidation in colonocytes [ 245 ]. Feeding 
carcinogen-injected rats a diet of fi sh oil in combination with enterically coated 
butyrate, elevated apoptosis and decreased the formation of aberrant crypts foci, 
which can serve as precursors for colonic tumors [ 249 ]. Combination of fi sh oil and 
the fermentable fi ber pectin was additionally found to reduce oxidative DNA dam-
age and increase apoptosis [ 250 ]. Overall, these data indicate that the combination 
of fi sh oil and fi ber could provide more protection against colon cancer than either 
nutrient alone.  

12.10.2     n-3 PUFA and Curcumin 

 Another nutrient that has attracted a great deal of interest is curcumin. Curcumin is 
a curcumoid found in the Indian spice turmeric. Treatment of macrophages with a 
combination of curcumin and DHA or EPA was found to synergistically suppress 
nitric oxide levels, PGE 

2
  synthesis, and the levels of enzymes involved in formation 

of proinfl ammatory mediators [ 251 ]. The combination of fi sh oil and curcumin has 
been shown to modulate colonocyte gene expression and enhance resolution of 
chronic infl ammation, in part, by suppressing a key infl ammatory mediator, NF-κB 
[ 154 ]. The combination of fi sh oil and curcumin was also found to reduce prolifera-
tion of CD4 +  T cells to favorably modulate infl ammation [ 252 ]. Together, these 
studies suggest that the combination of fi sh oil and curcumin could have potent 
anti- infl ammatory effects, which is benefi cial for colon cancer prevention.  

12.10.3     Ratio of n-6 to n-3 PUFA 

 In a pivotal study, Simopoulos identifi ed the ratio of n-6 to n-3 PUFA as an impor-
tant indicator of the overall health outcome [ 253 ]. Currently, the n-6:n-3 ratio in the 
average Western diet is calculated to be between 10:1 and 20:1 [ 254 – 256 ]. One of 
the reasons that the ratio of these two classes of dietary lipid is important is the 
competition between n-3 and n-6 PUFA for many enzymes. These fatty acids utilize 
many of the same elongases and desaturases required for production of the longer-
chain fatty acids in each series. Therefore, if levels of α-LNA are high enough, this 
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essential fatty acid can compete with linoleic acid (LA 18:2 n-6) and thereby reduce 
the formation of AA. Likewise, as mentioned above, both EPA and AA can be 
metabolized by COX-2 to produce anti-infl ammatory and proinfl ammatory prosta-
glandins, respectively. Therefore, if levels of n-6 PUFA are substantially higher than 
n-3 PUFA, more prostaglandins will be produced from AA as opposed to EPA. This 
could then hinder the anti-infl ammatory activities of EPA and DHA. Additionally, 
these PUFA will compete for esterifi cation into phospholipids and, therefore, inser-
tion into the plasma membrane. Due to the important actions of n-3 PUFA in the 
plasma membrane, it is imperative that the ratio of n-6 to n-3 PUFA be suffi ciently 
low in order for fatty acyl incorporation to occur. Furthermore, whereas n-3 PUFA 
is associated with reduced colon cancer risk, n-6 PUFA has been found to increase 
the risk of colorectal adenomas [ 17 ]. Therefore, understanding the roles of all 
dietary lipids, as well as the ways they interact and compete with each, is required 
in order to make informed recommendations for overall human health.   

12.11     Differential Effects of DHA and EPA 

 A signifi cant proportion of the published studies describing the effects of n-3 PUFA 
on cellular functions utilizes either fi sh oil, purifi ed DHA, or a combination of EPA 
and DHA [ 28 ,  71 ,  146 ]. This can likely be a source of some of the inconsistencies 
in the literature. Specifi cally, although many commercially available fi sh oils con-
tain approximately a 2:1 ratio of EPA to DHA, fi sh oils from different sources con-
tain variable mixtures of EPA and DHA. This can make it diffi cult or impossible to 
compare results from different studies. Furthermore, whether the effects of n-3 
PUFA supplementation are due to EPA, DHA, or both is often undetermined and 
unappreciated. EPA is both two carbons shorter and less unsaturated than DHA, and 
the structural differences between these two fatty acids are enough to result in func-
tional differences [ 69 ]. A recent biophysical study in model membranes demon-
strated differential effi cacies of DHA and EPA to modify lipid raft composition and 
organization [ 185 ]. Studies on the effects of DHA compared to EPA on immune cell 
lipid rafts have observed differential effects of these fatty acids on membrane order 
[ 30 ]. Comparisons of the anti-infl ammatory profi les of macrophages treated with 
DHA or EPA indicated that DHA may be more effective than EPA in alleviating 
infl ammation [ 142 ]. Additionally, a study compared the effects of DHA or EPA on 
EGFR signaling found that DHA but not EPA altered EGFR activation status and 
signaling [ 76 ]. These data highlight the need to better understand the mechanisms 
by which EPA and DHA differentially modulate cell membranes. 

 In summary, cogent evidence indicates that n-3 PUFA confer protection against 
several forms of cancer. We propose that n-3 fatty acids represent a class of  novel 
innocuous dietary bioactives for lipid raft targeted therapy  and cancer prevention. 
So why have clinical practitioners currently searching for toxicologically  innocuous 
cancer chemoprevention  approaches not embraced n-3 PUFA? Perhaps many stud-
ies looking for n-3 PUFA-related effects in cancer populations have errored by 
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intervening too late in the disease process [ 257 ]. Undoubtedly, additional work is 
needed in order to fully elucidate the chemopreventive actions of n-3 PUFA at the 
molecular, cellular, animal model, and clinical level. 

 We propose that it is time to get serious about cancer prevention. Unfortunately, 
only a small fraction of current funding in the USA for cancer research is targeted 
to early detection and prevention. In addition, less than 1.5 % of total biomedical 
research funding is devoted to implementation of cancer prevention programs [ 258 ]. 
According to Vogelstein and colleagues [ 259 ], the only sure way to reduce cancer 
risk is through screening and a healthy lifestyle.       
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    Abstract     Infl ammation is triggered by numerous factors including oxidative stress, 
environmental pollutants, microbial agents, and physical damage to tissues. Chronic 
infl ammation, characterized by a prevalence of macrophages and lymphocytes in 
the affected tissues and the overexpression of a host of cellular cytokines, chemo-
kines, and infl ammatory enzymes, promotes all stages of cancer development 
including initiation, promotion, cell transformation, angiogenesis, invasion, and 
metastasis. This chapter describes some key mechanisms by which naturally occur-
ring dietary compounds, either alone or in combination, reduce the harmful effects 
of infl ammation and the risk for cancer development. The most extensively studied 
compounds are a series of polyphenols which infl uence the infl ammatory process in 
multiple ways including their ability to scavenge oxidative radicals, infl uence car-
cinogen activation and detoxifi cation, and regulate expression levels of numerous 
transcription activators and their associated cytokines, chemokines, and infl amma-
tory enzymes. In the past, the inhibitory effects of naturally occurring compounds, 
especially the polyphenols, have been attributed mainly to their intrinsic antioxidant 
capacity; however, it is likely that their direct binding to cellular macromolecules 
and the associated effects on gene transcription and translation, as well as on enzyme 
activity, may be equally as important.  
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13.1         Introduction 

 It has been known for decades that the cellular components of the infl ammatory 
response are critical for their role in the killing of cancer cells and, hopefully, curing 
the disease. In recent years, however, it has become apparent that infl ammation, 
especially chronic infl ammation, is also a signifi cant risk factor for the development 
of cancer. Chronic infl ammation has been associated with the various stages of 
tumorigenesis including initiation, promotion, progression, invasion, and metastasis 
[ 1 ,  2 ]. One of the many cancer types in which there is a strong association between 
chronic infl ammation and tumor development is colon cancer. Meta-analysis has 
shown that patients suffering from infl ammatory bowel diseases, such as Crohn’s 
disease and ulcerative colitis, have a 33-fold increase in risk for colon cancer rela-
tive to the general population [ 3 ]. Infl ammatory bowel diseases affect approximately 
1–2 of every 1,000 people in developed countries and are on the rise worldwide [ 4 ]. 
Links between infl ammation and cancer have also been confi rmed in a number of 
animal models, including cancers of the colon [ 5 ], liver [ 6 ], pancreas [ 7 ], prostate 
[ 8 ], and lung [ 9 ]. 

 One mechanism through which chronic infl ammation and carcinogenesis are 
linked is via the activities of reactive oxygen (ROS) and nitrogen (RNS) species 
(i.e., RONS). In normal tissues and cells, RONS are important for regulating signal-
ing cascades that govern multiple cellular functions. However, in an infl ammatory 
microenvironment, infi ltrating leukocytes raise the level of RONS to amounts that 
exceed the ability of cells to eliminate them and the cells become “stressed.” Stress 
occurs because the activities of antioxidant phase II enzymes such as superoxide 
dismutase, catalase, glutathione peroxidase, quinone oxidoreductase, epoxide 
hydrolase, and others are not suffi cient to remove the excess RONS. The infi ltrating 
leukocytes that produce RONS include macrophages, monocytes, neutrophils, T 
and B lymphocytes, mast cells, and natural killer cells [ 1 ,  2 ]. Some of these cell 
types produce growth factors, cytokines, and chemokines that stimulate cell prolif-
eration, angiogenesis, invasion, and metastasis. These factors also chemo-attract 
additional lymphocytes, monocytes, and macrophages leading to a chronically acti-
vated microenvironment that becomes a relentless source of genetic and histopatho-
logic damage to the surrounding epithelium. Ultimately, this damage can lead to the 
development of cancer in all of its stages. 

 Epidemiological studies provide evidence that persons who consume a diet rich 
in vegetables and fruit have a reduced risk of cancer at multiple organ sites [ 10 – 12 ]. 
Because fruits and vegetables are major sources of antioxidants, it is thought that 
the antioxidants are largely responsible for their cancer-preventive effects. This 
hypothesis is supported by epidemiological data, implicating micronutrient antioxi-
dants in cancer risk reduction, and by experimental data from in vitro and in vivo 
studies [ 13 ,  14 ]. The antioxidant effects of vegetables and fruits are due, in part, to 
their content of fl avonoids and phenolic acids [ 15 – 17 ]. Some of the polyphenolic 
compounds with demonstrated cancer-preventive effects include the catechins in 
green tea, theafl avins in black tea, curcumin in turmeric, resveratrol in red wine, 
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quercetin in apples, and ellagic acid and the anthocyanins in berries. Collectively, 
these antioxidants exhibit a signifi cant ability to scavenge RONS [ 15 ,  18 ,  19 ], and 
this is associated, at least in part, with their inhibitory effects on multiple cell- 
signaling pathways and infl ammatory processes. For example, one of the most exten-
sively investigated polyphenols is curcumin, present in the Indian spice,  turmeric. 
Cell-signaling pathways that are inhibited by curcumin alone include activator pro-
tein-1 (AP-1), nuclear factor-kappa B (NF-κB), signal transducer and activator of 
transcription 3 (STAT3), mitogen-activated protein kinase (MAPK), protein kinase 
B (Akt), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), c-Jun N terminal 
kinase (JNK), human growth factor receptor 2 (HER2), IκB kinase (IKK), epider-
mal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma 
extra large (Bcl-X 

L
 ), poly ADP ribose polymerase (PARP), and proapoptotic cas-

pases [ 20 ]. Curcumin and other anticancer compounds are also effective in reducing 
the activities of infl ammatory cytokines and chemokines as well as in infl uencing 
the traffi cking of leukocytes that participate in the infl ammatory process. 

 In the remaining portion of this chapter, we summarize some of the known 
molecular mechanisms by which naturally occurring compounds, foods, and food 
extracts elicit anti-infl ammatory effects. We refer to whole foods and food extracts 
as “mixtures” of bioactive compounds. Mechanisms not discussed in this chapter 
include the effects of naturally occurring compounds on infl ammation-associated 
phase II enzyme induction and angiogenesis; these mechanisms will be discussed 
elsewhere in this series.  

13.2     Infl ammation-Related Molecular Targets 
of Natural Products 

13.2.1     Transcription Activators 

 Transcription activators (factors) are proteins that bind to specifi c DNA sequences, 
thereby controlling the transcription of genetic information from DNA to mRNA. 
Transcription factors perform this function alone or with other proteins in a com-
plex by promoting or blocking the recruitment of RNA polymerase to specifi c 
genes. Abnormal expression of these factors can lead to many of the hallmarks of 
cancer including increased proliferation, reduced apoptosis, malignant conversion, 
infl ammation, angiogenesis, tissue invasion, and metastasis. A large number of tran-
scription factors have been identifi ed in the past few decades and several of these are 
associated with infl ammatory processes and cancer [ 1 ,  20 ]. The following section 
describes two of the most investigated transcription factors in infl ammation and 
tumor development and mechanisms by which they are infl uenced by dietary agents. 
For a more complete discussion on this topic, the reader is referred to the review of 
Aggarwal and Shishodia [ 20 ]. 
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13.2.1.1     Nuclear Factor-Kappa B 

 NF-κB is a protein complex that is present in nearly all animal cell types [ 21 ,  22 ]. It is 
important in regulating cellular responses to various stimuli because it belongs to a 
family of “rapid acting” primary transcription factors, i.e., transcription factors pres-
ent in cells in an inactive state that do not require new protein synthesis to be activated. 
Known inducers of NF-κB activity include reactive oxygen species, infl ammatory 
factors such as tumor necrosis factor-alpha (TNFα) and interleukin 1-beta (IL-1β), 
bacterial endotoxins, chemical carcinogens and toxins, ultraviolet light, and X-rays 
[ 20 ]. Activation of the NF-κB complex is initiated by signal- induced degradation of 
I kappa B (IκB) proteins. This occurs primarily through activation of a kinase termed 
IKK. With the degradation of IκB, the NF-κB complex translocates from the cyto-
plasm to the nucleus where, ultimately, it induces the expression of an ever-increasing 
number of target genes, including genes that suppress apoptosis (Bcl-2 and Bcl-XL), 
induce proliferation (cyclin D1, c-myc) and angiogenesis (vascular endothelial growth 
factor [VEGF]), and promote tissue invasion and metastasis (matrix metalloproteases 
[MMP]) and infl ammation (COX-2, 5-LOX, inducible nitric oxide synthase [iNOS], 
TNF-α, NADPH oxidase [NOX], and others). Many of these activated target genes are 
crucial to the development of cancer at multiple tissue sites. 

 Because of its central role in the control of several cancer-associated cellular 
functions, numerous investigations have been conducted to identify dietary inhibi-
tors of NF-κB [ 20 ]. Among those identifi ed include resveratrol [ 21 ], curcumin 
[ 22 ], ursolic acid [ 23 ], lycopene [ 24 ], apigenin [ 25 ], silymarin [ 26 ], ellagic acid 
[ 27 ], cyanidin-3-glucoside [ 28 ], caffeic acid phenethyl ester (CAPE) [ 29 ], 
epigallocatechin- 3-gallate (EGCG) [ 30 ], [6]-gingerol [ 31 ], S-allyl cysteine [ 32 ], 
 fl avopiridol [ 33 ], benzyl and phenylethyl isothiocyanates [ 34 ,  35 ], indole-3- 
carbinol [ 36 ], sulforaphane [ 37 ], quercetin [ 38 ], anethole [ 39 ], and alpha-lipoic 
acid [ 40 ]. In addition to pure compounds, various “mixtures” of naturally occur-
ring compounds, including soy isofl avones (genistein, daidzein, and glycitein) 
[ 41 ], black tea extract (BTE) [ 42 ], lyophilized whole black raspberries (BRBs) 
and strawberries [ 43 ,  44 ], anthocyanin extracts of black raspberries [ 43 ], ginger 
extract [ 45 ], grape seed proanthocyanidins [ 46 ,  47 ], and cranberry proanthocyani-
dins [ 48 ,  49 ], have been shown to exhibit inhibitory effects on NF-κB activation 
in vitro and in vivo. 

 Aggarwal and Shishodia [ 20 ] discussed mechanisms by which naturally occur-
ring compounds inhibit NF-κB activation. These include the blocking of one or 
more steps in the NF-κB signaling pathway, the translocation of NF-κB into the 
nucleus, binding of the NF-κB dimers to DNA, or interactions with the basal tran-
scriptional machinery. Caffeine, for example, is a potent inhibitor of ultraviolet 
(UV)-induced NF-κB activation by its inhibitory action on protein kinase C (PKC), 
resulting in the inhibition of p38-induced activation of the MAPK pathway [ 50 ]. 
Resveratrol suppresses tumor necrosis factor (TNF)-induced phosphorylation and 
nuclear translocation of the p65 subunit of NF-κB and NF-κB reporter gene tran-
scription [ 21 ]. Diosgenin suppresses TNF-induced activation of IKK leading to 
inhibition of TNF-dependent phosphorylation and degradation of IκBα and nuclear 
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translocation of the p65 subunit of NF-κB [ 51 ]. CAPE suppresses NF-κB activation 
by interfering with the binding of the p50-p65 complex to DNA [ 29 ]. BTE inhibits 
the nuclear translocation of NF-κB/p65 and the DNA-binding activity of NF-κB 
[ 42 ]. Cranberry proanthocyanidins inhibit the production of MMP by reducing the 
phosphorylation of at least fi ve intracellular kinases and NF-κB p65 activity [ 48 ]. 
These represent only a few mechanisms by which dietary factors inhibit NFκB acti-
vation, and ultimately, these actions reduce the expression of numerous NF-κB-
related proteins such as COX-2, iNOS, TNF, and various cytokines and chemokines 
associated with infl ammation.  

13.2.1.2     Activator Protein-1 

 Activator protein-1 (AP-1) is a transcriptional regulator composed of members of 
the Fos and Jun families of DNA-binding proteins. AP-1 regulates gene expression 
in response to a variety of stimuli including growth factors, cytokines, environmen-
tal stresses such as UV radiation, and bacterial and viral infections. AP-1 activation 
is linked to increased cell proliferation, cell transformation, innate immune response, 
and infl ammation. AP-1 appears to enhance cell proliferation by activating cyclin 
D1 and repressing suppressor genes such as p53, p16, and p21cip1/waf1 [ 52 ]. 
Importantly, AP-1 promotes the transition of tumor cells from an epithelial to a 
mesenchymal morphology which is one of the early steps in metastasis. Both AP-1 
and NF-κB are inducible by many of the same stimuli, and in mouse epidermal JB-6 
cells, both are required for maintaining the transformed phenotype [ 53 ]. With 
respect to infl ammation, many of the cytokine genes and other factors that drive 
infl ammation are regulated cooperatively by a transcription factor complex consist-
ing of AP-1 and nuclear factor of activated T cells (NFAT). AP-1/NFAT-dependent 
gene regulation has been demonstrated for the proinfl ammatory cytokines: interleu-
kins 1, 2, and 6 (IL-1, IL-2, IL-6), TNFα, TNFβ, interferon gamma (IFNγ), Fas 
ligand (FasL), CD40 ligand (CD40L), and granulocyte-macrophage colony- 
stimulating factor (GM-CSF) [ 54 ]. Overexpression of AP-1, therefore, contributes 
signifi cantly to the infl ammatory process. 

 Several dietary factors have been shown to suppress AP-1 activation and function. 
These include resveratrol [ 55 ], curcumin [ 56 ], EGCG from green tea [ 57 ], capsaicin 
[ 58 ], oleandrin [ 59 ], alpha-mangostin [ 60 ], theafl avin-3,3′-digallate [ 61 ], anthocy-
anidins (delphinidin, petunidin, cyanidin) [ 62 ], and chlorogenic acid [ 63 ]. Mixtures 
of naturally occurring compounds that inhibit AP-1 include blackberry extracts [ 64 ], 
whole lyophilized BRBs [ 65 ] and BRB extracts [ 66 ], and apple peel extract [ 67 ]. 
As for NF-κB, the mechanisms though which these agents infl uence AP-1 activation 
and function are varied. Resveratrol inhibited 12- O -tetradecanoylphorbol-13-acetate 
(TPA) and UV-induced AP-1 activation in cultured HeLa cells by diminishing PKC 
and various protein tyrosine kinases upstream of the MAPK pathway [ 55 ]. 
Delphinidin and blackberry extracts inhibited TPA- or UV-induced activation of 
AP-1 in JB-6 mouse epidermal cells by reducing phosphorylation of protein kinases 
in the JNK and extracellular signal-related protein kinase (ERK) pathways [ 64 ]. 
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EGCG and theafl avin-3,3-digallate inhibited TPA-induced transformation of JB-6 
mouse epidermal cells and NIH3T3 cells, respectively, by inhibiting TPA-induced 
PKC and by reducing the binding of AP-1 to DNA [ 57 ,  61 ]. The remaining dietary 
compounds and mixtures infl uence the activation and functions of AP-1 in similar 
ways leading to reduced cell proliferation, infl ammation, and the risk for cancer 
development.   

13.2.2     Tumor Necrosis Factor 

 TNF, originally discovered in 1968 by Kolb and Granger [ 68 ], is a key infl ammatory 
cytokine produced chiefl y by activated macrophages and monocytes. The primary 
role of TNF is the regulation of different immune cell types. A local increase in TNF 
in tissues will cause the cardinal signs of infl ammation to occur, i.e., heat, edema, 
redness, pain, and loss of function. Dysregulation of TNF has been implicated in a 
variety of human diseases including infl ammatory bowel disease [ 69 ] and cancer 
[ 70 ]. The induction of proinfl ammatory genes by TNF is primarily due to the ability 
of TNF to activate NF-κB in multiple different cell types [ 20 ]. As stated above, 
NF-κB activation leads to the expression of infl ammation-associated COX-2, iNOS, 
and various chemokines and cytokines. TNF promotes cell proliferation, in part, by 
activation of JNK and p38 genes in the MAPK cascade, thereby serving as a growth 
factor for multiple tumor types. 

 Due to its pivotal role in infl ammation and in mediating tumor development, 
there has been a vigorous search for agents that suppress TNF activity. Some of the 
known dietary inhibitors of TNF production act by inhibiting NF-κB activation and 
the subsequent release of TNF from cells. These include resveratrol [ 71 ,  72 ], quer-
cetin [ 71 ,  72 ], EGCG [ 73 ], curcumin [ 74 ], capsaicin [ 75 ], and nordihydroguaiaretic 
acid [ 76 ]. Other dietary compounds inhibit TNF production from monocytes and 
macrophages [ 77 ]. Among these are the terpenoid, cynaropicrin [ 78 ], silymarin 
[ 79 ], epicatechin [ 80 ], narginin [ 81 ], and lignans [ 82 ], to name a few. These agents 
function by either inhibiting the expression of a series of kinase enzymes or exhibit-
ing inhibitory effects on cyclic AMP. Several long-chain fatty acids, including doco-
sahexaenoic acid (DHA) and eicosahexaenoic acid (EHA) in fi sh oil, have been 
shown to suppress the serum level of TNF in vivo [ 83 ]. Numerous dietary phenols 
have been shown to inhibit TNF-induced cytotoxicity in vitro. For example, a series 
of catechols were found to be effective in reducing TNF-induced cytotoxicity, pre-
sumably due to their iron-chelating activity and subsequent inhibition of lipoxygen-
ase enzymes [ 84 ]. The fl avonols, kaempherol, quercetin, myricetin, morin, and rutin 
also inhibit TNF cytotoxicity, and the C-3 free hydroxyl group on these compounds 
appears to play a pivotal role in their protective effect. In contrast to the protective 
effect of fl avonols, no protective activity was found for the fl avones (chrysin, api-
genin, and luteolin), and in fact, apigenin and chrysin which possess one (C-4′) 
hydroxyl group or none on the B-ring, respectively, enhanced TNF cytotoxicity 
[ 85 ]. These results indicate that relatively minor changes in the structure of phenolic 
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compounds can have a profound effect on their ability to infl uence TNF cytotoxicity, 
an important consideration in choosing agents for clinical trials. 

 In summary, several target sites have been identifi ed for affecting TNF produc-
tion and the ensuing infl ammation associated with TNF. Of these targets, NF-κB is 
the most interesting as it regulates TNF production and, in turn, TNF regulates 
NF-κB reciprocally to produce its biological effects. There are very few natural 
products that inhibit TNF at the posttranslational level. For a more extensive discus-
sion of natural inhibitors of TNF production, secretion, and function, the reader is 
referred to the review by Habtemariam [ 77 ].  

13.2.3     Cyclooxygenase-2 

 Cyclooxygenase ( COX ), or prostaglandin H synthase, is an enzyme responsible for 
the conversion of arachidonic acid (AA) into the prostanoids: prostaglandins, pros-
tacyclin, and thromboxane [ 86 ].    Overproduction of prostanoids can result in 
increased cell proliferation, infl ammation, and angiogenesis and reduced apoptosis. 
There are two major isoforms of  COX : COX-1 and COX-2. COX-1 is a constitutive 
enzyme found in most mammalian cells, whereas COX-2 is undetectable in most 
normal tissues. COX-2 can be induced in tissues by various toxins and carcinogens, 
tumor promoters, proinfl ammatory cytokines including TNF, and growth factors 
and is found in abundance in activated macrophages and in other cells at sites of 
infl ammation. Depending upon the inducer and the cell type, several transcription 
factors including AP-1, NF-κB, and STAT-3 are capable of stimulating COX-2 tran-
scription [ 87 ,  88 ]. Importantly, COX-2 is overexpressed in nearly all premalignant 
lesions and tumors of the skin, head and neck, esophagus, stomach, colon, breast, 
lung, pancreas, liver, prostate, bladder, cervix, and uterus [ 20 ]. In view of its ubiq-
uitous presence in premalignant lesions and in tumors of many types, COX-2 is an 
important target for cancer chemoprevention and therapy. 

 As might be expected, the dietary factors mentioned above that suppress the 
expression of NF-κB and AP-1 have the potential of inhibiting COX-2 expression. 
A partial list of these includes luteolin [ 89 ], resveratrol [ 90 ], curcumin [ 91 ], genis-
tein [ 92 ], and EGCG [ 93 ]. In addition, several studies have demonstrated the ability 
of mixtures of naturally occurring compounds to suppress the expression of COX-2. 
Our laboratory observed the ability of diets containing 5 % and 10 % lyophilized 
BRBs to suppress the expression of NF-κB in carcinogen-treated rat esophagus, and 
this correlated with inhibition of COX-2 expression, reduced prostaglandin E 

2
  levels 

in esophageal tissues, and about a 55 % reduction in tumorigenesis [ 43 ]. Montrose 
et al. [ 94 ] evaluated the effects of dietary intervention of 10 % lyophilized BRBs on 
disease severity in an experimental mouse model of ulcerative colitis. C57BL/6J 
mice were administered with 3 % dextran sodium sulfate (DSS) in drinking water 
for 7 days along with either control diet or a 10 % lyophilized BRB diet. Dietary 
BRBs reduced DSS-induced injury to the colonic epithelium and this was associ-
ated with a signifi cant reduction in COX-2 protein levels in the colon and PGE 

2
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levels in plasma. BRB treatment also suppressed mRNA levels of the proinfl ammatory 
cytokines TNF-α and IL-1β in colon tissues. These effects on COX-2, TNF-α, and 
IL-1β were correlated with reduced mRNA levels of phosphorylated IκBα (PIκBα) 
in the colon which might be expected to result in an inhibition of NF-κB activity. 
Other mixtures of naturally occurring compounds that have been shown to suppress 
the expression of COX-2 include cranberry and blueberry extracts [ 95 ,  96 ], pome-
granate juice [ 97 ], green tea extracts [ 98 ], grape seed proanthocyanidins [ 99 ], and 
soy isofl avones [ 100 ]. Because these dietary compounds and mixtures are predomi-
nately polyphenols, it is likely that their antioxidant effects play a signifi cant role in 
their ability to inhibit COX-2 expression and COX-2-associated infl ammation. 

 Mixtures of naturally occurring compounds have also been shown to suppress 
COX-2 expression in human tissues in vivo. In a phase 1b clinical trial, Shumway 
et al. [ 101 ] observed that the topical application of a 10 % black raspberry gel to oral 
dysplastic lesions (0.5 g 4 times a day for 6 weeks) resulted in an approximate 41 % 
reduction in histopathologic grade of the lesions and about a 50 % reduction in loss 
of heterozygosity (LOH) at three tumor suppressor gene loci. In a companion arti-
cle, Mallery et al. [ 102 ] reported signifi cant reductions in COX-2 and iNOS protein 
levels in the surface epithelium of the berry gel-treated oral lesions by quantitative 
immunohistochemistry, but only the reduction in COX-2 was signifi cant. More 
recently, Chen et al. [ 44 ] reported that the oral administration of lyophilized straw-
berries (60 g total/day) in a slurry of water to Chinese subjects at high risk for the 
development of esophageal squamous cell carcinoma reduced the histologic grade 
of dysplastic esophageal lesions in 29 (80.6 %) ( p  < 0.0001) of 36 subjects. This 
observation was associated with reduced protein expression levels of iNOS by 
79.5 % ( p  < 0.001), COX-2 by 62.9 % ( p  < 0.001), pNF-κB-p65 by 62.6 % ( p  < 0.001), 
and phospho-S6 (pS6) by 73.2 %. Measurement of pS6 by Western blot is used to 
assess the activity of the mammalian target of rapamycin (mTOR) gene which plays 
a central role in cell proliferation [ 103 ]. For a more extensive discussion of the 
mechanisms of inhibition of COX-2 by naturally occurring compounds, the reader 
is referred to the review of Aggarwal and Shishodia [ 20 ].  

13.2.4     Lipoxygenase 

 Lipoxygenases (LOX) are the key enzymes for the conversion of AA to biologically 
active leukotrienes. There are three types of LOX: 5-LOX, 12-LOX, and 15-LOX. 
Several studies suggest a link between 5-LOX and cancer development in animals 
and humans. 5-LOX catalyzes the oxidation of AA at the 5 position to yield 
5- hydroperoxyeicosatetraenoic acid (5-HPETE) and then converts 5-HPETE to leu-
kotriene A 

4
  (LTA 

4
 ). Depending upon the cell type, LTA 

4
  is converted to a series of 

additional leukotrienes which are released from leukocytes and mast cells to provoke 
infl ammation. LTB 

4
 , in particular, has potent chemokinetic and chemotactic activity 

towards leukocytes and is considered a potent mediator of infl ammation. Both of the 
AA metabolizing enzymes, COX-2 and 5-LOX, are commonly overexpressed in 
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tumors, and blocking both enzymes simultaneously is considered to be a promising 
approach to treat infl ammatory diseases including cancer. 

 The plant kingdom is a valuable source for 5-LOX and dual 5-LOX/COX inhibi-
tors. Importantly, natural inhibitors of 5-LOX also tend to be effective in reducing 
the expression levels of COX. Schneider and Bucar [ 104 ] provide a list of over 180 
different plant extracts and natural compounds isolated from different plant species 
that exhibit inhibitory effects against 5-LOX and/or 5-LOX/COX in cultured leuko-
cytes and macrophages. Some of the more commonly known inhibitors were found 
to be linoleic, oleic, and palmitic acids; silibinin; β-sitosterol; luteolin; quercetin; 
rosmarinic acid; allicin; resveratrol; ferulic acid; EGCG; gingerol; and curcumin. 
The IC 

50
  values for most of these compounds were between 1 and 50 μM although 

several were effective at doses below 1 μM. Thus, it is apparent that many of these 
inhibitors are likely to exhibit inhibitory effects in vivo at doses that are achievable 
pharmacologically.  

13.2.5     Inducible Nitric Oxide Synthase 

 Nitric oxide synthases are a family of three enzymes that catalyze the production of 
nitric oxide (NO) from  l -arginine. NO plays an important role as a cellular signal-
ing molecule as well as a cytotoxic or regulatory molecule of the innate immune 
response [ 105 ]. NO is synthesized for short periods of time (seconds to minutes) 
following activation of constitutively expressed endothelial NO synthase (eNOS) or 
neuronal NO synthase (nNOS). In contrast, inducible NO synthase (iNOS) is 
expressed after cell activation only and it produces NO for relatively long periods of 
time (hours to days). The principal inducers of iNOS in many different cell types are 
the proinfl ammatory cytokines, TNF-α, IL-1β, and IFN-γ, and lipopolysaccharides 
(LPS) [ 106 ], and the expression of iNOS is dependent, in part, upon activation of 
the NF-κB signaling pathway and the Janus kinase/signal transducer and activator 
of transcription (JAK-STAT) pathway [ 107 ]. iNOS-derived NO plays a critical role 
in the pathophysiology of several human diseases including Crohn’s disease, ulcer-
ative colitis and cancer. iNOS is expressed in a variety of human tumor types includ-
ing esophagus, lung, breast, bladder, prostate, colorectal, and melanoma [ 20 ]. 

 Several investigations have been conducted to identify naturally occurring inhibi-
tors of iNOS expression in vitro and in vivo. Among the individual compounds that 
have been shown to inhibit iNOS expression in vitro are the polyphenols, EGCG 
[ 108 ], [6]-gingerol [ 109 ], resveratrol [ 110 ], curcumin [ 111 ], indole-3-carbinol [ 112 ], 
quercetin and rutin [ 113 ], and chlorogenic acid [ 114 ]. This inhibition most likely 
occurs through the suppression of NF-κB and/or other signaling pathways (JAK-
STAT, MAPK, etc.). For example, Lin and Lin [ 108 ] reported that EGCG and other 
tea polyphenols inhibited iNOS mRNA and protein expression in LPS- activated 
murine macrophages through suppression of the binding of NF-κB to the iNOS pro-
moter, thereby inhibiting the induction of iNOS. Resveratrol was found to inhibit 
iNOS expression in beta-amyloid-treated C6 glioma cells by downregulation of 
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NF-κB [ 110 ]. Tedeschi et al. [ 115 ] reported that green tea inhibits cytokine- induced 
iNOS expression in human lung adenocarcinoma A549 cells and human colon 
DLD-1 cells by downregulation of the DNA-binding activity of STAT-1α. Some of 
these compounds are also effective in inhibiting iNOS expression in vivo. For exam-
ple, chlorogenic acid protected mice against LPS-induced lung injury by markedly 
downregulating iNOS expression, myeloperoxidase activity, and the migration of 
polymorphonuclear neutrophils into bronchiolar lavage fl uid [ 114 ]. 

 Numerous mixtures of naturally occurring compounds have also been shown to 
be effective in downregulating the expression of iNOS, usually in combination with 
COX-2. Kim et al. [ 116 ] evaluated a series of plant extracts for their ability to inhibit 
NO generation in murine macrophages stimulated with LPS and INF-α. Extracts 
from avocado, basil, Chinese mustard, mitsuba, and red turnip were particularly 
effective in inhibiting NO production. The roots of  Rhododendron mucronulatum  
(RM) have been used in Asian traditional medicine for the treatment of dysuria and 
fever for centuries [ 117 ]. An alcohol extract of RM, found to contain numerous 
polyphenolic compounds, was highly effective in inhibiting protein levels of iNOS 
and COX-2 in LPS-stimulated HaCaT cells. Chitosomes (liposomes in which chito-
san is bound to soy lecithin) “loaded with” cranberry proanthocyanidins were found 
to be effective in inhibiting iNOS and COX-2 expression in murine macrophages 
activated with LPS [ 118 ]. Anthocyanin-rich extracts from the acai berry were found 
to be potent inhibitors of iNOS and COX-2 expression in mouse brain microglial 
cells, and this correlated with reductions in p38-MAPK, TNF-α, and NF-κB [ 119 ]. 
Our laboratory observed an inhibition of iNOS mRNA and protein expression in 
carcinogen-treated rat esophageal tissues by diets containing either 5 % whole BRB 
powder or an anthocyanin-rich fraction of BRBs [ 43 ,  65 ]. These effects of BRBs 
and their component anthocyanins were correlated with downregulation of NF-κB 
and COX-2. We stated above that the oral administration of strawberry powder 
(60 g/day) in a slurry of water for 6 months to Chinese subjects at high risk for 
esophageal squamous cell carcinoma resulted in about an 80 % regression of mildly 
dysplastic lesions [ 44 ]. This observation was associated with signifi cant reductions 
in protein expression levels of iNOS and COX-2 which may have been due to down-
regulation of the phosphorylated form of NF-κB-p65. Collectively, these observa-
tions indicate that iNOS is an important target for dietary intervention in the 
treatment of infl ammation and in the prevention of cancer.  

13.2.6     Proinfl ammatory Cytokines 

 The tumor microenvironment contains innate immune cells (including macrophages, 
neutrophils, mast cells, myeloid-derived suppressor cells, dendritic cells, and natural 
killer cells) and adaptive immune cells (T and B lymphocytes) in addition to the 
cancer cells and their surrounding stroma. These cells communicate with each other 
by direct contact or by cytokine and chemokine production that act in autocrine and 
paracrine manners to control tumor growth. The most abundant immune cells within 
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the tumor microenvironment are the tumor-associated macrophages (TAMs) and T 
lymphocytes. TAMs are one of the most important players in infl ammation and can-
cer as they promote tumor growth and are obligatory for angiogenesis, invasion, and 
metastasis [ 120 ]. TAMs are classifi ed into M1 and M2 types, analogous to Th1 and 
Th2 T lymphocytes. M1 macrophages, when activated by various stimuli such as 
INFγ and LPS, express high levels of the proinfl ammatory cytokines TNF-α, IL-1β, 
IL-6, IL-12, and IL-23 as well as iNOS [ 1 ]. In contrast, M2 macrophages, induced 
by IL-4, IL-10, and IL-13, downregulate IL-12 expression and show increased 
expression of the anti-infl ammatory cytokine, IL-10. The tumor-promoting cyto-
kines are the M1 cytokines (TNF-α, IL-1β, IL-6, IL-12, or IL-23), whereas IL-10, 
the M2 cytokine, has been shown to be tumor suppressive [ 121 ]. 

 The proinfl ammatory cytokines activate various transcription factors such as 
NF-κB, AP-1, and STAT3 in premalignant cells to induce genes that stimulate cell 
proliferation, survival, and tumor development. As discussed above, TNF-α acti-
vates both NF-κB and AP-1 transcription factors, but in the skin, its tumor- promoting 
effects are mediated by AP-1 [ 122 ]. STAT3 activation in cancer cells is dependent 
upon a number of growth factors and cytokines, including IL-6, IL-11, and epider-
mal growth factor (EGF) [ 123 ]. The development of specifi c tumor types tends to be 
associated with individual cytokines [ 2 ]. For example, autocrine production of 
IL-1β promotes growth of pancreatic carcinoma cell lines [ 124 ]. IL-6 acts as a para-
crine growth factor for colorectal cancer, non-Hodgkin’s lymphoma, renal cell car-
cinoma, and bladder cancer [ 125 – 128 ]. IL-8 has been detected in multiple cancer 
types and its expression in human melanomas and ovarian cancers correlates with 
their metastatic potential [ 129 ]. 

 Given the importance of the proinfl ammatory cytokines in the various stages of 
tumor development, numerous studies have been conducted to identify naturally 
occurring compounds and mixtures that inhibit cytokine expression. Typically, 
cytokine production is induced in cultured cells of various types by treatment with 
TNF-α, INFγ, LPS, or other inducers, and the individual compounds or mixtures are 
evaluated for their ability to reduce cytokine expression. Among the numerous com-
pounds that downregulate IL-6 expression in vitro include resveratrol [ 130 ], cur-
cumin [ 131 ], ellagic acid [ 132 ], genistein [ 133 ], lycopene [ 134 ], capsaicin [ 135 ], 
and EGCG [ 136 ]. To varying extents, these compounds also downregulate the 
expression of IL-12 and IL-1α or IL-1β in cultured cells. Downregulation of these 
cytokines is often associated with inhibition of MAPKs such as ERK1/2, p38, or 
JNK as well as the transcription factors, NF-κB, AP-1, or STAT3. 

 In vivo, green tea polyphenols (GTP) have been tested for inhibition of TPA- 
induced cytokine expression in mouse skin and in transgenic mouse models that 
overexpress specifi c cytokines [ 136 ,  137 ]. Topical application of GTP to the skin of 
mice previously treated with TPA resulted in reduced expression of TPA-induced 
IL1-α in the skin [ 136 ]. Administration of GTP in the drinking water to TNF-α 
transgenic mice which are susceptible to idiopathic pulmonary fi brosis led to 
reduced expressions of TNF-α and IL-6 [ 137 ]. In addition to GTP, other mixtures 
shown to inhibit cytokine expression include grape seed proanthocyanidins, an eth-
anol extract of pomegranate, tart cherry anthocyanins, and black tea theafl avins. 
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Grape seed proanthocyanidins inhibited IL-17-induced IL-6 production in cultured 
human pulmonary epithelial cells by reducing the expressions of MAPK and NF-κB 
[ 138 ]. Pomegranate extract inhibited TNF-α induced production of IL-6 and NO in 
cultured human osteoblasts [ 139 ]. Tart cherry anthocyanins showed an additive 
effect along with atorvastatin in inhibiting LPS-induced IL-6 production by adipose 
stem cells [ 140 ]. Black tea theafl avins inhibited TPA-induced infl ammation in the 
ears of CD-1 mice, and this correlated with reduced levels of IL-1β, IL-6, PGE 

2
 , and 

leukotriene B 
4
  suggesting that the anti-infl ammatory activity of the theafl avins may 

have been due to their ability to inhibit AA metabolism via lipoxygenase and COX 
pathways [ 141 ]. These results suggest that infl ammatory cytokines are desirable 
targets for the anti-infl ammatory effects of naturally occurring compounds and mix-
tures. In addition, cytokines may be excellent biomarkers of effect when measured 
both in tissues and in serum/plasma.   

13.3     Summary and Conclusions 

 Infl ammation is a very complex process, initiated by a host of injurious factors, and 
characterized by leukocyte infi ltration into the affected tissues and the aberrant 
expression of multiple genes that drive the infl ammatory process. The conventional 
wisdom is that the injurious agents induce one or more transcription activators 
(e.g., Nf-κB, AP-1, STAT3) and these activators, in turn, cause the overexpression 
of infl ammatory enzymes (e.g., COX-2, iNOS, 5-LOX), cytokines, and chemo-
kines (e.g., TNF, IL-1β, IL-6, IL-12) (Fig.  13.1 ). Cytokines and chemokines then 
chemo- attract additional infl ammatory leukocytes into the tissues leading ulti-
mately to a chronic state of infl ammation and persistent tissue damage. One of the 

Free radicals, inflammatory stimuli,
carcinogens, endotoxins,
γ-radiation, ultraviolet light and
X-rays, etc

Dietary compounds & mixtures

Transcription factors

Dietary compounds
& mixtures

Inflammatory enzymes
COX-2, INOS, 5-LOX

Inflammatory cytokines
TNF-α, IL-1β, IL-6, IL-12

NF-κB, AP-1, STAT3, etc.

  Fig. 13.1    Scheme for effects of dietary factors on infl ammation-related molecular targets       
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outcomes of chronic infl ammation is cancer, and indeed, infl ammation is associated 
with essentially all stages of tumor development, i.e., initiation, promotion, malig-
nant conversion, angiogenesis, invasion, and metastasis. Given this, there has been 
an active search in the past few decades for both synthetic and naturally occurring 
inhibitors of the infl ammatory process to reduce the risk for cancer development.

   This chapter lists individual dietary compounds that infl uence molecular targets 
involved in the infl ammatory process. It is clear that some of the most effective 
dietary inhibitors of carcinogenesis (e.g., resveratrol, curcumin, EGCG, isothiocya-
nates, triterpenoids, silymarin, [6]-gingerol) positively infl uence multiple molecular 
targets associated with infl ammation, providing additional evidence of the close 
relationship between infl ammation and carcinogenesis. The wide-ranging effects of 
these inhibitors on infl ammation targets may be due, at least in part, to the fact that 
many of them are polyphenols that exhibit antioxidant activity and might be 
expected to inhibit multiple RONS-driven signaling pathways. Interestingly, most 
of these agents are not well absorbed and, as such, can be consumed for long periods 
without producing harmful side effects. In many cases, it is not clear whether the 
parent compounds themselves or one or more of their metabolites are responsible 
for the observed biological effects. In that regard, it is important to determine the 
role, if any, of the enteric microbiome in the metabolism of these compounds. It is 
also essential to examine the pharmacokinetics of uptake and distribution of these 
compounds into blood and tissues to provide clues as to how they might be formu-
lated for optimal delivery to target tissues. Finally, studies should be undertaken to 
determine if the compounds themselves, or their metabolites, interact directly with 
promoter sequences of infl ammatory genes to infl uence gene expression and/or bind 
directly to infl ammatory proteins (e.g., COX-2, iNOS,5-LOX, TNF, IL-6) to infl u-
ence their activities. 

 Whole lyophilized foods and food extracts also exhibit a wide range of inhibitory 
effects on the expression of infl ammation-associated genes. The removal of water 
from foods by lyophilization and the grinding of dried foods into a powder can 
result in a signifi cant concentration of their bioactive constituents. For example, we 
reported that the active constituents in black raspberries are concentrated tenfold by 
the lyophilization process and that BRB powder, in different formulations, is che-
mopreventive for oral, esophageal, and colon cancers in rodents and in humans 
[ 43 ,  44 ,  94 ,  101 ,  102 ,  142 ,  143 ]. The inhibitory effects of berry powder on 
infl ammation- associated genes are an important component of the overall chemo-
preventive effects of BRBs in rodents [ 143 ] and, likely, in humans. For example, we 
reported that the oral administration of BRB powder at a total dose of 60 g/day to 
colon cancer patients for periods of 1–9 weeks resulted in reduced plasma levels of 
GM-CSF and IL-8 [ 144 ]. Similarly, in obese individuals given a high-fat, high-
caloric meal, the oral administration of 45 g/day of BRB powder for 4 days resulted 
in a signifi cant reduction in plasma levels of IL-6 [ 145 ]. It is likely that the other 
foods and food extracts mentioned in this chapter have similar effects on infl amma-
tory biomarkers suggesting that the routine consumption of anti-infl ammatory 
agents in the human diet in the form of food concentrates and extracts could well 
reduce the overall risk of humans to cancer.     
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    Abstract     Calorie restriction (CR) is one of the most potent, broadly acting dietary 
interventions for inducing weight loss and for inhibiting cancer in experimental 
models. Translation of the mechanistic lessons learned from research on CR to can-
cer prevention strategies in humans is important given the high prevalence of excess 
energy intake, obesity, and metabolic syndrome in many parts of the world and also 
given the established links between obesity-associated metabolic perturbations and 
increased risk and/or progression of many types of cancers. This chapter synthe-
sizes fi ndings on the biological mechanisms underlying many of the anticancer 
effects of CR, with emphasis on the role of infl ammatory processes and growth fac-
tor signaling (well-established mechanisms) as well as vascular perturbations, 
autophagy, and sirtuins (emerging mechanisms). These CR-responsive pathways 
and processes represent targets for translating CR research into effective cancer 
prevention strategies in humans.  
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14.1         Introduction 

 Calorie restriction (CR), a dietary regimen in which subjects (typically test animals) 
receive a reduced energy diet (typically 20–40 % reduction in total energy intake 
relative to an unrestricted comparison group), is one of the most potent and broadly 
acting dietary interventions for preventing or reversing weight gain and inhibiting 
cancer in experimental tumor models [ 1 ]. Recent reports of decreased risk of diabe-
tes and cancer in response to CR in rhesus monkeys [ 2 ,  3 ], and observations that CR 
decreases infl ammatory and endocrine markers associated with increased breast 
cancer risk in women [ 4 – 6 ], suggest that the benefi cial effects of CR on metabolism 
and chronic disease risk observed in rodent models may extend to nonhuman pri-
mates and humans. 

 Observational epidemiologic studies provide further evidence that CR exerts 
benefi cial effects on longevity and cancer risk in humans [ 1 ]. For example, inhabit-
ants of Okinawa, Japan, have for centuries consumed signifi cantly fewer calories 
than residents of the main Japanese islands and have always had lower death rates 
from cancer and other chronic diseases than inhabitants of the Japanese mainland 
[ 7 ]. It will be interesting to see if the recent westernization of the diet of Okinawans 
results in increased cancer rates in future. Another example involves patients with 
early-onset anorexia nervosa and hence periods of energy restriction; these patients 
have reduced risk of breast cancer [ 8 ]. Furthermore, surveillance data from 
Norwegian women during World War II showed reduced breast cancer risk later in 
life in association with acute (<1 year) energy restriction (~50 % reduction in calorie 
intake without signifi cant changes in diet quality) [ 9 ]. However, populations with 
more severe restriction than experienced in Norway, such as survivors of the 1944 
Dutch “Hunger Winter,” the Jewish Holocaust, and the Siege of Leningrad, actually 
displayed higher breast cancer rates [ 10 – 12 ]. This indicates a possible threshold 
beyond which energy restriction (especially when combined with other stressors) 
may be cancer promoting. This is particularly true for those born around the time of 
the severe deprivation and stress, suggesting an important perinatal window of sus-
ceptibility to metabolic reprogramming in response to energy restriction [ 13 ]. 

 These stressful conditions, particularly the confounding effects of severe physi-
cal and psychosocial stress, malnutrition, infection, and other factors associated 
with war conditions in severely affected countries, make many of these wartime 
surveillance studies a challenge to interpret. These conditions are also in contrast to 
the controlled conditions characteristic of most CR studies in animal models that 
consistently show anticancer effects. CR regimens are often referred to as “CR with 
optimal nutrition” or “undernutrition without malnutrition,” and CR experiments 
typically involve 20–40 % reductions in total energy relative to ad libitum-fed con-
trols but with adequate nutrition and a controlled physical environment [ 1 ]. In 
rodent models, CR regimens administered throughout life are generally more effec-
tive against cancer than CR regimens initiated in adulthood, although both early- 
onset and adult-onset CR, relative to control diet regimens, are protective against a 
variety of cancer types [ 1 ]. In rhesus monkey studies, CR begun in young adults is 
more protective against cancer than CR initiated later in life [ 3 ]. 
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 There are several National Institute of Aging-funded clinical trials underway to 
address the question of whether the observed health benefi ts of CR in rodents and 
nonhuman primates translate to humans. One of these trials, called the Comprehensive 
Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) Study, 
is evaluating the effects of a 2-year CR regimen (25 % less energy than controls) in 
healthy, nonobese individuals. Preliminary reports on CALERIE indicate that many 
of the same metabolic and endocrine changes observed in rodents and monkeys are 
also occurring in humans in response to CR [ 14 ,  15 ]. These fi ndings are consistent 
with recent studies in women at high risk for breast cancer showing that infl amma-
tory and growth factor signaling pathways are reduced by total CR or 2 days/week 
of restricted carbohydrate calories [ 4 – 6 ]. The observed metabolic effects of 2-days/
week of restricted carbohydrate calories [ 4 ] are of particular interest, since it is 
likely easier and more sustainable for most people to periodically restrict a single 
macronutrient, such as carbohydrates, than to chronically restrict total energy. 

 In this chapter we discuss possible mechanisms underlying the anticancer effects 
of CR, with emphasis on CR-associated changes in infl ammation and growth factor 
signaling, as well as emerging evidence suggesting that vascular perturbations 
(including angiogenesis) and modulation of sirtuin and autophagy pathways may 
also play roles in the effects of CR on tumor development and progression. As sum-
marized in Fig.  14.1 , we specifi cally describe the impact of CR on (a) macrophages, 
cytokines, and other infl ammatory mediators; (b) growth factors, including insulin, 
insulin-like growth factor (IGF)-1, adipokines, and their downstream signaling 
pathways; (c) vascular integrity factors, including angiogenic regulators; (d) autoph-
agy regulators; and (e) sirtuin pathway components. We discuss how these multifac-
torial CR-induced changes combine to suppress tumor development and/or 
progression. Components of these interrelated pathways offer possible mechanism- 
based targets for the prevention and control of cancers, particularly the estimated 
20–25 % [ 16 ] of human cancers related to, or caused by, excess body weight and 
lack of physical activity.

14.2        Calorie Restriction Decreases Chronic Infl ammation 

 Chronic infl ammation is characterized by increased circulating cytokines and che-
mokines that attract immune cells (such as macrophages that also produce infl amma-
tory mediators) into the local microenvironment [ 17 – 19 ]. The infl ammatory cascade 
is further amplifi ed by the release of infl ammatory cytokines such as interleukin 
(IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein 
(MCP)-1, primarily from macrophages, into the local and systemic circulation. 
Adipocytes can enlarge past the point of effective oxygen diffusion, which results in 
hypoxia and eventually necrosis. Free fatty acids escape the engorged/necrotic adi-
pocytes and deposit in other tissues, which in turn promotes insulin resistance, dia-
betes (through downregulation of insulin receptors and glucose transporters), hepatic 
steatosis, and pancreatic steatosis, and also activates signaling molecules involved in 
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epithelial carcinogenesis, such as nuclear factor kappa-light-chain-enhancer of 
activated B-cells (NF-κB) and cyclooxygenase (COX)-2 [ 20 ]. NF-κB is a transcrip-
tion factor that is activated in response to bacterial and viral stimuli, growth factors, 
and infl ammatory molecules (e.g., TNF-α, IL-6, and IL-1β) and is responsible for 
inducing gene expression associated with cell proliferation, apoptosis, infl ammation, 
metastasis, and angiogenesis. Activation of NF-κB is a common characteristic of 
many tumors and is associated with insulin resistance and elevated circulating levels 
of leptin, insulin, and/or IGF-1 [ 17 ,  21 ,  22 ]. 

 A connection between chronic infl ammation and cancer development was 
observed 150 years ago when Rudolph Virchow noted an abundance of leukocytes 
in neoplastic tissue [ 23 ]. Infl ammation is now considered a hallmark of cancer, and 
the evidence is accumulating that chronic, “smoldering” infl ammation is associ-
ated with increased cancer risk [ 24 – 26 ]. Indeed, several tissue-specifi c infl amma-
tory lesions are established neoplastic precursors for invasive cancer, including 

↓Cancer Risk and Progression

↓Growth
Factor

Signaling

Emerging
Mechanisms

↓Inflammation

Calorie
Restriction

Weight Loss
or

Maintenance

Insulin & IGF-1
Leptin-to-Adiponectin Ratio
Cytokines
PAI-1
VEGF

↓NF-kB
↓COX-2↓Angiogenesis

↑Autophagy
↑Sirtuins

↓PI3K/Akt/mTOR

  Fig. 14.1    Calorie restriction and cancer prevention: summary of established and emerging mecha-
nisms. An  arrow  preceding text denotes a directional effect (e.g., activity or concentration).  Solid 
arrow  indicates established effects;  dashed arrows  indicate emerging mechanisms requiring addi-
tional study.  IGF-1  insulin-like growth factor-1;  PAI-1  plasminogen activator inhibitor-1;  VEGF  
vascular endothelial growth factor;  PI3K  phosphoinositide 3-kinase;  NF-κB  nuclear factor kappa- 
light-chain-enhancer of activated B-cells;  COX-2  cyclooxygenase-2       
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infl ammatory bowel disease for colon cancer, pancreatitis for pancreatic cancer, 
dermatitis for certain forms of skin cancer, prostatitis for prostate cancer, and gastritis 
for gastric cancer [ 27 ,  28 ]. Tumor and preneoplastic microenvironments are com-
posed of multiple cell types including epithelial cells, fi broblasts, mast cells, and 
cells of the innate and adaptive immune system [ 29 ]. As discussed previously, mac-
rophages, which are activated in the obese state, infi ltrate tumors and amplify the 
infl ammatory tumor microenvironment, often through NF-κB-dependent produc-
tion of cytokines and angiogenic factors [ 29 ]. COX-2 is another important cancer-
related infl ammatory mediator that is upregulated in most tumors and catalyzes the 
synthesis of the potent infl ammatory lipid metabolite, prostaglandin E 

2
 . COX-2 

expression, an indicator of poor prognosis in multiple cancer types, is increased in 
response to obesity [ 30 ]. 

 CR can prevent much of the chronic infl ammation associated with preneoplasia 
or neoplasia [ 17 ,  31 – 33 ]. Specifi cally, CR decreases the number of tumor- associated 
macrophages (TAMs), NF-κB signaling, circulating and tissue cytokines, and 
COX-2 expression, in many tissues and tumor types [ 17 ,  32 ,  33 ]. A major contribu-
tor to the proinfl ammatory tumor environment is the presence of TAMs. The recruit-
ment of TAMs to the tumor microenvironment is largely dependent on the MCP-1, 
circulating levels of which are consistently decreased by CR [ 32 ,  33 ]. Levels of 
MCP-1 in tumor tissue are highly correlated with the accumulation of TAMs [ 34 ]. 
Macrophages are capable of polarizing into what is known as an M1, or classically 
activated cytotoxic macrophage, or an M2, or immunosuppressive macrophage. The 
cytokines produced by each type of macrophage are what distinguish an M1 from 
an M2, and tumor tissue typically contains a larger quantity of M2-type macro-
phages [ 34 ]. In addition to producing cytokines and chemokines, TAMs also pro-
duce growth factors that enhance proliferation and angiogenesis and contribute to 
deposition and dissolution of connective tissue [ 34 ]. There is also evidence to sug-
gest that NF-κB plays a role in mediating TAM transcriptional programs and, by 
extension, protumorigenic effects of TAMs [ 17 ,  32 ,  34 ].  

14.3     Calorie Restriction Impacts Growth Signals 

14.3.1     Insulin and IGF-1 

 The peptide hormone insulin is produced by beta cells in the pancreas and released 
in response to chronic hyperglycemia, which is associated with insulin resistance, 
aberrant glucose metabolism, chronic infl ammation, and the production of other 
metabolic hormones such as IGF-1, leptin, and adiponectin [ 35 ]. Clinical and epi-
demiologic evidence suggests that elevated levels of circulating insulin or the cleav-
age product of proinsulin (C-peptide) are associated with increased risk and/or 
progression of cancers of the breast (pre- and postmenopausal), endometrium, 
colon, kidney, and pancreas [ 35 ,  36 ]. Insulin exerts tumor-enhancing effects directly 
via the insulin receptor or via IGF-1 receptor (IGF-1R)/insulin receptor hybrids on 
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preneoplastic and neoplastic cells [ 37 ]. High circulating levels of insulin also upreg-
ulate hepatic synthesis of IGF-1 essential for growth and development of many tissues, 
particularly during the prenatal period [ 35 ,  37 ]. In the circulation IGF-1 is typically 
bound to IGF-binding proteins (IGFBPs) that regulate the amount of free IGF-1 
bioavailable to bind to the IGF-1R and elicit growth or survival signaling [ 35 ,  37 ]. 
Elevated circulating IGF-1 is an established risk factor for many cancer types [ 38 ,  39 ], 
and in states of obesity/metabolic syndrome, the amount of bioavailable IGF-1 
increases, possibly via hyperglycemia-induced suppression of IGFBP synthesis 
and/or hyperinsulinemia-induced promotion of hepatic growth hormone receptor 
expression and IGF-1 synthesis [ 35 – 38 ]. In contrast to obesity, CR prevents hyper-
insulinemia, enhances insulin sensitivity, increases serum levels and tissue mRNA 
expression of several IGFBPs, and decreases total and bioavailable circulating 
IGF-1 levels [ 1 ]. 

 The phospatidylinositol-3 kinase (PI3K)/Akt pathway, downstream of both the 
insulin receptor and IGF-1R, is one of the most commonly activated pathways in 
epithelial cancers [ 40 ]. This pathway integrates intracellular and environmental 
cues, such as growth factor concentrations and nutrient availability, to regulate cel-
lular survival, proliferation, protein translation, and metabolism. Akt regulates the 
mammalian target of rapamycin (mTOR) [ 41 ], which regulates cell growth, cell 
proliferation, and survival through downstream mediators. Increased activation of 
mTOR is common in tumors and many normal tissues from obese and/or diabetic 
mice, while CR decreases mTOR signaling in these same tumors and normal tissues 
[ 42 ]. mTOR activation is inhibited by increased AMP-activated kinase (AMPK) 
under low-nutrient conditions [ 43 ]. Specifi c mTOR inhibitors block the tumor- 
enhancing effects of obesity in mouse models [ 44 ,  45 ].  

14.3.2     Adiponectin, Leptin, and the Leptin-to-Adiponectin Ratio 

 Adiponectin is a peptide hormone primarily secreted from visceral white adipose 
tissue. In contrast to leptin and other adipokines, circulating levels of adiponectin 
negatively correlate with adiposity and are thus increased by CR and decreased by 
obesity [ 46 ]. Adiponectin functions to counter obesity-related metabolic perturba-
tions, such as insulin resistance and leptin resistance, that impact glucose and fatty 
acid metabolism, alter insulin responses and increase production of infl ammatory 
cytokines [ 46 ]. Thus, possible mechanisms through which adiponectin exerts anti-
cancer effects may include increasing insulin sensitivity and decreasing insulin/
IGF-1 and mTOR signaling via activation of AMPK [ 47 ]. Adiponectin also reduces 
proinfl ammatory cytokine expression via inhibition of NF-κB [ 47 ,  48 ]. 

 Leptin is a peptide hormone produced by white adipose tissue, and the leptin 
receptor is a member of the class I cytokine receptor family that signals through the 
Janus kinase and signal transducer activator of transcription (JAK/STAT) pathway 
commonly dysregulated in infl ammatory conditions and many cancers [ 49 ,  50 ]. 
Circulating leptin levels positively correlate with adipose stores and nutritional status 
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and function as an energy sensor to signal the brain to reduce appetite. Leptin has 
direct effects on peripheral tissues and indirect effects on neuroendocrine regulators 
of appetite and energy expenditure in the hypothalamus and impacts carcinogenesis, 
angiogenesis, immune responses, cytokine production, and other biological pro-
cesses [ 50 ]. In the obese state, adipose tissue overproduces leptin, and the brain no 
longer responds to the signal, resulting in leptin resistance. Insulin, glucocorticoids, 
TNF-α, and estrogens all stimulate leptin release [ 50 ]. CR consistently and robustly 
decreases systemic leptin levels in a manner dependent on the extent of the adipos-
ity loss [ 1 ]. 

 In vitro, animal, and epidemiologic evidence linking adiponectin [ 51 – 55 ] or leptin 
[ 56 – 58 ] individually to cancer risk is mixed. Intermittent CR suppresses murine mam-
mary tumor incidence in association with decreased leptin-to-adiponectin ratio [ 51 ]. 
Associations between the leptin-to-adiponectin ratio and the metabolic syndrome 
[ 59 – 61 ] and some cancers [ 62 – 64 ] have also been reported.   

14.4     Emerging Mechanisms Underlying the Anticancer 
Effects of Calorie Restriction 

14.4.1     Vascular Effects 

 Perturbations in the production and/or interactions of several factors that infl uence 
key functions of the endothelium, including its roles in regulating angiogenesis, 
hemostasis, vascular density, infl ammation, and vascular-wall integrity, have been 
linked to cancer. One such vascular-related factor is plasminogen-activated inhibitor 
(PAI)-1, a serine protease inhibitor produced by endothelial cells, stromal cells, and 
adipocytes in visceral white adipose tissue [ 65 ]. PAI-1, through its inhibition of 
urokinase-type and tissue-type plasminogen activators, regulates fi brinolysis and 
integrity of the extracellular matrix [ 66 ]. Increased circulating PAI-1 levels, fre-
quently found in obese subjects, are associated with increased risk of atherogenesis 
and cardiovascular disease, diabetes, and several cancers [ 65 – 68 ]. PAI-1 is also 
involved in angiogenesis and thus may contribute to obesity-driven tumor cell 
growth, invasion, and metastasis [ 68 ]. Circulating levels of PAI-1 are consistently 
decreased in response to CR [ 1 ], although the mechanistic link between PAI-1 and 
cancer requires further study. 

 Another important mediator of vascular integrity is the heparin-binding glyco-
protein vascular endothelial growth factor (VEGF) produced by adipocytes and 
tumor cells. VEGF has mitogenic, angiogenic, and vascular permeability-enhancing 
activities specifi c for endothelial cells [ 69 ]. The need for nutrients and oxygen trig-
gers tumor cells to produce VEGF, which leads to the formation of new blood ves-
sels to nourish the rapidly growing tumor. VEGF may also facilitate the metastatic 
spread of tumor cells [ 70 ]. Adipocytes communicate with endothelial cells by pro-
ducing a variety of proangiogenic and vascular permeability-enhancing factors, 
including VEGF and PAI-1 [ 71 ]. In the obese, nontumor setting, these factors 
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stimulate neovascularization in support of the expanding fat mass [ 71 ]. Circulating 
levels of VEGF are increased in obese, relative to lean, humans and animals, and 
increased tumoral expression of VEGF is associated with poor prognosis in several 
obesity-related cancers [ 72 – 75 ]. Data to date suggest that CR decreases systemic 
and tissue VEGF and has antiangiogenic effects in multiple experimental tumor 
models [ 73 – 75 ].  

14.4.2     Autophagy 

 Autophagy is a cellular degradation pathway involved in the clearance of damaged 
or unnecessary proteins and organelles. It also provides an alternative source of 
energy and substrates during periods of restricted dietary intake (such as CR) or 
metabolic stress to enhance survival. In response to CR, plasma glucose levels (rela-
tive to controls) are low, insulin secretion is suppressed, and glucagon is released 
from the alpha-cells of the pancreas, resulting in increased autophagy in the liver, 
beta-cells of the pancreas, skeletal muscle, and heart [ 76 ,  77 ]. One of the proposed 
mechanisms of CR is that under conditions of nutrient limitation, survival is pro-
moted by a shift in metabolic investment from cell replication and growth to main-
tenance [ 78 ]. This tightly regulated process is driven by a group of autophagy-related 
proteins and is suppressed by the conserved nutrient sensor target of rapamycin 
(TOR, referred to as mTOR in mammalian species) [ 79 ]. CR regulates TOR com-
plex 1, and to a lesser extent TOR complex 2, in many species including fl ies, 
worms, yeast, and mammals. TOR complex 1 signaling regulates protein translation 
and many cellular processes including metabolism and autophagy [ 79 ]. Additionally, 
suppression of nutrient-activated TOR signaling is suffi cient to trigger an energy 
stress response that is coordinated by AMPK, and this metabolic program blunts the 
growth responses to nutrient availability and promotes autophagy [ 80 ]. 

 Several longevity-promoting regimens, including inhibition of TOR with rapamy-
cin, resveratrol, or the natural polyamine spermidine, may require autophagy for 
their effects [ 81 ]. Autophagy activation is essential for clearing cellular damage and 
preventing disease in normal cells. Tumor cells also utilize autophagy to maintain a 
favorable metabolic state for daughter cell production, especially under limiting 
nutrient conditions [ 82 ]. However, little is known about what role autophagy plays 
in CR-mediated effects on tumor development or progression. In particular, the links 
between autophagy, apoptosis, and energy metabolism in normal vs. cancer cells 
may provide important insights into the anticancer effects of CR.  

14.4.3     Sirtuins 

 The Sirtuin family of proteins has been implicated in the regulation of endocrine 
signaling, stress-induced apoptosis, and the metabolic changes associated with 
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energy balance modulation and aging [ 83 – 85 ]. Sirtuins were originally studied in 
yeast and nematodes, where CR increases lifespan in association with the levels and 
activity of the Sir2 protein [ 86 – 88 ]. The levels of Sir2, or its mammalian homologue 
SIRT1, rise in response to CR [ 84 – 88 ]. SIRT1 is an NAD-dependent deacetylase 
that inhibits stress-induced apoptotic cell death and modulates IGF-1, adiponectin 
and insulin production, and insulin sensitivity, in some tissues [ 88 – 90 ]. 

 The specifi c roles of sirtuins in cancer development and/or progression are not 
yet clear. SIRT1 is upregulated in several tumor types and can inhibit apoptosis and 
downregulate the expression of tumor suppressor genes (such as p53, which is fre-
quently mutated in many human cancers) to enhance survival of epithelial cancer 
cells [ 91 – 94 ]. In addition, the SIRT1 activator SRT1720 promotes tumor cell 
 migration and lung metastases in a murine breast cancer model [ 95 ]. In contrast, 
there is also evidence that SIRT1 can act to suppress polyp formation in the APC Min  
intestinal tumor model [ 96 ]. Additionally, in preclinical studies the phytochemical 
resveratrol activates SIRT1 and reduces cancer development in multiple models 
[ 97 ]. SIRT1 overexpression does not infl uence the anticancer effects of an every-
other-day fasting regimen (a variation of CR) in a p53-defi cient mouse model of 
cancer, suggesting that SIRT1 may have a limited role in the effects of CR on cancer 
[ 98 ]. Given the confl icting data to date regarding the tumor-enhancing, vs. inhibi-
tory, effects of SIRT1 activation and the apparently limited role of SIRT1 in the 
response to CR, it remains unclear if SIRT1 or other sirtuins represent mechanistic 
targets for cancer prevention.   

14.5     Targets and Strategies for Mimicking the Effects 
of Calorie Restriction 

 The identifi cation and development of natural or synthetic agents that mimic some 
of the protective effects of CR may facilitate new strategies for cancer prevention. 
Given how diffi cult it is for many people to adopt a low calorie diet for an extended 
period, the identifi cation of drugs or other agents that could either complement or 
even reproduce the anticancer effects of CR without drastic changes in diet and 
lifestyle is a goal for many pharmaceutical companies. Numerous studies have used 
microarray analyses to profi le the molecular targets responding to CR and other 
dietary energy balance modulations [ 99 – 103 ]. Most of these studies were focused 
on understanding CR effects related to aging, and they revealed that the extent to 
which CR modulates the transcriptome is species specifi c, tissue specifi c, and 
dependent on the duration and intensity of CR. Nonetheless, some emerging pat-
terns from these studies suggest that transcripts involved in infl ammation, growth 
factor signaling (particularly related to the insulin and IGF-1 pathways), oxidative 
stress, and nutrient metabolism are commonly altered by CR. Application of the 
emerging fi eld of metabolomics to this question should accelerate the identifi cation 
of additional targets. 
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 The IGF-1 and Akt/mTOR pathways, and possibly the sirtuin pathway, have 
emerged as potential key mediators of CR’s anticancer effects and are initial targets 
for possible CR mimetics. Agents or interventions that safely reduce IGF-1, or 
inhibit one or more components of the signaling pathways downstream of IGF-1 and 
other growth factors (including Akt and mTOR), even without dietary changes, may 
provide an effective physiological or pharmacological mimetic of those effects. The 
hope is that these agents or interventions could be readily adopted by a large propor-
tion of the population, particularly those unable to lose weight and at high risk for 
cancer or other chronic diseases associated with obesity. Small-molecule inhibitors 
of IGF-1, antisense inhibitor approaches, anti-IGF-1 antibody therapies, and 
microRNA-based approaches are under development [ 104 ,  105 ]. In addition, a wide 
variety of natural agents with demonstrated cancer chemopreventive or chemothera-
peutic activity have recently been reported to inhibit the IGF-1 pathway [ 106 ]. 

 Pharmacological mTOR inhibitors have emerged as the lead candidates for CR 
mimetics. Rapamycin treatment extends lifespan and delays cancer in mice, provid-
ing additional support for mTOR as a target for mimicking the effects of CR [ 107 ]. 
We have shown that rapamycin or its analogue, RAD001 (everolimus), offsets the 
obesity-associated increase in growth of mammary or pancreatic tumors [ 33 ,  44 ]. 
Rapamycin is a potent inhibitor of the mTOR complex 1, but chronic rapamycin 
exposure has been linked in some studies to disruption of mTOR complex 2 signal-
ing, resulting in impaired glucose tolerance and insulin action [ 108 ]. Thus, while 
mTOR complex 1 inhibition appears to be a good strategy for mimicking many of 
the anticancer effects of CR, the search for agents that can do so without disrupting 
mTOR complex 2 signaling is ongoing. 

 Metformin, a biguanide commonly used to treat type 2 diabetes, is another prom-
ising CR mimetic that inhibits mTOR signaling and circumvents the side effects of 
hyperglycemia/insulin resistance that occur with rapamycin [ 109 ]. Metformin 
inhibits gluconeogenesis through indirect activation of AMPK in the liver and pos-
sibly cancer cells and may also exert direct effects on AMPK in cancer cells to 
decrease mTOR activation [ 109 ]. Administration of metformin suppresses tumor 
development and/or growth in multiple experimental models, including colon, 
mammary, and hematopoietic cancer models [ 109 ]. Epidemiological studies have 
suggested that type 2 diabetic patients treated with metformin have a lower cancer 
risk and mortality relative to diabetic patients receiving sulfonylurea, insulin or 
other therapies [ 110 – 112 ]. A randomized trial is now underway to evaluate the 
effect of metformin on breast cancer recurrence [ 113 ]. Phenformin, another bigua-
nide that has been abandoned for diabetes therapy due to its toxicity from lactic 
acidosis, is a more potent AMPK inhibitor than metformin and may also have some 
potential as a CR mimetic for cancer prevention at lower, nontoxic doses [ 109 ]. 

 Genetic induction of the Sir2/SIRT1 family of NAD-dependent deacetylases 
mimics some of the effects of CR [ 84 ,  86 ,  87 ,  96 ], although the role of SIRT1 in the 
anticancer effects of CR is unclear and may be minimal [ 98 ]. Sirtuin modulators, 
including resveratrol and its analogues, and pharmacologic modulators of SIRT1 
[ 97 ,  114 ] exert some anticancer activity, although much of this work has been lim-
ited to in vitro systems and awaits verifi cation in vivo.  
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14.6     Conclusions 

 As summarized in Fig.  14.1 , this review considers lessons learned from CR and 
cancer research to discuss promising molecular targets for cancer prevention, par-
ticularly for breaking the obesity-cancer link. Potential targets include components 
of energy-responsive growth factor and adipokine signaling pathways, infl amma-
tory pathways, vascular regulators, autophagy regulators, and the sirtuin pathway. 
Clearly, no single pathway accounts for all of the anticancer effects of CR. As with 
most chronic disease intervention strategies, combination approaches involving life-
style (including diet and physical activity) and pharmacological interventions that 
target multiple pathways (and that maximize effi cacy and minimize adverse effects) 
will likely be most successful for preventing cancer. Future studies aimed at further 
elucidating the mechanisms underlying the anticancer effects of CR and that exploit 
this mechanistic information to target CR-responsive pathways will facilitate the 
translation of CR research into effective cancer prevention strategies in humans.     
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    Abstract     Obesity is a rapidly increasing worldwide threat to health due to its 
 association with cardiovascular disease, diabetes, cancer, and a number of other 
medical conditions. Considerable efforts are underway to develop drugs for obesity 
prevention and treatment. Like tumors, white adipose tissue (WAT) overgrowing in 
obesity depends on functional blood vessels for its expansion and maintenance. 
Recent fi ndings indicate the apparent vasculogenic role of WAT-derived cells 
recruited by tumors. Based on these notions, endothelial and perivascular cell popu-
lations in WAT have been considered as potential therapy targets in the context of 
obesity and cancer. In this chapter, we discuss studies aimed at inactivation of WAT 
vasculature and evaluate it as a prospective approach to treating obesity and its 
potential implications for cancer and other diseases.  

     Obesity, defi ned as a body mass index (BMI) of 30 kg/m 2  or more, is a result of white 
adipose tissue (WAT) overgrowth [ 1 – 4 ]. Over the past few decades, profound changes 
in nutrition and lifestyle reaching epidemic proportion in most industrialized  countries 
have led to a sharp increase in the prevalence of obesity and its complications. 
Decreasing physical activity and increasing food accessibility has resulted in a severe 
alteration of the balance between intake and expenditure of energy. According to a 
recent report by the World Health Organization, there are >1 billion overweight adults 
worldwide, and at least 300 million of these individuals are clinically obese [ 5 ]. 
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15.1     Obesity as a Health Problem 

 More than 2,400 years ago, Hippocrates observed: “Sudden death is more common 
in those who are naturally fat than in the lean.” This astute observation has remained 
incompletely explained for many centuries to come. Obesity is associated with the 
metabolic syndrome, manifestations of which are low-grade infl ammation, dyslip-
idemia, and type-2 diabetes [ 6 ]. The risk of cardiovascular disease is highly elevated 
in obese individuals [ 7 ]. In addition, obesity complicates numerous other medical 
conditions [ 8 ]. Finally, over the past decade, the link between obesity and a number 
of cancers has been revealed [ 9 ,  10 ].    While originally colorectal and endometrial 
and breast cancers were identifi ed as obesity linked [ 11 ], recent reports have added 
pancreatic, kidney, and esophageal cancers to the list [ 12 ]. As more evidence link-
ing excess BMI and increased cancer risk/progression is accumulating, research is 
turning its focus to uncover the pathophysiology behind this correlation [ 10 ]. The 
underlying mechanisms discussed elsewhere in this book are complex and incom-
pletely understood [ 13 ]. Until now, it has been unclear if excess adipose tissue itself 
affects cancer progression or if this link is predominantly due to diet and lifestyle of 
obese individuals [ 14 ]. Recent animal studies show that the state of obesity can 
accelerate tumor growth irrespective of diet [ 15 ], which explains clinical observa-
tions [ 16 ]. Based on the increased progression of cancers surrounded by adipose 
tissue (e.g., prostate, breast, and uterine) in obese individuals, it has been proposed 
that adipose tissue has a direct effect on tumor growth [ 10 ]. An emerging body of 
evidence confi rms that this cross talk indeed takes place at several levels.  

15.2     Adipose Tissue as an Organ 

 In humans, subcutaneous WAT is present as layers between muscle and dermis, 
while intraperitoneal WAT is located around the gut, kidneys, and other internal 
organs [ 17 ]. Accumulating evidence indicates that different depots of WAT in the 
body are regulated independently and have different implications in disease. 
Specifi cally, it is overgrowth of intra-abdominal WAT, which encompasses omental 
and mesenteric (visceral), retroperitoneal, and perigonadal depots, that is associated 
with infl ammation and the metabolic syndrome. Abdominal adiposity is believed to 
predominantly account for the poor prognosis of obese patients with cancer and 
cardiovascular disease. 

 The ability of multicellular organisms to store and release energy on demand has 
been crucial for their survival throughout evolution. In mammals, this function is 
primarily executed by adipocytes, the large cells of WAT that store fatty acids esteri-
fi ed to triglycerides in lipid droplets. Effi cient management of energy in the body is 
regulated by intricate communication between multiple organs [ 18 ]. In response to 
signals from the central nervous system (CNS) and the digestive tract, the stored 
lipids can become mobilized, metabolized, and either released as fatty acids or used 
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to increment thermogenesis by oxidation [ 19 ,  20 ]. As opposed to WAT, brown adipose 
tissue (BAT) is responsible for energy dissipation in the form of heat [ 21 ,  22 ]. In 
humans, BAT is clearly present and functional in newborns, whereas adults had 
been thought to lack BAT until recently. However, recent studies have demonstrated 
that adults also have BAT, although it is conditionally functional [ 23 ]. 

 Adipose tissue is not merely an organ designed to manage energy. It is wired with 
the immune, cardiovascular, and reproductive systems through the exchange of cells 
and soluble factors that signal in endocrine and paracrine ways [ 24 ,  25 ]. Mature 
adipocytes synthesize and secrete numerous enzymes, growth factors, cytokines, 
and hormones that are involved in overall energy homeostasis [ 26 ]. Collectively, 
factors secreted by cells of adipose tissue are called adipokines [ 27 ]. These mole-
cules secreted by adipocytes and other cells of adipose tissue play important roles 
not only in adipogenesis but also in diverse physiological processes and metabolic 
pathways in the body including lipid homeostasis and modulation of infl ammatory 
responses. Collectively, adipokines modulate a range of global physiological 
responses including energy balance, infl ammation, angiogenesis (blood vessel for-
mation), hemostasis (regulation of blood coagulation), and blood pressure [ 28 ].  

15.3     Adipose Tissue Composition 

 Adipose tissue development and expansion are controlled by the concerted action of 
extracellular and intracellular signals [ 4 ,  29 ]. Environmental, genetic, and epigene-
tic stimuli regulate preadipocyte differentiation into lipid-laden adipocytes through 
a process called adipogenesis (Fig.  15.1 ). Adipogenic differentiation takes place 
around the neurovascular bundles. In addition to adipocytes, WAT is composed of 
other cell types, interactions among which orchestrate obesity progression [ 30 ]. 
As shown in Fig.  15.1 , these populations include stromal cells, vascular endothelial 
cells (EC), perivascular cells (pericytes/mural cells/adventitial cells), and infi ltrat-
ing blood cells including monocytes/macrophages, lymphocytes, and mast cells 
[ 17 ,  31 ]. Blood vessels are essential for adipose tissue growth and maintenance as 
the route for delivery of oxygen, nutrients, and factors modulating differentiation 
[ 32 ]. Another important function of blood vasculature in adipose tissue is serving as 
a niche for progenitor cells that differentiate into adipocytes [ 33 ,  34 ]. Expansion of 
WAT in obesity results not only from adipocyte hypertrophy (increase in cell size) 
but also from hyperplasia (increase in cell number), which relies on progenitor cell 
proliferation [ 35 ]. Adipose progenitors have originally been identifi ed in the stro-
mal/vascular fraction (SVF) of WAT and termed adipose stromal cells (ASC) [ 36 ]. 
Recently it has become apparent that the ASC population appears to contain several 
distinct subpopulations with different differentiation potentials [ 37 ,  38 ].

   The origins of vascular cells in adipose tissue are not completely understood. 
Adipose tissue is highly vascularized: each adipocyte is encircled by capillaries. 
Angiogenesis, the process of blood vessel sprouting from existing vasculature well 
characterized in tumors [ 39 ], also has a crucial role in WAT [ 40 ]. In the past few 
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years, it has become apparent that recruitment of circulating vasculogenic progenitors 
into blood vessels may also play an important role in adult vascularization [ 41 ,  42 ]. 
Studies in cancer models have demonstrated that endothelial progenitor cells (EPCs) 
derived from the bone marrow contribute to neovasculature [ 41 ,  43 ]. In addition, a 
small percentage of WAT endothelium appears to be derived from transdifferentiat-
ing adipocyte progenitors [ 44 ]. Therefore, vascular cells of WAT appear to be 
derived from distinct origins with individual endothelial cell subpopulations distinct 
in their properties. An important component of adipose vasculature is comprised by 
adipose progenitor cells residing in the perivascular cell compartment of the blood 
vessel wall [ 33 ,  34 ]. 

 ASC comprise the majority of cells in the SVF and display multipotency and 
self-renewal capacity comparable to those reported for mesenchymal stromal cells 
(MSC) originally characterized in the bone marrow [ 45 ]. Mesenchymal progeni-
tors currently occupy the central arena of stem cell biology and regenerative medi-
cine [ 36 ,  46 ]. The ability of MSC to differentiate into cells of mesenchymal lineage, 
such as adipocytes, osteocytes, and chondrocytes, has coined the term “mesenchy-
mal stem cells” [ 47 ]. Although there are reports suggesting that adipocytes can be 
derived from hematopoietic stem cells [ 48 ], there is predominant evidence that 
bone marrow-derived precursors contribute only to endothelial cells and infi ltrat-
ing hematopoietic cells but not to mesenchymal stroma and adipocytes [ 49 ,  50 ]. 
The transition from the adipose progenitors to preadipocytes is still poorly defi ned, 
and understanding of intercellular interactions within WAT is incomplete despite 
recent advancements [ 51 ,  52 ]. In addition to serving as adipocyte progenitors, ASC 
cooperate with the endothelium and support vascularization [ 33 ,  34 ]. Recent stud-
ies show that ASC are expanded in obesity [ 15 ]. ASC promote endothelial cell 

  Fig. 15.1    Adipose tissue expansion in obesity. Development of adipose tissue involves proliferation 
and differentiation of perivascular adipose progenitors residing within the population of adipose 
stromal cells (ASC) into preadipocytes and fi nally into lipid-laden adipocytes. Adipogenesis and 
hypertrophic adipocyte growth are coordinated with angiogenesis and recruitment of leukocytes 
that are responsible for infl ammation onset. Surface markers useful for identifi cation of adipose 
cell populations are indicated       

 

A. Salameh and M.G. Kolonin



385

proliferation and blood vessel formation at least in part via trophic effects of 
secreted vascular endothelial growth factor (VEGF) and other angiogenic mole-
cules [ 33 ,  51 ,  53 ]. The molecular mechanisms of interactions between adipose EC, 
ASC, and adipocytes that dictate the commitment of the progenitor cells toward 
differentiation or mobilization are being investigated [ 54 ].  

15.4     Adipose Tissue and Cancer 

 Composition and function of WAT has pointed to the mechanisms through which 
obesity may be linked with cancer [ 55 ]. Infl ammatory and endocrine signaling by 
adipose tissue-derived molecules (adipokines) has been proposed to account for 
cancer promotion in obesity [ 10 ]. Results from animal models, as well as clinical 
associations, support this hypothesis [ 28 ,  56 ]. In addition, recent studies have shown 
that cells from adipose tissue are capable of traffi cking to tumors, thus enabling 
paracrine action of adipokines from within the tumor microenvironment [ 57 ,  58 ]. 
Investigation of the molecular pathways through which adipose cells traffi c to 
tumors and execute their functions is underway [ 59 ]. Extracellular matrix (ECM) 
modulation, immune system suppression, and direct effects on malignant cell sur-
vival and proliferation have been pointed to as potential activities of systemic and 
locally produced adipokines within the tumor [ 55 ]. However, accumulating evi-
dence indicates that cells from WAT promote tumor growth to a large extent through 
supporting tumor vasculature [ 57 ,  58 ]. The ability of WAT-derived cells to stimulate 
tumor neovascularization has been supported by a number of recent studies [ 58 – 60 ]. 
When transplanted into host animals, adipose endothelial cells can directly incorpo-
rate into the lumen of tumor vasculature, whereas ASC acquire perivascular local-
ization in tumors [ 58 ]. Recent comparison of circulating cell populations in lean and 
obese mice revealed that cancer and obesity result in ASC exodus into the peripheral 
blood [ 15 ]. Clinical studies also demonstrate association of obesity and cancer with 
increased circulation of endothelial cells and ASC in patients, suggesting that 
endogenous WAT serves as a source of cells contributing to tumor vasculature [ 61 – 63 ]. 
The link between cancer relapse and lipotransfer procedures is consistent with this 
conclusion [ 64 ]. Recent studies by our group have provided evidence that ASC 
 traffi c from endogenous WAT to tumors where they become incorporated into blood 
vessels as pericytes [ 15 ]. Other groups have confi rmed our fi ndings [ 60 ,  65 ,  66 ]. 
In addition, we found that, upon recruitment by tumors, ASC can differentiate into 
adipocytes in an obesity-dependent manner, thus identifying an origin of intratu-
moral adipocytes previously implicated in cancer progression [ 67 – 69 ]. Extending 
this evidence, we found that increased tumor vascular patency is associated with 
elevated proliferation of neighboring malignant cells. Taken together, these fi ndings 
indicate that cells recruited from endogenous adipose tissue can be recruited by 
tumors to potentiate the supportive properties of the tumor microenvironment. 
This previously overlooked phenomenon appears to at least partially account for the 
association between obesity and cancer.  
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15.5     Approaches to Obesity Treatment 

 Physical activity and diet are the logical measures against obesity; however, modern 
lifestyle complicates their implementation. Surgical interventions to reduce adipose 
tissue mass, such as gastric banding, are effective and prevent the risk of obesity- 
associated diseases [ 70 ]. However these highly invasive practices are typically 
applied to severe obesity cases. Pharmacological treatments for obesity available 
today are inadequate. Those approved by the FDA achieve ~5 % weight loss per year 
even when combined with diet- and exercise-based behavioral adjustments [ 71 ,  72 ]. 
The majority of anti-obesity agents tested clinically target the CNS to alter neuronal 
signals regulating appetite and the gastrointestinal tract to alter nutrient adsorption. 
There are two new recently approved drugs, Belviq and Qsymia, that act through the 
brain to promote satiety; however, their marginal effi cacy and concerns over their 
safety limit enthusiasm [ 73 ]. Another drug approved in conjunction with reduced fat 
diet is Orlistat (Alli, Xenical), which inhibits gastrointestinal lipases and hence 
blocks lipid digestion. Side effects, such as incontinence and reduced vitamin 
absorption, have limited its popularity. Gut hormones, such as glucagon-like peptide 
and ghrelin, provide hope as prospective anti-obesity biologics [ 74 ]; however, the 
need for new approaches to obesity prevention and treatment is clearly pressing. 

 Directly modulating the content or function of adipose tissue is a potential alter-
native approach to treat obesity and the related diseases. A number of groups have 
focused on developing anti-obesity therapies through targeting the mature adipo-
cytes and modulation of their differentiation [ 75 ]. An attractive idea related to this 
pursuit is converting energy-storing WAT to energy-burning BAT. In addition to 
brown adipocytes derived from common skeletal muscle progenitors, brown-like 
(beige or “brite”) adipocytes can arise from white adipocyte progenitors (ASC) both 
in cell culture and in vivo [ 76 ]. This conversion is driven by sympathetic nervous 
system stimuli, such as cold temperature, and signal transduction cascades triggered 
by activation of β3-adrenergic receptors in WAT. In mice, expansion of these brown 
adipocytes within WAT can lead to virtually all adipose depots becoming BAT-like 
at the expense of WAT [ 77 ]. Targeting adipokines, the bioactive products of adipo-
cytes, has also been pursued as a prospective therapeutic approach [ 18 ]. However, 
current pharmaceutical approaches to adipose tissue targeting remain at preclinical 
stages. Thus, while many potential adipocyte targets have been identifi ed, they are 
yet to be translated into drugs.  

15.6     Adipose Vasculature Targeting as a New Approach 
to Obesity Treatment 

 Blood vessels supply oxygen, nutrients, growth factors, and progenitor cells to all 
organs. Inhibition of neovascularization has arisen as a powerful approach to con-
trolling tissue expansion. Over the past decade, vasculature targeting as a cancer 
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therapy has evolved resulting in clinically approved drugs that have considerably 
improved the clinical outcome [ 78 ,  79 ]. Like tumors, WAT is a highly dynamic 
organ, growth and maintenance of which requires continuous remodeling of the 
capillary networks [ 32 ]. Emerging evidence shows that modulators of angiogenesis 
affect the expansion of WAT mass by regulating the development of adipose vascu-
lature [ 31 ]. Pharmaceutical manipulation of adipose tissue neovascularization by 
angiogenic stimulators and inhibitors might therefore offer novel therapeutic options 
for the treatment of obesity and related metabolic disorders. Further, recent advances 
in the development of agents aimed to disrupt the mature vascular components 
(namely, endothelial and perivascular) represent an alternative direction in anti- 
obesity drug design. Table  15.1  summarizes studies reporting changes in WAT 

     Table 15.1    Anti-obesity vascular-targeting agents in animal models   

 Molecule  Targeted tissue  Experimental model 
 Body 
mass  References    

 VEGF  Angiogenic 
vessels 

 Inhibitor administration  ↓  [ 30 ,  88 ] 
 Overexpression  ↓ 

 VEGFR  Angiogenic 
vessels 

 Inhibitor administration  ↓  [ 85 ] 

 PIGF  Angiogenic 
vessels 

 Inhibitor administration  ↓  [ 90 ] 
 Genetic defi ciency  ↑ 

 SPARC  Angiogenic 
vessels 

 Genetic defi ciency  ↑  [ 92 ] 

 Leptin  Angiogenic 
vessels 

 Administration  ↓  [ 96 ] 
 Genetic defi ciency  ↑  [ 97 ] 

 Plasminogen  Angiogenic 
vessels 

 Administration  ↓  [ 90 ] 
 [ 138 ] 

 Tiplaxtinin  Genetic defi ciency  ↑  [ 139 ] 
 Angiostatin  Angiogenic 

vessels 
 Administration  ↓  [ 81 ] 

 Endostatin  Angiogenic 
vessels 

 Administration  ↓  [ 81 ] 

 TNP-470  Angiogenic 
vessels 

 Administration  ↓  [ 81 ] 
 CKD-732 
 MMP inhibitors: Galardin, 

Bay-129566, Ro20-2653 
 Angiogenic 

vessels 
 Inhibitor administration  ↓  [ 40 ,  140 ,  141 ] 

 Thalidomide  Angiogenic 
vessels 

 Administration  ↓  [ 81 ] 

 Adiponectin  Angiogenic 
vessels 

 Administration  ↓  [ 83 ] 
 Genetic defi ciency  ↑ 

 Curcumin (polyphenol)  Angiogenic 
vessels 

 Administration  ↓  [ 104 ] 

 Ob-x and fumagillin  Angiogenic 
vessels 

 Administration  ↓  [ 101 ,  102 ] 

 EGCG (catechin in tea)  Angiogenic 
vessels 

 Administration  ↓  [ 40 ,  142 ] 

 Adipotide  Mature vessels  Administration  ↓  [ 117 ] 

   EGCG  epigallocatechin-3-gallate;  MMPs  metalloproteinases;  PLGF  placental growth factor; 
 VEGFR  vascular endothelial growth factor receptor  
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vasculature, most of which have been performed in animal models. A detailed 
 discussion of some of the individual molecular mechanisms probed in these publi-
cations is provided below.

15.6.1       Targeting Immature WAT Vasculature 
with Angiogenesis Inhibitors 

 Recently, it has been appreciated that vasculature is critical for WAT development 
as the gatekeeper of blood access to adipocytes [ 4 ,  30 ,  80 ]. The pioneering studies 
from the Folkman group have demonstrated that inhibition of angiogenesis has the 
potential to prevent not only tumor growth but also obesity onset [ 39 ]. Both angio-
genesis and vasculogenesis (progenitor cell recruitment from remote organs) appear 
to play an important role in WAT vascularization. Because WAT growth-underlying 
obesity proceeds into adulthood, it has been proposed that adipogenesis and angio-
genesis feed onto each other in obesity [ 81 ,  82 ]. VEGFs and their receptors 
(VEGFRs) comprise the system highly active in adipose tissue [ 80 ,  83 – 86 ]. 
VEGF-A is a major angiogenic factor that controls proliferation, migration, and 
permeability of the endothelium [ 53 ,  87 ]. Administration of anti-VEGF antibodies 
inhibiting adipose angiogenesis affects adipocyte differentiation and systemic lipid 
metabolism, indicating VEGF as a key factor linking the interplay between angio-
genesis and adipogenesis in WAT with physiological responses in the rest of the 
body [ 30 ,  88 ]. Interestingly, a recent report from the Scherer group shows that con-
sequences of VEGF modulation in WAT are context dependent, highlighting the 
complexity of adipose tissue biology and emphasizing the point that broad implica-
tions of WAT vasculature targeting are yet to be fully understood [ 88 ]. 

 A close recent connection between VEGF-B and endothelial fatty acid uptake 
[ 89 ] also indicates the direct dependence of adipogenesis on angiogenesis. 

 Placental growth factor (PlGF), a homolog of VEGF, enhances angiogenesis in 
pathological conditions. Loss of PlGF impairs angiogenesis in the ischemic retina, 
limb, and heart, in wounded skin, and in tumors, without affecting physiological 
angiogenesis. Administration of a PlGF-neutralizing monoclonal antibody inhib-
its angiogenesis and fat pad formation, indicating its function in WAT [ 90 ]. 
Another component of the system, matricellular protein SPARC (secreted protein, 
acidic, and rich in cysteine), also known as osteonectin, binds to VEGF-A, impairs 
VEGFR-1 activation, and inhibits FGF-2, resulting in inhibition of endothelial cell 
proliferation. SPARC is produced by adipose tissue and its expression is upregu-
lated in obesity [ 91 ]. SPARC-defi cient mice on high-fat diet develop larger fat 
pads as compared to wild-type mice [ 92 ]. The apelin/APJ signaling system [ 93 ] 
and angiopoietins along with their receptors, Tie1 and Tie2, are likely to play a 
role in WAT angiogenesis [ 94 ]. Many other components directly or indirectly reg-
ulating angiogenesis have been identifi ed in adipose tissue. These include leptin, 
neuropilin- 1, fi broblast growth factors (FGF-2), thrombospondin-1, adiponectin, 
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tissue factor, tumor necrosis factor (TNF-α), transforming growth factor beta 
(TGF-β), insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), 
and various components of the ECM [ 40 ,  95 ]. Leptin, adiponectin, and ECM-
related mechanisms have drawn particular attention in respect to the link between 
obesity and cancer. 

 Leptin is a hormone/cytokine/growth factor secreted by adipocytes, and its inac-
tivation (in ob/ob mice) or loss of its receptor (in db/db mice) causes morbid obesity 
due to the role of this system in appetite control [ 96 ]. Leptin can, however, induce 
angiogenesis, suggesting that it might contribute positively to the development of 
adipose tissue [ 97 ]. In genetically obese human individuals carrying homozygous 
mutations in the leptin gene, administration of recombinant leptin successfully 
reduces body weight; however, the majority of obese humans have unusually high 
levels of circulating leptin and are leptin resistant [ 71 ,  98 ]. The potential implication 
of the leptin role in angiogenesis, which could contribute to obesity in these patients, 
warrants further investigation. Interestingly, while obese cancer patients have 
increased levels of leptin in circulation, the opposite trend is observed for adiponec-
tin [ 56 ]. One of the functions proposed for adiponectin is inhibition of angiogenesis, 
which may be implicated in both obesity and cancer [ 99 ]. However, both antiangio-
genic and pro-angiogenic functions have been reported for adiponectin. 

 Angiogenesis is mechanistically linked with ECM remodeling [ 100 ]. Proteolysis 
is required not only for the expansion of the adipocyte basement membrane in 
hypertrophic WAT, but also for cell migration during the development of blood ves-
sels and peripheral nerves in the growing adipose tissue. Thus, both adipogenesis 
and angiogenesis require proteolytic activity, which is mainly regulated via the 
plasminogen/plasmin (fi brinolytic) and matrix metalloproteinase (MMP) systems. 
Recently, some evidence has emerged that proteins of the ADAM (A Disintegrin 
And Metalloproteinase) and ADAMTS (ADAM with TSP motif) families may also 
be implicated. The named proteinases are collectively able to cleave a wide variety 
of substrates, including ECM components, other proteinases and their inhibitors, 
and matrix receptors, thus fi ne-tuning adipose tissue remodeling. MMPs and plas-
min can also release, activate, or degrade several growth factors and cytokines that 
play major roles in angiogenesis and are implicated in obesity. Several nutritionally 
induced obesity models in transgenic mice have been used to study the role of the 
fi brinolytic system in the development of obesity. Mice defi cient in plasminogen, 
the substrate for both plasminogen activators, showed reduced fat accumulation 
associated with reduced differentiation of progenitor cells [ 101 ]. Indeed, tiplax-
tinin, designed as a synthetic inhibitor of PAI-1, reduces body weight in WT mice 
kept on HFD [ 90 ]. 

 A number of preclinical studies using angiogenesis inhibitors for obesity inter-
vention, with many reviewed elsewhere [ 40 ], are summarized in Table  15.1 . In the 
pioneering study, treatment with angiostatin (kringle 1–4 domains of plasminogen), 
endostatin (a C-terminal fragment of collagen XVIII), TNP-470, Bay-129566 (a 
MMP inhibitor), and thalidomide was tested in mouse models. It has been demon-
strated that inhibition of angiogenesis is potent enough to impede WAT expansion 
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even in genetically obese leptin-defi cient mice [ 81 ]. In addition, agents blocking 
VEGFR-2 have been shown to prevent the development of obesity in genetic mouse 
models and studies based on high-fat diets [ 85 ]. Inhibition of angiogenesis in the 
growing adipose tissue associated with a reduction in vascular density and endothe-
lial cell apoptosis caused a decrease in the body weight of obese mice [ 81 ,  85 ,  102 , 
 103 ]. Although agents such as TNP-470 and its analog CKD-732 are considered to 
be selective angiogenesis inhibitors, many have off-target effects such as food aver-
sion, which may partially account for weight loss [ 31 ]. Therefore, it remains to be 
determined to which extent WAT is affected through specifi c targeting of endothe-
lial cells, as opposed to affecting systemic energy balance. 

 A number of recent reports confi rm the initial observation that disrupting WAT 
neovascularization can prevent the onset of obesity in both genetic and diet-induced 
obesity models (Table  15.1 ). For example, curcumin, the major polyphenol in tur-
meric spice, has been shown to suppress WAT accumulation through its effects on 
angiogenesis and adipogenesis [ 104 ]. Similar results have been obtained with other 
herbal and synthetic antiangiogenic compounds, such as Ob-x, EGCG (catechin in 
tea), and fumagillin [ 105 ,  106 ]. However, for most studies, it remains questionable 
to which extent the effect of these agents directly on the vasculature, as opposed to 
their effect on other cells in WAT or other organs, affects food intake and adipose 
tissue levels. Notably, while mice reduce their body weight while on agents such as 
TNP-470, they regain weight when off schedule [ 81 ]. These treatment-regulated 
cycles can occur several times without causing resistance or other obvious side 
effects. These fi ndings suggest that antiangiogenic agents can be used repeatedly for 
the treatment of obesity without encountering drug resistance, which has been 
observed for cancer [ 107 ]. 

 It should indeed be kept in mind that the angiogenic circuits involved in adipose 
tissue development also are critical to many other biological processes. Although 
animal treatment with antiangiogenic agents has consistently resulted in inhibition 
of WAT accumulation, there is much preclinical work to be done before this 
approach can be considered clinically feasible. Although generally mild, adverse 
effects of angiogenesis inhibition have been reported in clinical trials [ 108 ]. Off- 
target effects of antiangiogenesis drugs illustrate the fact that neovascularization 
does occur, although at levels much lower than in development, outside pathological 
tissues in adulthood [ 39 ]. New blood vessel formation generally accompanies tissue 
remodeling that takes place either upon injury or during certain normal physiologi-
cal processes. For example, because VEGF/VEGFR signaling is not WAT specifi c, 
its inhibition is expected to cause systemic effects. Indeed, VEGF inhibition can 
result in off-site proteinuria, hypertension, and internal bleeding [ 109 ]. Moreover, 
studies in mouse models show that chronic blockade of certain endothelial path-
ways can backfi re with pathological activation of endothelial cells, perturbed organ 
physiology, and even vascular tumorigenesis, further emphasizing safety concerns 
[ 110 ]. Little is known regarding the signaling between the angiogenic components 
of adipose tissues and the CNS as well as other organs [ 111 ,  112 ]. Also, because 
cell death in WAT results in the recruitment of leukocytes resolving the tissue dam-
age [ 113 ], the resulting local and systemic activation in secretion of infl ammatory 
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cell-derived cytokines, such as TNF-α and several interleukins (e.g., IL-6 and IL-8), 
may have systemic implications. A better understanding of the WAT targeting con-
sequences is instrumental in the development of therapeutic approaches.  

15.6.2     Targeting “Mature” WAT Vasculature 

 Studies on tumor models illustrate the notion that vascular disruption can serve as an 
effective complementary tool to constrain tissue expansion [ 114 ,  115 ]. It has been pro-
posed that the mature vasculature of WAT could be similarly targeted and that depleting 
the supply of nutrients and oxygen essential for the maintenance of adipocytes could 
result in obesity reversal after its onset. Based on the notion that tumor vasculature fea-
tures differential expression of markers [ 116 ], our group had proposed the existence of 
cell surface molecules selectively upregulated in adult WAT blood vessels that could be 
therapeutically targeted in pathologically expanded WAT. In a proof-of-principle study 
aiming to identify and use WAT vascular targets for experimental obesity therapy, we 
screened a combinatorial library in mice for peptides systemically homing to WAT. As 
a result, we isolated a peptide with the sequence CKGGRAKDC that selectively accu-
mulated in WAT [ 117 ]. The uptake of CKGGRAKDC by adipose endothelial cells sug-
gested that the internalizing receptor could serve as a target of therapies directed to WAT. 
By using WAT membrane protein extracts, we biochemically isolated the vascular 
receptor of the CKGGRAKDC peptide and identifi ed it as prohibitin (Phb). Follow-up 
studies have validated the specifi city of the CKGGRAKDC peptide for Phb for WAT 
endothelium cells using nanocarriers [ 118 ]. We used a mouse diet-induced obesity 
model to test in vivo the capacity of the CKGGRAKDC peptide to deliver cytotoxic 
(proapoptotic) peptide KLAKLAKKLAKLAK to WAT. Daily subcutaneous injections 
of the CKGGRAKDC-KLAKLAKKLAKLAK fusion peptide (Adipotide) caused 
rapid obesity reversal [ 117 ]. Another study reproduced these results in the rat model 
[ 111 ] and suggested that reduced food consumption in WAT-targeted animals explains 
the lack of apparent lipodystrophic effects. These observations uncover a previously 
unappreciated cross talk between the status of WAT vasculature and central regulation 
of food intake [ 111 ]. Recently, Adipotide, which was validated in three monkey models 
[ 119 ], has been shown to have antidiabetic effects [ 120 ], and the fi rst-in-human 
Adipotide clinical trial is ongoing. 

 In follow-up studies, we identifi ed annexin A2 (annexin II, Anx2) as a Phb-
binding protein mimicked by the CKGGRAKDC peptide [ 121 ]. Consistent with 
Phb/Anx2 interaction in WAT endothelium, Anx2 has been previously shown to 
have a pro-angiogenic function [ 122 ]. In addition, a function of Phb in controlling 
adipogenesis has been uncovered [ 123 ]. Our recent report shows that Phb and Anx2 
form a complex in lipid rafts isolated from the cell membranes of WAT cells and 
identify the domains mediating Phb/Anx2 interaction [ 121 ]. Currently, our group is 
characterizing the function of Phb/Anx2 in adipose tissue in order to better establish 
this complex as a prospective anti-obesity therapy target. Delivery of other thera-
peutic agents to this molecular “zip code” is also being pursued [ 118 ].  
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15.6.3     Targeting Perivascular Adipose Cells 

 Despite the short-term effectiveness in experimental animal models, obesity relapses 
due to WAT regrowth upon the cessation of treatment with endothelium-targeting 
agents [ 117 ]. Although proliferating endothelial cells serve as building blocks for 
growing vessels, this process relies on the trophic contribution and mechanical sup-
port from stromal cells [ 33 ,  54 ]. Indeed, while endothelial cells and adipocytes 
undergo cell death under ischemic conditions, ASC are resistant to hypoxia [ 124 ]. 
Therefore, resistance to vascular-targeting agents appears to result from the pro- 
angiogenic action of surviving ASC that quickly rewire the tissue. We propose that 
in the future, ASC targeting in parallel with endothelial cell targeting in WAT might 
provide an approach to long-term control of WAT mass (Fig.  15.2 ). Accumulating 
body of evidence indicates that WAT contributes to the pool of progenitor cells 
mobilized in obesity and cancer [ 62 ,  63 ] and serving as perivascular cells in tumors 
[ 15 ,  58 ]. Therefore, targeting WAT-derived cells in circulation or upon homing to 
cancer sites could offer a new direct approach to complementary cancer therapy.

   Studies from our research team have contributed to the understanding of how 
blood vessel formation might be coordinated with ASC differentiation and migration 
by interaction between SPARC and β1 integrin [ 125 ]. SPARC-integrin binding also 
plays a role in pericyte recruitment during cancer progression [ 126 ]. Approaches to 
SPARC targeting could, therefore, have a two-pronged effect. Another potentially 
interesting target is aminopeptidase N (CD13), which plays a role in tumor angio-
genesis and is also expressed by both endothelial and stromal adipose [ 127 ]. Recently, 
by combinatorial phage display approaches [ 54 ,  128 ,  129 ], a new decorin isoform 
(delta-DCN) as marker of ASC with progenitor capacity and a peptide specifi cally 

  Fig. 15.2    Vascular targeting of adipose tissue as an anti-obesity approach. Targeted depletion of 
adipose endothelium, the integral component of the vasculature delivering nutrients and oxygen to 
adipocytes, results in quick tissue resorption in rodent models. Cytoablation of pro-angiogenic 
 adipocyte progenitors (ASC), in parallel with the endothelium, could represent a potential complimen-
tary approach to prevention of adipose tissue regrowth upon discontinuation of anti-vascular therapy       
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binding to delta-DCN have been identifi ed [ 31 ]. Derivatives of this peptide could 
potentially be developed for directed delivery of therapy depleting ASC serving as 
perivascular adipocyte progenitors in WAT and possibly directly in tumors. 
Approaches to targeting mature adipocytes are also being developed [ 130 ].   

15.7     Unresolved Issues in Adipose Vascular Targeting 

 It remains to be determined whether targeting individual adipose tissue depots will 
be possible and if sparing specifi c depots may be benefi cial. Visceral WAT is sus-
ceptible to infl ammation in severely obese individuals as a result of insuffi cient 
oxygenation of grossly enlarged adipocytes, which is the underlying cause of lipo-
toxicity and the associated pathological consequences [ 131 ]. By contrast, subcuta-
neous WAT, typically remaining suffi ciently vascularized, has the potential to 
benefi t metabolism by improving glucose homeostasis and increasing energy con-
sumption [ 132 ]. The content and properties of cells differ between visceral and 
subcutaneous WAT. A recent comparison of angiogenesis occurring in human vis-
ceral and subcutaneous WAT did not detect signifi cant differences [ 95 ]; however, 
separately assessing the physiological consequences of targeting vasculature in dis-
tinct depots might be important. Although Adipotide appears to not discriminate 
between WAT depots [ 117 ], future studies may uncover agents useful for targeting 
of vasculature selectively in a WAT depot of interest. Another important issue is the 
potential importance of vessel types affected by treatment. For example, at this 
point it is unclear whether Adipotide has a preference toward arterial or venous 
vasculature and whether vessel size is a predeterminant of peptide binding and 
effect. In addition, the unclear role of lymphatic vasculature in WAT has to be taken 
into consideration. Clearly, WAT contains well-vascularized lymph nodes; however, 
lymphatic capillaries in WAT have not been reported [ 133 ]. 

 It is perhaps even more important to foresee the potential effects of targeted 
therapies on BAT vasculature. A number of results from the rodent models indicate 
that BAT has a protective effect against the pathological consequences of obesity. 
The signifi cance of discovering BAT in adults [ 134 ] lies in possible new approaches 
to treatment of obesity and of the associated disorders [ 52 ]. Because angiogenesis 
accompanies BAT formation [ 135 ], inhibiting adipose vascularization in a nonspe-
cifi c manner is expected to have a negative impact on BAT and, therefore, on energy 
expenditure, potentially defeating the purpose of the treatment. Thus, development 
of approaches to targeting specifi cally blood vessels of WAT might be critical. The 
apparent dependence of adipocyte physiology on the status of the vasculature raises 
the possibility that vascular-targeting agents could be designed to convert WAT into 
BAT, rather than destroying tissue altogether, as a more physiological and safer anti- 
obesity treatment [ 31 ]. Development of pharmacological approaches to activate 
proliferation, vascularization, and/or metabolism of the existing residual BAT could, 
in theory, tilt the WAT/BAT balance and be used to treat obesity.  
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15.8     Adipose Vascular Targeting in Cancer Patients? 

 According to some studies, reduction of WAT mass has protective effects against 
cancer and other obesity-linked diseases [ 70 ], although this has not been consis-
tently confi rmed [ 9 ]. It is also possible that reduction of adiposity will benefi t obese 
patients who have been diagnosed with cancer. As new vascular-targeting agents are 
characterized, new options to treat obesity and cancer become available. However, 
since the composition and function of adipose tissue are complex and multifactorial, 
it is questionable whether every anti-obesity strategy will benefi t patients [ 8 ]. Future 
therapeutic strategies must take into account the biological role of adipose tissue 
and the well-described pathologies associated with its defi ciency [ 136 ,  137 ]. 
Specifi cally, the risk of lipotoxicity is noteworthy. WAT lipid storage defects can 
lead to increased circulating fatty acids that become ectopically deposited in mus-
cle, liver, and other tissues, leading to insulin resistance and metabolic disease, as 
seen in genetic or pharmacologically induced lipodystrophies [ 31 ]. Therefore, 
aggressive therapies directly or indirectly affecting adipocytes, in the absence of 
decreased caloric intake, could result in lipotoxicity, which also applies to vascular-
targeting approaches. Lack of apparent steatosis in response to the Adipotide is 
likely due to decreased food consumption and the metronomic regimen of the 
reported treatments [ 117 ]. The extent to which the anorexigenic effects of this and 
other experimental compounds targeted at vasculature are responsible for weight 
loss is not easy to assess. But it is certain that antiangiogenesis drugs, to be used for 
amelioration of obesity without pathological consequences, must be accompanied 
by concomitant reduction in food intake. The fi ne balance between WAT and BAT 
is another important issue to take into consideration in designing vascular-targeting 
therapies. 

 It should be noted that adipose tissue targeting might not be an ideal option in 
particular for cancer patients [ 8 ]. Patients undergoing conventional cancer therapies, 
with chemotherapy or radiotherapy being the most common, tend to experience nau-
sea, upset stomach, and loss of appetite, which results in nutrient deprivation and 
body weakening. Therefore, the potential adverse side effects of future anti- obesity 
drugs are a serious issue for cancer patients. An additional concern is the possibility 
of WAT cell mobilization as a result of certain approaches to weight loss and the 
hijacking of these cells by tumors. For example, ablation of adipose endothelium 
and the resulting WAT resorption could represent the setting when intact ASC and 
infi ltrating macrophages become “homeless” and thereby encouraged to execute 
their trophic functions as components of tumor microenvironment. Although purely 
speculative at this point, these potential pitfalls are to be tested in animal models.  

15.9     Summary 

 Systemic deregulation of angiogenesis is a hallmark of obesity-associated pathologies 
including cardiovascular disease, diabetes, and cancer. Therefore, it is possible that 
targeting neovasculature not only in WAT but also at other sites of ectopic 

A. Salameh and M.G. Kolonin



395

angiogenesis may have a combined therapeutic benefi t. Considering the body of 
evidence demonstrating a link between obesity and cancer, it is clear that new 
approaches to modulate WAT content and activity could be benefi cial for patients. 
There is an apparent need for noninvasive treatment of obesity compatible with the 
health status of cancer patients. There may be a big advantage to minimizing the 
effects of anti-obesity treatment outside of WAT in order to prevent adverse effects 
on CNS and gut physiology. New obesity therapeutic prototypes that enable WAT- 
specifi c targeting hold a potential promise. However, recent fi ndings indicate that 
systemic and even WAT-specifi c inhibition of vascular function could be dangerous. 
Therefore, careful analysis of preclinical models will be necessary to establish 
whether vascular targeting does indeed represent a viable approach for the treatment 
of obesity, in particular in the cancer setting. As the fi eld of vascular targeting and 
its application to obesity and cancer treatment is evolving, a number of questions 
remain to be answered. Continued efforts in unraveling the mechanisms through 
which obesity supports cancer development and progression might open other new 
avenues for therapy.     

   References 

    1.    Kras KM et al (1999) Adipocyte development is dependent upon stem cell recruitment and 
proliferation of preadipocytes. Obes Res 7(5):491–497  

   2.    Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin 
Invest 121(6):2094–2101  

   3.    Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 
149(3):942–949  

      4.    Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose 
homeostasis. Nature 444(7121):847–853  

    5.    Wisse BE, Kim F, Schwartz MW (2007) Physiology. An integrative view of obesity. Science 
318(5852):928–929  

    6.    Cowey S, Hardy RW (2006) The metabolic syndrome: a high-risk state for cancer? Am J 
Pathol 169(5):1505–1522  

    7.    Flegal KM et al (2007) Cause-specifi c excess deaths associated with underweight, over-
weight, and obesity. JAMA 298(17):2028–2037  

      8.      Sirin O, Kolonin MG (2012) Treatment of obesity as a potential complementary approach to 
cancer therapy. Drug Discov Today, Online ahead of print  

     9.    Kant P, Hull MA (2011) Excess body weight and obesity—the link with gastrointestinal and 
hepatobiliary cancer. Nat Rev Gastroenterol Hepatol 8(4):224–238  

       10.    Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer 
risk: new perspectives. Annu Rev Med 61:301–316  

    11.    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and 
proposed mechanisms. Nat Rev Cancer 4(8):579–591  

    12.    Eheman C et al (2012) Annual report to the nation on the status of cancer, 1975–2008, featur-
ing cancers associated with excess weight and lack of suffi cient physical activity. Cancer 
118(9):2338–2366  

    13.    Vona-Davis L, Howard-McNatt M, Rose DP (2007) Adiposity, type 2 diabetes and the meta-
bolic syndrome in breast cancer. Obes Rev 8(5):395–408  

    14.    Hursting SD et al (2007) The obesity-cancer link: lessons learned from a fatless mouse. 
Cancer Res 67(6):2391–2393  

15 Vascular Targeting of Adipose Tissue



396

        15.    Zhang Y et al (2012) Stromal progenitor cells from endogenous adipose tissue contribute 
to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res 
72(20):5198–5208  

    16.    Pierce J, Natarajan L, Caan BJ (2007) Infl uence of a diet very high in vegetables, fruit, and 
fi ber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy 
Eating and Living (WHEL) randomized trial. JAMA 298(3):289–298  

     17.    Ailhaud G, Grimaldi P, Negrel R (1992) Cellular and molecular aspects of adipose tissue 
development. Annu Rev Nutr 12:207–233  

     18.    Klein J et al (2006) Adipose tissue as source and target for novel therapies. Trends Endocrinol 
Metab 17(1):26–32  

    19.    Lafontan M (2005) Fat cells: afferent and efferent messages defi ne new approaches to treat 
obesity. Annu Rev Pharmacol Toxicol 45:119–146  

    20.    Klaus S (2004) Adipose tissue as a regulator of energy balance. Curr Drug Targets 
5(3):241–250  

    21.    Tam CS, Lecoultre V, Ravussin E (2012) Brown adipose tissue: mechanisms and potential 
therapeutic targets. Circulation 125(22):2782–2791  

    22.    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological signifi -
cance. Physiol Rev 84(1):277–359  

    23.    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose 
tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):444–452  

    24.    Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on 
cancer development and progression. Endocr Rev 32(4):550–570  

    25.    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 
89(6):2548–2556  

    26.    Paz-Filho G et al (2011) Associations between adipokines and obesity-related cancer. Front 
Biosci 16:1634–1650  

    27.    Trayhurn P, Wood IS (2004) Adipokines: infl ammation and the pleiotropic role of white adi-
pose tissue. Br J Nutr 92(3):347–355  

     28.    Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer develop-
ment in obesity. Nat Rev Cancer 11(12):886–895  

    29.    Hausman DB et al (2001) The biology of white adipocyte proliferation. Obes Rev 
2(4):239–254  

       30.    Nishimura S et al (2007) Adipogenesis in obesity requires close interplay between differenti-
ating adipocytes, stromal cells, and blood vessels. Diabetes 56(6):1517–1526  

         31.    Daquinag AC, Zhang Y, Kolonin MG (2011) Vascular targeting of adipose tissue as an anti- 
obesity approach. Trends Pharmacol Sci 32(5):300–307  

     32.    Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 
117(9):2362–2368  

        33.    Traktuev D et al (2008) A population of multipotent CD34-positive adipose stromal cells 
share pericyte and mesenchymal surface markers, reside in a periendothelial location, and 
stabilize endothelial networks. Circ Res 102(1):77–85  

      34.    Tang W et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 
322(5901):583–586  

    35.    Spalding KL et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):
783–787  

     36.    Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative 
 medicine. Circ Res 100(9):1249–1260  

    37.    Daquinag AC et al (2011) An isoform of decorin is a resistin receptor on the surface of adi-
pose progenitor cells. Cell Stem Cell 9(1):74–86  

    38.    Lee NK et al (2011) Identifi cation of a novel peptide ligand targeting visceral adipose tissue 
via transdermal route by in vivo phage display. J Drug Target 19(9):805–813  

      39.    Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18  
        40.    Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic 

diseases. Nat Rev Drug Discov 9(2):107–115  

A. Salameh and M.G. Kolonin



397

     41.    Bertolini F et al (2006) The multifaceted circulating endothelial cell in cancer: towards 
marker and target identifi cation. Nat Rev Cancer 6(11):835–845  

    42.    Tilki D et al (2009) Emerging biology of vascular wall progenitor cells in health and disease. 
Trends Mol Med 15(11):501–509  

    43.    Wels J et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. 
Genes Dev 22(5):559–574  

    44.    Gupta RK et al (2012) Zfp423 expression identifi es committed preadipocytes and localizes to 
adipose endothelial and perivascular cells. Cell Metab 15(2):230–239  

    45.    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, 
 concepts, and assays. Cell Stem Cell 2(4):313–319  

    46.    Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15  
    47.    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 

276(5309):71–74  
    48.    Sera Y et al (2009) Hematopoietic stem cell origin of adipocytes. Exp Hematol 

37(9):1108–1120  
    49.    Tomiyama K et al (2008) Characterization of transplanted green fl uorescent protein+ bone 

marrow cells into adipose tissue. Stem Cells 26(2):330–338  
    50.    Koh YJ et al (2007) Bone marrow-derived circulating progenitor cells fail to transdifferenti-

ate into adipocytes in adult adipose tissues in mice. J Clin Invest 117(12):3684–3695  
     51.    Rodeheffer MS, Birsoy K, Friedman JM (2008) Identifi cation of white adipocyte progenitor 

cells in vivo. Cell 135(2):240–249  
     52.    Zeve D, Tang W, Graff J (2009) Fighting fat with fat: the expanding fi eld of adipose stem 

cells. Cell Stem Cell 5(5):472–481  
     53.    Yancopoulos GD et al (2000) Vascular-specifi c growth factors and blood vessel formation. 

Nature 407(6801):242–248  
      54.    Kolonin MG et al (2012) Alternative origins of stroma in normal organs and disease. 

Stem Cell Res 8(2):312–323  
     55.    Zhang Y, Bellows CF, Kolonin MG (2010) Adipose tissue-derived progenitor cells and 

 cancer. World J Stem Cells 2(5):103–113  
     56.    Grossmann ME et al (2010) Obesity and breast cancer: status of leptin and adiponectin in 

pathological processes. Cancer Metastasis Rev 29(4):641–653  
     57.    Zhang J et al (2012) Automated analysis of investigational near-infrared fl uorescence 

 lymphatic imaging in humans. Biomed Opt Express 3(7):1713–1723  
        58.    Zhang Y et al (2009) White adipose tissue cells are recruited by experimental tumors and 

promote cancer progression in mouse models. Cancer Res 69(12):5259–5266  
    59.    Klopp AH et al (2012) Omental adipose tissue-derived stromal cells promote vascularization 

and growth of endometrial tumors. Clin Cancer Res 18(3):771–782  
     60.    Kidd S et al (2012) Origins of the tumor microenvironment: quantitative assessment of 

adipose- derived and bone marrow-derived stroma. PLoS One 7(2):e30563  
    61.    Mancuso P et al (2011) Circulating perivascular progenitors: a target of PDGFR inhibition. 

Int J Cancer 129(6):1344–1350  
    62.    Bellows CF et al (2011) Circulation of progenitor cells in obese and lean colorectal cancer 

patients. Cancer Epidemiol Biomarkers Prev 20(11):2461–2468  
     63.    Bellows CF et al (2011) Infl uence of BMI on level of circulating progenitor cells. Obesity 

19(8):1722–1726  
    64.    Bertolini F et al (2012) Adipose tissue cells, lipotransfer and cancer: a challenge for scien-

tists, oncologists and surgeons. Biochim Biophys Acta 1826:209–214  
    65.    Lin G et al (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate 

tumor. Prostate 70(10):1066–1073  
    66.    Martin-Padura I et al (2012) The white adipose tissue used in lipotransfer procedures is a rich 

reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res 
72(1):325–334  

    67.    Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy 
for rapid tumor growth. Nat Med 17(11):1498–1503  

15 Vascular Targeting of Adipose Tissue



398

   68.    Dirat B et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contrib-
ute to breast cancer invasion. Cancer Res 71(7):2455–2465  

    69.    Zyromski NJ et al (2009) Obesity potentiates the growth and dissemination of pancreatic 
cancer. Surgery 146(2):258–263  

     70.    Adams TD et al (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 
357(8):753–761  

     71.    Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 
459(7245):340–342  

    72.    Bray GA, Greenway FL (2007) Pharmacological treatment of the overweight patient. 
Pharmacol Rev 59(2):151–184  

    73.    Dolgin E (2012) A history of drugs on the weight list. Nat Med 18(6):843  
    74.    Tharakan G, Tan T, Bloom S (2010) Emerging therapies in the treatment of ‘diabesity’: 

beyond GLP-1. Trends Pharmacol Sci 32(1):8–15  
    75.    Nawrocki AR, Scherer PE (2005) Keynote review: the adipocyte as a drug discovery target. 

Drug Discov Today 10(18):1219–1230  
    76.    Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J 

Physiol Endocrinol Metab 297(5):977–986  
    77.    Wu J et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and 

human. Cell 150(2):366–376  
    78.    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 

407(6801):249–257  
    79.    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 

438(7070):967–974  
     80.    Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82(3):925–934  
           81.    Rupnick MA et al (2002) Adipose tissue mass can be regulated through the vasculature. Proc 

Natl Acad Sci U S A 99(16):10730–10735  
    82.    Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell 

Endocrinol 318(1–2):2–9  
     83.    Brakenhielm E, Cao Y (2008) Angiogenesis in adipose tissue. Methods Mol Biol 456:65–81  
   84.    Gealekman O et al (2008) Enhanced angiogenesis in obesity and in response to PPARgamma 

activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol 
Metab 295(5):1056–1064  

      85.    Fukumura D et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation 
during in vivo adipogenesis. Circ Res 93(9):88–97  

    86.    Voros G et al (2005) Modulation of angiogenesis during adipose tissue development in 
murine models of obesity. Endocrinology 146(10):4545–4554  

    87.    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936  
      88.    Sun K et al (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl 

Acad Sci U S A 109(15):5874–5879  
    89.    Hagberg CE et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid 

uptake. Nature 464(7290):917–921  
       90.    Lijnen HR et al (2006) Impaired adipose tissue development in mice with inactivation of 

placental growth factor function. Diabetes 55(10):2698–2704  
    91.    Tartare-Deckert S, Chavey C, Monthouel MN, Gautier N, Van Obberghen E (2001) The 

matricellular protein SPARC/osteonectin as a newly identifi ed factor up-regulated in obesity. 
J Biol Chem 276:2231–22237  

     92.    Bradshaw AD et al (2003) SPARC-null mice display abnormalities in the dermis character-
ized by decreased collagen fi bril diameter and reduced tensile strength. J Invest Dermatol 
120(6):949–955  

    93.    Kunduzova O et al (2008) Apelin/APJ signaling system: a potential link between adipose 
tissue and endothelial angiogenic processes. FASEB J 22(12):4146–4153  

    94.    Oike Y, Tabata M (2009) Angiopoietin-like proteins—potential therapeutic targets for meta-
bolic syndrome and cardiovascular disease. Circ J 73(12):2192–2197  

A. Salameh and M.G. Kolonin



399

     95.    Ledoux S et al (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue 
in severe human obesity. Diabetes 57(12):3247–3257  

     96.    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. 
Nature 395(6704):763–770  

     97.    Sierra-Honigmann MR et al (1998) Biological action of leptin as an angiogenic factor. 
Science 281(5383):1683–1686  

    98.    Licinio J et al (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes 
mellitus, hypogonadism, and behavior in leptin-defi cient adults. Proc Natl Acad Sci U S A 
101(13):4531–4536  

    99.    Delort L et al (2012) New insights into anticarcinogenic properties of adiponectin: a potential 
therapeutic approach in breast cancer? Vitam Horm 90:397–417  

    100.    Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose 
 tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2):211–232  

     101.    Hoover-Plow J, Ellis J, Yuen L (2002) In vivo plasminogen defi ciency reduces fat accumula-
tion. Thromb Haemost 87(6):1011–1019  

     102.    Brakenhielm E et al (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and 
genetic obesity in mice. Circ Res 94(12):1579–1588  

    103.    Tam J et al (2009) Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue 
expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 4(3):e4974  

     104.    Ejaz A et al (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis 
and obesity in C57/BL mice. J Nutr 139(5):919–925  

    105.    Kim MY et al (2010) The anti-angiogenic herbal composition Ob-X inhibits adipose tissue 
growth in obese mice. Int J Obes (Lond) 34(5):820–830  

    106.    Lijnen HR, Frederix L, Van Hoef B (2010) Fumagillin reduces adipose tissue formation in 
murine models of nutritionally induced obesity. Obesity (Silver Spring) 18(12):2241–2246  

    107.    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev 
Cancer 8(8):592–603  

    108.    Kappers MH et al (2009) Cardiovascular and renal toxicity during angiogenesis inhibition: 
clinical and mechanistic aspects. J Hypertens 27(12):2297–2309  

    109.    Schmidinger M, Bellmunt J (2010) Plethora of agents, plethora of targets, plethora of side 
effects in metastatic renal cell carcinoma. Cancer Treat Rev 36(5):416–424  

    110.    Yan M et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 
463(7282):E6–E7  

      111.    Kim DH, Woods SC, Seeley RJ (2010) Peptide designed to elicit apoptosis in adipose tissue 
endothelium reduces food intake and body weight. Diabetes 59(4):907–915  

    112.    Woods SC, Seeley RJ (2000) Adiposity signals and the control of energy homeostasis. 
Nutrition 16(10):894–902  

    113.    Pajvani UB et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse 
model of inducible and reversible lipoatrophy. Nat Med 11(7):797–803  

    114.    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395  
    115.    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049  
    116.    Kolonin MG (2009) Tissue-specifi c targeting based on markers expressed outside endothelial 

cells. Adv Genet 67:61–102  
         117.    Kolonin MG et al (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 

10(6):625–632  
     118.    Hossen MN et al (2010) Ligand-based targeted delivery of a peptide modifi ed nanocarrier to 

endothelial cells in adipose tissue. J Control Release 147(2):261–268  
    119.    Barnhart KF et al (2011) A peptidomimetic targeting white fat causes weight loss and 

improved insulin resistance in obese monkeys. Sci Transl Med 3(108):108–112  
    120.    Kim DH et al (2012) Rapid and weight-independent improvement of glucose tolerance 

induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 
61(9):2299–2310  

     121.    Staquicini FI et al (2011) Vascular ligand-receptor mapping by direct combinatorial selection 
in cancer patients. Proc Natl Acad Sci U S A 108(46):18637–18642  

15 Vascular Targeting of Adipose Tissue



400

    122.    Ling Q et al (2004) Annexin II regulates fi brin homeostasis and neoangiogenesis in vivo. 
J Clin Invest 113(1):38–48  

    123.    Liu D et al (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silenc-
ing in 3T3-L1 cells. PLoS One 7(3):e34315  

    124.    Suga H et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and acti-
vation of stem/progenitor cells. Plast Reconstr Surg 126(6):1911–1923  

    125.    Nie J et al (2008) Combinatorial peptides identify α5β1 integrin as a receptor for the matricel-
lular protein SPARC on adipose stromal cells. Stem Cells 26(10):2735–2745  

    126.    Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of 
endoglin- dependent TGF-beta1 activity. J Cell Biol 193(7):1305–1319  

    127.    Guzman-Rojas L et al (2012) Cooperative effects of aminopeptidase N (CD13) expressed by 
nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci U S A 
109(5):1637–1642  

    128.    Arap W et al (2002) Targeting the prostate for destruction through a vascular address. Proc 
Natl Acad Sci U S A 99(3):1527–1531  

    129.    Sergeeva A et al (2006) Display technologies: application for the discovery of drug and gene 
delivery agents. Adv Drug Deliv Rev 58(15):1622–1654  

    130.    Liu J et al (2012) Selection of aptamers specifi c for adipose tissue. PLoS One 7(5):e37789  
    131.    Freedland ES (2004) Role of a critical visceral adipose tissue threshold (CVATT) in meta-

bolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab 
1(1):12  

    132.    Tran TT, Kahn CR (2010) Transplantation of adipose tissue and stem cells: role in metabo-
lism and disease. Nat Rev Endocrinol 6(4):195–213  

    133.    Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: 
the macro- and microcirculation of adipose tissue. FEBS J 276(20):5738–5746  

    134.    Paidisetty S, Blodgett TM (2009) Brown fat: atypical locations and appearances encountered 
in PET/CT. Am J Roentgenol 193(2):359–366  

    135.    Xue Y et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold accli-
mation. Cell Metab 9(1):99–109  

    136.    Reitman ML et al (1999) Transgenic mice lacking white fat: models for understanding human 
lipoatrophic diabetes. Ann N Y Acad Sci 892:289–296  

    137.    Moitra J et al (1998) Life without white fat: a transgenic mouse. Genes Dev 12(20):
3168–3181  

    138.    Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78(2):286–293  
    139.    Crandall DL et al (2006) Modulation of adipose tissue development by pharmacological 

inhibition of PAI-1. Arterioscler Thromb Vasc Biol 26(10):2209–2215  
    140.    Demeulemeester D, Collen D, Lijnen HR (2005) Effect of matrix metalloproteinase  inhibition 

on adipose tissue development. Biochem Biophys Res Commun 329:105–110  
    141.    Bourlier V et al (2005) Protease inhibitor treatments reveal specifi c involvement of matrix 

metalloproteinase-9 in human adipocyte differentiation. J Pharmacol Exp Ther 312(3):
1272–1279  

    142.    Shin JH, Shin DW, Noh M (2009) Interleukin-17A inhibits adipocyte differentiation in 
human mesenchymal stem cells and regulates pro-infl ammatory responses in adipocytes. 
Biochem Pharmacol 77:1835–1844    

A. Salameh and M.G. Kolonin



401A.J. Dannenberg and N.A. Berger (eds.), Obesity, Inflammation and Cancer,  
Energy Balance and Cancer 7, DOI 10.1007/978-1-4614-6819-6_16,
© Springer Science+Business Media New York 2013

Abstract Chronic low-level inflammation is associated with obesity and increased 
incidence of cancer and chronic disease states. Regular exercise reduces the risk of 
some cancers as well as chronic metabolic and cardiorespiratory diseases, in part 
because exercise exerts anti-inflammatory effects. The anti-inflammatory effects of 
regular exercise may be mediated via both a reduction in visceral fat mass (with a 
subsequent decreased release of adipokines) and the induction of an anti- 
inflammatory environment with each bout of exercise via the release of IL-6 from 
working skeletal muscle, reduced expression of TLRs on monocytes/macrophages, 
inhibition of monocyte/macrophage infiltration into adipose tissue, phenotypic 
switching of macrophages within adipose tissue, a reduction in the circulating num-
bers of pro-inflammatory monocytes and an increase in the circulating numbers of 
regulatory T cells.

16.1  Exercise in Cancer Prevention and Therapy

There is consensus that exercise training protects against some types of cancers and 
can have a beneficial role in therapy for cancer patients. Exercise training enhances 
aspects of anti-tumour immunity and reduces inflammatory mediators. However, 
the data linking immunological and inflammatory mechanisms, physical activity 
and cancer risk reduction remains tentative. Determining if regular physical activity 
reduces cancer risk through immunological mechanisms is of public health rele-
vance and could lead to tailored and novel exercise prescriptions. Comprehensive 
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reviews by the International Agency for Research on Cancer [8] and the World 
Cancer Research Fund [104] identified an independent protective effect of physical 
activity on colon and postmenopausal breast cancer risk. Evidence is also mounting 
for risk reduction by physical activity for endometrial, lung and pancreatic 
cancers.

Physical activity has a therapeutic effect in cancer patients by reducing cancer 
recurrence, enhancing health outcomes and increasing survival. Women who 
exercised moderately prior to [28] and after a breast cancer diagnosis had signifi-
cant improvements in overall and disease-specific survival and quality of life 
compared to sedentary counterparts [82, 100]. Similarly, studies with colorectal 
[55] and prostate [45, 75] cancer survivors have suggested that mortality and dis-
ease progression are approximately 50 % lower in physically active than seden-
tary individuals.

Numerous cohort studies have shown a link between obesity and cancer inci-
dence overall and for selected cancer sites including endometrial, breast, colon and 
oesophageal adenocarcinoma [4]. There is also data showing that individuals who 
lose weight and maintain the loss have a reduced cancer incidence and mortality, 
providing some hope that weight loss in obese individuals may help them prevent 
cancer. Several possible mechanisms have been suggested to explain the association 
of obesity with increased risk of certain cancers: (1) Fat tissue produces excess 
amounts of oestrogen, high levels of which have been associated with the risk of 
breast, endometrial and some other cancers; (2) Obese people often have increased 
circulating levels of insulin and insulin-like growth factor-1, which may promote 
the development of certain tumours; (3) Fat cells produce adipokines that may stim-
ulate or inhibit cell growth. For example, leptin, which is more abundant in obese 
people, seems to promote cell proliferation, whereas adiponectin, which is less 
abundant in obese people, may have antiproliferative effects; (4) Fat cells may also 
have direct and indirect effects on other tumour growth regulators, including mam-
malian target of rapamycin (mTOR) and AMP-activated protein kinase; (5) Obese 
people often have chronic low-level inflammation, which has been associated with 
increased cancer risk. Other possible mechanisms include altered immune responses, 
effects on intracellular signalling pathways involving nuclear factor kappa beta and 
oxidative stress.

Currently, the biological mechanisms relating exercise and cancer are not well 
understood. Potential mediators include prevention of obesity, reduction in body 
weight and/or adiposity, decreases in reproductive hormone levels, altered growth 
factor milieu, enhanced antioxidant defence mechanisms and changes in immune 
function including reduced inflammation and enhanced anti-tumour immunity. The 
relative contribution of these mechanisms in specific cancer types remains unknown. 
With respect to the hypothesis that exercise induces alterations in immune media-
tors, more is known about exercise-induced changes in inflammatory mediators 
than about changes in specific anti-tumour mechanisms.

The association between chronic inflammation and cancer is well established 
[14]. Human cross-sectional studies demonstrate an inverse relationship between 
regular physical activity and inflammatory biomarkers including C-reactive protein 
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(CRP), tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [42, 70]. 
Reductions in CRP levels with exercise training have been reported [42]. Although 
exercise may reduce inflammatory biomarkers, clinical trials indicate variable out-
comes, with an effect of exercise on CRP in some but not all studies [74]. Less work 
has been done with IL-6 in humans, but again there are conflicting results [101]. 
There can be little doubt that regular physical activity is beneficial in preventing 
some cancers, as well as in decreasing recurrence, increasing survival and improv-
ing quality of life for cancer patients. Animal studies (e.g. [17, 18, 39]) indicate that 
multiple biological pathways may be involved including a reduction in inflamma-
tion and an enhancement of anti-tumour immunity. To date, neither of these mecha-
nisms has been studied in adequate detail to fully understand their role in cancer 
prevention and therapy with respect to exercise.

The focus of this chapter is to explain the various mechanisms by which exercise 
exerts its anti-inflammatory effects. Additional research is needed to determine 
which inflammatory mediators and anti-tumour immune mechanisms are most sen-
sitive to exercise and the dose, duration and frequency of exercise needed to achieve 
the most potent anti-inflammatory or anti-tumour effects.

16.2  The Links Between Sedentary Behaviour,  
Chronic Inflammation and Chronic Disease

The prevalence of obesity continues to rise worldwide and is being accompanied by 
proportional increases in a host of other medical conditions associated with derange-
ments of immunometabolism [50] such as type 2 diabetes (T2DM), cardiovascular 
diseases, chronic obstructive pulmonary disease, dementia, depression and cancer. 
Inflammation appears to be aetiologically linked to the pathogenesis of all these 
conditions [65], and the development of a chronic low-grade inflammatory state (as 
indicated by elevated levels of circulating inflammation markers such as IL-6, 
TNF-α and CRP) has been established as a predictor of risk for several of them [73]. 
Importantly, physical inactivity and sedentary behaviour increase the risk of all 
these conditions [36, 69, 99]. An inactive lifestyle leads to the accumulation of vis-
ceral fat and consequently the activation of a network of inflammatory pathways 
that results in inflammation in adipose tissue, increased release of adipokines (pep-
tides and proteins including some cytokines that are secreted from white adipose 
tissue) and the development of a low-grade systemic inflammatory state [65]. 
Chronic inflammation promotes the development of insulin resistance, atheroscle-
rosis, neurodegeneration and tumour growth and subsequently the development of 
several diseases associated with physical inactivity (Fig. 16.1). Exercise has anti- 
inflammatory effects, and therefore, in the long term, regular physical activity can 
protect against the development of these chronic diseases as well as having other 
benefits for health, functional capacity and quality of life [36, 69] which are sum-
marised in Table 16.1. Furthermore, exercise can be used as a treatment for (or to 
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ameliorate the symptoms of) many of these conditions which is increasingly being 
promoted as the concept that “exercise is medicine”.

Obviously, exercise increases energy expenditure and burns off some of the 
body fat that would otherwise accumulate when individuals eat more dietary energy 
than they need. In that simple sense, exercise reduces the risk of developing obesity 
and excessive adiposity. Regular exercise also imbues cardiovascular health bene-
fits by improving the blood lipid profile by decreasing the concentration of plasma 
triglycerides and small LDL particles and by increasing the concentration of protec-
tive HDL cholesterol [46]. These beneficial alterations in plasma lipids are pre-
sumed to limit the development of atherosclerosis. However, the protective effect 
of a physically active lifestyle against chronic inflammation associated diseases 
may, to some extent, be ascribed to an anti-inflammatory effect of exercise [42]. 
This may be mediated not only via a reduction in visceral fat mass (with a subse-
quent decreased production and release of adipokines) but also by induction of an 
anti-inflammatory environment with each bout of exercise [70]. The remainder of 
this chapter will explain the possible mechanisms by which exercise exerts its anti-
inflammatory effect.

Fig. 16.1 Physical inactivity and positive energy balance lead to an accumulation of visceral fat 
which becomes infiltrated by pro-inflammatory macrophages and T cells. The pro-inflammatory M1 
macrophage phenotype predominates and inflamed adipose tissue releases adipokines and TNF-α 
that lead to a state of persistent low-grade systemic inflammation. This promotes the development of 
insulin resistance, tumour growth, neurodegeneration and atherosclerosis. The latter is exacerbated 
by the deleterious changes in the blood lipid profile associated with a lack of physical activity
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16.3  Anti-inflammatory Effects of Exercise

The anti-inflammatory effects of exercise have mostly been ascribed to two possible 
mechanisms: (1) increased production and release of anti-inflammatory cytokines 
from contracting skeletal muscle [70] and (2) reduced expression of toll-like recep-
tors (TLRs) on monocytes and macrophages [26] with subsequent inhibition of 
downstream responses such as pro-inflammatory cytokine production, antigen pre-
sentation and costimulatory molecule expression [33]. However, the anti- 
inflammatory effects of exercise arise not only from these two mechanisms but also 
other effects of exercise that recently have been established such as the inhibition of 
monocyte/macrophage infiltration into adipose tissue [43], phenotypic switching of 

Table 16.1 Summary of the interaction between physical activity and major diseases assessing 
evidence that exercise may (a) lower disease risk and (b) have therapeutic value in treating disease 
(see Pedersen and Saltin [69] and Hardman and Stensel [36] for further detail)

Disease
Evidence that physical activity may lower disease risk and/or have therapeutic 
value in treating disease

Cancer High levels of PA are associated with lower risk of colon and breast cancer. PA 
may lower cancer risk by systemic (reduced body fat and insulin levels, 
enhanced immune function) and site-specific (reduced sex steroid hormone 
levels for breast cancer, decreased bowel transit time for colon cancer) 
mechanisms. Some observational and RCT evidence supports a therapeutic 
role for PA in preserving mobility and function in cancer patients

CHD A large body of epidemiological evidence demonstrates that high levels of PA and 
PF are associated with a lower risk of developing CHD. RCTs show that 
regular PA can favourably modify CHD risk factors including (but not limited 
to) dyslipidaemia, hypertension and obesity. RCTs also show that PA improves 
survival in CHD patients

Stroke Evidence that high levels of PA and PF reduce the risk of stroke is suggestive but 
not as compelling as that for CHD. RCTs show that PA can lower, but not 
necessarily normalise, blood pressure in hypertensive individuals

T2D Observational epidemiological evidence consistently demonstrates an association 
between high levels of PA/PF and a reduced risk of developing T2D. RCTs 
show that lifestyle intervention (diet and PA) can lower body mass, improve 
glucose tolerance and reduce the risk of developing T2D in high-risk patients. 
In patients with T2D, high levels of PA and PF are associated with a reduced 
risk of CHD and all-cause mortality

Dementia Observational epidemiological studies indicate that higher levels of PA are 
associated with a lower risk of cognitive decline and dementia in older adults. 
Some limited evidence is available from RCTs to suggest that PA induces 
modest improvements in cognition in people who are at increased risk of 
dementia/Alzheimer’s disease

Other There is some evidence from observational and intervention studies to support a 
role for PA for enhancing physical function and improving quality of life in 
those suffering from chronic heart failure, chronic obstructive pulmonary 
disease, depression, intermittent claudication, osteoarthritis and osteoporosis

CHD coronary heart disease; PA physical activity; PF physical fitness; RCT randomised controlled 
trial; T2D type 2 diabetes mellitus
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macrophages within adipose tissue [43], a reduction in the circulating numbers of 
pro-inflammatory monocytes [95] and an increase in the circulating numbers of 
IL-10-secreting regulatory T cells [98, 107]. The major focus of this part of the 
chapter is to explain these various mechanisms.

16.3.1  Reduction in Visceral Fat Mass

The accumulation of body fat, particularly in the abdomen, liver and muscles, is 
associated with increased all-cause mortality [71], the development of T2DM [5], 
cardiovascular disease [35], dementia [102] and several cancers [105]. The produc-
tion of pro-inflammatory adipokines is increased with adipose tissue expansion 
whereas the amounts of anti-inflammatory cytokines produced are reduced. This 
leads to the development of a state of persistent system low-grade inflammation 
[108]. Regular exercise can reduce waist circumference and cause considerable 
reductions in abdominal/visceral fat, even in the absence of any loss of body weight, 
in both men and women regardless of age [77]. Therefore, increased physical activ-
ity can bring about a reduction in systemic inflammation [108] via a reduction in 
pro-inflammatory adipokine secretion as a direct result of lowering the amount of 
fat stored in abdominal depots.

16.3.2  Release of IL-6 from Contracting Muscle

One of the earliest reports on the effects of exercise on cytokines observed an eleva-
tion in the circulating levels of several cytokines following the completion of a 
marathon [60]. Some years later, several reports on the effects of exercise on cyto-
kines began to appear in the scientific literature—the impetus behind this increase 
was probably the development of sensitive, specific, commercially available, assays 
for the detection of a large number of cytokines. One of the earliest and most con-
sistent findings has been that of an elevation in the circulating level of IL-6 follow-
ing prolonged strenuous exercise. In an important study, Nehlsen-Cannarella et al. 
[58] demonstrated that the plasma IL-6 concentration was dramatically increased 
following 2.5 h of high-intensity running. Furthermore, it was shown that when 
subjects consumed a carbohydrate beverage during exercise, the increase in the 
circulating IL-6 concentration was decreased compared with subjects who con-
sumed a placebo. While these studies provide no mechanistic insight into the source 
of the exercise-induced increase in the circulating IL-6 concentration or its biologi-
cal purpose, this study acted as a stimulus for subsequent investigations into the 
effects of exercise on cytokines. Indeed, many subsequent studies have demon-
strated an increase in the circulating concentration of several cytokines following 
prolonged strenuous exercise. Increases in the circulating concentrations of both 
pro- inflammatory cytokines (e.g. IL-1β, TNF-α) and anti-inflammatory cytokines 
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(e.g. IL-6 and IL-10) [62, 63], cytokine inhibitors (e.g. IL-1 receptor antagonist and 
soluble TNF receptors) [62], chemokines (e.g. IL-8, macrophage inflammatory pro-
tein (MIP) and monocyte chemotactic protein-1 (MCP-1)) [64, 91, 92] and colony- 
stimulating factors [92] have been reported following endurance exercise. However, 
the finding of an increase in the circulating IL-6 concentration following prolonged 
exercise is the most marked and consistent exercise-induced response of any cyto-
kine so far examined (see Fig. 16.2).

At rest, approximately 30 % of circulating IL-6 arises from the adipose tissue but 
only about 10 % of this can be attributed to the adipocytes with the remainder com-
ing mostly from adipose tissue resident macrophages. Other sources of circulating 
IL-6 at rest include blood leukocytes (predominantly monocytes), the brain and the 
liver. An early study indicated that circulating monocytes were unlikely to be the 
source of the exercise-induced increase in the plasma IL-6 concentration [97] as 1 h 
of strenuous exercise caused no changes in the amount of IL-6 mRNA detected in 
peripheral blood mononuclear cells (PBMCs) despite an elevation in the plasma 
IL-6 level. This finding was later confirmed by Starkie et al. [84] who demonstrated 
that monocyte intracellular IL-6 protein expression was unchanged following a bout 
of prolonged strenuous exercise; importantly, Starkie et al. [85] also demonstrated 
that exercise had no significant effects on TNF-α or IL-1β production from mono-
cytes. Several possible sites of origin where suggested for the exercise-induced 
increase in the circulating level of IL-6, with contracting skeletal muscle receiving 
the most attention following the observation by Steensberg et al. [89] that IL-6 
released from the exercising leg could account for the rise in the circulating IL-6 
concentration during prolonged exercise.

Although initial studies supported the hypothesis that an increase in the plasma 
level of IL-6 was related to exercise-induced muscle damage [12], it soon became 
apparent that muscle damage per se was only a minor contributor to the exercise- 
induced rise in the circulating level of IL-6. Firstly, although many of the initial 
studies examining the effects of exercise on cytokines used running as an exercise 
model, several studies have also examined the cytokine response to prolonged 
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Relative increase in plasma 
cytokine concentration
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Fig. 16.2 The cytokine 
response to prolonged 
strenuous exercise  
(modified from Febbraio  
and Pedersen [21])
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bicycle exercise which induces only a minimal degree of muscle damage (if any) 
and consequently does not trigger an inflammatory response. However, cycling 
exercise does result in a considerable elevation (typically 3–10-fold higher than 
resting values) in the circulating IL-6 concentration comparable to that of running 
at the same mode-specific relative intensity [86]. However, perhaps the strongest 
evidence that muscle damage is not a prerequisite for an increase in the systemic 
IL-6 concentration in response to exercise came from Croisier et al. [15]. In this 
study, subjects performed two bouts of eccentric muscle contractions separated by 
a period of 3 weeks. After the initial exercise bout, the expected elevation in serum 
myoglobin (a marker of muscle damage) and delayed onset muscle soreness was 
observed, in addition to a rise in the circulating IL-6 concentration. Importantly, it 
is well known that following a period of recovery from an initial bout of muscle 
damaging exercise, a second exercise bout identical to the first causes a much lower 
level of muscle damage. Therefore, and as expected, the second exercise bout 
resulted in minimal increases in serum myoglobin and muscle soreness, yet the 
increase in the circulating IL-6 concentration was very similar to that observed in 
response to the initial bout of exercise. These studies provide compelling evidence 
that the increase in the circulating IL-6 concentration following exercise is not pri-
marily related to muscle damage.

During and following exercise of sufficient load, the active skeletal muscle 
markedly increases both cellular and circulating levels of IL-6 [66]. With prolonged 
exercise (>2.5 h), plasma IL-6 levels can increase over 100-fold although more 
modest increases are reported with shorter duration exercise [24]. Increases have 
also been noted using intermittent exercise protocols of relatively short duration 
[54]. With exercise, the increase in circulating IL-6 is transient, normally returning 
to resting levels within 1 h after exercise. The plasma IL-6 concentration increases 
exponentially with exercise duration [89], and a major stimulus of its synthesis and 
release appears to be a fall in muscle glycogen content ([44, 67]; Fig. 16.3). Increases 
in intracellular calcium and increased formation of reactive oxygen species are also 
capable of activating transcription factors known to regulate IL-6 synthesis [24].

IL-6 appears responsible for the subsequent rise in circulating levels of the 
anti- inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1ra) and also 
stimulates the release of cortisol from the adrenal glands [88]. The causal role of 
IL-6 in stimulating IL-10, IL-1ra and cortisol secretion is substantiated by the 
observation that intravenous infusion of IL-6 totally mimics the acute anti-inflam-
matory effects of a bout of exercise both with regard to elevations of plasma IL-10, 
IL-1ra and cortisol [88] and with regard to suppression of endotoxin-stimulated 
increases in TNF-α levels [83]. These actions and possible associated health 
effects are summarised in Fig. 16.4. The IL-6 half-life is prolonged by combining 
with the soluble IL-6 receptor (sIL-6R), and it is this complex which is crucial in 
determining the biological activity of IL-6. The expression of IL-6R in tissues is 
limited to hepatocytes, leukocytes and adipocytes [76] with a relatively low 
expression in resting skeletal muscle [44]. Exercise training increases the expres-
sion of IL-6R on the muscle membrane [44] removing some of the dependency on 
the circulating sIL-6 receptor.
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IL-1ra is secreted mainly by monocytes and macrophages and inhibits the pro- 
inflammatory actions of IL-1β [27]. IL-10 is known to be produced primarily by 
regulatory T cells and monocytes but also by Th2 cells, macrophages, dendritic 
cells, B cells, CD8+ T cells, Th1 cells and Th17 cells [52]. Irrespective of the cel-
lular source, the principal role of IL-10 appears to be containment and suppression 
of inflammatory responses so as to downregulate adaptive immune effector 
responses [57] and minimise tissue damage in response to microbial challenges. 
Accordingly, IL-10 induces downregulation of MHC antigens, the intercellular 
adhesion molecule-1 and the costimulatory molecules CD80 and CD86 on antigen 
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presenting cells, and it has been shown to promote differentiation of dendritic cells 
expressing low levels of MHC class II, CD80 and CD86 [52]. In addition, IL-10 
downregulates or completely inhibits the expression of several pro-inflammatory 
cytokines and other soluble mediators, thereby further compromising the capacity 
of effector T cells to sustain inflammatory responses.

Thus, IL-10 is a potent promoter of an anti-inflammatory state. Circulating levels 
of IL-10 are lower in obese subjects, and acute treatment with IL-10 prevents lipid- 
induced insulin resistance [37]. IL-10 increases insulin sensitivity and protects skel-
etal muscle from obesity-associated macrophage infiltration, increases in 
inflammatory cytokines and their deleterious effects on insulin signalling and glu-
cose metabolism [37].

A limitation of the hypothesis that exercise-induced elevations of IL-6 are mostly 
responsible for the anti-inflammatory and long-term health benefits of regular exer-
cise is that substantial increases in circulating IL-6 do not occur with short durations 
of low-/moderate-intensity exercise [24] despite the known health benefits (e.g. 
reduced risk of heart disease) associated with only very moderate increases in phys-
ical activity above that of a totally sedentary lifestyle [56].

16.3.3  Increased Levels of Circulating Cortisol and Adrenaline

Secretion of the adrenal hormones cortisol and adrenaline into the circulation is 
increased during exercise due to activation of the hypothalamic-pituitary-adrenal 
axis (HPA) and the sympathetic nervous system (SNS), respectively. Impulses from 
the motor centres in the brain as well as afferent impulses from working muscles 
elicit an intensity-dependent increase in sympathoadrenal activity and in release of 
some pituitary hormones including ACTH [29]. Increased SNS activity stimulates 
adrenaline and noradrenaline release from the adrenal medulla within seconds of 
the onset of exercise and ACTH stimulates cortisol secretion from the adrenal cor-
tex within a matter of minutes. These hormonal responses usually precede the rises 
in circulating concentrations of cytokines. Thus, the magnitude of the elevations in 
plasma cortisol and adrenaline is related to the intensity and duration of exercise 
[29]. Cortisol is known to have potent anti-inflammatory effects [16], and catechol-
amines downregulate the lipopolysaccharide (LPS)-induced production of TNF-α, 
IL-6 and IL-1β by immune cells [7]. Cortisol secretion is also augmented by the 
aforementioned rise in circulating IL-6 [88]. Thus, hormones, myokines and cyto-
kines all contribute to the anti-inflammatory effect of exercise (Fig. 16.5).

16.3.4  Inhibition of Macrophage Infiltration into Adipose Tissue

The expression of pro-inflammatory cytokines, chemokines and cell adhesion mol-
ecules in adipose tissue is increased in obese mice [38]. Macrophages and also 
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T cells, which infiltrate adipose tissue in obesity, are known to regulate the inflam-
matory state of adipose tissue [41]. Thus, the migration of PBMCs towards sites of 
inflammation, including adipose tissue and damaged vascular endothelium, is cen-
tral to the development of sustained tissue inflammation [109]. It is thought that the 
size of the adipocytes triggers macrophage infiltration rather than overall obesity 
and that recruitment of the macrophages may be stimulated by the chemokines, 
MCP-1 and MIP [11].

Fig. 16.5 Potential mechanisms contributing to the anti-inflammatory effects of exercise. 
Activation of the HPA and sympathetic nervous system (SNS) leads to the release of cortisol and 
adrenaline from the adrenal cortex and medulla, respectively. These hormones inhibit the release 
of TNF-α by monocytes. IL-6 produced by contracting skeletal muscle also downregulates the 
production of TNF-α by monocytes and may stimulate further cortisol release. Acute elevations in 
IL-6 stimulate release of IL-1 receptor antagonist (IL-1ra) from monocytes and macrophages, thus 
increasing the circulating concentrations of this anti-inflammatory cytokine. Exercise training 
mobilises T

Reg
 cells, a major source of the anti-inflammatory cytokine IL-10, and decreases the 

proportion of inflammatory (CD14+CD16+) monocytes, compared with classical (CD14++) 
monocytes. Following exercise, CD14++ monocytes express less TLR4 and thereby induce a 
reduced inflammatory response, marked by lower levels of pro-inflammatory cytokines and 
reduced adipose tissue infiltration. Exercise also increases plasma concentrations of key inflamma-
tory immune cell chemokines; repeated elevations of such chemokines may lead to a downregula-
tion of their cellular receptors, resulting in reduced tissue infiltration. A reduction in adipose tissue 
mass and adipocyte size, along with reduced macrophage infiltration, and a switch from a M1 to 
M2 phenotype all may contribute to a reduction in pro-inflammatory cytokine release from adipose 
tissue, such as IL-6 and TNF-α, and an increase in anti-inflammatory cytokine release, such as 
adiponectin and IL-10
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Exercise might limit the movement of PBMCs into inflamed adipose tissue in a 
similar manner to its effect of reducing PBMC migration towards a virus-infected 
human bronchial epithelial cell line [9]. Migration of PBMCs from the circulation 
into the tissues is a tightly regulated process involving a gradient of release of che-
mokines from the inflamed tissue (including from immune cells residing within), 
the expression of complimentary chemokine receptors on PBMCs and the expres-
sion of adhesion molecules on both immune and endothelial cells. Acute bouts of 
exercise reduce T cell migration towards the supernatants of human rhinovirus- 
infected human BEAS-2B airway epithelial cells in a manner that is independent of 
any involvement of adhesion molecules or exercise-induced elevations of cortisol 
or catecholamines [9]. However, it is known that acute exercise stress results in the 
release of chemokines into the circulation from multiple sources, and sustained 
exposure of PBMCs to physiological concentrations of chemokines including 
MCP-1 results in chemokine receptor internalisation [48]. This is thought to serve 
as a negative feedback mechanism to reduce migration and thereby terminate accu-
mulation of PBMCs in inflamed tissue. It is therefore possible that an active life-
style creates an environment of repeated short-lasting elevations in plasma 
chemokines that act over time to downregulate expression of their receptors on 
PBMCs and restrict migration of these cells towards adipose tissue. However, this 
potential mechanism needs to be explored further in humans.

Whether exercise acts to inhibit the release of chemokines from human adi-
pose tissue and in this way reduce macrophage infiltration is not clear. Certainly, 
evidence from murine studies has shown that obese mice deficient in the macro-
phage chemokines MCP-1 and CXCL14 do not exhibit inflammatory responses 
such as macrophage infiltration, increased tissue expression of IL-6 and insulin 
resistance [41]. However, while exercise training reduces macrophage infiltra-
tion into adipose tissue in obese mice it has little effect on adipose tissue MCP-1 
and CXCL14 expression [43], perhaps suggesting that these chemokines are not 
key to the exercise- induced restriction of macrophage infiltration of adipose tis-
sue. Recent findings in humans also do not report any independent effect of 12 
weeks of exercise training on adipose tissue expression of MCP-1 (or MIP, 
TNF-α and IL-6), despite falls in circulating concentrations of MCP-1 with exer-
cise. Diet-induced weight loss or weight loss in combination with exercise was 
associated with non- significant falls in adipokine mRNA expression in adipose 
tissue, and significant decreases in CD14 expression in adipose tissue were only 
found with diet alone.

In mice, training is reported to decrease the tissue expression of intercellular 
adhesion molecule-1 (ICAM-1) [43], the expression of which is known to be 
increased in obesity in humans [10]. Furthermore, antagonism of ICAM-1 in obese 
mice prevents macrophage infiltration into adipose tissue [13], and circulating 
ICAM-1 levels were reduced by 6 months of progressive aerobic exercise training 
in patients with T2DM without changes in body mass and waist circumference 
[110]. Obviously, further studies in humans are required to ascertain the role of 
exercise training on ICAM-1 in adipose tissue, but ICAM-I might also play a role 
in the exercise-induced reduction of macrophage infiltration into adipose tissue.
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Macrophage activation has been defined into two separate polarisation states, M1 
and M2 [49]. The M1 macrophage produces TNF-α, IL-6 and nitric oxide, while the 
M2 macrophage produces anti-inflammatory cytokines and arginase. Therefore, M1 
macrophages induce a chronic inflammatory state, and M2 macrophages subdue 
inflammation in adipose tissue. The inflammation state of adipose tissue also appears 
to be associated with a preferential recruitment of M1 macrophages and/or a pheno-
typic switch of macrophage polarisation in adipose tissue towards the M1 pheno-
type. Therefore, it is possible that the attenuated inflammatory state of adipose tissue 
associated with chronic exercise training occurs by both suppression of macrophage 
infiltration and acceleration of phenotypic switching from M1 to M2 macrophages. 
A recent study in mice fed with a high-fat diet to induce obesity provided some 
evidence that exercise training induces the phenotypic switching from M1 to M2 
macrophages in adipose tissue as well as inhibiting M1 macrophage infiltration into 
adipose tissue [43], although studies in humans are lacking.

16.3.5  Down-Regulation of Monocyte/Macrophage  
TLR Expression

TLRs are highly conserved transmembrane proteins that play an important role in 
the detection and recognition of microbial pathogens, and they can also be activated 
by endogenous danger signals of tissue damage such as heat shock proteins [40]. 
The key product of TLR signalling in antigen presenting cells is the production of 
pro-inflammatory cytokines and proteins, and thus, the TLR pathway plays an 
important role in mediating whole body inflammation [93]. Following a prolonged 
bout of strenuous exercise, the expression of TLRs 1, 2 and 4 on monocytes is 
decreased for at least several hours ([33, 47, 61]; Fig. 16.6). Prolonged exercise also 
results in a decreased induction of MHCII (Fig. 16.7), costimulatory molecules 
CD80 and CD86 and cytokines following stimulation with known TLR ligands 
[47]. Whether this reduction in cell-surface expression of TLRs is due to a down-
regulation of TLR gene expression, a shedding of TLRs from the cell surface or 
re- internalisation by the cell remains to be established.

Evidence is now emerging that TLRs may be involved in the link between a sed-
entary lifestyle, inflammation and disease. Exercise training studies and cross- 
sectional comparisons between physically active and inactive subjects have shown 
a reduced inflammatory response of blood monocytes to endotoxin stimulation 
in vitro and a lowered TLR4 expression at both the cell surface and mRNA level in 
physically active individuals ([26, 33]; Fig. 16.8) which is associated with decreased 
inflammatory cytokine production [90] and has been shown to occur in both young 
and elderly adults (Fig. 16.9). Over the long term, a decrease in TLR expression 
may represent a beneficial effect for health because it decreases the inflammatory 
capacity of leukocytes, thus altering whole body chronic inflammation and possibly 
reducing the risk of developing chronic disease. The precise physiological stimulus 
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Fig. 16.7 Effects of exercise on TLR activation by TLR ligands—upregulation of MHCII. Asterisk 
indicates significantly different from pre-exercise (data from Lancaster et al. [47])
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mediating an exercise-induced decrease in cell-surface TLR expression is not 
known; however, several possible signals have been implicated including anti- 
inflammatory cytokines, stress hormones and heat shock proteins [33].

16.3.6  Reduced Numbers of Pro-inflammatory Monocytes in Blood

There are two main populations of monocytes, classical (CD14++) and inflamma-
tory (CD14+CD16+), that differentially express cell-surface TLR4, with the 
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inflammatory monocytes expressing 2.5 times more cell-surface TLR4 [81]. Despite 
constituting only 10 % of the total monocyte population, inflammatory monocytes 
contribute significantly to the inflammatory potential of the monocyte pool as a 
whole [6]. The circulating, inflammatory monocyte percentage is elevated in 
patients with rheumatoid arthritis [2], cardiovascular disease [79] and T2DM [34], 
and it has been suggested that inflammatory monocytes play a significant role in the 
pathogenesis of several diseases linked to inflammation and obesity [72]. Transient 
increases in the inflammatory monocyte percentage after a single, acute bout of 
intense exercise have been observed [80] followed by a rapid return to baseline dur-
ing recovery, but regular exercise appears to reduce the proportion of inflammatory 
monocytes in the circulation in the resting state. For example, a cross-sectional 
comparison of healthy physically inactive elderly men and women with an age-
matched physically active group indicated that sedentary people have a twofold 
higher percentage of circulating, inflammatory monocytes [95]. Furthermore, just 
12 weeks of regular exercise training significantly reduced the percentage of inflam-
matory monocytes in the inactive group to the level of the active group (Fig. 16.10), 
and endotoxin-stimulated TNF-α production was reduced significantly after the 
training intervention. Based on previous reports that glucocorticoid therapy selec-
tively depletes CD14+CD16+ monocytes [23], it is interesting to speculate that 
exercise-induced transient spikes in cortisol may have played a role in reducing 
CD14+CD16+ monocytes with exercise training.

16.3.7  Increased Circulating Numbers of Regulatory T Cells

CD4+CD25+ regulatory T cells specifically express the gene encoding forkhead/
winged helix transcription factor (Foxp3) [78] and suppress immune responses via 
cell contact-dependent mechanisms. Studies show that the depletion of these cells 
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causes autoimmune disease and enhances the immune response to foreign antigens 
[22]. Interestingly, a recent study showed that a 12-week programme of tai chi 
chuan exercise induced a significant increase in regulatory T cells [107]. Production 
of the regulatory T cell mediators transforming growth factor α (TGF-α) and IL-10 
in response to specific antigen stimulation (varicella zoster virus) was also signifi-
cantly increased after this exercise programme. Furthermore, a study of patients 
with T2DM showed that regular tai chi chuan exercise altered the Th1/Th2/Treg 
balance by increasing Foxp3 but not TGF-α expression [106].

In a study that used a running mouse model, the responses of circulating regula-
tory T cells to moderate and high-intensity exercise training were examined. Only 
the high-intensity training resulted in increases in regulatory T cell numbers and 
activation and was also associated with reduced pro-inflammatory and increased 
anti-inflammatory cytokine expression [98]. Intriguingly, the logical conclusion 
from these findings is that high-intensity exercise training might be more beneficial 
than moderate intensity in reducing risk of chronic cardiovascular and metabolic 
diseases via its anti-inflammatory effects. This notion is supported by another recent 
study that showed that the combination of high-intensity aerobic plus resistance 
exercise training, in addition to daily physical activity, is required to achieve a sig-
nificant anti-inflammatory effect in T2DM patients [3].

16.3.8  Other Factors

During acute exercise, there is also a marked increase in growth hormone, prolactin, 
heat shock proteins, and other factors that have immunomodulatory effects [68]. 
Taken together, it appears that each bout of exercise induces an anti-inflammatory 
environment. Various mechanisms can contribute to this (Fig. 16.5), and it seems 
likely that their relative importance will vary dependent on the frequency, intensity 
and duration of the exercise performed. Intuitively, we might expect IL-6 to assume 
greater relative importance when the exercise is prolonged and glycogen-depleting 
whereas catecholamine-mediated effects are likely to assume greater importance 
with shorter duration, high-intensity exercise.

16.4  Exercise Is Medicine

In view of the anti-inflammatory effects of exercise described above and the role of 
inflammation in the pathogenesis of disease, it is not surprising that exercise is now 
considered a prophylactic for preventing several major diseases as well as an effec-
tive therapy for many conditions/diseases (Table 16.1). Perhaps the strongest evi-
dence for the role of exercise in disease prevention comes from randomised 
controlled trials evaluating the effectiveness of lifestyle intervention in preventing 
T2DM (for a review, see [30]). These studies have demonstrated conclusively that 

16 Anti-inflammatory Effects of Exercise



418

lifestyle intervention (combined diet and exercise) is effective in preventing T2DM 
in groups of individuals who are at high risk of the disease by virtue of having 
impaired fasting glucose and/or impaired glucose tolerance as well as being over-
weight/obese. A limitation of these studies is that they did not isolate the indepen-
dent effects of exercise and diet in preventing T2DM, but the effectiveness of 
exercise is supported by the finding in the Finnish Diabetes Prevention Study [96] 
that among those in the intervention group who did not reach the goal of losing 5 % 
of their initial body mass but who achieved the goal of exercising for more than 4 h 
per week, the odds ratio of diabetes was 0.2 (i.e. 80 % lower) than in intervention 
participants who remained sedentary. Thus, although more needs to be learnt about 
the role of exercise in preventing T2DM, it is clear that exercise makes a valuable 
contribution to an overall lifestyle package for preventing this disease.

In addition, exercise appears to have major benefits for the treatment of T2DM. 
The findings of one non-randomised study (the Malmö feasibility study) showed that 
54 % of participants with early stage T2DM were in remission by the end of a 5-year 
diet and exercise intervention [20]. Moreover, prospective observational studies indi-
cate that high levels of physical activity and/or physical fitness are effective in reduc-
ing the risk of cardiovascular disease and/or all-cause mortality and there is evidence 
implicating inflammation in the pathogenesis of T2DM [50], and it is therefore likely 
that the therapeutic benefits of exercise for those with T2DM are due, at least in part, 
to the well-established anti-inflammatory effects of regular exercise [42].

Aside from its role in preventing and treating T2DM, there is a good evidence 
that exercise is effective in preventing several other major diseases particularly car-
diovascular disease [94], breast cancer [19] and colon cancer [103], and there is 
some evidence to support a role of exercise in preventing dementia [1]. Moreover, 
while exercise should not be considered a panacea there is evidence to support a role 
for exercise as a therapy for many diseases/conditions beyond those mentioned 
above including chronic obstructive pulmonary disease, chronic kidney disease, 
asthma and osteoporosis [69].

16.5  The Elite Athlete Paradox

Although regular moderate-intensity exercise is associated with a reduced incidence 
of upper respiratory tract infection (URTI) compared with a completely sedentary 
state [51, 59], the long hours of hard training that elite athletes undertake appears to 
make them more susceptible to URTIs [31]. This is also likely attributable to the 
anti-inflammatory effects of exercise inducing a degree of immunodepression. An 
increased risk of minor infections may be the (small) price to be paid for the long- 
term health benefits of regular exercise at high dosage.

A recent murine study indicated that intensive exercise training results in an 
increased anti-inflammatory cytokine (IL-10) response to antigen exposure [98], 
and a study on human endurance athletes revealed that those who were illness-
prone during a 4-month period of winter training had fourfold higher IL-10 
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production by antigen-stimulated whole blood culture compared with athletes who 
remained illness- free during the same period [32]. There is now extensive evidence 
from both murine and human studies that IL-10 production usually imposes some 
limits on the effectiveness of antipathogen immune responses, especially innate 
immunity and adaptive Th1 responses. These studies suggest that very high training 
loads induce a large enough anti-inflammatory state to increase the risk of picking 
up minor infections.

16.6  Conclusions

Regular exercise reduces the risk of some cancers as well as chronic metabolic and 
cardiorespiratory diseases, in part because exercise exerts anti-inflammatory effects. 
The anti-inflammatory effects of regular exercise may be mediated via both a reduc-
tion in visceral fat mass and the induction of an anti-inflammatory environment 
with each bout of exercise. Various mechanisms may contribute to the anti-inflam-
matory effects of exercise including increased release of IL-6 from working skeletal 
muscle, increased release of cortisol and adrenaline from the adrenal glands, reduced 
expression of TLRs on monocytes/macrophages, inhibition of monocyte/macro-
phage infiltration into adipose tissue, phenotypic switching of macrophages within 
adipose tissue, a reduction in the circulating numbers of pro-inflammatory mono-
cytes and an increase the circulating numbers of regulatory T cells. At present, we 
do not know what the relative importance of the different anti-inflammatory mecha-
nisms that have thus far been identified are, though it seems likely that this will 
depend on the modes, frequencies, intensities and durations of exercise performed. 
The anti-inflammatory effects of exercise are also likely to be responsible for 
depressed immunity that makes the elite athlete more susceptible to common 
infections.
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