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Introduction

The United States transportation system is an extensive and integrated component
in the eight key infrastructures upon which the livelihood of the U.S. is dependent
(Department of Homeland Security 2009). The accessibility and mobility enabled
through open use of the transportation system is a vital and necessary freedom which
contributes to the fluidity of the American environment. The transportation system
is expansive and heavily utilized with an average of over 2 billion daily vehicle-
miles of travel (nearly twice as much travel since the early 1980s) on the roughly 4
million miles of paved roadway, nearly 47,000 miles of Interstate highway, 600,000
bridges and 366 U.S. highway tunnels over 100 m (Texas Transportation Institute
2011; Transportation Security 2012). Travelers and shippers may also choose to
utilize more than 300,000 miles of freight rail, nearly 10,000 miles of urban and
commuter rail systems, or connect between 500 commercial-service and 14,000
general aviation airports (Transportation Research 2002).

In this chapter, a general review of network-based hazardous material transporta-
tion models will be given. Specific attention will be given to the network interdiction
model and its variants (e.g. shortest path network interdiction) as these models
have recently become popular in the domain of homeland security. The chapter
will focus on the application of network interdiction models to networks of various
size and structure and the ensuing computational performance (including objective
value, sensitivity to network properties, etc.) and spatial structure (e.g. resource
allocation, network connectivity/density) of the interdiction solutions. A systematic
experimental analysis will be designed to identify salient network and regional
properties impacting interdiction solutions (e.g. proximity to origin points, initial arc
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metric values, etc.). Current approximations for the network interdiction model will
also be analyzed against the obtained solutions, including alternate approximation
formulations as well as alternate solution approaches. The evaluation of such
techniques will lead to greater insight on the effect of network and problem structure
to resource allocation in interdiction models.

Literature Review

This section will provide some supporting background in past and current hazardous
materials transportation research. A history and survey of past research initiatives
will be followed by identification of current research threads in network-based
infrastructure protection whose roots and foundation can be traced back to the
hazardous material literature. Attention will be given to the quantification of
risk, potential pitfalls, and benefits/drawbacks of estimation as a tool to measure
risk. Discussion and justification for a selection of related mathematical models
such as the Vehicle Routing Problem with Time Windows, Discrete Fractional
Programming, and Shortest Path Network Interdiction will be provided in addition
to some brief detail on algorithm/heuristic modeling within hazardous materials
transportation problems. In addition to optimization, this section will introduce
past practices in the field of Geographic Information Science (GIS) geared towards
supporting and augmenting risk analysis, routing and scheduling problems through
spatial reasoning methods. This section will conclude with a detailed discussion
on the Network Interdiction problem, which is used as the test-bed formulation
throughout the remainder of this chapter.

In 2001, there were 41,527 active hazmat motor carriers in the United States driv-
ing an average of 800,000 truck shipments per day of hazardous materials (hazmat)
over the nation’s roadways (Field 2004). By 2011, the number of active hazmat
motor carriers has grown to 61,000, transporting over 2 billion tons of hazmat
annually (Transportation Security 2012). Similarly in 2011, there were 5.76 million
hazmat inspections carried out by the U.S. Department of Transportation with 3.75
million vehicle inspections. In approximately 19,400 of 740,000 inspection cases on
interstate and hazmat certified carriers, unsafe or fatigued driving conditions were
reported (Transportation Security 2012).

The commingling of commercial, personal, and hazmat travel has fueled an
emphasis on safety in the transportation industry, not merely from the perspective
of individual harm, but also the durability and maintenance of the integrity and
serviceability of the transportation systems themselves (as an example, the U.S.
Department of Transportation (DOT) publishes a biennial report on the status of
hazmat transportation) (National Highway 1996; US Department of Transportation
2006). Additionally, academic researchers have heightened focus on the problem
of increasing safety and, more recently, security of hazmat shipments, especially
through populated areas or near perceived targets (i.e. nuclear power plants, water
resource plants, etc.).
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Fig. 1 All incidents by mode and incident year (US Department of Transportation 2012)

Figure 1 and Tables 1, 2, 3, and 4 illustrate the frequency of incidents occurring
during hazmat transportation by air, highway, railway and waterway. Hazardous
material transportation incidents in 2011 resulted in over $100 million in damages
with a 10-year cumulative total of over $670 million. Additionally, the size and
magnitude of hazmat transportation across the U.S. and the attractiveness of its
cargo (which could be used by both domestic and international organizations to
create situations of intentional public exposure or weaponization) generates support
for an immense number of research opportunities geared towards creating safer,
more stable and less vulnerable hazmat transportation.

A History in Hazardous Materials Transportation Research

The concept of risk, and its quantification, however ambiguous, has been the
driving force behind many popular models related to infrastructure protection,
transportation and, in recent years, homeland security. Risk in hazardous materials
transportation was most succinctly measured as the product of incident probability
and incident consequence. Incident probability implies occurrence of an accident
that releases or exposes a region/population to hazardous material while incident
consequence quantitatively measures the impact(s) of release. Ideally, these proba-
bilities would be based on real-world data and historical statistics, leaving little room
for interpretation. In practice, there are many pitfalls in quantifying risk, including,
the lack of accurate and specific historical data and lack of a clear and agreed upon
definition of risk head this list. With respect to data collection, a true calculation
of risk would include meteorological and topological knowledge, accurate effects
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and dispersion of the spilled substance, location of individuals at the time of the
incident, and human does response, to name a few. Note that this list does not
begin to include components related to economic and environmental damage, as
well as social and socio-economic implications which may be desired in quantifying
incident consequence) (List et al. 1991; Erkut and Verter 1998). This impracticality
has led hazmat modelers to adopt estimation metrics that avoid such extensive, time
consuming data collection, with varying degrees of complexity and success.

The ultimate goal of risk measurement is to utilize estimation techniques that
drive the optimization procedure and accurately replicate real-world scenarios
without obtaining an overwhelming amount of data. List et al. (1991) refers to
this as constructed risk or a constructed index. A constructed index, in its most
simplistic form, decomposes the network, examining its individual arcs, assigning
a pseudo cost to each arc, and implementing algorithms such as Yen’s shortest path
algorithm in an effort to succinctly yet accurately represent the true environment.
Here, (1) illustrates the risk function, where RAB is the risk (which would be used
instead of link length as the cost in a shortest path algorithm) for link AB, pAB is the
probability of an incident occurring on link AB, and CAB is the consequence for AB,
which is nearly always contingent (either partially or exclusively) on the population
density within a certain vicinity of the road segment (Erkut and Verter 1998).

RAB D pABCAB (1)

Assisting in the determination of pAB , incident probability studies examining
variations in release rate by mode, carrier type, vehicle type, road classification,
time of day and weather conditions may be used (List et al. 1991). Estimation tools
for incident consequence typically take on the form of a “danger circle” (Erkut
and Verter 1998) or “buffer zone” (Laefer and Pradhan 2006; Huang et al. 2004)
such that all individuals within the zone are determined to be exposed to a fatal
hazmat incident. It is important to note that, depending on the time of day and
area, population estimates may vary significantly from static figures such as census
counts (Erkut and Verter 1998). Total edge consequence may be derived under
the assumption that an edge is composed of n unit segments, each with uniform
parameters (Erkut and Verter 1998). Expected edge consequence may then be
defined by (2) (variable interpretation is the same as above) and, since p (probability
of a hazmat incident) is typically very small (on the order of one per one million
miles), approximated as in (3) (Erkut and Verter 1998).

pC C .1 � p/pC C .1 � p/2pC C : : : C .1 � p/n�1pC (2)

.pn/C (3)

It is this value that would be substituted in the objective function of a shortest path
problem, creating an optimization problem that would return the path of minimum
risk from an origin-destination (O-D) pair given the current network.
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Fig. 2 Zone segmentation
along a link

While this approach is eloquent in its relative simplicity, key assumptions reduce
the realism of the output. Primarily, the assumption that each unit segment of
an edge has uniform properties is limiting. Additional nodes that separate a link
without uniform properties into its uniform components may be added, without
influencing the optimal outcome. However, this approach is impractical for large
networks and also increases the number of constraints in the optimization problem,
potentially increasing computation time significantly. If this assumption cannot be
made, then expected edge consequence may not be approximated as succinctly as
in (3), preventing the shortest path approach (Erkut and Verter 1998).

In practice, multiple trips are necessary to effectively move material, and consid-
eration of consequence over numerous shipments between an O-D pair is necessary
to accurately reflect the repercussions of an incident. Viewing these shipments as a
sequence of independent Bernoulli trials was discussed in detail by Jin et al. (1996)
and Jin and Batta (1996) and continued in Batta and Chiu (1998). Underlying these
works is the observation that multiple, but finite, hazmat trips are often needed to
transport all of the material. Total shipments may be unrestricted (continuing until
all material is shipped), or may be suspended or ceased after a critical threshold on
the number of accidents is reached (Jin et al. 1996). Probability of link incident (pi )
and consequence of link incident (Ci ) remain, while introduction of the variable
t (threshold number of accidents) and T (total trips to be made) allow for new
objective considerations (Jin et al. 1996). Varying the values of t and T, alternative
objectives such as expected total consequence, expected consequence per trip, and
expected number of trips between two successive accidents are considered (Jin and
Batta 1996).

Risk equity, described as the fair dispersion of risk throughout a population,
represents yet another way that hazmat transportation has been viewed and modeled.
The objective function in a risk equity problem is to find a set T of routes
(not necessarily distinct) that minimize total risk over a network/region while
constraining the difference in total risk between every pair of zones within a
specified threshold T� (Gopalan et al. 1990). Figure 2 illustrates a typical instance
of network segmentation, where link (i, j) directly spans two zones and indirectly
influences a third (Gopalan et al. 1990).

Instead of viewing the incident and its consequence separately, multi-criterion
optimization problems can be formulated to consider individual hazmat transporta-
tion problem components individually within a system-optimized mathematical
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population
exposure

A

B

C
D

E
F

probability

Fig. 3 Efficient frontier of a typical bi-criterion minimization problem

Fig. 4 Risk map for aniline transportation in Valladolid

model. Figure 3 shows a typical bi-criterion efficient frontier for two factors
(incident probability and population exposure), with each letter representing a
different optimal solution on the efficient frontier generated applying different
weights to the objective function criteria (Erkut and Verter 1998). Huang et al.
(2004) extends this approach, identifying five criteria (exposure, socio-economic
impact, risk of hijack, traffic conditions, and emergency response) of potential
interest in hazmat route choice (Fig. 4).
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Shifting from the macro-scale view of equity and multiple criteria, approaches
focusing on individual network components at a micro scale emerged as a natural
complement. Arc vulnerability modeling considers extrinsic, tangible elements that
lie in the vicinity of the link (i.e. hospitals, education centers, sports facilities,
shopping centers, power stations, water treatment centers, etc.) to quantify an
individual arc metric which is used to formulate the given optimization problem.
The concept may be enhanced by incorporating non-vicinity related tangibles such
as network redundancy, capacity, traffic demand and highway configuration, which
may positively or negatively influence the importance of a link (Cova and Conger
2003). Also, natural disasters such as earthquakes, may cause fires, landslides, and
facilitate dam failures (and consequently floods), all possible contributors to net-
work disconnection and transportation disruption. The flexibility such approaches
gave to modelers has made them strong favorites and many contemporary homeland
security models can be traced back to these formulations.

Considering, for example, least-flood-risk as an additional criteria for routing in a
multi-criterion model, link cost could be quantified as in (4), where the denominator
models flood characteristics (˛h 2 Œ0; 1� representing flood height and ˛v 2 Œ0; 1�

representing flood velocity) such that if no flooding is present, the cost is simply the
numerator (in this case, the length of link (i, j)) (Cova and Conger 2003).

cij D Lij

˛h˛v
(4)

Simulation software may also be used to help quantify link vulnerability,
especially in the area of natural disasters. The Federal Emergency Management
Agency (FEMA) has created a software tool named HAZUS, which may be used
to observe how transportation networks react to the adverse affects of natural
disasters (Federal Emergency Management 2006). Similarly, the Federal Highway
Administration recognizes REDARS, used exclusively to determine how seismic
events impact road and highway systems (MCEER 2006).

Network Models and Interdiction

Network stability and the maintenance of serviceability have already been shown
to be of great concern when considering the routing of hazmat. The functioning
of links in a network may be negatively influenced by congestion and accidents,
weather, seismic activity and natural disasters, the occurrence of hazmat incidents,
intentional acts to disrupt the network, or by the combination of any two or more
such instances.

One way to identify network vulnerability is through the identification of critical
links. A link is deemed “weak” if incident probability is high, “important” if
consequence of an incident is large, and “critical” if it is both weak and important
(Jenelius et al. 2006). These values are derived through the observation of how
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link absence affects path travel time, using multiple, predetermined, O-D paths to
evaluate (Jenelius et al. 2006). Additionally, incorporation of key-infrastructure (i.e.
proximity of the link to schools, hospitals, military, power or water facilities) could
assist in more realistic modeling, where such vulnerable sites (potential targets)
contribute to the link’s importance (Luedtke and White 2002). Criticality of links is
also dependent on the geographic features over which the network lies (i.e. coastline,
mountain ridge). These features hinder the existence of nearby options available for
re-routing without significant time delay. Therefore, it is useful to consider inherent
network vulnerability through quantitative means and incorporate this into a risk or
routing model. The generality of Jenelius et al. (2006), is applied to optimization
of hazmat transportation, developing a mathematical model called the Hazardous-
Network Design Problem (HDP).

Given a road network, HDP selects links that should be closed to hazmat trans-
portation in order to minimize total risk (Kara and Verter 2004). The formulation
of the HDP is bi-level, containing an outer and inner problem that more accurately
represents the interaction between policy makers and hazmat carriers (there is often
predominance in hazmat routing problems favoring the carriers’ viewpoint (i.e.
routing) and omitting regulator decision-making pertaining to link availability).
The inner problem minimizes the combined travel distance of the trucks subject
to flow conservation, and may be viewed as either a minimum cost network flow
or a constrained shortest path problem, while the solution of the outer problem
minimizes population exposure. The two problems interact with the binary decision
variables of the outer problem becoming the parameters of the inner problem (Kara
and Verter 2004). Success of the model prescribes the available road network and
route choices for hazmat transportation.

The term interdict is defined by Merriam-Webster’s dictionary as the adjective
“to destroy, damage, or cut off (as an enemy line of supply) by firepower to stop or
hamper an enemy.” The problem of network interdiction may then be taken to mean
the intentional destruction, by force, of a network to impede or cease enemy use.
Within the realm of optimization, especially in the military community, the study of
interdiction problems has been given significant attention.

Considering network flow, the interdiction problem may be represented as a
multi-commodity problem with two players (Lim and Smith 2007). The first player,
the follower, makes profit by delivering commodities to designated destinations.
The leader attempts to minimize the followers profit by selectively destroying arcs,
the destruction of which costs the leader by subtracting a link destruction amount
from the leaders’ interdiction budget. Arcs may either be destroyed discretely
(either capacity flow is possible or no flow is possible) or continuously (partial
flow over links is allowed). The Multi-Commodity Flow Network Interdiction
Problem (MFNIP) is then modeled as the minimization of the maximum profit
the follower may achieve, subject to conservation of flow constraints, the leaders
budget constraint, and non-negativity (Lim and Smith 2007). From the followers’
perspective, MFNIP quantifies a worst-case scenario that showcases the weakest
(or most vulnerable) links in a network. This information may then be used in
the strengthening of weak points or the enhancement of network connectivity to
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better secure the system (Qiao et al. 2007). In addition to transportation networks,
the multi-commodity flow problem may be applied to airline operations, supply
chains, and telecommunications, as well as water supply networks, and power grid
systems, all of which may then be examined through the MFNIP formulation to
gauge network security and stability.

A review of early literature on the routing, schedule, location and risk analysis
for hazardous materials transportation can be found in List et al. (1991). Specifically
associated with risk analysis, Erkut and Verter (1998) provides model overviews
and examines how the quantification of risk in these models affects model perfor-
mance/accuracy. In the case where risk is taken to be the acceptable threshold of
accidents in transport willing to be endured, Jin and Batta (1996) gives a nonlinear
constrained shortest path approach and examines the effect of the accident threshold
on routing decisions.

Beginning with Wood (1993) and continuing through Israeli and Wood (2002),
Brown et al. (2006) and others, network interdiction began to emerge as a
natural extension to hazardous materials transportation research. The problems are
decidedly similar and deal with undesirable transportation through a network. In
the hazardous materials transportation problems, risk and exposure were two of
the quantifiable measures applied to each arc or node of the network and used as
the basis for determining appropriate route selections. In the case of Israeli and
Wood (2002) and Brown et al. (2006), the quantifiable arc measure is length, which
is increased when an arc is interdicted. In these two-player network interdiction
problems, these elongated arcs effectively deter the opposing player from using
these arcs in composing their shortest path. Scaparra and Church (2008) and Church
and Scaparra (2007) model interdiction at network nodes with interdiction removing
the ability of a facility located at that specific node from satisfying demand to other
nodes. Considering the minimization of weighted demand-distance as the objective,
an optimal nodal interdiction strategy will increase the opposing player’s cost to
satisfy network demand.

As these and other recent mathematical models transition from an emphasis on
risk assessment and hazardous materials transportation to problems of homeland
security and extreme events, five major factors can be used to delineate and
differentiate model focus, intent and capability. The five major factors offered
in Yates and Sanjeevi (2012) are formulation, objective function, interdiction
metric, component interdiction and the Origin–destination policy. Formulation
refers to single versus bi/multi-level models. Objective function details whether
the original objective function provided for a given problem is additive or mul-
tiplicative/probabilistic (note that this is the original objective function and does
not refer to any transformations applied during the solution process). Interdiction
metric refers to whether the individual metrics used are continuously or discretely
interdicted while Component Interdiction dictates whether these metrics are arc-
based, node-based, or network/spatially based. Lastly, Origin–destination policy
refers to the existence of a single O-D pair or multiple O-D pairs in the problem.
Table 5 is now introduced to provide an overview of some representative recent
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network interdiction literature published after 2004. For additional discussion of
network interdiction problems published prior to 2004, refer to Church et al. (2004).

At its core, the shortest path network interdiction problem (SPNIP) is a two-
player deterministic game being played over a network composed of arcs and nodes
with a given arc/node metric (length, detection probability, etc.) and with identified
origin and destination sets. In these models, any and all of these components could
be completely known by both players (i.e. having perfect information) or could
contain some element of mis-information, deception (imperfect information). The
ability to interdict is also constrained by limited resources, which could be modeled
as a finite number of arcs/nodes to interdict or a budget limitation where each
interdiction comes with some associated interdiction cost.

Developed interdiction models can have objective functions that are a single
level or multiple levels to reflect to degree of interaction and knowledge among
the players being modeled. Examples of single-level models include Church et al.
(2004) and Church and Scaparra (2007). In this case, these models are variants
of traditional optimization models such as the p-Median and Maximal Covering
problems that have been adapted to include interdiction concepts. In many instances,
these single-layer models are solved for a variety of problem parameters and thresh-
old values to determine a pareto front, or set of interdiction strategies to better gain
situational knowledge. Such analysis is extremely useful when the capability/intent
of an adversary is in question or when information is unreliable/imperfect.

Multi-level models (Morton et al. 2007; Israeli and Wood 2002; Brown et al.
2006; Church and Scaparra 2007), in contrast to single-level models, are often
integer or mixed integer programs that model the decision making of players
sequentially in the same formulation. Instead of solving under multiple parameter
and threshold instances, the interaction between the interdictor and the defender
is modeled simultaneously. The objective function in multi-level models is one
that typically reflects pure competition, with the interdictor seeking to minimize an
overall network metric (such as flow or satisfied demand) and the defender seeking
to maximize this minimum metric. In other words, the defender’s job is to minimize
the effect of interdiction on their network operations. In Table 1, “>0” indicates
that the interdiction metric is continuous (i.e. interdiction increases arc length by x
with x > 0), “ZC” indicates the metric is integral (i.e. interdiction is based upon the
number of layers penetrated) and “[0, 1]” indicates that the metric is probabilistic.
In the probabilistic case, interdiction can be modeled as the probability of path
detection P where P D Q

iaixi, i " P models path probability as the product of all
arc probabilities ai on path P (xi D 1 if i " P, 0 otherwise).

Multi-level models, due to their structure, can often be decomposed and solved
iteratively to optimality using standard optimization techniques. One of the most
straight-forward and intuitive of these solution approaches is Bender’s Decompo-
sition (Bard 1998), where the interdictor and defender “trade” moves and with
each move providing some degree of information to their counterpart (recall that
these problems can be set up with perfect or imperfect information). In this way,
information from these consecutive player movements is continually accrued and
used within the next iteration of the decomposition. At some point, the interdictor
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and defender reach a state of equilibrium where no new strategies are employed. In
the worst case, this equilibrium occurs after all possible moves have been explored
(i.e. complete enumeration), though in practice significantly less iterations are
required. This certificate of optimality, in conjunction with its intuitive approach,
is a major benefit to using Bender’s Decomposition (Bard 1998).

Formulating Interdiction Models

In this section, we begin to explore the shortest path network interdiction problem
(SPNIP) as defined by Israeli and Wood (2002) and discuss multiple variations
which can be derived from it. We will begin examining solutions to the SPNIP
and its variations by looking at their computational performance when solved
using Bender’s Decomposition, implementation of which will also be addressed. As
patterns and trends emerge in the solutions, we will begin to motivate development
of alternative heuristic and approximation techniques to solve network interdiction
problems. These techniques will be discussed and compared in “Developing
interdiction approximations and heuristics” of this chapter.

Mathematical Models and Notation

SPNIP and SPNIP-M

We begin by presenting the SPNIP formulation of Israeli and Wood (2002) and
a modified shortest path network interdiction problem (SPNIP-M) formulation of
Yates and Casas (2010). Each is a discrete bi-level optimization problem with an
attacker and defender. The attacker considers all identified origins and targets and
uses the network to find the path with, in this case, lowest detection probability
(note that many network measures such as distance or cost, could be used in place
of detection). The defender locates a limited number of resources which increase arc
(and subsequently path) detection probabilities. Through the remainder of this work,
we will refer to the defense resources as sensors, though this term is used relatively
loosely. In our modeling, a sensor’s properties include a predefined range (beyond
which their influence is considered to be null) as well as an associated location cost
and a parameter for sensor strength.

As a point of delineation, we note that the formulation of SPNIP assumes that
sensors are located directly on network arcs in a 1-to-1 fashion. SPNIP-M, on
the other hand, locates sensors geographically within the region at pre-specified
locations. These locations, referred to as atoms, are point locations within the
continuous region containing the network/infrastructure of interest. The atom set
containing all possible sensor locations for a given problem is determined through
a number of different methods which can include set distances, line-of-sight,
proximity, or a function containing any combination of measurable geographic
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and network properties. For our initial models, we assume a simple and uniform
grid pattern for atoms, though section “Developing Interdiction Approximations
and Heuristics” will discuss how more intelligent atom derivations can be derived
and implemented within SPNIP-M. Overall, the geographic structure of SPNIP-M
increases the complexity and realism of sensor location in the interdiction model,
giving the modeler more flexibility.

Terminology

Atom: Potential sensor location point within the geographic region occupied by the
network.

Attacker: Seeks the path of lowest detection (i.e. shortest path) on the network. The
obtained path is simple and complete and will consider all possible origin and
destination pairs (previously referred to as the follower).

Defender: Allocates sensors to increase detection probability. Sensors may be
located directly on the network arcs in SPNIP or at designated geographic
locations (atoms) in SPNIP-M and SPNIP-LB.

Detection: The probability that movement along a given arc (path) will be observed.
Sensor: Increases detection on arcs which fall within its given range. The degree to

which detection is increased depends upon the sensor’s power. Sensors are placed
directly on arcs in the SPNIP and at designated geographic locations (atoms) in
SPNIP-M and SPNIP-LB. Sensors have a known allocation cost.

Notation

A Set of suitable sensor locations cs Cost to locate a type s
sensor

� Set of network arcs kni f1, �1g if node n " N is
the fhead, tailg or
arc i " �, else 0

B Total defense budget �s Sensitivity of sensor
type s, with
0 � �s � 1

N Set of network nodes qs � f1, �1, 0g if node
n " N is forigin,
target, intermediateg

S Set of sensor types ras(i) 1 if arc i " Ras, else 0
� Overlapping coverage threshold uist Probability of

non-detection for i
covered by t type s
sensors

Ras Set of arcs within the influence
range of a type s sensor located
at atom a " A
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Decision Variables

wi D 1 if arc i is used in the attacker path, else 0.
yas D 1 if sensor type s is located at atom a, else 0.
xist D 1if arc i is covered by t type s sensors, else 0.

ŒSPNIP�

z D min max
Y

i;s;t

uwi yat

ist

s:t:
P

i

kni wi D qn 8
P

s

yis D 1 8 i
P

i;s

csyis � B

w; x; y 2 f0; 1g

ŒSPNIP-M�

zm D min max
Y

i;s;t

uwi xist
i st

s:t:
P

i

kniwi D qn 8 n

xist � 1
t

P

a

ras.i/ � yas � 0 8 i; s; t
P

s;t

xist D 1 8 i

P

a;s

csyas � B

w; x; y 2 f0; 1g

Regardless of the formulation, we assume a non-zero detection probability for
all arcs as an attacker can never realistically be guaranteed to reach his/her target.
When dealing with network-based transportation, this detection probability, albeit
potentially small, can be attributed to incidental traffic violations, accidents with
other motorists, or a concerned citizen alerting local authorities to a suspicious
individual or vehicle. We assume that these initial arc non-detection probabilities
are known. We also assume that detection is equivalent to capture as a simplistic
proxy for the more complicated case where detection and interception (i.e., capture)
are separate factors.

As the SPNIP and SPNIP-M formulations show, the objective function yields a
path detection probability calculated by multiplying arc non-detection values for all
arcs comprising the optimal attacker simple path through the network (i.e. one that
begins at a designated origin, terminates at a designated target and does not cycle)
given the defender’s optimal sensor location strategy. We calculate the impact of
a sensor’s coverage as uist D ui01

Q

t

�s where �s indicates the sensor’s strength.

In SPNIP-M, there is a maximum threshold of coverage, � , beyond which an arc’s
non-detection probability will not be affected by additional sensor coverage. In this
way, all uist values may be calculated a-priori.

In both models, the first set of constraints imposes a conservation of flow within
paths that the attacker identifies and is the only constraint which includes the
attacker decision variable wi. The second constraint set in SPNIP-M does not appear
in the SPNIP model and functions as a relational constraint between sensor location
and the corresponding arc influence upon the network. Simply stated, an arc cannot
be influenced by t type s sensors unless the defender has allocated t type s sensors
containing arc i in their respective ranges. The remaining constraints in both models
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guarantee arc coverage (every arc is either covered, xi1t D 1, or not covered, xi01 D 1)
and limit the defender’s available resources. All variables are modeled as binary
decision variables.

SPNIP-LB

In both SPNIP and SPNIP-M, an arc is considered as covered by a sensor when any
portion of that arc, no matter how large or small, falls within the sensor’s range.
Using this type of binary approach to coverage is highly restrictive and, one can
argue, does not accurately reflect real-world sensor performance. Functions exist
which define this type of behavior and have been used in past military models, where
longer time spent in the range of enemy radar functionally increased one’s detection
probability (Przemieniecki 2000). Using a similar functional approach, we define a
length-based approach to shortest path network interdiction (SPNIP-LB) to augment
the binary SPNIP and SPNIP-M formulations.

[Length Based]:

ui D initial probability of non-detection for arc i

lias D length of arc i within the range of a type s resource located at atom a

vias D proportion of non-detection reduction when arc i is influenced

by a type s resource at atom a

D e-�slias where �s � 0 8 s 2 S

SPNIP-LB

min
y;x

max
w

Y

s;a;i

ui
wi vwi xias

ias

s:t:
X

i

kni wi D qn 8 n 2 N

xias � ras
i yas � 0 8 i 2 I; a 2 A; s 2 S

X

a

X

s

xias � 1 8 i 2 I

X

s

X

a

csyas � B

w; x; y 2 f0; 1g

The SPNIP-LB formulation is defined by the same constraint sets as the binary
SPNIP-M. In terms of modeling, SPNIP-LB differs in its derivation of non-detection
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Fig. 5 Differentiating between the binary SPNIP-M and length-based SPNIP-LB formulations
(Yates and Sanjeevi 2012)

probability and in composition of the objective function. In SPNIP-LB, calculation
of non-detection probability is performed through a more complex function which
more realistically models the connection between detection probability and time
spent inside a sensor’s range (Przemieniecki 2000). Figure 5 illustrates the concept
of partial coverage and how it’s able to be captured through formulation of the
SPNIP-LB, adding yet another dimension of complexity for interdiction modelers.

Obtaining Solutions Through Bender’s Decomposition

The interdiction formulations previously discussed share one major property that
allows for a separation-based solution approach; no single set of constraints contains
both attacker and defender variables. This means that the formulations may be
divided into sub-problems for the attacker and defender respectively. Once these
sub-problems are composed, they may be solved iteratively and linked together in
a way that the solutions obtained in one sub-problem are used to feed the other
cyclically. This approach is known as Bender’s Decomposition (Bard 1998).

Implementing Bender’s Decomposition for the aforementioned interdiction mod-
els, we derive an attacker sub-problem which maximizes path non-detection and
is constrained by the conservation of flow constraints and fixed defender decision
variables xist (this results in the formation of a node-arc incidence matrix where
the LP relaxation will return integral solutions (Nemhauser and Wolsey 1999).
We derive the defender sub-problem to minimize path non-detection subject to
the remaining constraints with the defender variables x and y and with fixed
attacker decision variables wi . Both sub-problems are now provided, along with
an illustration of the decomposition approach in Fig. 6.
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Fig. 6 Illustration of the Bender’s decomposition method (Yates and Casas 2010)

ŒAttacker Sub-Problem� ŒDefender Sub-Problem�

zat t D max
P

i;s;t

log.uist /wi xist zdef D min V

s:t:
P

i

kni wi � qn 8 n s:t: xist � 1
t

P

a

ras
i yas � 0 8 i; s; t

wi 2 RC P

i;s;t

xist D 1 8 i

P
csyas � B

P
log.uist / wi xist � V

yas; xist 2 ZC

As in Fig. 6, the technique iteratively solves the attacker and defender sub-
problems, passing solution information sequentially. Within each iteration, the
defender allocates its resources optimally considering only those attacker paths
found through previous iteration. This optimal allocation is then used to update all
arc non-detection probabilities and used to obtain the attacker’s path of maximum
non-detection given the current resource allocation. If the path obtained by the
attacker has already been considered in the constraint set (i.e. it has already been
found in a previous iteration), an optimal defense resource allocation has been found
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and the method stops. If the obtained path is not currently in the attacker path
set, it is added and the defender sub-problem is solved again with the additional
path considered. Bender’s Decomposition yields provably optimal solutions and,
in the worst-case, will iterate once for every unique, complete, simple path of
the network (resulting in a worst-case performance of complete enumeration). In
practice, Bender’s Decomposition requires significantly less iterations to find the
optimal resource allocation strategy.

Examining Network Interdiction Solutions

To assess interdiction solutions, we develop an experimental design that is used to
examine two sub-networks of the Los Angeles County region. Multiple factors make
up the experimental design, including road network and formulation type. Each
identified factor has at least two test levels. Table 6 provides information pertaining
to the initial experimental design and Fig. 7 illustrates the two test networks.

M-AST (Additive, Single Sensor Type)
M-NAST (Non-additive, Single Sensor Type)
M-NAMT (Non-additive, Multiple Sensor Types)

In Table 6, the parameter settings that define each of the six formulation levels
are provided. The SPNIP-Length Based model has three distinct levels varying
by sensor power (LB-1, LB-2 and LB-3). For SPNIP-M, three variations result.
In M-NAST (Non-additive, Single Sensor Type), only a single sensor type is
considered and no overlapping sensor coverage is allowed (i.e. t D 1). In M-
AST (Additive, Single Sensor Type), only a single sensor type is considered but
overlapping coverage is allowed until a given threshold, beyond which additional
sensor coverage will not reduce arc non-detection. In M-NAMT (Non-additive,
Multiple Sensor Types), multiple sensor types with various costs and sensor power
parameters are considered, however no overlapping coverage is allowed (i.e. t D 1).

In Fig. 7, a uniform grid structure was used to establish the atom locations. The
grid’s scale is consistent for both Lancaster and Northridge, with these networks
being chosen for experimental study due to their diversity in scale, complexity
and density. Table 7 provides specific information on the network and atom sets
for Lancaster and Northridge. Figure 8 illustrates the specific origin and critical
infrastructure target locations for Lancaster and Northridge and Fig. 9 shows how
arc influence is determined for SPNIP-M and SPNIP-LB on each network. U.S.
Census Bureau classification (CFCC) was used to determine appropriate targets as
follows (U.S. Census Bureau 2008). Green D fall regional airportsg, Blue D fall
regional airports and hospitalsg, Yellow D fall regional airports, hospitals and
police/fire stationsg, Orange D fall regional airports, hospitals, police/fire stations
and landmarksg, Red D fall regional airports, hospitals, police/fire stations, land-
marks and schools/universitiesg. Note that any given target level includes all targets
identified at preceding levels (i.e. all blue targets are included in the yellow target
set). Origins were chosen randomly from the set of external/boundary nodes for
each network.
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N

N

Los Angeles County Network Arcs

Northridge Network Arcs

Lancaster - Palmdale Network Arcs

Northridge Network Arcs

Lancaster - Palmdale Network Arcs

Los Angeles County Network Arcs

Northridge Atoms

Lancaster-Palmdale Atoms

0 5 10 20 Miles

0 5 10 20 Miles

Fig. 7 Lancaster and Northridge test-case networks and their position within the Los Angeles
County road network (Yates and Casas 2010)
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Table 7 General regional and network data for Lancaster and Northridge

Regional data Road network dataa

Area (sq. miles) # Atoms Atom density Total Density Min Max Mean

Lancaster 1,295.61 743 0.57 465.61 0.36 0.12 14.51 4.47
Northridge 361.18 220 0.61 246.64 0.68 0.01 8.16 1.32
aTotal, min, max and mean are measured in miles

Green - 0 destinations Blue - 2 destinations Yellow - 6 destinations

Red - 20 destinations

Red - 23 destinations

Northridge

L
ancaster

Destination Set Size
RedOrangeYellowBlueGreenOriginsAtomsNodesArcs

Network Arcs

Origins

N

E

S

0 5 10 20 30 40

0 2.5 5 10 15 20
Miles

Miles

W

Destination Nodes

Orange - 11 destinations

Orange - 16 destinationGreen - 1 destinations Blue - 6 destinations Yellow - 11 destinations

Lanacster-Palmdale
Northridge

214 77
124

742
220 11 11

11
15 23

2010 0 2
1 6

6
374

Fig. 8 Lancaster-Palmdale (top) and Northridge (bottom) network entry and CIKR target points
at each identified threat level (Yates and Sanjeevi 2012)

Recalling that Benders Decomposition was used to solve for optimal SPNIP
values, the resulting experimental design defined 30 individual problem instances
for each of the six formulation levels (a total of 180 individual problem instances).
Table 8 gives the aggregated results for five of the six formulation levels (M-NAMT
is excluded as it is the only formulation which includes multiple sensor types).
Tables 9 and 10 provide the individual run results for all SPNIP-M instances while
Fig. 10 illustrates a typical SPNIP-M solution for the Northridge network.

In examining these solutions, we notice that, as expected, network and formu-
lation choice directly impact objective value and computation time (significant
differences are present across all formulation levels). Specifically, we begin to
notice that SPNIP-M and SPNIP-LB performance is not monotonic. From Table 8,
the results of the experimental design show that SPNIP-M is more efficient
computationally in solving instances on the Lancaster network while SPNIP-LB
is more efficient with respect to Northridge.
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Fig. 9 Illustration of the network atom sets and a sample resource allocation (Yates and Sanjeevi
2012)

Extending SPNIP-LB

In SPNIP-LB, modification to the sensor model creates a simple function that
enables the modeling of dynamic sensors. In contrast with the sensors used to this
point, dynamic sensors are allocated to arcs within the network, repeatedly looping
(i.e. covering) these arcs in similar fashion to a local law enforcement vehicle on
patrol. The available dynamic sensor paths are finite and pre-determined and are
represented by the set P. The collection of all sensor locations, which includes the
set of atoms A for immobile or static sensors, is written as C D A [ P .

Call ti the amount of time spent traversing arc i of path p and tp the total path
traversal time for path p. A uniform distribution determines the probability that the
sensor is present on arc i. The definition in (5), we can calculate the probability of
non-detection for arc i under the influence of mobile sensor c as in (6)

P.Tip/ D ti

tp
(5)
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Fig. 10 Illustration of representative sensor placement results (Northridge shown)

P(NDcipjTip) is the probability of non-detection for arc i covered by sensor located
on path p – C (note that if path p contains the single arc i, then ti D tp and
P.N Dcip; Tip/ equals the static sensor detection rate).

P.N DcipjTip/ D e��lic

P.N Dcip; Tip/ D P.N Dcip jTip/P.Tip/

D e��lic
ti

tp

D uic 8 c 2 P (6)

P(NDcipjTip) is the probability of non-detection for arc i covered by sensor located
on path p – C (note that if path p contains the single arc i, then ti D tp and
P.N Dcip; Tip/ equals the static sensor detection rate. Also, dynamic sensors
are assumed to have an influence range of 1.5 miles such that a 0.5 mile arc would
have lic D 0.5 while a 2.4 mile arc would have lic D 1.5). Figure 11 illustrates an
adaptation of the Northridge network to include six dynamic/mobilesensor paths in
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Fig. 11 Static and dynamic sensor locations for Northridge, CA (Yates and Sanjeevi unpublished)

addition to the static atom locations for the SPNIP-LB formulation. Figure 12 and
Table 11 provide solution results after running several instances of SPNIP-LB with
dynamic sensors.

Analyzing the Spatial Properties of SPNIP-M and SPNIP-LB
Solutions

We use ArcGIS 10 to perform common spatial analysis techniques such as clustering
and autocorrelation on the SPNIP-M and SPNIP-LB solutions. We note that much
exists in the analysis of global and local clustering measures (local indicators of
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Fig. 12 Sample SPNIP-LB
solution: “Level 4 Threat”
with � D 2; (a) B D $800 (b)
B D $1,600 (Yates and
Sanjeevi unpublished)
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Table 11 Atom and path allocations for level 4 threat (Yates and Sanjeevi unpublished)

Allocation type Budget Atom usage Path usage

Sensors only $800 52 131 159 167
$1,600 20 62 131 134 154 172 186 201

Both $800 52 117 131 172
$1,600 20 35 131 154 172 201 1 2

Orange - 11 destinations

Blue - 2 destinations Yellow - 6 destinations

Red - 20 destinations

0 5 10 20 30 40
Miles w

N

E

S

Network Arcs

SPNIP Interdiction Frequency

Destination Nodes

Origins

Fig. 13 Map of aggregate Lancaster SPNIP results at each destination level (Yates and Sanjeevi
2012)

spatial autocorrelation, LISA) on a network (Anselin 1995; Yamada and Thill 2010).
With SPNIP-M and SPNIP-LB, there is an arc influence decision variable (xist and
xias respectively) in addition to a variable indicating a sensor’s location at an atom
(yas in both models). While atom locations have a regular spatial pattern (to this
point, all atom locations have been grid-structured), their independence from the
road network itself enables the application LISA measures.

Figures 13 and 14 illustrate the aggregate results of solving a traditional arc-based
SPNIP model such as Israeli and Wood (2002) and the aggregate atom solutions
across all previously defined factor levels for SPNIP-M and SPNIP-LB in Lancaster
and Northridge respectively.

Kernel density and map algebra techniques were implemented in an effort to
better understand the observed similarity between the aggregated models of Figs. 13
and 14 (see ESRI 2009) for discussion on kernel density and map algebra). At a high
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Fig. 14 Map of atom frequency in Lancaster-Palmdale (left) and Northridge (right) (Yates and
Sanjeevi 2012)

level, kernel density is used to create a continuous-space image from the discrete
atom frequencies that are obtained when SPNIP-M and SPNIP-LB solutions are
aggregated. The continuous kernel density image is akin to a pixilated image and
is different from the individual discrete point-based atom locations (all pixels are
given a value through implementation of the kernel density and atom frequencies
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are “smoothed” through the continuous space occupied by the atoms). Map algebra
techniques are used to perform calculations on one or multiple continuous kernel
density files. We use map algebra techniques here to define similarity metrics for
the obtained kernel densities. Figure 15 illustrates the obtained kernel densities from
the atom frequencies of Fig. 14.

We define two measures for comparing aggregated solutions. The first, Less-
Than-Or-Equal-To (LessEQ), returns the percentage of individual pixels for kernel
density input A that are less than or equal to the individual pixels for kernel density
input B. The second, Equal-To (EQ), only returns the percentage of pixels for
input A and input B that are identical. Both LessEQ and EQ are used to evaluate
the similarity in aggregate coverage between SPNIP-M and SPNIP-LB. Table 12
provides the obtained similarity results using the kernel densities from Fig. 15 and
the two raster similarity measures.

The motivation for this analysis stems from discussion in the previous section
where the computational performance of SPNIP-M was more efficient in Lancaster
than in Northridge. If it can be shown that results from the two formulations are
similar, then they may be used interchangeably. This would provide flexibility
for the modeler to choose or continue to use formulations exhibiting efficient
performance. Additionally, such information on similarity can be useful in the
development of approximation techniques to reformulate and solve interdiction
problems (as will be discussed in the next section). In the case of Table 12, LB-3
exhibits strong similarity with M-NAST and M-AST, especially in Lancaster where
average equality is between 63 and 70 %. Similarly, LessEQ demonstrates that both
M-NAST and M-AST are capable of meeting or exceeding LB coverage in 85 % of
the experimental runs.

Developing Interdiction Approximations and Heuristics

The previous section highlighted the computational performance and spatial char-
acteristics of certain shortest path network interdiction problem variants. Though
the aforementioned represents a small subsection of interdiction formulations, there
were inherent trade-offs in computational performance across different formula-
tions. A knowledgeable modeler or public policy maker could use these trade-offs
to more effectively obtain information on the region and critical infrastructure being
examined. While such gains would be beneficial to the modeler, the spatial similar-
ities in solution characteristics support the assertion that there are inherent solution
properties that may be replicable or decipherable either through alternative, approx-
imate formulations or new solution techniques. This section is devoted to examining
how the shortest path network interdiction problem can be re-modeled and re-
evaluated for the purposes of developing faster, stronger approximation and solution
techniques. We will begin by discussing a knapsack approximation to the SPNIP-
M problem of the previous section. After the approximation is introduced, we will
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Lancaster-Palmdale, CA

SPNIP-LB

Northridge, CA

SPNIP-M

SPNIP-M

SPNIP-LB
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Fig. 15 Kernel density obtained from aggregate atom frequencies (Yates and Sanjeevi 2012)
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Table 12 Spatial similarity of formulation results

First entry Second entry Raster Lancaster Northridge

Mean Std dev. Mean Std dev.

LB-3 M-NAST LessEQ 0.858 0.349 0.648 0.478
LB-3 M-AST LessEQ 0.887 0.317 0.683 0.465
LB-1 M-NAST LessEQ 0.838 0.369 0.630 0.483
LB-1 M-AST LessEQ 0.859 0.348 0.601 0.490
LB-2 M-NAST LessEQ 0.826 0.379 0.636 0.481
LB-2 M-AST LessEQ 0.836 0.370 0.665 0.472

LB-3 M-NAST EQ 0.665 0.472 0.168 0.374
LB-3 M-AST EQ 0.705 0.456 0.224 0.417
LB-1 M-NAST EQ 0.640 0.480 0.156 0.362
LB-1 M-AST EQ 0.685 0.465 0.194 0.396
LB-2 M-NAST EQ 0.629 0.483 0.151 0.364
LB-2 M-AST EQ 0.658 0.474 0.212 0.409

examine ways to increase the performance of Bender’s Decomposition and conclude
with provocation of a new, heuristic approach to solving interdiction problems.

A Knapsack Approximation

Within an interdiction problem, the primary concern of the defender is to identify
arcs and/or nodes that are most critical to the protection of critical infrastructure and
protect, reinforce, or otherwise deter an attacker from using those arcs. The Bender’s
Decomposition approach to solving interdiction models is essentially an iterative
approach that uses an attacker-based sub-problem to build a set of likely attacker
paths through the network. These attacker paths contain what can be considered the
critical arcs. Severing or preventing the attacker from using these critical arcs by
allocating regional resources is the primary defender concern.

Identifying critical, vulnerable, or salient network arcs is not a new problem.
Many approaches use a cut-set mentality to identify arcs whose absence will
cut off or extremely inhibit flow between origins and destinations. A classic
application of such an approach is given in Matisziw et al. (2007). Many interdiction
models, especially those in early hazardous materials literature, are predicated on
the maximum flow-minimum cut paradigm, using a minimum cut as the primary
method to identify critical network arcs. The following list contains such max
flow-min cut incorporated models: Burch et al. (2003), Corley and Chang (1974),
Cunningham (1985), Ghare et al. (1971), Phillips (1993), Ratliff et al. (1975),
Wollmer (1964), and Wood (2003).
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The approximation technique discussed here is essentially a constrained knap-
sack optimization problem that identifies the attacker’s critical network arcs, again
relying on the max flow-min cut property as its foundation. The major premise of
the approximation is to consider minimum capacity cuts in the network as a means
to identify likely attacker critical arcs. In doing so, the following lemma guides the
approximation (the proof for this lemma is by contradiction and may be found in
Yates and Lakshmanan (2011). The knapsack approximation formulation [KNAP]
follows the lemma.

Lemma For any given network G.N; ƒ/ having probability of non-detection as
its flow metric, the maximum flow in any path is an upper bound on the total path
non-detection probability.

ŒKNAP�

z� D max
X

b

'bvb

s:t:
P

b

c1vb � B

P

b2�j

vb � � 8 j 2 ƒ

v 2 f0; 1/

'b D P

j 2Rb1

�
˛ mj C 1�˛

pj

�

z* is the weighted objective utility for KNAP and contains two components. The
first, mj , is the aggregated maximum flow for arc j considering all origin and critical
infrastructure pairs. The second, 1

pj
is the inverse of the node count between arc j

and its closest origin. ˛ Determines the emphasis placed on the objective with the
goal of KNAP to locate sensor resources at atoms of the network such that z* is
maximized. In addition to the standard knapsack budgetary constraint, KNAP also
constrains the amount of tolerable sensor overlap within a sensor allocation scheme
in the same way that DSPNI used the subscript index t to control the degree to which
sensor overlap was counted when calculating z.

When examining solutions to the knapsack approximation, it is import to note
that only defender allocation schemes are determined under this method (i.e.
no attacker path information is provided). As a method for defender’s to gain
useful information on situational awareness, the knapsack approximation provides
a fast and reliable approximation to defender sensor location. Figures 16 and 17
and in Table 13 provide computational results of the knapsack and SPNIP-M
formulation solutions on the Lancaster and Northridge networks and using the same
experimental design discussed in the previous section. In Figs. 16 and 17, z is the
optimal objective value for SPNIP-M and z0 is the objective value obtained when the
KNAP sensor solution is evaluated for the SPNIP-M objective. Also in the figures,
KNAP parameters were set at B D $3,600, ˛ D 0.02 and � D 3.

Comparing the computational results of the knapsack approximation illuminates
a few important trends. First, the approximation reliably captures the form of the
SPNIP-M objective function through a simple approximation based on a well-
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Fig. 16 Lancaster-Palmdale, random initial non-detection probability (Yates and Lakshmanan
2011)
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Fig. 17 Northridge, random initial non-detection probability (Yates and Lakshmanan 2011)

known and understood optimization principle, in this case maximum flow-minimum
cut. Second, the approximation demonstrates insensitivity to network choice. Third,
the approximation demonstrates computational insensitivity to changes in SPNIP-M
problem parameters. Computationally, the knapsack approximation performs well
for the cases examined and appears to be a well suited alternative to model defender
sensor location in SPNIP-M. We now introduce and discuss the knapsack’s ability
to spatially approximate SPNIP-M solutions. To do this, the same spatial analysis
techniques (kernel density and map algebra) were applied as in the previous section.
Figure 18 illustrates the obtained kernel densities while Table 14 gives the LessEQ
and EQ values.

The approximation’s spatial performance is promising, though not as strong
as its computational capabilities. With roughly 75 % similarity to the SPNIP-M
solution, the approximation performs well in Lancaster and appears to increase its
performance as overlap (�) increases. While the approximation does not perform
as well in Northridge, only a small number of possible parameter combinations are
provided in Table 14 and it is highly probable that the knapsack approximation could
be strengthened through a more comprehensive pareto analysis.
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Fig. 18 Kernel and binary kernel density and comparison for the Lancaster-Palmdale and
Northridge case study regions (Yates and Lakshmanan 2011)
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Table 14 EQ and LessEQ similarity values for Lancaster and Northridge under varying KNAP
parameters

Overlap Type Alpha D 0.0 Alpha D 0.50 Alpha D 1.0

Mean Std dev. Mean Std dev. Mean Std dev.

Lancaster 1 EQ 0.684 0.465 0.667 0.471 0.664 0.472
LessEQ 0.762 0.426 0.759 0.428 0.761 0.426

2 EQ 0.740 0.439 0.710 0.454 0.710 0.454
LessEQ 0.758 0.428 0.760 0.427 0.761 0.426

3 EQ 0.738 0.440 0.701 0.458 0.701 0.458
LessEQ 0.764 0.425 0.759 0.428 0.760 0.427

4 EQ 0.742 0.437 0.724 0.447 0.703 0.457
LessEQ 0.764 0.425 0.761 0.426 0.762 0.426

Northridge 1 EQ 0.182 0.386 0.187 0.390 0.187 0.390
LessEQ 0.429 0.495 0.434 0.496 0.429 0.495

2 EQ 0.208 0.406 0.227 0.419 0.227 0.419
LessEQ 0.399 0.490 0.408 0.492 0.408 0.492

3 EQ 0.248 0.432 0.217 0.412 0.217 0.412
LessEQ 0.381 0.486 0.393 0.489 0.393 0.489

4 EQ 0.248 0.432 0.221 0.415 0.221 0.415
LessEQ 0.384 0.486 0.399 0.490 0.399 0.490

The knapsack approximation demonstrates how an entirely new formulation can
be developed to take advantage of the unique structure of the network interdiction
problem. With a relatively simplistic formulation capable of being solved efficiently,
close approximations to the SPNIP-M formulation’s optimal solutions were ob-
tained with significantly less computational effort. The next section will discuss
how a similarly simple idea can be used to eliminate costly Bender’s Decomposition
iterations in solving SPNIP-M.

Approximating with k-Shortest Paths

In lieu of redefining a new optimization problem for network interdiction or
reformulating an existing one, this section will discuss the benefits of modifying
the interdiction solution approach. For this discussion, the same basic experimental
design introduced in section “Formulating Interdiction Models” will be used and
applied to the Northridge network. Recalling that SPNIP-M is solved by implement-
ing Bender’s Decomposition, the iterative attacker-defender sub-problem format is
revised in an effort to decrease overall computation time. Additionally, this work
nicely complements the knapsack approximation approach by enabling modelers a
quick and easy approach to obtaining quality attacker paths (recall that the knapsack
approximation only provided defender resource allocation solutions. Figure 19
illustrates the original Bender’s Decomposition structure and the suggested revision
to be examined here.
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Fig. 19 Illustration of the original and modified Bender’s decomposition (Yates et al. in submis-
sion)
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Fig. 20 Illustration of the exclusion and inclusion of pseudo nodes to solve for the k-shortest paths
(Yates et al. in submission)

The traditional Bender’s Decomposition approach decomposes the SPNIP-M
into attacker and defender sub-problems which are then iteratively solved until an
equilibrium point has been reached, signifying an optimal solution. In this approach,
the defender sub-problem is a complex mixed integer problem that accounts for a
majority of the computational effort. In the revised method, it is surmised that gains
in computational performance can be achieved by solving the defender problem only
once instead of iteratively and repeatedly. In Fig. 19, this method is illustrated on
the right-hand-side, where the attacker sub-problem is looped, essentially solving
a k-Shortest path problem to identify the k paths of high non-detection given the
initial, random arc non-detection metrics (see Yen 1971) for discussion on the k
shortest path problem). Each of the individual k paths then becomes a constraint in
the defender sub-problem of SPNIP-M and the defender sub-problem is solved once
to determine an acceptable defense allocation. At its core, this approach essentially
asks “what is the appropriate k value to capture the optimal attacker path in
SPNIP-M?”

To assert whether there is an acceptable k value, a modified experimental design
approach was developed. First, a global origin and target set were identified within
Northridge. Four levels were used to dictate the origin set size [2,4,6,8] and target
set size [3,9,15,21], within which five random origin and destination sets were
generated. When calculating the k shortest paths, pseudo nodes were either included
or not included, resulting in two additional experimental levels (Fig. 20 illustrates
these two levels). Lastly, the value of k was set to [1,2,3,5] when pseudo nodes
were off and [5,10,15,20] when pseudo nodes were on. In the Northridge network,
initial arc non-detection values were assigned randomly using a Uniform[0.3, 0.7]
distribution.

To analyze and compare the solutions obtained using the k-Shortest approach
with the SPNIP-M optimal, Gap V%, Gap T%, % Under and % Over are used.
Gap V% is the percentage difference in the k-Shortest solution from the SPNIP-
M optimal while Gap T% measures the difference in computational time (in CPU
seconds). % Under and % Over are spatial metrics to assess coverage similarity
as a function of length-of arc covered and are aggregated over all network arcs
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Fig. 21 Illustration of under coverage and over coverage in the calculation of % Under and %
Over (Yates et al. in submission)

for a given experimental run. In this way, the k-Shortest path solution may either
exactly replicate SPNIP-M arc coverage, under-cover and arc, or over-cover an
arc. Figure 21 illustrates the later two cases. Table 15 provides information on the
comparative performance of the k-Shortest path approach.

Table 15 provides the obtained averages from the five random experimental
instances at each origin-target level. From the table, there are observable benefits in
adapting traditional Bender’s Decomposition with a k-Shortest path approach. First,
the k-Shortest approach identified the optimal SPNIP-M solution in at least one of
the five random replications at each origin-target level (as indicated in Table 15 by
a minimum Gap V% of “�”). In all but two levels, computational effort was also
saved. Spatially, the ability of the k-Shortest approach to identify optimal SPNIP-M
solutions is acceptable (�5 % under coverage with pseudo nodes off and 15 % with
pseudo nodes on). Over coverage is relatively consistent in cases, with an average
of 5 %.

Figure 22 visualizes two select, comparative cases between the optimal SPNIP-
M solution and the obtained solution based on the k-Shortest path approach. In
the figure, the left-hand case demonstrates an instance of strong computational
and spatial coverage. In this case, the optimal SPNIP-M solution was obtained
through the k-Shortest approach with a 23 % time savings . The right-hand case,
however, illustrates a scenario where k-Shortest fails to perform. With 33 % under
coverage and a 45 % optimality gap, the SPNIP-M optimal solution was not well
approximated. The latter case signifies that the choice of k, in this case k D 5, was
not high enough to adequately capture any attacker path trends.

The simplicity of this k-Shortest approach can be a huge advantage in decision-
making and public policy, where modelers would desire the ability to test large
numbers of scenarios and network compositions repeatedly. Though the Northridge
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Fig. 22 Example of poor spatial performance by the approximation (Yates et al. in submission)
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case is decidedly small, the SPNIP-M formulation grows exponentially with the
size of a network. In Northridge (384 directed arcs), SPNIP-M was formulated
with 3,437 constraints while a network of 1,000 directed arcs and 500 nodes
produces 8,869 SPNIP-M constraints. Increasing network size by a factor of 10,
a 100,000 direct arc network with 1,000 nodes has nearly 100 times the number
of SPNIP-M constraints at 801,369. Using the entire Los Angeles County road
network (U.S. Census Bureau 2008) easily leads to 2,000,000C constraints. While
the complexity of these problems may lead to elongated solution times and the
necessity to include more advanced and strategic computational techniques, known
k-shortest path algorithms enable this simple solution approach to handle problems
of realistic scale without significant alteration. Stated previously, such a tool would
be invaluable to emergency planners, responders and public policy makers alike
when analyzing network performance/vulnerability/accessibility as they could test
a plethora of event scenarios.

Additionally, the k-shortest approximation approach preserved much of the spa-
tial integrity of SPNIP-M solutions (i.e. small under and over coverage measures),
implying that this simple approximation approach could be used as a capable
technique for other modified shortest path network interdiction models. As an
example, the under and over coverage values indicate that quality SPNIP-LB
solutions, where arc length was used directly in the determination of non-detection
probability (Przemieniecki 2000) could be well approximated by this approach.

Identifying Basic Network Trends

The knapsack and k-Shortest path approximations previously discussed illustrate
how simple concepts and applications in the optimization of network interdiction
can be used to develop alternative techniques in obtaining interdiction solutions.
Additionally, the similarity between solutions of the SPNIP-M and SPNIP-LB
problems in “Formulating interdiction models” combined with the approximation
accuracy of the knapsack and k-Shortest approaches implies that there are certain
problem properties and parameters (e.g. network complexity/structure and atom set
composition) that have a high level of impact in determining defender and attacker
interdiction solutions. Specifically pertaining to the SPNIP-M and SPNIP-LB, four
problem properties were identified and tested to determine their significance in
influencing the corresponding interdiction solutions. An experimental design similar
to those already used was developed and tested within three real-world network:
New York City, Boston and Houston. These networks were chosen because of
their diverse network structure and were tested in combination with three distinct
atom sets (Casas et al. 2012). The atom sets used maintain uniform, grid-like
spacing between atoms but change density to increase the number of potential sensor
locations.

To test whether a given problem property was influential or not, a Negative
Binomial Regression (NBR) was used. The NBR was chosen instead of other
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Fig. 23 Cumulative atom usage frequency from SPNIP-M experimental design for NYC (a) and
Boston (b) (Casas et al. 2012)

regressions such as OLS or Poisson Regression due to the fact that most available
atoms in SPNIP-M and SPNIP-LB are not used to locate sensors in the final
solution. This creates sparse solution sets that NBR is better adept to evaluate. For
information on NBR, please see Hilbe (2007). When implementing NBR to assess
correlation, the frequency of atom use in aggregated SPNIP-M optimal solutions
across the experimental design is used as the measuring variable.

Figure 23 illustrates the SPNIP-M optimal solutions for NYC and Boston while
Fig. 24 illustrates the solutions for Houston. In the figures, frequency of use
represents the cumulative number of sensors located at the particular atom across
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Fig. 24 Cumulative atom usage frequency from SPNIP-M experimental design for Houston
(Casas et al. in submission)

all experimental runs. Atom density increases from left-to-right in each figure, with
the three atom levels being low, med, and high.

Table 16 provides the statistical results from the NBR for all three networks under
all three atom density sets. Again, we assume here that only one type of sensor is
being allocated within the region. The four variables examined included Coverage
(the total network distance covered by a sensor located at a given atom), Count
(the number of arcs covered by locating a sensor at an atom), Min Dist to Origin
(the distance from any given atom to its closest origin) and Min Dist to Target (the
distance from any given atom to its closest target).

Highlighting the main points of interest (detailed discussion can be found in
Casas et al. (in submission)), Min Dist to Origin plays an important role in deter-
mining whether an atom is used frequently in the various SPNIP-M experimental
design cases. The closer an atom is to an identified origin, the higher its usage
in SPNIP-M solutions. The NBR analysis also shows that Min Dist to Target is
the least influential of the four variables examined. Simply stated, a defender in
SPNIP-M creates a more influential detection system when they focus on early
detection rather than target-specific sensor allocation. If the defender focuses on
covering critical infrastructure independently, there is a “one-to-one” effect while a
defender focusing on the coverage of origins experiences a “one-to-many” impact
(many destinations are potentially covered or protected by the allocation of a single
sensor). Additionally, the coverage capability of a sensor (Count in Table 16) is
a quintessential factor in determine sensor location. The frequency of atom use is
positively related to the number of arcs a sensor placed at that atom covers.

This last relationship is used to discuss the final interdiction-related problem of
this chapter. Knowing that Count acts an indicator of atom usage, three strategic
atom allocation schemes will be examined for New York City, Boston and Houston.
These schemes will be developed using network topology and connectivity to create
the atom set that guides sensor location. Using these intelligently created atom sets,
the SPNIP-M optimal solutions will be examined and compared to the standard grid-
like atom sets used in the previous analysis. The goal of this analysis is to determine
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the effect that atom location sets have on optimal SPNIP-M sensor locations and to
evaluate computational and spatial trade-offs in determining whether the additional
fidelity obtained from intelligent atom locations provides significantly improved or
diverse defender sensor schemes.

Intelligently Locating Atoms

The problem of locating atoms intelligently is motivated by the observation that not
all networks are created equal and that not all uniform, grid-based atom allocations
are capable of providing an adequate set of sensor location points for network
interdiction. The hypothesis of intelligent atom design is that atom allocations that
are derived based on individual network properties will provide higher fidelity, more
accurate solutions to network interdiction problems. Given that network structure
is relatively unique, devising intelligent atom sets will give more sensor location
options in areas that are denser, or which have a higher concentration of arcs with
low initial detection probabilities.

Observing that analyzers have different interests in network features, we develop
three methods to add atoms intelligently. For the network interdiction problem,
methods are based on the initial arc non-detection values, the density of arcs in a
pre-defined space and the number of arcs in a pre-defined space. The algorithmic
approach to creating these atom structures is executed using ESRI ArcGIS 10 and
is now provided. Figure 25 illustrates algorithmic implementation for the Boston
network.

Intelligent atom algorithm

1. Determine the geographic area the network occupies (x, y or latitude, longitude
coordinates).

2. Build an initial grid-based structure (user decided initial grid size).
3. For each grid, calculate the faverage arc non-detection, arc density, number of

arcsg.
4. If the grid value exceeds the decision threshold, further decompose grid into

quarters.
5. Stopping criteria.

(a) If the iteration number is pre-determined and has been reached, STOP.
(b) If the iteration number is not pre-determined and no existing grids require

decomposition, STOP.
(c) If at least one grid was decomposed in Step 4, return to Step 3.

Figure 25d illustrates the final atom set for Boston using the number of arcs
within a grid as the decomposition measure. Locating atoms intelligently, the atom
set is clearly more contoured to the individual structure of the Boston network. To
examine whether the increased complexity of an intelligent atom set is useful from a
modeling standpoint, an experimental design similar to those previously discussed is
invoked. The individual solutions from the experimental design runs are aggregated
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Fig. 25 Using the arc number to intelligently locate atoms

and used to obtain average computational information for road networks in New
York City (NYC), Washington DC (DC), Boston, MA and Houston, TX. In total
six atom allocations were considered and compared. They are: low resolution grid-
based (low), med resolution grid-based (med), high resolution grid-based (high), arc
length intelligent (length), arc number intelligent (number) and arc non-detection
intelligent (non-det). For each network, 15 randomly generated origin-target pairs
were identified with each origin and target being pulled from a pre-defined origin
and destination set (origin and target size for each of the 15 pairs was also
randomly generated using a uniform distribution between one and the corresponding
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Table 17 Better caption

Grid allocations Intelligent allocations

Low Med High Length Number Vulnerability

NYC Objective 0:23 0:21 0:23 0:21 0:22 0:22

No. paths 9:79 10:98 8:17 11:32 11:45 10:92

Sol. time 28:70 76:40 39:05 748:00 717:00 753:00

DC Objective 0:16 0:18 0:22 0:06 0:06 0:06

No. paths 30:48 21:51 14:12 11:10 10:06 11:26

Sol. time 269:70 268:30 373:60 877:00 572:00 2; 188:00

Boston Objective 0:18 0:19 0:18 0:13 0:14 0:13

No. paths 12:56 10:60 10:73 21:97 22:37 25:68

Sol. time 27:99 25:58 27:31 216:60 205:90 326:00

Houston Objective 0:11 0:24 0:20 0:14 0:12 0:11

No. paths 18:35 19:11 17:12 14:06 15:84 13:02

Sol. time 584:70 281:40 646:00 402:00 1; 431:00 103:30

origin/target set size). Four budget levels enabled the allocation of 4, 6, 8 and 10
sensors within the region. The computational results from this experimental design
are given in Table 17, with each experimental design case being solved to optimality
using Bender’s Decomposition.

From Table 17, it can be shown that the computational comparison between
the standard grid-based atom sets and intelligent atom sets is inconclusive at best.
In certain networks like NYC and Boston, there is little different in the optimal
objective values of grid and intelligent atom sets but a great gain in solution time.
Though the actual number of Bender’s Decomposition iterations does not increase
dramatically, the intelligent atom allocations create a substantial rise in defender
sub-problem solution times. With intelligent atom location, many individual atoms
will have similar coverage schemes, especially in SPNIP-M where coverage is
binary and the actual length of coverage is not counted. This similarity extends
the amount of branching required to solve the defender sub-problem, increasing its
solution time. For the DC and Houston networks, Table 17 shows that there is more
significant dissimilarity between objective function values, though the intelligent
atom allocations actually reduce the number of Bender’s Decomposition iterations.
In all, it appears that there may be some usefulness to an intelligent atom design,
though in those network cases examined to date, the increased computational effort
does not appear to be worth the limited fidelity gained over a grid-based approach.

Conclusions

In this chapter, we began by discussing the hazardous materials transportation
problem as it is addressed in optimization. We saw how traditional hazardous
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materials modeling in the 1970s and 1980s transitioned towards and motivated
development of the network interdiction problem in the mid-1990s and early 2000s.
Focusing on the network interdiction problem, discussion was provided on the
standard shortest path network interdiction formulation and two initial variations
(one modified and one length-based shortest path network interdiction problem). In
the modified problem (SPNIP-M), we saw how sensor location could be separated
from the network, with sensors instead located at geographic points called atoms.
Examples were provided on the computational and spatial performance of SPNIP-M
and SPNIP-LB, with various measures of spatial similarity introduced to compare
and contrast the solutions of these models.

In the later part of this chapter, we used the obtained knowledge from SPNIP-M
and SPNIP-LB to develop approximations with the goal of reducing computation
time while maintaining a similar spatial distribution of sensors. We saw how the
max flow-min cut theorem could be used to motivate development of a constrained
knapsack approximation. This approximation was able to maintain consistent
computational solution times across each of the two networks examined while
reasonably replicating spatial sensor locations. In addition to the knapsack model,
we pursued a spatially-based regression study which used a detailed experimental
design to statistically identify two spatial properties which were shown to be
pertinent factors in allocating defender resources. Lastly, used one of these prop-
erties (the number of arcs within a sensor’s range) to motivate development of an
algorithm to strategically determine potential sensor locations for a given network.
Computational results from this intelligent atom location show that the more
simplistic grid-based solutions to provide a strong base-line for sensor allocation
strategies with increased fidelity in defender sensor solutions from the intelligent
atom allocations coming at a steep computational price.
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