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Introduction

Rajan Batta and Changhyun Kwon

The Pipeline and Hazardous Materials Safety Administration of the U.S.
Department of Transportation defines hazardous materials (hazmat) as a substance
or material capable of posing an unreasonable risk to health, safety, or property
when transported in commerce1. Hazmat accidents can result in significant impact
to the population (death, injuries) and damage to the environment (destroyed
or damaged buildings and infrastructure). Further, hazmat, especially explosive
materials, can potentially be used by terrorists to attack civilians or to destroy critical
infrastructure. This handbook provides models from Operations Research and
Management Science that study various activities involving hazmat transportation:
risk assessment, route planning, location decisions, evacuation planning, and
emergency planning for terrorist attacks.

There are two important research areas in hazmat transportation that are widely
studied in the literature: risk assessment and shipment planning. In the risk
assessment area, important issues include measurement of accident probabilities
and consequences in hazmat transport. Example works in the risk assessment area
include modeling risk probability distribution over given areas, considering hazmat
types and transport modes, and environmental conditions.

We can classify most scholarly contributions in the shipment planning into two
subfields: local route planning and global route planning. When only a single

1http://phmsa.dot.gov/hazmat/glossary
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2 R. Batta and C. Kwon

origin–destination pair is concerned, the routing problem is called local route
planning. When multiple origin–destination pairs and/or multiple types of hazmat
are involved, it is called global route planning.

In global route planning problems, we often face two important groups of
decision makers in hazmat transportation: network regulators and hazmat carriers.
While hazmat carriers usually choose an economic path, e.g. the least cost path,
network regulators attempt to minimize the potential impact of hazmat accidents
to the surrounding communities. For this reason, OR/MS models in global routing
planning often involve bi-level optimization for network design, location planning,
and regulations.

The second half (chapters “Hazardous Facility Location Models on Networks” to
“The Role of OR in Emergency Evacuation from Hazmat Incidents”) of this hand-
book provide useful models and insights on other important issues, while the first
half (chapters “Railroad Transportation of Hazardous Materials: Models for Risk
Assessment and Management” to “Value-at-Risk and Conditional Value-at-Risk
Minimization for Hazardous Materials Routing”) cover the two fields of risk
assessment and shipment planning. Chapter “Hazardous Facility Location Models
on Networks” discusses location problems for undesirable facilities, while chapters
“Network Interdiction Methods and Approximations in a Hazmat Setting” and
“Optimal Emergency Resources Deployment Under a Terrorist Threat: The Hazmat
Case and Beyond” discuss network interdiction and terrorist attack. Chapter “The
Role of OR in Emergency Evacuation from Hazmat Incidents” provides an overview
of evacuation planning in cases of accidents involving hazmat. In what follows, we
provide a brief summary for each chapter.

In chapter “Railroad Transportation of Hazardous Materials: Models for Risk
Assessment and Management,” Verma and Verter provide risk assessment methods
for a railroad mode of hazmat transportation with a routing problem in a south-east
US railway network system. The chapter begins with describing typical freight rail
transportation systems and defining key notions to understand rail systems: physical
networks, service networks, itinerary, and blocking.

Chapter “Railroad Transportation of Hazardous Materials: Models for Risk As-
sessment and Management” also reviews three risk assessment methods in railway
hazmat transportation: expected consequence, incident probability and population
exposure. The expected consequence measure considers the accident probability
at each link with the population exposure considering conditional probabilities of
derailing of a railcar, derailing of a hazmat railcar, and release of hazmat. To obtain
the population exposure, a notion of the exposure band is introduced.

While a simple version of the expected consequence measure is introduced
in this chapter, the authors bring in-depth discussion to each component of the
expected consequence measure: accident probability and accident consequence.
First, the incident probability measure focuses on the likelihood of a hazmat incident
considering train derailment, point of derailment, number of railcars derailed, and
number of railcars releasing hazmat. These factors are modeled by conditional
probabilities and constitute the incident probability at any given point of a path.
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On the other hand, the population exposure measure emphasizes the total number
of people who may be exposed to an undesirable consequence. While the average
population exposure is used in the expected consequence measure, a worst-case
approach is employed in the population exposure measure. The Gaussian plume
model is used to describe the air dispersion of toxic gases at given wind speeds
and directions. This model provides the region and radius of evacuation and
consequently the number of people exposed.

In this chapter, an optimization model is proposed for routing. The presented
hazmat railcar routing problem is a global route planning problem involving
multiple numbers of commodities, transfer yards, train services, and itineraries.
This chapter also suggests potential research questions in railway transportation
of hazmat. As a next reading, readers who are interested in other popular risk
measures in truck transportation of hazmat may refer to chapter “Value-at-Risk
and Conditional Value-at-Risk Minimization for Hazardous Materials Routing,” and
those who are interested in in-depth discussion of weather consideration may refer
to chapter “The Effect of Weather Systems in Hazmat Transportation Modeling.”

Chapter “Operations Research Models for Global Route Planning in Hazardous
Material Transportation,” by Bianco, Caramia, Giordani and Piccialli, provides an
extensive review of recent advances in the global route planning field. This chapter
first reviews local route planning problems, classifying key features considered in
each paper: security, decision support system, geographical information system,
multi-objectives, stochastic, and survey.

The global route planning literature is classified into three sub-classes. First,
research articles with equity considerations, dissimilar paths, and multi-objective
models are reviewed. In this sub-class of problems, one of the main objectives is
to find least risk routes between origins and destinations. Second, hazmat trans-
portation network design problems are reviewed. In a network design problem, the
central authority prohibits carriers from traveling certain parts of the road network,
while the carriers find the minimum distance routes given the restrictions imposed
by the central authority. Third, problems of toll setting policies are reviewed. In
these problems, the central authority discourages carriers to travel certain links by
charging tolls, rather than completely prohibiting travel (which is the special case of
an infinite toll). In most network design problems and toll setting problems, bi-level
mathematical optimization and game-theoretic approaches are used.

In a subsequent section, the authors provide formal descriptions of key hazmat
transportation network design models. They first begin with models with an
authority and several carriers, and then review a model with local and regional
authorities. The latter model differs from the former models in the sense that the
role of carriers is not considered and government authorities at different levels are
considered. While the local authority at the upper level sets network link capacities,
the regional authority at the lower level assigns hazmat flows on the capacitated
network.

Three toll setting problems are also introduced with formal descriptions. The
main advantage of toll setting policy over network design is flexibility of controlling
hazmat flow. The first model reviewed is a bi-level optimization problem with binary
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variables where the central authority sets the toll for each link and the carriers decide
the least cost path considering the toll and the travel time. In the second model, risk
equity is considered in the context of a toll setting policy as an extension to the
first model, in a mathematical programming with equilibrium constraints (MPEC)
framework. The toll on each link in the second model is assumed to be a quadratic
function of the total risk induced on that link. In the third model, the notion of dual
toll setting policy is introduced to charge tolls for both regular vehicles and hazmat
trucks.

Golalikhani and Karwan present changes in risk assessment by weather, in
chapter “The Effect of Weather Systems in Hazmat Transportation Modeling.”
Weather systems may affect both accident probabilities and accident consequences.
Because weather affects road surface frictions and visibility of drivers, changes in
weather also affect accident probability, hence the risk. This chapter begins with a
model to estimate the accident probability given various factors, including weather
conditions like fine weather, rain/fog, and snow/ice.

For the effects on the accident consequences, the chapter considers two types
of models: threshold distance approaches and air pollution dispersion models. The
threshold distance approaches are the same as what were called the fixed bandwidth
approaches in chapter “Railroad Transportation of Hazardous Materials: Models for
Risk Assessment and Management.” The popular Gaussian plume model to describe
dispersion of air pollutants is introduced and discussed in depth. The Gaussian
model is mostly useful to predict the dispersion of continuous, buoyant air pollution
plumes that begin at either the ground level or an elevated level. The authors also
review two non-Gaussian dispersion models: dense gas models and Largrangean
models. Dense gas models simulate the dispersion of pollution plumes that are
heavier than air, and Lagrangean models mathematically describe the dispersion
of pollution plume parcels by modeling their move in the air by a random walk.

The dynamic nature of weather systems is discussed and two examples of
hazmat transportation systems considering weather systems are provided. In each
model, detailed model formulations are provided and followed by a simple, but still
practically useful, numerical example that illustrate how one may use the models in
practice.

At the end of the chapter, potential research topics are provided in three
directions. First, one may study more realistic and complicated weather models
using GIS. Existing GIS-relevant studies do not consider either the weather system
or the dynamic nature of it. Second, one may consider different dispersion models
for different types of hazmat and different release conditions. Although the Gaussian
plume model is useful, many hazmat types and accident conditions are not suitable
to be considered by the Gaussian model. Third, one may model the shape and
the movement of the weather system more realistically. The only such existing
hazmat transportation model describes the dynamic nature of the weather system
by a simple circle along a straight line.

In chapter “Value-at-Risk and Conditional Value-at-Risk Minimization for Haz-
ardous Materials Routing,” Toumazis, Kwon and Batta provide a summary of recent
advances in local route planning. Popular risk measures for hazmat routing include
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expected risk, population exposure, incident probability, perceived risk, maximum
risk, mean-variance, disutility, and conditional probability measures. This chapter
begins with a brief review of those popular risk measures and comparison.

Two recently proposed risk measures in hazmat transportation are introduced:
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). These two risk mea-
sures are popularly, especially in financial portfolio optimization to make investment
decisions. In hazmat routing, VaR is a threshold accident consequence value such
that the probability at which the accident consequence is greater than VaR is
less than or equals to a certain probability (confidence level). VaR in general is
computationally intractable; however, in hazmat the underlying risk variable is a
discrete random variable. An algorithm that solves a finite number of shortest-path
problems is proposed for finding the minimal VaR path. This chapter shows that
VaR becomes risk-indifferent when the confidence level is small enough, that is,
at all paths VaR becomes zero. When the confidence level is large enough, the
VaR model becomes identical to the maximum risk model, which minimizes the
maximum link accident consequence in a path.

Risk measures must satisfy the conditions for translation-invariance, subaddi-
tivity, positive homogeneity, and monotonicity. These four properties are desired
properties for any risk measure. While VaR is useful and popular, unfortunately
it is not coherent. As a coherent extension to VaR, CVaR is proposed. Roughly,
CVaR is the expected value of consequences that is beyond VaR. Finding a minimal
CVaR path is a better-structured optimization problem than finding a minimal VaR
path. However, to solve a CVaR problem, we also need to solve a finite number of
shortest-path problems. While the CVaR model becomes identical to the expected
risk model when the confidence level is small enough, the CVaR model becomes
identical to the maximum risk model when the confidence level is large enough.

A simple numerical example is provided to illustrate the shape of the probabilistic
distribution and how to determine the VaR and CVaR values for various confidence
levels. Later, a case study on a realistic road network around Albany, NY, USA is
provided and key findings are discussed.

Chapter “Hazardous Facility Location Models on Networks,” by Colebrook and
Sicilia, provides a review of modeling methods and algorithmic approaches for
determining locations of undesirable—both noxious and obnoxious—facilities such
as hazmat waste dump sites, incinerators, gas stations, electrical plants, etc. The
chapter begins with an extensive literature review, which consists of three parts.
First the chapter provides a list of survey and review papers, and useful books so that
readers can refer to them if interested. The chapter then provides a literature review
on undesirable facility location problems on networks. It is followed by a literature
review on multicriteria undesirable facility location problems on networks.

After introducing basic definitions and notations, the chapter provides three
models: the uncenter (undesirable center) model, the maxian problem, and the
anti-cent-dian model. The uncenter problem is to maximize the minimum distance
between the undesirable facility and all other nodes. The maxian problem is to
maximize the weighted sum of distances from the undesirable facility to all other
nodes. The objective of the anti-cent-dian problem is to maximize a combination
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of the minimum distance and the weighted average of distances between the
undesirable facility and all other nodes. An algorithm is proposed for solving each
problem.

This chapter also covers a location problem on multicriteria networks. There are
some facilities that are semi-desirable or semi-undesirable, such as airports and train
stations that provide services but also generate noise. In such a case, on the same
network, two different “distances” may be defined for service and discomfort. The
authors provide the multicriteria �-anti-cent-dian problem with a formulation and
an algorithm.

Chapter “Network Interdiction Methods and Approximations in a Hazmat Trans-
portation Setting,” by Yates, focuses on the application of interdiction models in a
hazmat transportation setting. The chapter offers a detailed literature review on the
past and current hazardous materials transportation research. The first topic of focus
is on the quantification of risk, potential pitfalls, and estimation as a tool to measure
risk. It also discusses the use of Geographic Information Systems in supporting risk
analysis. The third topic of focus is on network interdiction problems.

After the literature review section, the chapter formulates interdiction models.
Specifically, it explores the shortest path network interdiction problem and discusses
multiple variations that can be derived from it. It then motivates development of
alternative heuristic and approximation techniques to solve network interdiction
problems.

After the formulation and initial exploration of interdiction models, the chapter
highlights the computational performance and spatial characteristics of shortest
path network interdiction problem variants. Computational results show that sensor
allocation strategies with increased fidelity come at a steep computational price.
Overall, this chapter succeeds in illustrating the importance of network interdiction
modeling as it relates to hazardous materials transportation.

Chapter “Optimal Emergency Resources Deployment Under a Terrorist Threat:
The Hazmat Case and Beyond,” by Garrido, considers the logistics of emergency
systems in the context of human-made catastrophes. In particular, the interest is in
terrorist attacks that use a hazardous materials transport vehicles as a weapon. It is
argued by the author that the infamous attacks of September 11, 2001, were indeed
the case of a hazmat vehicle (in this case an airplane with an almost full fuel tank)
being used a terrorist weapon and being exploded at a target of interest.

The author works on the assumption that a hazmat threat has been positively iden-
tified and consequently the resource allocation question becomes relevant. In many
cases this information provides a basis more accurate than other methods to estimate
attack probabilities. An example cited is that of a hazmat truck that deviates from its
original path. Different cases of terrorist attack are analyzed. The first case is when
resources are allocated on the basis of an expected event. The second case examined
is where a given percentage of demand must be satisfied. The third case is a Stack-
elberg game approach where the probability of attack is a function of the defenders
resources allocated to each zone. The fourth case is that of using a variational
inequality approach, when the probability of attack is a function of all resources allo-
cated to each zone. Overall, this chapter presents many different viable approaches
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for estimating the probability of a hazmat terrorist attack and also presents many
strategies for allocating resources to defend against such a potential attack.

In chapter “The Role of OR in Emergency Evacuation from Hazmat Incidents,”
Wolshon and Murray-Tuite focus on evacuation operations, guidance, and plans
for hazmat incident responses. The authors first characterize hazmat incidents by
pointing out that hazmat incidents are usually generated as a result of man-made
disasters, but sometimes are caused by natural disasters. Such natural disasters can
result in technological disasters, called natech disasters. Recent examples of natech
disasters include nuclear radiation leaks from the Fukushima Daiichi Nuclear Power
Plan in Japan at an earthquake. Hazmat disasters have a unique characteristic that
an incident can happen virtually anywhere, while locations or approach directions
of other disasters are usually fixed or predictable.

The authors introduce and define temporal parameters and spatial parameters
in evacuation transportation processes. Simulation and analysis techniques are
discussed in three modeling scales: macro-level, micro-level, and meso-level. Mixed
modeling approaches are also briefly discussed.

After characterizing hazmat incidents and categorizing modeling and simu-
lation approaches, the authors provide reviews of various OR models and ap-
plications for evacuation management. They cover ramp management, crossing
elimination, staged/phased evacuation, destination assignment, combined departure-
time/destination/route optimization, shelter location and assignment, and transit
operations. For each topic, a literature review is provided with useful insights, and
for some topics, a representative model is present and discussed. The authors close
the chapter discussing the key conditions of OR models to be successful and widely
used in evacuation planning for hazmat incidents.

It is our sincere hope that this handbook will be of value to both hazmat
practitioners and academic researchers. Our objective was to seek contributions
that covered a wide facet of hazmat logistics and planning using OR/MS methods.
We believe that the collection of chapters indeed provides such a comprehensive
treatment. We end by gratefully acknowledging the Department of Industrial and
Systems Engineering at the University at Buffalo (SUNY) for providing a hospitable
environment to complete this project.



Railroad Transportation of Hazardous
Materials: Models for Risk Assessment
and Management

Manish Verma and Vedat Verter

Introduction

Hazardous materials (hazmat) are harmful to humans and the environment because
of their toxic ingredients, but their transportation is essential to sustain our industrial
lifestyle. A significant majority of hazmat shipments are moved via the highway and
railroad networks. For example, in the United States, railroad carries approximately
1.8 million carloads of hazmat annually, which translates into 5% of rail freight
traffic (AAR 2006). On the other hand, in Canada, approximately 500,000 carloads
of hazmat—equivalent to 12% of total traffic—are shipped by railroad (TSB 2004).
The quantity of hazmat traffic on the railroad network is expected to increase
significantly over the next decade, given the phenomenal growth of intermodal
transportation and the growing use of rail-truck combinations to move chemicals.
It is true that railroads have a favourable safety statistic (Oggero et al. 2006), but the
possibility of spectacular events resulting from multicar incidents, however small,
does exist. The derailment of the BNSF train in Lafayette (Louisiana, United States),
spilling 10,000 gallons on hydrochloric acid and forcing more than 3,000 residents
out of their homes, is an example of such low probability–high consequence events.
In fact in the United States, between 1995 and 2009, around 120 train accidents
resulted in release from multiple tank cars, which translates into an average of eight
accidents every year (FRA 2010).

Over the past four decades, the railroad industry has spent considerable effort in
reducing the frequency of tank car accidents as well as the likelihood of releases
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in the event of an accident. To this end, the Association of American Railroads,
the Chemical Manufacturers Association and the Railway Progress Institute formed
an inter-industry taskforce in the early 1970s (Conlon 1999). Unfortunately, the
activities of this voluntary task force largely ceased in about 1994, and most
of their internal reports were never publicized and considered proprietary to the
sponsoring organizations (Barkan 2004; Conlon 2004). The more recent academic
and industry initiatives have focused on analyzing past accident data in an effort to
increase railroad safety by improving rail-tracks or railcar tank designs; and, on risk
assessment and management.

In an effort to communicate the nature of railroad risk stemming from hazmat
shipments, this book chapter will first describe the workings of a (freight) rail
transportation system. An understanding of the characteristics of the transportation
system will facilitate the discussion of different risk assessment methodologies
and risk management techniques developed for railroad transportation of hazmat.
Finally, a brief outline of some open problems is provided before concluding.

This book chapter is organized as follows: section “Rail Transportation System”
sketches the workings of freight rail transportation, and introduces the integral
operational elements. Section “Risk Assessment Methodologies” contains an exten-
sive discussion of the three most popular measures of transport risk, i.e., expected
consequence, incident probability, and population exposure. Though these measures
were developed for highway transportation, however in recent years, they have been
adapted to capture the dynamics of railroad accident and hence could be used to
assess hazmat transport risk from railroad shipments. Section “Risk Management
Techniques” outlines techniques to manage and/or mitigate hazmat transport risk,
including design of rail tank cars, placement of hazmat cars in a train, and network
routing. Finally, issues presenting potential for research are indicated in section
“Potential Research Questions,” and conclusions are given in section “Summary.”

Rail Transportation System

The most common approach to represent rail transportation system is via a network,
whose nodes represent yards (or stations) and whose arcs represent tracks on which
trains carry freight (or passengers). Freight demand is usually expressed in terms of
tonnage or number of railcars of certain commodities to be moved from an origin
to a destination. For every origin-destination pair of demand, the corresponding
freight may be shipped either directly or indirectly. When demand is important
enough delivery delays are minimized by using direct trains, or else freight is routed
through intermediate nodes in order to accumulate enough tonnage (or volume) to
justify dispatching a train. As a result, one could view the rail operating policies
as a sequence of decisions intended to bring about as close a match between
demand (i.e., freight traffic) and available resources (i.e., feasible train routes, train
itineraries, crew and motive power, and yard capabilities) (Verma 2005). To facilitate
discussion on risk assessment and management in the following sections we next
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physical service

P Q P Qj2j1
T1
PQ

T2
PQ

a b

Fig. 1 Railroad Network (Source: Verma 2005). (a) Physical, (b) service

outline the relevant components of a rail transportation system, and invite the reader
refer to Cordeau et al. (1998) for an excellent review of the different works in the
railroad domain.

Figure 1a represents a physical network of a railroad by a directed graph
GphD (N, Aph) where N is the set of nodes and Aph is the set of rail segments
representing tracks between yards. Based on the physical network Gph, the service
network GD (N, A) specifies the set of feasible routes on which train services may
be operated. In Fig. 1b, the service network of two train services T

PQ
1 and T

PQ
2

is graphed. The service of a freight train is characterized by an origin yard, a
destination yard, a sequence of rail track segments from the origin to destination
yard, and a set of intermediate stops. The track segment between two consecutive
stops of a train service is called a service leg. Although both train services have the
same origin and destination, the set of intermediate stops and the service legs are
different and hence the two are distinct. This is because while T

PQ
1 goes through

j1 and j2 with possible pick-up/drop-off operation at these intermediate yards, T
PQ
2

has only j2 as the intermediate yard. Furthermore, T
PQ
1 has three service-legs (i.e.,

P–j1, j1–j2, and j2–Q), T
PQ
2 has two (i.e., P–j2 and j2–Q).

In the railroad industry, demand (or traffic-class) is characterized by unique
origin and destination yards. For example in Fig. 1b, P–j2 would constitute a
demand, since it has a unique origin and destination yard. It is easy to see that
this demand can be met using either of the two train services in the available
network. A feasible journey of a traffic-class from the origin to the destination yard,
including the train services and yard operations, is called its itinerary. As indicated
earlier, train service-legs are composed of track sections between two consecutive
stops, whereas yard operations can entail grouping and/or transfer of railcars. For
the simple scenario in Fig. 1, traffic-class P–j2 has two itineraries: first, on train
service T

PQ
2 via intermediate yard j1, where the traffic-class in consideration is not

touched since the train performs just the pick-up/drop-off operation; and second,
using T

PQ
2 —the direct non-stop service. It is important to note that the indicated

movement was a simple illustration of a railcar and did not involve any classification
(i.e., grouping of railcars) and/or transfer at intermediate yards, an aspect that is
integral to the operation of the railroad industry, and explained using Fig. 2.

Assume that we intend to track traffic-class (or demand) A!F, where A is the
origin and F the destination yard, on the given network. There are four train services:
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A

B

C D E FT1 T3 T3 T4

T2 T2

Fig. 2 Service network, itinerary, and blocking

T1 operates between yards A and C; T2 originates in yard A and terminates at E,
with B as the intermediate stop; T3 starts at C, services D before terminating in
yard E; and, T4 operates between yards E and F. It is important that origin and
destination yards of freight trains possess the capability to classify railcars, which
are represented by square nodes in Fig. 2, and are distinct from nodes (i.e., circle)
with only transfer capabilities. It may not be either evident or well known, but
classification (also called blocking) is the major determinant that enables railroads to
realize economies of scale. Blocking of railcars is done to prevent handling of each
railcar at every intermediate yard on its journey. A group of railcars with common
handling points are grouped together at the start of its journey, and this group is not
disbanded until it reaches the specified handling yard, which is the destination for
that block. On reaching the destination for that specific block, further classification
and blocking operations may have to be performed on individual railcars depending
on their destinations. The process continues till a railcar reaches its destination.

To make this more explicit, suppose T1 brings railcars associated with traffic-
class A!F to yard C, where some operation would be performed in preparation
for the onward journey. At C, one of the two activities will be performed on the
traffic-class in question. If the number of railcars in this traffic class is sufficient to
form a block (i.e., a group of railcars with common handling point), then the entire
set will be placed on the departure track at yard C waiting to be connected to the
outbound train T3. On the other hand if the number of railcars is not enough to
be deemed a block, i.e., the typical case, then some yard intensive activities would
have to be performed. The incoming railcars will be sorted according to the final
(or an intermediate) destination and grouped together in a block, and placed on a
departure track for outbound movement. In some instances, a classification yard
may have dedicated tracks for building blocks for different destinations. Assume
that marshalling yard C has a dedicated track for yard E, and hence all the railcars
belonging to traffic-class A!F will be blocked with other railcars with E being
either the intermediate handling point or the final destination.

Now train service T3 leaves C with the blocks on its take-list, stops at D—which
is only a service yard and hence only block-swap and/or drop-off can happen. The
train terminates at yard E, where the incoming blocks would be sorted and then
classified based on the next handling point. Finally, traffic class A!F will be placed
on T4, together with other traffic with F as the handling point, for the final leg of
its journey. Given the network structure of the railroad, it is important to understand
that the type of operations to be performed on incoming traffic at any yard depends
on the operations performed on the preceding yards, and the anticipated activities
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at the yards to follow. Typically these decisions are made at a strategic level, and
hence each yard master knows the type of operations to be performed.

The sequence of blocks to which a railcar is assigned along its route from origin
to destination is called the blocking path (Barnhart et al. 2000; Newton et al. 1998).
It is worth noting that the blocking path may be different from the physical route. For
example, traffic-class A!F has two routes: A–T2–E–T4–F; and, A–T1–C–T3–E–
T4–F. Note that yards B and D are not pertinent in the discussion of blocking paths,
since blocks cannot be built at those locations. The first route has two blocking
paths: A-F, and A-E-F. On the other hand the second route has four blocking
paths: A-C-E-F; A-C-F; A-E-F; and A-F. Hence, even for this simple instance, i.e.,
one traffic-class and sparse rail network, there are six possible blocking paths on
two physical routes. For realistic problem instances, the number of blocking paths
could grow exponentially and hence some intelligent enumeration techniques and/or
rule of thumb should be implemented to generate reasonable paths. For example,
one could enumerate only the direct paths, which involves no circular connections
and/or paths that are within x% of the shortest paths between the given OD pair.
Alternatively, one could limit the number of intermediate handlings.

To recap, the objective of this section was to provide a brief outline of a
rail transportation system, which will facilitate development of risk assessment
methodologies and discussion of the risk management (mitigation) techniques in
the following sections.

Risk Assessment Methodologies

Although railroads move a significant quantity of hazmat both in the United States
and in Canada, which has translated into increased research over the past decade,
an overwhelming majority of academic initiatives in the preceding periods focused
on road shipments (Erkut et al. 2007). The tremendous strides made in the highway
domain, unfortunately, could not be extended to railroads because of differences
between the two modes. For example, a train usually carries both regular and hazmat
cargo together, whereas these two are almost never mixed in a truck shipment.
Secondly, a rail tank car has roughly three times the capacity of a truck-tanker,
and the number of hazmat railcars varies significantly among different trains. The
resulting variability in the total amount of hazmat needs to be taken into account in
assessing the rail transport risk, wherein railroads typically have much less routing
flexibility compared to trucks. Finally, hazmat incidents involving freight trains
could entail content-release from multiple railcars. For example, in the United
States, between 1995 and 2009, around 120 train accidents resulted in release
from multiple tank cars, which translates into an average of eight accidents every
year (FRA 2010). In December 1999, Canadian National Ultratrain released 2.7
million liters of petroleum products due to the derailment of 35 tank cars just
outside Montreal. Thirty cars were seriously punctured and had to be demolished
at the accident site (Railway Investigation 2002). Another well-known accident
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took place near Toronto in 1979, in which chlorine leaking from damaged tank cars
forced the evacuation of 200,000 people (Swoveland 1987). Thus, a train accident
can have more severe consequences than those involving trucks, mainly due to the
higher volumes of hazmat being shipped and the interaction between railcars.

Though the last few years have witnessed the development of risk assessment
methodologies that incorporate the specific nature of railroad shipments, they
were preceded mostly by works focusing on accident rate analysis. Glickman and
Rosenfield used past train derailment data to derive three forms of risk: the prob-
ability distribution of the number of fatalities in a single accident; the probability
distribution of the total number of fatalities from all the accidents in a year; and, the
frequency of accidents that result in any given number of fatalities (Glickman and
Rosenfield 1984). On the other hand, Barkan et al. (2003) conducted a statistical
analysis of the railroad accident data to conclude that the speed of derailment
and the number of derailed cars are highly correlated with hazmat release, and
then proposed estimating direct and conditional probabilities in conducting risk
analysis (Anderson and Barkan 2004a). While these engagements made use of
empirical data for insights and conclusions, the recent efforts geared towards
developing assessment methodologies can be listed under the three most popular
measures of hazmat transport risk: expected consequence; incident probability; and,
population exposure. Each of the three measures has been extensively used to study
highway transportation of hazmat, and, until recently, similar activities were not
witnessed in the railroad domain. Though expected consequence—defined as the
product of probability and consequence of an undesirable event—is perhaps the
most popular measure, dearth of data and/or the limitations associated with this
measure have resulted in the development of other risk measures. For example,
the incident probability measure focuses just on the probability of undesirable
event (Saccomanno and Chan 1985; Abkowitz et al. 1992), whereas the population
exposure measure considers the total number of individuals exposed to hazmat
shipments (Batta and Chiu 1988; ReVelle et al. 1991). We outline the developmental
works associated with each transport risk measure in the subsections to follow.

Expected Consequence

Interestingly, until very recently, the most popular measure of hazmat transport risk
was not adapted for railroad transportation, which in part could have resulted from
data limitations and/or complexity of the transportation system. Subsequently, in an
effort to develop a risk assessment methodology that incorporates the characteristics
of railroad accidents, FRA (Federal Railroad Administration) freight derailment
information from 1995 to 2009 was collected and analyzed to reveal the five
major causes of railroad accidents: track, roadbed and structures; human factors;
mechanical and electrical failures; signal and communication; and, miscellaneous—
with track and human factors accounting for 70% of the accidents (Verma 2011). In
addition, it was also noticed that derailment probability of each position in a train is
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Fig. 3 Depiction of a
rail-link

not constant and dependent on the train length. The aforementioned implies that an
appropriate risk assessment methodology should consider: (a) the probability that a
train carrying hazmat will be involved in an accident, which should be represented
as a composite of the five causes of rail accidents; (b) the conditional probability
that a hazmat railcar will derail, which would depend on both the train-length and
railcar position in the train-consist; (c) the conditional probability that the railcar
will rupture and release its contents; and, (d) the consequence as a result of hazmat
release from multiple sources.

Although the 25,000 derailment instances collected for the above insights could
have been further processed to reveal position-specific derailment probabilities,
such numbers would not have much use since freight-train lengths vary. This is
why a study commissioned by the FRA and the Department of Transportation
(DOT) computed derailment probabilities based on the four quarters of the train.
Approximately 165,000 derailed railcars were analyzed to conclude that derailment
probabilities are highest in the first and lowest in the fourth quarter of the train
(Thompson et al. 1992). Since the preliminary analysis in Verma (2011) was not
entirely consistent with the conclusion in Thompson et al. (1992), the former
proposed risk assessment at a higher resolution, i.e., by focusing on a unit smaller
than a quarter, such as deciles (viz. ten equal parts). Conceivably a decile-based
approach should result in better analysis, but only if train-lengths are similar (or
constant). For example, a train with 12 railcars is completely contained within the
first decile of a train with 240 railcars, and hence their derailment probabilities
should be different. In the absence of any peer-reviewed work suggesting length-
based categorization of freight-trains, it was suggested that freight-trains with up
to 40 railcars be called short; between 41 and 120, medium; and, the rest long
(Verma 2011). It is important to note that the expected consequence methodology,
to be developed next, is similar to the ones presented for road shipments, except the
adaptations necessary to capture the characteristics of railroad accidents.

Link Risk

Consider a rail-link l of unit length (Fig. 3). If the probability that a train meets with
an accident on this rail-link is given by Al and the resulting consequence by Cl, then
the expected consequence (or traditional risk) over l can be represented by:

ERl D Al � Cl (1)

where Cl would be determined as:

Cl D P.Di jl/ � P.H jDi ; l/ � P.RjH; Di ; l/ � Exposurel (2)
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where P.Di jl/ is the probability of derailment of a railcar in the ith decile of the
train given the accident on link l; P.H jDi ; l/ is the probability that a hazmat railcar
derailed in the ith decile of the train given the accident on link l; P.RjH; Di ; l/ is
the probability of release from a hazmat railcar derailed in the ith decile of the train
given the accident on link l; and, Exposurel is the population exposure due to the
release from hazmat railcars given the accident on link l. While (1) is the well-
known definition of traditional risk, (2) is the relevant adaptation to incorporate the
characteristics of railroad accidents.

Although the FRA website provides comprehensive rail data, accident rates for
each and every rail-link in the network may not be available given that hazmat
accidents are rare events, and hence it would not be unreasonable to use network-
wide accident rates. Furthermore, if the aggregated accident rates do not provide
sufficient resolution for direct estimation of conditional probabilities, then logical
diagrams, such as fault trees and event trees, should be used to estimate the
probability of an event based on the historical probabilities of a set of basic event
for which sufficient data or expert judgements is available.

It is important to note that railroads generally transport multiple hazmat, whose
impact on human life and their interactions are unknown, and hence any risk
assessment exercise would require development of an approximation technique.
Verma (2011) proposes adopting a conservative approach by basing evaluation on
the hazmat likely to be most detrimental, and provides the rationale by outlining
three reasons: first, it precludes underestimation of risk; second, it facilitates better
emergency response preparedness since the hazmat being considered is likely to
cause maximum damage; and third, it offsets the adverse impact of not keeping
track of individual hazmat.

Exposure

The population exposure approach, as proposed for road shipments (Batta and Chiu
1988; ReVelle et al. 1991), is modified to incorporate the possibility and volume
of hazmat released from multiple sources, and the resulting relationship can be
represented as:

Exposurel D f .Vl ; �.Vl// (3)

where Vl is the volume of hazmat released due to the accident on rail-link l, and
� .Vl / is the population density of centers exposed due to Vl . If complete information
on hazmat interaction is not known, one could make use of the approximation
technique and work with total volume of hazmat released from all sources. But
if such information is available, then one should use the exact expression to capture
the interaction. If vn

l is the quantity of hazmat released from railcar n due to the
accident on link l, the total volume of hazmat released from all the sources due to
the accident on link l can be determined by:

Vl D
X

n
vn

l (4)
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Fig. 4 Region of impact (Source: Verma 2011). (a) Danger circle, (b) exposure band

For a priori risk assessment, Verma (2011) proposes loss of entire lading from
a rail tank car when no information on volume is available. This suggestion was
defended by running a number of scenarios in ALOHA—an atmospheric dispersion
model used for evaluating release of hazardous chemicals, where even a 4-in.
rupture diameter resulted in the loss of the entire lading within 7 min, which is
considerably less than the anticipated emergency response times. Now if the impact
area can be represented as a danger circle (of radius OX ), then the hazmat transport
activity can be visualized as the movement of this circle along the rail-link (of length
l), which carves out a band as the region of possible impact (Fig. 4). The number of
people living in the band is the population exposure (Batta and Chiu 1988; ReVelle
et al. 1991).

Evacuation Distance

If the quantity of hazmat released is not significant (i.e., minor spill), then the
evacuation distance as specified in the Emergency Response Guidebook should
be used for determining population exposure (ERG 2012). On the other hand, if
the quantity of hazmat released is outside the specified guidelines (i.e., major and
larger spills), as would typically be associated with train accidents, then evacua-
tion distance should be determined by: aggregating release at various downwind
locations (from multiple sources); and, then comparing the aggregate hazmat level
with the immediately dangerous life and health (IDLH) levels to ascertain the threat
zone. Indeed this is an application of the population exposure based methodology
developed to tide over the limitations associated with collecting comprehensive data
to estimate traditional risk (Verma and Verter 2007), and will be detailed in section
“Population Exposure.”

Route Risk

For railroads, a route is a collection of rail-links and intermediate yards connecting
the origin and destination for the specific freight-train (Figs. 1 and 2). Assume that
a rail route is comprised of only two links: l and lC 1. It is easy to see that travel on
this is a probabilistic experiment, since the expected consequence on lC 1 depends
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on whether the train meets with an accident on l. Hence, the expected consequence
associated with this route is:

AlCl C Œ1 � Al�AlC1ClC1 (5)

where, AlC1 is the probability of meeting with an accident on lC 1, and ClC1

the resulting consequence. To generalize, if there are m rail-links in the route
under consideration, the expected consequence associated with this route would be
expressed as follows:

AlCl C Œ1 � Al� AlC1ClC1 C Œ1 � Al�Œ1 �AlC1� AlC2ClC2 C : : :

C
�Ym�1

iD1
Œ1 � Ai

�
AmCm (6)

where, Œ1 � A1� Œ1 �A2� Œ1 � Ak�1�AkCk is the expected consequence for the kth
rail-link.

Ideally appropriate accident rate probabilities, for rail-links, should be used to
determine corresponding expected consequence, though in reality such numbers
may not be available for each and every link in the network, and hence a different
estimation technique may be required. In the absence of detailed accident data, (6)
can be simplified given the infinitesimally small incident probabilities of the order
10�6. Such approximation, made to tide over data limitations, have been shown to
introduce negligible errors for a number of instances based on a road network (Erkut
and Verter 1998). It is possible to make similar approximations for railroads, since
incident probabilities are also of the order 10�6, and hence one can assume Al D A

for each rail-link l of similar track-type. If index i is used to denote the rail-links
forming route P, then the expected consequence of transporting hazmat along route
P would be:

ERP D A
X

i2P
Ci (7)

where Ci is the consequence due to train accident on rail-link i. Note that
consequence will be different for each rail-link since it depends on the population
density of the exposed population centers, which is not uniform along a train route.

Although Verma (2011) was a useful effort in getting an understanding of the
nature of railroad risk, it made use of an approximate approach (i.e., using train-
deciles) to compute risk. For example, for a 100 railcar train, the conditional
derailment and release probability for the 81st and the 89th railcars are identical.
However, in reality the conditional probabilities for the two positions would be
different since they are subject to differing forces. Hence, there was a need for an
assessment methodology that could not only reconcile various train lengths but also
took into consideration—the derailment probabilities of every position in the train-
consist, initial point of derailment, number of railcars derailed, and the resulting
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consequence from multiple sources. The most recent effort by Bagheri et al. (2012)
attempts to fill this gap, and is briefly outlined next.

Comprehensive Risk Assessment Framework

Consider again a rail-segment l, and a hazmat railcar in that is in the ith position
along the train-length. Transport risk stemming from the ith hazmat railcar on the
given rail-segment l can be defined as the product of the derailment probability for
position i, P i

l , and consequence, C i
l .

Riski
l D P i

l � C i
l (8)

where, the probability of derailment for position i can be calculated as the product
of the probability of train derailment on segment l, i.e., P.TD/i

l , and the conditional
probability that position i is the point where derailment starts (POD) given that the
train has derailed, i.e., P.POD/i

l . Note that the proposed framework focuses on
railcars after the point of derailment in the computation of risk.

P i
l D P.TD/i

l � P.POD/i
l (9)

and, the consequence of derailment can be calculated as the product of the
conditional probabilities that m railcars derail as a result of derailment beginning at
position i on the given rail-segment, i.e., P.mji/, and j hazmat railcars among the m
derailed will release, i.e., P.j jm/, together with the population exposure associated
with j railcars, P Ej .

C i
l D

Xn�iC1

mD1
P.mji/

hXm

j D0
P.j jm/P Ej

i
(10)

Substituting (9) and (10) in (8), and summing over all the rail-segments of a route
R, the complete expression for determining transport-risk is:

Total RiskR D
X

l2R

Xn

iD1

�
P.TD/i

l � P.POD/i
l

�
Xn�iC1

mD1
P.mji/

hXm

j D0
P.j jm/P Ej

i�
(11)

Please note that (11) is, in part, motivated by the incident probability work of
Bagheri et al. (2011), and hence we outline the relevant parameter estimation tech-
nique in the next section. We conclude this section with a comment that population
exposure was estimated by adopting the worst-case approach by assuming least
favorable weather conditions and focusing on maximum concentrate levels, and we
provided the pertinent details in section “Population Exposure.”
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Incident Probability

Although the expected consequence approach is simple to use and justify, as
indicated earlier, a dearth of detailed data necessitated development of alternate risk
measures. The first alternate measure focused on the likelihood of a hazmat incident,
i.e., incident probability. This measure, also developed in the highway context, was
appropriate for hazmat with relatively small danger zones (Saccomanno and Chan
1985; Abkowitz et al. 1992). Consequently the assessment methodology adapted
for railroads incorporated the pertinent operational characteristics, and endeavored
to determine the best position to place hazmat railcars such that in-transit risk is
minimized (Bagheri et al. 2011). To that end, the proposed framework recommends
assigning hazmat railcars to those positions along the train that have the lowest
probability of derailing along the different route segments, which could be done by
making use of service engines at the rail marshaling yards. The proposed model
requires two types of inputs: hazmat and regular shipment volume by intermediate
and final destination along a given route; and, route attributes (i.e., design features
of a rail segment).

To elaborate, again assume a rail-segment l. Now the incident probability risk
from a railcar in the ith position along the train length can be determined by:

IP i
l D P .TD/l � P.i jTD/ � Y i

l (12)

where, P .TD/l is the probability of train derailment on rail-segment l; P.i jTD/

is the conditional probability of a railcar in the ith position derailing; and, Y i
l is a

binary variable that assumes a value of 1 if the railcar in the ith position contains
hazmat, and 0 otherwise. It should be clear that the introduction of binary variables
ensures that only hazmat railcars are considered in impact assessment, whereas
railcars with regular freight would not contribute to transport risk. The conditional
probability of derailment, i.e., P.i jTD/, can be determined as:

P.i jTD/ D
Xi

j D1

�
P POD

j �
Xn�j C1

xDi�j C1
P.xjj /

�
(13)

where, P POD
j is the probability that the point of derailment starts at position j; and

P.xjj / is the probability of x railcars from a total of n derailing given the point
of derailment starting at position j. Note that several factors can result in train
derailment, and hence it is important to consider all of them when estimating the
probability of derailment involving any position (Bagheri et al. 2011). Substituting
(13) in (12), we get the elaborate expression for incident probability for the ith
position on rail-segment l, which is:

IP i
l D

�
P .TD/l �

Xi

j D1

�
P POD

j �
Xn�j C1

xDi�j C1
P.xjj /

��
� Y i

l (14)
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and for all positions along a train of length n, and over all rail-segments on route R
is:

IPR D
X

l2R

Xn

iD1
IP i

l (15)

It should be evident that since (15) looks just at the hazmat incident, consequence
is completely ignored—unlike in (11) where population exposure is crucial to the
transport risk. Clearly the proposed model takes into consideration the specific route
and rolling-stock attributes to determine the minimum risk slots for hazmat railcars
for a given rail-segment, additional investigation is necessary to ascertain the impact
of this model at a network level (i.e., multiple yards and trains). It is our belief
that such studies will provide further insights into the feasibility of implementing
a similar plan at different marshalling yards, and perhaps yield more generalizable
results that are not specific to a particular transportation corridor.

We next discuss the techniques for estimating various parameters in both (11)
and (14), and invite the reader to refer to the indicated references for additional
details. As indicated earlier, population exposure in (11) is determined by using the
framework of Verma and Verter (2007), and will be discussed in section “Population
Exposure.”

Train Derailment

Anderson and Barkan (2004b) showed that the probability of freight train derailment
is a function of distance traveled, train length, and track class; and proposed the
following expression for calculating the probability of derailment:

P.TD/i
l D 1 � ef�DŒRC.TL/CRT �g (16)

where, D is the travel distance; TL is the train length; RC is the derailment rate per
billion freight car-miles; and, RT is the derailment rate per million freight train-
miles. The model was based on aggregate data for accident rates for different types
of track class in terms of the number of derailments per billion freight car-miles, and
the number of derailments per million freight train-miles (Table 1). It is important
to note that the probability of derailment will vary with rail segment and number of
blocks in the train-consist.

Point of Derailment (POD)

A railcar can be involved in a derailment either by initiating the derailment, or by
being amongst the units derailed following the POD—and the latter is assumed in
(Bagheri et al. 2011).



22 M. Verma and V. Verter

Table 1 Derailment rates (Source: Anderson and Barkan 2004b)

FRA track classa

Derailments per 1 2 3 4 5 and 6

Million freight train miles 48.54 6.06 2.04 0.53 0.32
Billion freight car miles 720.10 92.70 31.50 7.80 4.90
aThe FRA classified tracks based on various quality and speed consider-
ations. Class 1 represents the poorest tracks and wherein speed limit is
16 km/h, whereas Class 6 is the best with permissible speed of 177 km/h

Fig. 5 Determining weights for different types of trains (Source: Bagheri et al. 2012)

It was suggested that derailment causes can be grouped under three classes
depending on the part of the train likely to derail first. More specifically, causes
which affect the front of the train (CF ), the rear of the train (CR), and the middle of
the train (CM ). In addition, trains were categorized into three types: short (up to 40
railcars); medium (between 41 and 120 railcars); and, long (more than 120 railcars).
Finally, a nonparametric Kruskal-Wallis test was applied to show that train-length
and causes provide a statistically significant explanation for median point of
derailment (POD). Best fit POD distributions were obtained for all nine length-
cause combinations, and different weights were used to account for uncertainty
caused by overlap in train-length at the boundaries (i.e., around 40 and 120 railcars).
Figure 5 can be used to determine the two types of trains under consideration and
the appropriate weights.

For example, for a 100-railcar train over a rail-segment subject to cause CF

(causes that affect the front of the train), the respective weights are w1 D 0:50

for a medium-train classification, and w2 D 0:50 for a long-train classification, and
zero for short-train classification. Now the probability of derailment for the tenth
position (in a train with 100 railcars) with cause CF is obtained by applying the
following steps: (1) determine the weights for relevant train-lengths (i.e., w1 and
w2); (2) compute the normalized point of derailment, which for this example is:
10/100D 0.10; (3) obtain the derailment probabilities for the position of interest
(for this example, iD 10) the values are 0.021 and 0.023 from (Bagheri et al. 2011);
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and, (4) substitute values in (17) to obtain P.POD/i
l , which for this example is

0.022.

P.POD/i
l D

f1.j / � w1.e/C f2.j / � w2.e/

w1.e/C w2.e/
(17)

where, f1.j / and f2.j / are estimated for position j, and the membership values
(weights) as explained above.

Number of Railcars Derailed

The number of railcars derailing is affected by the dissipation of kinetic energy
following a train derailment, which implies that train speed and distance from the
point of derailment are important. Note that the latter point is relevant because as the
distance to the POD increases, forces of instability acting on the remaining railcars
decrease. Given that risk is posed by a derailed hazmat railcar, all hazmat railcars
placed before the POD or beyond the derailed block do not pose any risk on the
given rail-segment. A truncated geometric expression, to estimate the probability
that m railcars will derail given that derailment started at position i (Saccomanno
and El-Hage 1989), is proposed.

P.mji/ D p.1 � p/m�1

1 � .1 � p/T Lr
(18)

where, m D 1; 2; : : : ; T Lr , and T Lr is the number of railcars in the train past the
point of derailment, and (1�p) is the probability of derailment for a position after
the point of derailment.

In an effort to evaluate the significance of other causal factors on the probability
of derailment (i.e., p in 18), summary statistics for the FRA database were generated
at the 95% significance level. From Table 2, it is possible to conclude that the
number of railcars derailing beyond the POD has a strong association with all the
primary causes. In addition, Saccomanno and El-Hage (1991) suggested using a
logistic regression of the following form to estimate the probability of derailment
beyond the POD.

p D efˇ0CPk ˇkXkg
1C efˇ0CPk ˇkXkg (19)

where, Xk indicates the impact of the kth independent factor on the probability of
derailment beyond the POD. Table 2 depicts the summary statistics for the various
causal factors for the 1997–2006 FRA dataset (Bagheri et al. 2011).

Table 2 shows that at 95% confidence level, each of the eight factors is significant,
and that increasing the speed will increase the probability of derailment when using
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Table 2 FRA data causal factor statistical summary (Source: Bagheri et al. 2011)

Parameters Estimates Std. error Z statistics Lower 95% Upper 95%

Intercept �2:013 0.082 �24:46 �1:85 �2:17

Residual length (RL) 0:001 0.001 1:266 0:002 �0:001

Speed effect (SE) �0:032 0.002 �17:07 �0:029 �0:036

Roadbed (RB) 0:419 0.018 2:367 0:766 0:072

Track geometry (TG) 0:171 0.089 1:921 0:346 �0:003

Switches (S) 0:715 0.119 6:013 0:949 0:482

General car (GC) 0:841 0.085 10:132 1:03 0:697

Axles/wheels (AW) 1:108 0.077 14:404 1:26 0:958

All other (O) 0:444 0.073 6:056 0:587 0:30

Table 3 Number of derailments resulting in hazmat release (Source: FRA 2010)

Year Number of accidents Hazmat involved Hazmat derailed Hazmat release

1997 545 152 64 11

1998 620 201 95 23

1999 547 206 102 20

2000 598 202 91 22

2001 627 223 97 20

2002 541 192 95 16

2003 582 196 95 17

2004 594 174 74 14

2005 580 171 69 13

2006 563 204 103 11

Total 5; 797 1; 921 885 167

a logistic regression function. In addition, the impact of the factor AW , representing
axles/wheels, on derailment is less compared to that of track geometry.

Number of Railcars Releasing Hazmat

The conditional probability that j hazmat railcars release, given that m have derailed,
is estimated from empirical data. For example, Bagheri et al. (2012) looked at the
period from 1997 to 2006. Approximately 5,800 freight train accidents of which
one-third included hazmat were recorded (Table 3). A total of 885 hazmat railcars
derailed resulting in release from 167 (or, 18.8%). It was interesting to note that a
number of hazmat release episodes involved multiple railcars, which necessitates
taking into consideration potential volume released. For instance, in eight of the
eleven accidents in 2006, multi railcar release episodes were recorded. In fact, the
worst incident involved release from 20 hazmat railcars.

In an effort to take advantage of the empirical dataset, it was proposed that the
conditional probability of release from a derailed hazmat car (q) be independent of
each other, such that:
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P.j jm/ D q � q � � � � � q D qj (20)

According to the FRA database (1997–2006), the conditional probability of
release from a derailed hazmat railcar (q) is 0.0903, obtained at an aggregate level
by dividing the number of railcars releasing by the total number of hazmat railcar
derailed.

Note that we have outlined the estimation technique for every parameter intro-
duced in (11), except population exposure, which we do next.

Population Exposure

The second alternate measure, also developed to tide over the limitations associated
with the expected consequence approach, represented transport risk as the total
number of people exposed to the possibility of an undesirable consequence due
to the shipment. For example, according to the Emergency Response Guidebook
(ERG 2012), 800 m around a fire that involves a chlorine tank, railcar or tank-
truck must be isolated and evacuated. Therefore, the people within the predefined
threshold distance from the railroad are exposed to the risk of evacuation. This
fixed bandwidth approach was originally suggested by Batta and Chiu (1988), and
ReVelle et al. (1991). It is important that, in contrast with the traditional “average”
risk measure, population exposure constitutes a “worst-case” approach to transport
risk. Therefore, it is particularly suitable for assessing risk as perceived by the public
as well as for estimating the required emergency response capability.

Verma and Verter (2007) contended that the use of the bandwidth approach, that
implicitly assumes a standard hazmat volume, is inappropriate for estimating the
number of people put at risk due to railroad shipments. This is because both the
number and location of hazmat railcars vary considerably among trains, and hence
it was important to define the boundary of impact area as a function of the hazmat
volume on the train. A train with one propane tank-car, for example, exposes an
individual living 1 km from the rail track to minor injury risk, whereas the same
individual would be exposed to fatality risk due to a train with 21 propane tank cars.
This can be explained by the considerable increase in the toxic concentration level
at the individual’s location due to the additional 20 railcars. In an effort to develop
the population exposure framework for railroads, the authors focus on hazmat that
becomes airborne on release (such as chlorine, propane and ammonia). Furthermore,
they define exposures in terms of the level of toxic material concentration, which are
estimated using the most popular air dispersion model, i.e., Gaussian plume model
(GPM) (Arya 1999). For example, an individual is considered “exposed” to a certain
undesirable consequence, if the imposed toxicity is at (or higher than) the associated
threshold level for the given hazmat (also called the immediately dangerous to life
and health—IDLH level).
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The standard GPM is first adapted to represent a single railcar (release source),
which is then extended to represent train shipments, which typically involve
multiple release-sources. Assuming that the release-source and the impact point are
at zero elevation, the single railcar model is as follows:

C.x; y/ D Q

�u�y�z
exp

 
�1

2

�
y

�y

�2
!

(21)

where C.x; y/ is the concentration level (ppm) at impact point .x; y/ in steady-
state, Q is the release rate of pollutant (mg/s), u is the average wind-speed (m/s),
�y the horizontal dispersion coefficient (m), �y D axb , �z the vertical dispersion
coefficient (m), �z D cxd , x the downwind distance from the source (m), and y the
crosswind (perpendicular) distance from the source (m).

In estimating the steady-state concentration level at point .x; y/, the model
assumes that the release rate and atmospheric conditions remain constant over
the period of dispersion. Although the steady-state conditions are rarely reached,
this is a common assumption—particularly reasonable during the first hour of
release. The release rate, Q, depends on container volume, hazmat type and rupture
diameter. The authors used ALOHA (US Environmental Protection Agency 2011),
a popular software among North American regulatory agencies including EPA,
US Department of Transportation and Transport Canada, to calculate the release
rate. Although ALOHA can also be used for estimating the concentration level,
C.x; y/, its results are only reliable within 1 h of the release event, and 10 km
from the release source. In order to assess the population exposure under worst-
case conditions, the highest release rate was incorporated by assuming a 24 in.
rupture at the bottom of the railcar—though a sensitivity analysis on different
rupture sizes was also performed. Dispersion coefficients �y and �z are determined
by atmospheric stability category and the downwind distance, x, to the release
source. Pasquill and Smith (1983) and more recently Arya (1999) provide the values
of dispersion parameters a, b, c and d based on atmospheric stability category.
Since minimum wind speed, under any atmospheric category, resulted in maximum
concentration at all points in the plane—the authors assumed minimum possible
wind speed of 2.5 m/s under the neutral atmospheric conditions. Given the objective
of developing the most conservative scenarios, the authors focused on downwind
points (i.e., where crosswind distance yD 0), which yields the following expression
for determining concentrate level at downwind distance, x, from the release source:

C.x/ D Q

�u�y�z
(22)

The two shaded areas in Fig. 6 depict the two zones of a Gaussian plume footprint
from a single release source, when the wind is blowing east. The two zones represent
areas where toxicity is higher than a pre-specified concentration level (i.e., IDLH
level for the given hazmat). The inner zone corresponds to higher exposure to
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P

Fig. 6 The footprint of a
Gaussian plume at a given
wind speed (Source: Verma
and Verter 2007).

hazmat transport risk, while the outer to non-severe exposure. The authors address
the uncertainty in wind direction by rotating the footprint around the release source,
which constructs two concentric circles. Consequently, the furthest point from the
release source, where threshold concentration level is attained, defines the radius
of the circle (e.g., P in Fig. 6). Of course this constitutes the most conservative
approach to transport risk, since the concentrate level at any point on the circle
cannot be higher under any plausible wind direction. Conceivably, there may be
prevailing winds along some segments of the train’s route. If, for example, wind
blows within the east and north directions along a track segment, then only the
upper-right quarters of the danger circles need to be used for estimating population
exposure. Note that, in contrast with the fixed bandwidth approach, the radius of
each impact area in Fig. 6 varies with the release rate.

The authors next extended the basic GPM to incorporate multiple release-sources
as follows. Assume that the 11-railcar train in Fig. 7 is travelling east, and that F
and L denote the first and last hazmat railcar, respectively. M is the point with equal
amount of hazmat on both sides, which is referred to as the hazmat-median of the
train. For trains with an even number of hazmat railcars, M is midpoint of the two
hazmat railcars at the center of hazardous cargo. Note that M and D, the middle
of the train, do not necessarily refer to the same point. Finally, P1, P2 and P3 are
equidistant from M; and the five hazmat railcars are blocked at the back of the train
(Verma and Verter 2007).

Both (Arya 1999) and (Pasquill and Smith 1983) suggest that pollution from an
array of sources with an arbitrary distribution of position and strength of emission
can be modeled by superposing the patterns of pollution from these sources, and
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Fig. 8 Impact of a five hazmat railcar block (Source: Verma and Verter 2007)

hence aggregating the resulting contamination at each impact point. In Fig. 7, when
the wind is blowing east, P1 constitutes a downwind location where crosswind
distance yD 0 for all railcars. In the event of a major incident that ruptures all five
railcars with hazardous cargo, the total concentrate level at P1 would be sum of the
concentrate levels associated with each railcar, which can be estimated via (22). The
three curves in Fig. 8 depict total concentration at P1 as a function of the distance
to F, M, and L, respectively. Consider a fixed reference point at xD 0. As the train
travels east, F, M, and then L pass by the reference point. Thus, Fig. 8 also shows
the upward shift in concentrate level as a result of the train’s movement. Note that
contaminant toxicity increases much faster at impact points closer to the train (i.e.,
non-linear).

When the wind is blowing northeast in Fig. 7, P2 is downwind from M and has
positive crosswind distances (i.e., y > 0) to the other four railcars. Therefore, the
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maximum concentration at P2 cannot exceed that of P1. Similarly, the maximum
concentration at P3, which is attained when the wind is blowing north, is less
than that of P1. Thus, P1 is the maximum concentration point among all the
locations equidistant from M. When the distance from hazmat-median of an 11-
railcar propane block is 1,500 m, for example, the concentrate levels at P2 and P3
are 95.8% and 95.5%, of the maximum level, respectively. This difference decreases
with distance and increases with the number of hazmat railcars.

Analogous to the single release-source case, it is possible to estimate the
exposure around the train by rotating the maximum concentration point, P1,
around the hazmat-median, M. Therefore, the authors use the hazmat-median as
the reference point for the train—since this would assure consistency among the
maximum concentrate levels under opposite wind directions, when hazmat railcars
are blocked. If another point were used as reference, the concentrate levels at the
opposite downwind locations from the hazmat railcar block would be different.
Take, for example, F as an alternative reference point. Since all the railcars are
behind F, the total concentrate level at a certain downwind distance will be higher
when the train is moving upwind. Because the amount of hazardous cargo on both
sides of M is the same, it constitutes the best option for a reference point.

Thus, the maximum concentrate level at distance x from the hazmat-median of
an n-railcar hazmat block is:

Cn.x/ D Q

�uacxbxd
C Q

�uac.x � s/b.x � s/d
C Q

�uac.x C s/b.x C s/d
C

: : :C Q

�uac.x � ns=2/b.x � ns=2/d
C Q

�uac.x C ns=2/b.x C ns=2/d

(23)

where, s denotes the length of each railcar. Although (23) can be used to compute the
aggregate contaminant level from multiple sources, (Verma and Verter 2007) makes
use of the relative size difference between the cross-length of a Gaussian plume and
length of a railcar to outline the following approximation instead of (23).

NCn.x/ D n � Q

�uacxbxd
(24)

where n is the number of identical release sources with rate Q. This amounts to
assuming that all the hazmat cargo is located at the hazmat-median of the train.
Finally, in order to demonstrate the reliability of (24) for estimating evacuation
distances, and also its robustness in terms of train make-up, two separate analyses
were performed.

Three different trains with 30, 68 and 120 hazmat railcars were considered.
For each train, evacuation distances were computed using both (23) and (24),
and error—defined as the percentage deviation from the base value as determined
using the exact approach—was computed. The approximate model estimated all the
evacuation distances within an error margin of 1.26%. As expected, the aggregate
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Table 4 Random positioning
of hazmat railcars Number of hazmat railcars

Evacuation distance (m) 5 11 21

Approximate 1,341 2,204 3,417
Average 1,366 2,213 3,422
Std. dev. 60 41 33

concentrate level shifts upward proportionately to the number of hazmat railcars,
although the non-linearity in (23) implies that the aggregate concentrate level will
increase at a faster pace in relation to the increase in the value of n. Consequently, the
accuracy of (24) increases with distance and decreases with the number of hazmat
railcars. At 1,000 m, for example, the approximation errors associated with the
severe zone for 30 and 68 hazmat railcars are 1.14% and 7.11%, respectively. These
errors reduce to 0.45% and 3.64% at 1,600 m from the hazmat-median of the train.
Nevertheless, the approximation errors near the train are inconsequential since the
concentrate levels are very high, making a severe consequence almost certain.

In order to analyze robustness of the approximate model with respect to
positioning of the hazmat railcars in a train, three cases: 5; 11; and 21 hazmat
tank-cars in a train with a total of 68 railcars were considered. Transport Canada
regulations stipulate that the first and last five railcars in a non-unit train cannot
carry hazardous cargo. Thus, 100 train make-ups were generated for each case
by randomly positioning the hazmat tank-cars among the 6th and 63rd railcars.
Table 4 shows the (statistics associated with) non-severe threshold distances as well
as the approximations. Given n, (24) estimates the same distance for all random
train make-ups, since all hazmat is aggregated at the hazmat-median. The accurate
calculation of total concentrate level, however, needs to incorporate the actual
distance to each hazmat railcar. To illustrate this, consider a train make-up with
hazardous cargo in the 6th, 11th, 15th, 37th and 63rd railcars. The hazmat-median,
in this example, is the 15th railcar. Note that the hazmat median will remain the same
if the hazardous cargo in the 63rd railcar was moved to the 38th railcar, whereas the
actual toxicity level at downwind distances from the train will change as a result.
Thus, the average threshold distances of 100 random train make-ups for each of the
three cases are depicted in Table 4.

Since the approximation error is within 2% for all three cases, the authors
surmised that the approximate model remains effective under uncertainty regarding
the positioning of hazmat railcars in the train. Also, the approximate model performs
better as the number of hazmat railcars increases. This can be explained by the
reduction in variance of the threshold distance as hazardous content of the train
increases. The distances in Table 4 are calculated at downwind locations assuming
that the train is traveling east, as in Fig. 7. If the train is traveling in the opposite
direction, the average threshold distances will be slightly different, whereas the
approximate distance will remain the same.

To summarize, in this section we have outlined the three most popular measures
of transport risk. Each of three measures was developed in the highway domain,
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and hence had to be adapted to capture the dynamics of railroad accident. Having
outlined the comprehensive risk assessment methodologies, we turn our attention to
elaborate on how to manage and/or mitigate hazmat transport risk.

Risk Management Techniques

A number of industry and academic studies have been undertaken over the past
three decades to investigate the issue of risk mitigation. As alluded to earlier, the
railroad industry has spent considerable effort in reducing the frequency of tank car
accidents as well the likelihood of releases in the case of an accident. To that end, the
Association of American Railroads, the Chemical Manufacturers Association and
the Railway Progress Institute formed an inter-industry taskforce in the early 1970s
(Conlon 1999). Unfortunately, the activities of this voluntary task force largely
ceased in about 1994, and most of their internal reports were never publicized
and considered proprietary to the sponsoring organizations (Barkan 2004; Conlon
2004). In this section, we will briefly outline the more recent initiatives focused on
improving tank car safety at the design stage, draw from the insights of some earlier
works dealing with strategic placement of hazmat railcars to reduce risk, and then
develop an optimization program to solve the hazmat transportation problem faced
by a railroad company.

Tank-Car Design

The tank car and railroad industries, along with the U.S. and Canadian governments,
have conducted extensive research on tank car safety over the past three decades
(Barkan 2008). This research, initiated in the wake of a series of catastrophic hazmat
accidents in the early 1970s, has led to a number of improvements in the design
of tank cars to make them more resistant to damage if they are involved in an
accident. The first step in that direction was the formation of the Railroad Tank
Car Safety Research and Test Project in 1970, which was a cooperative research
program—between the Railway Progress Institute and the Association of American
Railroads—on the causes of tank car failures.

Although subsequent analysis of failure modes revealed the need for several tank
car design changes, perhaps far more important was the recognition of the potential
value of detailed statistical understanding of tank car failure modes in accidents.
Consequently, the project instituted a long-term data collection effort on tank cars
involved in accidents—and has provided extensive information about component
performance and conditions of the accident. Although we list just some of the
notable academic works in part responsible for the current understanding of tank
car safety and design, we invite the reader to consult Barkan (2008) for a review of
all relevant works.
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By studying the risks associated with non-pressurized materials, Raj and
Pritchard (2000) reported that DOT-105 tank car design constitutes a safer option
than DOT-111. On the other hand, Barkan et al. (2000) showed that tank cars
equipped with surge pressure reduction devices experienced lower release rates
than those without this technology. Finally, Saat and Barkan (2005) developed a
metric to assess the performance of a tank car in an accident, and subsequently
analyzed the trade-off between increased damage resistance and greater exposure
to accidents (Barkan et al. 2007).

Placement of Hazmat Railcars

A sub-stream within risk mitigation focused on reducing the probability that a
hazmat railcar gets involved in a train derailment. To that end, the early work of Fang
and Reed (1979) suggested that the front of the train is more prone to derailment
under loaded conditions, and hence hazmat railcars should be placed in the rear of
the train. A later study commissioned by the Federal Railroad Administration and
the U.S. Department of Transportation concluded that derailment probabilities are
highest in the first and lowest in the fourth quarter of the train (Thompson et al.
1992). The same report also explored the possibility of implementing commodity-
based blocking, as opposed to the destination-based blocking practice of the railroad
industry (as explained in section “Rail Transportation System”), but ruled it out due
to time and hence cost considerations.

The destination-based blocking approach was also visited in the study by
Woodword, who suggested that separating hazmat railcars in a train decreases
the probability of multiple railcars being derailed for small accidents involving
relatively few railcars (Woodword 1989). On the other hand, the issue of additional
handling and the resulting increase in time and cost was recently visited by Bagheri
(2009), who subsequently outlined a placement strategy that could be implemented
during the railcar blocking process that in turn will minimize hazmat risk on pre-
defined transportation corridors (Bagheri et al. 2011). The latter was discussed in
section “Incident Probability,” where we voiced the need to conduct additional
investigation to ascertain the impact of the incident probability model using multiple
yards and train services. Doing so, we believe, will provide further insights into the
feasibility of implementing a similar plan at different marshalling yards, and perhaps
yield more generalizable results that are not specific to a particular transportation
corridor.

The issue of hazmat railcar placement was also touched upon in Verma (2011). To
that end, approximately 25,000 derailment instances were analyzed by grouping the
derailment records into train-deciles. As indicated earlier, a decile-based approach
may result in better analysis than a quarter-based approach, but only if train-
lengths are similar (or constant). Unfortunately there was no-peer reviewed work
categorizing freight-trains on length, and hence both Bagheri (2009) and Verma
(2011) suggested that freight-trains with up to 40 railcars be called short; between
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Fig. 9 Decile-based derailment probabilities (Source: Verma 2011)

41 and 120, medium; and, the rest long. Based on this categorization, of the 25,000
accident instances in the database, 93% resulted from freight-trains with less than
121 railcars, wherein medium trains accounted for 56%.

Figure 9 depicts the decile-based derailment probabilities for the three categories
of trains. Given the level of resolution, two important observations were made for
all train-lengths: first, the first decile has the highest derailment probability; and
second, the front-half of the train is riskier. It is possible to conclude that the
seventh decile is the safest for placing hazmat railcars if the train length is less than
121, and the eighth decile for longer train-lengths. This implies that decile-based
derailment probabilities for short and medium trains are very similar, but marginally
different than those for long trains while the critical length is 120 railcars. In fact,
this analysis motivated the development of the risk assessment framework that took
into consideration the position of hazmat railcar in the train-consist (i.e., expected
consequence framework in section “Expected Consequence”). Subsequently, the
risk assessment methodology was used to analyze a problem instance involving
rail transportation of hazmat in the eastern United States, which in turn led to the
following conclusions. First, transport risk is a function of train length, train-decile
position of the hazmat railcar, and the number of intermediate handling. Second,
the front of the train is riskier, and that seventh to ninth train-deciles are most
appropriate for moving hazmat railcars for freight-trains of any length. Finally,
rail-track risk can be reduced by strategically distributing hazmat railcars in the
train-consist, although this will require increased handling at the marshalling yards.
Such increased handling at the marshalling yards not only increase cost but also the
probability of hazmat release. Verma (2009) proposed a bi-objective optimization
model to solve a railroad transportation problem involving hazmat and regular
freight, and pointed out that blocking paths with minimal intermediate handlings
were preferred irrespective of whether the cost or the risk objective was emphasized.
We provide more details on this work in the next section.
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Network Routing

Although network routing and scheduling issues are very important to freight train
operations, Glickman (1983), as far back as the early 1980s, had pointed out that
railroads did not consider exposure risk when dealing with hazmat shipments.
He argued that by considering population exposure, the railroads could diminish
the likelihood of impacting the individuals working or living in the vicinity of
rail tracks, which could be further reduced by upgrading rail tracks—a measure
which would enhance railroad safety and performance. Thus, he argued that
re-routing (with or without track upgrades) can improve hazmat safety. The issue
of re-routing was revisited following the terrorist attacks on 9/11, when railroads in
North America came under increasing pressure to avoid transporting certain hazmat
through (or close to) large population centers. Consequently, the railroad industry
and the government agencies conducted a network wide assessment to identify
risk, and update emergency preparedness, but neither the study nor the results
are publicly available (Plant 2004; Citizen’s for Rail Safety 2007). In an effort to
evaluate transport risk of different routes, in recent years, the issue of re-routing
and appropriate tank car design was investigated by Saat and Barkan (2006), while
Glickman et al. (2007) combined transportation modeling with risk assessment to
study a sample of intercity routes and identify opportunities for improving safety at
a reasonable cost. Both (Saat and Barkan 2006) and (Glickman et al. 2007) looked
at a sample of transportation corridors for insights, and hence their results could not
be generalized.

Given the involvement of various stakeholders, it should be evident that hazmat
transportation problems should have multiple objectives—and hence a set of non-
dominated solutions (or Pareto) should be determined. A Pareto-optimal solution
is one in which one cannot improve on one objective without worsening at least
one other objective. As indicated earlier, although routing and scheduling of regular
freight is well studied in the railroad transportation domain (Cordeau et al. 1998),
multi-objective routing of hazmat shipments is not. To the best of our knowledge,
Verma et al. (2011) and Verma (2009) are the only refereed publications dealing
with risk and cost objectives to route hazmat shipments, and form the basis of this
section.

Figure 10 depicts the railroad infrastructure—comprised of rail-yards and track-
sections—in south-east US. The solid-square nodes indicate fully equipped yards,
i.e., classification and transfer operations are possible, while hollow-circular nodes
can just perform the block-swap (transfer) operation. As outlined in section “Rail
Transportation System” (using Figs. 1 and 2), any two nodes are connected by
tracks, which are the service-legs of a train travelling non-stop between them. A
sequence of service-legs and intermediate yards constitutes an itinerary available
to a railcar for its journey. The managerial problem can be to determine the best
routing plan for railcars, with hazmat and regular freight, and the number of trains
of each type required to meet the given set of demand.
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Both (Verma 2009) and (Verma et al. 2011) have proposed a bi-objective
optimization model that would address the interests of two stakeholders, i.e., the
regulatory agencies and the railroad companies. In assessing transport risk, which
is the primary concern for the regulator, Verma (2009) makes use of the expected
consequence approach while Verma et al. (2011) employ population exposure as the
measure of risk—i.e., the assessment methodologies outlined in section “Expected
Consequence” and “Population Exposure,” respectively. On the other hand, the
perspective of the railroad company is taken into consideration via transport cost.
Since both models focus on the tactical planning problem of a railroad company
that regularly transports a predetermined amount of mixed freight (i.e., hazmat
and regular) across a railroad network, certain pertinent assumptions have been
made. First, tactical planning is conducted on a weekly basis, and hence demand is
expressed in terms of the number of railcars (hazmat and regular) to be shipped per
week. Second, operational level details such as congestion and connections between
train services are ignored. This amounts to assuming that all railcars to be moved
are available at the pertinent locations on time. Finally, the hazmat being shipped on
the train possesses similar chemical properties and the undesirable consequences of
their interactions in case of an accident can be ignored. This assumption is important
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since, as indicated earlier, there are no peer-reviewed publications demonstrating the
interaction effects among all types of hazmat shipments.

Since expected consequence is the most popular measure of transport risk, we
will first develop the optimization framework as proposed in (Verma 2009), and
then contrast it with the one proposed in (Verma et al. 2011). We introduce the sets
and notations, and then outline the model.

Sets and indices

M Set of hazmat to be moved in the network, indexed by m
I Set of origin yards, indexed by i
J Set of destination yards, indexed by j
C Set of classification yards in the network, indexed by c
T Set of transfer yards in the network, indexed by t
Z Set of train services in the network, indexed by z
Kij Set of itineraries connecting yards i and j, and indexed by k
Kz Set of itineraries using train service z
Kc Set of itineraries using classification yard c
Kt Set of itineraries using transfer yard t

Decision variables

H k;m
ij Number of railcars with hazmat m using itinerary k to travel

between yard i–j
Rk

ij Number of railcars with regular freight using itinerary k to
travel between yard i–j

N z Number of trains of type z needed in the network

Parameters

ERiskk;m
ij Expected risk due to a railcar with hazmat m using itinerary

k to travel between yard i–j
C

k;m
ij Cost of moving a railcar with hazmat m using itinerary k

between yard i–j
C k

ij Cost of moving a railcar with regular freight using itinerary
k between yard i–j

F C z Fixed cost to operate train service of type z
hm

ij Number of railcars with hazmat m demanded at yard j from
yard i

rij Number of railcars with regular freight demanded at yard j
from yard i

U z Capacity of train service of type z
Uc Capacity of classification yard c
Ut Capacity of transfer yard t
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The first objective in (25) contains the transport risk stemming from routing
hazmat railcars. The second objective involves cost to transport railcars, and the
fixed cost to operate each type of train service. Constraints (26) and (27) ensure
that weekly demand for both hazardous and regular freight are met. Constraint (28)
states that the frequency of each train type is determined by the number of railcars,
moving on different itineraries between origin and destination yards, but using that
particular train service. Constraints (29) and (30) specify that classification and
transfer operations at yards cannot exceed the corresponding capacities. Finally,
constraints (31)–(33) specify sign restriction on the variables.

The transport cost parameters can be estimated using either publicly available
information or some of the recent works, and (Verma 2009) assumed $0.50 to move
a railcar one mile and $50 per intermediate handling. The fixed cost of a train is
based on the number of hours it would take to provide a service, and an hourly
rate of $500 was assumed. This amount included the hourly employment rate for
a driver, an engineer, a brakeman, and an engine at $100, $100, $100 and $200,
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respectively. Finally, it was assumed that the average speed of freight trains in the
U.S. is around 22 miles per hour (Railroad Performance 2008).

For transport risk, as indicated above, the expected consequence approach
outlined in section “Expected Consequence” was used. For instance, risk associated
with each possible itinerary for a hazmat railcar was determined by: first identifying
the train services and intermediate yards traversed; and then, incorporating the
appropriate derailment and conditional probabilities, together with the exposure for
different tracks and yards, in (1) and (2). The resulting number yielded the expected
risk from a single hazmat railcar for a specific itinerary, with the process being
repeated for other hazmat railcars, and for all available itineraries. It should be
evident from the risk objective in (25) that transport risk is linear in the number
of hazmat railcars, and that all hazmat possess similar chemical properties. For
example, aggregate transport risk from five hazmat railcars is exactly 5-times that
from a single hazmat railcar. Although we invite the reader to consult (Verma 2009)
for additional details, we note that the indicated “linearity” was not observed when
population exposure was used as the measure for transport risk in (Verma et al.
2011).

One of the major differences between (Verma 2009) and (Verma et al. 2011)
was the expression for transport risk. Recall that the aggregate contaminant level
at any point in the network can be determined using (23), which in turn exhibited
non-linear curves. This is important since it implies that the population exposure
for a particular service leg (or at a yard) of a freight train is a function of the total
number of hazmat railcars involved, which is not known a priori. To make this
more explicit, consider that n hazmat railcars are using service leg s of train type
z. By making use of GPM and the methodology developed in Verma and Verter
(2007), and outlined in section “Population Exposure,” the aggregate concentrate
level at downwind distance x can be determined using either (23) or (24). Further,
assume that the IDLH level of the most lethal hazmat being transported is QC , then
the evacuation distance can be determined using (34).

Qx D bCd

s
n �Q

�uac QC � n (34)

The movement of a danger circle, of radius Qx, along a rail link will carve out a
band, and the number of people within the band is the resulting population exposure.
For example, transport risk because of hazmat release from Yz;s on service leg s of
train type z can be calculated by:

PE .Yz;s/ D Qx .Yz;s/ � length of service leg s � �. Qx .Yz;s// (35)

where � is the population density of the center exposed because of the transportation
of hazmat on service leg s. The population center exposed depends on the threshold
distance, which, in turn, depends on the hazmat volume being transported on a par-
ticular service leg. It should be clear from (35) that the function for calculating pop-
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ulation exposure is non-linear with a rather complicated form, and without a closed-
form expression. This implies that the population exposure risk objective will be
without a closed form expression, since there is no a priori information on the num-
ber of hazmat railcars on different trains and at various yards in the network. Hence,
the following expression will replace the one for expected consequence in (25).

Exposure Risk D
X

z

X
s
PE .Yz;s/C

X
y

PE


Yy

�
(36)

where, the first term refers to the cumulative population exposure resulting from all
service-legs of different freight-trains, while the second will capture the aggregate
exposure at various yards in the network. Next, we briefly outline the solution
techniques and then some managerial insights that could be expected for rail
hazmat transportation.

Solution Method

Two of the most common techniques for solving multi-objective models are pre-
emptive optimization and weighted sums (Rardin 1998). The former calls for
a sequential process, and makes use of the actual known preferences of the
stakeholders. Meanwhile, the latter attaches weights to different objectives, and
hence is preferred if stakeholder preferences are unknown. Since one is dealing with
competing objectives, a singular solution may not be enough—and hence a number
of scenarios should be solved. Furthermore, it is also important to use a surrogate
measure, if one objective consistently dominates the other. For example, in (Verma
2009) the expected consequence values were consistently dominated by the cost
numbers, which was skewing the results. Consequently, in addition to the instances
with expected consequence as the measure of transport risk, equivalent problem
instances with population exposure as the measure of risk were also solved.

If the network routing formulation can be expressed in closed form [such
as in (Verma 2009)], then any optimization package can be used to solve the
problem instances. On the other hand, in the absence of closed-form expression
[such as (Verma et al. 2011)], solving realistic-size problem instances through the
use of general-purpose optimization software would be rather inefficient. This is
because of the difficulties associated with a priori determination of transport risk,
as explained in relation to (35) and (36). However, Verma et al. (2011) contended
that since such problems, typically, would contain a huge number of variables and
relatively fewer constraints, a genetic algorithm (GA)-based solution methodology
would be more effective and efficient (Holland 1975). They replaced the traditional
mutation operator in GA with a local search heuristic, which was intentioned to
ensure a more effective neighbourhood search (i.e., intensification). Consequently,
their solution methodology is a Memetic Algorithm that combines global and local
searches (Moscato 1989). We invite the reader to refer to (Verma et al. 2011) for all
pertinent technical and methodological details.
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Insights

Since the hazmat risk and transport cost may not be equally important to the two
stakeholders, a number of scenarios should be analyzed. For example, a total of 11
different instances of the given managerial problem were solved in (Verma 2009),
with min cost and min risk solutions at the two extremes, and nine others resulting
from attaching complementary weights on the coefficients of the two objectives. It
is important to note that the above eleven non-dominated solutions constitute just a
portion of the Pareto frontier, which ideally should list all possible non-dominated
solutions. In an effort to further explain the utility of such a curve, we paraphrase
the pertinent discussions from (Verma 2009) and some highlights from (Verma et al.
2011).

Each point in Fig. 11 represents a non-dominated solution, with min cost solution
the most risky while the min risk solution the most expensive. Points A through
I are the intermediate solutions arrived at by attaching different weights to the
two coefficients. A, with 10% weight on the cost coefficient and 90% on the risk
coefficient, is closest to the min risk solution. With higher emphasis on cost (and
corresponding reduction in risk), the resulting solutions started moving towards the
min cost point on the partial frontier, with I being the closest. It is important to note
that solution E results when both objectives receive equal importance, and hence,
ideally, should not be dominated by either risk or cost.

For the indicated problem instance, the min cost solution had a cost of just under
$13.7 million and an expected consequence of 4.1008 people, whereas the min
risk solution had a cost of just over $14.1 million and an expected consequence
of 3.7231 people. This is an excellent instance of a problem in which the difference
in magnitude between the objectives is masking the significance of the results, and
should warrant re-running the scenarios with a surrogate for expected consequence
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(such as population exposure). Doing so reveals that population exposure risk can
be reduced by 2.6 million people by spending an extra $4.12 million, which may
be a worthwhile trade-off for the regulators to pursue. Perhaps a more important
observation via Fig. 11 is the significant increase in population exposure risk (or
expected consequence) when the weight attached to the risk coefficient is decreased
from 10 to 0% (i.e., from I to Min Cost). This weight allocation results in a saving
of just under $50 thousand but increases exposure risk by 1.5 million individuals,
which implies that every saved dollar exposes 30,000 additional individuals to
hazmat risk.

Finally, as alluded to earlier, one should endeavour to generate the complete
frontier of non-dominated solutions, but doing so is extremely cumbersome and
computationally impossible in some instances. For example, Verma et al. (2011)
generated over 7,500 different solutions of which only 56 were non-dominated
(Fig. 12). In any event, because quantification of risk is one of the most challenging
and contentious issues in hazmat transportation, such a (partial) frontier could be
used by the primary stakeholders to conduct judicious evaluation of the monetary
and societal implications of hazmat transportation.

To conclude, in this section, we have summarized various initiatives undertaken
by stakeholders to devise techniques to manage and/or mitigate hazmat risk from
railroad shipments. Design of tank-car, and the investigation of all relevant elements,
has been a very popular research area—that has received significant support and
attention from the railroad industry. On the other hand, the few works dealing with
placement of hazmat railcars and train-makeup resulted primarily from analysis
of empirical data, wherein the insights have been used primarily for academic
purposes. Finally, tactical planning problems involving hazmat is a rather nascent
area with potential for more research.
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Potential Research Questions

We believe that the risk assessment methodologies outlined in chapter are sophis-
ticated enough to capture the characteristics of railroad transportation of hazmat,
although there is tremendous untapped research potential in the risk management
domain. We make the case for the latter using three headings: blocking & train
make-up; routing & scheduling; and, security aspects.

Blocking and Train Make-Up

As indicated in section “Rail Transportation System,” blocking is the major
determinant that enables railroads to realize economies of scale. This is done to
prevent railcars from being handled at every yard on its journey, which in turn not
only saves money but also reduces delay. Note that a block is associated with an
OD pair, and railcars placed in this block are not reclassified till the block reaches
the destination yard. In other words, railroads practice destination-based blocking.
Interestingly, the movement of hazmat railcars through the marshalling yards has
not received much attention, perhaps due to the perception that yards do not pose
significant risk. This is in contrast to the empirical data presented in the literature.
For example, a Transportation Safety Board study, involving accident records from
1996 to 2000, revealed that roughly 45% of railroad accidents in Canada occurred in
the marshalling yards (Transportation Safety Board: Durham Regional 2008). This
is supported by the empirical analysis of accident rates from 1994 to 2009, where the
number of accident per million miles was significantly higher for switching yards
than for all types of tracks (Verma 2011).

Although Thompson et al. (1992) ruled out the possibility of implementing
commodity-based blocking due to time and cost considerations, there is a need for
developing analytical approaches to solve the blocking-problem that incorporate not
just cost but also the potential risk from hazmat shipments. Such a framework will be
tremendously useful in not only facilitating additional insights into the workings of
Bagheri (2009) by looking at multiple yards and train services, but also developing
a network-wide blocking and train make-up model that would be driven by both
transport-cost and hazmat risk.

Routing and Scheduling

It may have been evident that the routing models developed in (Verma 2009) and
(Verma et al. 2011) would select routes based on the objective being emphasized.
For example, if transport risk is more important, then routes closer to the minimum
risk solution would be selected. Such a solution may not be acceptable to the resi-
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dents alongside the chosen routes, since they would be subject to frequent exposure
and hence hazmat risk, whereas there would be a zero chance of any incident on the
other routes. This so called in-equitability can be addressed only by the involvement
of regulators (Erkut et al. 2007), possibly by adapting methodologies introduced in
the context of highway transportation (Gopalan et al. 1990a, b; Lindner-Dutton et
al. 1991) for railroad transportation of hazmat. Developing such methodologies is
challenging since railroads do not present as many routing options as highways, and
also because hazmat railcars—unlike truck tankers—cannot travel by themselves.
In any event, there is a room and potential need for developing analytical techniques
that could yield more equitable solutions.

Note that the attributes of rail-links such as travel time, incident probabilities
and population exposure could vary with time, and hence proper scheduling of
trains could potentially reduce hazmat risk. For example, residential areas are less
populated during the day, and some rail links are riskier to travel during night and in
winter. The issue of scheduling of hazmat trucks has been studied by Nozick et al.
(1997) and Miller-Hooks and Mahmassani (1998), and there is a need for similar
engagement in the railroad domain. More specifically, scheduling of hazmat unit-
trains should be investigated such that both the spatial and temporal link attributes
could be exploited to mitigate hazmat transport risk.

Security Aspects

It should be noted that pre-9/11, the guiding policy of the federal program and
the railroad industry in the United States was “safety,” wherein the mission was
to prevent fatalities, injuries, and property damage related to railroad operations
and releases of hazmat from railcars. But post-9/11, the two agencies realized the
“security” dimension of hazmat railcars, i.e., a terrorist could either target them or
use them as a potential weapon, and inflict spectacular damage on the population,
environment and the infrastructure (Milazzo et al. 2009). Conceivably, every yard
and each track section could be a possible entry point for an individual with evil
intentions, and hence protecting the railroad infrastructure would be daunting. This
is not only because of the geographic dispersion of the railroad infrastructure, but
also due to the nature of thinking required to assess the impact of newer aspects
of rail operations (such as intermodalism, just-in-time deliveries), and the absence
of enough empirical data to understand the mindset of terrorists (Verma and Verter
2011).

Although absence of enough empirical dataset makes tackling such problems
extremely difficult, one could conceivably work backwards from the end objective
of any terrorist attack, viz. catastrophic consequence. Translated to a threat involving
railroad transportation of hazmat, this would seem to be equivalent to using one or
more hazmat railcars as a weapon (or a target) with devastating results, near or
close to a major urban center(s). For instance, every year over eight thousand tank
cars of chlorine move by rail within two blocks of the U.S. capital, and successful
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targeting of even one of these could potentially kill or injure hundreds of thousands.
Similarly, an attacker who gains control of a hazmat tank car—in a rail-yard or in
geographically dispersed and often lightly guarded industrial sidings—could use it
as a weapon.

The vast railroad infrastructure and the existence of multiple railroad companies,
each with its own network, calls for a co-operative development of a structured
and systematic methodology to manage terrorism risk. Although it was reported
that the railroad industry and the government agencies conducted a network wide
assessment to identify risk, and update emergency preparedness, neither the study
nor the results are publicly available (Plant 2004; Citizen’s for Rail Safety 2007).

This is a rather open area of research, which does present the potential for
more academic and cutting edge research within the “security” framework. First,
there is no established assessment methodology that can capture the mindset of
terrorist and/or be developed in the absence of empirical dataset (or demonstrated
risk profile). This implies that even basic risk assessment would be extremely
challenging, and perhaps contentious. Second, tackling such complex problems
would necessitate a truly multidisciplinary approach. For example, one needs to
draw upon game theory to both anticipate possible terrorist moves and identify
potentially vulnerable sites in a railroad network, and recommend ways to mitigate
and counter those risks. In the interest of space, we have tried to just sketch the
possibilities in this area, and invite the reader to consult Verma and Verter (2011)
for a comprehensive discussion of this topic.

To conclude, we have attempted to outline possible research areas within railroad
transportation of hazmat. It is our belief that appropriate, and at times further,
investigation of some or all of the indicated topics would help better manage or
mitigate hazmat transport risk from railroad shipments. Clearly the listed areas
(topics) are by no means exhaustive, but do reflect the research interests of the co-
authors.

Summary

The railroad industry, crucial to the United States and Canadian economies, has
long considered itself to be the safest and the most secure mode of transportation.
In the United States, railroads move around 1.8 million hazmat carloads annually,
and this number is expected to increase significantly over the next decade—in part
driven by the phenomenal growth of intermodal transportation and the growing use
of rail-truck combinations for moving chemicals. Fortunately a host of industry
initiatives, such as the formation of an inter-industry task force in the 1970s, and the
emphasis on reducing the frequency of tank car accidents, as well as the likelihood
of a release, are collectively responsible for making railroads one of the safest
modes for transporting hazmat. In spite of the favourable safety statistic of railroads,
the possibility of spectacular events resulting from multi railcar incidents, however
small, do exist.
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This book chapter was a first attempt to introduce and discuss different models
developed for both assessment and management of hazmat risk for railroad trans-
port. In an effort to introduce the reader to the pertinent building blocks, the chapter
started with a description of a typical freight rail operation. Three of the most
popular measures for hazmat transport risk, i.e., expected consequence, incident
probability, and population exposure—originally developed for highway and very
recently adapted for railroads—were discussed extensively. Risk management
and/or mitigation strategies were discussed under tank-car design, placement of
hazmat railcars in a train, and network routing. Finally, issues necessitating further
investigation were outlined.
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Planning in Hazardous Material Transportation
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Routing Issues in Hazmat Transportation

The distribution of goods from some depots to a set of customers by using a set of
vehicles has received a lot of attention due to its impact on the final cost of the goods.
The effective management of those vehicles gives rise to a variety of problems
known as vehicle routing and scheduling problems. From a general point of view,
the Vehicle Routing Problem (VRP) is an operational problem that concerns the
service, in a given time period, of a set of customers by a set of vehicles which are
located in one or more depots and are operated by a set of drivers on an appropriate
road network.

Typically, the VRP involves decisions on route planning (i.e., selecting paths
between pairs of nodes of the transportation network) and vehicle routing (i.e.,
assigning customers to vehicles and finding the order in which clients are visited
by each vehicle).

The VRP is one of the most important and studied combinatorial optimization
problems with several direct real-world applications, mainly in the industrial distri-
bution arena. It was firstly introduced by Dantzig and Ramser (1959) to describe a
real-world application related to the delivery of gasoline to service stations. They
propose the first mathematical programming formulation and algorithmic approach
for the VRP. Successively, Clarke and Wright (1964) propose an effective greedy
heuristic and improve the Dantzig-Ramser’s method. In the successive decades,
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hundreds of models and algorithms were proposed for the optimal and approximate
solution of the VRP (see e.g. Toth and Vigo 2002). Today, dozens of packages to
solve the VRP are available on the market. This interest in VRP is motivated by both
its practical relevance and its high solution difficulty.

The VRP has many variants based on the constraints and the nature of the
commodities to be delivered. Referring in particular to the hazardous material
(hazmat) transportation, the VRP presents extremely typical characteristics. In fact,
while in common freight transportation the objective of the VRP is in general the
minimization of the transportation cost, in hazmat transportation the objectives to
optimize depend on the subjects involved in the decision process and may be quite
different.

What distinguishes hazmat transportation from the more general freight transport
issues is basically the risk associated with an accidental release of such materials
during their transportation. Even if the number of accidents is very small compared
to the number of shipments of such materials, both at world level and at national
level, this chance imposes a particular attention to the safety management in
order to reduce the occurrence of dangerous events. More in general, the potential
dangers on both the population and the environment render people very sensitive
to this kind of transport. For this reason, hazmat transportation has stimulated a
relevant research investigation with particular emphasis on risk assessment and route
planning (routing) for hazmat shipments.

Therefore, while in general freight transportation the route planning phase is
simple and assumed to be done a priori by selecting the shortest (cheapest) path
between network nodes with the consequence that in practice VRP studies concen-
trate only on the vehicle routing decisions, in the context of hazmat transportation
route planning decisions are very important and cannot be ignored.

The goal of our contribution is to analyze hazmat route planning models on a
road network, while the analysis of the different models developed to evaluate the
risk induced by hazmat shipments on the population and the environment is out of
the scope of this chapter of the handbook.

Hazmat route planning is one of the main issues in hazmat transportation and
deals with the selection among the alternative paths (routes) between origin–
destination pairs on a given road network where to route hazmat shipment orders.
The choice of a path depends on the different objectives that the distinct actors
involved in the decision process want to pursue.

In fact, we assume that, besides the carriers, there are regional and local
government authorities that want to regulate the hazmat transportation by imposing
restrictions on the amount of hazmat traffic over the network links.

From a carriers’ perspective, shipment contracts can be considered individually
and a route decision needs to be made for each shipment. That is, each carrier selects
a route between a given origin–destination pair for a given hazmat, transport mode,
and vehicle type, with the objective of minimizing the transportation costs. Thus,
for each shipment order, this problem focuses on a single-commodity and a single
origin–destination plan. We call this problem “local route planning problem.”
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The interested reader can find the most important references on this problem in
the next section.

Local route planning suffers from some limitations. Indeed, since the plans of the
carriers are typically made without taking into account the general context, it may
happen that certain links of the transportation network tend to be overloaded with
hazmat traffic. This may result in a considerable increase of the accident probability
on such road links, leading to inequity on the spatial distribution of the risk.

A chance to overcome this difficulty is to consider a government authority
charged with the management of all hazmat shipments within and through its
jurisdiction area. Therefore, this authority, in contrast with the carrier, has to
consider a global transportation problem.

Although the transportation industry has been deregulated in many countries,
hazmat transportation usually remains part of the governments’ mandate mainly
due to the associated societal and environmental risks.

This aspect leads to a harder class of problems that involve multi-commodities
and multiple origin–destination routing decisions. We refer to this class of problems
as “global route planning problem.”

The main concern for a government authority is to control the risk induced
by hazmat transportation over the population and the environment. Besides the
minimization of the total risk, the authority should also promote equity in the spatial
distribution of risk. This becomes crucial when certain populated zones are exposed
to an intolerable level of risk resulting from the carriers’ routing decisions.

Therefore, in the global route planning problem, the main problem (from the
authority’s point of view) is to find minimum risk routes, while limiting and
equitably spreading the risk in any zone where the transportation network is
embedded.

As a matter of fact, risk equity has to take into account also whenever it is
necessary to carry out several hazmat shipments from a given origin to a given
destination. In this situation, the planning effort has to be devoted to distribute risk
uniformly among the zones of the traversed region.

Since, typically, the government does not have the authority to impose specific
routes to hazmat carriers, it can only mitigate hazmat transportation risk by means
of policies regulating the use of roads for hazmat shipments. The scenarios are
essentially two. In the first one the government has the right either to close certain
road segments to hazmat vehicles or to limit the amount of hazmat traffic flow on
those network links. In the second scenario, the government uses link tolls to deter
the carriers from using certain road segments and induce them consequently to route
the shipments on less populated (or risky) links of the network.

In the context of global route planning the first policy falls in the field of “hazmat
transportation network design” while we refer to the second one as “toll setting
policies.”

In section “State of the Art” we describe the state of the art on hazmat route
planning, and in sections “Hazmat Transportation Network Design Models” and
“Toll Setting in Hazmat Transportation” we focus our attention on the main
mathematical models developed for the hazmat transportation network design and
toll setting policies, respectively.
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State of the Art

Most of the prevailing studies on hazmat transportation focuses on two related
problems: (1) assessment of the transport risk associated with a shipment, and
(2) identifying the route that minimizes transport risk. This chapter is devoted to
the second aspect. The reader can refer to the survey of Erkut et al. (2007) and
other contributions published in this handbook for a review of papers on the first
topic and in particular on the methods for measuring the risk on the links of a given
transportation network.

Hazmat Local Route Planning Problem

Hazmat local route planning problems are typically modeled with shortest-path
models where a certain risk measure is considered as arc impedance. These kind of
problems have been addressed by many operations research scientists. Their works
cover road, rail, maritime transportation, proposing deterministic, stochastic, time-
dependent models, as well as single and multiple objective models. Even if hazmat
local route planning is not the main focus of this paper, for the sake of completeness,
in Table 1 we list most of the contributions on local route planning for hazmat
transportation by road: the table reports the paper list appearing in the survey of
Erkut et al. (2007), with the addition of more recent contributions. For a detailed
review of these and other works considering other transport mode, time-dependent
models, or other specific issues such as integration of location and routing decisions,
integration of routing and scheduling decisions, the reader is referred to the survey
of Erkut et al. (2007).

Nonetheless the integration of routing and scheduling decisions in hazmat
transportation merits to be recalled here with some details. Indeed, recent studies
claim that risk attributes, like the population exposure and the accident probability,
may vary considerably during the day. For instance, it has been observed that the
accident probabilities are higher at night. Moreover, the expected population being
exposed to the risk also varies with time since the population density in the urban
areas changes with the daily activities and the associated mobility of the residents
(Erkut and Alp 2007b).

Typically the modeling framework adopted to appropriately represent this phe-
nomenon is a stochastic, time-varying network, where the link attributes (e.g.,
travel times, incident probabilities, and population exposure) are represented as
random variables with probability distributions that vary with time. Almost all
the contributions in hazmat transportation consider a priori optimization (i.e., the
optimal routes are chosen before the travel begins), while there is a lack of papers
considering both adaptive routing decisions and data updates based on real-time
information.



OR Models for Global Route Planning in Hazmat Transportation 53

Table 1 Contributions on local route planning for hazmat transportation by road

Road hazmat local route planning

Akgün et al. (2007), Duque et al. (2007), Huang (2006)C;G;M, Erkut and Ingolfsson (2005),
Huang and Cheu (2004)C;G, Kara et al. (2003), Luedtke and White (2002)C;U,
Marianov et al. (2002), Erkut and Ingolfsson (2000), Frank et al. (2000), Leonelli et al. (2000),
Zografos et al. (2000)DSS, Tayi et al. (1999)M, Bonvicini et al. (1998), Erkut and Verter
(1998), Marianov and ReVelle (1998)M, Erkut and Glickman (1997), Jin and Batta (1997),
Nembhard and White (1997)M, Sherali et al. (1997)M, Verter and Erkut (1997), Ashtakala and
Eno (1996)S, Erkut (1996), Jin et al. (1996), Beroggi and Wallace (1995),
Boffey and Karkazis (1995), Erkut (1995), Glickman and Sontag (1995)M, Karkazis and
Boffey (1995), McCord and Leu (1995)M, Moore et al. (1995)G, Sivakumar et al. (1995),
Beroggi (1994), Beroggi and Wallace (1994), Ferrada and Michelhaugh (1994), Patel and
Horowitz (1994)G, Lepofsky et al. (1993)G, Lassarre et al. (1993)G, Sivakumar et al. (1993),
Turnquist (1993)M;S, Wijeratne et al. (1993)M, Beroggi and Wallace (1991),
Miaou and Chin (1991), Gopalan et al. (1990b), Chin and Cheng (1989)M, Zografos and
Davis (1989)M, Abkowitz and Cheng (1988)M, Batta and Chiu (1988), Vansteen (1987),
Cox and Turnquist (1986), Belardo et al. (1985), Saccomanno and Chan (1985), Urbanek and
Barber (1980), Kalelkar and Brinks (1978)M

CWith security consideration
DSSDecision Support System model
GUsing GIS
MMulti-objective
SStochastic
USurvey/Annotated Bibliography

The combined routing and scheduling problem for hazmat shipments has been
considered for the first time by Cox and Turnquist (1986): they propose a model
that considers vehicle departure times in order to minimize the delay due to possible
time-dependent restrictions over the links of the network. Other early contributions
are proposed by Bowler and Mahmassani (1998), Miller-Hooks and Mahmassani
(1998, 2000), and Miller-Hooks (2001). Assuming time-dependent link travel times,
Nozick et al. (1997) formulate the hazmat transportation integrated routing and
scheduling problem as a multi-objective shortest path problem in a network with
time-dependent cost attributes on the network links: they propose a label-setting
algorithm that heuristically spans the set of non-dominated (efficient) solutions;
some additional heuristics, that can be used to improve the solution generated or
reduce the computational burden, are proposed by Sulijoadikusumo and Nozick
(1998). Chang et al. (2005) describe a method for finding non-dominated paths when
the link attributes are uncertain, and the probability distributions that describe those
attributes vary with the time of the day; therefore, their approach can be applied to
hazmat transportation. Meng et al. (2005) propose a dynamic programming method
for identifying non-dominated time-varying paths with fixed departure times at the
origin and fixed waiting times at intermediate nodes of the paths between the origin
and the destination. Erkut and Alp (2007b) extend the study on the integrated
routing and scheduling problem by assuming en-route stops. They formulate the
problem as a constrained shortest path problem in a network with time-dependent
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link travel time and risk values and propose a dynamic programming based solution
algorithm. The objective of their formulation is to determine the minimum risk path
with the constraint that the total path travel time does not exceed a given threshold.
More recently, Androutsopoulos and Zografos (2010) improve the solutions by
excluding equivalent paths, i.e. solutions with identical paths, departure time, total
travel time and risk, which only differ in the waiting time at the nodes. In particular,
the authors analyze a bi-criteria routing and scheduling problem consisting in
determining the non-dominated (in terms of travel time and risk) time-dependent
paths for servicing a given and fixed sequence of customers (intermediate stops)
within given time windows. The authors present an algorithm for determining the
non-dominated scheduled paths; alternatively, a label setting algorithm is proposed
for determining the k-shortest non-equivalent scheduled paths, thus approximating
the non-dominated solutions close to the minimum travel time solution.

Papers studying the vehicle routing problem in the context of hazmat transporta-
tion are very few. One of the former work is by Tarantilis and Kiranoudis (2001)
who consider a variant of the classical vehicle routing problem focusing on the
minimization of population exposure risk. Zografos and Androutsopoulos (2002a,b)
study a bi-objective vehicle routing problem with time windows (VRPTW) that
minimizes both the risk and the cost of hazmat shipments. A heuristic algorithm for
solving the problem is provided and tested on several VRPTW benchmark instances.
Typically, route planning (i.e., selecting paths between pairs of network nodes) and
vehicle routing (i.e., finding the order in which clients are visited by a vehicle)
decisions are addressed in cascade with the latter being carried out beforehand
determining a single path between each customer pair. More recently, Pradhananga
et al. (2010) present a new ant colony system based meta-heuristic algorithm for
a VRPTW with multiple attributes (risk, schedule time, and number of vehicles),
where route choice and vehicle routing process are carried out in a single step.

Hazmat Global Route Planning Problem

On the contrary of hazmat local route planning, the global route planning problem
has attained relatively little attention in the literature. We may classify most of the
papers in three main research streams: route planning with equity considerations,
hazmat transportation network design, toll setting approach. In Table 2 we list the
main contributions.

Equity Considerations, Dissimilar Paths and Multi-objective Models

As said before, in global route planning for hazmat shipments, one of the main
problems is finding minimum risk routes, assuring, at the same time, an equitable
distribution of the risk on the interested area. This concept is well defined in the
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Table 2 Contributions on global route planning for hazmat transportation by road

Road hazmat global route planning

Generic models
addressing equity

Caramia et al. (2010)M, Caramia and Giordani (2009)M, Martı́
et al. (2009)M, Zografos and Androutsopoulos (2008)DSS, Dadkar
et al. (2008)S;T, Carotenuto et al. (2007a,b), Bell (2007, 2006),
Dell’Olmo et al. (2005)M, Akgün et al. (2000), Marianov and
ReVelle (1998), Current and Ratick (1995), Lindner-Dutton et al.
(1991), Gopalan et al. (1990a,b), Zografos and Davis (1989)

Hazmat transportation
network design

Reilly et al. (2012)C, Dadkar et al. (2010)C;S;T, Bianco et al. (2009),
Verter and Kara (2008), Erkut and Gzara (2008), Erkut and Alp
(2007a), Kara and Verter (2004)

Toll setting policies Bianco et al. (2012), Wang et al. (2011), Marcotte et al. (2009)
CWith security consideration
DSSDecision Support System model
MMulti-objective
SStochastic
TTime-varying

works of Keeney (1980), and Keeney and Winkler (1985), where a measure of the
collective risk is determined with explicit reference to the equity.

Zografos and Davis (1989) are the first authors to propose a multi-objective
model that explicitly incorporates equity considerations in hazmat global route
planning. Their objectives are to minimize the total risk, the risk imposed on special
population categories, the travel time, and the property damage. Equity distribution
of the risk is achieved by constraining the capacity of the road links. The authors
adopt a goal programming approach to solve the problem, and demonstrate (using
hypothetical data) that forcing equity could increase the total risk up to 35 %. Other
earlier models are proposed by Gopalan et al. (1990a,b), Lindner-Dutton et al.
(1991), Current and Ratick (1995), and Marianov and ReVelle (1998); for a review
of them the reader is referred to the survey of Erkut et al. (2007). More recently,
Bell (2006, 2007) proposes a min-max model which minimizes the maximum link
risk, and hence looks for risk equity by balancing the risk through the links of the
network.

In the following, we review the most important contributions adopting the
concept of dissimilar paths and/or multi-objective models.

Classical approaches to tackle with risk equity are those based on the generation
of different paths in order to alternate the route among them and hence distribute
the risk. Finding different paths from an origin to a destination in a given network is
a classical optimization problem that extends the well known shortest path problem
see, e.g., Ahuja et al. (1993). The generation of different paths may be obtained by
solving the k-shortest path problem in which the shortest, second shortest, . . . , kth
shortest paths from an origin to a destination are found in the network. However,
many of these alternative paths are likely to share a large number of links, while
in the context of hazmat transportation the aim is to find spatially dissimilar paths
that minimize the risk, and over which we can distribute as uniformly as possible
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hazmat shipments in order to spread the risk with equity. Specifically, we need to
consider the path dissimilarity problem, which consists in determining a set of paths
of minimum length (and/or risk) and maximum dissimilarity.

Different methods have been proposed in the past to solve the path dissimilarity
problem, also in other application contexts. One of these methods is the Iterative
Penalty Method (Johnson et al. 1992), which is based on the iterative application of
shortest path algorithms: at each iteration, a penalty is associated to each selected
link, so as to discourage the repeated selection of the same link in the forthcoming
iterations; therefore, in such a way, the method generates dissimilar paths. The
main advantage of this method is that it only requires a shortest-path algorithm
to generate paths. A drawback is that its effectiveness heavily depends on the
penalization parameter, meaning that a small penalty may not achieve the goal of
dissimilarity, while a large penalty may eliminate a great number of viable paths
from consideration; moreover, the method has no way for measuring the quality of
the produced dissimilar paths, in terms of spatial differences and lengths.

Another proposed method is the Gateway Shortest Path (Lombard and Church
1993), based on the generation of shortest paths from an origin to a destination that
should go through given nodes called “gateways.” At each step, this method first
selects a gateway node, then computes two paths, one from the origin to this node
and another from this node to the destination, and finally connects the two paths
for obtaining the final path between the origin and the destination. The concept of
“area under a path” is introduced to evaluate the dissimilarity between two paths.
An advantage of this method is that a large number of alternative paths may be
generated by simply using a shortest-path algorithm twice. Drawbacks are that the
final paths may contain loops, and that the quality of the generated paths is strongly
affected by the selected gateways.

A third approach is the Minimax method (Kuby et al. 1997), which selects routes
starting from k assigned paths using some dissimilarity indices. The algorithm
starts by generating k-shortest paths between the origin and the destination using a
k-shortest path algorithm (see, e.g., Yen 1971). Then, a dissimilar subset of the k-
shortest paths is constructed iteratively. An index paying attention to the similarity
between the selected paths and to path lengths is defined to measure the desirability
of a candidate path for inclusion in the dissimilar subset. The first path included is
the shortest path, then the second path is the one that minimizes the similarity index.
The third path is chosen minimizing the maximum (hence, the name of the method
follows) of the similarity indices between the candidates and the first two paths, and
so on until the desired number of paths is reached.

Successively, Akgün et al. (2000) review the above classical methods for
generating dissimilar paths, and propose another dissimilar path model that makes
use of a p-dispersion location model (Erkut 1990; Erkut et al. 1994); the latter
consists in selecting p points in some space so as to maximize the minimum distance
between any couple of selected points. In the method of Akgün et al. (2000), a
large set of candidate paths is generated, using the k-shortest (in terms of risk) path
algorithm and the iterative penalty method; these paths are then considered as a
set of points, with the distance between two points representing the dissimilarity
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between the two relative paths. Indeed, the authors observe that the minimax method
is just a greedy algorithm for solving the p-dispersion problem, and therefore they
propose an improvement employing a constructive semi-greedy algorithm with a
local search method, previously used by Erkut (1990), to select a subset of p

dissimilar paths from a set of shortest paths. According to one of the four indices
proposed by Erkut and Verter (1998) to measure the dissimilarity among two paths,
Akgün et al. (2000) measure the similarity between two paths as the relative total
length of the common links with respect to the length of each single path, and then
the dissimilarity by subtracting the similarity measure from 1. Experimentally, the
authors show that their method is superior in comparison with the classical ones.

The dissimilarity index used by Akgün et al. (2000) is based on the evaluation
of the lengths of common links between two paths, and hence it may happen that
highly dissimilar paths (i.e. with very few common links) are indeed geographically
very close, with the consequence that if these two paths are selected for routing
hazmat vehicles, the people living in the path neighborhood will be influenced by
the risk of both paths, implying a low degree of risk equity.

Starting from such a drawback in the definition of the dissimilarity index,
Carotenuto et al. (2007a) propose a model for generating dissimilar paths that takes
into account also the risk induced on the links in the neighborhood of a selected
path; that is, they take into account the risk coming from incident effect propagation.
The authors propose a measure of link risk that includes this aspect by extending
the concept of buffer zone around a link introduced by Batta and Chiu (1988),
and model the equity of risk by bounding the maximum risk sustained by each
link of the network. They consider the selection of p distinct simple paths, so as
to minimize the total path risk while satisfying a risk threshold constraint in the
traversed links; in this way the risk equity is addressed. The authors provide a
mathematical formulation for the proposed model and use it to get a Lagrangian
relaxation in order to achieve an effective lower bound on the optimal solution value.
The obtained lower bound is used to evaluate the effectiveness of two proposed
constructive algorithms: a greedy and a greedy randomized algorithms. Besides the
total risk, different indices are also considered for evaluating the generated paths.

In another paper, Carotenuto et al. (2007b) also consider the need to distribute
the risk in an equitable way with respect to both the space and the time, avoiding
as much as possible the presence of more than one hazmat vehicle at the same time
on the same zone. They propose a routing and scheduling approach operating in
two phases. For each given hazmat shipment request a set of routes from the origin
node to the destination node is determined using the approach of Carotenuto et al.
(2007a); then the shipment requests are scheduled and routed by assigning one of
the selected routes and a starting time to each shipment in order to avoid any pair
of hazmat vehicles being too much close at any given time. The authors model the
problem as a flow-shop scheduling problem with alternative routes and heuristically
solve it with a tabu-search algorithm.

Dell’Olmo et al. (2005) extend the similarity index used by Akgün et al. (2000)
with the concept of buffer zone to include spatial information in the measure of
dissimilarity. The similarity function they propose is essentially the same but with
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the length of the links of a path replaced by the area of the buffer zone around
the link: that is, the similarity is computed by evaluating the size of the common
area inside the buffer zones around the links of the two paths, instead of simply
measuring the lengths of common links.

Successively, Martı́ et al. (2009) review all of these previous methods and adapt
them to a bi-objective routing problem where a set of paths from an origin to a
destination must be generated with minimum length and maximum dissimilarity.
They introduce a new dissimilarity function. They also propose a new greedy
randomized local search procedure and test it against the reviewed methods,
showing experimentally that it is able to give better approximations of the efficient
frontier of the considered bi-objective problem than existing methods.

Dadkar et al. (2008) develop an extension of the k-shortest path algorithm of
Yen (1971) for which the performance of each highway facility, with respect to
each objective, can be stochastic and can vary over time. They extend the method
of Chang et al. (2005) to construct an estimate of the travel time probability
distribution. They also propose a mixed integer program to identify a subset of
paths which represents an acceptable trade-off between geographic diversity and
performance and solve the problem heuristically with a genetic algorithm. These
models and algorithms are then applied to a realistic case study.

The main limit of the approaches reviewed above is that they do not directly
take into account the representativeness of the selected paths, but consider path
dissimilarity as the main goal. Indeed, selecting paths for routing hazmat shipments
is intrinsically a multi-objective problem, since there are inherently conflicting
objectives, e.g., risk minimization, cost/length minimization, equity maximization,
etc. In particular, there are cases where low risk-routes lead to more expensive
transportation costs because such routes may be much larger in terms of length than
the shortest route.

Nonetheless, only few papers address the route planning problem by means of
multi-objective optimization approaches. Cox (1984) develops a multi-objective
algorithm in order to find the set of efficient paths for the hazmat transportation
problem using different attributes associated to the network links, such as travel
time, population density, etc.; successively, Wijeratne et al. (1993) propose a model
considering stochastic attributes for the network links.

The multi-objective shortest path problem has been widely studied (see, e.g.,
Hansen 1980 and Martins 1984). Since the number of efficient paths may increase
exponentially with the number of the network nodes (Hansen 1980), the algorithms
proposed in the literature face the difficulty to manage the large number of efficient
outcoming paths and the considerable computational time, even in case of small
instances. Most of the algorithms are either label setting or correcting algorithms.
Martins and Santos (1999) propose multi-objective labeling algorithms generalizing
the optimality principle of the (single-objective) shortest path problem; they provide
two implementations based on label setting and label correcting, respectively.

Zografos and Androutsopoulos (2008) propose a simple heuristic for determining
alternative non-dominated hazardous materials distribution routes in terms of cost
and risk minimization. They use the heuristic within a decision support system for
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assessing alternative distribution routes in terms of travel time, risk and evacuation
implications, while coordinating the emergency response deployment decisions with
the hazardous materials routes.

Dell’Olmo et al. (2005) use multi-objective optimization approaches proposing
a two phase approach. In the first phase, the whole set of efficient paths between the
origin and the destination is determined by means of the label correcting algorithm
of Martins and Santos (1999). In the second one, k efficient paths are selected
maximizing their dissimilarity, by heuristically solve the p-dispersion problem,
assuming the dissimilarity between each pair of paths found in the first phase as
distance measure. The heuristic algorithm is a constructive heuristic followed by a
simple local search. The path selection is done only with respect to path dissimilarity
and does not consider the representativeness of the selected paths with respect to the
cost vectors of all the efficient paths.

Successively, Caramia and Giordani (2009) and Caramia et al. (2010) try to
overcome this drawback, proposing new approaches that selects k efficient paths
with respect to several measures, e.g., length, travel time (cost), and risk; path
selection is made by choosing k paths maximizing their representativeness with
respect to the set of all the efficient paths, and with high spatial dissimilarity.
The approach proposed by Caramia et al. (2010) first exploits the algorithm
of Martins and Santos (1999) to find the set of efficient paths, and then uses
a k-means algorithm to partition the latter set into k classes of paths, minimizing the
total variance of the objective vector values of the paths in the same class. Next, one
path from each one of the k classes is chosen by heuristically solving the problem
of selecting paths maximizing the total spatial dissimilarity. Caramia and Giordani
(2009) devise a similar but more sophisticated method, adopting a clustering-based
approach for selecting k efficient paths maximizing their representativeness with
respect to the cost vectors of all the efficient paths or the dissimilarity among the
k selected paths. The approach works in three phases: in the first one, the set of
efficient paths is determined e.g., with the use of the algorithm of Martins and Santos
(1999). In the second phase, a fuzzy k-means based routine is used to compute fuzzy
path-class memberships representing a fuzzy k-class partition of the efficient paths.
In the third phase, a Montecarlo method, repeated for a certain number of times
that exploits fuzzy memberships as path-class assignment probabilities, generates
a k-class partition of the efficient paths, and from each one of the k path classes
it selects the path with the closest cost vector to the class centroid. The k-class
partition of the efficient paths (along with the related selection of k paths) is chosen
by minimizing the sum over all the classes of the total square distance between the
cost vector values of the paths of a class and the class centroid (i.e., maximizing
path representativeness), or maximizing the dissimilarity among the k selected
paths. Computational results are presented on random graphs and show a promising
behavior with particular emphasis on the capability of producing representative
paths with a considerably high dissimilarity.

We close this subsection mentioning the model proposed by Bonvicini and
Spadoni (2008) which does not provide specific routing plans, but a hazmat
flow plan on a given network. Differently from the above approaches, they
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consider both multi-commodity and multi-origin destination, proposing a simple
multi-commodity linear network flow model with global link capacities, with flow
decision variables representing yearly hazmat vehicle flows; the model is solved
using a commercial solver. In particular, global link capacities are considered to re-
duce risk overloading on specific links, and, hence, to look for risk equity. Different
linear objective functions are introduced based on different link impedances (e.g.,
risk, length, cost, etc.); the model is capable to optimize one objective function at a
time with the others implicitly considered as specific flow constraints in the model
formulation.

Hazmat Transportation Network Design

The models reviewed above may be useful in finding a global routing plan for a
major hazmat producer/carrier that takes into account the equitable distribution of
transport risk in a region. However, these models are of little use in identifying
a comprehensive global transportation plan in a jurisdiction with multiple carriers
since governments, in general, have no authority to impose routes on individual
carriers.

Indeed, many governments have the authority to close certain road segments
to hazmat vehicles or to limit the amount of hazmat traffic flow on those links.
These kinds of policies are usually categorized as Hazmat Transportation Network
Design (HTND) policies, and equity concerns can be incorporated into the design
objectives.

Network design has been widely studied in the past (see, e.g., the surveys of
Magnanti and Wong 1984, Balakrishnan et al. 1997, and Yang and Bell 1998, for
reviews of network design problems for road transportation). Differently from the
classical network design problem where the aim is to find the most appropriate
ways to expand a given infrastructure, in HTND the problem is identifying which
road segments should be partially or entirely closed to hazmat transport in an
existing network, for example in order to minimize the total risk induced by hazmat
shipments. HTND has received little attention from researchers and only recently.
Next, we review the papers that fall in this research field.

Most of network design literature models the problem as either a bilevel
optimization problem (Bard 2006), or a Mathematical Program with Equilibrium
Constraints (MPEC) (see e.g. Luo et al. 1996 and Outrata et al. 1998).

Kara and Verter (2004) were the first to study the HTND proposing a bilevel
integer programming model by considering the roles of carriers and of a government
authority. They assume that the carriers, represented by the follower (second level)
decision makers in the bilevel model, will always use the cheapest routes on the
hazmat transportation network designed by the government authority. The authority
plays the role of the leader (first level) in the bilevel model, and has the objective
to select the minimum total risk network to open to hazmat shipments, taking into
account the cost-minimizing behavior of the carriers. In their model, hazmats are
grouped into categories based on risk impact, and a network is designed for each
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group, without considering the interactions among shipments of hazmats of different
categories. Since the followers’ problem is linear, the bilevel integer programming
problem is reformulated as a single-level Mixed Integer Programming (MIP)
problem by replacing the followers’ problem by its Karush–Kuhn–Tucker (KKT)
conditions and by linearizing the complementary slackness constraints. Then, the
latter MIP problem is solved using a commercial optimization software. Marcotte
et al. (2009) propose a more efficient single-level MIP reformulation replacing
the complementary slackness constraints with equality constraints between the
objective function values of the followers’ primal and dual problems. However, both
the two single-level reformulations may fail to find an optimal stable solution for the
bilevel model. In fact, in general, there are multiple minimum-cost routing solutions
for the followers over the designed network established by the leader, which may
induce different total risk values over the network. We note that Kara and Verter
(2004) do not take into account such an issue.

Erkut and Alp (2007a) consider a single-level HTND model, restricting the
network to a tree, so that there is a single path between each couple of origin–
destination pair; with this restriction, the carriers have no alternative paths on the
tree, hence the carriers have no freedom in route selection, with the result that the
structure of the proposed model has a single level. They formulate the tree design
problem as an integer programming problem with the objective of minimizing the
total risk, which is solved using a commercial optimization software. However, the
solutions may result in circuitous and expensive routes. To avoid an economically
infeasible solution for the carriers, the authors also propose a greedy heuristic that
adds shortest paths to the tree so as to keep the risk increase to a minimum and allow
the carriers to select cheaper paths.

Erkut and Gzara (2008) generalize the model of Kara and Verter (2004) by
considering the undirected network case and designing the same network for all the
shipments. They consider the possible lack of stability of the solution of the bilevel
model obtained by solving the single-level MIP model, and propose a heuristic
solution method that always finds a stable solution. Moreover, they extend the
bilevel model to account for the cost/risk trade-off by including cost in the objective
function of the leader problem.

All the above papers adopt a link-based formulation for the carriers’ problem,
while Verter and Kara (2008) provide a new path-based formulation for the HTND
problem studied by Kara and Verter (2004), where the open links in the given
road network chosen by the regulator determine the set of paths that are available
to the carriers. This facilitates the incorporation of carriers’ cost concerns in
regulator’s risk reduction decision, and allows to formulate the problem with a
single-level integer programming formulation assuring that the cheapest path among
the available ones is used by each carrier.

All the above HTND models consider the government and the carriers points
of view, trying to mitigate the risk only from a macroscopic point of view but
without considering the need to distribute the risk in an equitable way over the
region in which the transportation network is embedded; in fact, the choices of the
carriers, that are related to the cost, could overload, in terms of risk, some links of
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the network, implying a lack of risk equity. This could be inadequate when there
are multiple layers of government authorities being involved in the regulation of
dangerous goods shipments (as, for example, it is common in Europe and North
America), that are responsible at different geographical levels, e.g., regional area
authorities and local area authorities. In such a scenario, a regional area authority
aims to minimize the total risk over its controlled area, while a local area authority
wants the risk over the local populated links of its jurisdiction to be the lowest
possible.

Bianco et al. (2009) analyze such a scenario, and study new models for HTND
addressing also risk equity. The problem they consider is the following: a set of
hazmat shipments has to be shipped over a road transportation network in order
to transport a given amount of hazardous materials from specific origin points to
specific destination points. They assume that there are government authorities (at
different levels, e.g., regional and local) that want to regulate the hazmat traffic
by restricting the use of network links to the hazmat shipments with the aim, on
the one hand, of minimizing the total risk induced by the shipments and, on the
other hand, of spreading the risk equitably over the geographical region in which
the transportation network is embedded. The former aim concerns the interests of a
regional area authority, while the latter one goes in the direction of the interests of
local area authorities (that are responsible to regulate the hazmat traffic inside their
local area contained in the regional area) that would like to avoid local populated
links in their jurisdictions to be overloaded in terms of induced risk by hazmat
shipments. To the best of our knowledge, this is the first work that pays particular
attention to the jurisdictional differences within different authorities. Bianco et al.
(2009) also formulate their hazmat network design problem with a linear bilevel
model, where at the higher (leader) level there is a meta-local authority (acting
on behalf of all the involved local area authorities) that aims to minimize the
maximum link risk over populated links of the whole network, that is, risk equity,
and at the lower (follower) level there is the regional area authority that aims to
minimize the total risk over the network. This corresponds to the existence of two
decision makers, one (the regional authority) willing to define a feasible hazmat
flow assignment on the network that induces the minimum total risk over the
population, and the other (representing the local authorities) that, interpreting the
optimal flow assignment of the previous (lower level) decision maker as a flow
vector, minimizes the maximum link risk on the network, i.e., aiming at risk equity,
by defining capacities over the network links that restrict the possible choices of
the regional authority. They reduce the bilevel problem to a single-level integer
linear program by replacing the follower problem with the KKT conditions and
by linearizing the complementary slackness constraints. The resulting problem can
be optimally solved through commercial integer programming software only for
very small networks; therefore, the authors also provide heuristic based approaches
experimented on a realistic regional network.

Reilly et al. (2012) and Dadkar et al. (2010) present a new hazmat network design
problem that takes into account security issues by modeling the possible role of a
terrorist. They provide a bilevel model, where at the lower level there are the carrier
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and the terrorist whose decision making is modeled as a two-player game, and at
the higher level there is a government authority willing to minimize the expected
consequence of a terrorist attack by closing some of the network links, and therefore
constraining the choices that the shipper/carrier can make. Dadkar et al. (2010)
develop a non-zero sum game-theoretic model of the interactions among carriers and
terrorist, by considering a single repetitive hazmat shipment from a single origin to
a single destination. A heuristic is used to find optimal sets of government imposed
facility restrictions that produce a Nash equilibria where the carrier’s expected
payoff is as high as possible given that the terrorist’s expected payoff is below a
prescribed threshold. This work assumes only one hazmat shipment and a single
origin–destination pair. Reilly et al. (2012) extend the approach considering multiple
origin–destination pairs but with a single carrier and a single hazmat type.

Toll Setting Policies

HTND policies can effectively restrict hazmat shipments in order to induce carriers
to route shipments on low-risk paths. However, such a restriction could be too much
since it does not consider the carriers’ priorities, possibly wasting the usability of
certain road segments. On the other hand, only restricting certain road segments
could not rationally adjust hazmat flows to less-risk areas. Recently, an alternative
policy tool was proposed by Marcotte et al. (2009) to discourage (but not prevent)
hazmat carriers from using certain road segments via Toll Setting (TS). They also
show that the toll setting policy is a more flexible regulation tool for hazmat than
network design policy. By imposing tolls on certain road segments, the hazmat
shipments are expected to be directed on less-populated roads according to the
carriers’ own selection (due to economic considerations) rather than by governors’
restriction. This model may result in a more attractive policy to regulators since
provide more flexible solutions, and at the same time more acceptable to carriers
that maintain the freedom of using any link of the network.

Marcotte et al. (2009) propose a bilevel model that minimizes the risks and costs
including both transportation costs and tolls on the links. They reduce the bilevel
problem to a single-level MIP by replacing the followers’ problem with optimality
conditions and by linearizing the complementary slackness constraints; they also
provide an alternative single-level MIP reformulation where complementary slack-
ness conditions are replaced with the equality between the primal and dual objective
functions of the followers’ problem. Moreover, they show that the authority can
easily finds a toll setting inducing a minimum risk solution by inverse optimization,
that is, determining the link tolls that induce the carriers to choose the minimum
risk route plan; hence, in this case, the problem is not a bilevel problem anymore,
but reduces to a single-level problem. However, if the authority wants to keep into
account also carriers’ cost, the problem is a true bilevel optimization problem.

Wang et al. (2011) assume that both hazmat traffic and regular traffic affect
population safety, since congestion increases delay and then accident probabilities.
The idea is to control both regular and hazmat traffic via toll setting. The authors
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make the following assumptions: (1) congestion induced by the traffic flow of
hazmat trucks can be ignored; (2) to simplify the model, the users have perfect
information of the current status; (3) all the model parameters are deterministic;
(4) a single type of hazmat is considered; (5) travel delay is a linear function of
traffic congestion; (6) risk is linearly affected by travel delay. The authors provide
a bilevel formulation and an equivalent two-stage problem formulation, where the
first-stage problem is a non-convex quadratic programming problem and the latter
is a linear programming problem.

We conclude this section mentioning a new toll setting model proposed by
Bianco et al. (2012), that extends the one proposed in Marcotte et al. (2009). This
new model not only aims to minimize the total risk on the network but also to
discourage the concentration of high level of risk on some links by minimizing
the maximum link total risk, and in such a way to keep into account risk equity. To
achieve this result, it is assumed that the toll paid by a carrier on a link depends on
the total risk on that link. This implies that the routing choice of a carrier depends
on the other carriers’ choices, leading to a Nash game. The resulting model is a
MPEC where the inner problem is a Nash game having the carriers as players, and
the outer problem is faced by the authority that sets the tolls on the links in order
to minimize both the network total risk and the maximum link total risk induced by
the carriers’ choices. In section “Toll Setting in Hazmat Transportation,” we give a
formal description of this model.

Hazmat Transportation Network Design Models

Let G D .N; A/ be a directed network with N being the set of n nodes (intersections
in the road network) and A being the set of m directed links or arcs (road segments)
between pairs of nodes. The network is assumed undirected when all the links
are undirected (i.e., the road segments can be traversed in both directions); in
this case, let E be the set of undirected links or edges of the network, and A D
f.i; j /; .j; i/jhi; j i 2 Eg be the set of pairs of arcs related to the edges traversed
forth and backward, with arc .i; j / 2 A representing edge hi; j i 2 E traversed from
node i to node j .

Let cij be the transportation cost (length) of arc .i; j / 2 A. If the network is
undirected we assume that the traveling cost of edge hi; j i 2 E does not depend
on the direction in which the edge is traversed, and hence the costs of the arcs
.i; j /; .j; i/ 2 A related to traversing that edge forth and backward, respectively,
are assumed to be cij D cj i and equal to the edge traveling cost.

Given a set H of hazmat types, we consider a set K of p carriers with carrier
k 2 K having to satisfy a single shipment order (commodity) of hazmat of type
h.k/ 2 H from origin node sk to destination node tk . The amount of hazmat to be
shipped by carrier k (i.e., the demand of k) is denoted with bk and with nk we denote
the number of trucks used for the shipment. For the sake of simplicity, we assume
that carrier k uses a fleet of homogeneous truck (vehicles) each one of capacity qk
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Authority

Carriers

min Total Risk (Selected Routes)

Design the  Transportation Network

min Total Cost (Selected Routes)

Select Routes on the Designed

Transportation Network

Fig. 1 The hazmat
transportation network design
problem

and traveling at full load (hence, we may assume that bk D nk � qk); indeed, for the
sake of simplicity, all the carriers shipping the same hazmat type are assumed to use
the same type of vehicles.

Let �h
ij be the risk (e.g., number of people exposed) induced by a truck carrying

hazmat of type h through link .i; j / 2 A; typically, the risk does not depend on the
direction in which a road segment is traversed, therefore it is assumed that �h

ij D �h
j i .

HTND: Models with an Authority and Several Carriers

In the generic Hazmat Transportation Network Design (HTND) problem it is
assumed that an authority has the power to decide which links can be used for
transportation of hazmat type h 2 H , e.g., in order to force the carriers to route
shipments on less risky links and hence minimizing the total risk induced by the
hazmat shipments. Then the carriers select the routes on the available subnetwork,
e.g., minimizing their transportation cost.

The modeling framework used to represent the HTND problem is a bilevel
optimization problem where the authority plays the role of the leader (first level)
decision maker, and has the objective to select the minimum total risk network to
open to hazmat shipments, taking into account the cost-minimizing behavior of the
carriers, that play the role of the follower (second level) decision maker. Figure 1
shows this bilevel framework introduced by Kara and Verter (2004).

In the HTND problem two set of variables are considered for modeling the
decisions of the authority and carriers, respectively:

• yh
ij , being the binary variables representing the decision of the authority and

equal to 1 if arc .i; j / 2 A is open for the transportation of hazmat of type
h, 0 otherwise.

• xk
ij , being the binary variables modeling the decisions of the carriers and equal

to 1 if arc .i; j / 2 A is used by carrier k for the shipment, 0 otherwise.

In fact, since the authority can open or close the links and no restriction (flow
constraint) is assumed on open links, the decision of each carrier k results in
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selecting a route (e.g., of minimum cost) on the available subnetwork from the
origin sk to the destination tk with all the amount of hazmat being shipped along
the selected route (i.e, unsplittable flow).

Although the main concern of the authority is the minimization of the risk
while the carriers mainly address the minimization of the transportation cost, it is
reasonable to assume that both the authority and the carriers take also into account at
least in part the objective of the other party. Given the above decision variables, this
more general version of the HTND problem can be formulated with the following
bilevel program:

min
yh

ij

X

k2K

X

.i;j /2A

nk.�
h.k/
ij C w1cij /xk

ij

s:t: yh
ij 2 f0; 1g 8 .i; j / 2 A; h 2 H

where xk
ij solve:

min
xk

ij

X

k2K

X

.i;j /2A

nk.cij C w2�
h.k/
ij /xk

ij

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8 i 2 N; k 2 K

xk
ij � y

h.k/
ij 8 .i; j / 2 A; k 2 K

xk
ij 2 f0; 1g 8 .i; j / 2 A; k 2 K;

(1)

where ek
i is equal to 1;�1 or 0 depending on if node i is the origin, the destination

or a transshipment node for carrier k. For the sake of generality, both the objective
functions of the authority (the leader) and the carriers (the followers) consider the
minimization of total risk (assuming additivity of impacts) and total transportation
cost, with parameters w1 and w2 that allow the comparison between total risk and
carriers’ total transportation cost in the objective functions of the leader and the
followers, respectively.

The leader (outer) problem has no constraints (except for the binary constraints
on the variables). The followers’ (inner) problem presents the flow balance require-
ments on each network node and for each carrier (shipment), and the constraints
on the carriers’ decision variables implying that only the available links (decided
by the leader) can be used by the carriers. One may control possible overload in
terms of risk on the population residing in the neighborhood of a link by limiting
the number of vehicle traversing any link (i.e., by adding to the leader problem the
constraints

P
k2K nkxk

ij � !ij for each link .i; j /, with !ij being the maximum
total number of hazmat trucks allowed on link .i; j /). Note that with the addition of
these constraints the problem is not guaranteed to have a feasible solution even on
a connected network. Without the addition of such kind of constraints, there is no
interaction between shipments of different hazmat types, and the followers’ problem
decomposes into jKj constrained shortest path problems.
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The Model of Kara and Verter (2004)

Kara and Verter (2004) model the HTND problem on a directed network G D
.N; A/ and propose a formulation that can be reduced to the general one above
described with both parameters w1 and w2 set to 0, that is, the authority objective
is the minimization of the total risk only and the objective of the carriers is the
minimization of the transportation cost only. They estimate the risk �h

ij by counting
the number of people exposed by a truck transporting hazmat of type h. In particular,
they consider the population located in a set P of population centers, and they
assume to know for each population center p 2 P the number PE

p;h
ij of people

exposed by a truck transporting hazmat of type h on link .i; j / 2 A; therefore, we
have �h

ij D
P

p2P PE
p;h
ij .

Once the leader variables yh
ij are given and assumed as parameters, the followers’

problem is an integer linear program with the “unimodularity” property, that is,
the constraints’ matrix is totally unimodular and the constraints’ right-hand-side
vector is integer; in this case, every extreme point, or vertex, of the feasible
region of the linear relaxation is integral and thus the feasible region is an integral
polyhedron (Papadimitriou and Steiglitz 1982). Hence, the integrality requirements
on the followers’ variables xk

ij can be relaxed and replaced with xk
ij � 0 without

losing optimality. Therefore the bilevel problem is discrete-linear and in particular
since the followers’ problem is linear we can represent it with its primal-dual
optimality (or KKT) conditions, reducing the bilevel problem to a pure single-
level optimization problem by replacing the followers’ problem with the equivalent
optimality conditions. This is the strategy followed by Kara and Verter (2004),
where the optimality conditions of the followers’ problem are

X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8 i 2 N; k 2 K

xk
ij � y
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ij 8 .i; j / 2 A; k 2 K

nkcij � �k
i C �k

j � vk
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ij D 0 8 .i; j / 2 A; k 2 K

xk
ij vk

ij D 0 8 .i; j / 2 A; k 2 K

�k
ij .y

h.k/
ij � xk

ij / D 0 8 .i; j / 2 A; k 2 K

xk
ij � 0; vk

ij � 0; �k
ij � 0 8 .i; j / 2 A; k 2 K

�k
i free 8 i 2 N; k 2 K;

(2)

where:

• �k
i are free dual variables associated with the first set of primal constraints of the

follower’s problem of model (1), with i 2 N , and k 2 K .
• �ij are non-negative dual variables associated with the second set of primal

constraints of the follower’s problem, with .i; j / 2 A.
• vk

ij are non-negative slack variables of the dual constraints of the follower’s
problem, with .i; j / 2 A, and k 2 K .
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The first two set of constraints are the primal constraints that together with the
non-negativity conditions on the primal variables xk

ij form the primal feasibility
conditions; the third set represents the dual constraints that together with the
restrictions in sign on the dual variables �k

i and �k
ij and the slack variables vk

ij of
the dual constraints define the dual feasibility conditions; finally, the fourth and fifth
sets of constraints are the complementary slackness conditions.

Note that once the above conditions are added to the leader problem reducing
the bilevel problem to a single-level one, we lose the total unimodularity property;
therefore we again have to force integrality on variables xk

ij in the single-level
model, with the consequence that the latter is a MIP problem with the following
bilinear constraints

vk
ij xk

ij D 0 8 .i; j / 2 A; k 2 K

�k
ij .y

h.k/
ij � xk

ij / D 0 8 .i; j / 2 A; k 2 K:
(3)

Kara and Verter (2004) propose to linearize these constraints as follows, taking
advantage of the binary nature of the variables xk

ij and yh
ij , and with M being a

sufficiently large positive scalar:

vk
ij �M.1� xk

ij / 8 .i; j / 2 A; k 2 K

�k
ij �M Œ1� .y

h.k/
ij � xk

ij /� 8 .i; j / 2 A; k 2 K:
(4)

Finally, the single-level MIP formulation for the HTND problem proposed by
Kara and Verter (2004) is:
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(5)

Kara and Verter (2004) observe that the proposed approach can be applied also
when additional constraints are added to the leader problem as outlined at the
beginning of this section since the unimodulairty of the followers’ problem is not
affected by the addition of some other constraints to the leader problem. The authors
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solve the proposed single-level MIP model using a commercial solver (CPLEX 6.0)
on a network with 48 nodes and 57 links representing the Western Ontario road
network and by considering up to 22 shipments (carriers) and 2 hazmat types. No
details are given for the type of computer used for the experimentation and the CPU
time needed to find the optimal solution.

Marcotte et al. (2009) propose a more efficient single-level MIP reformulation
replacing the complementary slackness constraints (3) with the following equality
constraints between the objective function values of the followers’ primal and dual
problems

X

.i;j /2A

nk.cij C w2�
h.k/
ij /xk

ij D
X

i2N

ek
i �k

i �
X

.i;j /2A

�k
ij y

h.k/
ij 8 k 2 K; (6)

with w2 D 0 according to the model of Kara and Verter (2004).
The bilinear terms �k

ij y
h.k/
ij in Constraints (6) are linearized by replacing them

with new variables �k
ij , and adding the following linear constraints to the model to

ensure that �k
ij D 0 when y
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(7)

with M k
ij being sufficiently large positive scalars.

In this way, an alternative MIP formulation is obtained solely based on the
integrality of the y variables. Marcotte et al. (2009) show that their alternative
formulation is more efficient than that one proposed by Kara and Verter (2004),
and also provide an improved solution methodology where the TS policy is used to
construct an initial solution.

However, both the two single-level MIP reformulations may fail to find an
optimal stable solution for the bilevel model. In fact, in general, there are multiple
minimum-cost routing solutions for the followers over the designed network
established by the leader, which may induce different total risk values over the
network. We note that Kara and Verter (2004) do not take into account such an issue.

The Model of Erkut and Gzara (2008)

As recalled in the previous section both the single-level MIP reformulations may
fail to find an optimal stable solution for the bilevel model, because they assume
that, if there are multiple minimum-cost routing solutions for the carriers over
the designed network established by the authority, each carrier will follow the
minimum-cost route that induces also the minimum risk; therefore, the two single-
level reformulations model the optimistic case. Unfortunately, there is no certainty
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that the carriers will select these (optimistic) routes, neither a way to impose these
specific route to the carriers, that instead have the freedom to select one of the
minimum-cost route with the result that the total risk may be larger than the one
coming from the optimistic solution produced by the single-level model.

Erkut and Alp (2007a) consider such an issue and bypass the stability problem
by restricting the network to a tree, so that there is a single path between each couple
of origin–destination pair; with this restriction, the carriers have no alternative paths
on the tree, hence the carriers have no freedom in route selection, with the result
that the structure of the proposed model has a single level.

Erkut and Gzara (2008) take into account the possible lack of stability of the
single-level model and note that for the authority it may be preferable to design a
network with a small deviation from the best one but with the property that there is
a single minimum-cost routing solution for the carriers over the designed network,
that is a “stable” network. Accordingly, they propose a heuristic solution method
that always finds a stable solution. They also generalize the model of Kara and
Verter (2004) by considering the undirected network case and designing the same
network for all the shipments. Given an undirected network G D .N; E/, Erkut
and Gzara (2008) therefore assume that if an undirected link is open it is available
for being traversed in both directions. Moreover, they extend the bilevel model to
account for the cost/risk trade-off by including cost in the objective function of the
leader problem.

Below, we report the mathematical model proposed by Erkut and Gzara (2008)
for the HTND problem, where, differently from the general model (1), yij are the
binary variables representing the decision of the authority, with yij being equal to 1
if arc .i; j / 2 A is open for hazmat transportation (independently from the hazmat
type). As for the general model (1), the carriers’ decisions are modeled with the
binary variables xk

ij , where xk
ij takes the value 1 if arc .i; j / 2 A is used by carrier

k for the shipment, 0 otherwise.

min
yij

X

k2K

X

.i;j /2A

nk.�
h.k/
ij C w1cij /xk

ij

s:t:
yij D yj i 8 hi; j i 2 E

yij 2 f0; 1g 8 .i; j / 2 A; h 2 H

where xk
ij solve:

min
xk

ij

X

k2K

X

.i;j /2A

nkcij xk
ij

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8 i 2 N; k 2 K

xk
ij � yij 8 .i; j / 2 A; k 2 K

xk
ij 2 f0; 1g 8 .i; j / 2 A; k 2 K;

(8)
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Note that since the network is assumed to be undirected the closing or opening
decisions are defined on the set E of undirected links of the given network.
Therefore, in the model it is assumed yij D yj i for each hi; j i 2 E .

The heuristic method, originally developed by Erkut and Gzara (2008) for
the case with w1 D 0, works as follows. First, it computes the subnetwork
that minimizes the total risk objective (i.e., that optimizes the leader’s objective
function). Note that this simply corresponds to determining a minimum risk path
from origin node sk to destination node tk , for each carrier k 2 K . Indeed, if this
subnetwork is passed to the carriers they may select paths different from the ones
that the authority has in mind, with the consequence that the resulting total risk may
be different and, hence, larger than the minimum value. Of course, in this case we
are sure that the subnetwork is not stable. The total risk values being the same is a
necessary but not sufficient condition for stability; in order to check stability of the
current subnetwork a multi-commodity integer network flow problem with an upper
bound constraint on the cost (equal to the transportation cost of the carriers solution)
and with the maximization of the total risk as objective is solved. Then, at each
iteration, if the current subnetwork is not stable, the heuristic selects and eliminates
an edge from the network, iterating the process until the resulting restricted network
is stable. Two selection rules are proposed: the first one either selects the high-
risk edge or the one selected by the carriers which is not in the minimum risk
subnetwork; the other one selects the edge with the highest reduced risk, where
the edge reduced risk is the increase in total risk when the edge is included in the
solution network.

The heuristic algorithm was implemented in Matlab 6.5 and the network flow
problem solved using CPLEX 8.1, on a Sun Ultra Sparc 450 workstation. The
method is evaluated on a network with 105 nodes and 134 undirected links
representing the city of Ravenna, Italy, and by considering 35 carriers, capable to
find a stable heuristic solution within 30 s of CPU time.

The Model of Verter and Kara (2008)

The HTND models above discussed are link-based, since both the regulator’s and
carriers’ decision variables are defined on the links of the network. Verter and Kara
(2008) provide an alternative path-based formulation for the HTND problem, where
some of the decision variables are defined on the paths of the network. The authors
give two motivations for proposing such a model. The first one is methodological:
the resulting model is a single-level optimization problem, which, therefore, does
not suffer from the stability problem. The other reason is related to the application:
according to the proposed model, hazmat carriers are engaged by the authority in
the route planning decision making process. In particular, the carriers are asked to
provide to the authority an ordered list of (best) paths that are acceptable from the
carriers’ point of view in order to identify compromise solutions between the two
parties.
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Assuming the road transportation network being represented by a directed
network G.V; A/, let P k be the ordered set of the best or acceptable paths for carrier
k, with the paths listed in non-increasing order with respect to the carrier preferences
(e.g., the minimization of transportation cost). Let pk

` 2 P k be the `th best (e.g.,
shortest) path of carrier k. In the following, each path pk

` is defined as a sequence
of mk

` links of the network.
The authority decides which is the subset of links of the network to be opened to

the transportation of hazmat of type h, for each h 2 H . The open links determines
which paths in P k are available to carrier k, that, therefore, will select the first
available path among the ordered paths of P k .

Three sets of binary variables are defined in the model of Verter and Kara (2008):

• yh
ij , being equal to 1 if link .i; j / 2 A is open for transport of hazmat of type h,

0 otherwise.
• zk

` , being equal to 1 if path pk
` 2 P k is available for carrier k, 0 otherwise.

• �k
` , being equal to 1 if path pk

` 2 P k is used by carrier k, 0 otherwise.

The mathematical model is as follows.

min
X

k2K

X

pk
` 2P k

X

.i;j /2pk
`

nk�
h.k/
ij �k

`

s:t: X

pk
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` D 1 8 k 2 K

�k
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` 8 k 2 K; pk
` 2 P k
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` � y

h.k/
ij 8 k 2 K; pk

` 2 P k; .i; j / 2 pk
`

zk
` �

X

.i;j /2pk
`

y
h.k/
ij �mk

` C 1 8 k 2 K; pk
` 2 P k

�k
` � zk

` �
`�1X

	D1

zk
	 8 k 2 K; pk

` 2 P k

�k
` ; zk

` 2 f0; 1g 8 k 2 K; pk
` 2 P k

yh
ij 2 f0; 1g 8 .i; j / 2 A; h 2 H:

(9)

Note that the model is a single-level Integer Programming (IP) problem. In fact,
since carriers’ behavior in path selection as response to the decision of the authority
is explicitly represented by the ordered set of acceptable paths, it can be directly
integrated into the decision model of the authority. Therefore, the model structure
is no longer bilevel but single-level. The objective function to be minimized is the
total risk due to the decisions of the carriers (that the authority knows in advance
on the basis of the preferences that the carriers have submitted to it) in response to
those of the authority. The first set of constraints guarantees that each carrier k will
select a single path among the preferred paths of P k . The second, third, and fourth
sets of constraints couple variables yh

ij with �k
` through variables zk

` . In particular,
the second set of constraints ensures that a path can be used only if it is available,
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while the third and fourth sets of constraints identify the available paths on the basis
of the decisions of the authority (the former force a path to be unavailable if one of
its link is not open, while the latter declare available each path whose links are all
open). The fifth constraint set ensures that the path with the smallest index among
the available ones is used by each carrier. The remaining set of constraints is the
binary constraints on the values of the variables.

Moreover, note that if jP kj D 1, for each carrier k, the authority is unable to
intervene: this corresponds to the unregulated scenario. On the contrary, if all the
paths from sk to tk are acceptable for each carrier k, we have the ideal scenario for
the authority. All other intermediate cases produce compromise solutions between
the above two extremes. For example, one may think to consider, for each carrier,

 best (shortest) paths or all the paths that are within a maximum allowable percent
detour from the shortest path. Verter and Kara (2008) observe that for the case of a
single carrier per hazmat type, the increase in the number of available paths will lead
to inferior routes for the carrier, since the authority has more chances to mitigate the
risk inducing the carrier to use a less risky path. This is not the case with multiple
carriers shipping the same hazmat type. In fact, a link that may be closed by the
authority in a certain scenario, could on the opposite result be opened in a less
constrained one (i.e., when a larger set of acceptable paths are considered for each
carrier) with the consequence of a possible reduction of not only the total risk but
also of the carriers’ total cost.

Note that as for the link-based model (1) there is no interaction among shipments
of different hazmat types, and, hence, the path-based model (9) is separable in as
many independent problems as the number of hazmat types.

The authors experiment the proposed model with the use of a commercial IP
solver (CPLEX 6.0) on a network of 48 nodes and 57 links representing the road
network of Western Ontario, Canada (the same considered in Kara and Verter 2004),
and with 53 carriers and 2 hazmat types. The solver requires more than 2.5 h of CPU
time (the authors does not give any detail about the type of computer used for the ex-
perimentation) to return the optimal solution when the shortest 100 distinct paths for
each carrier are considered, and the CPU time does not show a monotone trend as the
number of paths increases. The authors also consider a large network with 176 nodes
and 205 links, representing the highways of Quebec and Ontario, Canada, 84 carri-
ers and 2 hazmat types, solving the instance with much larger path sets within 5 h.

HTND: A Model with Local and Regional Authorities

All the modeling approaches discussed above consider the role of the authority (the
regulator of the infrastructure, i.e, the road network) and of the carriers (the users
of the infrastructure), without taking into account equity in risk distribution over the
population.

The first paper dealing with the equity issue is by Bianco et al. (2009). Differently
from the other models, they do not consider the role of the carriers, and assume that
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min Total Risk (Assigned Flows)

Assign Hazmat Flows  on the

Capacitated Network

Kara and Verter (2004) Bianco et al. (2009)

min Max Link Risk (Assigned Flows)

Set  Network Links Capacity

Regional
Authority

Meta-Local
Authority

Authority

Carriers

min Total Risk (Selected Routes) 

Design the  Transportation Network

min Total Cost (Selected Routes) 

Select Routes on the Designed

Transportation Network

Fig. 2 Comparison between the models of Bianco et al. (2009) and that of Kara and Verter (2004)

there are distinct government authorities (at different levels, e.g., regional and local)
that regulate the hazmat traffic by restricting the use of network links to the hazmat
shipments. The aim is twofold: on the one hand the minimization of the total risk
of the shipments, on the other hand the spreading of the risk equitably over the
geographical region in which the transportation network is embedded.

The reason of such a modeling approach is that the local and the regional
authorities act as multiple decision makers and in many cases they do not cooperate
(e.g., because they are controlled by different parties, as often happens in Italy).
Hence, a simple multi-objective single-level model does not adequately represent
such a case, while the bilevel model better represents the scenario where there is
a hierarchy of decision makers: the leader (i.e., the meta-local authority) and the
follower (i.e., the regional authority). The leader tries to minimize the maximum
link total risk (hence balancing the risk on the links of the network due to hazmat
shipments, and then achieving in this way risk equity), imposing some restrictions
on the amount of hazmat traffic over the links of the network in terms of link
capacities. In such a way, the leader balances the link total risk on the links of the
network due to hazmat shipments, achieving the risk equity. The follower decision
maker instead has the freedom to choose the specific amounts of hazmat traffic to be
routed over the links of the capacitated network in order to pursue the minimization
of the network total risk.

In Fig. 2, we show the conceptual comparison between the model of Bianco et al.
(2009) and that of Kara and Verter (2004). In particular, the model of Bianco et al.
(2009) corresponds to a particular hazmat network design problem, where the goal
is not determining a subgraph of the whole transportation road network, but finding
(link) capacities leading to a balanced risk over the population as evenly as possible.

Let the road transportation network be represented by an undirected network
G D .N; E/, with E being the set of undirected links or edges, and A D
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f.i; j /; .j; i/jhi; j i 2 Eg being the corresponding set of arcs considering each edge
traversed in both directions. Two sets of variables are defined:

• uij , being the (bundle) capacity of arc .i; j / 2 A that limits the total amount of
hazmat traversing edge hi; j i 2 E from node i to node j .

• xk
ij , being the fraction of the amount of hazmat of the shipment of carrier k

traversing edge hi; j i 2 E from node i to node j .

Let

�ij D
X

k2K

bk

qk

�
�

h.k/
ij xk

ij C �
h.k/
j i xk

j i

	

be the link total risk over the population located in the neighbor of link hi; j i 2 E ,
and let � be the maximum link total risk among the �ij values of each link hi; j i 2
E; moreover, let

Rtot D
X

k2K

bk

qk

X

.i;j /2A

�
h.k/
ij xk

ij

be the network total risk over the population residing in the area embedding the road
network represented by G.

According to the conceptual scheme of the model, the bundle capacities uij , with
.i; j / 2 A, are the variables controlled by the leader decision maker, who wants
to minimize the value of � by imposing specific limits on the sum of hazmat flows
.bkxk

ij / on the arcs of the network. The follower controls variables xk
ij in such a way

to minimize the value of Rtot .
The mathematical bilevel model is
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uij

�

s:t:
X

k2K

bk

qk

�
�

h.k/
ij xk

ij C �
h.k/
j i xk

j i

	
� � 8 hi; j i 2 E

uij � 0 8 .i; j / 2 A
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xk
ij � 0 8 .i; j / 2 A; k 2 K:

(10)

Let �� be the optimal solution value of the leader problem, that is the minimum
possible value for �. The first set of constraints forces the link total risk over each
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link hi; j i 2 E to be not greater than �, and the second set is composed of the
non-negativity constraints on the arc bundle capacities.

Let R�
tot .u/ be the optimal solution value of the follower problem, that is the

minimum network total risk value given the bundle capacity vector u. The first set
of constraints of this problem states the flow balance requirements on each network
node and for each carrier, and the second set forces the total flow on each arc .i; j / 2
A to be not greater than the arc capacity uij . Finally, the third set contains the non-
negativity constraints on the follower’s variables.

Note that both the leader’s and follower’s problems are linear. Taking advantage
of the linearity of the follower’s problem, Bianco et al. (2009) reduce the bilevel
problem to a single-level optimization problem by adding to the leader’s problem
the KKT optimality conditions of the follower’s problem.

More in detail, consider the following additional variables:

• �k
i , free dual variables associated with the first set of primal constraints of the

follower’s problem, with i 2 N , and k 2 K .
• �ij , non-negative dual variables associated with the second set of primal con-

straints of the follower’s problem, with .i; j / 2 A.
• �ij , non-negative slack variables of the second set of primal constraints of the

follower’s problem, with .i; j / 2 A.
• vk

ij , non-negative slack variables of the dual constraints of the follower’s problem,
with .i; j / 2 A, and k 2 K .

The KKT optimality conditions of the follower’s problem are:

X
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�k
i free 8 i 2 N; k 2 K:

(11)

The first two set of constraints are the primal constraints that together with the
non-negativity conditions on the primal variables xk

ij and slack variables �ij form
the primal feasibility conditions; the third set represents the dual constraints that
together with the restrictions in sign on the dual variables �ij and the slack variables
vk

ij of the dual constraints define the dual feasibility conditions; finally, the fourth
and fifth sets of constraints are the complementary slackness conditions.

Note that adding the above conditions to the leader problem reduces the bilevel
problem to a single-level one, producing a single-level non-linear optimization
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problem, where the non-linearity is due to the following bilinear constraints

xk
ij vk

ij D 0 8 .i; j / 2 A; k 2 K

�ij �ij D 0 8 .i; j / 2 A:
(12)

Bianco et al. (2009) propose to linearize these constraints as follows, by
introducing binary variables ık

1ij , ık
2ij , ı3ij , and ı4ij , and large scalars M1, M2, M3,

and M4:

xk
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1ij 8 .i; j / 2 A; k 2 K
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ı3ij C ı4ij � 1 8 .i; j / 2 A:

(13)

The values of M2 and M3 should be sufficiently large, while we can set M1 D 1,
since xk

ij � 1, and M4 D P
k2K bk , since �ij � uij and the latter can be bounded

above by
P

k2K bk .
Finally, the single-level MIP formulation for the model proposed by Bianco et al.

(2009) is:
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(14)
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The authors use a commercial solver (CPLEX 8.0) to solve the MIP (14) capable
to find the optimal solution within 3 h of CPU time on a PC with Pentium IV
processor and 2 GB of RAM considering a network with 311 nodes and 441
undirected links (882 arcs), representing the road network of the Lazio region, Italy,
and with 3 shipments (carriers).

Solving problem (14) returns, besides the optimal solution u� D fu�
ij g of the

bilevel model which is the best leader choice, also the best (from the leader point
of view) multi-commodity flow assignment bkxB D fbkx�k

ij g that the follower may
choose among the minimum network total risk flow assignments given bundle link
capacities fu�

ij g, that is, among all his/her indifferent choices over the capacitated
network established by the leader. The optimal solution value �� of the bilevel
model is equal to the maximum link total risk induced by (let us say, optimistic) flow
assignment bkxB , i.e, the best one in terms of the leader’s objective. Nevertheless,
there is no guarantee that the follower will adopt the flow assignment bkxB if
there are multiple minimum network total risk flow assignments on the capacitated
network. In this case, the optimal solution u� of the bilevel model might be unstable.
This situation occurs when there is another (optimal in terms of network total risk)
flow assignment bkx0 different from bkxB , inducing a maximum link total risk of
value �0 greater than ��, and equal at most to the pessimistic solution value �W .u�/

obtained when the follower among his multiple optimal solutions chooses the worst
one in terms of the leader’s objective.

The pessimistic value �W .u�/ can be computed by solving the multi-commodity
network flow problem (15) with bundle arc capacity vector u, an upper bound bRtot

on the network total risk, where the objective to be maximized is link total risk �ij

over the population in the neighbor of link hi; j i 2 E . This is a Linear Programming
(LP) problem that can be formulated as follows
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(15)

For each link hi; j i 2 E , problem (15) is solved with u D u� and bRtot D
R�

tot .u
�/, with R�

tot .u
�/ being the network total risk value of the minimum-total

risk multi-commodity network flow on the capacitated network G with bundle
arc capacities vector u�; that is, R�

tot .u
�/ D P

k2K
bk

qk

P
.i;j /2A �

h.k/
ij x�k

ij is the
optimal solution value of the follower problem given the arc capacities vector u�
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fixed by the leader (see the original bilevel model (10)). Let �W
ij .u�; R�

tot .u
�//

be the optimal solution value of problem (15), for link hi; j i 2 E , �W .u�/ D
maxhi;j i2Ef�W

ij .u�; R�
tot .u

�//g.
If the gap between �W .u�/ and �� is too large, the leader may prefer to

(heuristically) find a stable feasible bundle arc capacity assignment. This pushes
Bianco et al. (2009) to devise a heuristic approach for finding a stable feasible
solution of the bilevel model, inspired by the heuristic proposed by Erkut and Gzara
(2008).

Heuristic Approach

Bianco et al. (2009) propose an iterative algorithm that at each iteration constructs
a feasible solution uH D fuij g of the bilevel model, and tests its stability. The latter
is checked by comparing the (optimistic) heuristic solution value �.uH / with the
pessimistic value �W .uH / computed following the strategy described above.

If the current solution uH is stable (i.e., �.uH / D �W .uH /), the algorithm stops;
otherwise, the algorithm removes a link from the network and starts a new iteration
on the residual network. When the algorithm stops, the stable heuristic solution uH

on the original network is obtained by setting uij D uj i D 0, for each removed link
hi; j i 2 E from the original network.

At each iteration the heuristic solution is computed by solving the following
uncapacitated multi-commodity network flow problem
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(16)

with ! D 1=
P

k2K
bk

qk

P
.i;j /2A �

h.k/
ij .

Note that, with this value of !, the objective function � and Rtot are minimized
in lexicographical order (i.e., among the solutions with minimum � value, the one
of minimum Rtot value is found), and the optimal solution corresponds to the
best hazmat flow assignment that the leader may obtain, assuming that he/she can
directly control the decisions of the follower. In particular, let bx D fbxk

ij g be the

optimal solution, andb� D maxhi;j i2Ef
P

k2K
bk

qk .�
h.k/
ij bxk

ij C�
h.k/
j i bxk

j i /g be the related

maximum link total risk. The heuristic solution uH D fuH
ij g is constructed from
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solutionbx by setting the bundle capacity value uH
ij of arc .i; j / 2 A equal to the

total hazmat flow on that arc, that is, uH
ij D

P
k2K bkbxk

ij . Let �H Db� be the solution
value related to solution uH .

In the following, it is shown the criterion for the selection of the link to be
removed, and proved that after a number of iterations less than the number of
network links the algorithms stops with a feasible stable solution for the residual
network.

Consider the current heuristic solution uH . Assume, therefore, that the leader
imposes the bundle capacities fuij g D uH on the arcs of the network. The follower
finds an optimal flow assignment on the capacitated network that minimizes the
network total risk; this corresponds to solve the follower problem. Let R�

tot .u
H / be

the optimal solution value of this latter problem, that is, the value of the minimum
network total risk on the capacitated network with bundle link capacities vector uH .

For each edge hi; j i 2 E , let �W
ij .uH ; R�

tot .u
H // be the maximum link total

risk over link hi; j i among all the optimal solutions of the follower problem on the
capacitated network with bundle arc capacity vector uH ; recall that �W

ij .uH ; R�
tot .u

H //

is the optimal solution value of problem (15), with u D uH and Rtot D R�
tot .u

H /.
If solution uH is not stable, there is a link hi; j i 2 E for which

�W
ij .uH ; R�

tot .u
H // is greater than �H ; let us assume that hi 0; j 0i is the link

for which �W
i 0j 0.uH ; R�

tot .u
H // D maxhi;j i2Ef�W

ij .uH ; R�
tot .u

H //g and that

�W
i 0j 0.uH ; R�

tot .u
H // > �H , with �W

ij .uH ; R�
tot .u

H // being induced by the follower
optimal flow assignment over the capacitated network with bundle arc capacity
vector uH .

In order to eliminate the difference between �W
i 0j 0.uH ; R�

tot .u
H // and �H , the

algorithm removes link hi 0; j 0i from the network and starts a new iteration where it
searches for a new feasible solution of the bilevel model on the residual network.
Note that the following theorem holds in the residual network.

Theorem 1 (Bianco et al. 2009). Given a heuristic solution uH of value �H , if
there is a link hi; j i 2 E such that �W

ij .uH ; R�
tot .u

H // > �H , in the residual network
obtained after the removal of link hi; j i 2 E from the network, there is at least
one path connecting the origin node sk to the destination node tk , for each carrier
k 2 K .

Theorem 2 (Bianco et al. 2009). The heuristic algorithm always stops with a
stable heuristic solution uH .

Also the heuristic algorithm (implemented in the C language) is experimented
by Bianco et al. (2009) running the algorithm on the same PC and experimenting
on the same network of the Lazio region by considering realistic instances with
at most 30 carriers. Heuristic algorithm running times are quite limited: indeed,
they are never greater than 7 min over all the instances tested. Note that, for each
iteration, the heuristic algorithm solves O.m/ linear programs. In order to evaluate
the effectiveness of the heuristic, the authors compare the heuristic solution values
with the optimal solution values of the linear relaxation of the single-level MIP
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problem (14). In particular, the heuristic algorithm was able to give always an
optimal stable solution in all the test cases, that is, with the best (minimum) possible
maximum link total risk.

Toll Setting in Hazmat Transportation

Toll Setting (TS) is a policy tool that can also be applied to hazmat transportation
to regulate hazmat shipments. In the network design model it is assumed that the
regulator has the authority to forbid a link of the network to the carriers, in order
to preserve the most populated roads. Toll setting is an alternative policy where the
authority sets tolls on all (or on a subset of) the links of the network, in order to
deter the carriers to use certain roads and encourage them to use the less populated
ones.

The Model of Marcotte et al. (2009)

Marcotte et al. (2009) extend the toll setting modeling approach of Labbé et al.
(1998) to deal with hazmat transportation. The proposed model is the following
NP-hard bilevel problem:

min
X

k2K

X

.i;j /2A

nk.�
h.k/
ij C w1.cij C t

h.k/
ij //xk

ij

s:t: th
ij � 0 8.i; j / 2 A; h 2 H

where xk
ij solve:

min
X

k2K

X

.i;j /2A

nk.cij C t
h.k/
ij C w2�

h.k/
ij /xk

ij

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8i 2 N; k 2 K

xk
ij 2 f0; 1g 8.i; j / 2 A; k 2 K;

(17)

where th
ij and xk

ij are the variables controlled by the leader and the followers,

respectively, with variables xk
ij and the other notations having the same meaning

as in the HTND problem (1). In particular,

• th
ij are non-negative variables representing the tolls imposed by the authority on

arc .i; j / 2 A for each truck transporting hazmat of type h 2 H .
• xk

ij are binary variables modeling the decisions of the carriers and equal to 1 if
arc .i; j / 2 A is used by carrier k for the shipment, 0 otherwise.
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Fig. 3 An example of hazmat transportation network

In this model the authority sets the tolls on the arcs in such a way to minimize
a weighted combination of population exposure and carriers’ cost keeping into
account that, for a certain value of the tolls, the carriers choose the minimum cost
routes.

It can be show that HTND model (1) and TS model (17) are equivalent in
case there is a single carrier or when each carrier transports a different type of
hazmat, since the problem is separable by hazmat type. However, whenever a type
of hazmat is transported by more than one carrier, model (17) is more flexible than
model (1). Indeed, by setting high-enough tolls, model (17) gives the same solutions
of model (1).

Consider as example the small network of Fig. 3, involving three carriers (i.e.,
K D f1; 2; 3g/ all shipping the same hazmat type h D 1. Let .sk; tk/ be the origin-
destination pair of the shipment of carrier k. Assume that carrier 1 needs two trucks
for its shipment and each one of the others only one truck (i.e. n1 D 2, n2 D n3 D
1). On each arc .i; j /, the couple .cij ; �1

ij / is reported. Note that for both carriers 2

and 3 there is a single path connecting the origin to the destination of the shipment:
that is, path .s2 ! c ! d ! t2/ and path .s3 ! s1 ! c ! t3/ for carriers 2 and 3,
respectively; these two paths pass through link .c; d / and .s1; c/, respectively, where
there is the highest population exposure (risk). Assume that the authority’s sole aim
is the minimization of the risk (i.e. w1 D 0), and the carriers only want to minimize
their traveling cost (i.e. w2 D 0). Then, for the pair .s1; t1/ the most attractive path
for the carrier is the minimum cost path, that is s1 ! c ! d ! t1. If carrier 1

follows this path (i.e., in the unregulated scenario) the total risk of the network will
be 15:5. On the other hand (let us say in the over-regulated scenario), the authority
would choose a minimum risk path for carrier 1, that is, equivalently either path
(s1 ! a ! d ! t1) or path (s1 ! b ! d ! t1), getting the (minimum) network
total risk of value 12:5. With a network design policy, the authority would close arc
.d; t1/ in order to prevent carrier 1 from using the larger risky path (s1 ! c ! d !
t1) (arcs .s1; c/ and .c; d / cannot be closed otherwise the other two carriers would
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not have any path for their shipments). With this closure, carrier 1 would be forced
to choose path (s1 ! a ! t1). Therefore with the network design policy the total
risk on the network would be 14:5. With the toll setting strategy, the authority may
set the tolls (e.g., sufficiently large on arcs .s1; c/ and/or .c; d /) so that carrier 1

chooses the minimum (transportation + toll) cost path (s1 ! b ! d ! t1) getting
a network total risk equal to the minimum possible value, i.e. 12.5.

On this example it is shown that TS model (17) induces a lower risk than HTND
model (1), while the opposite behavior cannot be obtained. This difference is due
to the flexibility of model (17) that allows to differentiate among carriers: indeed it
may happen that a carrier chooses a certain arc despite the toll, while if an arc is
closed for the hazmat transportation of a given hazmat type, it becomes forbidden
for all carriers transporting that type of hazmat.

As for the stability of solutions, in both models (1) and (17) ties may occur among
inner-level solutions, and in this case the (optimistic) assumption is that the carriers
choose the routes that are better for the authority. However, differently from the
network design model (1), in model (17) ties can be broken by small perturbations
of the tolls.

Another advantage of model (17) is that it allows the authority to easily find a
toll setting inducing a minimum risk solution. In particular, a minimum risk solution
can be obtained by solving the network flow problem

min
X

k2K

X

.i;j /2A

nk�
h.k/
ij xk

ij

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8i 2 N; k 2 K

xk
ij � 0 8.i; j / 2 A; k 2 K:

(18)

Given an optimal solution Nx of problem (18), the toll setting inducing Nx as flows
chosen by the carriers can be found by inverse optimization. The idea is to choose
the tolls in order that the values of the decision variables of the lower level are
exactly the carriers’ flows Nx. This can be achieved by choosing any toll setting
satisfying the following primal-dual optimality conditions of the inner problem of
bilevel model (17):

X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8 i 2 N; k 2 K

�k
i � �k

j � nkt
h.k/
ij � nk.cij C w2�

h.k/
ij / 8 .i; j / 2 A; k 2 K

xk
ij .�k

i � �k
j � nkt

h.k/
ij � nk.cij C w2�

h.k/
ij // D 0 8 .i; j / 2 A; k 2 K

xk
ij � 0 8 .i; j / 2 A; k 2 K

th
ij � 0 8 .i; j / 2 A; h 2 H

�k
i free 8 i 2 N; k 2 K;

(19)
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where �k
i are the free dual variables related to the equality constraints of the inner

problem, and variables xk
ij instead of being binary are assumed to be continuous

since the inner problem is a network flow problem.
Therefore, any toll setting satisfying conditions (19) with the flows equal to Nx

is good for the authority. Among these feasible toll settings it can be chosen that
one minimizing, for example, the sum of all the tolls paid by the carriers, that is the
solution of the following LP problem:

min
t;�

X

k2K

X

.i;j /2A

nk Nxk
ij t

h.k/
ij

s:t:

�k
i � �k

j � nkt
h.k/
ij � nk.cij C w2�

h.k/
ij / 8.i; j / 2 A; k 2 K

Nxk
ij .�k

i � �k
j � nkt

h.k/
ij � nk.cij C w2�

h.k/
ij // D 0 8.i; j / 2 A; k 2 K

th
ij � 0 8.i; j / 2 A; h 2 H

�k
i free 8 i 2 N; k 2 K:

(20)

Marcotte et al. (2009) prove that when all the arcs are subject to tolls, problem
(20) is always feasible, implying that whenever the authority aims only at the
minimization of the risk (i.e. w1 D 0 in (17)) problem (17) is not a bilevel problem
anymore, but reduces to an LP problem by inverse optimization. However, if the
authority wants to keep into account also carriers’ cost, problem (17) is a true bilevel
optimization problem. In this case, inverse optimization can still be used to produce
a “good” solution. The idea is to solve problem (18) where the objective function
keeps into account also the carriers’ costs:

min
X

k2K

X

.i;j /2A

nk.�
h.k/
ij C w1cij /xk

ij

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8i 2 N; k 2 K

xk
ij � 0 8.i; j / 2 A; k 2 K

(21)

and then use the produced solution Nx in (20). However, this strategy may lead to
higher tolls on the carriers than the ones found by solving problem (17).

The strategy used in Marcotte et al. (2009) in order to solve problem (17) is to
cast it as a single level problem by replacing the inner level problem with its primal-
dual optimality conditions (19).
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Then the single level reformulation of problem (17) is

min
X

k2K

X
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th
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�k
i free 8 i 2 N; k 2 K:

(22)

This problem can be solved by resetting the binary constraints on x, and
linearizing the complementary constraints

xk
ij .�k

i � �k
j � nkt

h.k/
ij � nk.cij C w2�

h.k/
ij // D 0 8.i; j / 2 A; k 2 K

by replacing them with the following set of constraints:

�k
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ij � nk.cij C w2�

h.k/
ij /�M k

ij .1 � xk
ij / 8.i; j / 2 A; k 2 K

xk
ij 2 f0; 1g 8.i; j / 2 A; k 2 K:

(23)
Moreover, bilinear terms t

h.k/
ij xk

ij of the leader’s objective are linearized by intro-

ducing (new) variables �k
ij replacing the bilinear terms and adding the following set

of constraints

�k
ij � 0 8.i; j / 2 A; k 2 K

�k
ij �M k

ij xk
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ij 8.i; j / 2 A; k 2 K;

(24)

with M k
ij being sufficiently large positive scalars, to yield a MIP formulation.

An alternative MIP reformulation can be obtained by replacing the complemen-
tary slackness conditions, that is, the first set of constraints (23), with the following
constraints imposing the equality on the values of the objective functions of the
follower’s primal and dual problems:

X

.i;j /2A

nk
�
cij C w2�

h.k/
ij

	
xk

ij C
X

.i;j /2A

nk�k
ij �

X

i2N

ek
i �k

i D 0 8k 2 K (25)

where the value of the variables �k
ij is properly set by constraints (24) to ensure that

�k
ij D 0 when xk

ij D 0 and �k
ij D t

h.k/
ij when xk

ij D 1.
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The two MIP reformulations, requiring the same number of integer variables,
are solved in Marcotte et al. (2009) by standard software (CPLEX 10.0). For the
MIP formulation with equality of primal and dual objective values, constants M k

ij

are computed by solving for each carrier an LP relaxation of a maximum cost flow
problem with cycle elimination constraints. For the complementary slackness based
MIP reformulation, the bound on the constants M k

ij are based on the ones computed
for the other one, but their values are larger.

The two MIP problems are tested considering the same road network of the
highway system of Western Ontario considered by Kara and Verter (2004), and
considering either 53 shipments (carriers) neglecting shipments of less than 500
trucks, or the whole set of 287 shipments. The shipments involve two different
hazmat types. The authors solve the two MIP reformulations of both HTND problem
(1) and TS problem (17), and use the TS problem or its proxy (21) in order to warmly
start the HTND problem. Indeed, they find a feasible solution of the HTND problem
by solving a minimum-cost flow problem on a reduced network where all the arcs
that are tolled in the optimal solution of TS (or of its proxy), but unused by a carrier,
are removed. The extensive experiments carried out in Marcotte et al. (2009) lead to
the following conclusions:

• The MIP reformulation based on the equality of primal and dual objective
functions is better from a computational point of view both for HTND and TS
problems.

• If the leader wants to minimize only the population exposure, it may help to set
w1 to a small positive value in order to encourage among equivalent minimum
risk solutions the ones with lower cost for the carriers. If w1 is set to zero,
then TS problem (17) is not a true bilevel problem, but can be solved by
inverse optimization. In this case the solution time required for solving problem
(17) is much smaller and the warm starting of the MIP formulation of HTND
problem (1) with the solution of problem (17) greatly reduces its solution time.
Furthermore, comparing the solutions obtained by the two problems it turns out
that most of the carriers use the same path in both solutions and the increase of
the carriers’ cost in the tolled solution is not significant, whereas the total risk is
slightly reduced.

• In the general case, where the leader’s objective involves also a carriers’ term,
if parameter w1 is gradually increased, the population exposure slowly increases
at first, while the carriers’ cost decreases quickly, and then more rapidly. As a
comparison to the true bilevel formulation a proxy of problem (17) is solved by
inverse optimization, and this solution is also used as a warm start for HTND
problem (1). The proxy is much simpler to solve than the true bilevel problem,
and the solution is close to the true one when the small dataset of commodities
is considered. When all the shipments are considered, the solution of the true
bilevel is better and not significantly harder than problem (1) (both problems are
solved in less than 10 min).

A weakness of model (17) is that tolls are not necessarily set on risky arcs. Similarly,
for model (1) it may happen that arcs that are not risky are closed. To prevent this
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situation, a constrained version of both problems is considered in Marcotte et al.
(2009): in particular, an arc may be tolled or closed only if the population exposure
exceeds a certain amount Rmin, and the two problems are solved for increasing
values of this parameter. It turns out that when Rmin increases HTND problem (1)
becomes easier to solve, whereas the time needed to solve TS problem (17) is more
stable. However, the solutions of problem (17) keep the population exposure low,
while decreasing the number of tolled arcs. When Rmin exceeds a certain threshold,
the two models become equivalent.

All the experiments are carried out on an AMD Opteron Processor 248,
2,19 MHz computer, using two processors.

Summarizing, the toll setting approach may result in a lower risk than the
network design one, and in some cases the resulting model can be solved very
efficiently. The flexibility arises from the ability to differentiate among carriers.

The Model of Bianco et al. (2012)

A limit of the model of Marcotte et al. (2009) is that it does not keep into account
at all risk equity. Indeed, the flow on the arcs is unsplittable (i.e., xk

ij 2 f0; 1g) so
that it is impossible to further reduce the risk on the arcs of the route of a carrier
transporting a big amount of hazmat. Similarly, it may happen that a certain arc
is chosen by many carriers, resulting in a very high risk on this arc even if the
total risk on the network is relatively low. This drawback is overcome by Bianco
et al. (2012) by using a different toll setting where the toll paid by the carriers
on each arc depends also on the total risk on that arc. Therefore the choices of
each carrier depend on the other carriers’ choices, and the tolls deter the carriers
from choosing links with high total risk. The obtained model is a Mathematical
Program with Equilibrium Constraint (MPEC) where the inner problem is a Nash
game having the carriers as players.

In this scenario, the authority aims at minimizing the total risk over the network
of its jurisdiction zone, and also aims at pursuing the risk equity by minimizing the
maximum link total risk among the links of the network. The instrument available
to the authority in order to control the hazmat flows of the carriers is again toll
setting. Differently from the model of Marcotte et al. (2009), the amount of the toll
on each link is assumed to be a quadratic function of the total amount of risk that
all the carriers induce on that link. The idea is to induce the carriers to transport
the hazmat along routes where the risk is lower, and at the same time to limit the
amount of total risk on each single link. Therefore, the additional (tax) cost faced
by each carrier depends on the hazmat flows of the other carriers since the amount
of tax they have to pay on each arc depends on the total hazmat flow on that arc.

More in detail, in Bianco et al. (2012), for each arc .i; j / 2 A a tax T
h.k/
ij is

assumed to be paid by carrier k for each unit of risk induced by its shipment on arc
.i; j /. As the idea is to discourage carrier k from using a link with high total risk,
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with the latter being induced by carrier k and all the other carriers that use that link,
tax T

h.k/
ij per unit of risk is assumed to be the sum of the following two terms

T
h.k/
ij D t

h.k/
ij C d

h.k/
ij

X

`2K

�
h.`/
ij

b`

q`
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ij ;

where variables x`
ij , with 0 � x`

ij � 1, represents the fraction of shipment of carrier

` along arc .i; j /, and t
h.k/
ij and d

h.k/
ij are parameters used to weight the risk con-

tribution of carrier k with respect to the risk caused by the whole set of carriers. In
particular, the former term is associated to the risk induced by carrier k on arc .i; j /

and the latter is related to the total risk induced by all the carriers on the same link.
Therefore the tax paid by carrier k for using arc .i; j / is:
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The linear component (weighted by parameter t
h.k/
ij ) is used to regulate the total

risk on the network similarly to the TS model of Marcotte et al. (2009), while the
quadratic component (weighted by parameter d

h.k/
ij ) is used to control the maximum

link total risk, possibly forcing carrier k to split his demand bk along different
routes. Thus the objective function of the subproblem of each carrier k becomes
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(26)

where x denotes the vector containing all the carriers’ variables xk
ij , and t; d denote

the vectors of toll parameters th
ij ; d h

ij , respectively. Therefore the carriers’ problem
constitutes a Nash Equilibrium Problem (NEP) where each carrier k is a player and
his subproblem is:

min
xk

ij

k.xI t; d/

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8i 2 N

xk
ij � 0 8.i; j / 2 A;

(27)

Due to the compactness of the feasible set of each players’ subproblem, the Nash
game admits a solution for every value of parameters th

ij and d h
ij . Unfortunately, in

general, uniqueness of the equilibrium is not guaranteed.
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Taking into account the role of the authority and of the carriers the whole
model is a bilevel optimization problem, where a leader (the authority) sets tolls
on the network links by choosing the values of parameters th

ij and d h
ij in order to

minimize a combination of risk magnitude and carrier travel cost. The followers
(carriers) are the players of the game, where each player k (with k 2 K) aims
at solving subproblem (27) on the tolled network and hence selects the flow of
his shipments controlling variables xk

ij . In particular the leader wants to minimize
the risk magnitude by minimizing the total risk of the network, and (secondly) the
maximum link total risk on the arcs of the network. In this situation, we get the
following MPEC:

min
t;d
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where x is a Nash Equilibrium (NE) of
min
xk

ij

k.xI t; d/

(28)
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for all k 2 K;

where ˆ is a continuous variable representing the maximum link total risk, while
w0 and w1 are some weight factors that allow to control the preference of the leader
with respect to the different aspects he wants to control.

In order to understand the advantages of this model, consider again the small
network shown in Fig. 3 and described in the previous section. The solution of model
(17) provides a total risk equal to the (minimum) value 12.5, but it is determined
without taking into account the risk equity. The maximum link total risk is equal to
2 and obtained on arcs .s1; b/ and .b; d/. By using model (28), since the carriers’
variables xk

ij are assumed to be continuous, it is possible to set the tolls in order to
induce carrier 1 to split its flow along the two minimum risk paths (s1 ! a ! t1)
and (s1 ! b ! d ! t1), getting again the (minimum) total risk of value 12.5, but
a lower maximum link total risk of value 1.75 (obtained on arcs .s1; c/ and .c; d /).
Finally, the example shows that model (28) is able to achieve the same network total
risk and a better distribution of the risk with respect to model (17). Therefore, the
model of Bianco et al. (2012) can provide solutions dominating those of the model
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of Marcotte et al. (2009). Note that the opposite cannot occur because the feasible
set of model (28) strictly contains the feasible set of model (17).

Problem (28), being a MPEC, is NP-hard and there are few algorithms available
for solving it. A favorable scenario is when all the carriers transport the same
hazardous material, i.e. h.k/ D Qh for all k 2 K . In this case, some extra properties
hold:

1. The Nash equilibrium is unique, namely for any value of toll parameters t
Qh
ij and

d
Qh

ij , provided that d
Qh

ij > 0 and �
Qh
ij > 0 for all .i; j / 2 A, there exists a unique

equilibrium of problem (27).
2. The NEP is a potential game. Potential game are defined in Monderer and

Shapley (1996) as follows: a game where each player k D 1; : : : ; p has to solve
the problem

min
xk

k.x/

s.t. xk 2 Dk;

with Dk being the feasible set of player k, is an exact potential game if there exist
a function P.x/ such that

rxk P.x/ D rxk k.x/; for every k D 1; : : : ; p:

Whenever a game is potential, any solution of the problem

min P.x/

s.t. xk 2 Dk; k D 1; : : : ; p

is a Nash equilibrium. In the single hazmat case, the NEP (27) is an exact
potential game and its potential function is

P.x/ D �T xC 1

2
xT JF.x/ x (29)

where

�k
ij D

�
cij C t

Qh
ij �

Qh
ij

	 bk

qk

and JF is the matrix

JF.x/ D

0
BBBBBBB@

2
�

b1

q1

	2

H b1b2

q1q2 H : : : b1bp

q1qp H

b2b1

q2q1 H 2
�

b2

q2

	2

H : : : b2bp

q2qp H

:::
:::

: : :
:::

bpb1

qpq1 H bpb2

qpq2 H : : : 2
�

bp

qp

	2

H

1
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where p D jKj and, by denoting with Diag.v/ the diagonal matrix having as
elements on the diagonal the elements of vector v,

H D Diag
�
.�

Qh
ij /2d

Qh
ij

	

.i;j /2A
:

Therefore, the NEP (27) is equivalent to the following strictly convex optimiza-
tion problem:

min
x

�T xC 1

2
xT JF.x/ x

s:t: X

fj W.i;j /2Ag
xk

ij �
X

fj W.j;i/2Ag
xk

j i D ek
i 8i 2 N; k 2 K

xk
ij � 0 8.i; j / 2 A; 8k 2 K:

(30)

3. Given a Nash equilibrium it is possible to define an LP problem that gives the
optimal (with respect to a given criterion) toll setting forcing the carriers to
choose the routing corresponding to that Nash equilibrium.

The first property ensures stability of the solutions of the bilevel problem (28).
The second one implies that, for a given value of t

Qh
ij and d

Qh
ij the NEP (27) can be

solved by means of a distributed algorithm, where each player implements his own
best response function. In particular, each player in turn, given the choices of the
other carriers, solves his own optimization problem (27). For potential games, the
process converges to an equilibrium. The algorithm can be seen also as a distributed
algorithm (a Gauss-Seidel type algorithm) for problem (30) whose convergence is
guaranteed by strict convexity.

This algorithmic possibility implies that the authority does not need complete
information on the carriers and it is not necessary to have a centralized system
choosing the flows of the carriers.

Finally, the third property allows the use of inverse optimization as in Marcotte
et al. (2009). In particular, let Nx be a Nash equilibrium computed by solving problem
(30) for a given set of toll parameters Nt Qh

ij ; Nd Qh
ij . A reasonable question is whether there

exists a tax assignment that is better with respect to some criterion (as for example
the total cost payed by the carriers) that gives Nx as the unique corresponding Nash
equilibrium.

This is equivalent to solving a suitable LP problem, having as constraints the
necessary and sufficient Karush–Kuhn–Tucker (KKT) optimality conditions of
problem (30) with x D Nx. The KKT optimality conditions for each carrier k 2 K

can be rewritten as

cij
bk

qk C �
Qh
ij

bk

qk t
Qh

ij C �k
ij .Nx/d

Qh
ij � �k

i C �k
j � 0; 8.i; j / 2 An NAk

cij
bk

qk C �
Qh
ij

bk

qk t
Qh

ij C �k
ij .Nx/d

Qh
ij � �k

i C �k
j D 0; 8.i; j / 2 NAk;

(31)
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where NAk D f.i; j / 2 A W Nxk
ij > 0g, �k

i are the free dual variables associated to the
flow conservation constraints of subproblem (27) of player k, and

�k
ij .Nx/ D �

Qh
ij

bk

qk
.�ij .Nx/C �

Qh
ij

bk

qk
Nxk
ij /

with

�ij .Nx/ D
X

k2K

�
Qh
ij

bk

qk
Nxk
ij

denoting the total risk on arc .i; j / corresponding to the solution Nx. Note that the
flow conservation constraints and the non-negativity constraints on the values of the
flows x are omitted since they are obviously satisfied at Nx.

Given constraints (31), and assuming that the aim is to find the toll setting that
minimizes the sum of the cost of the carriers, we get the LP:

min
t

Qh
ij ;d

Qh
ij ;�k

i

�.NxI t; d/ D
X

k2K

X

.i;j /2A

cij

bk

qk
Nxk
ij C

X

k2K

X

.i;j /2A

t
Qh
ij �

Qh
ij

bk

qk
Nxk
ij

C
X

k2K

X

.i;j /2A

d
Qh

ij

 
pX

`D1

�
Qh
ij

b`

q`
Nx`
ij

!
�

Qh
ij

bk

qk
Nxk
ij

D
X

k2K

X

.i;j /2A

cij

bk

qk
Nxk
ij C

X

.i;j /2A

�ij .x/t
Qh
ij C

X

.i;j /2A



�ij .x/

�2
d

Qh
ij :

s:t:

cij

bk

qk
C �

Qh
ij

bk

qk
t

Qh
ij C �k

ij .Nx/d
Qh

ij � �k
i C �k

j � 0;

8.i; j / 2 An NAk; k 2 K

cij

bk

qk
C �

Qh
ij

bk

qk
t

Qh
ij C �k

ij .Nx/d
Qh

ij � �k
i C �k

j D 0;

8a 2 NAk; k 2 K

d
Qh

ij � �; 8.i; j / 2 A; h 2 H

t
Qh
ij ; d

Qh
ij � 0; 8.i; j / 2 A; h 2 H

�k
i free; 8 i 2 N; k 2 K;

(32)
where � is a small value greater than 0.

This problem is well posed. Indeed, it has a nonempty feasible set since the toll
parameter values Nt Qh

ij ; Nd Qh
ij are feasible, and the objective function is bounded from

below, since it assumes non-negative values.
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The Model of Wang et al. (2011)

An MPEC is proposed also by Wang et al. (2011), where a dual toll pricing method
is introduced in order to mitigate the risk of hazardous material transportation by
regulating both hazmat and regular traffic. The idea is to simultaneously control
both hazmat and regular vehicles aiming at minimizing the total risk and the total
cost on the whole network. It is assumed that all the road segments can be tolled and
the user equilibrium objective is to channel traffic flows along the routes generated
by the first-best model via toll setting. In order to introduce the mathematical model
proposed by Wang et al. (2011), some notation is needed. Given the network G D
.N; A/, hazmat and regular Origin–Destination (O–D) pairs are denoted by K and
Q respectively, and for each O–D pair k 2 K and q 2 Q the corresponding demand
is denoted by bk and d q , whereas the arc flow vectors by xk 2 <jAj and yq 2 <jAj.
The aggregated arc flow vectors given by the sum of all the arc flows are denoted
by u 2 <jAj for the hazmat vehicles and v 2 <jAj for the regular vehicles. The
toll vector for regular vehicles is denoted by ˛ 2 <jAj, whereas the one for hazmat
vehicles is denoted by ˇ 2 <jAj. The feasible flows are the ones belonging to the
sets:

V D fv 2 <jAj W v DPq2Q yq; N yq D d q; yq � 0 8q 2 Qg
U D fu 2 <jAj W u DPk2K xk; N xk D bk; xk � 0 8k 2 Kg (33)

where N is the node-arc incidence matrix of the network. The two feasible sets can
be rewritten using matrix-vector notation as

V D fv 2 <jAj W v D Z1y; M1y D d; y � 0g
U D fu 2 <jAj W u D Z2x; M2x D b; x � 0g (34)

The following assumptions are made:

• Since the number of hazmat vehicles is significantly smaller than the number of
regular ones, congestion caused by hazmat vehicles can be ignored.

• Network users are assumed to have perfect information on the status of the
network.

• The model is assumed to be deterministic, namely there is no uncertainty on the
travel and the behavior of the users.

• A single type of hazmat is considered.

Let s.vCu/ 2 <jAj be the vector of travel cost functions. Since it is assumed that
no congestion effect is due to hazmat trucks, it is reasonable to approximate s.vCu/

with s.v/. Let Rij .vij ; uij / be the risk function on arc .i; j / 2 A. The risk Rij on
each arc .i; j / 2 A is induced by the hazmat vehicles, but it is influenced also by the
regular traffic, since a big amount of regular vehicles may increase the probability
of accidents involving hazmat trucks. The MPEC proposed by Wang et al. (2011) is



94 L. Bianco et al.

min
v;u;˛;ˇ

w1

X

.i;j /2A

Rij .vij ; uij /C w2s.v/T vC w3s.v/T u

s:t:
.s.v/C ˛/T .t � v/ � 0 8t 2 V

.s.v/C ˇ/T .r � u/ � 0 8r 2 U

v 2 V

u 2 U

˛; ˇ � 0:

(35)

The objective function is a weighted combination (with weights w1, w2, and
w3) of the network total risk and the network total cost for the regular and hazmat
vehicles, respectively. The first two groups of constraints represent the network user
equilibrium conditions for the regular and hazmat vehicles, respectively, according
to the Wardrop’s first principle.

The risk function used in Wang et al. (2011) is a duration–population–frequency
risk function

Rij .vij ; uij / D sij .vij /�ij uij ; (36)

where �ij is the population exposure along the arc .i; j /.
As a cost function it is chosen

sij .vij / D �ij

�
1C

�
vij

Cij

���
; (37)

where �ij is the travel time on arc .i; j / when there is no traffic flow and Cij is the
capacity of the arc .i; j /, and � is assumed equal to 1.

Wang et al. (2011) reformulate the MPEC problem (35) as a two stage problem,
with some assumptions on the objective function. In particular, the first stage
problem determines the optimal flow that minimizes the total risk without imposing
the equilibrium constraints:

min
v;u

w1

X

.i;j /2E

Rij .vij ; uij /C w2s.v/T vC w3s.v/T u

s:t: v 2 N

u 2 U

(38)

Choosing (36) and (37) as risk and cost functions respectively, problem (38) is a
non convex Quadratic Programming (QP) problem, that is NP-hard as the original
MPEC. Wang et al. (2011) consider a branch and bound method and an active set
method for attacking the problem.

Given a solution .Nu; Nv/ of problem (38), a toll setting .˛; ˇ/ makes this solution
a user equilibrium if it satisfies the following conditions:

.s.Nv/C ˛/T .v � Nv/ � 0 8v 2 V

.s.Nv/C ˇ/T .u � Nu/ � 0 8u 2 U
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that are shown by Wang et al. (2011) to hold if and only if there exist vectors � and
! such that

ZT
1 .s.Nv/C ˛/�M1�

.s.Nv/C ˛/T Nv D d T �

ZT
2 .s.Nv/C ˇ/�M2!

.s.Nv/C ˇ/T Nu D bT !:

Among all the possible tolls .˛; ˇ/, Wang et al. (2011) consider a revenue
minimizing toll vector pair, in order to keep users’ costs as low as possible, obtained
by solving the following linear problem:

min
˛;ˇ;�;!

˛T NvC ˇT Nu
s:t:

ZT
1 .s.Nv/C ˛/�M1�

.s.Nv/C ˛/T Nv D d T �

ZT
2 .s.Nv/C ˇ/�M2!

.s.Nv/C ˇ/T Nu D bT !:

(39)

The model is tested in Wang et al. (2011) on the road network of Albany in
the New York State. This network has 46 nodes and 70 arcs, considering two pairs
of regular demand nodes and three pairs of hazmat demand nodes. Problem (38)
is solved by a QP solver bqpd based on a null space active set method with a
technique for resolving degeneracy. The dual-tolled traffic flows are compared with
the minimum travel cost flow of regular traffic and the corresponding minimum risk
flow of hazmat traffic. In the experiments, the weights w1, w2 and w3 are increased
one at the time. Keeping fixed w2 and w3, the risk decreases as w1 increases, but
the regular traffic delay increases. With large enough w1 no tolls are set on the arcs.
On the other hand, if w1 and w3 are fixed and w2 is high enough, the risk is still
decreased while the delays are slightly increased. In these solutions, no tolls are
imposed on the hazmat trucks. No information is reported on CPU time needed in
order to get these solutions.

Conclusions

In this chapter, the hazmat transportation problem on road networks has been
presented in terms of multi-commodities and multiple origin–destination problem.
This approach involves routing decisions by each carrier but also by the government
authority due to the intrinsic risk (societal and environmental) associated with
hazmat transportation.

The main concern for the authority (regulator) is to define restrictions to the
routes selected by of all the carriers in order to control and minimize the total risk
induced by hazmat transportation and to achieve equity in the spatial distribution of
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the risk. On the contrary, the main objective of each carrier is the transportation cost
minimization.

For this problem, called “global route planning problem,” approaches consider-
ing a single decision maker choosing the routes are of little use because, in general,
the regulator has no authority to impose routes on individual carriers. For this
reason, two alternative policies have been considered for the regulators.

The first policy deals with the possibility of the authority to close certain road
segments to hazmat vehicles (or to limit the amount of hazmat traffic flow on those
links) to avoid, for example, the use of too high risky road sections. The second
policy deals with the use of (link) tolls by the authority to induce carriers to route
their shipments on less risky roads.

In this context, the first strategy falls in the field of “network design,” while the
second one falls in the field of “toll setting policies.”

For both of these two kind of problems the main mathematical models present in
the literature, so as the related applications, have been illustrated. The advantages
and drawbacks of these models have been also discussed in comparison of each one
with respect to the others.
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The Effect of Weather Systems in Hazmat
Transportation Modeling

Mohsen Golalikhani and Mark H. Karwan

Introduction

In most transportation models, the objective is to find minimal cost routes from
origins to destinations. However, for a hazmat transportation model, a cost min-
imizing objective is generally not sufficient, because one needs to consider the
risk associated with hazardous materials. This makes the hazmat models more
complicated when compared to many other transportation models. There are
different approaches for considering risk in a hazmat transportation model. For
example, some models consider the risk as one of the objectives in a multi-objective
model in which other objectives can be cost, distance, travel time, etc. (e.g., Chin and
Paul 1989). Some models consider the risk as one component of a single composite
cost function and try to find the minimum cost route (e.g., Abkowitz and Cheng
1988). Finally, other models only consider risk as the single objective and try to find
a route with minimum risk (e.g., Akgun et al. 2007).

Regardless of how we consider and implement risk via objectives or constraints
in a hazmat transportation model, an equally critical issue is how we calculate
the risk for a given route. There are several ways of quantifying risk (see Erkut
and Verter 1998). However, the most common way is the expected consequence
approach, whereby risk is defined as the product of two factors: (a) the probability of
an accident with an undesirable consequence (such as injury, illness, or death); and
(b) the population affected by the consequence. The affected population depends
on two other factors; the area impacted by a hazmat accident, and the number of
persons within the impact area.
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Fig. 1 The effect of a weather system on risk components

Weather systems can affect the risk by changing both the probability of an
accident and the affected population. The probability of an accident changes for two
reasons. First, the weather system affects the surface friction of a road. For example
in rain or snow, the road will be more slippery and more accidents will occur.
Second, the weather system changes visibility and the probability of an accident
increases as visibility decreases. The weather system also changes the affected
population by changing the area impacted by a hazmat accident. This happens
because the dispersion of pollutants within the accident area is a function of weather
parameters such as wind direction, wind speed, atmospheric stability, etc. Figure 1
illustrates how the weather system changes the risk of a route.

Therefore, a main challenge of considering the weather system in a hazmat
transportation model is the way we modify the risk values in the presence of such
a system. However, this is not the only challenge. Another important challenge of
considering the weather system in any transportation model (i.e., not only hazmat
ones) is the dynamic nature of the weather system. In most transportation models,
the cost of traveling a link is fixed. Therefore, one can apply a shortest path
algorithm to the network and find the optimal route. However, when we consider
weather systems in a transportation model, the cost of traveling a link may change
as time advances. This may happen because factors such as travel speed change
as the weather changes. This dynamic nature of the weather system is even more
significant in hazmat models, because as we discussed earlier, the risk changes
significantly with changes in weather conditions. Therefore, for considering the
dynamic aspect of the weather system, one needs to consider a time dependent
shortest path problem instead of a simple shortest path problem. This makes the
problem more difficult to solve especially for large transportation networks.

The rest of this chapter is organized as follows. Sections “Effect of Weather
Systems on Accident Probabilities” and “Effect of Weather Systems on Dispersion
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of Pollutants” explain the necessary modifications in risk factors when one considers
a weather system in a hazmat transportation model. This includes the effect of
the weather system on the probability of an accident (section “Effect of Weather
Systems on Accident Probabilities”) and the effect of weather systems on the
area impacted by the pollutant (section “Effect of Weather Systems on Dispersion
of Pollutants”). Section “The Dynamic Nature of the Weather System” explains
the dynamic nature of a weather system and the algorithms that can be used
to handle this dynamic nature in a transportation network. Section “Example of
Hazmat Transportation Models Which Consider Weather Effects” reviews two
models in the literature which successfully incorporated the weather system in a
hazmat transportation study. And finally section “Conclusions and Future Research
Directions” provides conclusions and future research directions. We note that since
most of the related studies in the literature focus on the effect of weather systems
on highway transportation, the main focus of this chapter is also on this mode of
Hazmat transportation.

Effect of Weather Systems on Accident Probabilities

The presence of a weather system affects both visibility and surface friction thus
increasing the probability of an accident. Saccomanno and Chan (1985) analyzed
truck accident data for Toronto and estimated the probability of an accident based
on visibility and surface friction for different kinds of roads. The results from this
analysis are provided in Table 1. The analysis shows that the probability of an ac-
cident increases significantly in the presence of a weather system. For example, the
probability of an accident increases from 1.478� 10�6/mile for dry pavement and
unrestricted visibility to 2.740� 10�6 for wet pavement with restricted visibility.
This amounts to an 85% increase due to night travel or weather systems.

The results provided in Table 1 have been used in some other hazmat trans-
portation models. For example, Akgun et al. (2007) modeled the affect of weather

Table 1 Probability of accident based on visibility and surface friction

Probability (�10�6/mile)

Conditions A B C D E F

Dry pavement
Unrestricted visibility 3.715 2.744 0.876 1.478 2.215 0.830
Restricted visibility 3.957 1.779 1.672 2.519 5.218 0.935

Wet pavement
Unrestricted visibility 1.816 1.895 0.956 1.728 2.580 0.878
Restricted visibility 0.957 1.737 0.531 2.740 8.279 0.593

Note: A D arterial/collectors with speed D 50 km/h; B D arterial/collectors with speed >50 km/h;
C D expressway with speed <100 km/h; D D expressway with speed D100 km/h; E D ramps;
and F D major intersections
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systems on finding the minimum risk route in a hazmat transportation network.
In this model, they assumed that the adverse weather conditions would increase
accident rates (and also increase travel times and the affected population). In their
numerical experiments, based on the results in Table 1, they assumed the amount of
such an increase to be equal to the average value of 60% for interstate highways, US
highways, and state highways. We summarize the complete model by Akgun et al.
(2007), in section “The Dynamic Nature of the Weather System” of this chapter.

A recent hazmat transportation model that uses the results in Table 1 is provided
by Kim et al. (2011). They presented a framework for geographical information
system (GIS)-based decision support system (DSS) for vehicle transportation of
hazardous materials. Their framework is designed such that it can provide online
routing instructions in response to updated information of traffic and weather
conditions. The available weather data that are updated online include visibility and
atmospheric conditions that affect surface friction. These updated weather data are
used to recalculate the accident probabilities of different routes using the results of
Table 1. The accident probabilities are then used to calculate the disutility of each
link or arc of a transportation network. This probability is the weighted summation
of the normalized travel time and the normalized risk of a given arc. This study uses
the following formula to calculate the risk of each arc:

risk D P.AjW / � P.RjA/ � Pop

Here, P(AjW) is the conditional probability of a truck accident given the weather
conditions as explained above (according to Table 1), P(RjA) is the conditional
probability of hazmat release given an accident, and Pop is the population exposure
to a hazmat release.

Kim et al. (2011) also provide a heuristic method for finding a minimum
disutility route and then use the transportation network between Washington, D.C.,
and Baltimore Maryland in order to demonstrate the ability of the heuristic in
dynamically updating the routes in response to real time weather data. An important
note for this study is that the weather conditions and wind direction are assumed
to not affect the population exposure in calculating risk. Instead, the paper simply
assumes that all populations within 5 miles of release points will be exposed to the
hazmat risk. However, a more comprehensive approach is to consider the weather
conditions including wind direction in calculating the population exposed to a
hazmat risk. We study this approach in the next section.

A more recent study that can be used instead of the analysis by Saccomanno and
Chan (1985) in order to consider weather conditions in the calculation of accident
probabilities is provided by Fabiano et al. (2002). Their study proposes equations
(1) and (2) below to calculate the frequency of an accident on a given road i.

fi D �i Li ni (1)

�i D �0

X6

j D1
hj (2)
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Table 2 Factors correlated to intrinsic road characteristics

Intrinsic characteristics h1 h2 h3 h6

Direct road 1
Road bend (radius >200 m) 1.3
Road bend (radius <200 m) 2.2
Plane road 1
Slope road (gradient <5%) 1.1
Steep slope road (gradient >5%) 1.2
Downhill road (gradient <5%) 1.3
Steep downhill road (gradient >5%) 1.5
Two lanes for each carriageway 1.8
Two lanes and emergency lane for each

carriageway
1.2

Three lanes and emergency lane for
each carriageway

0.8

Tunnel 0.8
Bridge 1.2

Table 3 Factors correlated
to weather condition Weather condition h4

Fine weather 1
Rain/fog 1.5
Snow/ice 2.5

Table 4 Factors correlated
to traffic characteristics Traffic characteristics h5

Low intensity <500 vehicle/h 0.8
Medium intensity <1,250 vehicle/h with heavy traffic

<125 truck per day
1

High intensity >1,250 vehicle/h 1.4
High intensity >1,250 vehicle/h with heavy traffic

>250 truck per day
2.4

where � i is the expected frequency on the ith road stretch (accident km�1 per
vehicle), Li the road length (km), ni is the vehicle number (vehicle), ”0 the basic
frequency (accident km�1 per vehicle), and hj is the local enhancing/mitigating
parameters.

Fabiano et al. (2002) also introduce enhancing/mitigating parameters which are
subdivided into six categories: h1 and h2 refer to geometric characteristics, of the
road, h3 to the type of the roadway, h4 to the weather condition, h5 to the type
and intensity of the traffic, and h6 to the presence or absence of a tunnel or bridge.
These six parameters have been estimated using historical data from a transportation
network starting from the Genoa port area towards the industrialized North Italian
and Central Europe districts (see Tables 2, 3 and 4).
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Effect of Weather Systems on Dispersion of Pollutants

In order to calculate the risk of a particular route in a hazmat transportation system,
one needs to estimate the population which may be affected near the area of an
accident. To capture this, there are two types of approaches found in the literature:
The first approach assumes that the population within a predefined threshold
distance from an accident is exposed to the pollutants. The second approach uses
different dispersion models to determine the area affected by an airborne pollutant.
In the following sections we discuss these two approaches and how they are affected
by the weather system.

Threshold Distance Approach

The Threshold distance approach was first employed by ReVelle et al. (1991) and
Batta and Chiu (1988). It assumes that people within a fixed radius of an accident
will be affected by the pollutant. For example, according to the North American
Emergency Response Handbook (2004), an area with a radius of 800 m around a fire
that involves a chlorine tank, railcar or tank-truck must be isolated and evacuated.
While considering a weather system in a hazmat transportation model, one needs
to make adjustments to this fixed threshold approach. For example, Akgun et al.
(2007) assumes that a hazmat release at a specific location poses a threat to a
neighboring point if it is within a threshold distance, œ, of that neighboring point.
When the release location is affected by a weather system, the threshold distance
changes to œ0, which may be greater or smaller than œ depending on the type of
weather system and the type of hazardous material. However, Akgun et al. (2007)
do not provide a detailed procedure for calculating œ0 thus leaving an important
unanswered question of how to change œ to œ0 based on the parameters of a weather
system. A paper that gives an answer to this question is provided by Brown and
Dunn (2007). They present a Monte Carlo simulation based method to evaluate
distances over which the public should be protected in the event of a hazmat
release involving an airborne hazard. Their approach explicitly considers weather
conditions, including wind velocity, in order to determine a 90th-percentile safe
distance from the incident for given release characteristics. Unlike Akgun et al.
(2007), this 90th-percentile safe distance is not a circular region. However, as shown
in Fig. 2, this region forms a square region having a side dimension equal to and
lying downwind and symmetrically about the accident location. A square shape is
chosen in this paper in order to provide a simple, familiar way of defining the zone
and, more importantly, to account for uncertainty in the plume trajectory owing to
wind direction variability and possible effects of topographical features. In Fig. 2,
the circular region surrounding the accident site is the zone from which persons not
involved with the response should be kept clear.
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Fig. 2 The protective
distance in Dunn (2007)

Air Pollution Dispersion Models

Using air pollution dispersion models is another approach in which we can directly
consider weather parameters in determining the area affected by a pollutant. There
are various air pollution dispersion models found in the literature. However, the
most common hazmat transportation studies use a Gaussian model which is very
popular due to its simplicity and ease of use. Below we summarize the application
of dispersion models in determining the area affected by hazmat release.

Gaussian Model

The Gaussian model is perhaps the most commonly used air pollutant dispersion
model. It assumes that the air pollutant dispersion has a Gaussian (i.e., normal)
distribution. The earliest study that used the Gaussian distribution for modeling air
pollutant dispersion is developed by Sir Graham Sutton (1947). Further advances
in this model were made by Briggs (1965) in model refinement and validation.
The Gaussian model is most often used for predicting the dispersion of continuous,
buoyant air pollution plumes originating from ground-level or elevated sources. This
model may also be used for predicting the dispersion of non-continuous air pollution
plumes (called puff models).

The Gaussian plume model is based on several limiting assumptions. Zhang et al.
(2000) characterize these assumptions and their validity for hazmat transportation
models as follows:

1. The gas does not change its chemical properties during dispersion: this assump-
tion restricts the applicability of the Gaussian plume model to stable chemicals
and to accidents which do not result in explosion.
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Fig. 3 The Gaussian plum model

2. Atmospheric conditions are homogeneous in the study area and constant over the
period of dispersion: this assumption is fairly realistic for hazmat risk analysis
because the impact area of accidents is usually small (within 10 km), and because
accidental release of hazmat usually occurs within a short period of time.

3. The terrain is gentle or flat, and the ground surface does not absorb the gas:
the validity of this assumption depends on the nature (paved, agricultural) of
the release site. For the cases that this assumption is not valid, there are some
modified versions for Gaussian plume models in the literature that take terrain
into account. To see an example of such models, readers are referred to Strimaitis
et al. (1986).

4. The rate of emission is continuous and steady: this assumption is violated
by transportation related releases which usually experience a quick and short-
lived emission. The steady-state concentrations estimated by Gaussian plume
models assume a continuous release source, and are likely to overestimate
location-specific concentrations. This assumption is particularly important, and
it limits the applicability of Gaussian plume models to gaseous dangerous goods
accidents.

The Gaussian plume model is shown in Fig. 3. We employ the following notation
and present the model in (3):

• x: The distance downwind from the source.
• y: The distance crosswind (perpendicular) from the source.
• z: The elevation of the destination point.
• he: The elevation of the source.
• C(x,y,z,he): The concentration level at point (x,y,z).
• Q: The release rate of pollutant.
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• u: The average wind speed.
• �y and � z: Horizontal and vertical plume standard deviations as a function of x

(also known as dispersion coefficients).
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In most hazmat transportation models, we can assume the release source to
be near the ground. In this case one can assume heD 0, zD 0, and obtain the
concentration level on the ground using the following equation (4):

C .x; y; z; he/ D Q
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In this case the concentration on the plume’s center line (yD 0) is represented
by (5):

C .x; y; z; he/ D Q

�u�y�z
(5)

The dispersion coefficients �y and � z are dependent on the stability of the
atmosphere and the downwind distance x to the release source. There are different
methods for determining these two parameters. The most commonly used method
in the literature is power law functions (Turner 1969) provided in (6) and (7). In
this method, popular due to simplicity and ease of use, the dispersion parameters
(a, b, c, and d) are determined based on different stability categories as defined by
Pasquill (1962). These categories include: very unstable (A), moderately unstable
(B), slightly unstable (C), neutral (D), slightly stable (E) and moderately stable (F).
The value of these parameters for each of these six stability categories can be found
in Turner (1969).

�z D a:xb (6)

�z D c:xd (7)

The first studies that incorporated Gaussian plume models into route selection
in a hazmat transportation network are provided by Patel and Horowitz (1994)
and Karkazis and Boffey (1995). In particular, these two papers use Gaussian
plume models to determine the population affected by a hazmat release when
calculating the risk of each route. Then they provide methods for selecting a route
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with minimum risk in the network. This is conceptually simple but computationally
intensive because, in order to calculate the risk associated with each link one needs
to integrate the Gaussian plume model over the length of the link (see section
“The Model by Patel and Horowitz (1994)”). This integration is computationally
prohibitive if it is calculated numerically.

To solve this problem of computational complexity, Patel and Horowitz (1994)
made simplifying assumptions about the dispersion parameters and achieved a rea-
sonable level of computational efficiency. They assumed the dispersion coefficients
¢y and � z to be linear functions by fixing the dispersion parameters b and d to be
equal to 1.0. In particular, they simplified (6) and (7) to the linear equations � zD a.x
and � zD c.x.

Zhang et al. (2000) explained that considering dispersion parameters b and
d to be equal to 1.0 may be a damaging assumption since these parameters
differ by atmospheric stability category and assuming them to be 1.0 entirely
ignores the matter of atmospheric stability. Therefore, in order to overcome the
computational complexity of using the Gaussian plume model in calculating the
risk of travel on links, they adopted a raster GIS framework. This raster framework
transforms a continuous space into a discrete one by modeling it as a tessellation
of square grid cells called pixels. Working in discrete space, enables the authors
to compute the concentrate levels more efficiently without having to make the
linearity assumption of Patel and Horowitz (1994). If the resolution (pixel size) of
the raster representation is lower, the computation of concentrate levels will be more
efficient but the accuracy of computations will be worse. Therefore, the choice of
the resolution level in this raster GIS framework is a tradeoff between accuracy and
computational efficiency.

Although a significant portion of hazmat transportation is done via railroad,
all of the above mentioned Gaussian models have been developed for highway
transportation. Verma and Verter (2007) extended the Gaussian plume model for
the case which involves multiple release sources as happens when a train carrying
multiple hazmat cargoes is involved in an accident. They used their proposed
Gaussian model to develop a risk assessment method for railroad transportation
of hazardous materials. This method works with the most conservative estimate
of weather conditions, which will arguably enable preparedness for any weather
situation.

Other Dispersion Models

As we discussed earlier, even the Gaussian plume model (which is a very simple
model) is computationally intensive when used in a route selection model for a
hazmat transportation network. Therefore, using other dispersion models that are
more complicated (compared to the Gaussian plume model) makes the resulting
routing model even more inefficient in terms of computations. Hence the application
of other models in hazmat transportation studies is limited and to the best of our
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knowledge does not include routing models for a large transportation network.
Below we review two studies that use non-Gaussian dispersion models:

• Dense gas models: Dense gas models are a class of air pollution dispersion
models that simulate the dispersion of pollution plumes that are heavier than
air (also known as dense gas). Leeming and Saccomanno (1994) used the
dense gas model in a case study involving the risk assessment of two routes in
transportation of chlorine from a specific supplier to an industrial facility. The
routing options include a road and a rail route each of which is divided into 14
and 18 subsections respectively. The risk along each subsection is assumed to
be constant. This assumption makes the computations much easier because it
avoids integrating the dispersion model over the length of the route (as is done in
some Gaussian plume models such as Patel and Horowitz 1994). To find the risk
of these two routing options, the authors considered different release scenarios
based on weather condition, stability, wind speed and wind rise, and estimated the
area affected by a hazmat release in each scenario (using a dense gas dispersion
model).

• Lagrangean models: Lagrangean dispersion models consider the movement of air
pollutants as a random walk process. They calculate the dispersion of pollutants
by first defining a box that contains an initial concentration of pollutants, and
then following the trajectory of the box as it moves downwind. These models
use a moving frame of reference to follow the pollution plume as it moves in
the atmosphere. The Lagrangean model has been used by Hwang et al. (2001)
to estimate impact zones for six toxic-by-inhalation materials. These impact
zones are then used for risk assessment for the national transportation of these
hazardous materials.

The Dynamic Nature of the Weather System

Weather conditions change dynamically. Therefore, those metrics for a route that
are dependent on the weather condition (such as risk and travel time) will also
change as weather changes. This makes the problem of finding an optimal route
more difficult. There are different approaches toward this complicating aspect of
the weather system as outlined below:

Some studies do not consider the dynamic nature of the weather system and
assume that the weather parameters to be fixed during the vehicle movement from
origin to destination (e.g., Zhang et al. 2000). This may be a valid assumption if the
travel time is short enough. However, for large transportation networks in which the
travel time from the origin to the destination may take a significant part of a day or
several days, we cannot ignore the changes in the weather parameters.

Some studies do not model the dynamic nature of the weather system and simply
use the historical data for a given region and assign a probability distribution for
each weather scenario (e.g., the wind direction is from the north with a probability
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of 30%, from the east with a probability of 70%, and has a negligible probability
for other directions). This probability distribution can then be used to calculate an
average affected population or average accident probability. An example of this
approach can be seen in Karkazis and Boffey (1995). This approach may cause large
error in risk calculations for any particular route/day because it doesn’t consider the
real time weather data.

Another approach that is more popular and more realistic is based on the
assumption that those regions that are close to the current location of a vehicle
will be traveled to in the near future. Therefore, it is reasonable to use current
weather data for those points. However, for other regions that are relatively far from
the current location of the vehicle, we cannot use the current weather parameters
because the weather is likely to change by the time the vehicle reaches that region.
Therefore, this approach uses real time weather data for those regions within some
neighborhood area of the current location of the vehicle and uses historical or
predicted weather data for other regions. Examples of this approach can be found in
Patel and Horowitz (1994) and Kim et al. (2011).

Another method (that is also more difficult to implement) is more fully modeling
the dynamic nature of the weather conditions. In this approach, the weather
condition on different regions of the transportation network is to be predicted for
different time intervals (e.g., prediction by modeling the movement of the weather
system as done in Akgun et al. 2007). Then these predictions are used to calculate
the risk (or other factors such as travel speed) as a function of time. Since in this
approach, risk is dependent on time, one needs to solve a time dependent shortest
path problem to calculate the route with lowest risk. This problem can be defined on
either discrete or continuous time scales depending on whether time is discretized
and thus integer-valued or real-valued. The general time dependent shortest path
problem is at least NP-Hard since it may be used to solve a variety of NP-Hard
optimization problems such as the knapsack problem. However, depending on how
one defines the problem, it may not be in NP since its output is not polynomially
bounded. Different methods have been developed for solving this problem. Here we
summarize some of these methods:

• Cooke and Halsey (1966): This discrete time algorithm is the first algorithm
developed for the time dependent shortest path problem. The algorithm solves the
problem from every node to the destination using a finite number of iterations,
and for any finite initial starting time. It has theoretical computational complexity
O(V3M), where V is the number of nodes and M is the number of time steps.

• Dreyfus (1969): This algorithm is a label setting procedure that is a generalization
of Djikstra’s (1959) static shortest path algorithm. The algorithm calculates the
time dependent shortest path between two nodes for one departure time step in
O(V2).

• Orda and Rom (1990): This algorithm finds the time dependent shortest path
under various waiting constraints. Unlike Dreyfus (1969), this algorithm is not
limited to FIFO (First-in-First-out) links.
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• Ziliaskopoulos and Mahmassani (1993): This algorithm calculates the time
dependent shortest paths from all nodes to the destination for every time step
over a given time horizon.

• Cai et al. (1997): This set of algorithms is proposed for solving three cases of time
dependent shortest path problems. In the first case, waiting at a vertex without
any restriction is allowed. In the second one, waiting at any vertex is strictly
prohibited; and in the third case, there is a vertex-dependent upper bound on the
waiting time at each vertex.

• Chabini (1998): This work suggests an efficient algorithm for all-to-one (i.e.,
all nodes to one destination node) discrete dynamic shortest path problem. This
algorithm is proved to have an optimal run time complexity that equals the
complexity of the problem.

In section “Example of Hazmat Transportation Models Which Consider Weather
Effects,” we study an example of the dynamic model of the weather system that
leads us to a time dependent shortest path problem. This model is provided by
Akgun et al. (2007) and studies the movement of the weather system along the
transportation network in order to predict the weather parameters as a function
of time. This leads to time dependent risk values for different links and nodes.
Therefore, one can find the least risk path by using the above discussed algorithms.

Finally we note that a more general form of the time dependent shortest path
problem occurs when the parameters associated with each link (e.g., travel time,
risk, etc.) are both time dependent and probabilistic (rather than deterministic). In
this situation each arc of the transportation network is assigned travel time and travel
risk random variables with time-varying probability distribution functions. Solution
procedures for finding optimal routs in such situations can be found in Miller-Hooks
and Mahmassani (1998, 2000).

Example of Hazmat Transportation Models Which Consider
Weather Effects

Reviewing the literature of hazmat transportation models, one can find that current
studies which consider the effect of weather systems have at least one of the three
following components: first, the accident probabilities are adjusted based on the
weather condition; second, the area affected by a hazmat release is calculated
using a Gaussian plume model (in rare cases other dispersion models have been
used); and third, the dynamic nature of the weather system may be considered
by modeling the problem as a time dependent shortest path problem. To the best
of our knowledge there is no model in the literature that incorporates all three of
these components at the same time (due to the difficulty of considering all of these
together). In this section we review two models in the literature that cover these
three components. The first model by Akgun et al. (2007) considers the dynamic
nature of weather systems and updates the accident probabilities and speed of the
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vehicle as the weather changes (first and third components). The second model by
Patel and Horowitz (1994) consider the Gaussian plume model in calculating the
area affected by a hazmat release (second component).

The Model by Akgun et al. (2007)

Akgun et al. (2007) deals with the problem of finding a least risk path for
hazmat transportation on a network exposed to a weather system. The weather
system is assumed to have circular shape and move in a linear direction along the
transportation network. The paper first uses the following notation and models the
dynamic variations of the attributes of a single link (including travel time and risk)
as the weather system moves along the network.

• GD (N,E): Connected, undirected and planar transportation network with node
set N and link set E.

• (xs,ys): Cartesian coordinates of a given point s on the plane.
• wi: Positive weigh of node i. This weigh typically signifies the population at this

node.
• g(i,j): Positive weigh of the link (i,j).
• l(i,j): The length of the link (i,j). For a single link (i,j), it is assumed (without

loss of generality) that this link is horizontal to the Cartesian plane with the
coordinates of node j being (0, l(i,j)).

• f(i,j)(z): Population density function of the link (i,j) where z ranges from 0 to l(i,j).

This density function is normalized such that
R l.i;j /

0 f.i;j /.z/ D 1.
• d(a,b): Euclidean distance between two points a and b on the plane that is:

d .a; b/ D
q

Œxa � xb�2 C Œya � yb�2.
• W : Weather system that is assumed to be circular and travels on a straight line

with constant speed.
• r: Radius of W .
• .xw.t/; yw.t//: Center of W at time t.
• .xw; yw/ D .xw.0/; yw.0//: Center of W at time tD 0.
•  : Angle between x axis and travel direction of W .
• vw: Constant speed of W .
• (x(t), y(t)): Location of hazmat carrying vehicle.
• v and v0: Speed of hazmat carrying vehicle inside and outside of W respectively.
• hi, hj and h0

i, h0
j: Probability of accident in node i and j when the vehicle is

traveling link (i,j) inside and outside of W respectively.
• q(i,j) and q0

(i,j): Probability of accident per unit length of movement when the
vehicle is traveling link (i,j) inside and outside of W respectively.

• d(t): The distance between the hazmat carrying vehicle and the center of W .
• t�

1 : The first time the vehicle enters W (vehicle traveling a single link).
• t�

w : The duration the vehicle stays in W (vehicle traveling a single link).
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• t�
2 D t�

1 C t�
w : The time the vehicle leaves W (vehicle traveling a single link).

• ı(z,c) and ı0(z,c): Indicator function to show whether a hazmat release at point c
poses a threat to point z when point c is outside and inside of the weather system
respectively.

• R(i,j): The risk of traveling on link (i,j).
• F(z;i,j): The threat that traveling on link (i,j) poses on point z.

Using the above notation, one can find the center of W at time t using the
following equations (8) and (9):

xw.t/ D xw C .vw cos /t (8)

yw.t/ D yw C .vw sin /t (9)

Assuming that the vehicle starts at node i at time tD 0 and travels towards node
j along the horizontal link (i, j), the location of hazmat carrying vehicle at time t is:

.x.t/; y.t// D .vt; o/ (10)

Therefore, the distance between the vehicle and the center of W at time t can be
obtained by the following equation (11):

d 2.t/ D Œx.t/ � xw.t/�2 C Œy.t/ � yw.t/�2 D At2 C Bt C C (11)

where,

A D v2 � 2vvw cos  C v2
w; B D 2xwvw cos 

C 2ywvw sin  � 2vxw; and C D x2
w C y2

w:

Using (8)–(11), the paper studies the effect of the weather system on travel time
by considering the following three possible cases:

1. The vehicle is never in W .
2. The vehicle starts outside W , and then enters W .
3. The vehicle starts in W .

In the latter two cases the vehicle either:

(a) Stays in W until node j is reached or
(b) Exits W before reaching node j.

For finding t�
1 , Akgun et al. solve the equation d 2 .t1/ D r2 using the vehicle

location of (10) and the coordination of the weather system following equations (8)
and (9) and finds the roots of this quadratic equation to be:

t1̇ D
�B ˙pB2 � 4A .C � r2/

2A
(12)
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The smaller root, t�
1 , corresponds to an entrance time (the larger root, tC

1 ,
corresponds to an exit time only under the assumption that the vehicle maintains
a speed v0D v inside W ). Suppose the roots are real (if not, then we are in Case 1
and assign t�

1 D t�
2 D �1). If t�

1 � 0, then t�
1 D 0 and we are in Case 3; else if

t�
1 � l.i; j /=v (that means t�

1 is less than the amount of time to traverse the link
(i,j) in normal conditions), then t�

1 D t�
1 and we are in Case 2; else we are in Case

1 and assign t�
1 D t�

2 D �1.
After finding t�

1 as explained above, one can find t�
w for Cases 2 and 3 by solving

the equation d 2 .tw/ D r2 and using the coordinates x .tw/ D vt�
1 Cv0tw, y .tw/ D 0,

xw .tw/ D xwt�
1 C .vw cos /tw, and yw .tw/ D ywt�

1 C .vw sin /tw.
The paper then generalizes the results for the above traveling time (in which it

was assumed that the vehicle starts traveling at time 0) to the case that it is possible
to start travel at any time s in the time window [0, Ts]. This is done by changing (11)
to the following equation (13):

d 2.t/ D At2 C B.s/t C C.s/ (13)

where,

B.s/ D B C 2vw.vw � v cos /s; and C.s/ D C C v2
ws2

C 2.xwvw cos  C ywvw sin /s:

After this generalization, the Akgun et al. prove a theorem which says that the
time that the vehicle spends in the weather system while traversing a link is concave
in the starting time s 2 [0, Ts]. This theorem suggests that in order to minimize
exposure to the weather system, a vehicle should begin travel on a link at one of the
endpoints of the permissible travel window, [0, Ts].

After analyzing the weather effects on travel time, the paper studies the weather
effects on risk as discussed below.

Akgun et al. first use the threshold distance approach explained in section
“Threshold Distance Approach” and define the indicators, ı(z,c) and ı0(z,c) to show
whether a hazmat release at point c poses a threat to point z when point c is outside
and inside of the weather system respectively (� and �0 are the threshold distances
explained in section “Threshold Distance Approach”):

• ı.z; c/ D 1 if d.z; c/ � �I 0 otherwise:

• ı0.z; c/ D 1 if d.z; c/ � �0I 0 otherwise:

The risk of traveling on link (i,j) is then defined in (14) in which the first term
accounts for the potential damage that the vehicle could do to nodal population
centers on the network, and the second term does the same for population that
resides on links of the network (which is continuously distributed).

R.i;j / D
X

z2N
wzF.zI i; j /C

X
l;k2A

Z l.l;k/

0

g.l;k/f.l;k/.z/F.zI i; j /d z (14)
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20 mile

40 mile
i

vw=10 mile/h

j

Fig. 4 Numerical example 1

For calculating F(z;i,j) in the above equation (14), one needs to consider the
different cases of x.t�

1 / and x.t�
2 / when the vehicle is traveling on link (i,j). For

example consider the case x.t�
1 / 2 .0; l .i; j // and x.t�

2 / 2 .0; l .i; j //. For
this case F(z;i,j) can be obtained as provided in (15) (other cases will be handled
similarly). In this equation the first and last terms account for the possibility of
an accident at node i and node j, respectively, which in this case occur with the
vehicle outside the weather system W . The second and fourth terms are to account
for the possibility of an accident along the link before entering and after exiting W ,
respectively. The third term is for an accident along the link while in W .

F .zI i; j / D hiı .z; i /C
Z x.t�

1 /

0

q.i;j /ı .z; .y; 0// dy C
Z x.t�

2 /

x.t�
1 /

q0
.i;j /ı

0 .z; .y; 0// dy

C
Z l.i;j /

x.t�
2 /

q.i;j /ı .z; .y; 0// dy C hj ı .z; j /
(15)

After calculating the time dependent risk values using (14) and (15), Akgun et al.
largely focus on finding the minimum risk route in the obtained time dependent
shortest path problem. This can be done using the exact methods explained in
section “The Dynamic Nature of the Weather System,” or alternatively by using
heuristic methods provided in the paper.

Example We now demonstrate how to find the risk of traveling a single link (i,j)
for the problem illustrated in Fig. 4. Note that the length of link (i,j) is equal to 100
miles and the speed of the vehicle is 20 and 40 mile/h inside and outside of the
weather system respectively. We assume that the accident probability (�10�6/mile)
for a vehicle which is not affected by a weather system is equal to 2 for the nodes
and 3 for the links and that these rates will be doubled in the presence of the weather
system. We also assume that in case of a hazmat release the affected area will have
a radius of 2 miles and this value is the same inside and outside of the weather
system. And finally, we assume that the population is uniformly distributed along
the link without any significant extra population on Nodes i and j. We consider all
other weights to be equal to one.

Solution Since the movement of the vehicle and the weather system are both only
in the horizontal direction, we only need to consider the x direction (y is always
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equal to zero). We know that t�
1 D 0 (Since the vehicle starts from inside the weather

system). We find t�
w in the following (note that we consider node i as the origin of

our coordinate sysytem):

d .tw/ D r D 40!
q

Œx .tw/� xw .tw/�2 � 0 D 40

! Œvtw� � Œxw C .vw cos /tw� D 40

! Œ20tw� � Œ20C .10/ .�1/ tw� D 40! t�
w D 2

Therefore we can obtain t�
2 D t�

1 C t�
w D 0 C 2 D 2 resulting in x



t�
2

� D
2 � 20 D 40 miles. This means that the vehicle travels the first 40 miles inside
the weather system, and then it exits the weather system and travels the remaining
60 miles outside the weather system.

Now we can calculate the threat of traveling on this link at a given point z as
follows (note that in this example ı D ı0):

F .zI i; j / D 4ı .z; i /C
Z 40

0

6ı .z; x/ dx C
Z 100

40

3ı .z; x/ dx C 2ı .z; j /

To evaluate F(z;i,j) we consider the following possible cases for z:

• 0 � z � 2 W F .zI i; j / D 4C R zC2

0
6dx D 6zC 16

• 2 � z � 40 W F .zI i; j / D R zC2

z�2
6dx D 24

• 40 � z � 98 W F .zI i; j / D R zC2

z�2
3dx D 12

• 98 � z � 100 W F .zI i; j / D 2C R 100

z�2
3dx D 308� 3z

Therefore, the total risk is:

R.i;j / D F .z D i I i; j /C F .z D j I i; j /C
Z 100

0

1

100
F .zI i; j / d z

D 0C 0C 1

100

�Z 2

0

F .zI i; j / d zC
Z 40

2

F .zI i; j / d z

C
Z 98

40

F .zI i; j / d zC
Z 100

98

F .zI i; j / d z

�

D 1

100

�Z 2

0

.6zC 16/d zC
Z 40

2

24d zC
Z 98

40

12d zC
Z 100

98

.308� 3z/d z

�

D 1

100
Œ44C 912C 696C 22� D 16:74
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Note that if we ignore the impact of the weather system in the above example,
the total risk can be obtained as follows:

R.i;j / D 0C 0C 1

100

�Z 2

0

.3zC 8/d zC
Z 98

2

12d zC
Z 100

98

.308� 3z/d z

�

D 11:96

The above value is 29% lower than the previous case in which the effect of
weather is not ignored.

The Model by Patel and Horowitz (1994)

The study by Patel and Horowitz (1994) is the first paper in the literature that
uses the Gaussian plume model for estimating the affected population in a hazmat
transportation model. The paper tries to find the minimum risk route for a hazmat
transporting vehicle on a network embedded on a (uv) Euclidean plane. The optimal
route refers to the path P that minimizes the total risk posed to the entire area in the
plane containing the transportation network. In this paper the total risk is considered
as total expected concentration of hazardous gas and is defined according to the
following equation (16):

R.P / D
X

.i;j /2P

Z

u

Z

v
Rij .u; v/ du dvC

X
n2P

Z

u

Z

v
R .nI u; v/ du dv (16)

where

• R(P): Total risk of a given path P.
• Rij(u,v): The risk posed by link (i,j) to point (u,v).
• R(n;u,v): The risk posed by node n to point (u,v).

For computational purpose, the paper describes population areas as mesh points
that are distributed throughout the study area and evaluates (16), by using mesh
points (uk,vk) on the uv plane. This enables the authors to approximate (16) with the
following equation (17):

R.P / D
X

.i;j /2P

X
uk

X
vk

Rij .uk; vk/C
X

n2P

X
uk

X
vk

R .nI uk; vk/

(17)

It is obvious that the larger the number of these mesh points, the better (17)
can approximation (16). To simplify the notation, the paper denotes the mesh point
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(uk,vk) by k and defines the risk posed by a link and a node to a particular mesh point
according to the following equations:

Rij .k/ D Iij

Z

�

w .�/ d� (18)

R .nI k/ D Inw.�/ (19)

where

• �: Measures the Euclidian distance from a potential accident to point k.
• w(�): Weight-function based on the Gaussian plume model of (3).
• Iij: The risk intensity of link (i,j) in terms of the probability of a crash.
• In: The risk intensity of node n (i.e., the probability of an accident in that node).

To calculate w(�), one needs to integrate the Gaussian plume model over the
length of a link. Therefore, for moderate size problems, evaluation of (16) may be
too difficult if w(�) is evaluated numerically. However, if w(�) can be expressed
in closed form, a reasonable computational efficiency can be achieved. For this
purpose, as explained in section “Air Pollution Dispersion Models,” Patel and
Horowitz first make a simplifying linear assumption in dispersion parameters of
the Gaussian plume model and then calculate closed form expressions for w(�)
considering different cases of wind direction including:

1. Uniform average wind direction
2. Maximum concentration wind direction
3. Specific wind direction

Since the detailed calculations for obtaining the closed form expression of w(�)
for each of the above mentioned cases are very technical, we invite the reader to
refer to Patel and Horowitz (1994) for all details. Here we summarize some results
obtained from the calculation of these closed form expressions of w(�):

• The closed form expression of w(�) for uniform average wind direction (Case 1),
differ from the one for maximum concentration wind direction (Case 2) by only
a constant. That constant is the same for links and nodes and does not depend
on environmental considerations such as wind speed or population distribution.
Therefore, any optimal route would be invariant with the choice of Case 2 or
Case 3 wind direction.

• The optimal route will not vary with the type of hazardous material, the size of
the spill, the type of vehicle or container, and the assumed wind speed.

• Several case 3 (specific wind direction) can be averaged to cover non-uniform
wind direction.

Example Here we calculate the risk imposed by a vehicle traveling link (o, q) to
the single mesh point k shown in Fig. 5. Assume the risk intensity of an accident
to be 0.6 for the link and negligible for the nodes and the emission rate in case of
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Fig. 5 Numerical example 2

an accident to be 1,500 mg/s. Also consider uniform average wind direction with
average wind speed of 5 m/s and dispersion parameters aD 0.105 and cD 0.060.

Note: According to Appendix B of Patel and Horowitz (1994), the closed form
function of w(�) for a vehicle traveling link (o, q) under uniform average wind
direction is Q

�uac
1p
2�

a

�
p

�2��2
o

.

Solution Using the given parameters and knowing that the distance from node o
to mesh point k is equal 30 (i.e., �oD 30), the w(�) function becomes: w .�/ D

634:9

�
p

�2�30
.

Therefore, the total risk imposed by link (o, q) on the single mesh point k is:

Roq.k/ D Ioq

Z

�

w .�/ d� D 0:6

Z 50

30

634:9

�
p

�2 � 30
d� D 8:559

Conclusions and Future Research Directions

We have discussed the major effects of a weather system on mathematical models
involving the search of for an optimal route in hazmat transportation networks. We
explained how the presence of the weather system affects the risk of the routes in
such models and we showed the necessary modifications in risk calculations. We
also explained the dynamic nature of the weather system and the way it affects
the modeling and particularly the solution approaches for a hazmat transportation
problem. We reviewed the literature of hazmat transportation models that consider
the effect of weather systems in their studies and briefly summarized two such
models. Below, we summarize some of the future research directions:

1. Using GIS to study more realistic and complicated models: GIS has already
been used in by a few researchers as a tool to study the effect of weather
systems in hazmat transportation networks (e.g., Zhang et al. 2000 and Kim
et al. 2011). However, advances in computer capabilities make it possible to
use GIS for more realistic and complicated models (comparing those that are
already in the literature). For example the model by Zhang et al. (2000) does not
consider the effect of a weather system in calculating the population affected by
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an accident and the model by Kim et al. (2011) does not consider the dynamic
nature of the weather system. Extending these models to more realistic cases can
be considered an interesting area for future research.

2. Using different dispersion models based on the type of hazmat and release
condition: Since the Gaussian plume model is the most convenient dispersion
models in terms of computational efficiency, most of the hazmat studies use
this model when modeling the dispersion of the pollutant. However, considering
the assumptions of the Gaussian Plume model, this model is not a suitable
tool for many kinds of hazmat and many accident scenarios. For example,
consider an accident releasing hazardous vapors that are heavier than air (such
as toluene). Since the Gaussian plume model is developed for buoyant gases,
it cannot cover such cases. To study such cases, the use of other dispersion
models should be considered. Currently there are a few papers in the literature
that use other dispersion models for some specific applications as explained in
section “Air Pollution Dispersion Models.” However, more general applications
and modeling components (as explained in the beginning of section “Example
of Hazmat Transportation Models Which Consider Weather Effects”) for these
other dispersion models are still an open area for future research.

3. More realistic modeling for the shape and the movement of the weather system.
The only hazmat transportation study that models the shape and the movement of
the weather system in order to capture the dynamic nature of the weather system
is provided by Akgun et al. (2007). That study models the weather system as a
circle that moves in a straight line. However, this simple shape and movement of
the weather system seems to be too simple to capture the real weather conditions
in a network. Therefore, more realistic modeling of a weather system can be
another area for future research. For example the weather system may have any
shape other than a circular one or it can move in a non-straight direction. Some
initial unpublished work by Wang et al. (2008) was presented at the INFORMS
Annual Meeting using one or more ellipses in place of a single circle.
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Value-at-Risk and Conditional Value-at-Risk
Minimization for Hazardous Materials Routing

Iakovos Toumazis, Changhyun Kwon, and Rajan Batta

Introduction

Hazardous material (hazmat), as defined by the U.S. Department of Transportation
Pipeline and Hazardous Materials Agency, is a substance or material capable of
posing an unreasonable risk to health, safety, or property when transported in
commerce1. There are various types of hazardous material transportation which
range from movements of relatively harmless products, like hair spray and perfumes,
to massive shipments of gasoline by highway cargo tanks, to transportation of
poisonous, explosive, and radioactive materials. Accidents involving transporting
hazmat are very rare. However when one does happen, the damages and conse-
quences can be catastrophic in a means of both human casualties and residential
environments.

During the year 2011, as shown in Table 1, there have been 13,908 hazmat
incidents which resulted in 145 injuries, 10 deaths and damages of total worth
$104,113,342. Note that the procedure of transporting these kinds of materials is
divided in four phases: loading, in transit, in transit storage and unloading. The cost

1http://phmsa.dot.gov/hazmat/glossary
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Table 1 2011 Hazmat summary by transportation phase (U.S. Department of Transportation
Pipeline and Hazardous Materials Agency)

Transportation
phase

Injuries
Incidents Hospitalized Non-hospitalized Fatalities Damages

Loading 2,633 0 22 1 $793,719
In transit 3,552 12 58 9 $84,687,976
In transit

storage
530 1 6 0 $882,307

Unloading 7,193 10 36 0 $17,749,340
Grant total 13,908 23 122 10 $104,113,342

of the damages resulted by incidents during the transit phase had a total cost of
$84,687,976 and the injuries during the same phase were 70, among which 12
needed hospitalization. From all ten deaths that occurred in 2011, nine of them took
place in the process of transit and only one occurred during the other three phases,
namely the loading phase.

On average, more than 800,000 shipments occur daily in the USA mostly
using trucks as mean of transportation (Craft 2004) especially for relatively short
distances. Using trucks for transportation is very popular since they are opera-
tionally flexible. In other words, trucks among other transportation modes, have
the advantage of pick up and drop off hazmat materials very close from the origin
and to the destination, respectively. However, the number of incidents involving the
truck transport mode is the highest. In addition, trucks can be easily used for terrorist
attacks against people and buildings (Federal Motor Carrier Safety Administration
2007, 2008; Murray-Tuite 2007; Huang et al. 2004). These statistics among with
the possible threats emphasize the importance of efficient and effective regulative
operation of urban traffic networks involving hazmat transportation.

Hazmat accidents rarely happen (low-probability incidents), but if they do occur,
then the consequences can be disastrous (high-consequence incidents), reflecting
on both the population and the environment. It is important to make a risk-averse
route decision in hazmat transportation. In this book chapter, we will review the
existing routing models and risk measures, and will introduce recent advancements
with Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) models applied in
hazmat transportation. VaR and CVaR are shown to be proper risk measures for
flexible hazmat route decision making.

VaR and CVaR in Various Applications

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) have been broadly used
in finance as a risk measure. VaR has mainly the following five applications:
risk management, risk measurement, financial control, financial reporting and
computing regulatory capital. It was initially designed to measure the overnight
risk in certain highly diversified portfolios. Furthermore, VaR is a risk measure
that measures the financial risk of an investment, portfolio, or exposure over some
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specified period of time. Its easy interpretation as a summary measure of risk
and consistent treatment of risk across different financial instruments and business
activities is the reason for its popularity. In addition, VaR is also used to approximate
the “maximum reasonable loss” a company can expect to realize from its total
financial exposures.

CVaR is a risk measure that is a computationally tractable and coherent alter-
native to VaR. The notion of CVaR is closely related to the notions of Expected
Tail Loss, Tail Conditional Expectation, Tail VaR, Average VaR, Worst Conditional
Expectation, or Expected Shortfall (Rockafellar and Uryasev 2000; Dowd and Blake
2006). Unlike VaR, CVaR provides an optimization framework with convexity. In
financial portfolio optimization problems, CVaR optimization can be solved as a
linear programming problem with sampling for continuous random variable cases,
or as it is without sampling for discrete random variable cases (Rockafellar and
Uryasev 2000; Mansini et al. 2007).

Besides its wide use in finance and banking, VaR and CVaR have been also used
in other areas. They were used as risk measures in agricultural enterprises. Pruzzo
et al. (2003) introduced the methodology of VaR and CVaR (as expected shortfall)
in order to make animal breeding decisions. Their goal was to examine the use of
VaR and CVaR as means to affiliate risk into breeding decisions. Manfredo and
Leuthold (1999) used VaR to forecast market risk and cattle feeding margins, and
Dah-Nein Tzang (1990) used VaR model to generate minimum risk hedge ratios
simultaneously and applied the model to the soybean complex. The concepts of
VaR and CVaR were also utilized to generate electricity in deregulated market
(Robert Dahlgren and Lawarre 2003), product selection and plant dimensioning
arena (Sodhi 2005). In the former manuscript VaR and CVaR concepts are used to
address the problem of risk assessment in a market environment from the power
industry prospective. In the later paper the VaR and CVaR models are used to
address the problem of minimizing the risk rising from short product lifestyles and
high uncertainty concerning the demand in the electronics industry.

In addition, the concepts of VaR and CVaR have been recently applied in hazmat
transportation (Kang et al. 2011, 2013; Kwon 2011). However the application of
these models is significantly different than the models used in finance. The most
notable difference is that the models addressing hazmat transportation, are focused
on measuring the risk resulted by following a specified route in the network. There-
fore, the investment (which in this case is the route) and the loss measured (that is the
accident consequence) are totally different, and of course they cannot be compared.
Note that in finance the measurement units of both the investment and the loss are
same as, say dollars. Another difference between the two models is that in hazmat
transportation the risk of each road segment in a path is non-additive to each other,
while losses of portfolios in financial models are additive. Furthermore even though
the problem of minimizing CVaR is convex for financial optimization problems
(Rockafellar and Uryasev 2000) that is not the case for the minimization of CVaR in
hazmat transportation. In the next sections, we propose an efficient exact algorithm
for solving the problem of CVaR minimization in the concept of hazardous materials
routing. Given the above differences, the models of VaR and CVaR in hazmat
transportation require application-specific analysis and computational methods.
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Table 2 Mathematical notation

Notation Description

G.N ; A / A graph of road network
N Set of nodes, jN j D n

A Set of arcs, jA j D m

pij Accident probability on arc .i; j /

cij Accident consequence on arc .i; j /

P Set of all available paths for given O–D pair
C Set of ascending-order sorted arc consequences in G

A l Arc set for path l , and jA l j D jlj is the number of arcs in l

C l Set of ascending-order sorted arc consequences for path l

Rl Discrete random variable for the risk along path l 2 P

Risk Measures in Hazardous Materials Transportation

In this section, we summarize the existing approaches for hazmat routing and
compare them with the proposed VaR and CVaR approaches. In hazmat trans-
portation there are two main research areas: risk assessment (e.g. Abkowitz et al.
1984; Patel and Horowitz 1994) and hazmat shipments planning (e.g. List et al.
1991; Erkut et al. 2007). The latter field, which is studied in this chapter, involves
the determination of the “best” possible route to transport the shipment from the
origin to the destination (Nozick et al. 1997; Helander and Melachrinoudis 1997;
Nembhard and White 1997). In hazmat transportation there are two groups of
decision makers, namely the network regulators and the hazmat carriers; each one
focusing on separate problems. The first problem that is studied mainly by the
hazmat carriers is the local route planning problem that contemplates each shipment
independently. That is, the determination of the safest path, between alternative
paths, for a single shipment from its origin to the desirable destination. The
second problem that is mostly of interest to the network regulators, i.e. government
authorities and environmentalists is the global route planning. The goal is to plan
multiple shipments when many origin and destination pairs exist in the understudy
network, in order to moderate end regularize the risk to the whole network.

We consider a directed and weighted network G D .N ; A /. For each arc
.i; j / 2 A , there are two attributes: accident probability denoted by pij and
accident consequence denoted cij . Accident consequences cij can be computed by
a risk assessment method, like the �-neighborhood concept proposed by Batta and
Chiu (1988), and accident probabilities pij are collected from certain data sources.
The mathematical notation that is used in this chapter is summarized in Table 2.
Suppose a path l consists of an ordered set of arcs A l D f.ik; jk/ 2 A W k D
1; 2; : : : ; jl jg where .ik; jk/ is the kth arc in the path. To compute the risk generated
by this path, a variety of models (Table 3) that use different risk measures can be
utilized.
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Table 3 Classic path risk evaluation models (Erkut and Ingolfsson 2005)

Model Risk measure Objective

TR Expected risk minl2P

P
.i;j /2A l pij cij

PE Population exposure minl2P

P
.i;j /2A l cij

IP Incident probability minl2P

P
.i;j /2A l pij

PR Perceived risk min
l2P

X

.i;j /2A l

pij .cij /q

MM Maximum risk min
l2P

max
.i;j /2A l

cij

MV Mean-variance min
l2P

X

.i;j /2A l

.pij cij C kpij .cij /2/

DU Disutility min
l2P

X

.i;j /2A l

pij .exp.kcij � 1//

CR Conditional probability minl2P

 
P

.i;j /2A l

pij cij

,
P

.i;j /2A l

pij

!

The Traditional Risk model (TR) computes the expected value of the conse-
quence along path l (Sherali et al. 1997):

E
�
Rl
 D

X

.ik;jk/2A l

Y

.ih;jh/2A l ;h<k

.1� pihjh
/pikjk

cikjk
(1)

and manipulate it as a risk measure. In this model the shipment is terminated the
moment an accident occurs on an arc .i; j /. Using this objective, the choice of
the best route can be formulated as a nonlinear binary integer program. However,
the function (1) can be approximated as an additive function that leads to a tractable
shortest-path problem formulation (Erkut and Verter 1998). According to the North
American data on hazmat transportation accident statistics, the probabilities of an
accident to take place are extremely small, usually in the range of 10�8 and 10�6 per
mile traveled (Abkowitz and Cheng 1988).Therefore we can use the approximation

Y

.ih;jh/2A l ;h<k

.1 � pihjh
/ � 1

for all k. It follows that, the function (1) can be approximated by the following
function (Jin and Batta 1997):

E
�
Rl
 �

X

.i;j /2A l

pij cij (2)

which is much simpler to optimize, since the resultant problem is a shortest-path
problem with the cost of traversing an arc .i; j / being equal to pij cij .

Both the Population Exposure (PE) model (ReVelle et al. 1991) and the Incident
Probability (IP) model (Saccomanno and Chan 1985) can be viewed as two extreme
variations of the Traditional Risk (TR) model. The former focuses on reducing the
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accident probability, and the latter focuses on the total consequence on the impacted
region. Another similar model is the Perceived Risk (PR) model (Abkowitz et al.
1992), which uses a perception factor q for consequence to provide a risk-averse
decision (Abkowitz et al. 1992). However, the value of q is hard to understand
and difficult to quantify. The Conditional Risk (CR) model (Sivakumar et al. 1993)
evaluates the expected consequence assuming the first accident surely happens.

A big disadvantage of the Traditional Risk (TR) model is its risk-neutral attitude.
In other words, TR model fails to capture the public posture against hazmat trans-
portation. Motivated by this, the PR model has taken under consideration this defect
and includes a weight parameter on consequences to reflect the public reaction
on the risk. Erkut and Ingolfsson (2000) analyses three additional catastrophe-
avoidance modeling methods. The first model is the Maximum Risk (MM) model.
The objective of this model is to minimize the maximum consequence of the path
in order to avoid significant damages and casualties. The MM model measures how
far the tail of the consequence distribution extends. The second model, the Mean-
Variance (MV) model, is popularly used to appraise the trade-offs between return
and risk of an investment portfolio. The third model brings into play utility theory on
hazmat transportation to formulate the risk problem, and develops a Disutility (DU)
model in the form of U.c/ D exp.�c/ where � > 0. The DU model is risk-averse
in the sense that the .i C 1/st life lost costs more than the i th life lost.

These models depend on existing statistics for one or two risk parameters, and
often result in a unique optimal route, regardless the risk preference of the decision
maker. In PR, MV, and DU models, the decision maker may change a parameter
(q or k) to reflect own risk preference; however, it is unclear how to decide
such parameters in those models. VaR and CVaR models are motivated by such a
weakness of the previous models and provide a solution to it. They produce a more
flexible and reliable route modeling approach for hazmat transportation. Depending
on the decision makers’ attitude to risk, one can make multiple planning decisions
according to each individual risk preferences. Instead of a single optimal route
output, these models have a two dimensional framework which produces alternative
route choices given different confidence levels. In addition, while most existing
hazmat routing methods study the entire risk distribution (e.g. expected value as in
TR model), CVaR obviously focuses more on the long tail to avoid extreme events.
In financial investment problems, studying only the long tail may not result in an
optimal solution in some cases, because high risk can mean high return. However,
in hazmat transportation, high-risk (catastrophic hazmat accidents) should not be
traded with high-return. In conclusion, being risk-averse by focusing on the long
tail is more reasonable for hazmat transportation.

Value-at-Risk Minimization Model in Transportation

At this point, we will present the VaR risk model for hazardous material transporta-
tion and analyze its properties. Suppose we have a network G.N ; A /, with a single
origin–destination (O–D) pair for the transportation of the hazmat shipment. Let P
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denote the set of alternative routes l , which can be used for the shipment. Given a
confidence level ˛ 2 .0; 1/, and a path l 2P VaR is defined as follows:

VaRl
˛ D min

n
ˇ W P.Rl > ˇ/ � 1 � ˛

o
(3)

In other words, VaR is defined to be the minimal level ˇ such that the value of the
risk measure Rl exceeding that level ˇ has probability less than or equal to 1 � ˛.
Hence, our objective, given the set of alternative paths P , is to determine the path
l 2P which has the minimum VaR. That is,

VaR�
˛ D minfVaRl

˛ W l 2Pg (4)

Each path l consists of a set of arcs A l in ascending order. In addition, let
C l

.k/ denote the kth smallest value in the set fcij W .i; j / 2 Alg and pl
.k/ be the

corresponding arc accident probability. Then the risk measure Rl takes the following
values:

Rl D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

0 with probability1 �
mlP

iD1

pl
.i/

C l
.1/ with probabilitypl

.1/

:::
:::

C l
.ml /

with probabilitypl
.ml /

where ml D jAl j (the cardinality of Al).
Given Rl as above the cumulative distribution function (CDF) of Rl is:

FRl .ˇ/ D Pr.Rl � ˇ/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1 �
mlX

iD1

�l
.i/; if ˇ � 0

1 �
mlX

iD2

�l
.i/; if 0 � ˇ � C l

.1/

:::

1 �
mlX

iDkC1

�l
.i/; if C l

.k�1/ � ˇ � C l
.k/

:::

1; if C l
.ml/
� ˇ

where �l
.k/ D P.Rl D C l

.k//. Then using the above CDF and the fact that P.Rl �
VaRl / > ˛ we obtain
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VaRl
˛ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if0 � ˛ � 1 �
NmlX

iD1

�l
.i/

C l
.1/; if 1 �

NmlX

iD1

�l
.i/ < ˛ � 1 �

NmlX

iD2

�l
.i/

:::

C l
.k/; if 1 �

NmlX

iDk

�l
.i/ < ˛ � 1 �

NmlX

iDkC1

�l
.i/

:::

C l
. Nml/

; if 1 � �l
. Nml /

< ˛ � 1

(5)

To illustrate the distribution of the risk, we provide a simple example in the “An
Illustrative Numerical Example” section.

Based on (5) we obtain a set of probability segments .0; ˛l
1�; .˛l

1; ˛l
2�; :::; .˛l

k ; ˛l
kC

1�; :::; .˛l
Nml ; 1/, where ˛l

k D 1 �P Nml

iDk �l
.i/. Next, we define ˇl

˛ D VaR. Therefore

from (5) we obtain that ˇl
˛ D C l

.k/ if and only if

NmlX

iDkC1

�l
.i/ < 1 � ˛ �

NmlX

iDk

�l
.i/ (6)

Hence, using the definition of �l
.k/ we obtain

NmlX

iDkC1

�l
.i/ D

NmlX

iDkC1

P
�
Rl D C l

.i/

	
D

X

.i;j /2A l ;cij >C l
.k/

pij (7)

NmlX

iDk

�l
.i/ D

NmlX

iDk

P
�
Rl D C l

.i/

	
D

X

.i;j /2A l ;cij �C l
.k/

pij (8)

Consequently we conclude that ˇl is VaR for path l as in (3) if and only if the
following conditions are met:

X

.i;j /2A l ;cij >ˇl
˛

pij � 1 � ˛ (9)

X

.i;j /2A l ;cij �ˇl
˛

pij > 1 � ˛ (10)
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Hence, the VaR minimization problem (4) is equivalent to the following problem

min
l

ˇl
˛ (11)

subject to
X

.i;j /2A l ;cij >ˇl
˛

pij � 1 � ˛ 8i; j 2 N ; 8l 2P (12)

X

.i;j /2A l ;cij �ˇl
˛

pij > 1 � ˛ 8i; j 2 N ; 8l 2P (13)

Clearly, the optimal VaR value ˇ�̨, which is the optimal objective function value
of the problem (11), is one of cij values. One strategy to solve the problem (11) is
to examine all cij values in ascending order starting from the smallest value until
the two conditions (12) and (13) are met. The two summations of pij in (12) and
(13) clearly decrease with ˇl

˛ . Therefore the second condition (13) will be easily
satisfied for smaller ˇl

˛ values, while the first condition (12) will not. To satisfy the
first condition (12), we have to find a path l with the smallest

P
.i;j /2A l ;cij >C l

.k/
pij

for the given ˇl
˛ . As we examine cij , if we reach the point where both conditions are

met for the first time, the corresponding cij is the optimal solution ˇ�̨.
We elaborate this idea mathematically. Consider the set C D f0; C.1/; : : : ; C. Nm/ W

C.1/ < C.2/ < � � � < C. Nm/g which consists of all arc consequences values sorted in
ascending order. Then we know that ˇ�̨ 2 C . We reformulate the VaR minimization
problem as a bi-level formulation. First, we modify the arc probabilities for a given
ˇ˛ 2 C as follows:

Npij D
(

pij if cij > ˇ˛

0 otherwise
(14)

for all .i; j / 2 A . This modification of Npij certifies that arcs with consequences
smaller than ˇ˛ are considered in the route choice with greater importance than arcs
with consequences greater than ˇ˛. We let the binary variable xij be equal to 1 if
arc .i; j / belongs to the route used for the hazmat shipment and 0 otherwise.

Then for a given confidence level ˛, we have the following bilevel problem
equivalent to the VaR model:

min
ˇ˛

X . N̨ ; f /ˇ˛ (15)

subject to

ˇ˛ 2 C (16)

f D min
x2�

X

.i;j /2A

Npij xij (17)
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where

� D
n
x W

X

j

xij D 1for i D O;
X

j

xj i D 1for i D D;

X

j

xj i �
X

j

xij D 0; 8i … fO; Dg; xij 2 f0; 1g 8i; j 2 N
o

(18)

where

X . N̨ ; f / D
(

0 if f � N̨ 	 1 � ˛

1 otherwise
(19)

The outer problem is solved when X . N̨ ; f /ˇ˛ will become zero, i.e., f � 1�˛,
and therefore the first condition (12) is met with the smallest such ˇ˛. We note that
the inner problem can be easily solved as it is an instance of shortest-path problems.

The proposed algorithm is as follows:

• Step 1: Sort all the arc consequences in ascending order, C D f0; C.1/; :::; C. Nm/g,
and set n 0.

• Step 2: Let ˇn
˛ D C.n/ and update Npij values. Then solve the following problem:

f D min
x2�

X

.i;j /2A

Npij xij

in order to obtain the path ln and the objective function value f n, using an
efficient shortest path algorithm like Dijkstra’s Algorithm.

• Step 3: If f n � N̨ or n D Nm, stop; the current path ln is the optimal VaR path for
confidence level ˛.

• Step 4: If f n > N̨ and n < Nm, then set n nC 1 and go to Step 2.

Now, we provide the properties of the VaR model for the extreme values of the
confidence level ˛. Proofs are found in Kang et al. (2013).

Theorem 1. A scalar ˛min exists, such that VaR� D 0 for all ˛ 2 .0; ˛min�.

Theorem 1 shows that in the case where ˛ is very small, then the value of VaR, for
all the paths, is zero. For this reason, the decision maker can make his decisions
based on other criteria like shortest distance or minimum cost.

Theorem 2. A scalar ˛MM
max exists such that l�

.˛�VaR/ 	 l�
MM for all ˛ 2 .˛MM

max ; 1/,
where l�

MM is the optimal route determined by the MM model.

In other words, Theorem 2 tells that for a sufficiently large value of the confidence
level ˛ close to 1, the optimal route determined by the VaR model is the same as
the one determined by the Maximum Risk model. This result reveals the extreme
risk-averse attitude of the MM model.
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Theorem 3. For any interval .˛kP ; ˛kPC1� 
 .0; 1/, the optimal route proposed
by the VaR model remains the same for all the values of the confidence level in this
interval.

Theorem 3 declares that no matter the changes in the confidence level, there are
always ranges of confidence intervals in which there is a unique optimal solution.
In addition, from (5) we know that every candidate path in P is possible to have
different risk value when the confidence level belongs into different confidence
intervals marked

�
1 �

NmPX

iDk

�P
.i/ ; 1 �

NmPX

iDkC1

�P
.i/

�

Thus, for different confidence intervals, it is possible a different path to exist which
minimizes the risk. Therefore, in a realistic network (a large network, with many
available alternative paths) it is likely that a shipment would have different optimal
solutions whenever the confidence level ˛ changes.

In general, there are different optimal paths under various confidence levels ˛ 2
.0; 1/. We can therefore generate a set of optimal VaR paths for confidence levels
of interests, and use the set as a basis for route choices. We will illustrate how
we generate such a set in “An Illustrative Numerical Example” and “Case Study”
sections.

Conditional Value-at-Risk Minimization Model
in Transportation

Despite its wide usage, VaR has been criticized as a risk measure due to the fact
that it is not a coherent risk measure (Artzner et al. 1999; Dowd and Blake 2006)
and it might lead to inaccurate perception of risk (Nocera 2009; Einhorn 2008).
It is claimed that VaR cuts off and ignores what is happening in the tail of the
distribution as shown in Fig. 1. A similar argument is also valid under the scope of
hazmat transportation. Due to the fact that accident probabilities are very small in
each road segment with high consequences at the same time, using VaR as a risk
measure may result the cut off of that particular road segment.

Both VaR and CVaR are quantile-based risk measures (Dowd and Blake 2006).
Their main difference is the fact that CVaR accounts for the distribution in the long
tail whereas VaR does not. CVaR is also a coherent risk measure in the sense of
Artzner et al. (1999) for general loss distributions, including discrete distributions
(Pflug 2000; Rockafellar and Uryasev 2002). These additional properties possessed
by CVaR gives a motivation for the development of the CVaR risk model presented
below.

We assume a directed and weighted graph G.N ; A / and a single origin–
destination pair. Also suppose that some estimates of hazmat accident probabilities
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Fig. 1 VaR and CVaR deviations [Source: Sarykalin et al. (2008)]

and accident consequences, denoted by pij and cij , respectively, are available for
each road segment .i; j /. Our objective, given a confidence level ˛, is to choose a
path l that minimizes CVaR as follows:

min
l2P

CVaRl
˛ (20)

where P is the set of all paths in the network. From the definition of CVaR, for a
path l 2P at the confidence level ˛ we have

CVaRl
˛ D

1

1 � ˛

Z 1

˛

VaRl
ˇ dˇ (21)

which is in the form of the expected shortfall (Acerbi 2002). Since VaRl
ˇ and its

integration are not available in an analytical form, CVaR in the form (21) is not used
in an optimization format problem.

An alternative definition of CVaR for a path l 2 P at the confidence level ˛ is
(Rockafellar and Uryasev 2002; Sarykalin et al. 2008):

CVaRl
˛ D �l

˛VaRl
˛ C .1 � �l

˛/EŒRl W Rl > VaRl
˛� (22)

where �l
˛ D

�
PrŒRl � VaRl

˛� � ˛
	.

.1 � ˛/ . While the second component,EŒRl W
Rl > VaRl

˛�, is incoherent (Acerbi 2002, 2004), the entire CVaRl
˛ in (22) is a
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coherent risk measure (Rockafellar and Uryasev 2002; Pflug 2000). Note that the
second component in the hazmat context can be approximated as follows:

EŒRl W Rl > VaRl
˛� �

X

.i;j /2A l W cij >VaRl
˛

pij cij (23)

The measure CVaRl
˛ given in the form (22) with an approximation (23) is hard to

be considered as an objective function for the CVaR minimization problem due to
the conditioning.

Rockafellar and Uryasev (2000) have shown that CVaR can be computed by
minimizing the following function with respect to � .

ˆl
˛.�/ D � C 1

1 � ˛
EŒRl � ��C (24)

� � C 1

1 � ˛

8
<

:

0

@1 �
X

.i;j /2A l

pij

1

A Œ0 � ��C C
X

.i;j /2A l

pij Œcij � ��C
9
=

; (25)

where A l is the set of arcs in the path l and the notation Œx�C D max.x; 0/. We
observe that a minimum of (25) always occur for � � 0. We can show this by
comparing the two cases of � D 0 and � D �m where m > 0:

ˆl
˛.0/ � 1

1 � ˛

8
<

:
X

.i;j /2A l

pij cij

9
=

;

ˆl
˛.�m/ � �mC 1

1 � ˛

8
<

:

0

@1 �
X

.i;j /2A l

pij

1

AmC
X

.i;j /2A l

pij .cij Cm/

9
=

;

D �mC 1

1 � ˛

8
<

:mC
X

.i;j /2A l

pij cij

9
=

;

D ˛m

1 � ˛
C 1

1� ˛

8
<

:
X

.i;j /2A l

pij cij

9
=

;

which indicates that ˆl
˛.0/ < ˆl

˛.�m/ for all m > 0 and ˛ 2 .0; 1/.
Therefore, we can write the CVaR minimization problem in the following form:

min
l2P

CVaR˛ D min
l2P ;��0

�
� C 1

1 � ˛

X

.i;j /2A l

pij Œcij � ��C
�
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D min
x2�;��0

�
� C 1

1 � ˛

X

.i;j /2A

pij Œcij � ��Cxij

�

D min
��0

�
� C 1

1 � ˛
min
x2�

X

.i;j /2A

pij Œcij � ��Cxij

�
(26)

where � is defined in (18).
We can find an optimal solution of the CVaR minimization problem (26) by

decomposing R
C into the following intervals :

Œ0; C.1/�; ŒC.1/; C.2/�; : : : ; ŒC. Nm�1/; C. Nm/� and ŒC. Nm/;1/

where C.k/ is the kth smallest value in the set fcij W .i; j / 2 A g. Then defining
C.0/ D 0, we obtain:

X

.i;j /2A

pij Œcij � ��Cxij

D

8
<̂

:̂

X

.i;j /2A ;cij >C.k/

pij .cij � �/xij ; if � 2 ŒC.k/; C.kC1/�; k D 0; : : : ; Nm � 1

0; if � 2 ŒC. Nm/;1/

Therefore, CVaR�
˛ D min

kD0;:::; Nm CVaRk
˛ , where problem:

CVaRk
˛ D min

��0

�
� C 1

1 � ˛
min
x2�

X

.i;j /2A ;cij >C.k/

pij .cij � �/xij

�
(27)

For each k, we are minimizing a linear function of � in (27), over the interval
ŒC.k/; C.kC1/�. Because of that, we know that the optimal � value will be obtained
either at � D C.k/ or at � D C.kC1/. Therefore, we can obtain an optimal solution
�� by examining only the values in the set f0; C.1/; C.2/; : : : ; C. Nm/g. That is:

CVaR�
˛ D min

�D0;C.1/;:::;C. Nm/

�
� C 1

1 � ˛
min
x2�

X

.i;j /2A

pij Œcij � ��Cxij

�
(28)

This analysis leads to the following algorithm for solving (28):

• Step 1: For k D 0; 1; : : : ; Nm solve the following nominal problems:

CVaRk
˛ D C.k/ C 1

1 � ˛
min
x2�

X

.i;j /2A ;cij >C.k/

pij .cij � C.k//xij
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• Step 2: Let k� D arg min
kD0;1;:::; Nm CVaRk

˛ .

• Step 3: Then we obtain a solution: CVaR�
˛ D CVaRk�

˛ and x� D xk�

.

Next we provide some important properties of the CVaR model, similar to the
ones given earlier for the VaR model. Proofs are found in Toumazis and Kwon
(2012).

Theorem 4. There exists a scalar ˛min, such that l�
CVaR D l�

TR, 8˛ 2 .0; ˛min�,
where l�

CVaR and l�
TR are the optimal paths determined by the CVaR model and the

Traditional Risk models respectively.

Theorem 5. There exists a scalar ˛MM
max , such that l�

CVaR D l�
MM, 8˛ 2 .˛MM

max ; 1/,
where l�

CVaR and l�
MM are the optimal paths determined by the CVaR model and the

Maximum Risk models respectively.

These two theorems basically say that for sufficiently small ˛, the CVaR
minimization is equivalent to the TR model, and for sufficiently large ˛, the
CVaR minimization model is equivalent to the MM model. The property of the
CVaR model for a small ˛ value is an important improvement from the VaR model.
In “Case Study” section we will observe that the optimal VaR values for all available
paths are zero until the confidence level is as big as 0.999977 in a realistic hazmat
network. In fact, the confidence level ˛ D 0:999977 may be regarded safe enough
in many other situations, it is easy to misuse the VaR model, and in such cases
the VaR model will give an arbitrary path chosen by the shortest-path problem
solver. However, even for the same ˛ value, the CVaR minimization model gives
the optimal TR path; therefore it is at least a risk-neutral path.

An Illustrative Numerical Example

In this section, we demonstrate the computations of VaR and CVaR on a small
example network shown in Fig. 2. For this network we defined node 1 as the origin
and node 15 as the destination. The example network consists of 15 nodes and 33

1

2 3

4

5 6 7

8

9 10

11

12

13

14

15Fig. 2 A test network with
15 nodes and 33 arcs
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Table 4 Cost coefficients used for the test network

.i; j / pij cij .i; j / pij cij

(1, 4) 0.0007 7,670 (6, 8) 0.0005 5,248
(1, 2) 0.0002 7,800 (7, 11) 0.0063 5,670
(2, 4) 0.0009 920 (7, 12) 0.0007 6,576
(2, 3) 0.0004 7,177 (8, 7) 0.0021 8,754
(2, 5) 0.0008 4,112 (8, 10) 0.0003 5,329
(2, 6) 0.0004 9,894 (8, 12) 0.0005 7,656
(3, 9) 0.0008 8,553 (9, 10) 0.0009 5,714
(3, 8) 0.0008 7,474 (9, 11) 0.0004 3,210
(3, 6) 0.0004 1,534 (10, 13) 0.0025 1,452
(3, 7) 0.0006 960 (10, 14) 0.0003 5,606
(4, 3) 0.0003 4,542 (11, 14) 0.0001 9,220
(4, 9) 0.0001 4,540 (11, 15) 0.0009 5,202
(4, 8) 0.0008 3,724 (11, 13) 0.001 2,427
(5, 3) 0.0001 7,162 (12, 15) 0.0006 482
(5, 6) 0.0002 3,772 (12, 14) 0.0007 4,643
(6, 7) 0.0012 2,460 (13, 14) 0.0028 4,142

(14, 15) 0.0059 1,615

Table 5 Optimal paths given by the VaR model for various confidence levels ˛

Confidence level ˛ Optimal VaR route
Optimal
VaR value

Œ0; 0:997899� 1 ! 4 ! 9 ! 11 ! 15 0
Œ0:99790; 0:99840� 1 ! 2 ! 6 ! 8 ! 12 ! 15 482
Œ0:99841; 0:99849� 1 ! 2 ! 4 ! 8 ! 12 ! 15 920
Œ0:99850; 0:99879� 1 ! 2 ! 4 ! 3 ! 7 ! 12 ! 15 960
Œ0:99880; 0:99920� 1 ! 2 ! 4 ! 9 ! 11 ! 14 ! 15 1,615
Œ0:99921; 0:99959� 1 ! 2 ! 4 ! 9 ! 11 ! 14 ! 15 3,210
Œ0:99960; 0:99969� 1 ! 2 ! 4 ! 9 ! 11 ! 13 ! 14! 15 4,142
Œ0:99970; 0:99979� 1 ! 2 ! 4 ! 9 ! 11 ! 13 ! 14! 15 4,540
Œ0:99980; � 1� 1 ! 4 ! 3 ! 7 ! 11 ! 15 7,670

links. Accident probabilities and accident consequences are randomly generated and
are shown in Table 4.

We compare the optimal routes given by the VaR model with the optimal routes
by the CVaR model. The optimal paths for various confidence levels by the VaR and
CVaR models are given in Tables 5 and 6, respectively. Please note that we did not
provide CVaR values in Table 6, while we provided VaR values in Table 5. That is
because the value of the CVaR measure constantly changes within any interval of ˛.
However, one can see the optimal CVaR-values from Fig. 3.

To understand VaR measure better, we give a closer look on how the risk is
distributed in a path at a specific confidence level, for example, ˛ D 0:99930. At
this confidence level the optimal path proposed by the VaR model is:

1! 2! 4! 9! 11! 14! 15
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Table 6 Optimal paths given by the CVaR model for various confidence
levels ˛

Confidence level ˛ Optimal CVaR route

Œ0; 0:996359� 1 ! 2 ! 4 ! 9 ! 11 ! 15
Œ0:99636; 0:999146� 1 ! 2 ! 4 ! 9 ! 11 ! 14 ! 15
Œ0:999147; 0:99979� 1! 2 ! 4 ! 9 ! 11 ! 13 ! 14 ! 15
Œ0:99980; � 1� 1 ! 4 ! 3 ! 7 ! 11 ! 15
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Fig. 3 VaR and CVaR optimal values for various confidence levels

Given this path, one can find the accident probabilities and consequences of the arcs
that are included in the path. Namely, the path consists of the arcs .1; 2/, .2; 4/,
.4; 9/, .9; 11/, .11; 14/, .14; 15/, which have respectively the following accident
probabilities and consequences:

.i; j / pij cij

(1, 2) 0.0002 7,800
(2, 4) 0.0009 920
(4, 9) 0.0001 4,540
(9, 11) 0.0004 3,210
(11, 14) 0.0001 9,220
(14, 15) 0.0059 1,615
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The risk from traversing the path has the following distribution:

R D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

0 with probability 0:9896

920 with probability 0:0009

1; 615 with probability 0:0059

3; 210 with probability 0:0004

4; 142 with probability 0:0028

4; 540 with probability 0:0001

7; 800 with probability 0:0002

9; 220 with probability 0:0001

(29)

Given R as above, we then have the following cumulative distribution function
(CDF) of R:

FR D P.R � ˇ/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

0:9896 if ˇ � 0

0:9905 if 0 < ˇ � 920

0:9964 if 920 < ˇ � 1; 615

0:9968 if 1615 < ˇ � 3; 210

0:9996 if 3210 < ˇ � 4; 142

0:9997 if 4142 < ˇ � 4; 540

0:9999 if 4540 < ˇ � 7; 800

1 if 7800 < ˇ � 9; 220

(30)

The value of VaR for this path can be computed as follows:

VaR D minfˇ W P.R > ˇ/ � 1 � ˛g
D min fˇ W P.R > ˇ/ � 1 � 0:99930g
D min fˇ W P.R > ˇ/ � 0:0007g

Therefore, from (30), we can find the value of the minimum ˇ such that P.R >

ˇ/ � 0:0007. We can write

P.R > ˇ/ � 0:0007 ) 1 � P.R � ˇ/ � 0:0007 ) P.R � ˇ/ � 0:9993

Hence we obtain VaR D 3; 210.
Note that for ˛ > 0:9998, the value of VaR from traversing the above path should

be 7,800, which is the maximum accident consequence (i.e. max cij ) in the path.
However, for confidence levels greater than 0.9998, say 0.9999, we can see that by
following a different route, namely 1 ! 4 ! 3 ! 7 ! 11 ! 15, the value of
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VaR D 7; 670. Therefore, since the VaR value for the latter path is smaller than
the value of the risk measure resulting by the former path, the algorithm alters the
proposed path to the one with the minimum VaR value.

Extending this idea, we can conclude the following: Since the smallest accident
probability in the data set we used, is 0.0001 (see Table 4) for confidence levels
greater than 0.9999 it is guaranteed that the value of VaR for the proposed route
would be equal to the maximum accident consequences in the set of arcs forming
that proposed optimal path. In other words, at confidence levels beyond that value,
the VaR model is equivalent to the Maximum Risk (MM) model; see Theorem 2.

Similarly, one can make the same arguments for the CVaR model following the
same exact procedure as demonstrated above for the VaR model.

For the remainder of this section, we would like to emphasize a number of
interesting observations by studying Tables 5 and 6. First, we observe what the two
models have in common:

• In both models, each optimal route maintains its optimality within a specific
interval of confidence level values.

• It is clear that the proposed models generate various optimal routes.
• For confidence level values very close to 1, both models propose the same path

as the Maximum Risk Model.

Now, we list what differences the two models have:

• The optimal paths proposed by the VaR and CVaR models are not necessarily the
same for each confidence level. There are cases that the optimal routes given by
the two models are the same for the same ˛-value, but this is not always the case.

• The optimal value of the risk measures for the same confidence level is not always
the same for the two models. Specifically, as stated earlier, when VaR is the risk
measure, then its optimal value remains constant for an interval of confidence
levels. On the other hand, CVaR continuously alters its value depending on the
value of the confidence level.

• The number of alternative optimal paths given by the VaR model is greater than
the one from the CVaR model. This is because the VaR model covers from risk-
indifferent to risk-averse paths, while CVaR model only covers from risk-neutral
to risk-averse paths.

All the above observations are detailed discussed in the following section, which
describes a case study we conducted on the Albany road network. In this way, the
reader may better understand the importance of the above findings when they are
applied on existing networks.
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Case Study

In order to develop our model and obtain numerical results, we utilized the Albany,
New York, USA transportation network. The Albany network used in this chapter
consists of 90 nodes and 148 arcs and is demonstrated in Fig. 4.

We computed the nominal accident probabilities using the formula pij D 10�6�
(length of edge .i; j /) as in Abkowitz and Cheng (1988). We also used the �-
neighborhood concept developed by Batta and Chiu (1988) to compute the nominal
accident consequences for every arc in the network. Both the road lengths and
population statistics were obtained from the Department of Transportation and
Department of Commerce Websites.

Computations were performed by using Matlab2010a and ran on a 2.8 GHz Intel
Core 2 Duo computer system. We used the O–D pair (1, 12) to illustrate the VaR
and CVaR models. Both models were tested for the same data sets, under various
confidence levels in order to authenticate their effectiveness. The computation times
for VaR and CVaR models were less than 2 s.

Next we present our findings from the development of the proposed VaR model.
In Table 7 we provide, for various confidence levels, the corresponding optimal
paths and the value of the VaR, as a risk measure resulted from traversing the
proposed route.

From the resulting VaR optimal routes, we highlight our findings. First, we
can see that for confidence levels in the interval Œ0; 0:999977� the VaR model is
not effective since the route that recommends is risk-indifferent. That is, the VaR
measure has zero value for all paths. Therefore the optimal path presented in the
table may not be safe at all. In fact, it is simply an arbitrary path chosen by
the algorithm among all available paths. In this case the decision maker should
determine the shipment route based on other criteria. This result also testifies the
validity of Theorem 1.

We wish to emphasize here the reason for which the optimal route given by
the model for ˛ 2 Œ0; 0:999977� remains unchanged while for confidence levels
greater than 0:999977 the suggested path regularly changes as Table 7 indicates.
That occurs because the accident probabilities pij for every link in the network, are
very small. As a result the confidence level value mentioned above is considered to
be small and consequently the value of 1�˛ (see Fig. 1) is quite big. That means that
important data are not captured from the model at confidence levels in the interval
Œ0; 0:999977�.

Secondly, as Theorem 3 indicates, we can also observe in Table 7 that every path
proposed by the VaR model preserve its optimality for a certain confidence level
interval. More importantly, it is obvious that the proposed model generates various
routes depending on the value of the confidence level. Consequently, the proposed
VaR model gives to the decisions makers the opportunity to alter their decisions
depending on their confidence providing a flexible framework.
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Fig. 4 Albany area highway network

The optimal paths recommended by the CVaR model are shown in Table 8.
As one can easily see, the optimal routes resulted by the CVaR model for
confidence levels in the interval Œ0; 0:999991� are the same for the same reason as
discussed earlier for the VaR model. Specifically for these range of values of the
confidence level, the resulting optimal routes are the same as the one resulted by
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Table 7 Optimal paths given by the VaR model for various confidence levels ˛

Confidence
level ˛ Optimal VaR route

Optimal
VaR value

0 1,74,78,42,82,27,20,21,10,11,12 0
0.75 1,74,78,42,82,27,20,21,10,11,12 0
0.999977 1,74,78,42,82,27,20,21,10,11,12 0
0.999978 1,70,45,71,58,59,4,5,17,18,19,20,21,10,11,12 824.10
0.999979 1,70,45,71,58,59,4,5,17,18,19,20,21,10,11,12 837.14
0.999980 1,70,45,71,58,59,4,5,17,18,19,20,21,10,11,12 837.14
0.999981 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,047.71
0.999982 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,047.71
0.999983 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,143.96
0.999986 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,143.96
0.999987 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,212.47
0.999988 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,212.47
0.999989 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,301.19
0.999991 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 1,301.19
0.999992 1,70,45,13,81,72,73,63,64,65,54,66,67,68,41,29,30,12 3,312.53
0.999994 1,70,45,13,81,72,73,63,64,65,54,66,67,68,41,29,30,12 3,312.53
0.999995 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 4,908.01
0.999998 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 4,908.01
0.999999 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 5,062.25

Table 8 Optimal paths given by the CVaR model for various confidence levels ˛

Confidence
level ˛ Optimal CVaR route

Optimal
CVaR value

0 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 0.058961
0.75 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 0.11792
0.999977 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,279.26598
0.999978 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,342.66171
0.999979 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,408.6241
0.999980 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,480.4196
0.999981 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,556.3757
0.999982 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,640.1904
0.999983 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 2,730.4686
0.999986 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 3,070.4346
0.999987 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 3,218.0979
0.999988 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 3,385.2331
0.999989 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 3,575.9012
0.999991 1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 4,081.3924
0.999992 1,70,45,13,81,72,73,63,64,65,54,66,67,68,41,29,30,12 4,339.9188
0.999994 1,70,45,13,81,72,73,63,64,65,54,66,67,68,41,29,30,12 4,682.3820
0.999995 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 4,940.3977
0.999998 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 4,988.9863
0.999999 1,70,45,13,14,15,55,56,62,63,64,65,54,66,67,68,41,29,30,12 5,062.2545
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Table 9 Traditional Risk
model Optimal route EŒR�

1,70,45,13,81,72,73,69,66,67,68,41,29,30,12 0.058961
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Fig. 5 Optimal VaR and CVaR values for various confidence levels

the Traditional Risk model as shown in Table 9. These observations numerically
confirms Theorem 4.

We emphasize here the advantage CVaR has towards VaR, based on how the two
risk measures exploit the long tail of the distribution. Even for relatively smaller
confidence levels values, CVaR model propose as optimal path the same route as
VaR propose for confidence levels greater than 0:999978. CVaR alters its proposed
route less times than the VaR, not because of some defect, but because of a better
starting point given to the model by the better account of the distribution’s long tail.

Obviously, CVaR and VaR optimal routes for the same confidence level are not
always the same. For example, for ˛ D 0:999980 we can see that the optimal routes
provided by the two models differ from each other. Of course, the proposed optimal
path for confidence levels very close to 1 is same in both models with the optimal
VaR and CVaR values being equal.

Figure 5 shows how the optimal values of the two risk measures increase as the
value of confidence level is approaching 1.

The remainder of this section focuses on the comparison of the two models under
specific confidence levels. We proceed to compare two cases. First let us take a
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Fig. 6 Graphical representation of optimal paths when ˛ D 0:999977

small confidence level ˛ D 0:999977. This value of ˛ is considered to be small
since we compare it with the average hazmat accident probability level which, as
mentioned before, is 10�6. Figure 6 shows graphically the optimal paths for each
model. Comparing the optimal routes, we see that the VaR model proposes an
optimal path that starts along I-90 but immediately continues on NY State Route
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30 heading north, and then follows NY State Route 5 all the way through Albany
City where it reaches U.S. Route 20. Then it continues on U.S. Route 20 until it
crosses I-90 on which is finished. We note here that the route given by the VaR
model passes directly through the high population density areas of Albany City,
Schenectady and Scotia.

In contrast, the route proposed by the CVaR model seems to be more reasonable
with less cutoff risks compared to the one proposed by the VaR model. Note that
this route is the same as the one given by the Traditional Risk model. It starts along
I-90 and immediately detours and continuous along NY State Route 30 as well only
this time heading south until it reaches NY State Route 443 on which it continues.
Then it follows NY State Route 396 and then it detours on I-87 for a short period.
Finally it finishes on I-90 crossing the NY State Thruway Berkshire Connector. With
a more detailed study of the proposed route, we can see that CVaR’s optimal route
also passes through the populated area of Esperance. However a possible hazmat
accident at that area will not have the same consequences as one in the center
of Albany City from which the optimal path proposed by the VaR model passes
through. At the same time, it avoids I-90 until the end, at which point there is
no other choice but to take I-90 in order to reach the destination. Hence, we can
conclude that the CVaR model provides a more risk-averse framework compared to
the VaR model. In other words, CVaR model handles the risk in the long tail in a
better way.

Similarly we provide the resulting optimal paths for ˛ D 0:999999 in Fig. 7.
We observe that for confidence level values greater than 0:999981 both models
suggest the same path for respectively same confidence levels (it is obvious from
the comparison of Tables 7 and 8). This is something that we expected, since the
value of 1 � ˛ is getting closest to zero (as the ˛ value increases) and therefore the
two models captures the same information from the tail of the distribution (as shown
in Fig. 1).

Also note, that for confidence level approximately equal to 100 % both VaR and
CVaR proposes the same route. In addition the values of their risk measures are
almost equal as shown in Tables 7 and 8.

Extensions and Conclusions

This chapter demonstrates some new ideas that can be applied in hazardous
materials transportation which are based on the risk measurements Value-at-Risk
(VaR) and Conditional Value-at-Risk (CVaR). The objective of the proposed models
was to minimize the risk experienced by the transportation of a hazmat shipment
along the Albany, NY road network under certain confidence level. Even though
the definition of VaR model is easier to understand, we showed that the proposed
CVaR model is easier to optimize and it captures the risk in the long tail in a better
way. Both models provide a flexible framework to the decision maker resulting in
different optimal route choices for different confidence intervals.
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Fig. 7 Graphical representation of optimal paths when ˛ D 0:999999
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Hazardous Facility Location Models
on Networks

Marcos Colebrook and Joaquı́n Sicilia

Introduction

This chapter aims to be a comprehensive compilation of references and methods
dealing with undesirable facility location on networks. In this sense, more than
90 papers have been briefly commented, along with several models on undesirable
single facility location on networks with multiple criteria that have been analyzed
and described.

Most of the papers most regarding location problems address the siting of
facilities such as emergency services (police/fire stations), educational centers,
medical facilities, etc., that are considered desirable by the surrounding population.
However, there are some other facilities such as garbage dump sites, landfills,
chemical plants, nuclear reactors, military installations and polluting (noise/gas)
plants that turn out to be undesirable (repulsive) for the surrounding population,
that avoids them and tries to stay away from them. In this sense, Erkut and Neuman
(1989) distinguish between noxious (hazardous) and obnoxious (nuisance) facilities,
although both can be simply regarded as undesirable.

Despite these undesirable facilities being necessary in general to the community,
for instance, garbage dump sites, gas stations, electrical plants, etc., the location
of such facilities might cause a certain disagreement among the population. Such
a disagreement may result in a true opposition of people to the installation of
undesirable facilities in their neighborhood. Moreover, in the last decade, a new
nomenclature has been developed to define these oppositions: NIMBY (Not In My
Back Yard), NIMNBY (Not In My Neighbor’s Back Yard), NIABY (Not In Anyone’s
Back Yard), NIMTOO/NIMTOF (Not In My Term of Office), NOPE (Not On Planet
Earth), LULU (Locally Unwanted Land Use), BANANA (Build Absolutely Nothing
Anywhere Near Anyone).
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Taking these concerns into account, and due to the great concern on environ-
mental issues that has arisen in the last decades, this chapter aims to analyze some
undesirable facility location models, preferably on networks.

On the other hand, network location models have usually dealt with single
criterion problems, that is, concerning one weight per node and/or one length per
edge. However, to properly model many real problems the decision maker requires
placing parameters on both the nodes such as demand, importance, number of
customers, etc., and on the edges such as length, time, travel cost, etc. Many
researchers, in several excellent reviews and books, for instance, ReVelle, Cohon
and Shobrys (1981a, b), Ross and Soland (1980), Krarup and Pruzan (1990),
Current, Min and Schilling (1990), Daskin (1995), have deeply emphasized the
importance of dealing with multiple objectives in Location Analysis.

Furthermore, many authors have deeply argued in the literature that a lot of
multicriteria/multiobjective location problems have remained unresearched even
though this topic has become quite relevant in the last three decades. In this sense,
Erkut and Neuman (1989) emphasized on the need for multiobjective approaches to
the siting of undesirable facilities when they stated that (p. 289): “Current models
can be used to generate a small number of candidate sites, but the final selection of
a site is a complex problem and should be approached using multiobjective decision
making tools.” Daskin (1995) and Zhang (1996) also pointed out not only the need
to include multiple criteria in undesirable facility location problems, but also the fact
that poor attention has been paid by researchers to these problems and hence, scarce
research has been done in this promising field. Therefore, section “Undesirable
Facility Location on Multicriteria Networks” of this chapter mainly focuses on
network location models concerning multiple criteria, in terms of considering
several node weights and several edge lengths.

In the remaining paragraphs we summarize the contents of the chapter. In section
“Network Location Models Within Location Theory” we justify the importance
of Network Location Models within the field of Location Theory. Section “Brief
Historical Background and Review of the Literature” allows the reader to get
acquainted with the definition and classical literature in Location Theory. In this
respect, more than 90 references are reviewed, from surveys and books in general
location problems, to more specialized papers on multicriteria undesirable location
models on networks. Section “Basic Definitions and Notation” presents the basic
definitions and notation used throughout the chapter for the standard networks and
also for networks with multiple parameters on both nodes and edges. The problem
of locating an undesirable facility on a network is addressed in section “Locating
Undesirable Facilities on Simple Networks.” Section “Undesirable Facility Location
on Multicriteria Networks” is devoted to the location of undesirable facilities
on multicriteria networks. In section “Conclusions and Directions for Further
Research” we summarize the conclusions and describe some open problems
that may be researched with regards to the location/transportation of hazardous
materials. Finally, the last section lists all the bibliography referenced.
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Network Location Models Within Location Theory

In a very wide sense, location problems deal with finding the right site where one
or more new facilities (services) should be placed, in order to optimize (minimize
or maximize) some specified criteria, which are usually related to the distance
(performance measure) from the facilities to the demand points (customers).

The mathematical field that formulates location problems, builds up appropriate
mathematical models and derives methods for solving them is called Location
Theory or Location Analysis. Being a branch of the Operational Research frame-
work, this subject provides decision-makers with qualitative tools to find good
solutions for realistic location decision problems. Besides, modern Location Analy-
sis has drawn the interest of practitioners such as economists, geographers, regional
planners and architect researchers, as well as researchers in diverse fields like
Industrial Engineering, Management Science and Computer Science.

Regarding location theory classification, location problems mostly fall in one of
the following three categories:

• Continuous location: locations are allowed to be anywhere in a continuous d
dimensional space.

• Discrete location: a finite number of possible locations on the space are specified
in advance. Sometimes it is also called location-allocation.

• Network location: special kind of location problems which are modeled on
networks or trees.

In this chapter we focus on Network Location Problems. This type of problems
can model real location problems on river networks, air transport networks (flight
corridors), ocean transport networks (shipping lanes); highways, roads, avenues
and street networks; and communication and computer networks. The literature on
network location is full of inherent real applications, some of which will be briefly
mentioned in the next literature review.

Despite most of these location problems seeming to be close related to the
contemporary world, they have been originally proposed centuries ago. This is
described in the next section where we present a brief historical background, as
well as a comprehensive review of the literature on Network Location Analysis.
After this, we introduce a general notation and basic concepts in Location Theory.
These concepts are used to describe the models developed in the following sections.

Brief Historical Background and Review of the Literature

The origin of modern location theory is credited to A. Weber (1909), who
incorporated the original problem proposed by Fermat into Location Analysis in
his influential essay on the theory of industrial location “Über den Standort der
Industrien” (Theory of the location of industries), translated later by Friedrich
(1929).
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Jordan (1869) obtained a characterization of the median set of a tree. With
regards to location problems on general networks, we must mention Hakimi (1964),
who introduced both the median and the center on weighted networks, and thus,
his principal paper set the foundations for the development of forthcoming network
location problems.

Literature on Location Analysis is extremely huge and fairly interlaced. One of
the first and most extensive compilations is due to Domschke and Drexl (1985), who
compiled a bibliography of over 1,800 papers. Later on, Drezner (1995) provided
more than 1,200 references. Trevor Hale (1998) keeps a web page with a list of over
3,400 location science, facility location and related references. And this number
keeps counting!

Next, we cite some reviews, surveys and books on classical location problems.

Surveys, Reviews and Books on Location Problems

For a reader not quite acquainted with Location Analysis, we now cite some
interesting bibliography on classical location problems and models.

A classical and state-of-the-art text on discrete location problems is due to
Mirchandani and Francis (1990). Drezner (1995) presented a wide-ranging survey
of location analysis. Drezner and Hamacher (2004) covered theory, methodology
and selected applications of Location Analysis. Eiselt and Sandblom (2004) present
a unified treatment of decision analysis, location theory and scheduling, with topics
ranging from multicriteria decision-making to location and layout planning.

Chan (2005) describes procedures to perform site location, land-use planning,
location-routing, competitive allocation of products/services and spatial forecast-
ing. Nickel and Puerto (2005) address the flexible location problem called the
Ordered Median Problem (OMP), presenting both structural properties and solution
approaches of the OMP for continuous, network and discrete location problems.

Some of the latest books on Location Analysis are from Farahani and Hekmatfar
(2009), who describe the four main parts (customers, facilities, space and metrics)
for each specific location model exemplified by real-world cases; and from Eiselt
and Marianov (2011), who compile several contributions written by eminent experts
in the field of location analysis, surveying the original seminal papers and providing
an up-to-date review of the latest references.

Since the main goal of this chapter is to describe the major achievements on
network location regarding hazardous facilities, in the subsequent sections we
review, in chronological order, the most outstanding references on location of
undesirable facilities on networks considering both one single criterion and several
criteria.
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Undesirable Facility Location Problems on Networks

There are not many papers devoted to location of undesirable (sometimes called
obnoxious) facilities on networks. This subject barely emerged in mid 1970s, and
gradually drew the interest of researchers due to environmental issues. These types
of problems are the opposite of the classical center (minimax) and median (minisum)
problems, and hence, they are usually modeled using the maximin and the maxisum
criteria. Other authors established alternative criteria which are not covered in this
chapter. Slater (1975) defined the security center and security centroid of a graph
using the criterion that a vertex u is “more central” than vertex v if there are more
vertices closer to u than to v.

In the same way as Hakimi is the forerunner of Network Location Analysis,
Church and Garfinkel (1978) are the precursors of the location of undesirable
facilities on networks. They dealt with the problem of locating a point on a network
so as to maximize the sum of its weighted distances (maxisum) to the nodes, and
proposed an algorithm in O.mn log n/ time. The optimal point was called maxian.
Minieka (1983) characterized the anticenter and antimedian location models. The
former is formulated as a maxmax problem, whereas the latter is a directed approach
to that of Church and Garfinkel (1978).

Ting (1984) treated the problem of locating a single facility in a tree network
considering the maxisum criterion, and provided a solution algorithm with compu-
tational effort O.n/. Kuby (1987) pointed out that the optimal maximin objective
value could be used as a lower bound on the distances between selected facilities.
Moon (1989) addressed the problem of finding a point in a tree network whose
distance to the closest pendant vertex (incident to a single edge) is maximal. He
presented a polynomial time algorithm in O.n/ time.

Tamir (1988) demonstrated that for some center and (obnoxious) location
problems it is possible to take advantage of dynamic data structures to achieve
better complexity bounds. Labbé (1990) dealt with the location of an obnoxious
facility on a network using a voting procedure. She also defined the anti-Condorcet
point as a point such that no other point is farther from a strict majority of users.
Tamir (1991) discussed new complexity results for several models dealing with the
location of obnoxious or undesirable facilities on graphs such as p-maximin and
p-maxisum problems, which concern the location of p facilities under the maximin
and maxisum objectives, respectively.

Regarding location and routing of hazardous wastes, Stowers and Palekar (1993)
developed a combined model that quantifies the total exposure of the population
during transportation as well as long term storage.

Kincaid and Berger (1994) studied the problem of selecting a subset of size p of
the distance matrix column indices such that the smallest row sum in the resulting
n�p submatrix is as large as possible. Drezner and Wesolowsky (1995) considered
the problem of locating a point that should be as far as possible from arcs and nodes
of a network. Berman et al. (1996) approached the location of a new facility on a
network so that the total number (weight) of nodes within a prespecified distance is
minimized.
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Moreno-Pérez and Rodrı́guez-Martı́n (1999) addressed the problem of locating
an undesirable facility on a network maximizing a convex combination of the
average and minimum distance to the population. Since this is the opposite of the
cent-dian model, they called it the anti-cent-dian. The same problem including dis-
tance constraints was previously pointed out by Moon and Chaudhry (1984) as the
anticenter-maxian model. Colebrook and Sicilia (2006) improved the anti-cent-dian
facility location problem on networks, providing an efficient O.mn/ time algorithm.

Although Tamir (1988, 2001) already presented a brief O.mn/ method for
the maximin problem, Melachrinoudis and Zhang (1999) solved the location of
a point on a network under the maximin criterion with the same computational
effort. Soon after, Berman and Drezner (2000) developed the same problem from
a linear programming viewpoint in O.mn/ time as well. Colebrook et al. (2002)
presented a different model formulation and improved upper bounds for the location
of an undesirable (obnoxious) center on general networks, which diminished the
computational time required to get the solution.

Salhi et al. (2000) provided an alternative analytical approach to the Voronoi
based method for the weighted 1-maximin location problem, which concerns the
location of one facility under the maximin criterion. Their enhanced method was
relying on two reduction tests and a suitable branch and bound scheme. Zhang
et al. (2000) developed an algorithm to safely route hazardous materials on network,
assessing the potential risks on human population by GIS techniques.

Burkard et al. (2001) derived algorithms with linear running time in the cases
where the network is a path or a star, and improved previous results proposed
by Tamir (1988, 1991). In a quite similar approach, Burkard and Dollani (2003)
studied the pos/neg 1-center problem on networks, which asks to minimize a linear
combination of the maximum weighted distance of the center to the positive and
negative weighted vertices respectively. On networks, they provided an O.mn log n/

algorithm, whereas on star graphs the problem can be solved in linear time. They
also studied the extensions to the location of p facilities on trees.

López-de-los-Mozos and Mesa (2001) analyzed a new locational equity measure
defined as the maximum absolute deviation. They investigated its properties and
proposed an algorithm for locating a single facility on a network such that it
minimizes this new criterion. Carrizosa and Conde (2002) addressed a p-facility
location for semi-desirable facilities whose location was restricted to the edges of a
planar network with rectilinear edges.

Cappanera et al. (2003) addressed the problem of simultaneously locating
obnoxious facilities and routing obnoxious materials between a set of built-up areas
and the facilities, defining a discrete combined location-routing model referred to as
the Obnoxious Facility Location and Routing model (OFLR).

Berman and Wang (2004) considered, among others, the 1-antimedian and
1-maximin undesirable facility location problems on undirected networks with node
weights as independent discrete random variables. Colebrook et al. (2005b) studied
the problem of locating an undesirable facility on a network so as to maximize its
total weighted distance to all nodes, giving a new upper bound and a new algorithm
in O.mn/ time.
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Berman and Wang (2006) studied the 1-median and 1-antimedian problems
with probabilistic node demands, which are assumed to be independent continuous
random variables, whereas Berman and Wang (2007) considered the problem of
locating semi-obnoxious facilities provided that some demand points, within a
certain distance from an open facility, are expropriated. In Berman and Wang
(2008), the problem of locating a semi-obnoxious facility was considered assuming
that close demands nodes could be expropriated by the developer.

Erkut and Alp (2007) considered the problem of selecting routes for hazardous
material transportation, applying their model to the road network of Ravenna
(Italy). Berman et al. (2007) presented a novel methodology based on arc-covering
to determine the network optimal design so as to maximize the ability to respond
to dangerous incidents. Their results assessed the emergency response capability to
transport incidents in Quebec and Ontario (Canada).

Recently, Berman and Huang (2008) compared several mathematical formula-
tions to locate undesirable facilities on a network so as to minimize the total demand
covered subject to the condition that no two facilities are allowed to be closer than a
pre-specified distance. Drezner et al. (2009) analyzed the location of a facility inside
a planar network with nuisance/hazard created on its links, so the total nuisance
should be minimized. Lately, Yamaguchi (2011) examined a line network model
where individuals collectively choose the location of an undesirable public facility
through bargaining with the unanimity rule.

Regarding surveys and reviews on undesirable location, Moon and Chaudhry
(1984) discussed and surveyed uncapacitated distance constrained network location
problems such as maxian, defense, anti-center, dispersion, anticenter-maxian and
dispersion-defense models. A widely cited review on this subject was due to Erkut
and Neuman (1989), who brilliantly surveyed over sixty papers on maximization
location models and presented a synthesis of the solution methods. In the same
sense, Erkut and Verter (1995), and later Verter and Erkut (1995), overviewed and
treated logistics models involving hazardous materials.

In addition to the network models, it is also worth citing some papers due to
their contribution and direct application. One of these papers is the overview on
(semi-) undesirable facility location by Plastria (1996). A close related paper by
Carrizosa and Plastria (1999) presented a critical overview of the mathematical
models used in the field of semi-obnoxious facility location. Murray et al. (1998)
reviewed several approaches for addressing equity and community impact in the
location of undesirable facilities. In an excellent report, Cappanera (1999) surveyed
mathematical models for undesirable location problems in the plane and particularly
on networks.

Concerning straightforward applications, we must cite Cáceres et al. (2007), who
considered the problem of locating a waste pipeline in a coastal region, taking into
account the maximization of two criteria.

There is no book solely devoted to location of undesirable facilities yet. Daskin
(1995) discussed dispersion models, outlined a maxisum problem and commented
on some multiobjective location problems. In Puerto (1996), there is a chapter
concerning location of undesirable centers on the plane as well as on networks.
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The two latest book chapters on undesirable facility location are by Hosseini
and Esfahani (2009), who reviewed obnoxious facility location problems from the
point of view of their classification, diverse models, applications, solutions and
techniques, and case studies; and by Melachrinoudis (2011), who surveyed and
assessed the classical contributions on undesirable facility location from the late
1970s till nowadays.

In the next section we review the most relevant references on multiobjec-
tive/multicriteria undesirable facility location models on networks.

Multicriteria Undesirable Facility Location on Networks

Surprisingly, literature on multicriteria undesirable facility location starts in the late
1980s. It seems that the concern on the location of undesirable facilities has grown
only in the last years, along with the use of multiobjective/multicriteria tools to
model and solve such problems.

Ratick and White (1988) proposed a multiobjective model for the location of
undesirable facilities considering three objectives: minimizing the facility location
costs, minimizing the opposition to the siting plan, and maximizing equity. List and
Mirchandani (1991) presented a combined routing/siting model that can be used not
only for making routing decisions on waste shipments, but also for siting decisions
of waste treatment facilities. Risk, cost and risk equity were considered jointly in
a multiobjective framework. A simplified form of their model was applied to the
Capital District of the State of New York. Erkut and Neuman (1992) developed a
multiobjective model for the location of one or more undesirable facilities to service
a region which minimizes the total cost of the facilities located, the total opposition
to such facilities, and the number of power-generating stations.

By means of a multiobjective model, Rahman and Kuby (1995) examined the
tradeoffs between minimizing costs (transshipment and fixed-charge problems) and
public opposition (decreasing distance function from the facility) in the location of
a solid waste transfer station. A case study was also accomplished in the City of
Phoenix, Arizona.

Giannikos (1998) presented a multiobjective model for locating disposal facil-
ities and transporting hazardous waste along the links of a network considering
four objectives, namely, minimization of total operating cost, minimization of total
perceived risk, equitable distribution of risk among population centers and equitable
distribution of the disutility caused by the operation of the treatment facilities.

Zhang and Melachrinoudis (2001) considered the problem of locating an obnox-
ious facility on a general network using two objectives, maximizing the minimum
weighted distance from the point to the vertices (maximin) and maximizing the sum
of weighted distances between the point and the vertices (maximsum). Hamacher
et al. (2002) presented a polynomial time algorithm for the location of a semi-
obnoxious facility on networks, and generalized the results to include maximin and
minimax objectives.
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Skriver and Andersen (2003) modeled a semi-obnoxious facility location prob-
lem as a bicriterion problem in both the plane and the network case, applying
these models to the location of a new international airport in the Jutland mainland,
Denmark.

Colebrook and Sicilia (2007) analyzed several location problems of undesirable
facilities on multicriteria networks establishing new properties to characterize the
efficient solutions and rules to remove inefficient edges. Tuzkaya et al. (2008)
addressed the problem of locating an undesirable facility in Istanbul (Turkey)
using the multi-criteria decision making technique called Analytic Network Process
(ANP). Lately, Zhao and Shuai (2010) proposed a new multiobjective 0-1 integer LP
model for the location-allocation problem in response network design for hazardous
materials transportation.

Once more, the ensuing papers are commented for their real life application,
though they might not be addressed on networks. Melachrinoudis et al. (1995)
developed a dynamic (multiperiod) multiobjective mixed integer programming
model for locating landfills. Their objectives are: minimization of total cost during
the planning horizon, minimization of total risk posed on population centers,
minimization of total risk posed on ecosystem and minimization of risk inequity
over all individuals and time periods in the planning horizon.

Hokkanen and Salminen (1990) described an application of multicriteria decision
aid to the location of a waste treatment facility in eastern Finland. The alternative
locations for the new facility were considered based on 14 criteria by 28 decision
makers.

Rakas et al. (2004) developed a multiobjective model to determine the location
of undesirable facilities using real-world data. Alumur and Kara (2007) proposed a
new multiobjective hazardous waste location-routing model that minimizes the total
cost and the transportation risk, and it was implemented in the Central Anatolian
region of Turkey.

To the best of our knowledge, there is no published book on multicriteria unde-
sirable facility location problems on networks. However, Daskin (1995) devoted a
complete section of a chapter to emphasize the need of more multicriteria models
on undesirable facility location.

Lastly, before presenting some basic definitions and the notation, we briefly
comment four doctoral dissertations on multicriteria undesirable location. Saameño
(1992) studied the problem of locating obnoxious facilities on a polygonal region
with multiple objectives. Zhang (1996) mainly developed algorithms to solve the
1-maximin problem on a network, and the maximin-maxisum network location
problem. Skriver (2001) investigated, among other models, the bicriterion semi-
obnoxious location problem, the multicriteria semi-obnoxious network location
problem with sum and center objectives and the bicriteria network location problem
with criteria dependent lengths and minisum objectives. Finally, Colebrook (2003)
devoted several chapters to analyze and develop some undesirable location models
on networks.
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Basic Definitions and Notation

In this section we introduce the concepts and basic definitions that are essential for
the remaining sections. We begin with the notation on classical network models,
followed by the definitions related to networks with multiple criteria.

Standard Networks

Mathematical networks can model innumerable real world problems such as
aisle/road networks, river/air/ocean transport networks or communication/computer
networks. All of these networks are barring exceptions, simple (no loops or multiple
edges), connected and undirected.

Thus, let N D .V; E/ be a network with such features, where V D
fv1; v2; : : : ; vng denotes the set of vertices or nodes, and E D f.vs; vt / W vs; vt 2 V g
the set of edges, with n D jV j and m D jEj. The nodes represent demand, supply
or junction points on which existing facilities or clients are already placed, whereas
edges correspond to transportation lines, roadways, railways or communication
channels.

Each node vi 2 V is set with a positive weight wi as follows:

w W V ! RC
vi 2 V ! w.vi / D wi > 0

This weight wi stands for demand rates, time/cost/loss per unit distance, number
of clients, probability that a demand occurs at node vi , or even the importance of
a potential damage. Obviously, the weights are positive because a weight wi D 0

means null demand, time, etc, and hence it makes no sense.
On the other hand, each edge e D .vs; vt / is labeled with a positive number le in

terms of the following length function:

l W E ! RC
e D .vs; vt / 2 E ! l.e/ D le > 0

Thus, a point x inside edge e ranges in the interval Œ0; le�. This length represents
travel time/cost, reliability or any other travel attribute. The lengths are positive
since any le D 0 implies a null distance between vs and vt , and hence, it can be
discarded. Figure 1 shows a network with n D 5 nodes and m D 7 edges. Weights
wi are in bold, whereas lengths le are in italic.

Besides, each edge is assumed to be rectifiable, in the sense that there is a one-
to-one correspondence between each edge and the interval Œ0; 1�. Hence, given any
edge e D .vs; vt / 2 E of length le and an inner point x 2 e, then there is a unique
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Fig. 1 Network with five
nodes (weights in bold) and
seven edges (lengths in italic)

number te.x/ 2 Œ0; 1� such that te.x/le and .1 � te.x//le are the lengths along edge
e between vs and x, and x and vt , respectively.

A path is a sequence of adjacent edges, with each of the adjacent edges sharing
a common node. Then, for each pair of nodes va; vb 2 V we define a distance
d.va; vb/ between these two nodes as the length of any shortest path in N joining
va and vb . Moreover, given any two points x; y 2 N , the distance d.x; y/ is the
length of the shortest path between x and y. Given a certain edge e D .vs; vt /, it is
sometimes possible that d.vs; vt / < le since the edge may not provide the shortest
path between the nodes vs and vt . This distance function d.�; �/ satisfies the following
metric properties for any x; y 2 N :

1. Nonnegativity: d.x; y/ � 0, with d.x; y/ D 0 if x D y.
2. Symmetry: d.x; y/ D d.y; x/.
3. Triangle inequality: d.x; y/ � d.x; z/C d.z; y/, for any z 2 N .

At this point, the principal issue to be emphasized is that network location models
are usually based on the assumption that travel distances are lengths of shortest
paths. In this sense, given any edge e D .vs; vt / 2 E , a node vi 2 V and an inner
point x 2 e, we define the distance between point x and node vi as:

d.x; vi / D minfx C d.vs; vi /; le � x C d.vt ; vi /g

The point on e where d.x; vi / attains its equilibrium, i.e. x C d.vs; vi / D le �
x C d.vt ; vi /, is called a bottleneck point bi , with

bi D d.vt ; vi /C le � d.vs; vi /

2

A fundamental property of network distances is the following piecewise linearity
and concavity property. This property states that the function in x 2 e D .vs; vt /

defined by d.x; vi /:

1. Is continuous on e.
2. As x varies from node vs to vt in edge e, either
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Fig. 2 The three possible plots of d.x; vi /

– Increases linearly with slope wi (see Fig. 2a), or
– Decreases linearly with slope �wi (see Fig. 2b), or
– First increases linearly and then decreases linearly, with a breakpoint at bi

(see Fig. 2c).

3. Is concave, in the sense that a line segment joining any two points on the graph
of the function lies on or below such graph.

These are the basic concepts on standard networks. In the next section we
introduce the basic notions on networks with multiple criteria, namely, considering
several weights on each node as well as several lengths on each edge.

Networks with Multiple Parameters on Nodes and Edges

Most of the huge literature on network location problems deals with the optimization
of one single criterion. This criterion is usually associated with the weighted
distance from a certain point to the rest of the nodes, for example, the minimization
of the total weighted distance from a facility to the customers.

However, there are many applications in which several parameters need to be
considered on each node and on each edge. Thus, several weights on each node
may represent different criteria to be considered by the decision-maker(s), namely,
demand rate, importance, number of potential clients, etc. On the other hand, several
lengths (travel costs) on each edge might deal with distance, travel time, traffic
congestion, toll rate, travel cost, etc.

In this sense, on each node vi 2 V , the previous weight function is now replaced
by the following:

w W V ! R
p

vi 2 V ! w.vi / D wi D .w1
i ; : : : ; wp

i /

where p is the number of weights per node. For any vector of weights wi , each wr
i is

a nonnegative value for r D 1; : : : ; p, and we assume that not all are equal to zero.
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Fig. 3 Five-node and
seven-edge network with
several parameters

Likewise, each edge is set with a vector of lengths (costs), as follows:

l W E ! R
q

e D .vs; vt / 2 E ! l.e/ D le D .l1
e ; : : : ; l

q
e /

in which q is the number of lengths. Again, we assume that each component lr
e is

nonnegative for any vector le , and not all lr
e D 0, for r D 1; : : : ; q.

As an example of a network holding several parameters, Fig. 3 shows the same
network as Fig. 1, but with two weights per node (in bold) and three lengths per
edge (in italic).

Let r be a length index, with 1 � r � q, and let x 2 e D .vs; vt / be a point
inside edge e. Then, cr

e .x; vs/ is defined as the piece of line segment between x
and vs considering length r. Obviously, we have that 0 � cr

e .x; vs/ � lr
e , with

cr
e .x; vt / D lr

e � cr
e .x; vs/.

For each pair of nodes va; vb 2 V we can define the distance d r.va; vb/ between
these two nodes as the length of any shortest path in N joining va and vb considering
length r. Likewise, given any two points x; y 2 N , the distance d r.x; y/ is the
length of the shortest path between x and y. These q distance functions also comply
with the metric properties stated in the preceding section.

Given any node vi 2 V , we have that

d r.x; vi / D minfcr
e .x; vs/C d r.vs; vi /; cr

e .x; vt /C d r.vt ; vi /g

denotes the distance between a point and a node considering length r, with br
i D

.d r.vt ; vi /C lr
e � d r.vs; vi //=2 being the bottleneck point concerned with node vi .

These q network distance functions fulfill the piecewise linearity and concavity
property as well.

Finally, we introduce some basic theory on multicriteria/multiobjective opti-
mization. Usually, multicriteria models are those which perform a simultaneous
optimization of several incommensurable objectives, for instance, minimizing the
maximal travel distance and minimizing the total travel cost. On the other hand, a
closely related concept is that of vector optimization, which determines the non-
dominated solutions to a multicriteria problem.
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In this sense, let f D .f1; f2; : : : ; fk/ and g D .g1; g2; : : : ; gk/ be two vectors
belonging to R

k . Vector f is said to dominate vector g, and it is denoted by f � g,
if and only if:

fi � gi ;8i D 1; : : : ; k and 9j 2 f1; : : : ; kg W fj < gj

Then, given the subset of vectors U � R
k, a vector f 2 U is called non-

dominated, efficient or Pareto optimal (Pareto 1896) with respect to subset U if
there is no other vector g 2 U such that g � f . The set of all non-dominated
vectors with respect to U is denoted by UND. For a further knowledge in multicriteria
optimization, the reader is referred to Steuer (1986).

Having described the basic concepts and the notation used to model the location
problems developed in this chapter, in the following sections we present the location
models for undesirable facilities on networks.

Locating Undesirable Facilities on Simple Networks

In the following subsections we develop several models that can be used to locate
hazardous facilities on networks considering one single criterion. These models
comprise the undesirable center problem, the maxian problem, and the anti-cent-
dian problem.

The Undesirable Center Problem

As we remarked in the literature review, there are not many papers devoted to
undesirable location on networks. One of them is by Melachrinoudis and Zhang
(1999), who proposed a O.mn/ time algorithm based on three upper bounds and
on a modified procedure of Dyer (1984). However, their upper bounds can be
tightened, and the procedure can be improved by means of a more convenient
formulation of the solution. The other paper by Berman and Drezner (2000)
approaches the problem in a linear programming way. Though it has the same
theoretical complexity, its running time is extremely high, since the algorithm has
to process every single edge.

Now, we formulate the undesirable 1-center (maximin) problem on networks.
Given any point x 2 N we define f .x/ D min

vi 2V
wi d.x; vi /.

Then, the problem consists of calculating

max
x2N

min
vi 2V

wi d.x; vi / D max
x2N

f .x/

and a point xN 2 N is an undesirable 1-center point iff f .xN / D max
x2N

f .x/.
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Fig. 4 Objective function
f .x/, which is actually the
lower envelope of all distance
functions

This problem is the opposite of the 1-center problem (minimax), so it could
be called the anti-center. Unfortunately, this term was already coined by Minieka
(1983) to define the maxmax problem. We instead propose the term 1-uncenter
(undesirable center) to define the optimal location point.

If there is at least one vertex vi such that wi D 0, then f .x/ D 0; 8x 2 N and
obviously any point on network N would be a 1-uncenter. Therefore, we consider
only wi > 0, 8vi 2 V .

When all the node weights are equal, 8vi 2 V; jwi D w, the local 1-uncenter xe

is sited at the central point of edge e. Therefore, the unweighted 1-uncenter xN is
located in the middle of the longest edge(s) (see Melachrinoudis and Zhang 1999;
Berman and Drezner 2000). This is done in O.m/ time.

However, when all node weights are not equal, we can reformulate the 1-uncenter
problem over each edge e D .vs; vt / 2 E as follows: xN 2 N is a 1-uncenter point
iff f .xN / D max

e2E
f .xe/.

Since the local 1-uncenter point is the maximum value of the concave objective
function f .x/, as shown in Fig. 4, it should be located at the intersection of two
distance functions lines with opposite sign slopes. Our goal is to find in the lower
envelope of function f .x/ these two lines and the intersection point between them.

By introducing new tighter bounds that can significantly reduce the number of
edges and the number of distance function lines over each edge, and by means of a
more convenient problem formulation, we developed a new O.mn/ time algorithm,
which is briefly outlined in Algorithm 1.

This method has been applied to the following network depicted in Fig. 5, which
has n D 8 nodes and m D 18 edges. The weights (in bold) on the nodes range
randomly from 1 to 9, whereas the lengths (in italics) randomly vary from 1 to 49.

The solution to this example is FN D 50, which is the 1-uncenter value at S D
f.26; e36/g. Note that the algorithm processes only 6 out of 18 potential edges. Even
though these numbers may not seem important, they will be quite relevant when the
network size gets bigger, both in nodes and edges.

To test the computational effort of the new algorithm, several experiments were
run for different sets of graph densities as well as for planar networks. These
tests showed that the running times of the new algorithm are faster than both the
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Fig. 5 Planar network with n D 8 and m D 18

approaches by Berman and Drezner (2000) and Melachrinoudis and Zhang (1999),
since the number of edges processed are less, gaining in some instances a reduction
of over 50%. As a consequence, the computing times of the new algorithm are better,
achieving in some cases a reduction of 80%. Besides, the reduction augments as the
number of nodes n increases.

For more details in the mathematical results, algorithm description, the example
trace and the computational time experiment, the reader is referred to Colebrook
et al. (2002).

Algorithm 1. The uncenter function.

function UnCenter(Network N, Distance Matrix d)
f // Current best value on network N

FN WD 0

// Solution set
S WD ;
for all edges e WD .vs; vt / 2 E do
f // Compute the upper bounds

Compute upper bound UB1
if FN > FUB1 then continue to next edge
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Compute upper bound UB2
if FN > FUB2 then continue to next edge
Compute upper bound UB3
if FN > FUB3 then continue to next edge
// Set .xe; Fe/ to the best value found so far
if FUB2 � FUB3 then .xe; Fe/ WD .xUB2; FUB2/

else .xe; Fe/ WD .xUB3; FUB3/

Create sets L and R. All lines must be below FUB2.
// Continue till the new value Fe cannot improve the current FN ,
// or until one of the node sets becomes empty
while Fe � FN and (L ¤ ; or R ¤ ;) do
f Pair all nodes in L against R, using a maxfjLj; jRjg matching

.xe; Fe/:D Intersection point with minimal function value
Project the value xe on the lower envelope to get va and vb

xe WD Intersection point of distance lines va and vb

Fe WD Distance value of point xe

Remove from L and R all lines above the new value Fe

g
if Fe � FN then
f FN WD Fe

Store the pair .xe; e/ in S
g

g
return .FN ; S/

g

The Maxian Problem

As stated in the review section, the literature on undesirable network location began
in the mid 1970s with Church and Garfinkel (1978), who defined and solved the 1-
maxisum (maxian) problem in O.mn log n/ time, being n the number of nodes and
m the number of edges.

Later on, Tamir (1991) briefly suggested that the 1-maxisum problem could be
solved in O.mn/ time using an algorithm given by Zemel (1984). However, to the
best of our knowledge, there is no reference in the literature directly describing such
an algorithm for the network 1-maxisum problem thus far. Hence, in this section we
provide an algorithm which solves this problem in O.mn/ time.

Given any point x on network N, we define

f .x/ D
X

vi 2V

wi d.x; vi /

as the sum of weighted distances from point x to all the nodes of the network.
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The undesirable one-facility maximum (maxian) problem is expressed as

max
x2N

f .x/

and a point xN 2 N is a maxian point iff f .xN / D max
x2N

f .x/. Several interesting

properties arise for this problem.
From Church and Garfinkel (1978), an initial upper bound UB.e/ is derived,

which is improved with a new upper bound. Likewise, this bound can be dynam-
ically updated without increasing the total computational time. Hence, we have
developed a new algorithm in O.mn/ to solve this problem. The procedure makes
use of the new upper bound, and thus, allows skipping out from the search process
as soon as the upper bound is less than the global optimum. The outline of the new
procedure is showed in Algorithm 2.

To illustrate the method, consider the network in Fig. 6 with n D 7 nodes and
m D 15 edges. The node weights (in bold) are integers randomly generated between
1 and 9, whereas the edge lengths range between 1 and 25.

The optimum value of f .x/ in this example is fN D 500, which is attained in
the interval Œ8:5; 10:5� at edge .v3; v4/. We finally remark that, due to the new upper
bound, we have only processed 8 of the 15 total edges. Using the old upper bound
the algorithm would have run over 13 edges. This fact is very important, since it
speeds up the search for the optimal points once we are sure that the new upper
bound is worse than the current best solution.

This new algorithm has been compared with the procedure proposed by Church
and Garfinkel (1978), including the initial bound, on low and high dense networks,
as well as on planar networks. In all cases, the new algorithm accomplishes a better
performance in terms of processing times. The computational experiment was tested
on complete networks with, respectively, a half, a quarter and an eighth of the
total number of edges. In the three cases, the new algorithm is almost 50% faster
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than Church and Garfinkel’s. The same happens for planar networks. Besides, the
reduction percentage in the number of edges to be processed is almost 25% less.

Again, we refer the reader to Colebrook et al. (2005b) for the details of this
algorithm and the new upper bound.

The Anti-Cent-Dian Problem

In previous sections we have addressed the 1-uncenter (maximin) problem and the
1-maxian (maxisum) problem on networks. Now we are going to combine these two
objectives to obtain a location criterion called the anti-cent-dian.

Algorithm 2. The new algorithm for the maxisum problem.

function MaxianAlgorithm(Network N, Distance Matrix d)
f fN WD 0 // Current best value on network N

S WD ; // Solution set
for all edges e WD .vs; vt / 2 E do
f Compute Ws and Wt

Xe WD ;
// Let Xe represent either a single point x or an interval Œx1; x2�.
if (Ws and Wt yield a simple solution) then Store solution in Xe

else
f Fj WD f .vs/, Wj WD Ws

Fk WD f .vt /, Wk WD Wt

// Compute initial value of the new upper bound N UB.e/

if N UB.e/ < fN then continue to next edge
l WD 1, r WD n

while Xe D ; and N UB.e/ � fN do
f dq WDMedian value of all di with l � i � r

bq WD .dq C le/=2

Compute WL and WR

if (WL, WR and wq yield a solution) then Store it in Xe

else
f // Search for the optimum to the left or right

if WL C wq < WR then
l WD q C 1, update Fj , Wj , WL, f .bq/

else r WD q � 1, update Fk , Wk

Update the upper bound N UB.e/ at point bq

g
g
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g
if Xe ¤ ; and f .Xe/ � fN then
f fN WD f .Xe/

Store the pair .Xe; e/ in S
g
g
return .fN ; S/

g

The network anti-cent-dian model considers the convex combination of the
maximin and the maxisum criteria. Moreno-Pérez and Rodrı́guez-Martı́n (1999)
developed two algorithms that provide, respectively, the optimal location for a fixed
� that determines the convex combination, and the set of optimal locations for all
convex combinations. Both of them run in O.mn log n/ time. In this section we
show that the complexity of the first algorithm can be reduced to O.mn/.

We now define the unweighted uncenter (maximin) function and the maxian
(maxisum) function. Given any point x on network N, we define

fmin.x/ D min
vi 2V

d.x; vi /

as the minimum unweighted distance from point x to all nodes of the network. Recall
that a point yN 2 N is an uncenter point iff fmin.yN / D max

x2N
fmin.x/. When all

node weights wi are equal, the point yN is located in the middle of the longest
edge. Then, the uncenter point for any edge e D .vs; vt / is ye D le=2, and hence
fmin.ye/ D le=2. Thus, the local optimum can be obtained in O.1/.

On the other hand, given W D P
vi 2V

wi and a point x 2 N , we now define

fsum.x/ D 1

W

X

vi 2V

wi d.x; vi /

as the average sum of weighted distances from point x to all the nodes of the
network. A point zN 2 N is a maxian point iff fsum.zN / D max

x2N
fsum.x/. The

local maxian point on edge e is denoted by ze .
Finally, the anti-cent-dian function is defined as

facd.�; x/ D �fmin.x/C .1 � �/fsum.x/

and any point xN 2 N maximizing facd.�; x/ for a particular value of �, 0 � � � 1,
is called a �-anti-cent-dian point. In particular, if � D 0, the anti-cent-dian is equal
to the maxian; whereas for � D 1, we obtain the uncenter. Figure 7 shows a typical
plot of function facd.�; x/ over edge e. For � D 0 the anti-cent-dian function is
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Fig. 7 Plots of facd.�; x/ for
different values of �

fsum.x/. As parameter � grows, the anti-cent-dian function makes a morphing to
the fmin.x/ function.

Taking into account some properties and given a value of �, 0 � � � 1, the latter
problem can be formulated over each edge e as follows:

facd.�; xe/ D max
x2e

facd.�; x/

and a point xN 2 N is a �-anti-cent-dian point iff facd.�; xN / D max
e2E

facd.�; xe/.

A method to determine all �-anti-cent-dian points for any value of � 2 Œ0; 1� in
O.mn log n/ time was proposed by Moreno-Pérez and Rodrı́guez-Martı́n (1999). It
has derived from an O.mn log n/ algorithm by Hansen et al. (1991). This complexity
cannot be reduced since the algorithm is based on the computation of a convex hull
of O.mn/ points, which is done in O.mn log n/ time (see Hershberger 1989).

On the other hand, Moreno-Pérez and Rodrı́guez-Martı́n (1999) also presented
an O.mn log n/ procedure to obtain the anti-cent-dian point when � is fixed to a
particular value. Nevertheless, an O.mn/ time algorithm can be achieved, as shown
in Colebrook and Sicilia (2006).

Since the following multicriteria location model generalizes the �-anti-cent-dian
problem described above, the algorithm scheme and the example for this model are
shown in the next section.
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Undesirable Facility Location on Multicriteria Networks

As we have stated in the preceding sections, the classical location criteria minimax
(center) and minisum (median) are useless to locate an obnoxious/noxious (undesir-
able) facility. Thus, the maximin/maxmax and the maxisum criteria arose to model,
respectively, the undesirable center problem and the undesirable median problem.
By placing the new facility away from existing facilities, the maximin criterion
reduces the effect on the worst impacted existing facility, whereas the maxisum
criterion diminishes the collective effect (average) on the existing facilities.

Nevertheless, some facilities might be considered semi-desirable since they
provide a main service to the community but they can also cause inconveniences
to the neighboring areas, for instance, an airport, a train station, or any other noisy
facility. These problems can be perfectly modeled combining the minimax/minisum
criteria and the maximin/maxisum criteria.

In this sense, most of the undesirable facility location models analyzed in
previous works are basically single-criterion. However, Erkut and Neuman (1989)
emphasized on the need for multiobjective approaches to the siting of undesirable
facilities. Daskin (1995) and Zhang (1996) also pointed out not only the need to
include multiple criteria in undesirable facility location problems, but also the fact
that poor attention has been paid by researchers to these problems and hence, little
research has been done in this promising field.

Accordingly, in this section we present a multicriteria undesirable facility
location model on networks with several weights on the nodes and several lengths
on the edges, combining the maximin and maxisum criteria by a parameter �. Such
a model can be considered as the opposite to the multicriteria network �-cent-
dian problem presented in the last section and hence, it can be described as the
multicriteria �-anti-cent-dian problem on networks.

Given any point x 2 N , any weight s (1 � s � p) and any length r (1 � r � q),
let f sr

min.x/ D min
vi 2V

ws
i d

r .x; vi / be the minimum weighted distance from x to the

set of nodes. Besides, given any point x 2 N , we define the function f sr
sum.x/ DP

vi 2V

ws
i d

r .x; vi / as the sum of weighted distances from point x to the set of nodes,

with 1 � s � p and 1 � r � q.
Through a parameter �, the convex combination of these two latter problems was

addressed as the multicriteria �-anti-cent-dian problem. Thus, given � 2 Œ0; 1� and
x 2 N , the �-anti-cent-dian function is defined as follows

f sr
acd.�; x/ D �f sr

min.x/C .1 � �/f sr
sum.x/

being f sr
min.x/ D min

vi 2V
ws

i d
r .x; vi / and f sr

sum.x/ D P
vi 2V

ws
i d

r.x; vi /, with s D
1; : : : ; p and r D 1; : : : ; q. This model was introduced in a previous section,
though function fmin.x/ was unweighted and fsum.x/ was divided by the total sum
of weights. Provided that both f sr

min.x/ and f sr
sum.x/ are continuous, concave and
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Fig. 8 A network with two lengths per edge and two weights per node

piecewise linear functions on x, the �-anti-cent-dian function f sr
acd.�; x/, being a

convex combination of the two latter functions, fulfills these characteristics as well.
As shown in Algorithm 3, we proposed a rule to delete inefficient edges and

a polynomial algorithm in O.k3m2n2/ time to solve this problem, being k the
number of criteria. Besides, for � D 0 we can solve the multicriteria maxian
problem, whereas for � D 1 we can obtain the solution for the multicriteria uncenter
problem. Furthermore, when p D q D 1 this procedure can even solve the single
criterion uncenter, maxian or anti-cent-dian problem. The computational experience
strengthens the polynomial complexity of the algorithm as well as the effectiveness
of the rule to eliminate the inefficient edges.

To illustrate the method, Fig. 8 shows a random planar network with n D 7

nodes, m D 15 edges, p D 2 weights per node and q D 2 lengths per edge. Thus,
we have k D 4 criteria. Beside each node vi 2 V we placed (in bold) two integer
weights .w1

i ; w2
i / randomly generated in the interval Œ1; 5�. Likewise, each edge e D

.vs; vt / 2 E is labeled (in italics) with two integer lengths .l1
e ; l2

e / randomly ranging
in the interval Œ1; 25�. We set the parameter � to 0.5.

The algorithm begins by removing all edges that contain no efficient point.
For the example shown in Fig. 8, only 8 out of the 15 initial edges remain after
the deletion, namely: .v1; v3/, .v1; v4/, .v2; v5/, .v2; v6/, .v3; v4/, .v3; v5/, .v4; v5/

and .v5; v6/. On this set of remaining edges we now proceed to compute, for
each combination of weights and lengths, the functions f sr

min.x/ and f sr
sum.x/.
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Table 1 Set of efficient
points of the network shown
in Fig. 8

Edge Efficient points

.v1; v3/ Œ3:8; 8:5�

.v2; v5/ Œ1:00923; 1:64�

.v2; v6/ Œ9:61111; 12:5�

.v3; v5/ Œ5:28571; 8:25�

.v4; v5/ Œ7:9418; 15:381�

v5

v3

v6

v1

v2

(10,20)

(19,20)

(19,21)

(23,18)

(2,25)

v4

Fig. 9 Efficient points are
drawn in bold on the partial
network

Subsequently, given the parameter � D 0:5 we calculate the �-anti-cent-dian
functions f sr

acd.�; x/.
Finally, the solution is the set of non-dominated segments, which are located on

5 edges only. The set of efficient points is shown in Table 1 and it is also drawn in
bold on the partial network of Fig. 9.

Algorithm 3. The multicriteria �-anti-cent-dian function (MACD).

function MACD(Network N.V; E/, DistanceMatrix d, Parameters p, q, �)
f Let P WD ; be the set of candidate points to be non-dominated

Let S WD ; be the set of possible non-dominated segments
Remove all edges containing no efficient points
for all remaining edges e WD .vs; vt / 2 E do
f for s :D 1 to p do

for r :D 1 to q do
f if � ¤ 0 then Compute f sr

min.x/

if � ¤ 1 then Compute f sr
sum.x/

g
for s :D 1 to p do

for r :D 1 to q do
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Compute f sr
acd.�; x/ D �f sr

min.x/C .1 � �/f sr
sum.x/

Get the set of efficient points Xe

Let x1; : : : ; xj be the sorted sequence of j breakpoints for the
k D p � q �-anti-cent-dian functions inside Xe

if j D 1 then P WD P [ fx1g
else

for i :D 1 to j � 1 do
f Let Œxi ; xiC1� be a segment of edge e within Xe

S WD S [ fŒxi ; xiC1�g
g

g
// Let PND the set of non-dominated points and SND the

set of non-dominated segments.
PND :D PointComparison(P)
SND :D SegmentComparison(S)

(PND, SND) :D PointAgainstSegmentComparison(PND, SND)
return PND and SND

g

Algorithm 3 was programmed in CCC programming language using the class
library LEDA 4.2.1, on a two 1.2 Ghz processor Pentium III with 1 Gb of RAM
under Red Hat Linux.

Two kinds of experiments were performed. In both of them, random planar
networks were generated with m D 3n � 6 edges using the generators developed
by LEDA. Likewise, parameter � varies from � D 0 (maxian problem) to � D 1

(uncenter problem) with a step of 0.5. Both the number of weights per node p and the
number of lengths per edge q range between 1 and 3. Ten instances were generated
for each combination of the latter parameters. The weight values are random integers
uniformly distributed in the interval Œ1; 10�, whereas the edge lengths are random
integers in the range Œ1; 50�. We remark that calculation of the distance matrix was
not included in the total computing time.

In the first experiment, random planar networks were generated with n D 10

up to 100 in steps of 10 nodes. Table 2 shows the average times. Regardless of
the number of nodes n, the computing time grows as both p and q increase. The
average percentage of edges deleted is shown in Table 3. In most cases the number of
removed edges is very high, achieving in some instances 99% of deletion. This issue
becomes quite remarkable when p D q D 1 (single criterion). In this particular
case, the bounds seem to be very tight, and thus, the removal rule becomes very
effective since over 95% of the edges are deleted, leaving only those edges that
contain the final optimal points.

Moreover, the performance of the new algorithm was also tested on bigger
random planar networks with nD 50–500 nodes, with a step of 50 nodes. In the
case of p D q D 1, the percentage of deletion in all cases is over 99%. However,
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Table 2 Average computing time results for planar networks with n D 10 up to 100 nodes

œ D 0

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 0.01 0.01 0.04 0.00 0.01 0.09 0.00 0.02 0.14
20 54 0.01 0.02 0.09 0.01 0.03 0.09 0.01 0.03 0.17
30 84 0.02 0.04 0.10 0.02 0.06 0.17 0.03 0.05 0.34
40 114 0.02 0.04 0.16 0.03 0.08 0.30 0.05 0.06 0.35
50 144 0.04 0.06 0.24 0.05 0.11 0.29 0.06 0.14 0.21
60 174 0.04 0.07 0.34 0.06 0.13 0.45 0.07 0.14 0.40
70 204 0.05 0.08 0.26 0.06 0.13 0.42 0.09 0.18 0.62
80 234 0.05 0.10 0.33 0.08 0.16 0.64 0.10 0.21 0.99
90 264 0.09 0.14 0.43 0.12 0.23 0.64 0.15 0.29 0.65
100 294 0.09 0.17 0.58 0.13 0.25 0.73 0.17 0.34 1.08

œ D 0.5

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 0.01 0.02 0.03 0.01 0.01 0.07 0.01 0.03 0.05
20 54 0.01 0.03 0.08 0.02 0.03 0.26 0.02 0.08 0.27
30 84 0.02 0.03 0.22 0.03 0.05 0.47 0.03 0.12 0.17
40 114 0.03 0.08 0.31 0.04 0.12 0.44 0.05 0.09 0.65
50 144 0.05 0.08 0.39 0.06 0.12 0.50 0.07 0.22 0.55
60 174 0.06 0.12 0.54 0.07 0.17 0.78 0.08 0.27 1.14
70 204 0.05 0.18 0.50 0.08 0.26 0.91 0.11 0.27 1.30
80 234 0.07 0.16 0.65 0.10 0.23 0.83 0.13 0.45 1.44
90 264 0.10 0.19 0.76 0.14 0.35 1.47 0.18 0.54 1.81
100 294 0.12 0.23 0.62 0.16 0.39 1.14 0.20 0.55 1.73

œ D 1

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 0.00 0.01 0.01 0.00 0.01 0.04 0.01 0.05 0.12
20 54 0.01 0.01 0.03 0.02 0.06 0.18 0.02 0.12 0.41
30 84 0.02 0.02 0.04 0.03 0.07 0.29 0.03 0.21 0.56
40 114 0.01 0.03 0.09 0.03 0.06 0.42 0.04 0.20 1.33
50 144 0.04 0.06 0.10 0.07 0.14 0.45 0.07 0.35 2.09
60 174 0.04 0.06 0.11 0.05 0.10 0.67 0.07 0.47 1.91
70 204 0.05 0.09 0.16 0.05 0.23 0.53 0.07 0.54 2.88
80 234 0.04 0.07 0.15 0.07 0.26 0.74 0.09 0.48 3.28
90 264 0.08 0.13 0.25 0.12 0.26 1.15 0.16 0.69 3.86
100 294 0.08 0.15 0.28 0.11 0.42 1.23 0.15 1.05 4.21
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Table 3 Average percentage of edges removed for planar networks with n D 10 up to 100 nodes

œ D 0

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 95.83 75.83 43.33 94.17 70.83 25.00 92.50 63.33 30.00
20 54 98.15 65.93 52.78 98.15 70.74 63.89 98.15 83.70 46.30
30 84 98.81 70.71 57.38 97.86 55.12 69.88 98.81 88.10 43.81
40 114 99.12 89.47 63.77 98.25 72.54 60.61 99.12 98.25 60.00
50 144 99.31 75.35 66.04 99.31 79.72 81.67 99.31 80.69 89.58
60 174 99.43 90.40 58.51 99.43 68.51 58.62 99.43 82.76 78.74
70 204 99.51 87.06 74.22 99.51 83.38 72.60 99.22 85.69 66.37
80 234 99.57 90.00 74.87 99.44 84.02 68.80 99.32 85.81 59.79
90 264 99.62 85.49 73.52 99.55 81.97 73.67 99.62 86.06 79.24
100 294 99.66 85.14 65.88 99.66 85.54 75.03 99.63 81.05 66.84

œ D 0.5

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 95.83 45.00 59.17 95.83 75.00 36.67 89.17 70.00 69.17
20 54 98.15 67.22 62.96 98.15 87.04 46.85 95.93 65.74 56.67
30 84 98.81 92.26 52.86 98.81 91.19 57.62 98.81 75.95 88.93
40 114 99.12 67.54 60.70 99.12 76.14 68.68 98.86 95.44 66.58
50 144 99.31 87.78 59.93 98.75 88.26 70.49 98.06 82.64 78.54
60 174 99.43 78.39 56.26 99.25 87.18 66.26 99.25 80.06 65.00
70 204 99.51 73.24 66.13 99.31 77.94 61.52 99.36 90.20 68.58
80 234 99.57 85.98 70.38 99.44 91.03 68.63 99.49 78.08 71.07
90 264 99.62 86.70 60.68 99.51 83.86 60.49 99.62 80.98 68.94
100 294 99.66 86.46 76.53 99.66 87.07 73.91 99.56 87.45 74.01

œ D 1

p D 1 p D 2 p D 3

n m q D 1 q D 2 q D 3 q D 1 q D 2 q D 3 q D 1 q D 2 q D 3

10 24 95.83 45.42 64.17 95.83 56.25 22.92 87.08 33.75 32.08
20 54 98.15 79.26 54.07 85.19 40.93 23.15 81.85 50.00 38.89
30 84 98.57 92.86 72.02 67.74 65.48 31.90 94.05 47.86 38.45
40 114 99.12 84.91 45.00 85.44 78.51 32.54 89.30 58.77 31.32
50 144 99.31 77.50 67.64 72.57 68.89 48.54 89.86 56.11 25.35
60 174 99.43 83.74 75.46 94.77 88.28 41.90 89.25 45.63 38.10
70 204 99.51 75.34 66.76 96.67 67.25 57.60 94.85 53.92 37.65
80 234 99.57 94.36 79.96 94.06 66.97 57.01 94.10 71.97 36.50
90 264 99.62 85.34 70.23 92.61 79.09 45.23 88.41 60.83 35.11
100 294 99.66 82.62 72.55 97.55 65.10 49.93 93.88 47.21 39.86
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when p D q D 3, the average edge removal percentage is greater for � D 0 than
for � D 1, and hence, the average times in the latter are higher.

This model can be slightly modified to generalize other models studied in the
literature. For instance, if we define a set of k parameters ƒ D f�1; : : : ; �kg,
then we can deal with each function f i

acd.�i ; x/ independently. Thus, the
problem proposed by Zhang and Melachrinoudis (2001) might be denoted as
max
x2N

.f 1
acd.�1; x/; f 2

acd.�2; x//, with p D 2, q D 1, k D p � q D 2 and

ƒ D f�1 D 1; �2 D 0g. On the other hand, the multicriteria semi-obnoxious
median problem presented by Hamacher et al. (2002) can be formulated as
max
x2N

.f i
acd.�i ; x/;�f

j

acd.�j ; x//, with p > 1, q D 1, �i D �j D 0 and i 2 Q1,

j 2 Q2, jQ1 [Q2j D p, Q1 \Q2 D ;, being Q1 the set of obnoxious objective
functions, and Q2 the set of desirable objective functions. Obviously, if Q2 D ;
then we get the multicriteria maxian problem discussed in this chapter.

Finally, we remark that if p > 1 and q D 1 then the number of criteria matches
the number of weights per node, i.e., k D p. Besides, if � D 0 then the number of
breakpoints for all the k objective functions of a given edge is O.n/, since all the
f s1

sum.x/ functions share the same breakpoints. Hence, the total number of segments
to compare is O.mn/. Therefore, the overall complexity of the algorithm is reduced
to O.km2n2/, which is the same complexity achieved by Hamacher et al. (2002) for
the location of a semi-obnoxious facility on networks with sum objectives.

For more details, the reader is referred to Colebrook and Sicilia (2007).

Conclusions and Directions for Further Research

This chapter aimed to be a comprehensive compilation of references and methods
dealing with undesirable facility location on networks. In this sense, more than 90
papers have been briefly commented, along with several models on undesirable
single facility location on networks with multiple criteria that have been analyzed
and described.

We first addressed the undesirable 1-center (uncenter) location problem on
networks. By means of a more suitable problem formulation, a new O.mn/

algorithm can be developed, which is more straightforward and computationally
faster than the ones already reported in the literature. Besides, we have also analyzed
the problem of locating an undesirable median (maxian) on a network, obtaining a
new and better upper bound. We have briefly presented the idea of a new algorithm
in O.mn/ time to solve this problem.

Finally, we studied the uncenter and maxian problems on multicriteria networks,
establishing new properties and rules to remove inefficient edges. We have also
presented the multicriteria �-anti-cent-dian model as a convex combination of the
two latter problems through a parameter �. An effective rule to remove edges
containing inefficient points, as well as a polynomial algorithm in O.m2n2k3/

time, being k the number of criteria. Besides, this procedure can solve both the
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multicriteria uncenter problem and the multicriteria maxian problem. Moreover,
when the network holds a single weight per node and a single length per edge,
this algorithm can efficiently solve the single criterion uncenter, maxian and �-anti-
cent-dian problems. Lastly, this model might be slightly modified to generalize other
models presented in the literature.

Some directions for future research could be:

• Try to apply the undesirable location problems to real world applications, or re-
design them to acquire the real details that are not covered in the models. A direct
use could be any application involving GIS (Geographic Information System)
technologies.

• Compile in a single software application all the models described in this chapter,
along with the classical algorithms for desirable facility location problems. A
first attempt of this project was presented in Colebrook et al. (2005a).

• Expose all the algorithms developed so far as Web Services in the Internet, so
they could be easily used from any computing device (PC, smartphone, tablet,
etc). This is a nice project that we keep in mind a long time ago, and we hope to
develop it shortly.
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Network Interdiction Methods
and Approximations in a Hazmat
Transportation Setting

Justin Yates

Introduction

The United States transportation system is an extensive and integrated component
in the eight key infrastructures upon which the livelihood of the U.S. is dependent
(Department of Homeland Security 2009). The accessibility and mobility enabled
through open use of the transportation system is a vital and necessary freedom which
contributes to the fluidity of the American environment. The transportation system
is expansive and heavily utilized with an average of over 2 billion daily vehicle-
miles of travel (nearly twice as much travel since the early 1980s) on the roughly 4
million miles of paved roadway, nearly 47,000 miles of Interstate highway, 600,000
bridges and 366 U.S. highway tunnels over 100 m (Texas Transportation Institute
2011; Transportation Security 2012). Travelers and shippers may also choose to
utilize more than 300,000 miles of freight rail, nearly 10,000 miles of urban and
commuter rail systems, or connect between 500 commercial-service and 14,000
general aviation airports (Transportation Research 2002).

In this chapter, a general review of network-based hazardous material transporta-
tion models will be given. Specific attention will be given to the network interdiction
model and its variants (e.g. shortest path network interdiction) as these models
have recently become popular in the domain of homeland security. The chapter
will focus on the application of network interdiction models to networks of various
size and structure and the ensuing computational performance (including objective
value, sensitivity to network properties, etc.) and spatial structure (e.g. resource
allocation, network connectivity/density) of the interdiction solutions. A systematic
experimental analysis will be designed to identify salient network and regional
properties impacting interdiction solutions (e.g. proximity to origin points, initial arc
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metric values, etc.). Current approximations for the network interdiction model will
also be analyzed against the obtained solutions, including alternate approximation
formulations as well as alternate solution approaches. The evaluation of such
techniques will lead to greater insight on the effect of network and problem structure
to resource allocation in interdiction models.

Literature Review

This section will provide some supporting background in past and current hazardous
materials transportation research. A history and survey of past research initiatives
will be followed by identification of current research threads in network-based
infrastructure protection whose roots and foundation can be traced back to the
hazardous material literature. Attention will be given to the quantification of
risk, potential pitfalls, and benefits/drawbacks of estimation as a tool to measure
risk. Discussion and justification for a selection of related mathematical models
such as the Vehicle Routing Problem with Time Windows, Discrete Fractional
Programming, and Shortest Path Network Interdiction will be provided in addition
to some brief detail on algorithm/heuristic modeling within hazardous materials
transportation problems. In addition to optimization, this section will introduce
past practices in the field of Geographic Information Science (GIS) geared towards
supporting and augmenting risk analysis, routing and scheduling problems through
spatial reasoning methods. This section will conclude with a detailed discussion
on the Network Interdiction problem, which is used as the test-bed formulation
throughout the remainder of this chapter.

In 2001, there were 41,527 active hazmat motor carriers in the United States driv-
ing an average of 800,000 truck shipments per day of hazardous materials (hazmat)
over the nation’s roadways (Field 2004). By 2011, the number of active hazmat
motor carriers has grown to 61,000, transporting over 2 billion tons of hazmat
annually (Transportation Security 2012). Similarly in 2011, there were 5.76 million
hazmat inspections carried out by the U.S. Department of Transportation with 3.75
million vehicle inspections. In approximately 19,400 of 740,000 inspection cases on
interstate and hazmat certified carriers, unsafe or fatigued driving conditions were
reported (Transportation Security 2012).

The commingling of commercial, personal, and hazmat travel has fueled an
emphasis on safety in the transportation industry, not merely from the perspective
of individual harm, but also the durability and maintenance of the integrity and
serviceability of the transportation systems themselves (as an example, the U.S.
Department of Transportation (DOT) publishes a biennial report on the status of
hazmat transportation) (National Highway 1996; US Department of Transportation
2006). Additionally, academic researchers have heightened focus on the problem
of increasing safety and, more recently, security of hazmat shipments, especially
through populated areas or near perceived targets (i.e. nuclear power plants, water
resource plants, etc.).
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Fig. 1 All incidents by mode and incident year (US Department of Transportation 2012)

Figure 1 and Tables 1, 2, 3, and 4 illustrate the frequency of incidents occurring
during hazmat transportation by air, highway, railway and waterway. Hazardous
material transportation incidents in 2011 resulted in over $100 million in damages
with a 10-year cumulative total of over $670 million. Additionally, the size and
magnitude of hazmat transportation across the U.S. and the attractiveness of its
cargo (which could be used by both domestic and international organizations to
create situations of intentional public exposure or weaponization) generates support
for an immense number of research opportunities geared towards creating safer,
more stable and less vulnerable hazmat transportation.

A History in Hazardous Materials Transportation Research

The concept of risk, and its quantification, however ambiguous, has been the
driving force behind many popular models related to infrastructure protection,
transportation and, in recent years, homeland security. Risk in hazardous materials
transportation was most succinctly measured as the product of incident probability
and incident consequence. Incident probability implies occurrence of an accident
that releases or exposes a region/population to hazardous material while incident
consequence quantitatively measures the impact(s) of release. Ideally, these proba-
bilities would be based on real-world data and historical statistics, leaving little room
for interpretation. In practice, there are many pitfalls in quantifying risk, including,
the lack of accurate and specific historical data and lack of a clear and agreed upon
definition of risk head this list. With respect to data collection, a true calculation
of risk would include meteorological and topological knowledge, accurate effects
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and dispersion of the spilled substance, location of individuals at the time of the
incident, and human does response, to name a few. Note that this list does not
begin to include components related to economic and environmental damage, as
well as social and socio-economic implications which may be desired in quantifying
incident consequence) (List et al. 1991; Erkut and Verter 1998). This impracticality
has led hazmat modelers to adopt estimation metrics that avoid such extensive, time
consuming data collection, with varying degrees of complexity and success.

The ultimate goal of risk measurement is to utilize estimation techniques that
drive the optimization procedure and accurately replicate real-world scenarios
without obtaining an overwhelming amount of data. List et al. (1991) refers to
this as constructed risk or a constructed index. A constructed index, in its most
simplistic form, decomposes the network, examining its individual arcs, assigning
a pseudo cost to each arc, and implementing algorithms such as Yen’s shortest path
algorithm in an effort to succinctly yet accurately represent the true environment.
Here, (1) illustrates the risk function, where RAB is the risk (which would be used
instead of link length as the cost in a shortest path algorithm) for link AB, pAB is the
probability of an incident occurring on link AB, and CAB is the consequence for AB,
which is nearly always contingent (either partially or exclusively) on the population
density within a certain vicinity of the road segment (Erkut and Verter 1998).

RAB D pABCAB (1)

Assisting in the determination of pAB , incident probability studies examining
variations in release rate by mode, carrier type, vehicle type, road classification,
time of day and weather conditions may be used (List et al. 1991). Estimation tools
for incident consequence typically take on the form of a “danger circle” (Erkut
and Verter 1998) or “buffer zone” (Laefer and Pradhan 2006; Huang et al. 2004)
such that all individuals within the zone are determined to be exposed to a fatal
hazmat incident. It is important to note that, depending on the time of day and
area, population estimates may vary significantly from static figures such as census
counts (Erkut and Verter 1998). Total edge consequence may be derived under
the assumption that an edge is composed of n unit segments, each with uniform
parameters (Erkut and Verter 1998). Expected edge consequence may then be
defined by (2) (variable interpretation is the same as above) and, since p (probability
of a hazmat incident) is typically very small (on the order of one per one million
miles), approximated as in (3) (Erkut and Verter 1998).

pC C .1� p/pC C .1 � p/2pC C : : :C .1� p/n�1pC (2)

.pn/C (3)

It is this value that would be substituted in the objective function of a shortest path
problem, creating an optimization problem that would return the path of minimum
risk from an origin-destination (O-D) pair given the current network.
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Fig. 2 Zone segmentation
along a link

While this approach is eloquent in its relative simplicity, key assumptions reduce
the realism of the output. Primarily, the assumption that each unit segment of
an edge has uniform properties is limiting. Additional nodes that separate a link
without uniform properties into its uniform components may be added, without
influencing the optimal outcome. However, this approach is impractical for large
networks and also increases the number of constraints in the optimization problem,
potentially increasing computation time significantly. If this assumption cannot be
made, then expected edge consequence may not be approximated as succinctly as
in (3), preventing the shortest path approach (Erkut and Verter 1998).

In practice, multiple trips are necessary to effectively move material, and consid-
eration of consequence over numerous shipments between an O-D pair is necessary
to accurately reflect the repercussions of an incident. Viewing these shipments as a
sequence of independent Bernoulli trials was discussed in detail by Jin et al. (1996)
and Jin and Batta (1996) and continued in Batta and Chiu (1998). Underlying these
works is the observation that multiple, but finite, hazmat trips are often needed to
transport all of the material. Total shipments may be unrestricted (continuing until
all material is shipped), or may be suspended or ceased after a critical threshold on
the number of accidents is reached (Jin et al. 1996). Probability of link incident (pi )
and consequence of link incident (Ci ) remain, while introduction of the variable
t (threshold number of accidents) and T (total trips to be made) allow for new
objective considerations (Jin et al. 1996). Varying the values of t and T, alternative
objectives such as expected total consequence, expected consequence per trip, and
expected number of trips between two successive accidents are considered (Jin and
Batta 1996).

Risk equity, described as the fair dispersion of risk throughout a population,
represents yet another way that hazmat transportation has been viewed and modeled.
The objective function in a risk equity problem is to find a set T of routes
(not necessarily distinct) that minimize total risk over a network/region while
constraining the difference in total risk between every pair of zones within a
specified threshold T� (Gopalan et al. 1990). Figure 2 illustrates a typical instance
of network segmentation, where link (i, j) directly spans two zones and indirectly
influences a third (Gopalan et al. 1990).

Instead of viewing the incident and its consequence separately, multi-criterion
optimization problems can be formulated to consider individual hazmat transporta-
tion problem components individually within a system-optimized mathematical
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population
exposure

A

B

C
D

E
F

probability

Fig. 3 Efficient frontier of a typical bi-criterion minimization problem

Fig. 4 Risk map for aniline transportation in Valladolid

model. Figure 3 shows a typical bi-criterion efficient frontier for two factors
(incident probability and population exposure), with each letter representing a
different optimal solution on the efficient frontier generated applying different
weights to the objective function criteria (Erkut and Verter 1998). Huang et al.
(2004) extends this approach, identifying five criteria (exposure, socio-economic
impact, risk of hijack, traffic conditions, and emergency response) of potential
interest in hazmat route choice (Fig. 4).
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Shifting from the macro-scale view of equity and multiple criteria, approaches
focusing on individual network components at a micro scale emerged as a natural
complement. Arc vulnerability modeling considers extrinsic, tangible elements that
lie in the vicinity of the link (i.e. hospitals, education centers, sports facilities,
shopping centers, power stations, water treatment centers, etc.) to quantify an
individual arc metric which is used to formulate the given optimization problem.
The concept may be enhanced by incorporating non-vicinity related tangibles such
as network redundancy, capacity, traffic demand and highway configuration, which
may positively or negatively influence the importance of a link (Cova and Conger
2003). Also, natural disasters such as earthquakes, may cause fires, landslides, and
facilitate dam failures (and consequently floods), all possible contributors to net-
work disconnection and transportation disruption. The flexibility such approaches
gave to modelers has made them strong favorites and many contemporary homeland
security models can be traced back to these formulations.

Considering, for example, least-flood-risk as an additional criteria for routing in a
multi-criterion model, link cost could be quantified as in (4), where the denominator
models flood characteristics (˛h 2 Œ0; 1� representing flood height and ˛v 2 Œ0; 1�

representing flood velocity) such that if no flooding is present, the cost is simply the
numerator (in this case, the length of link (i, j)) (Cova and Conger 2003).

cij D Lij

˛h˛v
(4)

Simulation software may also be used to help quantify link vulnerability,
especially in the area of natural disasters. The Federal Emergency Management
Agency (FEMA) has created a software tool named HAZUS, which may be used
to observe how transportation networks react to the adverse affects of natural
disasters (Federal Emergency Management 2006). Similarly, the Federal Highway
Administration recognizes REDARS, used exclusively to determine how seismic
events impact road and highway systems (MCEER 2006).

Network Models and Interdiction

Network stability and the maintenance of serviceability have already been shown
to be of great concern when considering the routing of hazmat. The functioning
of links in a network may be negatively influenced by congestion and accidents,
weather, seismic activity and natural disasters, the occurrence of hazmat incidents,
intentional acts to disrupt the network, or by the combination of any two or more
such instances.

One way to identify network vulnerability is through the identification of critical
links. A link is deemed “weak” if incident probability is high, “important” if
consequence of an incident is large, and “critical” if it is both weak and important
(Jenelius et al. 2006). These values are derived through the observation of how
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link absence affects path travel time, using multiple, predetermined, O-D paths to
evaluate (Jenelius et al. 2006). Additionally, incorporation of key-infrastructure (i.e.
proximity of the link to schools, hospitals, military, power or water facilities) could
assist in more realistic modeling, where such vulnerable sites (potential targets)
contribute to the link’s importance (Luedtke and White 2002). Criticality of links is
also dependent on the geographic features over which the network lies (i.e. coastline,
mountain ridge). These features hinder the existence of nearby options available for
re-routing without significant time delay. Therefore, it is useful to consider inherent
network vulnerability through quantitative means and incorporate this into a risk or
routing model. The generality of Jenelius et al. (2006), is applied to optimization
of hazmat transportation, developing a mathematical model called the Hazardous-
Network Design Problem (HDP).

Given a road network, HDP selects links that should be closed to hazmat trans-
portation in order to minimize total risk (Kara and Verter 2004). The formulation
of the HDP is bi-level, containing an outer and inner problem that more accurately
represents the interaction between policy makers and hazmat carriers (there is often
predominance in hazmat routing problems favoring the carriers’ viewpoint (i.e.
routing) and omitting regulator decision-making pertaining to link availability).
The inner problem minimizes the combined travel distance of the trucks subject
to flow conservation, and may be viewed as either a minimum cost network flow
or a constrained shortest path problem, while the solution of the outer problem
minimizes population exposure. The two problems interact with the binary decision
variables of the outer problem becoming the parameters of the inner problem (Kara
and Verter 2004). Success of the model prescribes the available road network and
route choices for hazmat transportation.

The term interdict is defined by Merriam-Webster’s dictionary as the adjective
“to destroy, damage, or cut off (as an enemy line of supply) by firepower to stop or
hamper an enemy.” The problem of network interdiction may then be taken to mean
the intentional destruction, by force, of a network to impede or cease enemy use.
Within the realm of optimization, especially in the military community, the study of
interdiction problems has been given significant attention.

Considering network flow, the interdiction problem may be represented as a
multi-commodity problem with two players (Lim and Smith 2007). The first player,
the follower, makes profit by delivering commodities to designated destinations.
The leader attempts to minimize the followers profit by selectively destroying arcs,
the destruction of which costs the leader by subtracting a link destruction amount
from the leaders’ interdiction budget. Arcs may either be destroyed discretely
(either capacity flow is possible or no flow is possible) or continuously (partial
flow over links is allowed). The Multi-Commodity Flow Network Interdiction
Problem (MFNIP) is then modeled as the minimization of the maximum profit
the follower may achieve, subject to conservation of flow constraints, the leaders
budget constraint, and non-negativity (Lim and Smith 2007). From the followers’
perspective, MFNIP quantifies a worst-case scenario that showcases the weakest
(or most vulnerable) links in a network. This information may then be used in
the strengthening of weak points or the enhancement of network connectivity to
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better secure the system (Qiao et al. 2007). In addition to transportation networks,
the multi-commodity flow problem may be applied to airline operations, supply
chains, and telecommunications, as well as water supply networks, and power grid
systems, all of which may then be examined through the MFNIP formulation to
gauge network security and stability.

A review of early literature on the routing, schedule, location and risk analysis
for hazardous materials transportation can be found in List et al. (1991). Specifically
associated with risk analysis, Erkut and Verter (1998) provides model overviews
and examines how the quantification of risk in these models affects model perfor-
mance/accuracy. In the case where risk is taken to be the acceptable threshold of
accidents in transport willing to be endured, Jin and Batta (1996) gives a nonlinear
constrained shortest path approach and examines the effect of the accident threshold
on routing decisions.

Beginning with Wood (1993) and continuing through Israeli and Wood (2002),
Brown et al. (2006) and others, network interdiction began to emerge as a
natural extension to hazardous materials transportation research. The problems are
decidedly similar and deal with undesirable transportation through a network. In
the hazardous materials transportation problems, risk and exposure were two of
the quantifiable measures applied to each arc or node of the network and used as
the basis for determining appropriate route selections. In the case of Israeli and
Wood (2002) and Brown et al. (2006), the quantifiable arc measure is length, which
is increased when an arc is interdicted. In these two-player network interdiction
problems, these elongated arcs effectively deter the opposing player from using
these arcs in composing their shortest path. Scaparra and Church (2008) and Church
and Scaparra (2007) model interdiction at network nodes with interdiction removing
the ability of a facility located at that specific node from satisfying demand to other
nodes. Considering the minimization of weighted demand-distance as the objective,
an optimal nodal interdiction strategy will increase the opposing player’s cost to
satisfy network demand.

As these and other recent mathematical models transition from an emphasis on
risk assessment and hazardous materials transportation to problems of homeland
security and extreme events, five major factors can be used to delineate and
differentiate model focus, intent and capability. The five major factors offered
in Yates and Sanjeevi (2012) are formulation, objective function, interdiction
metric, component interdiction and the Origin–destination policy. Formulation
refers to single versus bi/multi-level models. Objective function details whether
the original objective function provided for a given problem is additive or mul-
tiplicative/probabilistic (note that this is the original objective function and does
not refer to any transformations applied during the solution process). Interdiction
metric refers to whether the individual metrics used are continuously or discretely
interdicted while Component Interdiction dictates whether these metrics are arc-
based, node-based, or network/spatially based. Lastly, Origin–destination policy
refers to the existence of a single O-D pair or multiple O-D pairs in the problem.
Table 5 is now introduced to provide an overview of some representative recent
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network interdiction literature published after 2004. For additional discussion of
network interdiction problems published prior to 2004, refer to Church et al. (2004).

At its core, the shortest path network interdiction problem (SPNIP) is a two-
player deterministic game being played over a network composed of arcs and nodes
with a given arc/node metric (length, detection probability, etc.) and with identified
origin and destination sets. In these models, any and all of these components could
be completely known by both players (i.e. having perfect information) or could
contain some element of mis-information, deception (imperfect information). The
ability to interdict is also constrained by limited resources, which could be modeled
as a finite number of arcs/nodes to interdict or a budget limitation where each
interdiction comes with some associated interdiction cost.

Developed interdiction models can have objective functions that are a single
level or multiple levels to reflect to degree of interaction and knowledge among
the players being modeled. Examples of single-level models include Church et al.
(2004) and Church and Scaparra (2007). In this case, these models are variants
of traditional optimization models such as the p-Median and Maximal Covering
problems that have been adapted to include interdiction concepts. In many instances,
these single-layer models are solved for a variety of problem parameters and thresh-
old values to determine a pareto front, or set of interdiction strategies to better gain
situational knowledge. Such analysis is extremely useful when the capability/intent
of an adversary is in question or when information is unreliable/imperfect.

Multi-level models (Morton et al. 2007; Israeli and Wood 2002; Brown et al.
2006; Church and Scaparra 2007), in contrast to single-level models, are often
integer or mixed integer programs that model the decision making of players
sequentially in the same formulation. Instead of solving under multiple parameter
and threshold instances, the interaction between the interdictor and the defender
is modeled simultaneously. The objective function in multi-level models is one
that typically reflects pure competition, with the interdictor seeking to minimize an
overall network metric (such as flow or satisfied demand) and the defender seeking
to maximize this minimum metric. In other words, the defender’s job is to minimize
the effect of interdiction on their network operations. In Table 1, “>0” indicates
that the interdiction metric is continuous (i.e. interdiction increases arc length by x
with x > 0), “ZC” indicates the metric is integral (i.e. interdiction is based upon the
number of layers penetrated) and “[0, 1]” indicates that the metric is probabilistic.
In the probabilistic case, interdiction can be modeled as the probability of path
detection P where PDQiaixi, i " P models path probability as the product of all
arc probabilities ai on path P (xiD 1 if i " P, 0 otherwise).

Multi-level models, due to their structure, can often be decomposed and solved
iteratively to optimality using standard optimization techniques. One of the most
straight-forward and intuitive of these solution approaches is Bender’s Decompo-
sition (Bard 1998), where the interdictor and defender “trade” moves and with
each move providing some degree of information to their counterpart (recall that
these problems can be set up with perfect or imperfect information). In this way,
information from these consecutive player movements is continually accrued and
used within the next iteration of the decomposition. At some point, the interdictor
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and defender reach a state of equilibrium where no new strategies are employed. In
the worst case, this equilibrium occurs after all possible moves have been explored
(i.e. complete enumeration), though in practice significantly less iterations are
required. This certificate of optimality, in conjunction with its intuitive approach,
is a major benefit to using Bender’s Decomposition (Bard 1998).

Formulating Interdiction Models

In this section, we begin to explore the shortest path network interdiction problem
(SPNIP) as defined by Israeli and Wood (2002) and discuss multiple variations
which can be derived from it. We will begin examining solutions to the SPNIP
and its variations by looking at their computational performance when solved
using Bender’s Decomposition, implementation of which will also be addressed. As
patterns and trends emerge in the solutions, we will begin to motivate development
of alternative heuristic and approximation techniques to solve network interdiction
problems. These techniques will be discussed and compared in “Developing
interdiction approximations and heuristics” of this chapter.

Mathematical Models and Notation

SPNIP and SPNIP-M

We begin by presenting the SPNIP formulation of Israeli and Wood (2002) and
a modified shortest path network interdiction problem (SPNIP-M) formulation of
Yates and Casas (2010). Each is a discrete bi-level optimization problem with an
attacker and defender. The attacker considers all identified origins and targets and
uses the network to find the path with, in this case, lowest detection probability
(note that many network measures such as distance or cost, could be used in place
of detection). The defender locates a limited number of resources which increase arc
(and subsequently path) detection probabilities. Through the remainder of this work,
we will refer to the defense resources as sensors, though this term is used relatively
loosely. In our modeling, a sensor’s properties include a predefined range (beyond
which their influence is considered to be null) as well as an associated location cost
and a parameter for sensor strength.

As a point of delineation, we note that the formulation of SPNIP assumes that
sensors are located directly on network arcs in a 1-to-1 fashion. SPNIP-M, on
the other hand, locates sensors geographically within the region at pre-specified
locations. These locations, referred to as atoms, are point locations within the
continuous region containing the network/infrastructure of interest. The atom set
containing all possible sensor locations for a given problem is determined through
a number of different methods which can include set distances, line-of-sight,
proximity, or a function containing any combination of measurable geographic
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and network properties. For our initial models, we assume a simple and uniform
grid pattern for atoms, though section “Developing Interdiction Approximations
and Heuristics” will discuss how more intelligent atom derivations can be derived
and implemented within SPNIP-M. Overall, the geographic structure of SPNIP-M
increases the complexity and realism of sensor location in the interdiction model,
giving the modeler more flexibility.

Terminology

Atom: Potential sensor location point within the geographic region occupied by the
network.

Attacker: Seeks the path of lowest detection (i.e. shortest path) on the network. The
obtained path is simple and complete and will consider all possible origin and
destination pairs (previously referred to as the follower).

Defender: Allocates sensors to increase detection probability. Sensors may be
located directly on the network arcs in SPNIP or at designated geographic
locations (atoms) in SPNIP-M and SPNIP-LB.

Detection: The probability that movement along a given arc (path) will be observed.
Sensor: Increases detection on arcs which fall within its given range. The degree to

which detection is increased depends upon the sensor’s power. Sensors are placed
directly on arcs in the SPNIP and at designated geographic locations (atoms) in
SPNIP-M and SPNIP-LB. Sensors have a known allocation cost.

Notation

A Set of suitable sensor locations cs Cost to locate a type s
sensor

� Set of network arcs kni f1, �1g if node n " N is
the fhead, tailg or
arc i " �, else 0

B Total defense budget �s Sensitivity of sensor
type s, with
0 � �s � 1

N Set of network nodes qs � f1, �1, 0g if node
n " N is forigin,
target, intermediateg

S Set of sensor types ras(i) 1 if arc i " Ras, else 0
� Overlapping coverage threshold uist Probability of

non-detection for i
covered by t type s
sensors

Ras Set of arcs within the influence
range of a type s sensor located
at atom a " A
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Decision Variables

wiD 1 if arc i is used in the attacker path, else 0.
yasD 1 if sensor type s is located at atom a, else 0.
xistD 1if arc i is covered by t type s sensors, else 0.

ŒSPNIP�

z D min max
Y

i;s;t

uwi yat

ist

s:t:
P
i

kni wi D qn 8
P
s

yis D 1 8 i
P
i;s

csyis � B

w; x; y 2 f0; 1g

ŒSPNIP-M�

zm D min max
Y

i;s;t

uwi xist
i st

s:t:
P
i

kniwi D qn 8 n

xist � 1
t

P
a

ras.i/ � yas � 0 8 i; s; t
P
s;t

xist D 1 8 i

P
a;s

csyas � B

w; x; y 2 f0; 1g

Regardless of the formulation, we assume a non-zero detection probability for
all arcs as an attacker can never realistically be guaranteed to reach his/her target.
When dealing with network-based transportation, this detection probability, albeit
potentially small, can be attributed to incidental traffic violations, accidents with
other motorists, or a concerned citizen alerting local authorities to a suspicious
individual or vehicle. We assume that these initial arc non-detection probabilities
are known. We also assume that detection is equivalent to capture as a simplistic
proxy for the more complicated case where detection and interception (i.e., capture)
are separate factors.

As the SPNIP and SPNIP-M formulations show, the objective function yields a
path detection probability calculated by multiplying arc non-detection values for all
arcs comprising the optimal attacker simple path through the network (i.e. one that
begins at a designated origin, terminates at a designated target and does not cycle)
given the defender’s optimal sensor location strategy. We calculate the impact of
a sensor’s coverage as uist D ui01

Q
t

�s where �s indicates the sensor’s strength.

In SPNIP-M, there is a maximum threshold of coverage, � , beyond which an arc’s
non-detection probability will not be affected by additional sensor coverage. In this
way, all uist values may be calculated a-priori.

In both models, the first set of constraints imposes a conservation of flow within
paths that the attacker identifies and is the only constraint which includes the
attacker decision variable wi. The second constraint set in SPNIP-M does not appear
in the SPNIP model and functions as a relational constraint between sensor location
and the corresponding arc influence upon the network. Simply stated, an arc cannot
be influenced by t type s sensors unless the defender has allocated t type s sensors
containing arc i in their respective ranges. The remaining constraints in both models
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guarantee arc coverage (every arc is either covered, xi1tD 1, or not covered, xi01D 1)
and limit the defender’s available resources. All variables are modeled as binary
decision variables.

SPNIP-LB

In both SPNIP and SPNIP-M, an arc is considered as covered by a sensor when any
portion of that arc, no matter how large or small, falls within the sensor’s range.
Using this type of binary approach to coverage is highly restrictive and, one can
argue, does not accurately reflect real-world sensor performance. Functions exist
which define this type of behavior and have been used in past military models, where
longer time spent in the range of enemy radar functionally increased one’s detection
probability (Przemieniecki 2000). Using a similar functional approach, we define a
length-based approach to shortest path network interdiction (SPNIP-LB) to augment
the binary SPNIP and SPNIP-M formulations.

[Length Based]:

ui D initial probability of non-detection for arc i

lias D length of arc i within the range of a type s resource located at atom a

vias D proportion of non-detection reduction when arc i is influenced

by a type s resource at atom a

D e-�slias where �s � 0 8 s 2 S

SPNIP-LB

min
y;x

max
w

Y

s;a;i

ui
wi vwi xias

ias

s:t:
X

i

kni wi D qn 8 n 2 N

xias � ras
i yas � 0 8 i 2 I; a 2 A; s 2 S

X

a

X

s

xias � 1 8 i 2 I

X

s

X

a

csyas � B

w; x; y 2 f0; 1g

The SPNIP-LB formulation is defined by the same constraint sets as the binary
SPNIP-M. In terms of modeling, SPNIP-LB differs in its derivation of non-detection
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Fig. 5 Differentiating between the binary SPNIP-M and length-based SPNIP-LB formulations
(Yates and Sanjeevi 2012)

probability and in composition of the objective function. In SPNIP-LB, calculation
of non-detection probability is performed through a more complex function which
more realistically models the connection between detection probability and time
spent inside a sensor’s range (Przemieniecki 2000). Figure 5 illustrates the concept
of partial coverage and how it’s able to be captured through formulation of the
SPNIP-LB, adding yet another dimension of complexity for interdiction modelers.

Obtaining Solutions Through Bender’s Decomposition

The interdiction formulations previously discussed share one major property that
allows for a separation-based solution approach; no single set of constraints contains
both attacker and defender variables. This means that the formulations may be
divided into sub-problems for the attacker and defender respectively. Once these
sub-problems are composed, they may be solved iteratively and linked together in
a way that the solutions obtained in one sub-problem are used to feed the other
cyclically. This approach is known as Bender’s Decomposition (Bard 1998).

Implementing Bender’s Decomposition for the aforementioned interdiction mod-
els, we derive an attacker sub-problem which maximizes path non-detection and
is constrained by the conservation of flow constraints and fixed defender decision
variables xist (this results in the formation of a node-arc incidence matrix where
the LP relaxation will return integral solutions (Nemhauser and Wolsey 1999).
We derive the defender sub-problem to minimize path non-detection subject to
the remaining constraints with the defender variables x and y and with fixed
attacker decision variables wi . Both sub-problems are now provided, along with
an illustration of the decomposition approach in Fig. 6.
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Fig. 6 Illustration of the Bender’s decomposition method (Yates and Casas 2010)

ŒAttacker Sub-Problem� ŒDefender Sub-Problem�

zat t D max
P
i;s;t

log.uist /wi xist zdef D min V

s:t:
P
i

kni wi � qn 8 n s:t: xist � 1
t

P
a

ras
i yas � 0 8 i; s; t

wi 2 RC P
i;s;t

xist D 1 8 i

P
csyas � B

P
log.uist / wi xist � V

yas; xist 2 ZC

As in Fig. 6, the technique iteratively solves the attacker and defender sub-
problems, passing solution information sequentially. Within each iteration, the
defender allocates its resources optimally considering only those attacker paths
found through previous iteration. This optimal allocation is then used to update all
arc non-detection probabilities and used to obtain the attacker’s path of maximum
non-detection given the current resource allocation. If the path obtained by the
attacker has already been considered in the constraint set (i.e. it has already been
found in a previous iteration), an optimal defense resource allocation has been found
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and the method stops. If the obtained path is not currently in the attacker path
set, it is added and the defender sub-problem is solved again with the additional
path considered. Bender’s Decomposition yields provably optimal solutions and,
in the worst-case, will iterate once for every unique, complete, simple path of
the network (resulting in a worst-case performance of complete enumeration). In
practice, Bender’s Decomposition requires significantly less iterations to find the
optimal resource allocation strategy.

Examining Network Interdiction Solutions

To assess interdiction solutions, we develop an experimental design that is used to
examine two sub-networks of the Los Angeles County region. Multiple factors make
up the experimental design, including road network and formulation type. Each
identified factor has at least two test levels. Table 6 provides information pertaining
to the initial experimental design and Fig. 7 illustrates the two test networks.

M-AST (Additive, Single Sensor Type)
M-NAST (Non-additive, Single Sensor Type)
M-NAMT (Non-additive, Multiple Sensor Types)

In Table 6, the parameter settings that define each of the six formulation levels
are provided. The SPNIP-Length Based model has three distinct levels varying
by sensor power (LB-1, LB-2 and LB-3). For SPNIP-M, three variations result.
In M-NAST (Non-additive, Single Sensor Type), only a single sensor type is
considered and no overlapping sensor coverage is allowed (i.e. tD 1). In M-
AST (Additive, Single Sensor Type), only a single sensor type is considered but
overlapping coverage is allowed until a given threshold, beyond which additional
sensor coverage will not reduce arc non-detection. In M-NAMT (Non-additive,
Multiple Sensor Types), multiple sensor types with various costs and sensor power
parameters are considered, however no overlapping coverage is allowed (i.e. tD 1).

In Fig. 7, a uniform grid structure was used to establish the atom locations. The
grid’s scale is consistent for both Lancaster and Northridge, with these networks
being chosen for experimental study due to their diversity in scale, complexity
and density. Table 7 provides specific information on the network and atom sets
for Lancaster and Northridge. Figure 8 illustrates the specific origin and critical
infrastructure target locations for Lancaster and Northridge and Fig. 9 shows how
arc influence is determined for SPNIP-M and SPNIP-LB on each network. U.S.
Census Bureau classification (CFCC) was used to determine appropriate targets as
follows (U.S. Census Bureau 2008). GreenDfall regional airportsg, BlueDfall
regional airports and hospitalsg, YellowDfall regional airports, hospitals and
police/fire stationsg, OrangeDfall regional airports, hospitals, police/fire stations
and landmarksg, RedDfall regional airports, hospitals, police/fire stations, land-
marks and schools/universitiesg. Note that any given target level includes all targets
identified at preceding levels (i.e. all blue targets are included in the yellow target
set). Origins were chosen randomly from the set of external/boundary nodes for
each network.
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N

N

Los Angeles County Network Arcs

Northridge Network Arcs

Lancaster - Palmdale Network Arcs

Northridge Network Arcs

Lancaster - Palmdale Network Arcs

Los Angeles County Network Arcs

Northridge Atoms

Lancaster-Palmdale Atoms

0 5 10 20 Miles

0 5 10 20 Miles

Fig. 7 Lancaster and Northridge test-case networks and their position within the Los Angeles
County road network (Yates and Casas 2010)



Network Interdiction Methods and Approximations... 211

Table 7 General regional and network data for Lancaster and Northridge

Regional data Road network dataa

Area (sq. miles) # Atoms Atom density Total Density Min Max Mean

Lancaster 1,295.61 743 0.57 465.61 0.36 0.12 14.51 4.47
Northridge 361.18 220 0.61 246.64 0.68 0.01 8.16 1.32
aTotal, min, max and mean are measured in miles

Green - 0 destinations Blue - 2 destinations Yellow - 6 destinations

Red - 20 destinations

Red - 23 destinations

Northridge

L
ancaster

Destination Set Size
RedOrangeYellowBlueGreenOriginsAtomsNodesArcs

Network Arcs

Origins

N

E

S

0 5 10 20 30 40

0 2.5 5 10 15 20
Miles

Miles

W

Destination Nodes

Orange - 11 destinations

Orange - 16 destinationGreen - 1 destinations Blue - 6 destinations Yellow - 11 destinations

Lanacster-Palmdale
Northridge

214 77
124

742
220 11 11

11
15 23

2010 0 2
1 6

6
374

Fig. 8 Lancaster-Palmdale (top) and Northridge (bottom) network entry and CIKR target points
at each identified threat level (Yates and Sanjeevi 2012)

Recalling that Benders Decomposition was used to solve for optimal SPNIP
values, the resulting experimental design defined 30 individual problem instances
for each of the six formulation levels (a total of 180 individual problem instances).
Table 8 gives the aggregated results for five of the six formulation levels (M-NAMT
is excluded as it is the only formulation which includes multiple sensor types).
Tables 9 and 10 provide the individual run results for all SPNIP-M instances while
Fig. 10 illustrates a typical SPNIP-M solution for the Northridge network.

In examining these solutions, we notice that, as expected, network and formu-
lation choice directly impact objective value and computation time (significant
differences are present across all formulation levels). Specifically, we begin to
notice that SPNIP-M and SPNIP-LB performance is not monotonic. From Table 8,
the results of the experimental design show that SPNIP-M is more efficient
computationally in solving instances on the Lancaster network while SPNIP-LB
is more efficient with respect to Northridge.
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Fig. 9 Illustration of the network atom sets and a sample resource allocation (Yates and Sanjeevi
2012)

Extending SPNIP-LB

In SPNIP-LB, modification to the sensor model creates a simple function that
enables the modeling of dynamic sensors. In contrast with the sensors used to this
point, dynamic sensors are allocated to arcs within the network, repeatedly looping
(i.e. covering) these arcs in similar fashion to a local law enforcement vehicle on
patrol. The available dynamic sensor paths are finite and pre-determined and are
represented by the set P. The collection of all sensor locations, which includes the
set of atoms A for immobile or static sensors, is written as C D A[ P .

Call ti the amount of time spent traversing arc i of path p and tp the total path
traversal time for path p. A uniform distribution determines the probability that the
sensor is present on arc i. The definition in (5), we can calculate the probability of
non-detection for arc i under the influence of mobile sensor c as in (6)

P.Tip/ D ti

tp
(5)
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Fig. 10 Illustration of representative sensor placement results (Northridge shown)

P(NDcipjTip) is the probability of non-detection for arc i covered by sensor located
on path p – C (note that if path p contains the single arc i, then tiD tp and
P.N Dcip; Tip/ equals the static sensor detection rate).

P.N DcipjTip/ D e��lic

P.N Dcip; Tip/ D P.N Dcip jTip/P.Tip/

D e��lic
ti

tp

D uic 8 c 2 P (6)

P(NDcipjTip) is the probability of non-detection for arc i covered by sensor located
on path p – C (note that if path p contains the single arc i, then tiD tp and
P.N Dcip; Tip/ equals the static sensor detection rate. Also, dynamic sensors
are assumed to have an influence range of 1.5 miles such that a 0.5 mile arc would
have licD 0.5 while a 2.4 mile arc would have licD 1.5). Figure 11 illustrates an
adaptation of the Northridge network to include six dynamic/mobilesensor paths in
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Fig. 11 Static and dynamic sensor locations for Northridge, CA (Yates and Sanjeevi unpublished)

addition to the static atom locations for the SPNIP-LB formulation. Figure 12 and
Table 11 provide solution results after running several instances of SPNIP-LB with
dynamic sensors.

Analyzing the Spatial Properties of SPNIP-M and SPNIP-LB
Solutions

We use ArcGIS 10 to perform common spatial analysis techniques such as clustering
and autocorrelation on the SPNIP-M and SPNIP-LB solutions. We note that much
exists in the analysis of global and local clustering measures (local indicators of
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Fig. 12 Sample SPNIP-LB
solution: “Level 4 Threat”
with � D 2; (a) B D $800 (b)
B D $1,600 (Yates and
Sanjeevi unpublished)
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Table 11 Atom and path allocations for level 4 threat (Yates and Sanjeevi unpublished)

Allocation type Budget Atom usage Path usage

Sensors only $800 52 131 159 167
$1,600 20 62 131 134 154 172 186 201

Both $800 52 117 131 172
$1,600 20 35 131 154 172 201 1 2

Orange - 11 destinations

Blue - 2 destinations Yellow - 6 destinations

Red - 20 destinations

0 5 10 20 30 40
Miles w

N

E

S

Network Arcs

SPNIP Interdiction Frequency

Destination Nodes

Origins

Fig. 13 Map of aggregate Lancaster SPNIP results at each destination level (Yates and Sanjeevi
2012)

spatial autocorrelation, LISA) on a network (Anselin 1995; Yamada and Thill 2010).
With SPNIP-M and SPNIP-LB, there is an arc influence decision variable (xist and
xias respectively) in addition to a variable indicating a sensor’s location at an atom
(yas in both models). While atom locations have a regular spatial pattern (to this
point, all atom locations have been grid-structured), their independence from the
road network itself enables the application LISA measures.

Figures 13 and 14 illustrate the aggregate results of solving a traditional arc-based
SPNIP model such as Israeli and Wood (2002) and the aggregate atom solutions
across all previously defined factor levels for SPNIP-M and SPNIP-LB in Lancaster
and Northridge respectively.

Kernel density and map algebra techniques were implemented in an effort to
better understand the observed similarity between the aggregated models of Figs. 13
and 14 (see ESRI 2009) for discussion on kernel density and map algebra). At a high
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Fig. 14 Map of atom frequency in Lancaster-Palmdale (left) and Northridge (right) (Yates and
Sanjeevi 2012)

level, kernel density is used to create a continuous-space image from the discrete
atom frequencies that are obtained when SPNIP-M and SPNIP-LB solutions are
aggregated. The continuous kernel density image is akin to a pixilated image and
is different from the individual discrete point-based atom locations (all pixels are
given a value through implementation of the kernel density and atom frequencies
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are “smoothed” through the continuous space occupied by the atoms). Map algebra
techniques are used to perform calculations on one or multiple continuous kernel
density files. We use map algebra techniques here to define similarity metrics for
the obtained kernel densities. Figure 15 illustrates the obtained kernel densities from
the atom frequencies of Fig. 14.

We define two measures for comparing aggregated solutions. The first, Less-
Than-Or-Equal-To (LessEQ), returns the percentage of individual pixels for kernel
density input A that are less than or equal to the individual pixels for kernel density
input B. The second, Equal-To (EQ), only returns the percentage of pixels for
input A and input B that are identical. Both LessEQ and EQ are used to evaluate
the similarity in aggregate coverage between SPNIP-M and SPNIP-LB. Table 12
provides the obtained similarity results using the kernel densities from Fig. 15 and
the two raster similarity measures.

The motivation for this analysis stems from discussion in the previous section
where the computational performance of SPNIP-M was more efficient in Lancaster
than in Northridge. If it can be shown that results from the two formulations are
similar, then they may be used interchangeably. This would provide flexibility
for the modeler to choose or continue to use formulations exhibiting efficient
performance. Additionally, such information on similarity can be useful in the
development of approximation techniques to reformulate and solve interdiction
problems (as will be discussed in the next section). In the case of Table 12, LB-3
exhibits strong similarity with M-NAST and M-AST, especially in Lancaster where
average equality is between 63 and 70 %. Similarly, LessEQ demonstrates that both
M-NAST and M-AST are capable of meeting or exceeding LB coverage in 85 % of
the experimental runs.

Developing Interdiction Approximations and Heuristics

The previous section highlighted the computational performance and spatial char-
acteristics of certain shortest path network interdiction problem variants. Though
the aforementioned represents a small subsection of interdiction formulations, there
were inherent trade-offs in computational performance across different formula-
tions. A knowledgeable modeler or public policy maker could use these trade-offs
to more effectively obtain information on the region and critical infrastructure being
examined. While such gains would be beneficial to the modeler, the spatial similar-
ities in solution characteristics support the assertion that there are inherent solution
properties that may be replicable or decipherable either through alternative, approx-
imate formulations or new solution techniques. This section is devoted to examining
how the shortest path network interdiction problem can be re-modeled and re-
evaluated for the purposes of developing faster, stronger approximation and solution
techniques. We will begin by discussing a knapsack approximation to the SPNIP-
M problem of the previous section. After the approximation is introduced, we will
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Lancaster-Palmdale, CA

SPNIP-LB

Northridge, CA

SPNIP-M

SPNIP-M

SPNIP-LB

High
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Low : 0Low : 0Low : 0
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Fig. 15 Kernel density obtained from aggregate atom frequencies (Yates and Sanjeevi 2012)
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Table 12 Spatial similarity of formulation results

First entry Second entry Raster Lancaster Northridge

Mean Std dev. Mean Std dev.

LB-3 M-NAST LessEQ 0.858 0.349 0.648 0.478
LB-3 M-AST LessEQ 0.887 0.317 0.683 0.465
LB-1 M-NAST LessEQ 0.838 0.369 0.630 0.483
LB-1 M-AST LessEQ 0.859 0.348 0.601 0.490
LB-2 M-NAST LessEQ 0.826 0.379 0.636 0.481
LB-2 M-AST LessEQ 0.836 0.370 0.665 0.472

LB-3 M-NAST EQ 0.665 0.472 0.168 0.374
LB-3 M-AST EQ 0.705 0.456 0.224 0.417
LB-1 M-NAST EQ 0.640 0.480 0.156 0.362
LB-1 M-AST EQ 0.685 0.465 0.194 0.396
LB-2 M-NAST EQ 0.629 0.483 0.151 0.364
LB-2 M-AST EQ 0.658 0.474 0.212 0.409

examine ways to increase the performance of Bender’s Decomposition and conclude
with provocation of a new, heuristic approach to solving interdiction problems.

A Knapsack Approximation

Within an interdiction problem, the primary concern of the defender is to identify
arcs and/or nodes that are most critical to the protection of critical infrastructure and
protect, reinforce, or otherwise deter an attacker from using those arcs. The Bender’s
Decomposition approach to solving interdiction models is essentially an iterative
approach that uses an attacker-based sub-problem to build a set of likely attacker
paths through the network. These attacker paths contain what can be considered the
critical arcs. Severing or preventing the attacker from using these critical arcs by
allocating regional resources is the primary defender concern.

Identifying critical, vulnerable, or salient network arcs is not a new problem.
Many approaches use a cut-set mentality to identify arcs whose absence will
cut off or extremely inhibit flow between origins and destinations. A classic
application of such an approach is given in Matisziw et al. (2007). Many interdiction
models, especially those in early hazardous materials literature, are predicated on
the maximum flow-minimum cut paradigm, using a minimum cut as the primary
method to identify critical network arcs. The following list contains such max
flow-min cut incorporated models: Burch et al. (2003), Corley and Chang (1974),
Cunningham (1985), Ghare et al. (1971), Phillips (1993), Ratliff et al. (1975),
Wollmer (1964), and Wood (2003).
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The approximation technique discussed here is essentially a constrained knap-
sack optimization problem that identifies the attacker’s critical network arcs, again
relying on the max flow-min cut property as its foundation. The major premise of
the approximation is to consider minimum capacity cuts in the network as a means
to identify likely attacker critical arcs. In doing so, the following lemma guides the
approximation (the proof for this lemma is by contradiction and may be found in
Yates and Lakshmanan (2011). The knapsack approximation formulation [KNAP]
follows the lemma.

Lemma For any given network G.N; ƒ/ having probability of non-detection as
its flow metric, the maximum flow in any path is an upper bound on the total path
non-detection probability.

ŒKNAP�

z� D max
X

b

'bvb

s:t:
P
b

c1vb � B

P
b2�j

vb � � 8 j 2 ƒ

v 2 f0; 1/

'b D P

j 2Rb1

�
˛ mj C 1�˛

pj

	

z* is the weighted objective utility for KNAP and contains two components. The
first, mj , is the aggregated maximum flow for arc j considering all origin and critical
infrastructure pairs. The second, 1

pj
is the inverse of the node count between arc j

and its closest origin. ˛ Determines the emphasis placed on the objective with the
goal of KNAP to locate sensor resources at atoms of the network such that z* is
maximized. In addition to the standard knapsack budgetary constraint, KNAP also
constrains the amount of tolerable sensor overlap within a sensor allocation scheme
in the same way that DSPNI used the subscript index t to control the degree to which
sensor overlap was counted when calculating z.

When examining solutions to the knapsack approximation, it is import to note
that only defender allocation schemes are determined under this method (i.e.
no attacker path information is provided). As a method for defender’s to gain
useful information on situational awareness, the knapsack approximation provides
a fast and reliable approximation to defender sensor location. Figures 16 and 17
and in Table 13 provide computational results of the knapsack and SPNIP-M
formulation solutions on the Lancaster and Northridge networks and using the same
experimental design discussed in the previous section. In Figs. 16 and 17, z is the
optimal objective value for SPNIP-M and z0 is the objective value obtained when the
KNAP sensor solution is evaluated for the SPNIP-M objective. Also in the figures,
KNAP parameters were set at BD $3,600, ˛D 0.02 and � D 3.

Comparing the computational results of the knapsack approximation illuminates
a few important trends. First, the approximation reliably captures the form of the
SPNIP-M objective function through a simple approximation based on a well-
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Fig. 16 Lancaster-Palmdale, random initial non-detection probability (Yates and Lakshmanan
2011)
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Fig. 17 Northridge, random initial non-detection probability (Yates and Lakshmanan 2011)

known and understood optimization principle, in this case maximum flow-minimum
cut. Second, the approximation demonstrates insensitivity to network choice. Third,
the approximation demonstrates computational insensitivity to changes in SPNIP-M
problem parameters. Computationally, the knapsack approximation performs well
for the cases examined and appears to be a well suited alternative to model defender
sensor location in SPNIP-M. We now introduce and discuss the knapsack’s ability
to spatially approximate SPNIP-M solutions. To do this, the same spatial analysis
techniques (kernel density and map algebra) were applied as in the previous section.
Figure 18 illustrates the obtained kernel densities while Table 14 gives the LessEQ
and EQ values.

The approximation’s spatial performance is promising, though not as strong
as its computational capabilities. With roughly 75 % similarity to the SPNIP-M
solution, the approximation performs well in Lancaster and appears to increase its
performance as overlap (�) increases. While the approximation does not perform
as well in Northridge, only a small number of possible parameter combinations are
provided in Table 14 and it is highly probable that the knapsack approximation could
be strengthened through a more comprehensive pareto analysis.
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Fig. 18 Kernel and binary kernel density and comparison for the Lancaster-Palmdale and
Northridge case study regions (Yates and Lakshmanan 2011)
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Table 14 EQ and LessEQ similarity values for Lancaster and Northridge under varying KNAP
parameters

Overlap Type Alpha D 0.0 Alpha D 0.50 Alpha D 1.0

Mean Std dev. Mean Std dev. Mean Std dev.

Lancaster 1 EQ 0.684 0.465 0.667 0.471 0.664 0.472
LessEQ 0.762 0.426 0.759 0.428 0.761 0.426

2 EQ 0.740 0.439 0.710 0.454 0.710 0.454
LessEQ 0.758 0.428 0.760 0.427 0.761 0.426

3 EQ 0.738 0.440 0.701 0.458 0.701 0.458
LessEQ 0.764 0.425 0.759 0.428 0.760 0.427

4 EQ 0.742 0.437 0.724 0.447 0.703 0.457
LessEQ 0.764 0.425 0.761 0.426 0.762 0.426

Northridge 1 EQ 0.182 0.386 0.187 0.390 0.187 0.390
LessEQ 0.429 0.495 0.434 0.496 0.429 0.495

2 EQ 0.208 0.406 0.227 0.419 0.227 0.419
LessEQ 0.399 0.490 0.408 0.492 0.408 0.492

3 EQ 0.248 0.432 0.217 0.412 0.217 0.412
LessEQ 0.381 0.486 0.393 0.489 0.393 0.489

4 EQ 0.248 0.432 0.221 0.415 0.221 0.415
LessEQ 0.384 0.486 0.399 0.490 0.399 0.490

The knapsack approximation demonstrates how an entirely new formulation can
be developed to take advantage of the unique structure of the network interdiction
problem. With a relatively simplistic formulation capable of being solved efficiently,
close approximations to the SPNIP-M formulation’s optimal solutions were ob-
tained with significantly less computational effort. The next section will discuss
how a similarly simple idea can be used to eliminate costly Bender’s Decomposition
iterations in solving SPNIP-M.

Approximating with k-Shortest Paths

In lieu of redefining a new optimization problem for network interdiction or
reformulating an existing one, this section will discuss the benefits of modifying
the interdiction solution approach. For this discussion, the same basic experimental
design introduced in section “Formulating Interdiction Models” will be used and
applied to the Northridge network. Recalling that SPNIP-M is solved by implement-
ing Bender’s Decomposition, the iterative attacker-defender sub-problem format is
revised in an effort to decrease overall computation time. Additionally, this work
nicely complements the knapsack approximation approach by enabling modelers a
quick and easy approach to obtaining quality attacker paths (recall that the knapsack
approximation only provided defender resource allocation solutions. Figure 19
illustrates the original Bender’s Decomposition structure and the suggested revision
to be examined here.
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Fig. 19 Illustration of the original and modified Bender’s decomposition (Yates et al. in submis-
sion)
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Fig. 20 Illustration of the exclusion and inclusion of pseudo nodes to solve for the k-shortest paths
(Yates et al. in submission)

The traditional Bender’s Decomposition approach decomposes the SPNIP-M
into attacker and defender sub-problems which are then iteratively solved until an
equilibrium point has been reached, signifying an optimal solution. In this approach,
the defender sub-problem is a complex mixed integer problem that accounts for a
majority of the computational effort. In the revised method, it is surmised that gains
in computational performance can be achieved by solving the defender problem only
once instead of iteratively and repeatedly. In Fig. 19, this method is illustrated on
the right-hand-side, where the attacker sub-problem is looped, essentially solving
a k-Shortest path problem to identify the k paths of high non-detection given the
initial, random arc non-detection metrics (see Yen 1971) for discussion on the k
shortest path problem). Each of the individual k paths then becomes a constraint in
the defender sub-problem of SPNIP-M and the defender sub-problem is solved once
to determine an acceptable defense allocation. At its core, this approach essentially
asks “what is the appropriate k value to capture the optimal attacker path in
SPNIP-M?”

To assert whether there is an acceptable k value, a modified experimental design
approach was developed. First, a global origin and target set were identified within
Northridge. Four levels were used to dictate the origin set size [2,4,6,8] and target
set size [3,9,15,21], within which five random origin and destination sets were
generated. When calculating the k shortest paths, pseudo nodes were either included
or not included, resulting in two additional experimental levels (Fig. 20 illustrates
these two levels). Lastly, the value of k was set to [1,2,3,5] when pseudo nodes
were off and [5,10,15,20] when pseudo nodes were on. In the Northridge network,
initial arc non-detection values were assigned randomly using a Uniform[0.3, 0.7]
distribution.

To analyze and compare the solutions obtained using the k-Shortest approach
with the SPNIP-M optimal, Gap V%, Gap T%, % Under and % Over are used.
Gap V% is the percentage difference in the k-Shortest solution from the SPNIP-
M optimal while Gap T% measures the difference in computational time (in CPU
seconds). % Under and % Over are spatial metrics to assess coverage similarity
as a function of length-of arc covered and are aggregated over all network arcs
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Fig. 21 Illustration of under coverage and over coverage in the calculation of % Under and %
Over (Yates et al. in submission)

for a given experimental run. In this way, the k-Shortest path solution may either
exactly replicate SPNIP-M arc coverage, under-cover and arc, or over-cover an
arc. Figure 21 illustrates the later two cases. Table 15 provides information on the
comparative performance of the k-Shortest path approach.

Table 15 provides the obtained averages from the five random experimental
instances at each origin-target level. From the table, there are observable benefits in
adapting traditional Bender’s Decomposition with a k-Shortest path approach. First,
the k-Shortest approach identified the optimal SPNIP-M solution in at least one of
the five random replications at each origin-target level (as indicated in Table 15 by
a minimum Gap V% of “�”). In all but two levels, computational effort was also
saved. Spatially, the ability of the k-Shortest approach to identify optimal SPNIP-M
solutions is acceptable (5 % under coverage with pseudo nodes off and 15 % with
pseudo nodes on). Over coverage is relatively consistent in cases, with an average
of 5 %.

Figure 22 visualizes two select, comparative cases between the optimal SPNIP-
M solution and the obtained solution based on the k-Shortest path approach. In
the figure, the left-hand case demonstrates an instance of strong computational
and spatial coverage. In this case, the optimal SPNIP-M solution was obtained
through the k-Shortest approach with a 23 % time savings . The right-hand case,
however, illustrates a scenario where k-Shortest fails to perform. With 33 % under
coverage and a 45 % optimality gap, the SPNIP-M optimal solution was not well
approximated. The latter case signifies that the choice of k, in this case kD 5, was
not high enough to adequately capture any attacker path trends.

The simplicity of this k-Shortest approach can be a huge advantage in decision-
making and public policy, where modelers would desire the ability to test large
numbers of scenarios and network compositions repeatedly. Though the Northridge
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Fig. 22 Example of poor spatial performance by the approximation (Yates et al. in submission)
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case is decidedly small, the SPNIP-M formulation grows exponentially with the
size of a network. In Northridge (384 directed arcs), SPNIP-M was formulated
with 3,437 constraints while a network of 1,000 directed arcs and 500 nodes
produces 8,869 SPNIP-M constraints. Increasing network size by a factor of 10,
a 100,000 direct arc network with 1,000 nodes has nearly 100 times the number
of SPNIP-M constraints at 801,369. Using the entire Los Angeles County road
network (U.S. Census Bureau 2008) easily leads to 2,000,000C constraints. While
the complexity of these problems may lead to elongated solution times and the
necessity to include more advanced and strategic computational techniques, known
k-shortest path algorithms enable this simple solution approach to handle problems
of realistic scale without significant alteration. Stated previously, such a tool would
be invaluable to emergency planners, responders and public policy makers alike
when analyzing network performance/vulnerability/accessibility as they could test
a plethora of event scenarios.

Additionally, the k-shortest approximation approach preserved much of the spa-
tial integrity of SPNIP-M solutions (i.e. small under and over coverage measures),
implying that this simple approximation approach could be used as a capable
technique for other modified shortest path network interdiction models. As an
example, the under and over coverage values indicate that quality SPNIP-LB
solutions, where arc length was used directly in the determination of non-detection
probability (Przemieniecki 2000) could be well approximated by this approach.

Identifying Basic Network Trends

The knapsack and k-Shortest path approximations previously discussed illustrate
how simple concepts and applications in the optimization of network interdiction
can be used to develop alternative techniques in obtaining interdiction solutions.
Additionally, the similarity between solutions of the SPNIP-M and SPNIP-LB
problems in “Formulating interdiction models” combined with the approximation
accuracy of the knapsack and k-Shortest approaches implies that there are certain
problem properties and parameters (e.g. network complexity/structure and atom set
composition) that have a high level of impact in determining defender and attacker
interdiction solutions. Specifically pertaining to the SPNIP-M and SPNIP-LB, four
problem properties were identified and tested to determine their significance in
influencing the corresponding interdiction solutions. An experimental design similar
to those already used was developed and tested within three real-world network:
New York City, Boston and Houston. These networks were chosen because of
their diverse network structure and were tested in combination with three distinct
atom sets (Casas et al. 2012). The atom sets used maintain uniform, grid-like
spacing between atoms but change density to increase the number of potential sensor
locations.

To test whether a given problem property was influential or not, a Negative
Binomial Regression (NBR) was used. The NBR was chosen instead of other
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Fig. 23 Cumulative atom usage frequency from SPNIP-M experimental design for NYC (a) and
Boston (b) (Casas et al. 2012)

regressions such as OLS or Poisson Regression due to the fact that most available
atoms in SPNIP-M and SPNIP-LB are not used to locate sensors in the final
solution. This creates sparse solution sets that NBR is better adept to evaluate. For
information on NBR, please see Hilbe (2007). When implementing NBR to assess
correlation, the frequency of atom use in aggregated SPNIP-M optimal solutions
across the experimental design is used as the measuring variable.

Figure 23 illustrates the SPNIP-M optimal solutions for NYC and Boston while
Fig. 24 illustrates the solutions for Houston. In the figures, frequency of use
represents the cumulative number of sensors located at the particular atom across
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Fig. 24 Cumulative atom usage frequency from SPNIP-M experimental design for Houston
(Casas et al. in submission)

all experimental runs. Atom density increases from left-to-right in each figure, with
the three atom levels being low, med, and high.

Table 16 provides the statistical results from the NBR for all three networks under
all three atom density sets. Again, we assume here that only one type of sensor is
being allocated within the region. The four variables examined included Coverage
(the total network distance covered by a sensor located at a given atom), Count
(the number of arcs covered by locating a sensor at an atom), Min Dist to Origin
(the distance from any given atom to its closest origin) and Min Dist to Target (the
distance from any given atom to its closest target).

Highlighting the main points of interest (detailed discussion can be found in
Casas et al. (in submission)), Min Dist to Origin plays an important role in deter-
mining whether an atom is used frequently in the various SPNIP-M experimental
design cases. The closer an atom is to an identified origin, the higher its usage
in SPNIP-M solutions. The NBR analysis also shows that Min Dist to Target is
the least influential of the four variables examined. Simply stated, a defender in
SPNIP-M creates a more influential detection system when they focus on early
detection rather than target-specific sensor allocation. If the defender focuses on
covering critical infrastructure independently, there is a “one-to-one” effect while a
defender focusing on the coverage of origins experiences a “one-to-many” impact
(many destinations are potentially covered or protected by the allocation of a single
sensor). Additionally, the coverage capability of a sensor (Count in Table 16) is
a quintessential factor in determine sensor location. The frequency of atom use is
positively related to the number of arcs a sensor placed at that atom covers.

This last relationship is used to discuss the final interdiction-related problem of
this chapter. Knowing that Count acts an indicator of atom usage, three strategic
atom allocation schemes will be examined for New York City, Boston and Houston.
These schemes will be developed using network topology and connectivity to create
the atom set that guides sensor location. Using these intelligently created atom sets,
the SPNIP-M optimal solutions will be examined and compared to the standard grid-
like atom sets used in the previous analysis. The goal of this analysis is to determine
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the effect that atom location sets have on optimal SPNIP-M sensor locations and to
evaluate computational and spatial trade-offs in determining whether the additional
fidelity obtained from intelligent atom locations provides significantly improved or
diverse defender sensor schemes.

Intelligently Locating Atoms

The problem of locating atoms intelligently is motivated by the observation that not
all networks are created equal and that not all uniform, grid-based atom allocations
are capable of providing an adequate set of sensor location points for network
interdiction. The hypothesis of intelligent atom design is that atom allocations that
are derived based on individual network properties will provide higher fidelity, more
accurate solutions to network interdiction problems. Given that network structure
is relatively unique, devising intelligent atom sets will give more sensor location
options in areas that are denser, or which have a higher concentration of arcs with
low initial detection probabilities.

Observing that analyzers have different interests in network features, we develop
three methods to add atoms intelligently. For the network interdiction problem,
methods are based on the initial arc non-detection values, the density of arcs in a
pre-defined space and the number of arcs in a pre-defined space. The algorithmic
approach to creating these atom structures is executed using ESRI ArcGIS 10 and
is now provided. Figure 25 illustrates algorithmic implementation for the Boston
network.

Intelligent atom algorithm

1. Determine the geographic area the network occupies (x, y or latitude, longitude
coordinates).

2. Build an initial grid-based structure (user decided initial grid size).
3. For each grid, calculate the faverage arc non-detection, arc density, number of

arcsg.
4. If the grid value exceeds the decision threshold, further decompose grid into

quarters.
5. Stopping criteria.

(a) If the iteration number is pre-determined and has been reached, STOP.
(b) If the iteration number is not pre-determined and no existing grids require

decomposition, STOP.
(c) If at least one grid was decomposed in Step 4, return to Step 3.

Figure 25d illustrates the final atom set for Boston using the number of arcs
within a grid as the decomposition measure. Locating atoms intelligently, the atom
set is clearly more contoured to the individual structure of the Boston network. To
examine whether the increased complexity of an intelligent atom set is useful from a
modeling standpoint, an experimental design similar to those previously discussed is
invoked. The individual solutions from the experimental design runs are aggregated
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Fig. 25 Using the arc number to intelligently locate atoms

and used to obtain average computational information for road networks in New
York City (NYC), Washington DC (DC), Boston, MA and Houston, TX. In total
six atom allocations were considered and compared. They are: low resolution grid-
based (low), med resolution grid-based (med), high resolution grid-based (high), arc
length intelligent (length), arc number intelligent (number) and arc non-detection
intelligent (non-det). For each network, 15 randomly generated origin-target pairs
were identified with each origin and target being pulled from a pre-defined origin
and destination set (origin and target size for each of the 15 pairs was also
randomly generated using a uniform distribution between one and the corresponding
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Table 17 Better caption

Grid allocations Intelligent allocations

Low Med High Length Number Vulnerability

NYC Objective 0:23 0:21 0:23 0:21 0:22 0:22

No. paths 9:79 10:98 8:17 11:32 11:45 10:92

Sol. time 28:70 76:40 39:05 748:00 717:00 753:00

DC Objective 0:16 0:18 0:22 0:06 0:06 0:06

No. paths 30:48 21:51 14:12 11:10 10:06 11:26

Sol. time 269:70 268:30 373:60 877:00 572:00 2; 188:00

Boston Objective 0:18 0:19 0:18 0:13 0:14 0:13

No. paths 12:56 10:60 10:73 21:97 22:37 25:68

Sol. time 27:99 25:58 27:31 216:60 205:90 326:00

Houston Objective 0:11 0:24 0:20 0:14 0:12 0:11

No. paths 18:35 19:11 17:12 14:06 15:84 13:02

Sol. time 584:70 281:40 646:00 402:00 1; 431:00 103:30

origin/target set size). Four budget levels enabled the allocation of 4, 6, 8 and 10
sensors within the region. The computational results from this experimental design
are given in Table 17, with each experimental design case being solved to optimality
using Bender’s Decomposition.

From Table 17, it can be shown that the computational comparison between
the standard grid-based atom sets and intelligent atom sets is inconclusive at best.
In certain networks like NYC and Boston, there is little different in the optimal
objective values of grid and intelligent atom sets but a great gain in solution time.
Though the actual number of Bender’s Decomposition iterations does not increase
dramatically, the intelligent atom allocations create a substantial rise in defender
sub-problem solution times. With intelligent atom location, many individual atoms
will have similar coverage schemes, especially in SPNIP-M where coverage is
binary and the actual length of coverage is not counted. This similarity extends
the amount of branching required to solve the defender sub-problem, increasing its
solution time. For the DC and Houston networks, Table 17 shows that there is more
significant dissimilarity between objective function values, though the intelligent
atom allocations actually reduce the number of Bender’s Decomposition iterations.
In all, it appears that there may be some usefulness to an intelligent atom design,
though in those network cases examined to date, the increased computational effort
does not appear to be worth the limited fidelity gained over a grid-based approach.

Conclusions

In this chapter, we began by discussing the hazardous materials transportation
problem as it is addressed in optimization. We saw how traditional hazardous



Network Interdiction Methods and Approximations... 241

materials modeling in the 1970s and 1980s transitioned towards and motivated
development of the network interdiction problem in the mid-1990s and early 2000s.
Focusing on the network interdiction problem, discussion was provided on the
standard shortest path network interdiction formulation and two initial variations
(one modified and one length-based shortest path network interdiction problem). In
the modified problem (SPNIP-M), we saw how sensor location could be separated
from the network, with sensors instead located at geographic points called atoms.
Examples were provided on the computational and spatial performance of SPNIP-M
and SPNIP-LB, with various measures of spatial similarity introduced to compare
and contrast the solutions of these models.

In the later part of this chapter, we used the obtained knowledge from SPNIP-M
and SPNIP-LB to develop approximations with the goal of reducing computation
time while maintaining a similar spatial distribution of sensors. We saw how the
max flow-min cut theorem could be used to motivate development of a constrained
knapsack approximation. This approximation was able to maintain consistent
computational solution times across each of the two networks examined while
reasonably replicating spatial sensor locations. In addition to the knapsack model,
we pursued a spatially-based regression study which used a detailed experimental
design to statistically identify two spatial properties which were shown to be
pertinent factors in allocating defender resources. Lastly, used one of these prop-
erties (the number of arcs within a sensor’s range) to motivate development of an
algorithm to strategically determine potential sensor locations for a given network.
Computational results from this intelligent atom location show that the more
simplistic grid-based solutions to provide a strong base-line for sensor allocation
strategies with increased fidelity in defender sensor solutions from the intelligent
atom allocations coming at a steep computational price.

Acknowledgements Special acknowledgement is given to Christopher Hill and Nannan Chen,
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Texas A&M University.
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Optimal Emergency Resources Deployment
Under a Terrorist Threat: The Hazmat Case
and Beyond

Rodrigo A. Garrido

Introduction

Most logistics systems are designed to operate under standard conditions, i.e., when
the transportation and communication networks are fully operative, the suppliers
are able to deliver what they are asked for and the demand patterns fluctuate within
(somewhat) known boundaries, as well as availability of human resources and
vehicles to distribute products and services from production sites to consumption
points. Even under this scenario, the logistics strategy and operations are rather
complex tasks both for the size of the instances to be solved and for the type of
models to be solved when trying to optimize sensible variables such as inventory
levels or sequences of vehicles’ stops under time constraints. However, this already
complex situation becomes much more complicated when there is uncertainty in the
systems components. That is the case with the logistics of emergencies right after
a natural or human-made disaster. Typically, there will be victims that need prompt
attention in several dimensions: health care, food, water, safety, and childcare
among others. However, the means to deliver the assistance may have been severely
damaged by the disaster and hence the standard supply plans of the various
industries involved in the provision of these goods, services and human resources do
not hold in the disastrous scenario. Additionally, improvised logistics plans to reach
the affected area have proven to fail due to the lack of information and preparedness
(see for example Holguin-Veras et al. 2007). Consequently, there is the need for
designing strategic logistics plans to cope with the consequences of catastrophic
events in advance of their occurrence. These plans should be capable of dealing with
shortages in networks capacity, lack of transportation services and possible stock
outs of the main urgent supplies. This chapter deals with the logistics of emergency
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systems in the context of human-made catastrophies, which we will call terrorist
attacks. The attacks may take several forms, one of those is the use of vehicles
transporting a load that might be potentially used as a weapon. Examples of these are
all the goods categorized as hazardous materials (hazmat) or byproducts categorized
as hazardous waste (hazwaste). These type of loads can be easily transported to a
strategic destination to cause damage to the people or property. A special case in
these categories is the fuel, which can always pose a threat by just being within
the fuel tank of a vehicle (e.g. the airplanes that crashed into the WTC towers on
September 11, 2001 were both almost full of fuel, which increased the proportions
of the disaster).

The problem of hazmat (or hazwaste) vehicles as potential weapons has attracted
considerable attention after the events of September 11, 2001. See for example
Nune (2007), Murray-Tuite (2008), Murray-Tuite and Fei (2010), Dadkar et al.
(2010), Szyliowicz (2012), and Lepofsky (2012). However, once a hazmat vehicle
is identified as a terrorist threat, the problem of what to do with it remains as a topic
not thoroughly studied yet. In fact, regardless of the outcome of the attack attempt,
the authorities should send specialized teams not only to deter or contain the attack
but also to assist possible victims in the case that the attack does take place. Thus,
there is an interaction between attackers, defenders and other actors of the system
that deserves to be studied in detail.

The problem of interaction between authorities trying to control terrorist’s attacks
and terrorists trying to reach their goals has been studied from a variety of perspec-
tives and disciplines. It is convenient to tackle this problem quantitatively from the
strategic aspect of behavior and equilibrium between attackers and defenders. This
approach has been followed by some authors in search for the impact of several
actions of both parties in the final outcome (see for example Sandler and Siqueira
2009; Siqueira and Sandler 2008, 2010; Siqueira et al. 2009; Clauset et al. 2007;

Arce and Sandler 2003). Usually, the conflicts between terrorists and authorities
exhibit asymmetric information. The authority is uncertain (to some extent) about
the level of resources available to the terrorists to plan their attacks, but also the
terrorists are unsure about the exact level of resources dedicated to block their
actions; in addition, neither of these players know with certainty the location of
events to deploy counterattacking resources or the extent of resources allocated
for protection in different locations. Some studies have modeled this interaction
as a signaling game where the magnitude of terrorist attacks signals (i.e. becomes
a proxy) the terrorist’s level of resources (see Overgaard 1993). The asymmetric
nature of this type of information gives an incentive to the terrorists to believe that
they have a larger amount of resources than they really do, to affect the retaliation
decisions.

From the perspective of the terrorists decisions, Murray-Tuite et al. (2007) and
Garrido (2010) studied the problem of a malicious entity that hijacks a hazmat
vehicle from its normal path and immediately transports the substances to a target.
They presented a methodology for determining the malicious entity’s set of pareto
optimal paths from the hijacking point to a given target, based on the competing
objectives of minimizing distance and maximizing consequence, conditioned on the
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probability of being intercepted by law enforcement prior to reach the target. With
this knowledge, the authority may tell apart those paths that are most likely used
by regular drivers from those that are likely to be used by a terrorist. However,
the information about probabilities of an attack and/or capture of the perpetrators
is not perfect and is based on perceptual parameters on both sides; therefore the
set of paths computed by each party is likely to be different. Nevertheless, the
identification of a vehicle following a path that belongs to a potential terrorists
pareto solution, acts as a red flag to the authority to double-check the status of
that vehicle to identify whether or not it has become an actual threat. In most cases,
this information provide a basis more accurate than other methodologies to estimate
attack probabilities for general cases of terrorists attacks. The fact that hazmats are
transported in special vehicles and the authority is informed about their movements
gives plenty of information to be used to derive a probability of attack, which does
not exist in many other situations.

Once a hazmat threat is positively identified, the authority must act quickly to
avoid a significant impact or else to assist the victims in the shortest possible time.
Depending on the type of hazmat and the magnitude of the attack, there are different
types of teams to be sent to the affected location. For instance, if the threat is
originated from a vehicle containing a toxic load, the authorities will probably send
not only law enforcement teams but also paramedics and hazmat crews; whereas a
vehicle with an explosive load may need a different assembly of human resources
to be sent.

The (broad) concept studied in this chapter departs from the assumption that a
hazmat threat has been positively identified and consequently, the authority must
allocate resources in a given area in such a way that any point with a potential threat
can be reached in the minimum time interval within a given budget. Throughout
the chapter, different cases and scenarios will be analysed and their corresponding
models will be presented.

The Context

Terrorism risk shares some characteristics with other types of risk in terms of
correlations in time or space, periodicity, level of damage, etc. In particular
they have commonalities with complex engineering systems, such as reliability
engineering, control systems, among others. Many risk analyses in those fields
rely on decision and/or probability trees to deal with risk. These trees show all
the possible events branching down possible courses of action to represent all
possible outcomes of each event, along with the outcome’s probabilities associated
to each branch. However, terrorist attacks bear two particular features that make
them different from the rest: unlike natural disasters they feature human intelligence
and unlike industrial disasters they feature human intent (Major 2002). Therefore,
the analysis of terrorism risk should rely on complex operations research methods
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and robust theories about the behavior of each one of the actors involved. In the
case of hazmats transportation, both situations may occur, i.e., a spill may be due to
a traffic accident (which can be categorized as a natural disaster) but also a terrorist
attack can be started using a hazmat vehicle.

The fact that terrorist attacks have a significant amplification effect on the
public perception of risk makes the problem harder to tackle for the corresponding
authorities. In fact, regardless of the low probabilities associated to these events,
the perception and reaction of the regular citizen seems to adhere to a phenomenon
called probability neglect (Sunstein 2003) in which people often weigh the risks of
terrorism significantly higher than those they confront in ordinary life. The practical
consequence of this phenomenon is that the authorities often respond to probability
neglect with disproportioned actions and regulations that may be unjustified or in
some cases even counterproductive. Therefore, there is a need for the authorities to
take actions with the aim of reducing both actual and unjustified public fear, assuring
that the benefits of the response can outweigh the corresponding costs.

There are a great number of terrorism-related scenarios for which an authority
could aim its efforts. One such scenario is an attack with catastrophic consequences
(i.e., an event whose severity is significantly larger than that of a regular criminal
attack) on one of many possible targets. This scenario is sufficiently general to
cover a wide range of possibilities and yet allows the modeling of optimal decisions
within tractable limits. This scenario is the one studied in this chapter, assuming
that the authorities budget is entirely available to fight terrorist attacks (other
authors consider scenarios where the budget is shared between terrorism and natural
disasters; see for example Zhuang and Bier 2007). The basic assumptions are the
following:

1. There are a defender and an unknown number of attackers.
2. Both actors are rational and seek to optimize certain objective functions.
3. Neither have infinite resources.
4. Defender’s budget is entirely available to fight terrorism.
5. Defender’s budget is greater than that of the attacker’s.
6. Both the target, timing and severity of an attack are unknown to the defender.

Note that the assumptions are general enough to cover not only terrorist attacks
coming from a hazmat situation but also more general types of attack.

Problem Description

Some Characteristics of a Terrorist Attack

Terrorists attacks are always traumatic events that obtain considerable media
attention, regardless of their actual consequences. These attacks may take several
different forms but their ultimate goal is to cause significant damage to either people
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or property in order to generate a sense of terror among a certain target. Perhaps the
most widely known example of a vehicle transporting a hazmat involved a terrorist
attack was the case of the airplanes deliberately crashed into the towers of the World
Trade Center in New York City, in September 11, 2001, killing all the passengers
aboard (including the hijackers). We may consider these airplanes as hazmat vehicle
since they were almost full of fuel (although the damage was not attributable only
to the fuel). These attacks had the intention not only to kill people but also spread
the sense of terror among the US population (the significance of the numbers and
the towers themselves served that purpose). Thus, there exists a variety of types of
attacks with different degrees of potential damage and different characteristics that
makes them hard to forecast and prevent. Although the general perception might be
that it is impossible to predict these events, in practice there are some situations in
which the forecasting of (at least) some parameters of an attack can be reasonably
done with the aid of operations research techniques. In addition to the literature
previously cited above, regarding the probability of a hazmat vehicle as a potential
weapon, for more general cases there are some articles that study the computation
of these probabilities. In fact, Clauset et al. (2007) show that there are significant
temporal correlation in frequencies of severe attacks. More so, they proved, as a
robust feature of terrorists attacks, that the frequency of these attacks exhibits the
phenomenon of scale invariance, i.e., the frequency scales as the inverse power
of the severity. After the occurrence of a terrorist attack, various negative effects
may impact the population and/or environment in the surrounding area and hence
the authority must decide what action to take in order to minimize those negative
impacts. However, not only the time and place of these events is unknown but
also the severity and consequently the type of assistance that will be needed after
the event. Therefore, a working hypothesis in this chapter is that it is possible to
estimate probabilities of the occurrence of a terrorist attack and its intensity through
exogenous econometric models based on observations of past events; in some cases
like hazmat transportation, these probabilities might be easier or more accurate
to estimate than other cases but the departing point will be the existence of some
measure of these probabilities.

From the tactical perspective, the authority should aim to allocate sufficient
human and material resources to satisfy the demand for them after an event, while at
the same time keeping the system’s cost within the available budget. That means that
the deployment of personnel and supplies at certain locations should guarantee the
satisfaction of demand to a certain confidence level, i.e., to an acceptable degree of
failure. For instance, a desired objective could be to find the levels of resource
allocation that assures that the teams will reach any affected location within a
specified time in at least 95% of the cases, and this level must be met with the
available budget.

The uncertainty in the time, place and intensity of a terrorist attack makes the
demand function to change quickly from zero to a high level of resource necessity
(in time and space). This feature is typical in the demand for emergency services but
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in this case it may be more abrupt due to the severity and possible media coverage
that a terrorist attack attracts when compared to other emergencies situations. For
example, in a certain town during a normal period, the demand for high energy
protein biscuits or water purification systems may be zero, until a tsunami hits it
and then the demand for these items might rise to a very high level. If you plotted
that on a graph, the figure would be an horizontal line with no change for a long
period of time until abruptly a sudden jump shows up and later on the line would
keep the same original low level indefinitely. The media amplification effect can
be gauged when, for example, a news is transmitted on TV warning the danger of
getting close to a zone with potential harmful radiation; this news will probably
deter any attempt to reach the zone with trucks with humanitarian aid, regardless of
the actual level of radiation.

System’s Components

Considering the characteristics of the occurrence of a terrorist attack, the following
components are defined to play a key role in the system.

Emergency Teams

These are human resources (e.g. firefighters, paramedics, hazmat experts, etc.) with
base in different locations spread out within an area significantly larger than any
affected zone. If an event occurs, a whole team may be assembled with personnel
based at different locations, therefore they must be transported from one or more
emergency stations in the numbers that the emergency calls for (following a
minimum cost flow program). Note that the crew costs may vary between locations
as well as within the same location across time periods.

Emergency Vehicles

The transportation of emergency teams from their location to the affected points
can be done by special vehicles not necessarily located at the same site that human
resources are based; more so, under budget constraints there is the possibility that
there are more crew bases than specialized vehicles. Each time a team is assembled,
an assignment problem arises when choosing what vehicle picks them up and
transport them to an affected site. Given the different nature of emergency crews,
the vehicles are not necessarily homogeneous (e.g. firetrucks, ambulances, etc.).



Optimal Emergency Resources Deployment Under a Terrorist Threat: : : 251

Demand Points

They correspond to zones affected by an attack or under the risk of it. These zones
are represented by nodes at which the demand for an emergency team is needed.
Each node is assumed to have a known probability of being attacked at any given
period during the planning horizon. Note that the assessment of these probabilities
is extremely difficult not only due to the intrinsic stochasticity of the problem itself
but also because it is a rather new topic within the research community and no single
methodology has been adopted nor accepted to produce acceptable figures for all the
cases (sensitivity analysis emerges as a natural way to cope with this uncertainty).
A good description of many efforts along this line of research can be found in Ezell
et al. (2010).

Simplifying the Problem

Both the time horizon and the geographic scope are defined a priori by the
decision maker. The geographic area is subdivided into smaller zones, which can
be represented by nodes in a network. The time horizon is divided into discrete
periods. The need for assistance is a derived demand generated by the terrorist
attack/threat which can be forecasted on a spatio-temporal grid. For instance, a
hazmat truck that deviates from its original expected path alerts the authorities
of a potential problem; the works by Nune (2007) and Murray-Tuite et al. (2007)
elaborate on this aspect. For other general cases not related to hazmat, a real life
example that deserves attention is that of RAND Corporation (the Santa Monica
think tank) contributed with the company Risk Management Solutions (RMS) from
San Francisco to develop a mathematical model of potential terrorist actions in the
US territory (Willis et al. 2005). Consequently, it is assumed that in one of the
regions of the specified geographic partition, at a certain time period a terrorist
attack/threat may occur with an estimated probability. This probability is exogenous
to the model and it is assumed to be predictable. Thus, once the event strikes a
populated area, there is an immediate generation of demand for a specific type of
emergency team (e.g. firefighters, paramedics). Then, the crew size and composition
will change randomly according to type of event, its severity and scope of the
emergency.

Notation

The following notation will be used throughout the chapter:
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Parameters and Sets

pt
i Probability that a threat is identified at location iduring period t .

�
ta;tb
i;j Correlation between p

ta
i and p

tb
j , for locations iand j , and periods taand tb .

N Set of locations within the area of interest (set of network’s nodes).
… Set of types of emergency teams (e.g. law enforcement and hazmat teams)
T Number of periods within the planning horizon.
‰ Set of all the periods.
ˆ Set of vehicles’ classes.
 Value of time, i.e., the monetary assessment of a time unit.
Dt

ci Demand for emergency resources of type c, in location i , during period t .
wcv Compatibility matrix between crew and vehicle’s class. Typical element

.c; v/takes value 1if crew of type c, can be transported on the vehicle class
vand 0otherwise.

V t
vi Number of vehicles of class v, available at location i , at the beginning of

period t .
Lcj Capacity to accommodate crew members of type c at location j .
t t t

cjk Travel time of crew type c, to the location k, from its base in location
j during period t .

cat
cj Cost of allocating a member of a crew of type c, in a base located in j ,

during period t .
cd t

cjk Cost of dispatching a member of a crew of type c, in a base located in j ,
to the location kduring period t .

BD Budget available to the defender
BA Budget available to the attacker

Decision Variables

The following are the modeling variables:
xt

cjk Flow of crew members of type c, from base located at j sent to location k,
during period t .

yt
vij Flow of vehicles of class v, relocated from location i to location j , during

period t .
AV t

cj Availability of crew members of type c, in base located in j , at the
beginning of period t .

Ai Aggregated resources allocated by the attacker to location i .
Di Aggregated resources allocated by the defender to location i .
� Lagrange multiplier.
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Different Cases of Terrorist Attacks

Case 1: Allocating Resources on the Basis of an Expected Event

One of the difficulties in developing an investment plan to control terrorist attacks is
the uncertainty, both in time and space, regarding the occurrences of events. In fact,
the authority must allocate its scarce resources to minimize the potential damage
to people and property, before an event takes place. Thus, the following problem
definition tackles the issue of the different times at which decisions must be made
for the pre-positioning of resources and the posterior assignment of those resources,
once the event actually takes place. There are two stages in this problem. First,
the authority decides where to locate and allocate human and material resources.
Second, once a terrorist attack takes place, the same authority must decide what type
of resources and from what location will be sent to the affected area (e.g. paramedics
and firefighters). Clearly both decisions are sequential and interdependent.

Problem Statement

There are a set of n possible targets S D f1; 2; : : : ; ng, spread over a network
connecting each zone. The defender has limited information about the attack, which
makes it difficult to compute the defenders’ objective function. In fact, the defender
will allocate human and material resources following some forecast information
about the place and type of attack and then when the attack materializes the defender
will assign resources from various sources to assist the affected points. It is clear
then that both events do not happen simultaneously and hence their translation to
costs is not direct.

The problem can be modeled assuming a first stage in which the cost of allocated
human and material resources can be represented by the following expression:

X

t2‰

X

c2…

X

j 2N

cat
cj AV t

cj (1)

When the attack does take place, the problem consists of finding a way to send
assistance as quickly as possible from a set of points previously defined in the first
stage. This problem corresponds to a well-known two-stage stochastic program,
extensively studied in the mathematical literature (see for example Bienstock and
Shapiro 1998; Ahmed and Shapiro 2002; Shapiro and Homem-de-Mello 1998).

The standard use of these two-stage stochastic programs is to minimize an
objective function compound by two different terms. One is the actual cost of a
decision made in the first stage and the other term represents the expected value
of the costs that would be derived from the realization of the random action
corresponding to the second stage.
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In this case the objective function would take the following form:

M in
X

t2‰

X

c2…

X

j 2N

�cat
cj AV t

cj C .1 � �/ E Œ� .x; D/� (2)

where � is a non-negative weight parameter. Note that the two parts of this
expression do not have the same dimension and hence the parameter  corrects
for this effect. The expected value E Œ� .x; D/� corresponds to the solution of the
following problem:

E Œ� .x; D/� D M in
X

t2‰

X

c2…

X

j 2N

X

k2ˆ

t t t
cjkxt

cjk (3)

X

j 2N

xt
cjk D Dt

ck 8k 2 ˆ; c 2 …; t 2 ‰ (4)

X

v2˝

X

j 2N

X

k2N

wcvx
t
cjk �

X

v2˝

0

@uv

X

i2N

X

j 2N

yt
vij

1

A ; 8t 2 ‰; c 2 … (5)

X

k2N

xt
cjk � AV t

cj ; 8j 2 N; c 2 …; t 2 ‰ (6)

X

j 2N

yt
vij � V t

vi ; 8i 2 N; t 2 ‰; v 2 ˝ (7)

Therefore, the complete expression of the two-stage model is as follows:

M in
X

t2‰

X

c2…

X

j 2N

�cat
cj AV t

cj C .1 � �/ E Œ� .x; D/� (8)

s.t.

AV t
cj � 0; AV t

cj � Lcj ; 8j 2 N; c 2 ˝; t 2 ‰ (9)

Expression (3) corresponds to the total travel time needed to reach the affected
locations with the emergency teams. Expression (4) is a set of all the demand
satisfaction equations. The constraint set (5) restricts the available transportation
capacity for each period and type of crew. The constraint set (6) controls the
availability of each crew type at each location and period. The constraint set (7)
ensures that the flow of vehicles does not exceed the available fleet size.

Case 2: At Least ˛% of the Demand Must Be Satisfied

In this case, the shortage of budget justifies a partial demand satisfaction, i.e. less
than a 100% of the locations will be served. Here, again, no information is available
about the value of any possible target and the probability of a successful attack is
exogenous to the model.
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Mathematical Formulation of Case 2

The demand for emergency resources of type c at location i , during period t is
defined as follows:

Dt
ci D

(
d t

ci with probability pt
i

0 with probability 1 � pt
i

(10)

d t
ci  F t

ci .x/ (11)

F t
ci .x/ is a probability distribution function over a real non-negative domain.

The Optimization Problem

The solution of this problem is aimed at assisting the decision maker in tactical
aspects of the emergency logistics after a hazmat vehicle has been reported as
hijacked or the detection of other terrorist threat . Thus, the model will answer the
following questions:

1. What type of emergency team and crew size should be set at each location within
the relevant network?

2. How to transport the emergency teams from their location to the threat points in
minimum time intervals?

The following mixed integer programming model can be designed:

min
X

t2‰

X

c2…

X

j 2N

X

k2N

t t t
cjkxt

cjk (12)

P

8
<

:
X

j 2ˆ

xt
cjk � Dt

ck 8 k 2 ˆ; c 2 …; t 2 ‰

9
=

; � ˛ (13)
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j 2N

X

k2N
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t
cjk �

X

v2ˆ

0
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X

i2N

X

j 2N
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vij

1

A t 2 ‰; c 2 … (14)

X

k2N

xt
cjk � AV t

cj 8 j 2 N; c 2 …; t 2 ‰ (15)

X

t2‰

X

c2…

X

j 2N

cat
cj AV t

cj C
X

t2‰

X

c2…

X

j 2N

X

k2N

cd t
cjkxt

cjk � BD (16)

AV t
cj � Lcj 8 j 2 N; c 2 …; t 2 ‰ (17)

xt
cjk; AV t

cj 2 R
C; j 2 N; k 2 N; c 2 …; t 2 ‰ (18)
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The objective function (12) represents the total travel time for the teams to get to
the threat points. The set of constraints (13) ensures that the demand will be satisfied
at least to an ˛%. The constraint set (14) restricts the available transportation
capacity for each period and type of crew. The constraint set (15) controls the
availability of each crew type at each zone and period. The constraint set (16)
ensures that the cost of assignment and dispatch for all crew types, zones and periods
does not exceed the total defender’s budget. The constraint set (17) ensures that the
capacity to accommodate crew members of each type does not exceed the assigned
availability to each zone, type and period. Finally, the constraint sets (18) impose
non negativity.

A Solution Approach

The optimization problem is rather difficult (it is NP-Complete) and hence is
unlikely that a standard mathematical programming approach could find an exact
solution within reasonable boundaries of time and computational resources. In fact,
with no information about a joint probability function to characterize the set of
constraints (13) it is impossible to attempt an exact solution search. Consequently,
in this section, an implementation of a heuristic scheme called Sample Average
Approximation is presented (as proposed by Pagnoncelli et al. 2009). The vector
of stochastic demands are generated through Monte Carlo simulation, considering
all the spatio-temporal correlations. For each generated instance, the equivalent
optimization problem is solved, considering a given level of service to satisfy the
demand for emergency items.

Let zth
kp be binary variables that measure the number of times that a demand

constraint is not satisfied. Thus, the following modified optimization model is
defined for the generated samples.

min
HX

hD1

X

t2‰

X

p2…

X

k2N

X

j 2N

X

i2N

cvt
ijkpxth

ijkp C
HX

hD1

X

c2˝

X

j 2N

X

i2N

clt
ijcyth

ijcC

HX

hD1

X

t2‰

X

p2…

X

j 2N

ci t
jpI th

jp (19)

X

j 2N

X

i2N

xth
ijkp C zth

kpDth
kp � Dth

kp 8 k 2 N; p 2 …; t 2 ‰; h D 1; : : : ; H (20)

X

p2…

X

k2N

X

j 2N

wpcxth
ijkp � uc

X

j 2N

yth
ijc 8 i 2 N; t 2 ‰; c 2 ˝; h D 1; : : : ; H

(21)
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X

j 2N

yth
ijc � V t

ic 8 i 2 N; t 2 ‰; c 2 ˝; h D 1; : : : ; H (22)

X

k2N

X

i2N

xth
ijkp � I th

jp 8 j 2 N; p 2 …; t 2 ‰; h D 1; : : : ; H (23)

I tn
jp � Ljp 8 j 2 N; p 2 …; t 2 ‰; h D 1; : : : ; H (24)

HX

hD1

X

t2‰

X

p2…

X

k2N

zth
kp � N.1 � �/ (25)

xth
ijkp; I th

jp 2 R
C 8 i 2 N; j 2 N; k 2 N; p 2 …; t 2 ‰; h D 1; : : : ; H (26)

yth
ijc 2 Z

C 8 i 2 N; j 2 N; c 2 ˝; t 2 ‰; h D 1; : : : ; H (27)

zth
kp 2 f0; 1g 8 k 2 N; p 2 …; t 2 ‰; h D 1; : : : ; H (28)

where, the upper index h is the sample number, H is the sample size and � is the
desired level of service to solve the approximated problem. Constraint (25), allows
that the number of times that the demand is not satisfied (constraint (20)), does not
exceeds 1 � � .

Lower Bound

To obtain a lower bound a sample average approximation scheme is applied (see
Pagnoncelli et al. 2009). The first step is to find two integer numbers M and H such
that:

H WD
b�HcX

iD1

 
H

i

!
˛i .1 � ˛/H�i (29)

and L being an integer number such that:

L�1X

iD1

 
M

i

!
i

H .1 � H /M�i � 1 � ˇ (30)

Then, a set of M independent samples must be generated Dt1m
kp ; : : : ; DtHm

kp ;

m D 1; : : : ; M each one of size H .
For each generated sample, the above modified optimization problem must be

solved.
The optimal solution for each sample, called Om

H , m D 1; : : : M , must be arranged

in non decreasing order, O.1/
H ; : : : ; O.M/

H , where O.i/
H is the ith smallest value.
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Finally, the value O.L/
H will be a lower bound for the optimal solution of the

original problem, with a significance level of at least ˇ.

Upper Bound

To obtain an upper bound, the method put forward by Luedtke and Ahmed (2008)
will be applied. One of the findings of that article is the size H of a sample
to guarantee that the solution of the modified optimization problem be in fact a
feasible solution for the original problem, with a significance level of ˇ. The latter
is obtained as follows:

H � 2

.˛ � �/2
log

�
1

1 � ˇ

�
C 2m

.˛ � �/2
log

�
2DL

˛ � �

�
(31)

This result gives a theoretical guide for the search of the sample size H . However,
as explained in Pagnoncelli et al. (2009) and Luedtke (2008), the problem size (with
the obtained value of H ) could be prohibitively large.

An alternative to this method is to solve the modified optimization problem with
a smaller value of H and then check (a posteriori) the fulfillment of the stochastic
constraint.

This a posteriori checking can be done by using a sample of size N 0, and then for
the samples Dt1

kp; : : : ; DtH 0

kp counting the number of times that this expression holds:P
j 2N

P
i2N xth

ijkp � Dth
kp .

The upper bound will be the objective function value corresponding to the
solution with the highest value within all the feasible solutions, once the a posteriori
checking was performed (see Luedtke 2008).

Case 3: The Probability of Attack Is a Function
of the Defender’s Resources Allocated to Each Zone:
A Stackelberg Game Approach

In this case, each target i has a value vi and a probability of being (successfully)
attacked of pi . The defender has a total budget of BD which must be optimally
allocated among all the possible targets. The attacker’s total budget is unknown to
the defender, but the assumption is that whatever resources the attacker has must be
optimally allocated at each possible target. Under these circumstances the lesser the
resources assigned by the defender to a zone the higher the probability of an attack
at that zone. Thus, the defender acts first by investing in defense at each target
(some targets may have zero resources allocated) which makes it the leader while
the attacker waits until the allocation is known (or forecasted) and then he acts as a
follower.
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The implicit assumption in this case is that the probability of being attacked at
zone i is inversely proportional to its allocation of emergency resources. In other
words, the more resources are deployed to protect a zone the less vulnerable it
becomes:

@p.Al loci /

@Alloci

� 0 (32)

where Alloci DPc2… AVci

Accordingly, the demand expression (10) needs to be modified as follows:

Dci D
(

dci with probability pi .Alloci /

0 with probability 1 � pi.Alloci /
(33)

Clearly, the probability is a function of decision variables AVci whose values are
not known in advance, i.e., the values of pi depend on AVci , which depends on
pi as well. Therefore, the problem becomes an equilibrium one. Both players have
opposite objectives: minimizing and maximizing the expected loss (EL), which is
the following discrete expectation:

EL D
X

i

vipi .Alloci / (34)

Consequently, as the probability depends only on the vulnerability of the target
(i.e. the defender’s resources allocated on it) the leader must allocate resources in
an effort to minimize EL and then the follower will decide his actions depending
on that result.

Property 1. The optimal Stackelberg resource allocation for the defender (leader) is
to assign resources to each target in such a way that the value of each target weighted
by the marginal effect of the investment remains constant for all available targets.

Proof. The optimization problem that is consistent with the defender’s objective is
the following:

M in
fAlloci g

X

i2N

vi pi .Alloci / (35)

s.t.
X

i2N

Alloci � BD (36)

The model (35) and (36) can be conveniently solved through the Lagrange multipli-
ers approach:

M in
fAlloci g

X

i2N

vi p.Alloci /C �.BD �
X

i2N

Alloci / (37)
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Minimizing expression (37) with respect to Alloci yields the following rule:

vi

@p.Alloci /

@Alloci

D � 8i 2 N (38)

which completes the proof. ut
Property 1 gives a rule to assign the defense budget optimally when all the

players play Stackelberg and the probability of a successful attack depends only
on the amount of resources assigned to each target. But, what would happen if that
probability also depends on the resources that the attacker assigns to each target?

Case 4: The Probability of Attack Is a Function
of All the Resources Allocated to Each Zone:
A Finite-Dimension Variational Inequality Approach

Problem Statement and Modeling

There are a set of n possible targets N D f1; 2; : : : ng, each one with a fixed value
vi . There are two players: a defender (e.g. the authority) and an attacker (e.g. any
malicious entity which plans to attack an unknown subset of these targets). Each
player has a fixed available budget (BD and BA respectively) to accomplish their
own task. The vector (Di ,Ai ) represents a resources‘ allocation by each player,
i.e. the resources used by each player to defend/attack the value vi of target i. The
destruction of any target is a stochastic process, governed by a probability function
pi .Di ; Ai /, which represents the probability of a successful attack on target i , as
a function of the resources’ allocation. The vectors A D .A1; A2; : : : ; An/ and
D D .D1; D2; : : : ; Dn/ are respectively called attack and defense patterns.

pi is a smooth known function that satisfies the following conditions:

@pi

@Di

< 0;
@pi

@Ai

> 0 (39)

Thus, the defender aims to find the vector of resources that minimizes the expected
outcome of an attack, whereas the attacker tries to find the optimal allocation of his
resources to maximize the payoff of his attack.

The defender faces an expected loss at target i given by the following expression:

ELi .Di ; Ai / D pi .Di ; Ai / � vi ; 8i 2 N (40)
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Under these conditions, there are two scenarios of interest:

1. The defender tries to minimize the maximum expected loss. The latter means
that, among all the possible targets, and their probability of a successful attack,
the objective function is the worst-case scenario:

M in

�
Max

i
ŒELi .Di ; Ai / D pi .Di ; Ai / � vi � ; 8i 2 N

�
(41)

2. The defender tries to minimize the total expected loss. The latter means that,
among all the possible targets, and their probability of a successful attack, the
objective function is the expected value of all the possible outcomes:

M in

(
TEL .D; A/ D

X

8 i2N

pi .Di ; Ai / � vi

)
(42)

The scenario 1 (expression (41) is analyzed in Major (2002) who establishes that
under these conditions the defender should use all the resources available to this end,
i.e. there is no reason to invest less than BD . In this case, the defender will allocate
her budget in a subset of targets. In fact, the minimax criterion in expression (41)
implies that there will be two groups of targets: defended and undefended. Indeed,
regardless of the attackers’ preferences and actions, the defender must lower the
highest EL among all the targets, in order to avoid leaving a target with a more
attractive payoff than the others (whenever possible). Thus, as the value of ELi

decreases with the increase in the defensive resources (Di ) allocated to target i ,
the defender will try to decrease the value of the highest ELi (which will change as
the defender allocates her budget in different targets).

The analysis presented in Major (2002) can be further extended. Indeed, follow-
ing the same logic the assignment strategy would start by investing in the target with
the highest EL and would continue until a point where increasing the investment
in one target would need to decrease it in another one, which would increase the
EL of the latter. At this point a Nash equilibrium will be reached. In fact, at this
point there will be a set of targets N 0 whose EL value will be exactly EL�, after
investing optimally in each one of them, and another set N 00 containing the rest
of the targets whose EL values are lower than EL� and consequently no budget
should be allocated to them. In fact, any target whose EL is lower than EL� should
be left undefended because a successful attack on them would yield an expected loss
that is lower than that of a successful attack on any target on N 0. At this point no
target can benefit from a change in the defense investment without a loss in the EL

of another target. Hence, the optimal defense investment in target i , D�
i , represents

a Nash equilibrium.
The latter can be mathematically expressed as follows:

ELi .Di ; Ai /

� D EL� if D�
i > 0

� EL� if D�
i D 0

�
8i 2 N: (43)
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Under a resource’s deployment according to (43), the attacker faces a set of targets
with expected value EL� as candidates for an attack, and another set of targets with
less expected value. Thus, a rational attacker would aim to the targets with higher
EL, expecting a payoff of EL�in each one of them.

Expression (43) can be expressed as a variational inequality (see Nagurney 1999
for a general definition of this concept). To the knowledge of the author, this is
the first time that this case has been presented as a variational inequality. First, the
following property is needed.

Property 2. The equilibrium pattern of defense resources’ allocation expressed by
(43) is equivalent to the following formulation:



EL� � ELi .Di ; Ai /

� � 
Di �D�
i

� � 0; 8Di � 0 (44)

Proof. If D�
i > 0 ) ELi .Di ; Ai / D EL� and (44) holds. If D�

i D 0 )
ELi .Di ; Ai / � EL�and (44) also holds. Now we need to prove that any non-
negative D�that satisfies (44) also satisfies the equilibrium condition (43). Let’s
consider an arbitrary defense investment vector D D .D1; D2; : : : ; Dn/ ¤ D�.
There are two cases:

(a) For anyD�
i > 0 we have either D�

i � Di < 0 or D�
i � Di > 0; therefore

Property 2 will hold only if ŒEL� � ELi .Di ; Ai /� D 0

(b) For D�
i D 0 it follows that Di �D�

i � 0 and hence Property 2 yields EL� �
ELi .Di ; Ai / ; 8i 2 N

with the cases a and b the demonstration is complete. ut
Property 3. For any attack pattern AV, the equilibrium defense pattern expressed
by (43), can be expressed as the following variational inequality:

EL


D�; A

� � 
D� �D
� � 0; 8D � ˝ (45)

where ˝ denotes a feasible set defined by:

˝ D
(

Di 2 R=9 Di � 0 ^
X

8i2N

Di D BD

)
:

Proof. Note that Property 2 holds for each target in N , hence the following
summation is valid:

X

8i2N



EL� �ELi .Di ; Ai /

� � 
Di �D�
i

� � 0
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This may be rewritten as follows:

X

8i2S

EL� � 
Di �D�
i

� � ELi .Di ; Ai / �


Di �D�

i

� D EL� X

8i2N



Di �D�

i

��
X

8i2N

ELi .Di ; Ai / �


Di �D�

i

� � 0 (46)

But considering that the defender is better off spending her whole budget (Major
2002), i.e.:

X

8i2N

Di D BD; 8Di � 0 (47)

Then the term EL�P8i2N



Di �D�

i

�
in expression (46) cancels out and the

expression may be rewritten as follows:

�
X

8i2N

ELi .Di ; Ai / �


Di �D�

i

� � 0; 8Di 2 ˝ (48)

Expression (48) written in vector form yields expression (45), which completes the
proof. ut

On the Existence of Equilibrium for Scenario 1

The set of defense allocations ˝ is compact, since all the Di are non negative
and lie on the hyperplane

P
8i2N Di D BD therefore by the theory of variational

inequalities we only need ELi .�/ to be continuous to guarantee the existence of
equilibrium D�.

A well known result in variational inequalities (see for example Ortega and
Rheinboldt 2000) is that in the special case where the Jacobian matrix is symmetric,
i.e. @ELi

@Dj
D @ELj

@Di
; 8i ¤ j , then the variational inequality problem (45) has

an equivalent optimization problem. In fact, if EL .�/ in (45) is the gradient of a
differentiable function f .�/, then (45) is equivalent to the following minimization
problem:

M in f .x/ s:t: x 2 ˝ (49)

Applying (49) to the function EL we obtain:

M in
D 2 ˝

(
�
X

8i2N

Z Di

0

ELi .x; A/dx

)
(50)

s.t.
X

8i2N

Di D BD
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A Functional Form for EL

Different approaches have been developed to give a functional form to the proba-
bility of a successful attack. For instance, Harris and Hall (1992) presents the case
of Probabilistic Safety Analysis through event trees. Major (2002) put forward an
approach based on a two-events tree in which the probability of a successful attack
is the product of the probability of escape detection and the probability of success
given that the attacker has escaped. Major’s success probability function relies
on two different ground bases: search theory (see Frost 1999) and dose–response
modeling (see Hoel 1985). The expression for Major’s probability is the following:

pi .Di ; Ai ; vi / D exp

�
�Di � Aip

vi

�
�
�

A2
i

A2
i C vi

�
(51)

Later Powers and Shen (2009) extended Major’s model to an event tree with four
components:

p1 Probability of at least one attack
pi

2 Probability of target i being attacked given that at least one attack has
occurred

pi
3 Probability that attack to target i goes undetected given that target i has been

attacked and given that at least one attack has occurred
pi

4 Probability that attack to target i is successful given that attack to target i goes
undetected, given that targeti has been attacked and given that at least one
attack has occurred.

Thus, the expression for the probability of a successful attack on target i is given
by the following expression:

pi .Di ; Ai ; vi / D �i exp

�
�Ai Di

vi

�
Ai

Ai CDi

(52)

where �i D p1p
i
2

For Major’s model (expression (51)), the corresponding optimization model
would be the following:

Max
fDi g

X

8i

Z Di

0

ELi .x/dx D
X

8i

Z Di

0

exp

�
�x � Aip

vi

�
�
�

A2
i

A2
i C vi

�
�vi dx D

Max
fDi g

X

8i

�
Ai

A2
i C vi

�
� v3=2

i

�
1 � exp

�
�Di � Aip

vi

��

s:t:
X

8i2N

Di D BD (53)
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For scenario 2 (i.e., expression (42)) the objective is conceptually different from
the latter. The aim is to minimize not the highest EL but the total EL. This scenario
can also be modeled as a variational inequality. In fact, if we perform the same
analysis done for scenario 1 but instead of the function EL in expression (43) we
consider its first derivative, i.e. the marginal expected loss

rELi D @ELi

@Di

; 8i 2 N;

(note that this marginal vale is negative by definition) and then we replace this
marginal value in the corresponding optimization model (expression (50)) would
be the following:

Min
D 2 ˝

(
�
X

8i2N

Z Di

0
rELi .x; A/dx D �

X

8i2N

Z Di

0

@ELi

@x
.x; A/dx D

X

8i2N

ELi

)
(54)

s.t.
X

8i2N

Di D BD

which is exactly the minimization sought in scenario 2 (expression (42)). Therefore,
the above discussion shows the following property:

Property 4. For any attack pattern A, the equilibrium defense pattern represented
by (42), can be expressed as the following variational inequality:

rEL


D�; A

� � 
D� �D
� � 0; 8D � ˝ (55)

where ˝ denotes a feasible set defined by:

˝ D
(

Di 2 R=9 Di � 0 ^
X

8i2N

Di D BD

)
:

In other words, properties 3 and 4 show that the Nash equilibrium in scenario 1
is reached through the expected loss function whereas for the scenario 2 the
equilibrium is reached through the marginal loss functions.

Final Remarks

This chapter had the aim to present different cases and scenarios of defense planning
when an unknown terrorist attack is expected to happen with a given probability. The
planning for the defender consisted of allocating resources (human and material) to
different targets or space locations trying to optimize certain criteria. The different
cases analyzed in this chapter had a corresponding optimization model; its solution
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may guide the decision makers and authorities to make rational and optimal
investment decisions minimizing the risk associated to a terrorist attack.

Due to the novelty of the models proposed in this chapter, it is not possible
to present here one of the most desired outcomes of any modelling experience:
validation against real data or other published material. Unfortunately, to the
knowledge of this author, there was not a single result reported in the public
literature that can be used for comparison purposes.

An interesting challenge emerges now: running these models with actual data
and try to interpret the results against the outcomes of actual attempts to attack a
given set of targets.
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The Role of OR in Emergency Evacuation
from Hazmat Incidents

Brian Wolshon and Pamela Murray-Tuite

Introduction

Evacuations occur more frequently in the United Sates (US) than is often realized.
A recent US Nuclear Regulatory Commission (NRC) report showed that, on
average, an evacuation involving 1,000 or more people occurs nearly once every
2 weeks somewhere in the country (Dotson and Jones 2005). The NRC study
statistics, compiled by the Sandia National Laboratories over the 10 year period
between 1993 and 2003, also suggest that the vast majority of incidents requiring
an evacuation are small, localized events. Of the 230 evacuation events documented
in the study, 171 or nearly three quarters of them involved 1,000–5,000 people.
While wildfires and floods were the hazards for which an evacuation was most
commonly required, hazardous material incidents and transportation-related events
also accounted for more than a quarter of the documented evacuations over this
period.

As the movement of hazardous materials continues to increase across all
modes of transport, it is expected that the frequency of major incidents requiring
evacuations will also likely rise. And while many of these will continue to be of
the smaller-scale nature that are currently most common, some are also likely to
encompass large areas and involve many thousands, if not tens of thousands, of
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people. To mitigate the potential for injury and loss-of-life, it is necessary to plan
for and implement appropriate protective actions during such events. Chief among
these is the use of evacuations.

Specialized techniques such as those developed in the field of operations research
(OR) can play an important role in the planning and operation of evacuations.
During emergencies, time is limited and initial response resources are nearly never
adequate to address all the immediate needs of the event. OR techniques have
been useful in simulation models which are used to assess hazard and response
scenarios. They can be applied to meet these challenges and support decision-
making in situations in which there are many competing needs and various response
alternatives that each have varying levels of costs and benefits.

Currently, the level of complexity in evacuation planning and response for
transportation-related hazardous material incidents is limited in practice. These
types of emergencies are typically directed at the local level by emergency response
personnel with considerable practical training and experience who must make very
fast decisions and react equally as quickly to any number of changing conditions.
Because of the fluidity of these events and the somewhat random locations of their
occurrence, there has also been little opportunity for the application of complex
quantitative and analytical methods for guiding decisions and responses. However,
the growing availability, portability, and speed of handheld devices and computer
technology, remote sensing systems, and storage of demographic and geographic
information now makes data available virtually anywhere and accessible at a
moment’s notice. When this is also combined with the types of sophisticated
computational and optimization algorithms developed within the field of operations
research, such information can be used to develop and implement evacuation orders
with considerably higher speed, precision, and effectiveness than has been possible
in the past.

This chapter discusses the ways in which operations research knowledge and
tools can be applied for improving evacuation planning, management, and operation
for transportation related hazardous material incidents. The chapter is divided into
three primary sections that generally discuss characteristics of hazmat events and
evacuations; the existing state of the practice for analyzing evacuation transportation
processes, including a summary of current dedicated- and general-purpose traffic
simulation systems that have been applied by analysts; and the ways in which OR
techniques are or can be applied to improve evacuation conditions. Then a forward-
looking discussion examines the emerging frontiers of OR knowledge and research
that is expected to one day permit ever greater complex to be dealt with. Within
this discussion, the chapter will also highlight how evacuations for hazmat incidents
differ from those of other types of hazards; the application of OR in emergency
management including, preparedness and response; and the ways knowledge of
today can be harnessed to provide the highest levels of protection during any size
hazmat emergency.

Although the information presented in this chapter focuses on emergency
evacuation for hazmat incidents, it should also be noted that the information and
techniques that are included here can also be applied to many other types of
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hazard events that require evacuations. Since most hazard-response scenarios can be
characterized in terms of key spatial and temporal variables, a common approach is
to scale these key parameters to be appropriate to a specific threat scenario. Among
the key spatial variables are the geographic extent of the hazard; the distribution
of the population within the protective action zone; the layout and capacity of the
evacuation road network; and the location of the safe shelter destinations, among
many others. Key temporal variables include the amount of advanced warning time
to the onset of hazardous conditions; the rate at which evacuees receive and heed the
evacuation order; the time and day on which the incident occurs; and so on. Within
this context, the various parameters used in the OR models can be appropriately
modified to fit the specific scenario.

Evacuation from Hazmat Incidents

The fundamental purpose of an evacuation is to move people away from hazardous
conditions. The need for and specifics of them is based on a set of time and space
parameters that describe the extent and movement of the hazard as well as the area
being threatened. The duration and size of these conditions dictates the requirements
of the evacuation including, how fast it needs to be carried out, how many evacuees
need to leave, how far they need to travel, the urgency at which they must flee,
as well as what other types of traffic control and emergency proactive actions can
be taken to expedite the evacuation process. While some of these are based on the
characteristics of the hazard, including its level of danger, speed of movement, and
the extent of harmful effect, others are based on the configuration and capacity of
the transportation network and the availability of transportation assets and resources.
Another, and perhaps most critical set of conditions, is the response and decision-
making behavior of the evacuees.

Although this chapter focuses on evacuations associated with hazmat incidents,
the events for which evacuations may be ordered include many types of naturally-
occurring and man-made hazards. Hazmat-related evacuations are not necessarily
unique among all other hazards. They, like an evacuation from any other hazard,
are governed by the same temporal and spatial constraints of a threat condition.
With that in mind, it is still possible to broadly generalize about the characteristics
of hazmat incidents, the types of threat conditions they create, and the evacuation
responses that they generate.

Hazardous material incidents, though widely varying, generally fall into the
“man-made” incident category. Although they can include large-scale disasters,
most hazmat incidents are also considerably smaller than natural disasters like
hurricanes, wildfires, and floods which routinely threaten areas of hundreds, if not
thousands of square miles. Depending on the population characteristics near the
incident site, smaller impact areas also mean smaller numbers of evacuees, although
this is not always the case. Not only can hazmat incidents be large and complex, they
can also accompany natural disasters.
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Recent experience has led to the creation of a new group of incidents called
“natech disasters.” Natech events are those in which a natural disaster results in
a cascading series of one or more related technological disasters within the built
environment in impacted areas (Steinberg et al. 2008). A recent example of such an
event occurred in 2011 at the Fukushima Daiichi Nuclear Power Plant in Japan when
an earthquake and resulting tsunami disabled the reactor cooling systems leading to
nuclear radiation leaks from the plant. Other, similar types of conditions occurred in
Turkey when the 1999 Kocaeli earthquake caused large scale petrochemical refinery
fires and spills and, yet another was observed after Hurricane Katrina when flooding
caused oil containment breeches near residential neighborhoods of Chalmette in
suburban New Orleans.

Hazmat incidents that involve evacuation can also feature numerous other
complicating characteristics that increase the difficulty of ordering and carrying out
evacuations. Unlike a hurricane or tsunami or other fixed-site incident where the
location or general approach direction of the hazard is known, hazmat incidents can
occur virtually anywhere, at any time, and can involve any one of many hazardous
materials. For example, a train derailment or over turned tractor trailer can occur
along any stretch of railroad or highway. First, the threat it poses to the public
must be evaluated on short notice to determine if an evacuation or other form of
protective action is warranted. In many cases, a shelter-in-place order (the opposite
of an evacuation) may be determined to be most appropriate if travel to a safe
location cannot be achieved. Next, the area under threat has to be determined.
For airborne contaminants, plume dynamics and dissipation characteristics vary
for different substances. Similarly, the area under threat will change with ambient
wind patterns. Then, an appropriate protective action must be communicated to the
threatened population. With little-to-no-advanced warning time this can be difficult,
particularly late at night and in less densely populated areas without reverse 911
systems, civil defense sirens, and so on. Even post-event reentry can be made
problematic by potential residual effects of hazardous materials.

Evacuation Transportation Processes

The last 15 years has seen tremendous advances in the way that evacuations are
planned, implemented, managed, and analyzed. Techniques, such as contraflow,
staged and phased evacuations, cross-state regional coordination, special needs and
transit assisted evacuation as well as planning and analysis techniques like regional
multimodal traffic simulation, have come about due, in large part, to a series of high
profile failures, a greater list of hazards for which evacuations are now required
to serve as a protective action, changing population demographics, and conditions
which have resulted in natural hazards that occur both with higher frequency and
increasing levels of severity.

The following sections discuss the key spatial and temporal considerations that
are commonly considered in evacuation planning and analysis as well as how
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various hazard conditions impact the planning process. This section also highlights
the existing state of the practice for analyzing evacuation transportation processes,
including a summary of current dedicated- and general-purpose traffic simulation
systems that have been applied by analysts. Each of these discussions also includes
examples of how these various parameters and systems have been applied, adapted,
and modified for use in evacuation.

From an OR modeling perspective, framing the components of the evacuation
process in terms of time and space is helpful from two perspectives. First, it is
helpful to disaggregate the often enormously complicated and interrelated processes
of the evacuation into separate, smaller components that are easier to observe
and record. Then, it permits each of these key components to be represented
quantitatively, as equations or as a distribution of continuous data.

Temporal Parameters

Among the temporal evacuation variables, one of the most critical is the amount of
advanced notice available prior to the onset of hazardous conditions. In evacuation
planning there are two primary types of prior-warning conditions; those that give
advanced notice and those that do not. “No notice” events include a variety of natural
(e.g., earthquakes) and unintentional (e.g., levee/damn break, train derailment,
chemical explosion, etc.) as well as intentional (e.g., terrorist attack, biotoxin
release, etc.) manmade hazards. “With-notice” events vary more widely and have
been categorized as “short notice” events (those hazards that may give up to an
hour’s notice prior to the onset of hazardous conditions) such as fires, floods, some
nuclear/biological/chemical releases and “long notice” events including hazards
such as wildfires and hurricanes that give several hours or even days of advanced
notice. The majority of evacuations from hazardous material emergencies, and the
focus of this chapter, typically give only short- to no-advanced notice.

Advanced warning time is also important because it dictates the amount of
notice that response agencies have to implement control and management measures
like contraflow, road closures, and emergency signal timing plans as well as the
time to activate assisted evacuation plans like evacuation bus services, medical
special needs evacuations for the elderly, infirm, and disabled. It can also limit
or extend the amount of time that evacuees have for pre-evacuation mobilization
activities, such as picking up children from school, coordinating with mobility-
limited friends and relatives, closing homes and businesses, gathering materials
and supplies, and so on. Although it may seem that there is little time for these
types of time consuming activities during short notice hazmat incidents, there are
numerous cases where they could still be used. Nuclear power plant emergencies, in
particular, are commonly planned under a set of assumptions that includes several
hours will be available between the time when a reactor emergency occurs to the
time at which a containment breech may begin to pose a risk to persons within
the plume exposure area. This time permits, among other activities, police control
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check points and contraflow lane reversals to be implemented and school and other
assisted evacuation plans to be initiated.

Advanced warning time also affects the ability of officials to issue evacuation
orders because they must be communicated through various formal (e.g., media
releases, reverse 911 calls, etc.) and informal means, including social networks
(e.g., friends, family, co-workers, neighborhoods, etc.). This lead time is particularly
important for non-resident transient populations who may be within the evacuation
zone for work, shopping, and other recreational activities. Research and develop-
ment work, particularly related to hurricane evacuations, in studying behavioral
responses under the various advanced notice conditions is available in the literature
(Lindell and Perry 1992, 2012; Wilmot and Mei 2004; Fu and Wilmot 2004;
Gudishala and Wilmot 2012). Much of this information has also been quantified
and adapted to create evacuee departure times and response distributions which can
be used in OR models of evacuation. With the additional calibration or adjustment,
it is expected that even hurricane evacuation behavioral responses could be adapted
for use in analyzing short- to no-notice events such as those commonly associated
with hazmat incidents.

Once the evacuation is underway, there are numerous other temporal parameters
which can be used to evaluate the performance of evacuation processes. From a
transportation analysis perspective, these can include evacuation travel time and
delay as well as the time needed to implement and/or remove evacuation traffic
management and control measures like contraflow, road and bridge closures, and
police control points. From an emergency management perspective, key temporal
parameters may include onset time and duration of hazard conditions, time to issue
evacuation orders, evacuee mobilization time, and so on. Again these processes have
been quantified in prior work for use in the planning and evaluation of evacuation
alternatives (Chen et al. 2007; Wolshon et al. 2005, 2006).

Spatial Parameters

Like the temporal parameters described previously, evacuations also encompass a
range of spatial parameters which also influence the manner in which evacuations
are planned and carried out. They can also be used to evaluate the effectiveness of
evacuation plans and identify areas of need and improvement.

Among the most essential spatial parameters that dictate the size of the evac-
uation protective action zone is the spatial extent of the hazard. Obviously, the
larger the area of threatening conditions, the larger the area that must be evacuated.
However, spatial distributions of the resident and transient populations within the
threatened population are what actually influence the amount of people and vehicles
that would be in the evacuation. For example, several past hurricanes in Texas
have threatened thousands of square miles but ultimately made landfall in sparsely
populated areas that did not require major evacuations. While the 9/11 terrorist
attacks in New York affected several city blocks, they required the evacuation
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of several million people. Although most hazmat incidents would be expected to
be considerably smaller in scale than a hurricane, there are many hazmat hazard
scenarios that could affect hundreds of square miles.

Two other hazard parameters that influence the urgency, extent, and direction of
the evacuation are the approach direction and movement of threatening conditions.
An illustrative example of the effect of hazard movement on an evacuation lies
in wildfires in urban-wildland interface areas. Because of the highly variable
development and movement of wildfires, which are themselves a function of
weather and fuel conditions, it is not possible to develop specific detailed evacuation
plans. In Southern California, for example, emergency preparedness and response
agencies find it more effective to work from a general evacuation framework,
rather than a plan, to permit greater flexibility to respond to rapidly changing fire
conditions. This includes designating the geographic extent of threat region, amount
of available advanced warning time, available routes, and even shelter destinations.
With the exception of nuclear power plant facilities which are typically planned to
assume a fixed site emergency, the majority of hazmat incidents would be expected
to create evacuation conditions that are more similar to wildfires where the locations
of the protective action zone and urgency at which the evacuation needs to be
conducted is not known in advance and can change rapidly based on wind strength
and direction.

Other important spatial parameters that affect evacuation processes are the
location and required travel distance to safe shelters, arrangement and access to
transportation networks, and the location and frequency of downstream bottlenecks.
For hazards like nuclear power plant emergencies and hurricanes, shelters are
planned well in advance of the emergency and, as such, evacuation travel is planned
to reach them. However, for wildfires, safe shelter destinations and the routes
recommended to reach them may change from event to event or even several times
within a single event. Similarly, the available road network including intersections,
merges, terminal points, and capacity restrictions (e.g., bridges, tunnels, etc.)
influence the direction of movement away from the threat.

OR models can be effective for planning and analyzing the various spatial com-
ponents and characteristics of evacuations. Although most of the recent past research
and development work has been focused on evacuations related to hurricanes and
terrorist-related incidents, these applications could be adapted to hazmat incidents.
OR models could be used to minimize travel and clearance time and/or optimize
lane utilization, network capacity, loading, traffic, etc.

Evacuation Simulation and Analysis Techniques

Most modeling in the traffic planning and operations field is undertaken to evaluate
routine traffic conditions such as the impacts of local and regional development,
capital roadway improvements, and traffic control alternatives. It is also commonly
accomplished using one of an assortment of commercially available and other
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non-proprietary simulation packages. Although these software systems are useful
and effective at modeling the activities and performance of systems and agents
that range from regional sized road networks down to individual vehicles and
pedestrians, they typically do not include sophisticated algorithms or strategies for
optimizing cost and/or performance.

A considerable amount of recent OR work in the area of evacuation has been
focused on improving traffic modeling and simulation in these areas. Although there
are many existing traffic simulation systems, research is always ongoing to develop
descriptions and models to more accurately and realistically capture various travel
behaviors and characteristics under both routine and emergency conditions. One
area where this has been particularly true has been in the area of travel demand
modeling where considerable effort has gone into integrating dynamic algorithms
that can reassign traffic to alternate travel paths based on the evolving occurrence
of incident-related and/or routine recurring traffic congestion. Numerous studies
have examined how network models can be modified and adapted to model the key
aspects of dynamic traffic assignment to the network as threat and traffic volume
condition change continuously throughout an evacuation process (Chiu et al. 2005;
Brown et al. 2009; Lin et al. 2009; Pel et al. 2012).

The following sections present and discuss the three traditional categories of
traffic simulation models with a focus on how some of them have been adapted
to or applied for the specific problem of evacuation. Several recent reviews of traffic
simulation software applications for evacuation planning and analysis have been
conducted. Among the most useful was completed by Hardy et al. (2009) as part
of a United States Department of Transportation (USDOT) technical study. The
USDOT’s Evacuation Management Operations Transportation Modeling Inventory
included discussion of 30 systems that have been applied for evacuation-related
traffic analyses. The report also comments on the relative strengths and weaknesses
that should be considered when selecting any of them. The discussion that follows
summarizes many of the key findings from this work as well as recent projects and
studies conducted by various transportation and emergency management agencies
and firms across the country. Typical performance measures produced at various
modeling scales and the validation and calibration processes needed to assure its
utility for evacuation applications are discussed as well as the ability of these
systems to incorporate multimodal system aspects, pedestrians, and visualization
capabilities is also included.

Modeling Scale

Simulation models for operational- and planning-level analyses generally fit into
one of three model categories; macro, meso, or micro. These categories are
distinguished based on the level of abstraction of relevant components of the
transportation system, including the vehicles, roadway components, control devices,
etc. Like any system that is modeled, the level of abstraction has a direct impact on
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the quantity and level of detail requirements of the input data as well as the amount
time and labor effort required for coding and entry. Correspondingly, it also dictates
the level of detail at which output data is produced.

Macro-level

Macroscopic models are typically used for developing and assessing “Big Picture”
views of traffic conditions. They are most effective for analyzing regional level
networks such as those that may encompass a city or metropolitan area. In
most macro models, specific network characteristics and individual vehicles are
aggregated and represented as “average” conditions over road segments. Within
such a representation, individual vehicles are grouped into platoons with average
speeds and spacing. Similarly, segments of roads are represented generically without
changing posted speeds, numbers of lanes, minor street crossings and the like. As
such, these models do not capture the effects of vehicle-to-vehicle interactions
or the effects that they can have on the overall flow conditions of the traffic.
Because of this, they are not useful for identifying localized conditions such as
bottlenecks caused by stopped, slowing, merging, and diverging traffic along a link.
Macroscopic models are also usually temporally aggregated over incremental time
periods of 15 min to an hour, so changing flow conditions such as that which
occurs during queue formation and dissipation is not captured within a simulation.
However, when this level of detail is not required, these models can be quite
effective. In Florida, a statewide model was developed to look at traffic patterns
and clearance times during regional mass movements of traffic during hurricane
evacuations (Florida Department of Community Affairs 2010; Lindell and Perry
2012). In the Florida Keys where there is effectively a single route of egress and
road cross sections are fairly consistent over a long stretch of US-1, a spreadsheet-
based macro model has been used for more than a decade to estimate clearance
time and the improvements that could be gained from various capacity enhancement
improvement projects.

Micro-level

Micro-level or “agent-based” traffic models represent the variety of systems on the
opposite end of the spectrum from the macro-models. In microscopic models, traffic
flow is represented in terms of individual vehicles moving in the system. As such,
specific movements such as accelerating, decelerating, and lane changing can be
tracked separately for individual vehicle or pedestrian “agents.” Similarly, behav-
ioral characteristics can be assigned to individual agents. To reflect a representative
mix of driver types and vehicle performance characteristics, these attributes are
assigned to individual entities based on statistical distributions that can be modified
to reflect a locally observed population of drivers and vehicles. Because of the level
of detail required to code a microscopic traffic model, the scope of these models are
typically limited to networks consisting of several dozen intersections or corridors
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extending over 20 or less miles. Although micro-scale models have been used to
represent networks ranging from corridors and networks much greater than this, the
amount of time and labor required to create these larger models does not typically
justify the cost.

Micro-scale models typically use time- or discrete event-based updating of
the model state and its agents. In time-based models, activities are incrementally
updated at fixed intervals, commonly 1 s. At each interval, vehicle speeds, locations,
etc. are changed as a function of intra-vehicle spacing, acceleration, deceleration,
gap availability and so on. Some models use increments as short as one tenth of a
second and string together successive movements to create smooth movements for
graphical visualizations. In an event-based system, updates are made based on the
occurrence of events that result in a change of system state such as would occur
when a vehicle is released from queue at a toll booth or traffic signal.

Meso-level

Mesoscopic models have aspects of both micro and macro systems. One type of
meso-scale modeling system that is growing in use is the cell transmission model
(CTM). In a CTM, road segments and other system features are disaggregated from
macroscopic model levels, but not quite down to the agent level of micro models. In
the TRANSIMS (TRansportation ANalysis SIMulation System), a type of CTM and
one of several meso-scale models used for regional scale evacuation traffic analysis,
individual vehicles are not explicitly modeled, rather road segments are broken up
into 7.5 m cells (about the length of a single passenger vehicle) that are occupied
or vacant during each second of the simulation. Vehicle speed is represented by the
occupation of several successive cells and lane change by the occupation change
between adjacent cells on a second-by-second basis. Traffic control and various
other features are also modeled at similar aggregated/disaggregated levels. Within
this context, meso models permit the simulation of considerably larger areas over
longer durations than micro-models with more precise results than macro models.

Mixed Modeling Approaches

One other technique for applying simulation models for evacuation traffic analysis is
the mixed-model approach. In the mixed-model approach, the process begins with
a high-level macro analysis. Based on the results of the big-picture perspective,
micromodels are developed to examine specific locations within the network. If
areas of significant traffic congestion are apparent, then these segments can be
micro-analyzed for closer inspection. These sub-areas can vary from as large as
a corridor down to as specific as an intersection or interchange. At this level it
becomes possible to assess specific geometric design and traffic control features
that may be contributing to flow turbulence. A mixed modeling approach is
currently being used to analyze emergency and evacuation scenarios in the City of
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Philadelphia. Another benefit from this development will be ability to apply these
models for routine peak-hour and other planned event conditions.

While the mixed-modeling approach saves the effort of coding significant areas
of the network in detail that have little general effects on the overall operation of the
network, it may still require significant time and labor investments since multiple
sets of models may still be required. Moving from macro to micro may also incur
risks of not accounting for the multitude of circumstances and conditions such
as incidents, network loading, and the like which can also contribute to network
congestion.

OR Applications to Traffic Modeling

OR techniques can add additional value to traffic simulation modeling systems in
a number of different ways and both from within and outside of these programs.
Routines for optimizing and balancing traffic volumes to alternative routes and
assigning traffic signal timings to signalized intersections have been incorporated
into traffic simulation models for many years. Dynamic traffic assignment (DTA)
routines form the basis of systems that variably assign traffic to routes based on
time-varying network conditions and travel demand conditions. This arrangement
much more realistically represents real-world traffic processes.

External OR applications are for pre- and post-processing of traffic scenarios.
For example, OR techniques can be used to devise scenarios to allocate transit buses
within a network to best utilize available capacity, personnel, and vehicles, then use
a simulation system to view and compute specific performance measures of these
plans under varying levels of network volume. Similarly, operational performance
measures like intersection arrival volume from a simulation model can be used to
optimize and coordinate signal systems in the field. OR can also be used for the
calibration and validation of simulation models to most accurately represent actual
traffic conditions.

OR Applications for Evacuation Management Strategies

The desire to improve evacuation conditions or develop lower bounds on evacuation
times has led to the use of OR models for a variety of evacuation management
strategies. A selection of these strategies is discussed below; and where the
formulations are reasonably short or can be understood without reiterating the
majority of the related article, sample formulations are presented. Most of these
strategies interact with traffic simulation or route optimization models. (Note that
contraflow strategies, while popular for hurricane evacuations, are not likely to be
appropriate for no-notice evacuations since they can require significant set up times,
e.g., 3–5 h (Zimmerman et al. 2007).)
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As demonstrated below, bi-level techniques are often used with an optimization
problem as the upper level and the determination of travel times at the lower
level (optimization or simulation). The general approach uses the upper level
to make a change to the transportation network or demand and the lower level
determines travel times which are fed into the upper level’s objective function. The
solution techniques can be viewed in three categories, depending on the complexity
of the formulation: (1) strict optimization (using optimal algorithms for single
layer problems); (2) meta-heuristics; and (3) iterative optimization and simulation.
Combinations of techniques are also possible. In the third option, and at times
the second, the modification to the network or demand selected in the upper level
problem may require additional code or external modification to inputs for the lower
level; thus creating a potential solution that is evaluated in the lower level and
iterations between the two levels continuing.

Ramp Management Optimization

The ramp management strategies are intended to improve evacuation times by
smoothing traffic flow, typically on freeways. These strategies can involve metering
(e.g., Daganzo and So 2011; Edara et al. 2010; McGhee and Grimes 2006; So and
Daganzo 2010) or closure (e.g., Fonseca et al. 2009; Ghanipoor Machiani et al.
2012, 2013).

As a simplified example of the bi-level model for ramp closure, Ghanipoor
Machiani et al.’s (2012) model is presented below and is solved using a combination
of techniques (2) and (3). In their study, the lower level involved traffic simulation
and the overall model is solved using the heuristic approach simulated annealing.

Upper level problem:
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where K is the set of impacted zones located in a sub-network G0 of the overall
network G000, S is the set of all safe zones in G000 �G0, T ks

j is evacuee j’s travel time
from origin k to destination s, Eks is the number of evacuees traveling from origin
k to destination s, x

f
i is the decision variable (1 if ramp i on freeway f is closed, 0

otherwise), B is the upper bound on the number of ramps that can be closed, Rf is
the set of ramps on freeway f in an area larger than G0 but smaller than G000, and F
is the set of freeways considered for ramp closures.

The upper level’s objective function (1) minimizes mandatory evacuees’ total
travel time from their origins to their destinations. Constraint (2) prohibits closing
two consecutive ramps; this constraint is intended to limit stress on the evacuees who
are seeking quick routes out of danger. Constraint (3) limits the maximum number of
ramps that can be closed. Finally, constraint (4) indicates that the decision variables
are binary integers. This formulation was used in a no-notice evacuation study in
Virginia. The results suggested that ramp closures could improve evacuees’ total
travel time by as much as 8% under certain conditions. While this may seem like a
small percentage, it equated to over 20,500 h (Ghanipoor Machiani et al. 2013).

Unlike ramp closure, ramp metering permits continuous, rather than integer,
variables. Daganzo and So’s (2011) approach for determining optimal freeway on-
ramp control is based on an “innermost first out” control strategy, which limits the
number of evacuees released by a ramp onto the freeway to the residual capacity
of a downstream bottleneck. This strategy prioritizes upstream freeway flow over
ramp flows (Daganzo and So 2011) and is determined using technique (1)—optimal
algorithms.

Crossing Elimination Optimization

Crossing elimination is intended to decrease evacuation time by minimizing or
reducing vehicle conflicts at intersections. Figure 1 illustrates one possible restruc-
turing of an intersection. This strategy prohibits selected movements at selected
intersections and smoothes flow by removing some flow interruptions. It requires
careful implementation since there is a tradeoff between faster speeds and longer
distances (Cova and Johnson 2003).

Cova and Johnson developed lane-based routing strategies with a linear program
that treated crossing elimination as a minimum-cost flow problem, as shown below.
The objective of the minimum-cost flow optimization problem is to minimize the
cost of transporting supply from source nodes to meet demand (destinations) given
a capacitated network. The network simplex technique (general technique (1)) can
be used to solve this problem (Cova and Johnson 2003).

min Z2 D
X

i

X
j

dij xij (5)
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Fig. 1 Sample intersection reconfiguration with reduced conflict points

Subject to:
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where i is the index of network nodes, i! j indicates a directed arc from node i
to node j, bi is the net flow at node i, dij is the distance along i! j, uij indicates
the capacity for i! j, M is the upper bound on the number of merges, xij indicates

vehicle flow on i! j, yij is

�
1 if the flow on arc ij is positive
0 otherwise

, zi is the number of

traffic streams that merge at node i (formulation and notation quoted from Cova and
Johnson (2003, p. 584)).

Cova and Johnson’s (2003) evacuation routing problem is an integer extension
of the minimum-cost flow problem, which minimizes total travel distance for the
vehicles in the network, subject to several constraints. First, flow must be conserved,
as in the min-cost flow problem. Second, intersection crossing-conflicts must be
prevented. Third, merges must be identified and three-way merges at a single lane
can be prevented by setting bounds on certain variables. The total number of merges
may be bounded for the network. Finally, the flow variables are bounded between



The Role of OR in Emergency Evacuation from Hazmat Incidents 283

0 and an upper bound, specific to individual links. Their model routes vehicles
to their closest evacuation zone exits and minimizes the number of merging and
crossing conflicts at intersections. Cova and Johnson applied their model to a section
of downtown Salt Lake City, Utah, (20 intersections) where evacuations occurred
due to armed assailants, tornados, and bomb threats. Their research showed that
overall travel time could be reduced under some scenarios, but these improvements
often came at the price of longer and in some cases more indirect routes (Cova and
Johnson 2003).

Several years later, other researchers developed additional approaches to crossing
elimination (Luo and Liu 2012) and combined crossing elimination with lane
reversal (e.g., Xie et al. 2010, 2011; Xie and Turnquist 2009, 2011). These
approaches are largely bi-level optimization models. Xie and Turnquist’s (2009)
upper level minimizes total network evacuation time and the lower level problem
is a stochastic traffic assignment problem. It was assumed that evacuees choose
their routes and destinations simultaneously. Unique constraints included reserving
a sufficient number of lanes for emergency vehicles. They applied their model
to the area near a nuclear power plant in Minnesota with an estimated 42,000
evacuees and an evacuation network of approximately 44 nodes and found that
full link reversal heading away from the hazard guaranteed no traffic crossing
at the intersections. However, access for emergency vehicles requires some lanes
operating in the opposite direction and a trade-off must be made between emergency
vehicles and evacuation traffic (Xie and Turnquist 2009).

Xie’s further development in this area continued with bi-level problems but used
combined Lagrangian relaxation and Tabu search (Xie et al. 2010; Xie and Turnquist
2011) solution methods. Relaxation based heuristics were also used by Bretschnei-
der and Kimms (Bretschneider and Kimms 2011). Similar to the 2009 and 2010
work, Xie et al. (2011) also converted the intersections into subnetworks where each
movement is represented by a link. Their solution technique was simplex based.

Signal Retiming Optimization

Another strategy to modify intersection control operations is to retime the traffic
signals (Chen et al. 2007; Liu et al. 2008). Liu et al. (2007) developed a model
reference adaptive control framework that adjusts the timings based on desired
traffic states from system optimal objectives and current prevailing conditions. Ren
et al. (2012) presented a bi-objective, bi-level program to determine traffic signal
timings and flows on evacuation routes with the added complication of uncertain
background traffic. Similar to the other bi-level problems, the lower level represents
traffic assignment. Their specific approach is a logit based routing method. At the
upper level, the objectives are to minimize the total travel time for evacuees and
the performance index for the entire network flow. The performance index is a
weighted combination of delay and background traffic impact degree (BTID). The
BTID is a measure of the spillback due to the background traffic (non-evacuees).
The background traffic is determined from the lower-level model. The problem is
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Fig. 2 Notional staged evacuation plan

solved with the non-dominated sorting genetic algorithm II (general technique (2)).
They tested the formulation for the Sioux Falls network and the Jianye district
of Nanjing city, which holds the Nanjing Olympic Sports Center and found that
minimal evacuation time occurs with higher spillback probabilities while plans with
lower spillback probabilities yield higher evacuation times (Ren et al. 2012).

Staged/Phased Evacuation

The basic idea behind staged or phased evacuation is to stagger evacuee departures
(as in Fig. 2) to reduce (Chen and Zhan 2004; Mitchell and Radwan 2006) or
minimize overall evacuation time (Bish et al. 2006; Dixit and Radwan 2009),
minimize the time for those in the highest risk areas to reach safety, minimize risk
(Bish et al. 2006), or some combination of these.

Sbayti and Mahmassani (2006) used a bi-level formulation to determine time-
dependent route assignments at the upper level and the route travel times at the
lower level. The upper level is solved with the method of successive averages
while the lower level is solved with traffic assignment-simulation software (general
technique (3)). Their model produces departure time, route, and destination for each
vehicle. They then used the output to generate a time-dependent staging plan for
each origin. They stated that their model incorporates an inherent objective function
that minimizes evacuee total trip time, maximizes the number of evacuees reaching
safety in each time period, and minimizes network clearance time. They tested their
model on the Fort Worth, Texas network and reduced total evacuation trip time
by 31–71% and network clearance time by 20–61%, depending on the number of
evacuees, which were under 6,000 out of 47,300 travelers in the three examined
scenarios (Sbayti and Mahmassani 2006).

Similar to Sbayti and Mahmassani (2006), Bish et al.’s (2006) model determines
the evacuee’s destinations and departure times and Chiu et al.’s (2006) model
determines evacuees’ destinations, routes, and stages. Chiu et al.’s work uses a linear
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programming version of the cell transmission model to account for traffic and the
well-known interior-point solution method (general technique (1)). Their objective
function minimizes travel time of all evacuees in the network during the evacuation
operation time horizon (system optimal), but they suggest that maximizing evacu-
ation flow or minimizing exposure would also be suitable objectives. Outcomes of
these staging models can then be incorporated into simulation tools, such as Liu
et al.’s (2008) work.

Destination Assignment

From an optimization perspective, the destination choice should minimize the time
for evacuees to reach safety. As mentioned in the discussion of staged evacuation,
several researchers (e.g., Chen and Zhan 2004; Sbayti and Mahmassani 2006; Chiu
et al. 2006) combined destination choice optimization with staging and routing
(in some cases). Others (e.g., Chen 2005) have modeled destination choice using
planning methods, such as the intervening opportunities model and gravity model
(Wilmot et al. 2006).

Han et al. (Han et al. 2006) combined the optimization of destination and route,
taking departure time as given. They treat the network as having one destination
(e.g., connected to D1, D2, D3, and D4 in Fig. 3 with dummy links). The true
destination (e.g., D1–4) is found by tracing the flow on the dummy links. Their
optimization formulation is a traffic assignment problem with the objective function
to minimize user optimal or system optimal travel time. They used traffic simulation,
which involves iterations to approximate user equilibrium or system optimum traffic
assignment, to solve their problem, which was single level, rather than the bilevel
problems frequently discussed above. They tested their 1-destination framework
in the context of a county-wide special event evacuation and found up to a 60%
reduction in total evacuation time (Han et al. 2006).
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Combined Departure Time, Destination, and Route Optimization

As discussed in other sections, several elements of demand (e.g. demand schedul-
ing, destination choice, and route) are often combined (e.g., Chiu et al. 2006).
Abdelgawad et al. (2010) also considered these three aspects for auto evacuees in
their multimodal model. As objective functions for auto evacuees, they considered
minimizing vehicle travel time, waiting time, and waiting time and vehicle travel
time. For the transit dependents, they used a variant of the vehicle routing problem
that allows multiple depots, time constraints, and multiple pickup and delivery
locations. In the transit context, Abdelgawad et al. (2010) optimize scheduling and
routing to minimize in-vehicle travel time, minimize waiting time, and optimize
fleet size, considering vehicle cost. Their solution techniques combined genetic
algorithms and dynamic traffic assignment simulation (a combination of techniques
(2) and (3)). They combine the three transit objectives into a single weighted
objective function. They tested their model for a hypothetical event in downtown
Toronto, Ontario, Canada and found accounting for waiting time at the origins
and travel times yields a compromise solution between excessive waiting time and
gridlock resulting from simultaneous evacuation (Abdelgawad et al. 2010).

Shelter Location and Assignment Optimization

Determining the optimal shelter location or assignment is closely related to
destination choice, except the type of facility implied may be different within the
immediate network (see Fig. 4) and the travel distance to the shelter may be shorter
than the distance to an evacuee’s preferred final destination of a friend or relative’s
home. Similar to the destination choice work, optimization of shelter choice has
been considered in conjunction with routing or both routing and departure time (e.g.
Afshar and Haghani 2008).

Afshar and Haghani (2008) sought to minimize total travel time and network
clearance time by spreading traffic over time and squeezing the demand to speed
the departure of the last evacuee from danger. Their approaches are heuristic based.
Traffic is assigned according to the system optimum approach, which provides
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evacuees with departure times and shelter locations, as well as routes. The objective
function is the minimization of evacuees’ total travel times.

Ng et al. (2010) also used the system optimal approach for the upper level of
their bi-level optimization model. The upper level assigns evacuees to shelters while
evacuees choose their routes to those shelters according to user equilibrium routing
assumptions. Their model is quoted below (Ng et al. 2010) p. 549.

minimize
X

a
vata.va/ (12)

Subject to

X
s
qrs D Or; 8r 2 V (13)

q
rs
� qrs � Nqrs; 8r; s 2 V (14)

minimize
X

a

Z va

0

ta.x/dx (15)

Subject to

X
k

f k
rs D qrs; 8r; s 2 V (16)

va D
X

k;r;s
ık

arsf
k

rs ; 8a 2 A (17)

f k
rs � 0; 8r; s 2 V;8k (18)

where Or is the estimated number of evacuees from origin node r, r 2V, q
rs

is the

nonnegative lower bound on qrs, Nqrs is the nonnegative upper bound on qrs, f k
rs is

the flow on path k between origin r and shelter s, va is the flow on link a, a2A, ık
ars

is an indicator variable taking the value 1 if link a is on path k between origin r and
shelter s, 0 otherwise, and qrs is the number of evacuees from origin node r assigned
to shelter s.

Equation (12) is the objective function of the upper level and minimizes total
evacuation time. Equation (13) forces all evacuees to be assigned to some shelter.
Equation (14) ensures capacity of the shelter is not exceeded and that the number of
evacuees assigned there meets the planner-specified lower bound. Equations (15)–
(18) represent the lower level problem which is the well-known deterministic user
equilibrium problem that assigns evacuees to their shortest paths while meeting
demand (16), obtaining link flow from path flow (17), and requiring non-negative
path flow (18). The model is solved using the meta-heuristic technique simulated
annealing. Testing on the Sioux Falls network revealed that shorter evacuation times
can be achieved if evacuees are spread among the available shelters (Ng et al. 2010).
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Li et al. (2011) also used a bilevel formulation to optimize the locations of
shelters for a range of (hurricane) events. Routing was a key element of their model,
for which they adopted a stochastic user equilibrium approach. Their optimization
formulation consists of two levels, SUE at the lower level and the selection of which
shelters to open at the upper level. The upper level is treated as a two-stage stochastic
programming problem; the first stage locates shelters prior to observing a scenario
and the second determines which shelters to open in a given situation and how
to assign evacuees to them. The solution technique is heuristic based, involving
iterations between the two levels.

Transit Operations Optimization

Transporting evacuees by transportation modes other than personal vehicles reduces
the number of vehicles, and related congestion, and is also instrumental for evacuees
without vehicles, either due to commuting mode choice or the lack of such a vehicle.
To plan evacuation transit service, optimization and combinations of optimization
and traffic simulation tools are frequently employed. From the optimization perspec-
tive, the decision variables often determine routes and schedules (e.g., Abdelgawad
and Abdulhai 2010), stop locations (e.g., Chen and Chou 2009), and routes (e.g.,
Bish 2011). Zhang and He (2008) also developed an optimization approach for
transit operations. Their model is a location-routing problem and has deterministic
and stochastic versions. They considered the objective functions to minimize total
evacuee travel time, minimize the longest bus running time, balance the loads and
tasks for each bus, minimize total transport distance, and minimize the number of
buses, but ultimately selected minimizing total evacuee travel time. Their constraints
include restricting each bus stop to be served by only one vehicle, respecting
shelter and vehicle capacities, route continuity, routing from and to one shelter,
prohibiting direct connections between shelters, and only using open shelters. The
solution technique involves the use of hybrid genetic heuristics. They found that
deterministic plans applied in stochastic conditions could lead to exceeding the
capacity of some of the transit vehicles, implying that some evacuees would be left
behind (Zhang and He 2008) or presumably that some additional trips would have
to be made that were not part of the original plan.

Summary and Concluding Comments

As the list of conditions for which evacuations could be used as a protective action
grows, the need to better plan for and implement evacuations also grows. Over the
past decade, many new planning and operational practices have come into use.
Unfortunately, much of this new knowledge has come at the price of the difficult
and sometimes tragic lessons learned from recent failures. However, in addition to
revealing the limitations of current practice, the past two decades of evacuations
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for floods, tsunamis, fires, chemical spills, nuclear power plant emergencies, and
hurricanes has also permitted the collection and analysis of response data in
quantities and levels of detail never before available. From these observations and
datasets, it has been possible to develop new techniques to model and forecast the
conditions that commonly accompany such events. One of the areas where some of
the most significant advances have been in modeling and forecasting has been made
is in the field of operations research.

This chapter provides an overview of the key components of evacuation pro-
cesses and how these conditions can be represented quantitatively and adapted for
a range of conditions, most importantly here, for evacuations associated with short-
to no- advance notice hazmat events. The first group of these OR techniques is
described for the representation of traffic flow conditions. Recent applications for
traffic analysis have been used for, among other uses, to optimize traffic signal
timing during emergencies; balance traffic between available evacuation routes,
and examine how the closure of freeway ramps and the elimination of intersection
turning movement can actually increase rates of flow and reduce overall clearance
time. The OR models presented in this chapter have also been developed for high-
level regional planning, including examining the effects of staged evacuation, how
evacuees select the location of shelter destinations and how these resources can best
be optimized. The last set of examples included in this chapter looked at evacuations
for individuals who may chose or be required to utilize transit services and how to
best serve their needs.

Although these techniques represent significant advancements over prior practice
just a few years earlier, much improvement remains. First and foremost, many
of these models are quite complex and generally reside beyond the ability of
first responders to quickly and effectively apply them during most, if any, but a
few emergency situations. To work their way into wide use, the OR techniques
must be simple to use even for lower-trained individuals in transportation response
organizations.

Next, in order to be useful and effective the information these models generate
must be reliable, actionable, and helpful to evacuees and emergency responders
and decision-makers. As with most transportation-related management techniques,
all guidance must be timely, accurate, and useful to maintain credibility with the
public. As such, the results from these systems must be predictive, rather than
purely reactive, in nature so that issues and needs cannot merely be reacted to
and but forecast well in advanced of adverse conditions. This allows plans to be
modified and adapted to reduce the adverse impacts of not only present conditions
but conditions that are anticipated to exist 1 or 2 or 8 or 24 h later.

Among the chief difficulties in achieving any of these goals is likely to be
collecting, storing, collating, and accessing the potentially overwhelming amount of
input data required to make them work. Questions remain of where such data would
come from, where it would be stored, how would it be accessed, then applied quickly
and simply to support operational decision-making. Finally, to be truly effective, it
is also suggested that these models be unified into systems that can be used together
transparently and in sequence rather than separately with each component focusing
on specific aspects of the problem.
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While none of these issues is able to be addressed in a single overview book
chapter, it is anticipated that readers will be able to use the information presented
here to move in these directions. To this end, interested readers are encouraged to
review the list of references provided as well as to tap into the wide range of related
works by these and other authors to seek ways of advancing the field by building on
the existing body of work.
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