
125G. Karunamuni (ed.), The Cardiac Lymphatic System: An Overview, 
DOI 10.1007/978-1-4614-6774-8_9, © Springer Science+Business Media New York 2013

    Abstract     Since the discovery of angiogenic vascular endothelial growth factor 
(VEGF)-A in 1983 and lymphangiogenic VEGF-C in 1997, an increasing amount 
of knowledge has accumulated on the essential roles of VEGF ligands and receptors 
in physiological and pathological angiogenesis and lymphangiogenesis. We will 
review the properties of VEGF ligands and receptors concentrating on their lym-
phatic vessel effects fi rst in noncardiac tissues and then in normal myocardium and 
cardiac disease. Tissue adaptation to several stimuli such as hypoxia, pathogen inva-
sion, and infl ammation often involves coordinated changes in both blood vessels 
and lymphatic vessels. As lymphatic vessels are involved in the initiation and reso-
lution of infl ammation and regulation of tissue edema, VEGF family members may 
have important roles in myocardial lymphatics and cardiac disease.  
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        General Biology of the VEGF Family 

    VEGF-A (or VEGF) was fi rst discovered as a tumor-secreted factor that induced 
 vascular permeability and was therefore initially named as vascular permeability factor 
[ 1 ]. Subsequently, the VEGF family has expanded to a total of fi ve mammalian ligands: 
placental growth factor (PlGF), VEGF-A, VEGF-B, VEGF-C, and VEGF-D [ 2 – 5 ]. 

 The receptors for the VEGF family ligands include VEGFR-1, VEGFR-2, 
VEGFR-3, and neuropilins (NRP-1 and NRP-2). Upon binding of VEGF ligand 
dimers to their receptors, the corresponding receptors dimerize, phosphorylate 
tyrosine residues in the cytosol, and activate intracellular signaling pathways. The 
binding properties of VEGF ligands and the principal effects of VEGF receptors 
are summarized in Fig.  9.1 . Heterodimerization of VEGF ligands and receptors, 
and splice variants and heparin-binding differences of ligands result in additional 
complexity and fl exibility in VEGF ligand–receptor interactions [ 5 ]. Generally, 
the preferential expression of VEGFR-1 and VEGFR-2 in blood vascular endo-
thelial cells (EC) and VEGFR-3 in lymphatic EC, and the binding properties of 
VEGF ligands to their corresponding receptors, underlies their angiogenic or lym-
phangiogenic predilection (Fig.  9.1 ). We fi rst overview properties of the angio-
genic VEGF ligands and receptors, and we then concentrate on the lymphangiogenic 
VEGF family members.

      Angiogenic VEGF Members (VEGF-A, VEGF-B, PlGF, 
VEGFR- 1, VEGFR-2, NRP) 

 VEGF-A binds to VEGFR-1, VEGFR-2, NRP-1, and NRP-2 and is the major regu-
lator of the angiogenic switch. VEGF is produced by a variety of adult tissues, and 
vascular and infl ammatory cells, and is induced by hypoxia, infl ammation, and sev-
eral growth factors [ 6 – 11 ]. VEGF-A elicits its effects mainly through VEGFR-2+ 
vascular endothelial cells (EC) and VEGFR-1+ monocytes and macrophages. 
VEGF induces EC migration, proliferation, and sprouting and results in angiogen-
esis. VEGF is essential for embryonic vascular development [ 12 ,  13 ]. The impor-
tance of VEGF in angiogenesis in adult is highlighted by the clinical success of 
anti-VEGF approaches in the treatment of cancer and eye disease [ 3 ]. However, the 
results of randomized clinical trials on VEGF-A-mediated therapeutic angiogenesis 
have been disappointing [ 14 ]. This may at least in part relate to the fi ndings that the 
VEGF-A-induced new blood vessels are often leaky. VEGF-A is indeed intimately 
related to infl ammation through increased vascular permeability and also through 
direct effects on VEGFR-1+ monocytes and macrophages [ 5 ]. 

 PlGF was fi rst detected in human placenta [ 15 ] and it binds to VEGFR-1 and 
NRP-1 [ 16 ]. PlGF is not essential for normal vascular development [ 3 ,  17 ], but it 
may enhance VEGF effects particularly in pathological conditions [ 18 ,  19 ], and it 
promotes cardiac hypertrophy [ 20 ]. PlGF has a clear infl ammatory role as it acti-
vates both hematopoietic stem cells [ 1 ,  21 ] and monocytes and macrophages 
through VEGFR-1 [ 2 ,  22 – 24 ]. 
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 VEGF-B is expressed in skeletal muscle and heart, and also binds to VEGFR-1 
and NRP-1 [ 3 ,  16 ,  25 ,  26 ]. Lack of VEGF-B does not impair vascular development, 
but it may yield to conducting defects and size reduction in the heart, and impaired 
recovery after myocardial ischemia [ 4 ,  27 ,  28 ]. VEGF-B is also involved in infl am-
matory angiogenesis [ 1 ,  29 ] and in cardiac arteriogenesis [ 5 ,  30 ] and hypertrophy 
[ 5 ,  31 ]. VEGF-B also has metabolic effects as it regulates endothelial lipid transfer 
and metabolism [ 6 – 11 ,  31 ,  32 ] as well as the development of diabetes [ 12 ,  13 ,  33 ]. 

  Fig. 9.1    VEGF ligands and receptors. VEGF ligands have different binding properties to VEGF 
receptors. VEGFR-1 modulates VEGF responses on endothelial cells and it is a chemotactic signal 
for monocytes and smooth muscle cells. VEGFR-1 also has a functional role in hematopoiesis, and 
the soluble sVEGFR-1 inhibits VEGF effects. VEGFR-2 elicits the main mitogenic and proinfl am-
matory effects on vascular endothelial cells but has a functional role also in hematopoietic and 
vascular progenitor cells. VEGFR-3 signaling principally regulates the development and function-
ality of lymphatic endothelial cells and migration of antigen-presenting cells.  EC  endothelial cell; 
 HSC  hematopoietic stem cell;  NO  nitric oxide;  PlGF  placental growth factor;  SMC  smooth muscle 
cell;  VEGF  vascular endothelial growth factor;  VEGFR  VEGF receptor;  sVEGFR  soluble VEGFR 
(Modifi ed from Nykänen A. Vascular growth factors and progenitor cells in cardiac allograft arte-
riosclerosis [dissertation]. Helsinki: University of Helsinki; 2007)       
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 VEGFR-1 (also known as fms-like tyrosine kinase, Flt-1) is a receptor for 
VEGF-A, VEGF-B, and PlGF [ 3 ,  16 ]. In addition to the membrane-anchored 
VEGFR-1, a soluble form of VEGFR-1 (sVEGFR-1) also exists [ 14 ,  34 ,  35 ]. 
VEGFR-1 is expressed in a variety of cells including EC, smooth muscle cells, mono-
cytes and macrophages, and hematopoietic stem cells [ 3 ,  15 – 17 ,  36 ] and is upregu-
lated by hypoxia-inducible factor-1 [ 18 ,  19 ,  37 ]. VEGFR-1 has high affi nity for 
VEGF-A but low tyrosine kinase activity, and it has been viewed as a decoy receptor 
and a negative regulator of VEGFR-2 in ECs [ 20 ,  38 ]. Accordingly, VEGFR-1 dele-
tion results in excessive endothelial progenitor cell proliferation, vascular disorgani-
zation, and embryonic lethality [ 39 ,  40 ]. Although the angiogenic effects of VEGFR-1 
are subtle, VEGFR-1 may regulate arteriogenesis, pathological angiogenesis, myelo-
monocyte cell recruitment, and lipid metabolism [ 31 – 33 ,  41 ,  42 ]. 

 VEGFR-2 (also known as kinase insert domain receptor, KDR/fetal liver kinase, 
Flk-1) binds VEGF-A, VEGF-C, and VEGF-D. VEGFR-2 is mainly expressed on 
vascular EC and is considered responsible for the majority of VEGF-A-induced 
angiogenic and permeability effects [ 3 ,  5 ]. VEGFR-2 expression is essential for 
embryonal hematopoiesis and vasculogenesis [ 43 ,  44 ]. In adults, VEGFR-2 expres-
sion is usually downregulated and presents only at sites of active angiogenesis such 
as wound healing, tumors, and after myocardial infarction [ 45 ,  46 ]. In myocardial 
infarction and sepsis, VEGFR-2 is a major regulator of vascular permeability and 
cardiac dysfunction [ 47 ,  48 ]. 

 Neuropilin receptors NRP1 and NRP2 are involved in neuronal development and 
bind semaphorins [ 16 ]. Neuropilins also interact with VEGF signaling as NRP1 is 
a co-receptor for VEGFR-1 and VEGFR-2, and NRP2 for VEGFR-3 [ 16 ]. In the 
vascular system, NRP1 is expressed predominantly in arteries and potentiates the 
binding and activity of VEGF-A on VEGFR-2 [ 49 ]. Interaction of VEGFR-3 and its 
co-receptor NRP2 modulates the function of veins and lymphatic vessels [ 50 ,  51 ]. 
NRP1 also participates in lymphatic vessel and valve development through sema-
phorin interaction [ 52 ]. 

 Although the VEGF ligands and receptors described above are considered mainly 
angiogenic, some overlap on lymphangiogenic effects have been described [ 53 ]. 
The reason for this overlap may be in part the fact that VEGF-A recruits macro-
phages that may in turn drive lymphangiogenesis [ 54 ].  

    Lymphangiogenic VEGF Members (VEGF-C and VEGF-D, 
VEGFR-3, NRP) 

 VEGF-C binds to VEGFR-2 and VEGFR-3 and is a major regulator in the develop-
ment of lymphatic vasculature [ 2 ,  55 – 57 ]. VEGF-C is produced as a precursor pro-
tein that undergoes proteolytic modifi cation [ 58 ]. It is produced in areas of active 
lymphangiogenesis in the embryo, and the expression is maintained in lung, heart, 
liver, and kidney in the adult [ 59 ]. VEGF-C is not activated by hypoxia, but is 
increased by serum and its components, platelet-derived growth factor, epidermal 
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growth factor, and transforming growth factor-β [ 60 ]. VEGF-C mRNA is also 
upregulated by proinfl ammatory cytokines TNF-α, IL-1α, and IL-β [ 61 ]. 
Infl ammatory cells such as macrophages, dendritic cells, and CD4+ T lymphocytes 
are a rich source of VEGF-C [ 54 ,  62 – 65 ]. 

 Loss of one VEGF-C allele causes prominent lymphatic hypoplasia, whereas 
loss of both VEGF-C alleles results in embryonic lethality [ 66 ]. Similarly, inhibi-
tion of VEGF-C/D/R3 signaling in the adult regresses existing lymphatic vessels 
and results in lymphedema [ 67 ]. In contrast, VEGF-C overexpression results in 
lymphatic hyperplasia [ 2 ,  57 ] and in therapeutic lymphangiogenesis in lymphedema 
[ 68 ]. VEGF-C is upregulated in many cancers and participates in lymphatic metas-
tasis of tumors [ 69 ,  70 ]. Interestingly, salt-induced hypertension is counteracted by 
macrophage VEGF-C upregulation and tissue lymphangiogenesis [ 71 ]. Another 
noteworthy fi nding suggests that, in addition to clear lymphatic effects, VEGF-C 
may also have angiogenic effects through VEGFR-2 binding, by regulating a sub-
type of vascular EC that express VEGFR-3 [ 72 – 74 ], and also by attracting VEGF- 
A-producing macrophages [ 75 ]. 

 VEGF-C is intimately involved in many infl ammatory conditions that involve 
lymphangiogenesis such as bacterial infection [ 62 ], rheumatoid arthritis [ 76 ], skin 
infl ammation [ 77 ], and organ transplantation [ 64 ,  78 ,  79 ]. In addition to inducing 
lymphangiogenesis, VEGF-C modifi es lymphatic vessel properties by, for example, 
upregulating CCL21—a chemokine that attracts CCR7+ tumor cells and dendritic 
cells [ 64 ,  80 ]. VEGF-C has also direct effects on VEGFR-3+ dendritic cells and 
induces their migration [ 81 ] and maturation [ 78 ]. VEGF-C thus modifi es immune 
reactions through direct effects on lymphatic EC and also on macrophages and den-
dritic cells [ 64 ,  78 ,  81 ,  82 ]. In addition to participating in antigen-presenting cell 
traffi c and the initiation of immune responses, VEGF-C-induced lymphangiogene-
sis may also balance tissue infl ammation by promoting lymphatic drainage and the 
resolution of tissue infl ammation [ 83 – 85 ]. 

 Human VEGF-D binds to VEGFR-2 and VEGFR-3, whereas mouse VEGF-D 
binds only to VEGFR-3 [ 86 ]. Like VEGF-C, VEGF-D also undergoes proteolyti-
cal modifi cation, is involved in lymphangiogenesis, and has angiogenic properties. 
In contrast to VEGF-C, VEGF-D is not essential for the development of lymphatic 
vessels [ 87 ]. Adenovirally delivered VEGF-D induces a potent angiogenic and 
lymphangiogenic response in skeletal muscle and is associated with elevated vas-
cular permeability [ 88 ], but the relative effects on angiogenesis and lymphangio-
genesis may depend on the tissue used [ 89 ]. VEGF-D is involved in the metastatic 
spread of cancer [ 90 ]. 

 VEGFR-3 binds VEGF-C and VEGF-D, and it is a key regulator for lymphatic 
growth [ 2 ,  66 ]. VEGFR-3 signaling regulates cardiovascular development in 
embryos [ 91 ], but later in development and in adulthood, it more selectively regu-
lates the growth and maintenance of lymphatic vessels [ 67 ]. VEGFR-3 may also 
have angiogenic effects in adults, since VEGFR-3 is expressed in stalk cells [ 72 , 
 74 ], and VEGFR-3+ macrophages produce VEGF-A as well [ 75 ]. VEGFR-3 is 
defective in primary lymphedema [ 92 ,  93 ] and is induced in vascular malformations 
[ 94 ]. VEGFR-3 is also upregulated during lymphangiogenesis in cancer, wound 
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healing, and infl ammation [ 95 ]. Infl ammation upregulates lymphatic EC VEGFR-3 
expression trough the activation of infl ammatory transcription factor NF-κB. This 
renders the VEGFR-3+ lymphatic ECs responsive to VEGF-C and VEGF-D [ 96 ]. 
In addition to lymphatic EC, VEGFR-3 is also expressed in macrophages and den-
dritic cells and regulates their migration [ 63 ,  81 ,  97 ]. 

 Neuropilins are co-receptors for VEGFR-2 and VEGFR-3. NRP2 binds VEGF-C 
and VEGF-D, and is a co-receptor for VEGFR-3. In addition to its effects on veins, 
NRP2 also regulates lymphatic vessel sprouting [ 50 ,  51 ] and is upregulated in vascular 
malformations [ 94 ]. The other neuropilin NRP1 is also involved in lymphatic vessel 
maturation and valve formation, but this involves semaphorin and not VEGF-A [ 52 ].   

    Lymphatic-Specifi c VEGF Expression and Signaling 
in the Heart 

    VEGF Expression and Signaling in Cardiac Lymphatics 
During Embryogenesis and in Healthy Adult 

 The developing vasculature of the heart requires a variety of signals, including 
endothelial growth factors. The details of lymphatic development are very well 
described, mainly in noncardiac tissues of mouse, but the general features seem to 
be universal. 

 The fi rst LECs differentiate from venous endothelial cells at midgestation, 
induced by VEGF-C [ 66 ,  98 ]. The LECs are distinguished by expression of specifi c 
molecules such as prospero-related homeodomain transcription factor (Prox1), vas-
cular endothelial growth factor receptor-3 (VEGFR-3), the membrane glycoprotein 
podoplanin, and lymphatic vessel hyaluronan receptor-1 [ 66 ,  98 ,  99 ]. In mouse, 
starting from embryonic day (E) 9.5, a complex sequential activation of the tran-
scription factor SOX18, Prox1, and the venous nuclear receptor COUP-TFII initi-
ates the LEC differentiation program in the anterior cardinal vein [ 66 ,  98 ]. 

 The paracrine secretion of VEGF-C is crucial for the further dorsolateral sprout-
ing, migration, and survival of the fi rst LECs and the formation of lymph sacs [ 66 ]. 
The VEGF-C co-receptor neuropilin-2 (NRP-2) and the Eph tyrosine kinase ligand 
ephrin B2 are required for effi cient sprouting of lymphatic capillaries [ 51 ,  100 ]. The 
Notch1-Dll4 signaling pathway is essential for postnatal lymphatic development 
[ 101 ]. Interestingly, in adult tissues, lymphatic sprouting induced by VEGF-C is not 
restricted by Notch, whereas VEGF does not promote effi cient lymphatic sprouting 
unless Notch signaling is inhibited [ 102 ]. 

 According to the study of endothelial growth factor distribution in the human 
fetal heart [ 103 ], their localizations at different gestational ages are similar. 
Lymphatic vessels are only detected in the epicardial layer, and they are negative for 
VEGFR-1 but strongly positive for both VEGFR-2 and VEGFR-3. Very weak 
VEGFR-3 signals are also observed in some myocardial capillaries but not in the 
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endocardium in 13- to 30-week fetuses. However, the VEGFR-3 expression seems 
to be downregulated in the blood vessels during the fi rst trimester. Thus, although 
VEGFR-3 is needed for early cardiovascular development [ 104 ], it later serves a 
more specialized biological function mainly in lymphatic endothelia [ 103 ]. 

 Only a few studies have described the pattern of VEGF receptor expression in the 
lymphatics of healthy adult heart [ 64 ,  105 ,  106 ]. In a study by Geissler et al. [ 105 ], 
human myocardial biopsies have been used for immunohistochemical stainings of 
VEGFR-3-positive lymphatics: the density of VEGFR-3-positive vessels was calcu-
lated to be around 50 per mm 2 , and their average diameter was about 3 microns. As 
described for the healthy adult rat heart, the density of VEGFR-3-positive vessels is 
generally lower in the myocardium than in the epicardial area. In addition, vessel 
VEGFR-3 immunoreactivity colocalizes with LYVE-1 expression, although not all 
LYVE-1-positive vessels express VEGFR-3 [ 64 ].  

    In Heart Transplantation (Allorecognition and Rejection) 

 In transplantation, the transfer of antigen-presenting cells from vascularized 
allografts to secondary lymphoid organs—both spleen and lymph nodes—is critical 
for the priming of alloreactive T cells and the development of alloimmune responses 
[ 107 ,  108 ]. Lymphatic vessels provide easy access for infl ammatory cells and their 
unilateral movement from peripheral tissues to secondary lymphoid organs. Thus, 
the lymphatic network forms a link between innate and adaptive immunity, thereby 
having extraordinary importance in a setting of transplantation. 

 A descriptive study of human patients undergoing heart transplantation shows 
that lymphatic endothelial markers undergo signifi cant alterations after the trans-
plantation, suggesting a signifi cant change in lymphatic endothelial phenotype. 
Furthermore, episodes of acute allograft rejection seem to be associated with a sig-
nifi cantly lower density of VEGFR-3-positive lymphatics after heart transplantation 
[ 106 ]. A recent experimental study [ 64 ] provides detailed information on lymphatic 
behavior in rejecting hearts: acute rejection decreases the epicardial lymphatic vessel 
density and chronic rejection doubles the myocardial lymphatic vessel density. 
Importantly, lymphangiogenesis in transplanted organs may not be only a secondary 
effect of chronic infl ammation. Instead, lymphatic vessels also appear to have a regu-
latory role in the initiation of alloimmune reactions. VEGFR-3 inhibition decreases 
dendritic cell recruitment to the spleen and the development of the subsequent allo-
immune response, thus improving cardiac allograft survival. In addition, treatment 
with neutralizing monoclonal VEGFR-3 antibodies decreases allograft infl ammation 
and the development of arteriosclerosis in a chronic rejection model. According to 
the study, it appears possible that VEGFR-3 inhibition has direct effects on dendritic 
cell migration. VEGFR-3 also seems to regulate leukocyte traffi c and alloimmunity 
through direct effects on allograft VEGFR-3-positive lymphatic vessels by upregu-
lating allograft CCL21 production [ 64 ]. The range of currently known directions for 
VEGF-C signaling in a setting of transplantation is represented in Fig.  9.2 .
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   Thus, VEGF-C/VEGFR-3 signaling seems to have important effects on proximal 
events in cardiac allograft alloimmunity and arteriosclerosis. Therefore, VEGFR-3 
inhibition could be used as a novel lymphatic vessel-targeted immunomodulatory 
therapy to regulate alloimmune activation after solid organ transplantation. Further 
studies that particularly describe the mechanistic role of lymphatic vessel activation 
in the ischemia-reperfusion injury and allograft rejection are needed.  

    In Myocardial Infarction 

 In the human heart, myocardial remodeling after myocardial infarction (MI) results 
in scar formation through several sequential stages of myocardial necrosis, granula-
tion, and fi brosis [ 109 ]. The viable cardiomyocytes around the lesion express cyto-
protective proteins and cytokines which facilitate the healing of the affected lesion 
[ 110 ,  111 ]. VEGF is critical for angiogenesis in the healing area [ 112 ]: it is promptly 
expressed in the surviving cardiomyocytes around the infracted lesion after the 
onset of MI, and angiogenesis in the lesion begins at 4–5 h and continues up to day 
90 [ 110 ]. 

  Fig. 9.2    VEGF-C–VEGFR-3 signaling in a setting of transplantation. VEGF-C modifi es lym-
phatic vessel properties by upregulating CCL21—a chemokine that attracts CCR7+ dendritic cells. 
VEGF-C also has direct effects on VEGFR-3+ dendritic cells and induces their maturation and 
unilateral migration through the lymphatic network to secondary lymphoid organs. Thus, VEGF-C 
plays an important role in the initiation of direct alloimmune recognition through direct effects on 
lymphatic endothelial cells and antigen-presenting cells. VEGF-C may also have angiogenic 
effects through VEGFR-2 binding; its role in transplantation remains unclear.  BEC  blood endothe-
lial cell;  CCL-21  chemokine ligand 21;  LEC  lymphatic endothelial cell;  CCR-7  C-C chemokine 
receptor type 7;  DC  dendritic cell;  MHC II  major histocompatibility complex class II;  VEGFR-2  
VEGF receptor 2;  VEGFR-3  VEGF receptor 3;  TCR  T cell receptor       
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 A study by Ishikawa et al. [ 113 ] demonstrates that lymphatic vessels are not 
detected in stages with coagulation necrosis, but a few lymphatics fi rst appear in the 
peripheral region adjacent to viable myocytes in the early granulation period. 
Lymphatic density subsequently increases in the mature granulation period and is 
thereafter maintained during scar formation. After the onset of myocardial infarc-
tion, lymphangiogenesis lags behind blood vessel angiogenesis, whereas VEGF-C 
is expressed in the cardiomyocytes around the lesion at all stages of myocardial 
remodeling. The results of this study suggest that during the entire process of myo-
cardial infarction healing, blood vessels supply the blood and nutrients mainly dur-
ing the granulation period, but lymphatics participate mainly in fi brosis maturation 
and scar formation through the drainage of excessive proteins and fl uid, probably 
mediated by VEGF-C.  

    In Atherosclerosis and Degenerative Valve Disease 

 Recently there has been an emerging body of evidence linking lymphangiogenesis 
to atherosclerosis. Lymphatic vessels are found at sites of atherosclerosis, which is 
associated with infl ammation and lipid accumulation in arterial walls [ 114 ,  115 ]. 
Arterial smooth muscle cells constitutively produce lymphangiogenic factors, and 
lymphatic vessels are present in the adventitia of arteries adjacent to small blood 
vessels, called the vasa vasorum, which are expanded in atherosclerotic plaques 
[ 116 ,  117 ]. However, according to the study of Nakano et al. [ 117 ], impaired lym-
phangiogenesis may contribute to plaque progression. Here, VEGF-A and VEGF-C 
might synergistically contribute to angiogenesis in coronary atherosclerotic plaques. 
So, in atherosclerotic lesions, the imbalance of angiogenesis and lymphangiogene-
sis in favor of angiogenesis seems to contribute to sustained infl ammatory reactions 
during human coronary atherogenesis. 

 In atherosclerosis, lymphatic vessels might have an important role in the effl ux 
of interstitial fl uids, fats, and infl ammatory cells from the wall of the coronary 
artery, slowing down the development of atherosclerotic lesions. It remains to be 
investigated whether therapeutic targeting of lymphangiogenesis might reveal an 
antiatherosclerotic tool. 

 Aortic valve stenosis (AS) is another degenerative disease of the heart, where 
the pathogenesis is linked to lymphangiogenic factors. Pathological features of 
AS are calcifi cation [ 118 ], extracellular matrix remodeling, and valvular accu-
mulation of lipids and infl ammatory cells [ 119 ]. In contrast to normal avascular 
aortic valves, stenotic aortic valves are vascularized [ 120 ]. Importantly, neoves-
sels may contribute to the progression of AS by facilitating the entry of infl am-
matory cells and lipids into the leafl ets [ 121 ]. The study of Syväranta et al. [ 122 ] 
demonstrates that lymphangiogenesis is a part of the pathogenesis of AS and 
shows that myofi broblasts and endothelial cells are responsible for the valvular 
production of lymphangiogenic growth factors VEGF-C and VEGF-D. 
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Furthermore, mast-cell-derived compounds degrade VEGF-C, suggesting their 
anti-lymphangiogenic potential. Similar to atherosclerotic lesions, in AS, the 
balance between angiogenesis and lymphangiogenesis may disadvantageously 
favor the accumulation of infl ammatory cells and lipids into the lesions, thus 
possibly leading to disease progression.  

    In Heart Failure 

 The two most frequent causes of terminal heart failure are dilated (DCM) and isch-
emic (ICM) cardiomyopathy. The investigation of microvascular structures in car-
diac remodeling has mostly been limited to the sequela of myocardial ischemia and 
infarction rather than in terminal heart failure. Nevertheless, the role of lymphatic 
system in the failing myocardium might be of increased importance, since the 
hemodynamics, fl uid, and pressure balance are severely damaged. However, there 
are barely any publications available about lymphatics in the failing heart, except 
for several descriptional reports. 

 The study of Aharinejad et al. [ 123 ] provides evidence that VEGF-C mRNA 
levels are upregulated in both forms of cardiomyopathy and that after cardiac trans-
plantation, these mRNA levels returned to the baseline level of nonfailing cardiac 
tissues in DCM or decreased even below the baseline level in ICM. A further study 
[ 124 ] describes the distribution of several lymphatic and blood markers, including 
VEGFRs, in DCM and ICM, comparing them to nonfailing hearts. 

 Whether any therapeutic manipulation of lymphatic function could improve 
impaired myocardial function by draining the failing myocardium remains so far an 
exciting speculation.  

    In Infl ammation 

 In adulthood, lymphangiogenesis and elevated VEGFR-3 expression coincide with 
various infl ammatory conditions including cancer [ 125 ], wound healing [ 126 ], and 
chronic infl ammatory diseases. Increased lymphatic vessel density has been docu-
mented in chronic airway infection [ 62 ], psoriasis [ 127 ], and arthritis [ 76 ]. VEGF-C 
and VEGF-D are elevated during infl ammation, being produced by a variety of cells 
residing at infl amed sites, including macrophages [ 62 ,  128 ,  129 ], dendritic cells and 
neutrophils [ 62 ], mast cells and fi broblasts [ 130 ], and tumor cells [ 129 ]. 

 Generally, the role of lymphatic activation and lymphangiogenesis in infl am-
matory settings is considered to be positive. It facilitates the resolution of tissue 
edema and enhances immune responses by promoting macrophage and dendritic 
cell mobilization [ 56 ,  62 ]. The lymphatic vascular system and the molecular 
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pathways regulating infl ammatory responses are intimately associated. 
Lymphatic vessels react to tissue infl ammation with morphological changes in 
lymphatic endothelial cell phenotype (such as overexpression of adhesion mol-
ecules [ 131 ] or VEGFR-3 [ 96 ]), induction of proinfl ammatory cytokines pro-
duction, as well as chronologically delayed increase of lymphatic vessel density 
(lymphangiogenesis) [ 96 ]. 

 LECs at least in some tissues constitutively express NF-κB [ 132 ]. Activation of 
the NF-κB pathway in LECs upregulates Prox1 and VEGFR-3, which renders the 
lymphatic vessels more sensitive to VEGF-C and VEGF-D produced by leukocytes 
[ 96 ]. VEGFR-3 signaling is activated upon binding of vascular endothelial growth 

   Table 9.1    Overview of lymphatic-specifi c VEGF expression and signaling in the heart during 
embryogenesis, in healthy adult, and in various disease states of the heart   

 VEGF 
member  Expression and signaling pattern 

 Embryogenesis  VEGF-C •  Induces the differentiation of fi rst LECs from venous 
endothelial cells [ 66 ,  98 ] 

•  Crucial for further dorsolateral sprouting, migration and 
survival of the fi rst LECs, and the formation of lymph 
sacs [ 66 ] 

 VEGFR-2  Expressed already on the fi rst LECs [ 103 ] 
 VEGFR-3  Expressed already on the fi rst LECs, as well as on cardiac 

blood vessels during the fi rst trimester [ 103 ] 
 Healthy adult  VEGFR-2  Expressed in a small number of lymphatic vessels (no precise 

data available) 
 VEGFR-3  Expressed in a considerable number of lymphatic vessels (no 

precise data available) [ 64 ,  105 ,  106 ] 
 Heart 

transplantation 
 VEGF-C •  Modifi es lymphatic vessel properties by upregulating 

CCL21 [ 64 ] 
•  Induces maturation and migration of dendritic cells [ 78 ] 

 VEGFR-3 •  Important downstream target for VEGF-C effects [ 64 ] 
•  Changes in densities of VEGFR-3+ vessels accompany 

episodes of allograft rejection [ 106 ] 
 Myocardial 

infarction 
 VEGF-C  Mediates lymphatic participation in fi brosis maturation and scar 

formation through the drainage of excessive proteins and 
fl uids [ 113 ] 

 Atherosclerosis  VEGF-C  Contributes with VEGF-A to angiogenesis in coronary plaque, 
leading to imbalance of angio- and lymphangiogenesis, thus 
sustaining infl ammatory reaction during atherogenesis [ 117 ] 

 Aortic stenosis  VEGF-C  Is degraded in diseased valve leafl ets by mast-cell compounds, 
which leads to imbalance of angio- and lymphangiogenesis 
and favors the accumulation of infl ammatory cells and 
lipids (disease progression) [ 122 ] 

 Infl ammation  Although lymphatic growth accompanies infective heart 
diseases, chronic infl ammation, infarction, etc., the role of 
lymphatic-specifi c VEGF signaling in these processes has 
not been studied 

 Heart failure  Only controversial purely descriptive data is available [ 123 ,  124 ] 
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factor-C (VEGF-C) or the related factor, VEGF-D [ 133 ]. NF-κB is activated, for 
example, downstream of Toll-like receptor 4 binding to lipopolysaccharide in the 
LECs, thus inducing the activation and production of leukocyte chemoattractants 
such as CCL2, CCL5, and CX3CL1, which in turn promotes leukocyte homing to 
the lymphatic vessels and eventually to the draining lymph node [ 134 ]. 

 Infl amed lymphatic endothelium promotes the exit of leukocytes from tissue to 
afferent lymph through newly induced expression of the adhesion molecules 
ICAM-1 and VCAM-1, which were previously thought to be specifi c for blood ves-
sel transmigration [ 131 ]. 

 Furthermore, the studies of anatomical distribution for the cardiac lymphatics in 
diseased heart demonstrate increased lymphatic densities in infective endocarditis, 
myocarditis, and progressive atherosclerosis. Thus, lymphatic growth accompanies 
chronic infl ammation, tissue degeneration, infarction, calcifi cation, and 
formation of connective tissue [ 115 ]. Although not investigated yet for these 
disease states, the role of lymphatic-specifi c VEGF signaling seems to be crucial 
and warrants further analysis and a search for potential therapeutic targeting. The 
properties of lymphatic- specifi c VEGF expression and signaling in the heart are 
briefl y summarized in Table  9.1 .

        Summary 

 While the critical role of angiogenic VEGF family members in cardiovascular 
development and disease is already appreciated, the involvement of lymphan-
giogenic VEGF ligands and receptors, and cardiac lymphatics, in cardiac physi-
ology and pathology is only starting to unfold. With the rapid development of 
lymphatic vessel markers, better understanding of basic lymphatic vessel biol-
ogy, and the use of novel genetic and pharmacological tools to activate or inhibit 
lymphangiogenic VEGF-C/D/R3 signaling, future studies may reveal novel 
lymphatic-targeted therapeutic strategies in ischemic, degenerative, and infl am-
matory heart disease.     
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