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    Abstract     The lymphatic vasculature is a central biological participant in fl uid, 
protein and cellular transport, and in immune responsiveness. Over the last 10 years, 
the biomedical investigation into the function of the lymphatic microvasculature has 
been vigorous, prompting reconsideration of the role of lymphatics in the genesis 
and progression of cardiovascular pathology. The lymphatic microvasculature of 
the heart and vascular wall likely participates in atherogenesis, myocardial infarc-
tion, congestive heart failure, and cardiac transplantation. Intensive exploration of 
lymphatic mechanisms of cardiovascular disease is likely to lead to enhanced 
insights and novel therapeutic approaches.  

  Keywords     Atherosclerosis   •   Myocardial infarction   •   Congestive heart failure   • 
  Cardiac transplantation   •   Edema   •   Lymph   •   Lymphatics   •   Microvasculature  

        Introduction 

 The lymphatic vasculature plays an essential role in fl uid homeostasis and in the 
traffi cking of immunocytes [ 1 ] and is therefore critical to the edematous and 
immune-mediated sequelae of infl ammation. In other words, the lymphatics actively 
participate in key structural and biological components of the infl ammatory response 
and, thereby, represent a unique juncture for potential intervention. Active investi-
gation into lymphatic mechanisms of disease, nevertheless, has suffered a relative 
lack of emphasis, due largely to an absence of suitable investigative tools and model 
systems [ 2 ]. Recently, powerful new lymphatic-specifi c markers, pharmacologic 
and genetic modulators, and novel investigative platforms have reinvigorated the 
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study of lymphatic biology with the discovery of genes involved in lymphatic devel-
opment and function (Table  4.1 ) [ 1 ,  3 ]. With this investigative renaissance, it is 
appropriate to reconsider lymphatic vasculature function within the context of the 
cardiovascular system and its complex role in the genesis, propagation, and thera-
peutics of cardiovascular pathology (Fig.  4.1 ).

        The Anatomy and Function of the Myocardial Lymphatics 

    Anatomy of Myocardial Lymphatics 

 The myocardium is permeated by a dense plexus of penetrating intracardiac chan-
nels that drain interstitial fl uid from the subendocardium to the subepicardium, 
detectable initially as lymphatic capillaries and then coalescing into collecting 

   Table 4.1    Genes involved in lymphatic development and function   

 Gene or gene product  Function 

 Angiopoietin-1  Growth factor [ 71 ] 
 Angiopoietin-2  Growth factor [ 72 ] 
 Chemokine (C-C motif) ligand 20 (CCL20)  Chemokine [ 73 ,  74 ] 
 Chemokind (C-C motif) ligand 21 (CCL21)  Chemokine [ 75 ] 
 Desmoplakin  Anchoring protein of intermediate fi laments to the 

plasma membrane of adhering junctions [ 76 ] 
 Ephrin B2  Ligand of EphB receptors 
 FOXC2 (forkhead box C2)  Transcription factor [ 77 ,  78 ] 
 HGF (hepatocyte growth factor)  Growth factor [ 79 ] 
 Integrin α9  Adhesion molecule, possible VEGFR-3 

co-receptor [ 80 ,  81 ] 
 LYVE-1  Hyaluronan receptor [ 58 ] 
 Macrophage mannose receptor 1  L-selectin receptor [ 82 ] 
 Neuropilin-2 (Nrp2)  Semaphorin and growth factor receptor [ 83 ] 
 Net (Elk3)  Transcription factor [ 84 ] 
 Plakoglobin  Connect cadherins to cytoskeleton in cell-cell 

junction [ 73 ,  81 ] 
 Prox1  Transcription factor [ 62 ,  85 ] 
 Podoplanin (T1α)  Transmembrane glycoprotein [ 86 ,  87 ] 
 Sex determining region Y-related high 

mobility group box (SOX18) 
 Transcription factor [ 88 ] 

 Syk and Src homology 2-domain containing 
leukocyte protein 76 (SLP-76) 

 Syk and SLP [ 89 ,  90 ] 

 Vascular endothelial growth factor-C 
(VEGF-C) 

 Growth factor [ 90 ,  91 ] 

 Vascular endothelial growth factor receptor-3 
(VEGFR-3) 

 Growth factor receptor [ 92 – 94 ] 

   Source : Reprinted with permission from Nakamura K, Rockson SG [ 43 ]  
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trunks [ 4 ]. The cardiac lymphatic trunk connects with the greater lymphatic vascu-
lature at the cardiac lymph node before ascending to the thoracic duct and joining 
the central venous circulation close to the origin of the subclavian vein. In complete 
analogy to the peripheral lymphatic vasculature, unidirectional valves and rhythmic 
contraction of the adjacent tissues together ensure synchronous propulsion of myo-
cardial lymph.  

    Lymphatic Function 

 The lymphatic system regulates interstitial fl uid composition and volume both in 
health and in disease. The lymphatic system serves as a conduit for the by-products 
of normal cellular metabolism as well as those of specifi c pathological processes 
such as ischemia and necrosis [ 5 ]. As an example, inadequate perfusion of the myo-
cardium leads to accumulation of anaerobic metabolites and disruption of myocar-
dial fl uid balance attributable to lymphatic disruption. Elucidation of these cardiac 
lymphatic mechanisms is expected to uncover novel strategies in the diagnosis and 
treatment of cardiac dysfunction. 

 Within a 24-h period, more than half of the circulating blood protein content is 
extravasated into the interstitium, yet there is no direct path of reabsorption into the 
arteriovenous vasculature [ 6 ]. The return to the intravascular circulation of intersti-
tial fl uid, comprised of protein, water, and other components, is the primary func-
tion of the lymphatic vasculature. The concepts of fi ltration and fl ow are central to 
understanding the fl uid dynamics that govern lymphatic function. According to the 
Starling equilibrium, hydrostatic pressures from within the microvascular capillary 
( P  

c
 ) and circumferentially in the peripheral interstitium ( P  

int
 ) have antagonistic 

effects. Intravascular hydrostatic pressure is determined largely by upstream arteri-
olar pressure and downstream venular pressure. In addition, colloid osmotic pres-
sure ( p ) exerts an opposite effect upon directional fl ow, causing reabsorption of 
interstitial fl uid back into the intravascular circulation. The fi nal operative variable 
upon fl uid equilibrium is the permeability of the capillary membrane. Among these 
physiological variables, the most important factors in fl uid balance are the capillary 
and interstitial hydrostatic pressures. A similar arrangement of forces governs the 
effl ux of fl uid from the interstitial compartment into the lymphatic lumen. 
Intramyocardial fl uid homeostasis is, therefore, maintained through the equilibrium 
that is established between fl uid fi ltration into the myocardial interstitium and fl uid 
fl ow into the lymphatic vessels. The pool of interstitial fl uid exists in steady-state 
balance, in which disturbance of either fl uid fi ltration or lymph fl ow may result in 
myocardial edema [ 7 ,  8 ]. Compensatory mechanisms help to maintain physiologi-
cal conditions; of these, the most protective is the capacity to increase the rate of 
lymph fl ow ( Q  

VL
 ) during excessive plasma fi ltration [ 4 ,  7 ]. Such augmentation is 

driven by increased fl ow of interstitial fl uid into the lymphatic vessel as a conse-
quence of increased interstitial pressure and an inverse decrease in lymphatic resis-
tance [ 4 ,  7 ]. To promote lymph fl ow, interstitial protein concentration is also diluted 
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in “protein washout” during higher rates of fi ltration [ 9 ], thereby reducing oncotic 
sequestration of fl uid volume. Infl uences such as the phasic contraction of the myo-
cardium and extracardiac thoracic movements further contribute to the dynamic 
regulation of fl uid movement. 

 Anatomical and physiological study of the cardiac lymphatics in animals sup-
ports the importance of intact lymphatic function to the maintenance of tissue health 
[ 10 ]. Interruption of cardiac lymph circulation leads to tissue fl uid stasis, infl amma-
tion, and fi brosis [ 10 ]. Acute lymphatic obstruction in the canine heart leads to 
epicardial lymphedema and lymphangiectasia [ 11 ]. With chronic impairment, early 
myocardial edema and subendocardial hemorrhage progress to endomyocardial 
fi brosis [ 10 ].   

    The Lymphatics in Cardiovascular Disease 

 Although recent study of the cardiac lymphatic vasculature has not been ample, the 
existing investigational literature suggests an important role for these vessels in the 
pathogenesis of atherosclerosis, myocardial infarction, congestive heart failure, and 
cardiac transplantation. 

    Atherosclerosis 

 Infl ammation, infection, and fi brosis are the predictable consequences of lymphatic 
disruption in various settings of disease [ 12 ]. The presence of these events within 
the vascular wall may be particularly important; therefore, by inference, the loss of 
normal lymphatic function within the vascular wall may have a synergistic or aug-
menting effect upon the classically defi ned risk factors for atherosclerosis. In a 
study of human pathological specimens, it was observed that lymphatic vessels 
grow in areas that are rich in extracellular matrix, while regions rich in infl amma-
tory cells are more prone to angiogenesis [ 13 ]. Furthermore, progressive atheroscle-
rotic lesions that are rich in calcium and cholesterol crystal content demonstrate 
increased lymphangiogenesis in the vascular media. 

 Similar atherogenic mechanisms have been clinically documented following 
irradiation of mediastinal cardiac lymph nodes and during mediastinal lymphadeni-
tis (which leads to severe coronary atherosclerosis in Kawasaki disease). The infl u-
ence of the lymphatic system on atheroma formation may help to explain the 
discontinuous nature of atherosclerotic plaque formation along the axial length of 
the susceptible artery, as well as, potentially, the sparing of intramyocardial arteries 
in the face of systemically expressed risk factors. 

 The health of coronary arteries requires the nutritive support and metabolic 
equilibrium of a healthy, unimpeded circulation of the body fl uids (both blood and 
lymph). This becomes particularly important in the context of the intramural entry 
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and survival of apolipoprotein B-containing particles and immune cells into the 
arterial wall, thereby leading to the generation of pro-infl ammatory and pro- 
atherogenic mediators. Inasmuch as the cholesterol content of atherosclerotic 
plaque arrives within the arterial wall through plasma fi ltration and is removed in 
lymph [ 14 ], a role for the lymphatic system in lipoprotein-mediated atherogenesis 
can be hypothesized. In this view, the lymphatic supply of the vascular wall itself 
mediates atherosclerosis through its infl uence upon the degree to which the arterial 
intima is exposed to atherogenic lipoprotein. Inadequate lymphatic fl ow increases 
the transit time of circulating lipoproteins across the arterial wall, thereby prolong-
ing susceptibility to oxidative damage and promoting entrapment within the arte-
rial wall. Accordingly, the lipoprotein concentration within the lymph, and 
presumably within the tissue of the arterial wall, is inversely related to the rate of 
lymph fl ow [ 15 ]. 

 The cellular expression of vascular endothelial growth factors VEGF-C and 
VEGF-D has been reported in human monocytes and macrophages [ 16 ]. These 
growth factors and their cognate receptor, VEGFR-3/Flt-4, are pro- lymphangiogenic 
regulators expressed during various stages of development and in post-embryonic 
life [ 17 ]. Given the role of VEGF-C in lymphangiogenesis during wound repair, its 
use has been invoked therapeutically for lymphedema [ 12 ,  18 ]. VEGF-D signaling, 
interestingly, induces apoptosis of human macrophages in vivo and mononuclear 
cells within advanced atherosclerotic plaques [ 16 ]. The mechanistic role of this 
apoptosis in atherogenesis is not been completely understood. Death of lipid-laden 
macrophages may reduce the progression to foam cell formation and the infl amma-
tory index of atherosclerotic lesions, while the uninterrupted phagocytosis of apop-
totic debris may perpetuate infl ammation and disrupt plaque stability [ 19 ]. 

 Infl ammation is a key component in the initial development of atherosclerotic 
lesions, but it also perpetuates disease through the promotion of plaque instability 
and vulnerability [ 20 ]. Both angiogenic and lymphangiogenic events are found 
within the infl ammatory foci of plaque [ 21 ]. VEGF-C cross-activates receptors 
responsible for both blood and lymphatic vessel development, whereas the biologi-
cal activity of VEGF-D seems to be limited to lymphangiogenesis. Despite detec-
tion of both VEGF-C and VEGF-D expression in the intima of human coronary 
arteries, the observable neovascularization appears to be mediated primarily through 
VEGF-C and through angiogenesis [ 21 ]. Differential regulation of nascent vessel 
formation within the atherosclerotic intima may in fact disrupt arterial-to-lymphatic 
vessel balance, thus creating a disequilibrium in the forces that govern fl uid homeo-
stasis. The resulting intimal edema and lymph stagnation would promote atherogen-
esis, as previously mentioned. 

 During infection, the acute-phase response provokes and potentiates the local 
manifestations of infl ammation. These processes affect lipoprotein activity and 
composition; in particular, several protective proteins of HDL are functionally inac-
tivated or displaced, rendering the immediate intimal milieu vulnerable to further 
oxidation and infl ammation [ 22 ]. Vascular permeability is increased by the vasoac-
tive cytokines released by activated neutrophils [ 23 ]. This promotes plasma fi ltra-
tion into the interstitium, thereby enhancing delivery of pro-atherogenic lipids and 
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plasma proteins. Therefore, it is proposed that the coronary arteries become exqui-
sitely sensitive to pro-atherogenic phenomena during the acute-phase response; 
paradoxically, this occurs when the lymphatics are least able to accommodate the 
pathological changes associated with lymph stasis [ 24 ]. 

 In order to generate bulk lymphatic fl ow, the activity of the lymphatic system is 
predominantly modulated by the gross movements and positional changes of the 
thoracic cavity. Accordingly, the decreased thoracic movement and intrathoracic 
pressure observed in hypopnea reduces the fl ow of lymph, whereas aerobic exercise 
can increase lymph fl ow rates by nearly 300 % [ 15 ]. The epicardial lymphatics are 
especially dependent on extracardiac motion since lymph fl ow is impeded by the 
propulsive contractions of the heart, reducing their effective clearance capacity. 
Accordingly, the epicardial arteries are subjected to additional risk for lymph stasis 
and, thereby, to impaired maintenance of healthy vascular biology. Atherosclerosis 
is, indeed, limited nearly exclusively to the epicardial arteries [ 25 ], perhaps refl ect-
ing, at least in part, the lymphatic contribution. Common causes of sustained hypop-
nea, such as sedimentary lifestyle [ 26 ], decreased vital capacity, and truncal obesity 
[ 15 ], can thus confer independent risk for atherosclerosis explained by reduced lym-
phatic function. Age, hormonal status, and heredity are also implicated in the poten-
tial relationship between relative lymphatic vascular insuffi ciency and 
atherogenesis.  

    Myocardial Infarction 

 Chronic ischemia and myocardial infarction are the direct functional consequence 
of established and progressive atherosclerosis. When directly examined, there is a 
clear focal increase in the density of lymphatic vessels that is demonstrable in both 
acute and chronic ischemia [ 13 ]. However, this increase in lymphatic density is 
limited to specifi c pathological zones, such as necrotic edges, scars, and reactive 
pericarditis. Furthermore, ischemia is accompanied by neovascularization, since 
both blood and lymphatic vasculature demonstrate dilatation, branching, and 
sprouting. 

 Several lines of evidence support the pathophysiologic role of altered myocardial 
lymph fl ow, studied largely in canine models of myocardial infarction (MI). 
Experimental obstruction of cardiac lymph drainage, without compensating cessa-
tion of interstitial fl uid fi ltration, invariably produces myocardial edema within 
hours [ 27 ]. Immediately following an acute coronary artery occlusion, there is a 
decrease of fl uid effl ux into the interstitium, yet lymph fl ow increases dramatically 
within the fi rst 30 min. This phenomenon likely refl ects the impact of many factors, 
including partial recovery of myocardial function and collateralization of myocar-
dial perfusion. Venoconstriction occurs in response to sympathetic activation, fur-
ther augmenting intracapillary pressures and, as a consequence, plasma fi ltration. 
Additionally, ischemic injury to the capillary endothelium increases permeability 
to plasma, augmenting both plasma fi ltration rates and ultrafi ltrate concentrations. 
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The interstitial content of protein and blood products progressively rises, while the 
pH of the myocardial lymph falls in proportion to increasing lactate concentrations. 
Within the fi rst hours of ischemia, enzyme concentrations, including lactate dehy-
drogenase, serum glutamic oxaloacetic transaminase, and creatine kinase, are pref-
erentially elevated in cardiac lymph when compared with venous serum. Concomitant 
increases in lymph fl ow elevate the fraction of extracellular fl uid volume occupied 
by lymph, ensuring that these enzymatic changes are pronounced. In MI, release of 
creatine kinase from the heart correlates with the degree of myocardial necrosis but 
may be affected by variable transport and inactivation by lymph, thus complicating 
the use of these biomarkers for severity and prognosis. 

 In aggregate, lymph fl ow augmentation of >50 % is observed during experimen-
tally induced MI. Such increases, however, cannot forestall the development of per-
sistent edema in the interstitial and vascular spaces. When edema formation occurs 
within the interstitium of the freshly infarcted heart, structural and functional 
remodeling of the myocardium occurs, particularly in the ventricular endomyocar-
dium where the metabolic demands are highest [ 5 ]. In canine models of myocardial 
interstitial edema, diminution of cardiac output of up to 40 % is observed for any 
given level of preload, demonstrating the profound functional consequence of extra-
vascular fl uid accumulation in the myocardium [ 8 ]. 

 Within hours of lymphatic obstruction, acute structural alterations will include 
myofi bril degeneration, subendocardial edema, and hemorrhage [ 11 ]. Fluid accu-
mulation itself represents a restrictive loss of compliance and cardiac function [ 28 ]. 
Expansion of the interstitial fl uid compartment increases the diffusion distance for 
oxygen and exacerbates the hypoxic state, increasing the rate and magnitude of 
infarct development [ 29 ]. The severity of the congestion induced by experimental 
ligation of the major cardiac lymphatic trunks in dogs is such that coronary capillar-
ies are compressed [ 11 ], which exacerbates the generalized hypoxia of lymph stasis. 
In the chronic state, this directly provokes coronary arteriopathy, with subendothe-
lial edema and degeneration of smooth muscle with fi brinoid necrosis [ 30 ]. In 
murine models of ischemic injury with subsequent obstruction of lymphatic fl ow, 
myocardial and cardiac vascular fi brosis is not uncommon, compromising cardiac 
output and compounding the ischemic damage caused by the antecedent anoxia 
[ 31 ]. These experimental fi ndings were recently corroborated by histopathological 
study of human autopsy specimens [ 32 ]. Although the precise mechanism through 
which chronic myocardial edema promotes fi brosis remains poorly understood, it is 
conceivable that the pathophysiology mirrors the architectural changes observed in 
chronic, peripheral lymphatic vascular insuffi ciency [ 33 ] for which tissue infl am-
mation is a hallmark [ 12 ]. 

 Primary collagen accumulation is a plausible mechanism for the development of 
myocardial fi brosis [ 8 ]. This hypothesis is supported by recent evidence demon-
strating the synthesis and deposition of collagen I and III within interstitial tissues 
following disruption of cardiac lymph fl ow in rabbits [ 25 ,  34 ]. Within 2 days of the 
onset of lymph stasis, lymphatic vessels become dilated and acute infl ammatory 
cells infi ltrate the perivascular tissues and release pro-infl ammatory cytokines that 
ultimately cause fi brosis [ 30 ]. Arterial and lymphatic metabolism shifts towards 
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anaerobic glycolysis. These changes are most prominent in the most vulnerable ves-
sels, including those with small luminal diameter or low reciprocity. Myocardial 
edema is, therefore, further exacerbated as the transport capacity of the lymphatics 
is overwhelmed. The accumulation of toxic by-products leads to lymphatic endo-
thelial dysfunction and destruction and, ultimately, to complete decompensation of 
the lymphatic system. 

 Reperfusion of ischemic myocardial tissue with hyperosmolar fl uid ameliorates 
edema with a resultant reduction in infarct size [ 5 ,  28 ]. Similarly, treatment of myo-
cardial infarction with hyaluronidase, a well-recognized historical lymphagogue, 
produced salutary results [ 35 – 37 ] in animal models and in early clinical trials. 
Hyaluronidase infusion during experimental ischemia/reperfusion injury signifi -
cantly increases cardiac lymph fl ow, alleviating myocardial edema and accelerating 
functional recovery following reperfusion; this result is independent of any appre-
ciable increase in coronary collateralization or blood fl ow [ 37 ]. Furthermore, sev-
eral randomized controlled trials have demonstrated mortality benefi t from 
hyaluronidase-based pharmacotherapy of myocardial infarction [ 38 ]. Nevertheless, 
the benefi t was modest, at best, and required treatment within 6 h of chest pain 
onset, limiting widespread clinical applicability [ 38 – 41 ]. 

 Reperfusion alone can restore lymphatic drainage capacity to physiologic levels 
[ 5 ], emphasizing the clinical imperative to restore coronary patency. In the interim, 
adjunctive therapy to revascularization may hasten edema resolution, particularly in 
situations of irreparable tissue necrosis and functional defi cit. Acute MI represents 
a dynamic complex of multiple processes and a variety of potential therapeutic tar-
gets. Augmentation of lymphatic clearance by hyaluronidase represents one out of 
several evidence-based interventions that improve clinical outcome. Hyaluronidase 
depolymerizes specifi c acid mucopolysaccharides and reduces infl ammatory exu-
dates within the interstitium, thereby reducing resistance and improving both inter-
stitial fl uid and coronary blood fl ow [ 42 ]. During the evolution of MI, hyaluronidase 
facilitates recovery of homeostatic blood and lymph exchange [ 42 ] to attenuate 
hypoxia and ATP depletion, to limit reduced myocardial and cardiac lymph fl ow, 
and to minimize toxic metabolite accumulation. Hyaluronidase thus reduces the 
vulnerability of the myocardium to ischemic injury by increasing cardiac lymph 
fl ow [ 28 ]. Furthermore, the increased fl uid fl ux through the interstitial space dilutes 
and clears the toxic metabolites that mediate reperfusion injury. This augmented 
fl uid fi ltration during reperfusion is well tolerated and does not promote further 
edema formation, in view of corresponding increases in downstream lymph 
exchange [ 4 ]. As previously discussed, while the capacity of this compensatory 
mechanism is lost during ischemic insult, it can be restored following reperfusion. 

 Immunohistochemical analysis of the known markers of lymphatic vasculature 
suggests that there is increased lymphangiogenesis in ischemic hearts, both acutely 
and chronically [ 43 ]. The lymphatic neovasculature is most prominent in the epicar-
dium. Of considerable interest as well is the evidence that suggests increased lym-
phangiogenesis in atherosclerotic lesions [ 13 ].  
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    Heart Failure 

 Perturbation of myocardial fl uid homeostasis will produce several well-documented 
consequences in both systolic and diastolic function [ 4 ,  8 ]. Preload-recruitable 
stroke work is directly correlated to the extent of myocardial edema in numerous 
experimental settings [ 4 ]. Decreases in inherent myocardial contractility translate 
into decreased cardiac output, establishing myocardial edema as an independent 
cause of functional cardiac impairment in systole. Lymph fl ow rates are reciprocally 
dependent upon the cardiac contractile capacity. In addition, administration of a 
positive ionotrope enhances myocardial lymphatic function in canine models [ 44 ]. 

 Reduction of diastolic function is thought to be a consequence of decreased 
ventricular compliance. Interstitial fl uid accumulation, for example, can reduce the 
potential for myocardial expansion and therefore decrease passive ventricular fi ll-
ing. The edematous myocardium is further stressed by increased metabolic 
demands. With each systole, the edematous heart must accommodate not only 
decreased lymph fl ow but also the added viscosity of excess interstitial fl uid. The 
anatomical and histological architecture of the heart may also become deformed, 
further affecting myocardial effi ciency [ 8 ]. The diffusion distance also increases 
with edema accumulation, as myocytes are displaced farther from the capillary 
delivery of oxygen. Hypoxic injury is typifi ed by anaerobic evolution of toxic 
metabolites, decreased cardiac contractility, and increased microvascular permea-
bility to proteins, thereby increasing interstitial colloid pressure and fl uid accumu-
lation [ 11 ]. Chronic edema induces fi brotic changes within the interstitium of the 
heart [ 8 ], as does edema secondary to insults such as hypoxic injury. There is inter-
stitial collagen deposition [ 31 ] accompanied by decreased compliance and dia-
stolic dysfunction, as previously discussed. Disruption of cardiac lymphatics in 
rabbits leads to signifi cant decreases in left ventricular ejection fraction within the 
fi rst 3 months following the lymphatic obstruction. This functional loss is accom-
panied by sustained elevations in levels of circulating plasma endothelin-1 and 
angiotensin II [ 45 ]. 

 Development of pulmonary hypertension is an inevitable consequence of both 
acute and chronic left ventricular dysfunction and can be a prominent sequela of 
heart failure [ 8 ]. With increased resistance in the right ventricular outfl ow tract, the 
central venous pressure rises, reducing myocardial lymph transit into the central 
venous system. Increased lymphatic pressure is ultimately conveyed to the myocar-
dial lymphatics [ 8 ]. Coronary sinus pressure is also affected [ 8 ], increasing coro-
nary microvascular pressure, interstitial fl uid fi ltration into the interstitium, and 
myocardial edema. Secondary right heart failure exacerbates the perturbations [ 8 ]. 
Conversely, increased pulmonary blood fl ow, as occurs in some forms of congenital 
heart defects, leads to functional and structural aberrations in lung lymphatics [ 46 ]. 

 The impact of these various mechanisms is dependent upon the existing demands 
on the cardiac lymphatic vasculature [ 8 ]. Experimental elevation of coronary sinus 
pressure in chronic disease models produces measurable increases in myocardial 
water content [ 47 ] signifi cantly earlier than a comparable intervention in healthy 
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animal subjects [ 8 ]. Thus, the burden of additional edematous forces is more appar-
ent when auto-regulatory mechanisms are already taxed. Coronary vascular resis-
tance is elevated in a direct linear relationship with myocardial edema [ 48 ] and can 
be conceptualized as a compensatory mechanism. Therefore, the contribution of the 
cardiac lymphatics to the propagation of chronic myocardial edema must not be 
overlooked. Loss of compensatory mechanisms is likely to play an important role in 
the evolution of congestive heart failure, independent of the primary pathogenesis. 
More recent work has shown that the heart responds by increasing myocardial lym-
phangiogenesis from the existing vascular tree, as opposed to de novo growth from 
circulating progenitors [ 49 ].    Moreover, the patterns of microvascular remodeling 
occurring during dilated cardiomyopathy differ from those of ischemic cardiomy-
opathy [ 50 ]. 

 These phenomena have been studied in human tissues derived from patients with 
terminal heart failure due to ischemic (ICM) and dilated (DCM) cardiomyopathy 
[ 50 ]. When compared to control donor heart tissues, DCM hearts demonstrate a 
signifi cantly higher density of LYVE-1 positive lymphatics ( p  < 0.05), whereas no 
difference was seen for other markers. ICM hearts display a signifi cantly higher 
density of D2-40 positive lymphatics ( p  < 0.01) and a lower density of VEGFR-2 
capillaries compared to control ( p  < 0.05). Further research may help to elucidate 
the impact of extracellular matrix composition and VEGF-related angiogenesis on 
the myocardial microvasculature at various stages of heart failure.  

    Cardiac Transplantation 

 As a therapeutic intervention, cardiac transplantation poses multiple challenges to 
the maintenance of lymphatic function within the heart. Surgical disruption of the 
cardiac lymphatic vasculature during transplantation likely contributes to allograft 
failure through various mechanisms already discussed in this chapter, including vas-
culopathy and myocardial edema [ 51 ]. As is the case for the evolution of myocardial 
infarction, hypoxia reduces cardiac output and causes myocardial edema. 
Commensurate with the attempts of the autonomic nervous system to conserve per-
fusion capacity, there is a concurrent increase in the central venous resistance. 
Through similar mechanisms, experimentally induced increases in coronary sinus 
pressure also promote formation of myocardial edema. Cardiopulmonary bypass 
and cardioplegic arrest further promote myocardial edema by decreasing plasma 
colloid osmotic pressure and increasing plasma fi ltration while lymph fl ow dimin-
ishes [ 4 ]. The manipulations during organ procurement and transportation contrib-
ute only slightly to the overall degree of edema observed. Signifi cant intracardiac 
interstitial fl uid accumulation is seen only after reperfusion, refl ecting the suppres-
sion of Starling equilibrium variables during cardioplegic arrest [ 52 ]. 
Echocardiographic studies suggest that the additional interstitial fl uid distends the 
left ventricular wall, with spontaneous resolution over 3 months [ 53 ]. Persistence 
(or re-accumulation) of myocardial edema fl uid precedes the cellular responses of 
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acute rejection [ 54 ]; considered in this light, edema detection could be considered 
as a prognostic surrogate for post-transplant patients. Impaired lymphatic fl ow 
across the myocardium further predisposes the pharmacologically immunosup-
pressed system to infection, whereby both host and graft vessels become damaged 
by the pathological responses. In particular, cardiac allograft vasculopathy may be a 
long-term consequence of lymphatic stasis [ 55 ]. Moreover, in the absence of trans-
plantation, intramural coronary arteries are remarkably spared from atherosclerosis; 
it is only in the context of cardiac transplantation that signifi cant intramural coro-
nary atherosclerosis is encountered. Disruption of the transmural plexus of lymphat-
ics surrounding the intramural coronary arteries may explain this phenomenon [ 4 ]. 

 The utility of hyaluronidase to limit myocardial edema has been demonstrated in 
an experimental model of acute rejection following heart transplantation [ 56 ]. The 
underlying mechanisms are not specifi c to transplantation, but likely apply to the 
more general phenomenon of myocardial edema. Analogous to observations in MI 
[ 28 ], administration of hyaluronidase during cardioplegic arrest promotes active 
drainage of cardiac lymph and reduces interstitial edema. With decreased myocar-
dial water content, endpoint surrogates of aerobic metabolism and post-ischemic 
recovery of cardiac function improve [ 37 ]. 

 Recent histological evidence corroborates the physiologic studies of the lym-
phatic vasculature in cardiac transplantation. This work is aided by the discovery 
and use of specifi c immunohistochemical markers of lymphatic endothelial cells 
[ 3 ]. Two of the best recognized markers, LYVE-1 and Prox1, are down-regulated 
following heart transplantation [ 57 ], while expression of VEGFR-3, the cognate 
receptor for the pro-lymphangiogenic factors VEGF-C and VEGF-D, remains 
unaltered. LYVE-1 is a transmembrane glycoprotein receptor for the extracellular 
matrix glycosaminoglycan, hyaluronan, among other molecules including osteo-
pontin, collagens, and matrix metalloproteinases. Functionally, these molecules 
play a role in a variety of cellular processes, including lymphocyte migration and 
activation, hematopoiesis, and tumor metastasis [ 58 ,  59 ]. Although LYVE-1 is 
closely associated with lymphatic endothelium early in development and through-
out maturity, the precise function of the receptor remains unknown (beyond its 
putative role in hyaluronan homeostasis) [ 60 ]. The primary receptor for hyaluronic 
acid, CD44, is known to facilitate cell migration by removing pericellular matrix 
surrounding fi broblast and epithelial cells, suppressing intercellular adhesion dur-
ing wound healing, infl ammation, and tumor progression [ 61 ]. Thus, LYVE-1 may 
play a functional role in both physiological and pathological lymphangiogenesis 
through its ability to transport hyaluronic acid across the lymphatic vessel wall. 
Nearly exclusive localization to the lymphatic endothelium throughout the vascu-
lature, together with convenient assay techniques, renders LYVE-1 aptly as useful 
a molecular and histochemical marker of lymphatics, helping to distinguish them 
from blood vasculature. In addition, prospero-related homeobox 1 (Prox1), a 
nuclear transcription factor, is exclusively expressed on cells of committed lym-
phatic lineage during development [ 62 ]. This is in contrast to LYVE-1 and 
VEGFR3, which are also expressed on a limited population of non-lymphatic 
endothelial cells [ 63 ]. Although Prox1 is necessary and suffi cient for lymphatic 
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commitment [ 63 ], the molecular milieu in which Prox1 operates is not known; 
both downstream initiating and regulatory factors and other upstream requisites or 
supplemental events are still under investigation [ 64 ,  65 ]. In the context of cardiac 
transplantation, the postsurgical decrease in the density of LYVE-1 and Prox1, 
with preserved levels of VEGFR- 3, suggests that the phenotype of the lymphatics 
within the graft is altered from wild type [ 57 ]. Alternatively, it is conceivable that 
a reduction in the population of lymphatic endothelial cells induces a compensa-
tory up-regulation of the VEGFR-3 expression and, thus, the lymphangiogenic 
signal. It is perhaps of greater signifi cance that VEGFR-3-positive cell density 
inversely correlates with the observed incidence of graft incidence [ 57 ]; observa-
tions within an experimental animal model suggest that the resumption of adequate 
immune modulation leads to rapid restoration of inner lymphatic vessels [ 66 ]. 
Further investigation of the various converging biological processes (myocardial 
fl uid regulation, lymphocyte traffi cking, and infl ammation) warrants further inves-
tigation. Such studies are likely to lead to enhanced mechanistic insights and thera-
peutic approaches.   

    Future Perspectives 

 Molecular and ultrastructural study of the lymphatic vasculature is still in its infancy. 
From the foregoing discussion, it should be evident that, in future, individuals with 
a variety of cardiovascular pathologies may benefi t directly from the enhanced 
insights to be gained from research into the lymphatic mechanisms that contribute 
to the genesis and propagation of these and other systemic diseases [ 67 ]. Progress 
will entail enhanced imaging modalities for the dynamic function of lymphatic vas-
culature within the cardiovascular structures, perhaps aided by the application of 
molecular imaging using a nanotechnology approach. Exploration of the direct role 
of lymphatic mechanisms of lipoprotein homeostasis within the arterial wall is quite 
desirable and may lead to new therapeutic applications. The recent identifi cation of 
lymphatic mechanisms that contribute to chronic transplant rejection in other organ 
systems [ 68 – 70 ] may have direct applicability to the treatment and prevention of 
cardiac allograft rejection.     
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