Chapter 7
Stochastic Optimal Control Problems

This chapter contains some optimal control problems for systems described by
stochastic functional and partial differential inclusions. The existence of optimal
controls and optimal solutions for such systems is a consequence of the weak
compactness of the set X, (F, G) of all weak solutions of (equivalence classes of)
SFI(F,G) satisfying an initial condition x;, = x, measurable selection theorems,
and stochastic representation theorems for solutions of partial differential inclusions
presented in Chap.6. We begin with introductory remarks dealing with optimal
control problems of systems described by stochastic differential equations.

1 Optimal Control Problems for Systems Described
by Stochastic Differential Equations

Assume that the state of a dynamical system starting from a point (s, x) € R* x R¢
is described at time ¢ > s by a weak solution of the stochastic differential equation

dx, = f(t, x¢,u;)dt + g(t, x;,u,)dB; as. for t > s,
Xy = X a.s.,

(1.1)

depending on a control process u = (u;);>0, where f : R* x RY x U — R? and
g : RT xRY x U — R?™ are given functions with U C R¥. Given a domain
D c R4 and an initial point (s, x) € Rt xD,a system (Pg, u, X; x, B) consisting
of a filtered probability space Pr = (2, F, I, P), F-nonanticipative processes u
and X, and an m-dimensional IF-Brownian motion B = (B,);>0 defined on Pr
satisfying (1.1) and such that Tj < oo a.s. is called an admissible system for the
stochastic control system described by (1.1). As usual, T/ denotes the first exit time
of X, from the set D. For every (s, x) € R™ x D, we are also given a performance
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functional J g’X (s,x) defined for given functions ® : RT x RY x U — R and
K : Rt x RY — R and an admissible system (Pp, u, X;.x, B) by the formula

T (s, x) = E* [ / 00 X, 0t + K (5 Xeo (2 ))] . (12

where E** denotes the mean value operator with respect to the law Q** of Xj . For
every admissible system (P, u, X x, B), a pair (u, X ) is said to be an admissible
pair for (1.1). The set of all admissible pairs for the control system (1.1) is denoted
by A r4(s, x). Forevery (u, Xy x) € A r¢(s, x), aprocess X; . is called an admissible
trajectory corresponding to an admissible control u. The performance functional
Jg'X (s, x) can be regarded as a functional defined on the set A 7¢(s, x).

An admissible pair (i, X;,) € A 7 (s, x) is said to be optimal for an optimal
control problem (1.1) and (1.2) if J5¥(s,x) = sup{J5¥(s,x) : (u, X,,) €
A f¢(s,x)} for every (s,x) € RT x D. If (it, X, is the optimal pair for (1.1)
and (1.2), then @ is called the optimal control, and X,  the optimal trajectory for the
optimal control problem described by (1.1) and (1.2). The functionv : R*xD — R
defined by v(s,x) = sup{Jg’X(s,x) D (u, Xsx) € Agg(s,x)} for every (s,x) €
R™T x D is said to be the value function associated to the optimal control problem
(1.1) and (1.2). An admissible pair (i, X, ) is optimal if v(s, x) = JLL;’X (s, x) for
every initial condition (s, x) € R™ x D. The problem consisting in finding for each
(s,x) € RT x D the number v(s, x) for the optimal control problem (1.1) and (1.2)
will be denoted by

dx; = f(t, x¢,u;)dt + g(t, x;,u,)dB; as. for t > s,
X; = X a.s., (1.3)

At
Jg’X(s,x) — max.

Let us observe that if the optimal pair (i, X;,) € A rg(s, x) exists and
(f(- - 2),8(+, -,2))issuch that SDF(f(-, -, 2), g(+, -, 2)) possesses for every fixed
z € U a unique in law weak solution X satisfying initial condition X7 (s) = x
a.s. for (s, x) € Rt x R, then the standard approach to determine an optimal pair
is to solve the Hamilton—Jacobi—Bellman (HJB) equation

sup,ey {P(s. X, 2) + (A% v)(s. x)} =0 for (s,x) € R x D,
v(s,x) = K(s,x) for (s,x) € Rt xaD,

where .Azf. is the infinitesimal generator of a (d + 1)-dimensional Itd diffusion
defined, similarly as in Sect. 11 of Chap. 1, by X s for every fixed z € U. If the
above supremum is attained, i.e., if there exists an optimal control u(s, x), then
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(s, x,u(s,x)) + (A7z0)(s,x) =0 for (s,x) € Rt x D,
U('I_TD,XS’X) = K(‘ED, Xs,x) for (S, X) € R+ X 8D,

where f(s,x) = f(s,x,i(s,x)), g(s, x) = g(s,x,u(s, x)) for (s,x) € RT x D,
A 7z 1s an infinitesimal generator defined by a unique in law weak solution X,
of SDE(f,3) satisfying an initial condition X,x(s) = x as. for (s,x) € RT x
R, and 7 denotes the first exit time of Xy from the set D. Immedi_ately from
Theorem 5.5 of Chap. 6, it follows that if v € Col’z([O, T] x D,R) and X is such

that E**[ OED (1, X, (t))dt] < oo and there exists a number C > 0 such that
lo(t, x)| < C(1 4+ E[f,” ®(t, X, «(1))dt]) for every (s, x) € (0, T) x RY, then

o(s.x) = BV K (Ep. Kya)] + B [ / Yo, Xs,x(r»dr] ,
0

where E°* is a mean value operator taken with respect to a distribution of X ..

We shall consider now the optimal control problem (1.3) with continuous
deterministic control parameters with values in a closed set U C RF and a
strong solution X , of (1.1) defined for a given m-dimensional IF'-Brownian motion
B = (B;):>0 on a given complete filtered probability space Pr = (2, F,F, P)
with a filtration F' = (F;),>0 satisfying the usual conditions. We consider a
control system (1.1) with measurable functions f : RT x RY x U — R? and
g : Rt xRY x U — R satisfying the following conditions (H ).

(H): There exist k, m € L(RT, R™T) such that

(i) max(| f(t,x,2)|. gt x.2)||) < m(¢) forevery (¢, x,z) € Rt x RY x U.
(i) max(|f(r,x,2) = f(t.X.2)% ||g(r. x,2) —g(t. X. D) |*) < k(t)(]x —X]* + |z —
z|?) foreveryt > 0,x, X € R%, andz,z € U.
(iii) g(t,x,2) - g(t,x,2)* is positive definite on RT x R¢ for every fixedz € U.

In what follows, by Ur we denote a nonempty compact subset of the Banach
space (C ([0, T],R¥), || - |7) with the supremum norm || - || such that u, € U for
every u € Ur andt € [0, T].

Remark 1.1. Similarly as in the proof of Theorem 1.1 of Chap. 4, by an appropriate
changing of the norm of the space X" defined in the proof of Theorem 1.1 of Chap. 4,
we can verify that if conditions (i) and (ii) of (H) are satisfied, then for every
(s,x) € Rt x RY, T > s, a filtered probability space Pr = (2, F,F, P), an
m-dimensional IF-Brownian motion B = (B;),>0, and u € Ur, there exists a unique
strong solution X of (1.1) defined on [s, T'] x €2.

Proof. Let (s,x) € RT x RY, T > s, a filtered probability space Prp =
(2, F,F, P), and an m-dimensional IF-Brownian motion B = (B;);>0 be given.
Define, for fixed u € Ur, set-valued mappings F and G by taking F(f,x) =
{f(t.x,u)} and G(t,x) = {g(t,x,u;)} for (t,x) € [0,T] x R?. Let Xffg(t) be
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defined by X% (1) = x + [* a.dv + [ B.dB, foreveryt € [s, T] and (a, f) € X.
Similarly as in the proof of Theorem 1.1 of Chap.4, we define on X an operator
Q, which in the case of the above-defined multifunctions F' and G, has the form

Qe ) = {(f(-. Xi%.u). g (-, X%, u))} for every (e p) € X.
Let us define on L2([0, 7] x 2, =g, R?) a family {|| - || }1>0 of norms | - ||»

equivalent to the norm | - | of this space by setting [|w||; = fOT exp[—IK (¢)] E |w, |>dt
for w € L2([0,T] x @, Zp,RY), where [ = 1/A% and K(t) = [, k(t)dr with
k € L(RT,R") satisfying conditions (H ). For every (a, B), (&, B) € X, one gets

1FC, X u) — £ X2 w3

T ~
= / exp[—IK(OIE|f(t, X% (0), ur) — (2, X2 (@), ur) Pde
0

< /T k() exp[—IK (0] E| X2 (1) — XZ (1) Pdr.
0

Similarly as in the proof of Theorem 1.1 of Chap. 4, we get

~ 2
ENX%@0) - X% )1 =E

/S (@ + / (B — o)dBe

1 1
< 2T/ E|o; —a.|*dt + 2/ E|B. — B.|*dr.
0 0
Therefore,
”f( s X:Xés Lt) - f( s X?ev M)”i
T pt
< ZT/ / k(t) exp[—IK(t)]E|ot; — @, |*drdt
0 Jo
T pt .
+2 / / k(t) exp[-IK(t)]E|B; — B-|*ddt.
0 JO

By interchanging the order of integration, we obtain
T ot TrT

/ / k(t) exp[—IK (1)) E |, —a- |*drdt = / / E|a;—@.|*k(t) exp[—I K (¢)]dtdr
0Jo 0Je

T T
= —A2 1K) / Ela; —a.*dt + /\2/ k(t) exp[—IK(0)]E|a; — @ |*dt
0 0
<22 |l —all.

In a similar way, we obtain

T pt 5 5
/ / k() expl—I K()]E|Bs — fe Pdzdi < A2 B — Bl
0J0
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Therefore,

£ X w) — £ X w3 <2221+ T) (@ B) — @ — Bl

where (o, B) — (@, 3)||A = max(|lo — &1, |8 — ,3||A). In a similar way, for every
A > 0, we can define on the space L2([0, T'] x £, =g, R¥*) an equivalent norm,
denoted again by || - |5, and get

lgC-. X ) — g(-. XE )y <22°(1 +7) |[(@. B) — @. P)lls.
Therefore, for every A > 0 and (e, B), (@, ,3) € X, one has

d(Q(a, B), 0@, B)) < Av2(1+T) (@, B) — @ Pl

where

d(Q(., B). 0(@. B))

= max{]| £(-, X u) = £ X w)li, g X8, u)— (-, X8 w1}

Taking in particular A € (0,1/4/2(1 + T)), we obtain a contraction mapping Q
defined on the complete metric space (X, d)). Then there exists a unique fixed point

(o, B) € X of Q, which generates exactly one strong solution X of (1.1) defined
on[s, T] x Q. O

Let X/ be the unique strong solution of (1.1) defined for given (s,x) €
Rt x RY, T > s, and u € Ur on the interval [s, T]. We can extend such a
solution to the whole interval [0, T'] by taking X" (1) = x as.for0 < ¢ < s
and define on Uy an operator A, with values in C r by setting A . (u) = X s

where XS’X = Tjo.5)x + Ij5 7 X' and (C]FT , |l - |I) denotes the space of all IF-adapted
d-dimensional continuous square integrable stochastic processes X = (X;)o<i<7
with norm || X || = { Efsupy<,<r | X, 1}'/2.

Lemma 1.1. Let B = (B:);>0 be an m-dimensional F-Brownian motion on a
filtered probability space Pr, (s,x) € RY xR?, and T > s. If f and g are
measurable and satisfy (i) and (ii) of conditions (H), then A is a continuous
mapping on Uy depending continuously on (s, x) € RT x R,

Proof. By virtue of Remark 1.1, for every u € Ur, there exists a unique strong
solution of (1.1) defined on [s, T'] x Q. Let u € Ur, and let (u,)°2, be a sequence
of Ur such that ||un —u|lr — 0 as n — oo. By the definition of the mapping A, .,
we have A, (1) = X, and A (u,) = X” forn = 1,2,.... By Corollary 4.4 of
Chap. 1, foreveryn > lands <t < T, we get
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E [ sup | X! (z) — Xyx (z)lz] =E [ sup | X! (2) — Xsx (z)lz}

0=<z=t S<z=t

z 2
<2E ( sup / [f(z, X7 (0), u}) — f(T, Xs.x(7), ur)]dT )
z 2
+ 2E (VSUP / [g(ts Xf,x(f)s u}:) - g(l’, Xs,x(r)s ur)]dBt )

t
<27E / (@ X (D)) — f(z, Xon (D). up) Pl
‘ t
4 8E / 18(. X! (D). tl)) — gt Xox (1), ) e
‘ T
<2(T +4) ||u" — u||2T/ k(r)dr
0

+2(T + 4) /t k(zr)dt E [ sup | X7, (2) — Xs,x(z)lz} dr,
0

S<z=<t

which by Gronwall’s inequality (see [49], p. 22) implies that
1X5 = Xoxl* = E [ sup | X{, (1) - )?s,x(mz}
' 0<t<T

T T
<2T +4) (/O k(t)dt) exp [Z(T + 4)/0 k(t)dt} " — ul|%.

Therefore, lim,— o0 || As.x (n) — Asx (w)||7 = O for every u € Uy and every sequence
(un)52, of Uy converging to u € Ur. Finally, immediately from the definition of
As.x, forevery (s, x), (5,X) € R x R? with s < §, one gets

sup{[As () — Az ()| s u € Ur} <2 | |x —X| + (VT + 1),//5m2(t)dz ,

which implies that the mapping R* x R? 3 (s,x) — A, («) € R? is uniformly
continuous with respect to u € Ur. Similarly, this is true for the case 5 < s. O

Now we can prove the following existence theorem.

Theorem 1.1. Let [ and g be measurable and satisfy conditions (H). If K :
Rt xR?Y! > Rand ® : Rt x RY x U — R are continuous and bounded,
then for every bounded domain D, filtered probability space Pr, m-dimensional
F-Brownian motion B = (B;);>0 defined on Py, and (s,x) € RT x RY, there
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exists u € Ur such that IS% (u, )Zf_‘x) = sup{]fV (u, X{,) : u € Ur}, where
]S%(M, X)) = Jg’x(s,x) and X{ is the unique strong solution of (1.1) on the
filtered probability space Py corresponding to the Brownian motion B and u € Ur.

Proof. Similarly as above, by virtue of Remark 1.1, for every u € Ur, there exists a
unique strong solution of (1.1) defined on [s, 7] x 2. Observe that sup{/ fx (u, X'
u € Ur} = sup{I P (u, Asx(u)) 1 u € Ur}. Let o = sup{I . (u, A () : u € Ur},
and let (u,);2, be a sequence of U7 such that ¢ = lim, Ifx (up, Asx(uy)). By
the compactness of U7, there exist an increasing subsequence (1), of ()72, and
u € Ur such that ||u,, —iut||7 — 0ask — oco. By virtue of Lemma 1.1, it follows that
|Asx(un,) — Asx(@)||7 — 0 as k — oo. By the definitions of the operator A, and
the norm ||-|, it follows that there exists a subsequence, still denoted by (X{'4)?2 ,, of
the sequence (X{'%)22, such that supy., <7 |X{”§C —X;.«| = 0as.ask — oo, where
X, = Ay (it). By virtue of Lemma 10.1 of Chap. 1 and Theorem 5.1 of Chap. 4, we
have 7} — Tp a.s. as k — oo, where 7} and 7 denote the first exit times of X"
and X ., respectively, from the domain D. Hence, by the continuity of ® and K,
it follows that & = limg—co 12 (. Ag s (un,)) = I (it Ay 1 (i) = 1P, (t, X.).
Thus (i, X, |is,77) is an optimal pair for (1.3).0

We can consider the above optimal control problem with a special type of
controls u = (u;);>0 of the form u; = ¢(t, X;) a.s. for t > 0 and a measurable
function ¢ : R* x R? — U < RF. Such controls are called Markov controls,
because with such u, the corresponding process X = (X;);>o becomes an Itd
diffusion, in particular a Markov process. In what follows, the above Markov control
will be identified with a measurable function ¢, and this function will be simply
called a Markov control. The set of all such Markov controls will be denoted by
M(U). The set of all restrictions of all ¢ € M(U) to the set [0, 7] x R? is denoted
by Mr(U). Immediately from Theorem 1.1, it follows that for all measurable
functions f and g satisfying conditions (H ), there exists an optimal control for
(1.3) in the set Sy consisting of all bounded and uniformly Lipschitz continuous
Markov controls ¢ € M7 (U), i.e., with the property that there exists a number
L > 0 such that |¢(t,z) — ¢(s,v)| < L(|t — s| + |z — v|) for every ¢ € Sr,
t,s €[0,T],and z,v € R?. Indeed, for functions f, g, and ¢, ¥ € S C M7 (U)
as given above, we have

|f(x 0@t x) = f(t. 2.9 (.2 <2 f(t.x, 0. %) — f(t.2.0(,2)
+ 2| f(t. 2.0t 2)— f(t. 2.9 (1. 2))* < 2k(t) [(1+ L) |x—z|+2L*lo—v | 7]
and

g, x,0(t,x) = g(t, 2, ¥t DI < 2k(@) [(1 + L) |x — 2| + 2L |l¢ — y||7]

forevery t € [0, 7] and x,z € RY, where || - ||z denotes the supremum norm of the
space C([0, T] x R¢, R¥) of all continuous bounded functions v : [0, T] x R —R¥.
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Hence, similarly as in the proof of Lemma 1.1, it follows that the mapping A; . :
Srou— X € C{ with X?, and C/l" as above is continuous. Here X! is
a strong solution of (1.1) corresponding to the Markov control ¢ € Sr. Therefore,
immediately from Theorem 1.1, we obtain the existence in Sy of the optimal control

for (1.3).

2 Optimal Control Problems for Systems Described
by Stochastic Functional Inclusions

We shall now extend the above optimal control problem (1.3) on the case in which
the dynamics of a control system is described by stochastic functional inclusions
SFI(F,G) of the form

X; — X, € [l F(r, X,)dr + [! G(z, X,)dB; for t>s,

2.1
X;=x a.s. 21

with the performance functional depending only on the weak solution (Pr, X, B)
of SFI(F,G), i.e., with the performance functional J g (s, x) of the form

JX(s.x) = ES [ [ "Wt Xdt + Koo, Xw)} , 2.2)

where D is a bounded subset of RY, and ¥ : RT x RY — R and K : RT x
R? — R are given continuous functions. By a solution of such a stochastic optimal
control problem we mean a weak solution (75]§, X, B) of (2.1) such that J g (s,x) =
sup{J g (s,x) : X € Xf;}, where Xf; denotes the set of all weak solutions of
(equivalence classes of) the stochastic functional inclusion SFI(F, G) satisfying
an initial condition X(s) = x and such that tp = inf{t > s : X;,(¢) &€ D} < oc.
Such an optimal control problem will be denoted by

X; — X, € [ F(tr, X;)dt + [/ G(v, X,)dB,t for t > 5,
Xs=x a.s., (2.3)

XA?Y
JX (s,x) — max,

and called an optimal control problem for the control system described by the
stochastic functional inclusion SFI(F, G). In this case, the set X,”. is said to be an

admissible set for the optimal control problem (2.3). If there is (75]§, X , 13) € Xf;
such that J5(s,x) = sup{JX(s,x) : X € XP}, then (Pz, X, P) is called

WX
the optimal solution of the optimal control problem (2.3). Similarly as above, it

will be simply denoted by X. We shall consider the optimal control problems
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of the form (2.3) with set-valued mappings F : Rt x RY — CI(RY) and
G : Rt x RY — CI(R?™) such that the set X, (F,G) of all weak solutions
of SFD(F,G) satisfying the initial condition X(s) = x is weakly compact in
distribution and such that X2 (F, G) # @. Hence, immediately from Theorem 5.1
of Chap.4, it will follow that XS% is also weakly compact. We apply the result
obtained to the case of F and G defined by F(t,x) = {f(t,x,z) : z € U} and
G(t,x) = {g(t,x,z) : z € U}. Hence in particular, the existence of optimal pairs
for the optimal control problems of the system described by (1.1) and performance
functionals of the form

™
JX(s,x) = ESF [ / sup ®(¢, X;, u))dt + K(tp, X, )} (2.4)
s uelU

and

19))
Jg(ssx) = ES’X [/ Suqu(vafs (pn(tth))dt + K(‘L—Dv XID):| (25)

n>1

will follow, where ("), is a dense sequence of a bounded set i/ C C(RFT xR, U).
In what follows, we shall still denote by (P) and (A) the assumptions defined in
Sect. 1 of Chap. 6.

Theorem 2.1. Let F : RY x RY — CI(RY) and G : Rt x RY — CI(R¥*™)
be convex-valued, continuous, and bounded, and let ¥ : RT x R? — R be a
uniformly integrally bounded Carathéodory function. Assume that G is diagonally
convex and satisfies item (iv') of conditions (A). Let D be a bounded domain in R.
IfK : RY x R? — R is continuous and bounded, then for every (s, x) € Rt x D,
the optimal control problem (2.3) possesses an optimal solution.

Proof. Let us observe that Xf; is nonempty and weakly compact in distribution.
Indeed, similarly as in the proof of Theorem 4.1 of Chap.4, we can verify that

X, .(F,G) is weakly compact in distribution for every (s,x) € Rt x R¢. By
property (P) of G for every (f,g) € C(F) x C(G), there exists a unique in
law solution (Ps, %, B) of SDE(f,g) with initial condition ¥, = x a.s., which
by the properties of functions f and g, implies that (’P]F,x, B) € XM(F ,G).
By Remark 10.4 of Chap.1, we have Tp < oo a.s., where Tp is the first exit
time of ¥ from the set D. Then (Pg., %, B) € X”. To verify that X, is weakly
compact, let us observe that by the weak compactness of X; . (F, G) and the relation
XP C X, «(F,G),itis enough to verify that X°, is weakly closed.

Let (x")?2, be a sequence of X D convergent in distributions. Then there exists a
probability measure P on S(C (R+, R?)) such that P(x")™' = Pasr — oo.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space (Q,F, P)
and random variables ¥ : @ — CRT,RY) and ¥ : @ — C@R*,RY) for
r =1,2,...such that P(x")"' = P(GE") ! forr = 1,2,...,P(X)"! = P and
lim, 00 (X", X) = 0 with (P.1), where p is the metric defined in C(R*, R?) as
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in Theorem 2.4 of Chap. 1. For every r > 1, one has 1j, < 0o a.s., where tJ, is the
first exit time of x” from the set D, which by Theorem 5.2 of Chap. 4, implies that
7}, < oo a.s., where 7, denotes the first exit time of X" from the set D. Hence, by
the properties of the sequence (x")S2,, it follows that Tp < oo a.s., where 7p,
is the first exit time of X from D. Similarly as in the proof of Theorem 4.1 of
Chap. 4, we can verify now that by virtue of Theorem 1.3 of Chap.4, there exist
a standard extension Py = (Q, F. I, 13) of (§2, f', ]ﬁ‘, }3) and an m-dimensional
Brownian motion B such that (75]@, X, é) is a weak solution of SFI(F, G, i), with
w = P%;! and such that x” = X. Furthermore, we have P£~! = PX~!, which by
Theorem 5.2 of Chap. 4, implies that Pz,' = P fgl. Hence in particular, it follows
that Tp < oco. Thus XMD is weakly closed with respect to weak convergence in the
sense of distributions.

By (2.2) and the properties of the functions W and K, one has o := sup{J g (s,x) :
X € XP} < oo, because

/TD W(r, X())dt < /tD (2, X(1)|de < /OTD m(t)de < /Ooom(t)dt < oo,

where m € L(R™,R™) is such that |¥(z, x)| < m(z) and there is M > 0 such that
|K(t,x)| < M forx € R? and ¢ > 0. Let (Pp,. X", B") € Xfx beforn =1,2,...
such that o = lim,, 00 J[} (s, x), with

JB(s,x) = ES [ / P X" ()t + K2, X”(rg)),]

where E;* denotes the mean value operator with respect to the probability law
Oy of X" and 7}, = inf{r > s : X"(r) ¢ D} forn = 1,2,.... By the
weak compactness of X’ D and Theorem 2.3 of Chap. 1, there are an increasing
subsequence (nx)72, of the sequence (n)n @ probability space (2, F.,P), and
continuous processes X" and X on (2, F, P) such that P(X"%)~! = P(X")~!
fork =1,2,...and p(X", X) — 0, P-a.s. as k — oo, which by Corollary 3.3 of
Chap. 1, 1mphes that P(X"™)™' = PX ' ask — oco. Let F, = ﬂ£>00'({X(M)

s <u<t+eg}) fort > s and put F = (]—',),>S It is clear that X is IF-adapted.

By virtue of Lemma 1.3 of Chap. 4, we have ./\/l # @, and therefore, there exist
f € SF(F oX)and g € Sz(G o X) such that for every h € CZ(R”’) a stochastic
process ¢¥ = ((fph )i )= With ((p,f), = h(X,)—h(X;)—[! (]LX h).dtfort > sisa

continuous local FF- martingale on the filtered probability space PF = (Q, F.T, P).
Hence, by Theorem 1.3 of Chap. 4, it follows that there exists a standard extension
of 75F, still denoted by 75F, and an m-dimensional F-Brownian motion B = (B,),>0
such that (P]F, X, B) is a weak solution of SFI(F, G, jt) with an initial distribution
n = PX ! . Immediately from the properties of the stochastic processes X" and
X, it follows that X”" = x, P-a.s., and P(X”") = P(X )~ as k — oo, which
implies that X, = x, Pas. Therefore (P .X.B) € X,.(F.G). Similarly as
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above, we can verify that (75]F, X , l;’) € Xsﬂ. On the other hand, By (2.2) and
the properties of processes X"¢ and X"* and Theorem 5.2 of Chap.4, it follows
that P(cf)™! = P(zf)~! fork = 1,2,.... Then J}} (s, x) = J (s, x) for every
k=1,2,..., where

ThE(s, x) = ES* [ / v (s, X" (t))dt + K (75, X"k(%;;))}

fork = 1,2,... with %é‘) and ‘Cé{) defined as above with }:lk =X" (¢). Hence, by
Theorem 5.1 of Chap. 4, it follows that

Jim JpE(s, x) = E* [ / ? W(r, X (1))dt + K(3p, X(%D))] ,

where Tp = inf{r > s : X ¢ D}.Buta = limg— o0 Jf (5, %) = limg—s oo fgk (s, x).
Therefore,

o = 5% |:/TD U(t, X(1))dt + K(%p, X(%D)):|.

O

Remark 2.1. Similarly as above, we can consider the following viable optimal
control problem:

X; — X, € [l F(r, X,)dt + [/ G(v, X,)dB,z, for t > 5,
X, €eT'(¢) as. for t > s,

Xp
J(X) — max,

where I is a given target set mapping and X 5 denotes the set of all weak I"-viable
solutions (P, X, B) of the stochastic functional inclusion SFI(F,G) such that
Th =inf{t > 5: X(t) ¢ D} < oo. O

We shall consider now the existence of the optimal control problem (1.3) with a
performance functional J g (s, x) defined by (2.4) and (2.5) above. Let us recall that
for a given nonempty set U C R¥, a bounded domain D, an initial point (s, x) €
R* x D, and functions f : R4+ xR? xU — R%, g : R + xR? x U — R¥>™,
U:RY*xR? — R,and K : R x RY — R, we are interested in the existence
of an admissible pair (i, X*) € A (s, x) such that J3 (s,x) = sup{J}(s.x) :
(1, X") € A f¢(s,x)}. We shall show that such an optimal pair (iz, X) € A f,(s, x)
exists if £ : R xR xU — R and g : R* x RY x U — R satisfy the
following conditions (C):

(1) f and g are continuous and bounded such that f(¢,x,-), g(¢, x,-), and (g -
g%)(t, x,-) are affine for every fixed (z, x) € RT x R? on the compact convex
set U C RF.
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(ii) g is such that g - g* is uniformly positive definite.
(iii) ® : RT x RY x U — R is a uniformly integrally bounded Carathéodory
function and K : Rt x R? — R is continuous and bounded.

Lemma 2.1. If f and g satisfy conditions (C), then for every nonempty compact
convex set U C R, the set-valued mappings F and G defined by F(t,x) =
{f(t,x,2) :z€ U} and G(t,x) = {g(t,x,z) : z € U} satisfy (P) and conditions
(i), (iii), (V'), and (v) of (A).

Proof. Immediately from (ii) of conditions (C), it follows that G satisfies the
condition (P). Let Ty be the induced topology in U. Then (U, Ty) is a compact
topological space. Let (7, ¥) € R*xRR¢ andz € U be fixed and V an open setin R¢.
Suppose (7, X, ) is such that f(z, X,z) € V. By the continuity of f(-,-,Z) at (¢, X),
there is a neighborhood A of (7, X) such that f(¢,x,z) € V for every (¢,x) € N.
Therefore, for every (¢,x) € N, one has F(t,x) NV # (. Then F is l.s.c. In a
similar way, we can also verify that G is l.s.c. By the compactness of the set U and
continuity of f(¢,x,-)and g(¢, x, -), it follows that F (¢, x) and G(¢, x) are compact
subsets of R? and R?*™, respectively, for every (¢, x) € Rt x R¢. Similarly, by
the convexity of U and affineness of f(z,x,-), g(¢t,x,-), and (g - g*)(¢,x,-), it
follows that F" and G are convex-valued and G is diagonally convex. We shall verify
that F and G are also u.s.c. Indeed, similarly as above, let (f,%¥) € RT x R?
be arbitrarily fixed and suppose V is an open neighborhood of F(Z, ). By the
continuity of f, for every fixed z € U there exist neighborhoods W* and O¢ of
(f,X) € R* x R? and Z € U, respectively, such that f(W?* x O¢) C V. By the
compactness of the topological space (U, Ty ), there are z1,...,z, € U such that
U/, 0% =U.Foreveryi = 1,2,...,n, wehave f(W% x O%) C V. Therefore,
UiZ, f(W% x O%) C V. But

Ur([0 )= ([0 -[ue)

:f([ﬁW“]xU)COf(WZ"xOZ")CV.

i=1 i=1

Therefore, F((;—, W%) = f([('2; W%] x U) C V. Then F is u.s.c. at (7, X) €
R* x R?. In a similar way, we can verify that also G is u.s.c.

Let o € C(I(G)) be a continuous selector of D(G) = [(G), where [(u) = u - u*
for every u € R, and let A(t,x,z) = [(g(t,x,z)) = g(t,x.,z) - g*(t.x,z) for
(t,x,2) € RT x RY x U. We have o(t,x) € A(t,x,U) for (t,x) € Rt x R?.
Therefore, by virtue of Theorem 2.2 of Chap. 2, there exists a sequence (z,)5—, of
continuous functions z, : R* xR¢ — U such that sup vy lo(t, x) —1(gn (2, x))| —
0 asn — oo, where g,(¢t,x) = g(t,x,z,(¢t,x)) € G(t,x) forn = 1,2,... and
(t,x) € Rt x R?. Then there exists a sequence (g, o2, of continuous selectors of
G such that [(g,) — o uniformly in (z,x) € Rt x R? as n — oo. Thus (iv’) of
conditions (A) is also satisfied. O
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We can now prove the existence of an optimal pair for the optimal control
problem (1.3) with the performance functionals defined by (2.4) and (2.5).

Theorem 2.2. Let D be a bounded domain in R¢ and assume that conditions (C)
are satisfied. There exists an optimal pair of the optimal control problem (1.3) with
a performance functional defined by (2.4).

Proof. Let F and G be defined as above. By virtue of Lemma 2.1, the multi-
functions F and G satisfy the conditions of Theorem 2.1. Therefore, for every
(s,x) € RT xIRY, there exists a weak solution (PF, X, B) of SFI(F G) satisfying
the initial condition X(s) = x, P-as., with 73~ = (Q,F,F,P) such that

Jg(s,x) = sup{JX (s,x) : X € X}, where

TX(s.x) = E** [/m W(t, X (1))dt + K(%DvX(%D))]

with W(z,x) = sup{®(t,x,u) : u € U} and Tp = inf{r > s : X(r) € D).
By virtue of Theorem 1.5 of Chap.3, there are f € Sp(F o X) and § €
SH(G o X) such that X(r) = x + fst f;dl’ + f; 3.dB., P-as. fort > s. Let
L(t,x) = {(f(t,x,2),g(t,x,2)) : z € U} for (t,x) € R x RY. Similarly
as in the proof of Lemma 2.1, we can verify that I" is a continuous and bounded
set-valued mapping with compact values in R? x R¥*™ Therefore, the set-valued
process r = (FI)IN defined by T, = I'(¢, X(¢)) is F-nonanticipative and such
that (f;, ;) € I, P-as. fort > 5. By virtue of Theorem 2.5 of Chap. 2, there
exists an IF- nonant1c1pat1ve process u = (u,)l‘>Y with values in the set U such
that (f,,g,) = (f(t.X(t).0;), g(t, X (¢).71;)), P-as. for t > 5. Then an optimal
solution X of the optimal control problem (1.3) with the performance functional
(2.4) can be expressed by the formula

X(t)=x+ tf(r,)?(r),itt)dt + /t g(t. X (1), ii;)d B,

P-a.s. for t > s. Therefore, (i, X ) € A sg(s,x). In a similar way, we deduce that
for every weak solution (Py, X, B) of SFI(F, G) satisfying the initial condition
X(s) = x a.s. with the above-defined set-valued mappings F' and G, there exists
an F-nonanticipative stochastic process u = (u;);>s with values in U such that
(u, X) € A sq(s,x). By the properties of the performance functional JX (s, x)
defined by (2.4), one has

Jg(s,x) = sup{Jg(s,x) X e Cfx} = sup{Jg(s,x) C(u, X) € Asg(s,x)}
with Cfx = m(Asg(s,x)), where m(u, X) = X for (u, X) € Ayg(s,x). Then

(i1, X) is the optimal pair for the optimal control problem (1.3) with the performance
functional defined by (2.4). O
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In a similar way, we can prove the following existence theorem.

Theorem 2.3. Let D be a bounded domain in R?, U a bounded subset of C(RT x
R4, U), and (p" )o2, a dense sequence of U. Assume that conditions (C) are
satisfied and that f and g are such that f(t,x,-) and g(t,x,-) are linear. There
exists an optimal pair (i, X) for the optimal control problem (1.3) with the perfor-
mance functional JX (s, x) defined by (2.5) and it = lim’_, o Sl Cj (p”k' i, X)),
where lim" denotes the weak limit of sequences in the space ]L(]R+ X Q S, R )
{C],.. C,ﬁj} is a finite Sp-partition of RT x Q, and {¢" f O } C {¢"

n > 1} for every j > 1.

Proof. Let F and G be defined by F(t,x) = {f(t,x,0(t,x)) : ¢ € U}
and G(t,x) = {g(t.x,p(t.x)) : ¢ € U} for (t,x) € R x RY. By virtue
of Lemma 2.1, F and G satisfy the conditions of Thegrem~ 2. } Therefore, for
every (s,x) € RT x RY, there exists a weak solution (Ps, X, B) of SFI(F,G)
satisfying the initial condition X (s) = x, P-a.s., with 751~F = (Q, F, T, P) such that
Jg (s xX) = sup{JD (s,x) : X € X,}. By virtue of Theorem 1.5 of Chap. 3, there
aref € Sg(F o X) and § € Si(G o X) such that X, = x+f fede + [! g.dB,,
P-as. fort > . By the properties of the sequence (¢")°2,, it follows that
F(t,x) =cl{f(t,x,¢"(t,x)) :n>1}and G(t,x) = cl{g(t, x,¢"(t,x)) :n > 1}
for (t,x) € RT x ]E{d. Theﬂore, bz virtue ~of Lemma 4.1 of Chap.2, it
follows that SF(F o X) = dec{f(,X,¢"(--X)) : n > 1} and Si(G o
X) = dec{g( X. Q" (s X)) : n > 1}. Hence it follows that (f,§) €
dec{(f.2)(-.X.,¢"(-~ X)) : n > 1}. Thus there exists a sequence (aj)FZ, of
dec{f.g)(.X.,¢"(-X)) : n > 1} converging to (f g) in the metric topology
of L2 (Rt x Q,Zp, R x R4*™). But dec{(f, g)(~ X ¢"(~ X)) : n > 1} =
(f.g)(-. X..dec{e"(-,X.) : n > 1}). Therefore, for every j > 1, there exist a
finite Tp-partition {C{, ..., G} of RY x Q and a family of {¢"/,...,¢"/ } C
{¢" :n > 1} suchthata; = (f,g)(, X., 3,2, C,-<p"§(-,)2.)) for j > 1. By the
k
boundedness of the set I/, it follows that the sequence (Z?;l I.j (p”lf' ¢, )2.))?‘;1 is
k
relatively sequentially weakly compact. Then there exist it € L(RT x Q, Zp, RY)
and a subsequence, still denoted by (Z 1Hc i@t ( X)) 72, weakly converging

to u. Hence, by the properties of the functions f and g, it follows that ( f ,8) =
(fC. X..0), g(. X..it)). Similarly as in the proof of Theorem 2.3, it follows that
(i1, X), with the optimal control i described above, is the optimal pair for the optimal
control problem (1.3) with the performance functional J g (s, x) defined by (2.5). O
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3 Optimal Problems for Systems Described by Partial
Differential Inclusions

Let F : R* x RY — CI(R?) and G : Rt x RY — CI(R?*™) be such that the
following conditions (D) are satisfied:

(i) F and G are bounded, continuous, and convex-valued, and for every g € C(G),
the matrix-valued mapping /(g) = g - g¢* is uniformly positive definite.
(ii) G is diagonally convex, i.e., for every (z,x) € RT x R?, the set D(G)(t,x) =
{v-v*:v e G(t,x)} is convex.
(iii) For every 0 € C(D(G)), there exists a sequence (g")7>, of C(G) such that
SUP(; v)eR+ xR |on(t,x)—a(t, x)| > 0asn — oo, where o, = [(g,) forn>1.

For a bounded domain D € R4, T > 0, (s,x) € Rt x R?, hoe CHRTY),
u e C([0,T] x D,R), and a continuous function ® : (0,7) x dD — R, we shall
consider the initial and boundary values problems (6.3) and (6.4) of Chap. 6 of the
form:

vy (t,s,x) —vi(t,s,x) € (Lpgu(t,-)) (s,x) —c(s,x)v(t, s, x)
for (s,x) € [0,T) xR andt € [0,T —s],
v(0,s5,x) = fz(s,x) for (s,x) € [0, T) x R4,

and

u(t,x) —v)(t,x) € (Lrgv) (¢,x) —c(t, x)v(t, x) for (¢,x) € (0,T) x D,
limpsy—s, v(t,x) = (¢, y) for (¢,y) € (0, T] x 9D.

Let H : [0, T] x R¢ — R be measurable and uniformly integrably bounded and let
Arg(c,h) and T'rg(c, u, @) denote the sets of all solutions of the above initial and
boundary value problems, respectively. For every (s, x) € [0, T) x RY, let H,. and
Z, denote the mappings defined on A pg(c, h) and Tpg(c, u, ®), respectively, by
setting

T
HS,X(U):/ H(t,v(t,s, x))dt for v € Arg(c.h)
0

and

T
Zx(w)=/ H(t,w(t,x))dt for we 'rg(c,u, D).
0

For every fixed (s,x) € [0,T) x R?, we shall look for 7 € A%G (c, };) and ¥ €
IS (c,u, ®) such that Hy,(§) = inf{H,(v) : v € ASs(c.h)} and Z,(7) =
inf{ Z, (1) : u € T (c,u, ®)}, where AG;(c,h) = Apg(c,h) N C(RIF2) and
TS, (c,u, ®) = Trglc,u, ®) N CH2RIH.
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Theorem 3.1. Assume that conditions (D) are satisfied. Let ¢ € C([0, T] x R4, R)
be bounded, h € C'“2(RI*Y), and let H : [0,T] x R — R be measurable
and uniformly integrally bounded such that H(t,-) is continuous. If F and G are
furthermore such that for h and ¢ as given above, the set AS Fa (c h) is nonempty,
then there is X € X, +(F, G) such that the function v € A% (c, h) defined by

s+t
u(t,s,x) = [exp ( / c(z, )f(r))dt) ﬁ(s +1,X(s+ t)):|

for every (s, x) € [0,T) x RY andt € [0, T — s] satisfies Hy (D) = inf{H, (v) :
veASq(c,h)}.

Proof. Let (s,x) € [0,T) x R be fixed. The set {H,,(v) : v € AS,(c,h)} is
nonempty and bounded, because there is k € IL([0, T'], R+) such that [H,(v)| <
fo k(t)dt for every v € A¢ Falc, h) Therefore, there exists a sequence (v")52, of
A%G(c h) such that ¢ =: inf{H,,(v) : v € A%G(c h)} = limy o0 Hsx(V"). By
virtue of Theorem 6.4 of Chap. 6, forevery n = 1,2, ... and (s, x) € [0,T) x R,
there is X', € X (F, G) such that

s+t
vi(t,s,x) = E® |:exp (—/ c(z, ng(r))dr) h(s +1t, Xg (s + t)):|

for (1, x) € [0, T—s]xR¢. By the weak compactness of X; . (F, G) and Theorem 2.3
of Chap. 1, there are an increasing subsequence (ni)pe - of (n)n |, A probability

space (Q.,F, P), and stochastic processes X" and X on (Q F, P) such that
P(X")™" = P(X")7! for k = 1,2,... and supy_, 7 | X" (t) — X ()| — 0
a.s. Hence in particular, it follows that

v (t,s,x) = E*F [exp (— /H—t c(z, Xﬁ’;(t))dt) f;(s +1, X (s + Z))i|
B s+t » " B
=E [exp (—/ c(t, X" (t))dt) h(s 4+, X" (s + t))i| ,

where E is the mean value operator taken with respect to the probability measure P.
By the properties of processes X", X and functions ¢ and £, it follows that

Jim V' (L, 5, Xx) = [exp( / " c(r,)?(r))dr) h(s +1, X (s + z))]

By virtue of Theorem 6.3 of Chap.6, it follows that the function v(t,s,x) =
limg 00 V"% (¢, 5, x) belongs to AC(F,G,h,c), because (Argv(t-))(s,x) C
vi(t,s,x) + (Lrgu(t-))(s, x) for (s,x) € [0,T] x RY and ¢ € [0, T — s]. Hence,
by the properties of the function H, we get @ = limy_ o0 H; x (V") = H,x(0). O
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Theorem 3.2. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domainin R?. Let ¢ € C([0, T]xR?,R), u € C((0,T)xD,R), and ® € C([0, T]x
dD, R) be bounded. Assume that H : [0, T] x R — R is measurable and uniformly
integrally bounded such that H(t,-) is continuous. If F and G are furthermore such
that for ®, u, and ¢ given above, the set FFG (c,u, @) belongsto [0, T)xRY for every
(s, X), then there is X x € Xsx(F,G) such that the function v € FFG (c,u,,®d)
defined by

B(s,x) = E*F |:CI)(1’D, )Zs,x(rD)) exp (— /TD c(t,)zs,x(t))dt)i|

. s+t
— E {/ |:u(t,)?x(t)) exp (—/ c(z, ”(z))dz)i| }

with tp = inf{r € (5,T] : X;.(r) & D} satisfies Zc(¥) = inf{Z,(v) : v €
ISo(c,u, @)}

Proof. Similarly as above, we can select a sequence (v,),2, of FEG (c,u,,®) such
that o = sup{Z,(v) : v € I'$;(c,u,, )} = limy,—00 Z(v,) for fixed x € RY.
By virtue of Theorem 6.6 of Chap. 6, for every (s, x) € [0,T) X R?, there exists a
sequence (X{',);2, of X; . (F, G) such that

va(s,x) = E;* [¢(T§3’Xﬁx(m)) exp (—/ID C(f’Xf,x(f))dt)]

‘1,';1) s+t
/ [M(Z,ng(t)) exp (—/ c(z, Xﬁx(z))dz)i| dt§

forn > 1, where 7}, = inf{r € (s,T] : X! (r) & D}. By virtue of Theorem 4.1
of Chap. 4 and Theorem 2.3 of Chap. 1 there are an increasing subsequence
(nk)g2, of (n)n 1@ probability space (2, F, P), and stochastic processes X”"
and X, on (Q,F, P) such that P(X")™' = P(X")~! fork = 1,2,... and
SUPs</<T |X§§(I) — XS,X ()] — 0 a.s. Hence by Theorem 5.2 of Chap. 4, it follows
that

_En

Un (5,%) = E;* |i<I>(r§‘,X”" (1)) exp (—/ID c(t, X (t))dt):|

19 s+t
/ |:u(t, X{kx(t)) exp (—/ c(z, X« (z))dz):| dt}
—F {@(fg,xgg(%gk)) exp (- / Ve X (t))dt)}

ok B s+t B
|:u(t, Xk (1)) exp (—/ ez, X% (z))dz)] dt} = Up, (8, X)

[
s

— ES¥

ni

- F
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for (s,x) € [0,T) x D and k > 1, where 7;f = inf{r € (s,7T] : )Zs’ff;(r) € Dj}.
Therefore, by Lemma 10.1 of Chap. I, Theorem 5.1 of Chap. 4, and the properties
of the sequence (X[%)22 |, one obtains

Jim 3, (s, x) = E [cp(%D, X,+(Ip)) exp (- / ? e, )?x(t))dt)]

) » s+t ~
/ [M(Z, X;.x(2)) exp (—/ c(z, XS,X(Z))dZ)i| dt} ,

where 7p = inf{r € (5,T] : X,.(r) & D}. Immediately from Theorem 6.6 of
Chap. 6, it follows that the function v defined by

-E

i(s,x) = E [@(%D, X,+(Ip)) exp (— / v el(t, )?x(t))dt>]

i . s+i .
/ |:M(Z, X x(1)) exp (— / c(z, Xgx (Z))dz)i| dl§

belongs to Fgc (c, u, @). Finally, similarly as above, we get o = limy o0 Z¢ (U, ) =
Z. (V). |

~E

In a similar way, we can also prove similar theorems for control systems de-
scribed by set-valued stochastic Dirichlet, Poisson, and Dirichlet—Poisson problems.
To formulate them, let us recall the basic notation dealing with such problems.
Let T > 0 and let D C R? be a nonempty bounded domain. Assume that
F : Rt xR?! - CI(RY) and G : Rt x RY — CI(RY*") are measurable
and bounded, and let ® : (0,7) x dD — R, ¢ : (0,T) x D — R and
¥ : (0,T) x D — R be continuous and bounded. Let Dpg(P), Prg(¢) and
Rrc(®, ¥) be defined by

DFG(q)) = {M(S’x) =E™ [q)(TDa Xs,x(fD))] : Xs,x € )(s,x(F7 G)},
Prc(p) = {v(s,X) = E™ [/O ’ ﬁo(TD’Xs,x(TD)):| D Xx € Xox(F, G)},
and

Rec(®, ) = {w (5, %) = B [0(ep, Xox (20))]

+ ES* I:/OID (p(TDs Xs,x(TD))i| . Xs,x S XS,X(F’ G)}



3 Optimal Problems for Systems Described by Partial Differential Inclusions 271

Immediately from Theorem 6.7, Theorem 6.8, and Theorem 6.9 of Chap.6,
it follows that Dpg(P), Pre(¢), and Rrg (P, ) are subsets of the sets of all
solutions of the following stochastic set-valued boundary value problems:

0 € (Lrgu)(t,x) for (¢,x) € [0,T) x D,
limy s, u(t, Xsx(t) = ®(zp, Xsx(tp)) for (s,x) € (0,T) x D a.s.,

{ —¢(s,x) € (Lrgv) (¢,x) for (t,x) €[0,T) x D,
lim; ., v(t, X5 x(¢)) = 0)) for (s,x) € (0,T) xD a.s.,

and

{ —p(s,x) € (Lrgw) (¢, x) for (t,x) € [0,T) x D,
lim; ., w(t, X5 (2)) = ®(tp, X5 x(tp)) for (s,x) € (0,T) x D a.s.,

respectively. Similarly as above, we obtain the following results.

Theorem 3.3. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ® € C([0, T] x dD, R) be continuous and bounded. Assume that
H :[0,T] x R — R is measurable and uniformly integrally bounded such that
H(t,-) is continuous. For every (s, x) € (0,T) x D, there is )2” € X;x(F,G) such
that the function ii(s,x) = ES*[®(Zp, X,.(Ip))] satisfies Z,(ii) = sup{Z,(u) :
u € Dpg(®)}, where Tp = inf{r € (0,T] : X, (r) & D}.

Proof. Similarly as above, we can select a sequence (u,)7>, of Drg(®P) such
that « = sup{Z,(u) : u € Dpg(®)} = lim, o0 Zy(u,). By the definition of
Drg(P), there exists a sequence (X)°2, of X, (F,G) such that u,(s,x) =
E* (), X7 (t}))], where t}, = inf{r € (0,T] : X!(r) & D}. By virtue
of Theorem 4.1 of Chap.4 and Theorem 2.3 of Chap. 1, there are an increasing
subsequence (n;)pe, of (n);2,, a probability space (Qﬁ , P), and stochastic
processes X"* and X on (2, F, P) such that P(XS””;()_1 = P(X")7! fork =
1,2,... and supy<, <t | X" (t) — X (1)] — 0 a.s. Hence, similarly as in the proof
of Theorem 3.2, it follows that @ = lim,_, oo Z(up,) = Z, (), where (s, x) =

E*X[®(3p, X, (7p))].0

Theorem 3.4. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ¢ : (0,T) x D — R be continuous and bounded, and let
H :[0,T] x R — R be measurable and uniformly integrally bounded such that
H(t,-) is continuous. For every (s, x) € (0, T)x D, there is sz e X, x(F,G) such
that the function ii(s,x) = ES*[®(Zp, X,.(Ip))] satisfies Z,(ii) = sup{Z,(u) :
u € Prg(p)}, where Tp = inf{r € (0,T]: X,.(r) & D}. O

Theorem 3.5. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ® € C((0, T) x 3D, R) and  : (0, T) x D — R be continuous
and bounded, and let H : [0, T] x R — R be measurable and uniformly integrally
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bounded such that H(t,-) is continuous. For every (s,x)€(0,T) x D, there
exists sz € X;x(F,G) such that the function u(s,x) = E**[D(Tp, )Zs’x(:fp))]
satisfies Z, (1) = sup{Zy(u) : u € Rre(P,¥)}, where Tp = inf{r € (0,7T] :
X, .(r) € D}. O

4 Notes and Remarks

The results of this chapter are consequences of the properties of the set X; (F, G)
of all (equivalence classes of) weak solutions for SFI(F, G) and the representation
theorems presented in Chap. 6. It is possible to consider problems with weaker
assumptions. It is important to observe that such an approach reduces the opti-
mal control problems described by stochastic functional and partial differential
inclusions to the existence of optimal problems of functionals defined on weakly
compact subsets of the space M(X) of probability measures defined on a Borel o-
algebra B(X) of a complete metric space X. Furthermore, this approach, together
with representation theorems, leads to the representation of optimal solutions of the
above type of optimal control problems by weak solutions of stochastic functional
inclusions. This allows us in some special cases to determine explicit solutions of
such optimal control problems. Some applications of weak solutions of multivalued
stochastic equations to optimal control problems are given by A. Zilinescu in
[97]. Some optimal control problems described by stochastic differential equations
depending on control parameters can be solved explicitly by solving appropriate
HIB equations. As pointed out (see B. @ksendal [86]) at the beginning of this
chapter, some solutions of these equations can also be represented by weak solutions
of stochastic differential equations. More information dealing with such problems
can be found in B. @ksendal [86] and J. Yong and X.Y. Zhou [96].

Let us observe (see [45]) that there are three major approaches to stochastic
optimal control: dynamic programming, duality, and the maximum principle.
Dynamic programming obtains, by means of the optimality principle of Bellman,
the Hamilton—Jacobi—Bellman equation, which characterizes the value function (see
[28, 29, 37, 64, 98]). Under some smoothness and regularity assumptions on the
solution, it is possible to obtain, at least implicitly, the optimal control. This is the
content of the so-called verification theorem, which appears in W.H. Fleming and
R.M. Rishel [28] or W.H. Fleming and H.M. Soner [29]. However, the problem of
recovering the optimal control from the gradient of the value function by means
of solving a static optimization remains, and this can be difficult to do. Duality
methods, also known in stochastic control theory as the martingale approach, have
become very popular in recent years, because they provide powerful tools for
studying some classes of stochastic control problems, usually connected with some
approximative procedures (see [73]). Martingale methods are particularly useful for
problems appearing in finance (see [26]), such as the model of R.C. Merton [74].
Duality reduces the original problem to one of finite dimension. The approach is
based on the martingale representation theorem and the Girsanov transformation.
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The stochastic maximum principle has been developed completely in recent years
in S. Peng [87]. It is a counterpart of the maximum principle for deterministic
problems. The distinctive feature is the use of the concept of forward—backward
stochastic differential equations, which arise naturally, governing the evolution of
the state variables. See H.J. Kushner [67], J.M. Bismut [19,20], or U.G. Haussmann
[36].

Control problems and optimal control problems for systems described by
stochastic and partial differential equations have been considered by many authors.
The classical optimal control problems for systems described by stochastic differ-
ential equations and inclusions were considered by, among others, N.A. Ahmed [1],
A. Friedman [30], W.H. Fleming and M. Nisio [27], and M. Michta [75]. Optimal
control problems for partial differential equations were considered by, for example,
W. Huckbusch in [34]
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