
Chapter 7
Stochastic Optimal Control Problems

This chapter contains some optimal control problems for systems described by
stochastic functional and partial differential inclusions. The existence of optimal
controls and optimal solutions for such systems is a consequence of the weak
compactness of the set Xsx.F;G/ of all weak solutions of (equivalence classes of)
SFI.F;G/ satisfying an initial condition xs D x, measurable selection theorems,
and stochastic representation theorems for solutions of partial differential inclusions
presented in Chap. 6. We begin with introductory remarks dealing with optimal
control problems of systems described by stochastic differential equations.

1 Optimal Control Problems for Systems Described
by Stochastic Differential Equations

Assume that the state of a dynamical system starting from a point .s; x/ 2 RC �Rd

is described at time t � s by a weak solution of the stochastic differential equation

�
dxt D f .t; xt ; ut /dt C g.t; xt ; ut /dBt a:s: for t � s ;

xs D x a:s:;
(1.1)

depending on a control process u D .ut /t�0, where f W RC � Rd � U ! Rd and
g W RC � Rd � U ! Rd�m are given functions with U � Rk . Given a domain
D � Rd and an initial point .s; x/ 2 RC �D, a system .PF; u; Xs;x; B/ consisting
of a filtered probability space PF D .�;F ;F; P /, F-nonanticipative processes u
and Xs;x; and an m-dimensional F-Brownian motion B D .Bt /t�0 defined on PF

satisfying (1.1) and such that �XD < 1 a.s. is called an admissible system for the
stochastic control system described by (1.1). As usual, �XD denotes the first exit time
ofXs;x from the setD. For every .s; x/ 2 RC �D, we are also given a performance
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254 7 Stochastic Optimal Control Problems

functional J u;X
D .s; x/ defined for given functions ˆ W RC � Rd � U ! R and

K W RC � Rd ! R and an admissible system .PF; u; Xs;x; B/ by the formula

J
u;X
D .s; x/ D Es;x

"Z �XD

s

ˆ.t; Xs;x.t/; u.t//dt CK
�
�XD ;Xs;x

�
�XD
��#

; (1.2)

whereEs;x denotes the mean value operator with respect to the lawQs;x ofXs;x . For
every admissible system .PF; u; Xs;x; B/, a pair .u; Xs;x/ is said to be an admissible
pair for (1.1). The set of all admissible pairs for the control system (1.1) is denoted
byƒfg.s; x/. For every .u; Xs;x/ 2 ƒfg.s; x/, a processXs;x is called an admissible
trajectory corresponding to an admissible control u. The performance functional
J u;X
D .s; x/ can be regarded as a functional defined on the set ƒfg.s; x/.

An admissible pair .Nu; NXs;x/ 2 ƒfg.s; x/ is said to be optimal for an optimal

control problem (1.1) and (1.2) if J Nu; NX
D .s; x/ D supfJ u;X

D .s; x/ W .u; Xs;x/ 2
ƒfg.s; x/g for every .s; x/ 2 RC � D. If .Nu; NXs;x/ is the optimal pair for (1.1)
and (1.2), then Nu is called the optimal control, and NXs;x the optimal trajectory for the
optimal control problem described by (1.1) and (1.2). The function v W RC�D ! R

defined by v.s; x/ D supfJ u;X
D .s; x/ W .u; Xs;x/ 2 ƒfg.s; x/g for every .s; x/ 2

RC � D is said to be the value function associated to the optimal control problem

(1.1) and (1.2). An admissible pair .Nu; NXs;x/ is optimal if v.s; x/ D J
Nu; NX
D .s; x/ for

every initial condition .s; x/ 2 RC �D. The problem consisting in finding for each
.s; x/ 2 RC �D the number v.s; x/ for the optimal control problem (1.1) and (1.2)
will be denoted by

8̂
<
:̂

dxt D f .t; xt ; ut /dt C g.t; xt ; ut /dBt a:s: for t � s ;

xs D x a:s: ;

J
u;X
D .s; x/

ƒfg�! max :

(1.3)

Let us observe that if the optimal pair .Nu; NXs;x/ 2 ƒfg.s; x/ exists and
.f . �; �; z/; g. �; �; z// is such that SDF.f . �; �; z/; g. �; �; z// possesses for every fixed
z 2 U a unique in law weak solution X z

s;x satisfying initial condition X z
s;x.s/ D x

a.s. for .s; x/ 2 RC � Rd , then the standard approach to determine an optimal pair
is to solve the Hamilton–Jacobi–Bellman (HJB) equation

(
supz2U fˆ.s; x; z/C .Az

fgv/.s; x/g D 0 for .s; x/ 2 RC �D ;

v.s; x/ D K.s; x/ for .s; x/ 2 RC � @D;

where Az
fg is the infinitesimal generator of a .d C 1/-dimensional Itô diffusion

defined, similarly as in Sect. 11 of Chap. 1, by X z
s;x for every fixed z 2 U . If the

above supremum is attained, i.e., if there exists an optimal control Nu.s; x/, then
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(
ˆ.s; x; Nu.s; x//C .A Nf Ngv/.s; x/ D 0 for .s; x/ 2 RC �D ;

v. N�D; NXs;x/ D K. N�D; NXs;x/ for .s; x/ 2 RC � @D;

where Nf .s; x/ D f .s; x; Nu.s; x//, Ng.s; x/ D g.s; x; Nu.s; x// for .s; x/ 2 RC � D,
A Nf Ng is an infinitesimal generator defined by a unique in law weak solution NXs;x
of SDE. Nf ; Ng/ satisfying an initial condition NXs;x.s/ D x a.s. for .s; x/ 2 RC �
Rd , and N�D denotes the first exit time of NXs;x from the set D. Immediately from
Theorem 5.5 of Chap. 6, it follows that if v 2 C1;2

0 .Œ0; T � �D;R/ and NXs;x is such

that NEs;xŒ
R N�D
0 ˆ.t; NXs;x.t//dt � < 1 and there exists a number C > 0 such that

jv.t; x/j � C.1C NEs;xŒ
R N�D
0
ˆ.t; NXs;x.t//dt �/ for every .s; x/ 2 .0; T / � Rd , then

v.s; x/ D NEs;xŒK. N�D; NXs;x/�C NEs;x

"Z N�D

0

ˆ.t; NXs;x.t//dt
#
;

where NEs;x is a mean value operator taken with respect to a distribution of NXs;x.
We shall consider now the optimal control problem (1.3) with continuous

deterministic control parameters with values in a closed set U � Rk and a
strong solutionXs;x of (1.1) defined for a givenm-dimensional F-Brownian motion
B D .Bt /t�0 on a given complete filtered probability space PF D .�;F ;F; P /
with a filtration F D .Ft /t�0 satisfying the usual conditions. We consider a
control system (1.1) with measurable functions f W RC � Rd � U ! Rd and
g W RC � Rd � U ! Rd�m satisfying the following conditions .H/.
.H/: There exist k;m 2 L.RC;RC/ such that

(i) max.jf .t; x; z/j; kg.t; x; z/k/ � m.t/ for every .t; x; z/ 2 RC � Rd � U .
(ii) max.jf .t; x; z/�f .t; Nx; Nz/j2; kg.t; x; z/�g.t; Nx; Nz/k2/ � k.t/.jx� Nxj2 C jz �

Nzj2/ for every t � 0, x; Nx 2 Rd , and z; Nz 2 U .
(iii) g.t; x; z/ � g.t; x; z/� is positive definite on RC � Rd for every fixed z 2 U .

In what follows, by UT we denote a nonempty compact subset of the Banach
space .C.Œ0; T �;Rk/; k � kT / with the supremum norm k � kT such that ut 2 U for
every u 2 UT and t 2 Œ0; T �.
Remark 1.1. Similarly as in the proof of Theorem 1.1 of Chap. 4, by an appropriate
changing of the norm of the space X defined in the proof of Theorem 1.1 of Chap. 4,
we can verify that if conditions (i) and (ii) of .H/ are satisfied, then for every
.s; x/ 2 RC � Rd , T > s, a filtered probability space PF D .�;F ;F; P /; an
m-dimensionalF-Brownian motionB D .Bt /t�0, and u 2 UT , there exists a unique
strong solution Xu

s;x of (1.1) defined on Œs; T � ��.

Proof. Let .s; x/ 2 RC � Rd , T > s, a filtered probability space PF D
.�;F ;F; P /, and an m-dimensional F-Brownian motion B D .Bt /t�0 be given.
Define, for fixed u 2 UT , set-valued mappings F and G by taking F.t; x/ D
ff .t; x; ut /g and G.t; x/ D fg.t; x; ut /g for .t; x/ 2 Œ0; T � � Rd . Let X˛ˇ

s;x.t/ be
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defined by X˛ˇ
s;x.t/ D x C R t

s
˛�d� C R t

s
ˇ�dB� for every t 2 Œs; T � and .˛; ˇ/ 2 X .

Similarly as in the proof of Theorem 1.1 of Chap. 4, we define on X an operator
Q, which in the case of the above-defined multifunctions F and G, has the form
Q.˛; ˇ/ D f.f . � ; X˛ˇ

s;x ; u/; g. � ; X˛ˇ
s;x ; u//g for every .˛; ˇ/ 2 X .

Let us define on L2.Œ0; T � � �;†F;R
d / a family fk � k�g�>0 of norms k � k�

equivalent to the norm j � j of this space by setting kwk2� D R T
0 expŒ�lK.t/�Ejwt j2dt

for w 2 L2.Œ0; T � � �;†F;R
d /; where l D 1=�2 and K.t/ D R t

0
k.�/d� with

k 2 L.RC;RC/ satisfying conditions .H/. For every .˛; ˇ/; . Q̨ ; Q̌/ 2 X , one gets

kf . � ; X˛ˇ
s;x ; u/� f . � ; X Q̨ Q̌

s;x ; u/k2�

D
Z T

0

expŒ�lK.t/�Ejf .t; X˛ˇ
s;x .t/; ut / � f .t; X Q̨ Q̌

s;x .t/; ut /j2dt

�
Z T

0

k.t/ expŒ�lK.t/�EjX˛ˇ
s;x.t/ � X Q̨ Q̌

s;x .t/j2dt:

Similarly as in the proof of Theorem 1.1 of Chap. 4, we get

EŒjX˛ˇ
s;x.t/ � X Q̨ Q̌

s;x .t/j2� D E

ˇ̌
ˇ̌Z t

s

.˛� � Q̨� /d� C
Z t

s

.ˇ� � Q̌
� /dB�

ˇ̌
ˇ̌2

� 2T

Z t

0

Ej˛� � Q̨� j2d� C 2

Z t

0

Ejˇ� � Q̌
� j2d�:

Therefore,

kf . � ; X˛ˇ
s;x ; u/� f . � ; X Q̨ Q̌

s;x ; u/k2�

� 2T

Z T

0

Z t

0

k.t/ expŒ�lK.t/�Ej˛� � Q̨� j2d�dt

C 2

Z T

0

Z t

0

k.t/ expŒ�lK.t/�Ejˇ� � Q̌
� j2d�dt:

By interchanging the order of integration, we obtain
Z T

0

Z t

0

k.t/ expŒ�lK.t/�Ej˛�� Q̨� j2d�dt D
Z T

0

Z T

�

Ej˛�� Q̨� j2k.t/ expŒ�lK.t/�dtd�

D ��2 e�lK.T /
Z T

0

Ej˛� � Q̨� j2d� C �2
Z T

0

k.�/ expŒ�lK.�/�Ej˛� � Q̨� j2d�

� �2 k˛ � Q̨k2�:
In a similar way, we obtain

Z T

0

Z t

0

k.t/ expŒ�lK.t/�Ejˇ� � Q̌
� j2d�dt � �2 kˇ � Q̌k�:
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Therefore,

kf . � ; X˛ˇ
s;x ; u/� f . � ; X Q̨ Q̌

s;x ; u/k2� � 2 �2.1C T / k.˛; ˇ/ � . Q̨ � Q̌k2� ;

where k.˛; ˇ/ � . Q̨ ; Q̌/k� D max.k˛ � Q̨k�; kˇ � Q̌k�/. In a similar way, for every
� > 0, we can define on the space L2.Œ0; T � ��;†F;R

d�m/ an equivalent norm,
denoted again by k � k�; and get

kg. � ; X˛ˇ
s;x; u/� g. � ; X Q̨ Q̌

s;x ; u/k� � 2 �2.1C T / k.˛; ˇ/ � . Q̨ ; Q̌/k�:

Therefore, for every � > 0 and .˛; ˇ/; . Q̨ ; Q̌/ 2 X , one has

d�.Q.˛; ˇ/;Q. Q̨ ; Q̌// � �
p
2.1C T / k.˛; ˇ/ � . Q̨ ; Q̌/k�;

where

d�.Q.˛; ˇ/;Q. Q̨ ; Q̌//
D maxfkf . � ; X˛ˇ

s;x; u/� f . � ; X Q̨ Q̌
s;x ; u/k� ; kg. � ; X˛ˇ

s;x ; u/� g. � ; X Q̨ Q̌
s;x ; u/k�g:

Taking in particular � 2 .0; 1=
p
2.1C T //, we obtain a contraction mapping Q

defined on the complete metric space .X ; d�/. Then there exists a unique fixed point
.˛; ˇ/ 2 X of Q, which generates exactly one strong solution X˛ˇ

s;x of (1.1) defined
on Œs; T � ��. ut

Let Xu
s;x be the unique strong solution of (1.1) defined for given .s; x/ 2

RC � Rd , T > s, and u 2 UT on the interval Œs; T �. We can extend such a
solution to the whole interval Œ0; T � by taking Xu

s;x.t/ D x a.s. for 0 � t < s

and define on UT an operator �s;x with values in CT
F by setting �s;x.u/ D QXu

s;x;

where QXu
s;x D IŒ0;s/x C IŒs;T �X

u
s;x and .C T

F ; k � k/ denotes the space of all F-adapted
d -dimensional continuous square integrable stochastic processes X D .Xt /0�t�T
with norm kXk D fEŒsup0�t�T jXt j2�g1=2.
Lemma 1.1. Let B D .Bt /t�0 be an m-dimensional F-Brownian motion on a
filtered probability space PF, .s; x/ 2 RC � Rd , and T > s. If f and g are
measurable and satisfy (i) and (ii) of conditions .H/, then �s;x is a continuous
mapping on UT depending continuously on .s; x/ 2 RC � Rd .

Proof. By virtue of Remark 1.1, for every u 2 UT , there exists a unique strong
solution of (1.1) defined on Œs; T � ��. Let u 2 UT , and let .un/1nD1 be a sequence
of UT such that kun � ukT ! 0 as n ! 1. By the definition of the mapping �s;x ,
we have �s;x.u/ D QXs;x and �s;x.un/ D QXn

s;x for n D 1; 2; : : :. By Corollary 4.4 of
Chap. 1, for every n � 1 and s � t � T , we get
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E

"
sup
0�z�t

j QXn
s;x.z/ � QXs;x.z/j2

#
D E

�
sup
s�z�t

jXn
s;x.z/ �Xs;x.z/j2

�

� 2E

 
sup
s�z�t

ˇ̌
ˇ̌Z z

s

Œf .�; Xn
s;x.�/; u

n
� / � f .�;Xs;x.�/; u� /�d�

ˇ̌
ˇ̌2
!

C 2E

 
sup
s�z�t

ˇ̌
ˇ̌Z z

s

Œg.�; Xn
s;x.�/; u

n
� /� g.�;Xs;x.�/; u� /�dB�

ˇ̌
ˇ̌2
!

� 2TE

Z t

s

jf .�;Xn
s;x.�/; u

n
� / � f .�;Xs;x.�/; u� /j2d�

C 8E

Z t

s

jg.�;Xn
s;x.�/; u

n
� /� g.�;Xs;x.�/; u� /j2d�

� 2.T C 4/ kun � uk2T
Z T

0

k.t/dt

C 2.T C 4/

Z t

0

k.�/d� E

�
sup
s�z��

jXn
s;x.z/ �Xs;x.z/j2

�
d�;

which by Gronwall’s inequality (see [49], p. 22) implies that

k QXn
s;x � QXs;xk2 D E

"
sup
0�t�T

j QXn
s;x.t/ � QXs;x.t/j2

#

� 2.T C 4/

�Z T

0

k.t/dt

�
exp

�
2.T C 4/

Z T

0

k.t/dt

�
kun � uk2T :

Therefore, limn!1 k�s;x.un/��s;x.u/kT D 0 for every u 2 UT and every sequence
.un/1nD1 of UT converging to u 2 UT . Finally, immediately from the definition of
�s;x; for every .s; x/; .Ns; Nx/ 2 RC � Rd with s < Ns, one gets

supfj�s;x.u/� �Ns; Nx.u/j W u 2 UT g � 2

2
4jx � Nxj C .

p
T C 1/

sZ Ns

s

m2.t/dt

3
5 ;

which implies that the mapping RC � Rd 3 .s; x/ ! �s;x.u/ 2 Rd is uniformly
continuous with respect to u 2 UT . Similarly, this is true for the case Ns < s. ut

Now we can prove the following existence theorem.

Theorem 1.1. Let f and g be measurable and satisfy conditions .H/. If K W
RC � Rd ! R and ˆ W RC � Rd � U ! R are continuous and bounded,
then for every bounded domain D; filtered probability space PF, m-dimensional
F-Brownian motion B D .Bt /t�0 defined on PF, and .s; x/ 2 RC � Rd , there
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exists Nu 2 UT such that IDs;x.Nu; NX Nu
s;x/ D supfIDs;x.u; Xu

s;x/ W u 2 UT g, where

IDs;x.u; X
u
s;x/ D J u;X

D .s; x/ and Xu
s;x is the unique strong solution of (1.1) on the

filtered probability space PF corresponding to the Brownian motion B and u 2 UT .

Proof. Similarly as above, by virtue of Remark 1.1, for every u 2 UT , there exists a
unique strong solution of (1.1) defined on Œs; T ���. Observe that supfIDs;x.u; Xu

s;x/ W
u 2 UT g D supfIDs;x.u; �s;x.u// W u 2 UT g. Let ˛ D supfIDs;x.u; �s;x.u// W u 2 UT g,
and let .un/1nD1 be a sequence of UT such that ˛ D limn!1 IDs;x.un; �s;x.un//. By
the compactness of UT , there exist an increasing subsequence .nk/1kD1 of .n/1nD1 and
Nu 2 UT such that kunk�NukT ! 0 as k ! 1. By virtue of Lemma 1.1, it follows that
k�s;x.unk / � �s;x.u/kT ! 0 as k ! 1. By the definitions of the operator �s;x and
the norm k�k, it follows that there exists a subsequence, still denoted by .Xnk

s;x/
1
kD1, of

the sequence .Xnk
s;x/

1
kD1 such that sup0�t�T j QXnk

s;x � NXs;x j ! 0 a.s. as k ! 1, where
NXs;x D �s;x.Nu/. By virtue of Lemma 10.1 of Chap. 1 and Theorem 5.1 of Chap. 4, we

have Q�nkD ! N�D a.s. as k ! 1, where Q�nkD and N�D denote the first exit times of QXnk
s;x

and NXs;x, respectively, from the domain D. Hence, by the continuity of ˆ and K;
it follows that ˛ D limk!1 IDs;x.unk ; �s;x.unk // D IDs;x.Nu; �s;x.Nu// D IDs;x.Nu; NXs;x/.
Thus .Nu; NXs;x jŒs;T �/ is an optimal pair for (1.3).ut

We can consider the above optimal control problem with a special type of
controls u D .ut /t�0 of the form ut D '.t; Xt / a.s. for t � 0 and a measurable
function ' W RC � Rd ! U � Rk . Such controls are called Markov controls,
because with such u, the corresponding process X D .Xt/t�0 becomes an Itô
diffusion, in particular a Markov process. In what follows, the above Markov control
will be identified with a measurable function ', and this function will be simply
called a Markov control. The set of all such Markov controls will be denoted by
M.U /. The set of all restrictions of all ' 2 M.U / to the set Œ0; T ��Rd is denoted
by MT .U /. Immediately from Theorem 1.1, it follows that for all measurable
functions f and g satisfying conditions .H/, there exists an optimal control for
(1.3) in the set ST consisting of all bounded and uniformly Lipschitz continuous
Markov controls ' 2 MT .U /, i.e., with the property that there exists a number
L > 0 such that j'.t; z/ � '.s; v/j � L.jt � sj C jz � vj/ for every ' 2 ST ,
t; s 2 Œ0; T �, and z; v 2 Rd : Indeed, for functions f , g, and '; 2 ST � MT .U /

as given above, we have

jf .t; x; '.t; x// � f .t; z;  .t; z//j2 � 2jf .t; x; '.t; x// � f .t; z; '.t; z//j2

C 2jf .t; z; '.t; z//�f .t; z;  .t; z//j2 � 2k.t/
	
.1CL2/jx�zjC2L2k'� k2T




and

kg.t; x; '.t; x// � g.t; z;  .t; z//k2 � 2k.t/
	
.1CL2/jx � zj C 2L2k' �  k2T




for every t 2 Œ0; T � and x; z 2 Rd , where k � kT denotes the supremum norm of the
space C.Œ0; T ��Rd ;Rk/ of all continuous bounded functions v W Œ0; T ��Rd!Rk .



260 7 Stochastic Optimal Control Problems

Hence, similarly as in the proof of Lemma 1.1, it follows that the mapping �s;x W
ST 3 u ! QX'

s;x 2 CT
F with QX'

s;x and CT
F as above is continuous. Here X'

s;x is
a strong solution of (1.1) corresponding to the Markov control ' 2 ST . Therefore,
immediately from Theorem 1.1, we obtain the existence in ST of the optimal control
for (1.3).

2 Optimal Control Problems for Systems Described
by Stochastic Functional Inclusions

We shall now extend the above optimal control problem (1.3) on the case in which
the dynamics of a control system is described by stochastic functional inclusions
SFI.F;G/ of the form

�
Xt �Xs 2 R ts F .�;X�/d� C R t

s G.�;X�/dB� for t � s ;

Xs D x a:s:
(2.1)

with the performance functional depending only on the weak solution .PF; X;B/

of SFI.F;G/, i.e., with the performance functional JXD .s; x/ of the form

JXD .s; x/ D Es;x

�Z �D

s

‰.t; Xt/dt CK.�D;X�D /

�
; (2.2)

where D is a bounded subset of Rd , and ‰ W RC � Rd ! R and K W RC �
Rd ! R are given continuous functions. By a solution of such a stochastic optimal
control problem we mean a weak solution . QP QF; QX; QB/ of (2.1) such that J QX

D .s; x/ D
supfJXD .s; x/ W X 2 XD

s;xg, where XD
s;x denotes the set of all weak solutions of

(equivalence classes of) the stochastic functional inclusion SFI.F;G/ satisfying
an initial condition X.s/ D x and such that �D D infft > s W Xs;x.t/ 62 Dg < 1.
Such an optimal control problem will be denoted by

8̂
<
:̂
Xt �Xs 2 R ts F .�;X�/d� C R t

s G.�;X�/dBt� for t � s ;

Xs D x a:s: ;

J XD .s; x/
XD
s;x�! max;

(2.3)

and called an optimal control problem for the control system described by the
stochastic functional inclusion SFI.F;G/. In this case, the set XD

s;x is said to be an
admissible set for the optimal control problem (2.3). If there is . QP QF; QX; QP / 2 XD

s;x

such that J QX
D .s; x/ D supfJXD .s; x/ W X 2 XD

s;xg, then . QP QF; QX; QP / is called
the optimal solution of the optimal control problem (2.3). Similarly as above, it
will be simply denoted by QX . We shall consider the optimal control problems
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of the form (2.3) with set-valued mappings F W RC � Rd ! Cl.Rd / and
G W RC � Rd ! Cl.Rd�m/ such that the set Xs;x.F;G/ of all weak solutions
of SFD.F;G/ satisfying the initial condition X.s/ D x is weakly compact in
distribution and such that XD

s;x.F;G/ ¤ ;. Hence, immediately from Theorem 5.1
of Chap. 4, it will follow that XD

s;x is also weakly compact. We apply the result
obtained to the case of F and G defined by F.t; x/ D ff .t; x; z/ W z 2 U g and
G.t; x/ D fg.t; x; z/ W z 2 U g. Hence in particular, the existence of optimal pairs
for the optimal control problems of the system described by (1.1) and performance
functionals of the form

JXD .s; x/ D Es;x

�Z �D

s

sup
u2U

ˆ.t; Xt ; u//dt CK.�D;X�D /

�
(2.4)

and

JXD .s; x/ D Es;x

"Z �D

s

sup
n�1

ˆ.t; Xt ; '
n.t; Xt //dt CK.�D;X�D /

#
(2.5)

will follow, where .'n/1nD1 is a dense sequence of a bounded set U�C.RC�Rd ; U /.
In what follows, we shall still denote by .P/ and .A/ the assumptions defined in
Sect. 1 of Chap. 6.

Theorem 2.1. Let F W RC � Rd ! Cl.Rd / and G W RC � Rd ! Cl.Rd�m/
be convex-valued, continuous, and bounded, and let ‰ W RC � Rd ! R be a
uniformly integrally bounded Carathéodory function. Assume that G is diagonally
convex and satisfies item (iv0) of conditions .A/. LetD be a bounded domain in Rd .
If K W RC � Rd ! R is continuous and bounded, then for every .s; x/ 2 RC �D,
the optimal control problem (2.3) possesses an optimal solution.

Proof. Let us observe that XD
s;x is nonempty and weakly compact in distribution.

Indeed, similarly as in the proof of Theorem 4.1 of Chap. 4, we can verify that
Xs;x.F;G/ is weakly compact in distribution for every .s; x/ 2 RC � Rd . By
property .P/ of G, for every .f; g/ 2 C.F / � C.G/, there exists a unique in
law solution . QP QF; Qx; QB/ of SDE.f; g/ with initial condition Qxs D x a.s., which
by the properties of functions f and g, implies that . QP QF; Qx; QB/ 2 Xs;x.F;G/.
By Remark 10.4 of Chap. 1, we have Q�D < 1 a.s., where Q�D is the first exit
time of Qx from the set D. Then . QP QF; Qx; QB/ 2 XD

s;x . To verify that XD
s;x is weakly

compact, let us observe that by the weak compactness of Xs;x.F;G/ and the relation
XD
s;x � Xs;x.F;G/, it is enough to verify that XD

s;x is weakly closed.
Let .xr /1rD1 be a sequence of XD

s;x convergent in distributions. Then there exists a
probability measure P on ˇ.C.RC;Rd // such that P.xr /�1 ) P as r ! 1.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space . Q�; QF ; QP /
and random variables Qxr W Q� ! C.RC;Rd / and Qx W Q� ! C.RC;Rd / for
r D 1; 2; : : : such that P.xr /�1 D P. Qxr/�1 for r D 1; 2; : : : ; QP . Qx/�1 D P and
limr!1 �. Qxr ; Qx/ D 0 with . QP :1/, where � is the metric defined in C.RC;Rd / as
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in Theorem 2.4 of Chap. 1. For every r � 1, one has �rD < 1 a.s., where �rD is the
first exit time of xr from the set D, which by Theorem 5.2 of Chap. 4, implies that
Q�rD < 1 a.s., where Q�rD denotes the first exit time of Qxr from the set D. Hence, by
the properties of the sequence . Qxr /1rD1; it follows that Q�D < 1 a.s., where Q�D;
is the first exit time of Qx from D. Similarly as in the proof of Theorem 4.1 of
Chap. 4, we can verify now that by virtue of Theorem 1.3 of Chap. 4, there exist
a standard extension OP OF D . O�; OF ; OF; OP / of . Q�; QF ; QF; QP / and an m-dimensional
Brownian motion OB such that . OP OF; Ox; OB/ is a weak solution of SFI.F;G;�/; with
� D P Qx�1

s and such that xr ) Ox. Furthermore, we have P Ox�1 D P Qx�1; which by
Theorem 5.2 of Chap. 4, implies that P O��1

D D P Q��1
D . Hence in particular, it follows

that O�D < 1. Thus XD
� is weakly closed with respect to weak convergence in the

sense of distributions.
By (2.2) and the properties of the functions‰ andK , one has ˛ WD supfJXD .s; x/ W

X 2 XD
s;xg < 1, because

Z �XD

s

‰.t; X.t//dt �
Z �XD

s

j‰.t;X.t//jdt �
Z �XD

0

m.t/dt �
Z 1

0

m.t/dt < 1;

where m 2 L.RC;RC/ is such that j‰.t; x/j � m.t/ and there is M > 0 such that
jK.t; x/j � M for x 2 Rd and t � 0. Let .Pn

Fn
; Xn; Bn/ 2 XD

s;x be for n D 1; 2; : : :

such that ˛ D limn!1 J nD.s; x/, with

J nD.s; x/ D Es;x

"Z �nD

s

‰.t; Xn.t//dt CK.�nD;X
n.�nD//;

#

where Es;x
n denotes the mean value operator with respect to the probability law

Qs;x
n of Xn and �nD D inffr > s W Xn.r/ 62 Dg for n D 1; 2; : : :. By the

weak compactness of XD
s;x and Theorem 2.3 of Chap. 1, there are an increasing

subsequence .nk/1kD1 of the sequence .n/1nD1, a probability space . Q�; QF ; QP/, and
continuous processes QXnk and QX on . Q�; QF ; QP/ such that P.Xnk /�1 D P. QXnk/�1
for k D 1; 2; : : : and �. QXnk ; QX/ ! 0, QP -a.s. as k ! 1; which by Corollary 3.3 of
Chap. 1, implies that P.Xnk

s /
�1 ) P QX�1

s as k ! 1. Let QFt D T
">0 �.f QX.u/ W

s � u � t C "g/ for t � s and put QF D . QFt /t�s . It is clear that QX is QF-adapted.
By virtue of Lemma 1.3 of Chap. 4, we have M QX

FG ¤ ;, and therefore, there exist
Qf 2 S QF.F ı QX/ and Qg 2 S QF.G ı QX/ such that for every h 2 C2

0 .R
d /, a stochastic

process ' QX
h D ..'

QX
h /t /t�s with .' QX

h /t D h. QXt/�h. QXs/�
R t
s
.L

QX
Qf Qgh/�d� for t � s is a

continuous local QF-martingale on the filtered probability space QP QF D . Q�; QF ; QF; QP /.
Hence, by Theorem 1.3 of Chap. 4, it follows that there exists a standard extension
of QP QF; still denoted by QP QF; and anm-dimensional QF-Brownian motion QB D . QBt/t�0
such that . QP QF; QX; QB/ is a weak solution of SFI.F;G;�/ with an initial distribution
� D P QX�1

s . Immediately from the properties of the stochastic processes QXnk and
QX , it follows that eXnk

s D x, P-a.s., and P.eXnk
s /

�1 ) P.eXs/
�1 as k ! 1, which

implies that eXs D x, QP-a.s. Therefore, . QP QF; QX; QB/ 2 Xs;x.F;G/. Similarly as



2 Optimal Control Problems for Systems Described: : : 263

above, we can verify that . QP QF; QX; QB/ 2 XD
s;x . On the other hand, By (2.2) and

the properties of processes Xnk and QXnk and Theorem 5.2 of Chap. 4, it follows
that P.�kD/

�1 D P. Q�kD/�1 for k D 1; 2; : : :. Then J nkD .s; x/ D QJ nkD .s; x/ for every
k D 1; 2; : : :, where

QJ nkD .s; x/ D QEs;x

"Z Q�kD

s

‰.t; QXnk.t//dt CK. Q�kD; QXnk. Q�kD//
#

for k D 1; 2; : : : with Q�kD and �kD defined as above with eXnk
t D eXnk

.t/. Hence, by
Theorem 5.1 of Chap. 4, it follows that

lim
k!1

QJ nkD .s; x/ D QEs;x

"Z Q�D

s

‰.t; QX.t//dt CK. Q�D; QX. Q�D//
#
;

where Q�D D inffr > s W QX 62 Dg. But ˛ D limk!1 J
nk
D .s; x/ D limk!1 QJ nkD .s; x/:

Therefore,

˛ D QEs;x

"Z Q�D

s

‰.t; QX.t//dt CK. Q�D; QX. Q�D//
#
:

ut
Remark 2.1. Similarly as above, we can consider the following viable optimal
control problem:

8̂
<
:̂
Xt � Xs 2 R ts F .�;X�/d� C R t

s G.�;X�/dBt�; for t � s ;

Xt 2 	.t/ a:s: for t � s;

J.X/
X 	
D�! max;

where 	 is a given target set mapping and X 	
D denotes the set of all weak 	-viable

solutions .PF; X;B/ of the stochastic functional inclusion SFI.F;G/ such that
�XD D infft > s W X.t/ 62 Dg < 1. �

We shall consider now the existence of the optimal control problem (1.3) with a
performance functional JXD .s; x/ defined by (2.4) and (2.5) above. Let us recall that
for a given nonempty set U � Rk , a bounded domain D, an initial point .s; x/ 2
RC �D, and functions f W R C �Rd � U ! Rd , g W R C �Rd � U ! Rd�m,
‰ W RC � Rd ! R, and K W RC � Rd ! R, we are interested in the existence
of an admissible pair .Nu; NX Nu/ 2 ƒfg.s; x/ such that J NX

D .s; x/ D supfJXD .s; x/ W
.u; Xu/ 2 ƒfg.s; x/g. We shall show that such an optimal pair .Nu; NX/ 2 ƒfg.s; x/

exists if f W RC � Rd � U ! Rd and g W RC � Rd � U ! Rd�m satisfy the
following conditions .C /:

(i) f and g are continuous and bounded such that f .t; x; � /; g.t; x; � /, and .g �
g�/.t; x; � / are affine for every fixed .t; x/ 2 RC �Rd on the compact convex
set U � Rk.
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(ii) g is such that g � g� is uniformly positive definite.
(iii) ˆ W RC � Rd � U ! R is a uniformly integrally bounded Carathéodory

function and K W RC � Rd ! R is continuous and bounded.

Lemma 2.1. If f and g satisfy conditions .C /, then for every nonempty compact
convex set U � Rk , the set-valued mappings F and G defined by F.t; x/ D
ff .t; x; z/ W z 2 U g and G.t; x/ D fg.t; x; z/ W z 2 U g satisfy .P/ and conditions
(i), (iii), (iv0), and (v) of .A/.

Proof. Immediately from (ii) of conditions .C /, it follows that G satisfies the
condition .P/. Let TU be the induced topology in U . Then .U; TU / is a compact
topological space. Let .Nt ; Nx/ 2 RC�Rd and Nz 2 U be fixed and V an open set in Rd .
Suppose .Nt ; Nx; Nz/ is such that f .Nt ; Nx; Nz/ 2 V . By the continuity of f . �; � ; Nz/ at .Nt ; Nx/,
there is a neighborhood N of .Nt ; Nx/ such that f .t; x; Nz/ 2 V for every .t; x/ 2 N .
Therefore, for every .t; x/ 2 N , one has F.t; x/ \ V ¤ ;. Then F is l.s.c. In a
similar way, we can also verify that G is l.s.c. By the compactness of the set U and
continuity of f .t; x; � / and g.t; x; � /, it follows thatF.t; x/ andG.t; x/ are compact
subsets of Rd and Rd�m, respectively, for every .t; x/ 2 RC � Rd . Similarly, by
the convexity of U and affineness of f .t; x; � /, g.t; x; � /, and .g � g�/.t; x; � /, it
follows that F andG are convex-valued andG is diagonally convex. We shall verify
that F and G are also u.s.c. Indeed, similarly as above, let .Nt ; Nx/ 2 RC � Rd

be arbitrarily fixed and suppose V is an open neighborhood of F.Nt ; Nx/. By the
continuity of f , for every fixed z 2 U there exist neighborhoods W z and Oz of
.Nt ; Nx/ 2 RC � Rd and Nz 2 U; respectively, such that f .W z � Oz/ � V . By the
compactness of the topological space .U; TU /, there are z1; : : : ; zn 2 U such thatSn
iD1Ozi D U . For every i D 1; 2; : : : ; n, we have f .W zi � Ozi / � V . Therefore,Sn
iD1 f .W zi � Ozi / � V . But

n[
iD1

f

 "
n\
iD1

W zi

#
� Ozi

!
D f

 "
n\
iD1

W zi

#
�
"

n[
iD1

Ozi

#!

D f

 "
n\
iD1

W zi

#
� U

!
�

n[
iD1

f .W zi � Ozi / � V:

Therefore, F.
Tn
iD1 W zi / D f .Œ

Tn
iD1 W zi � � U / � V . Then F is u.s.c. at .Nt ; Nx/ 2

RC � Rd . In a similar way, we can verify that also G is u.s.c.
Let � 2 C.l.G// be a continuous selector of D.G/ D l.G/, where l.u/ D u � u�

for every u 2 Rd�m, and let �.t; x; z/ D l.g.t; x; z// D g.t; x; z/ � g�.t; x; z/ for
.t; x; z/ 2 RC � Rd � U . We have �.t; x/ 2 �.t; x; U / for .t; x/ 2 RC � Rd .
Therefore, by virtue of Theorem 2.2 of Chap. 2, there exists a sequence .zn/1nD1 of
continuous functions zn W RC �Rd ! U such that sup.t;x/ j�.t; x/� l.gn.t; x//j !
0 as n ! 1, where gn.t; x/ D g.t; x; zn.t; x// 2 G.t; x/ for n D 1; 2; : : : and
.t; x/ 2 RC � Rd . Then there exists a sequence .gn/1nD1 of continuous selectors of
G such that l.gn/ ! � uniformly in .t; x/ 2 RC � Rd as n ! 1. Thus (iv0) of
conditions .A/ is also satisfied. ut
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We can now prove the existence of an optimal pair for the optimal control
problem (1.3) with the performance functionals defined by (2.4) and (2.5).

Theorem 2.2. Let D be a bounded domain in Rd and assume that conditions .C /
are satisfied. There exists an optimal pair of the optimal control problem (1.3) with
a performance functional defined by (2.4).

Proof. Let F and G be defined as above. By virtue of Lemma 2.1, the multi-
functions F and G satisfy the conditions of Theorem 2.1. Therefore, for every
.s; x/ 2 RC �Rd , there exists a weak solution . QP QF; QX; QB/ of SFI.F;G/ satisfying
the initial condition QX.s/ D x, QP -a.s., with QP QF D . Q�; QF ; QF; QP / such that

J
QX
D .s; x/ D supfJXD .s; x/ W X 2 Xs;xg, where

J
QX
D .s; x/ D QEs;x

"Z Q�D

s

‰.t; QX.t//dt CK. Q�D; QX. Q�D//
#

with ‰.t; x/ D supfˆ.t; x; u/ W u 2 U g and Q�D D inffr > s W QX.r/ 62 Dg.
By virtue of Theorem 1.5 of Chap. 3, there are Qf 2 S QF.F ı QX/ and Qg 2
S QF.G ı QX/ such that QX.t/ D x C R t

s
Qf�d� C R t

s
Qg�d QB� , QP -a.s. for t � s. Let

	.t; x/ D f.f .t; x; z/; g.t; x; z// W z 2 U g for .t; x/ 2 RC � Rd . Similarly
as in the proof of Lemma 2.1, we can verify that 	 is a continuous and bounded
set-valued mapping with compact values in Rd � Rd�m. Therefore, the set-valued
process Q	 D . Q	t /t�s defined by Q	t D 	.t; QX.t// is QF-nonanticipative and such
that . Qft ; Qgt / 2 Q	t , QP -a.s. for t � s. By virtue of Theorem 2.5 of Chap. 2, there
exists an QF-nonanticipative process Qu D .Qut /t�s with values in the set U such
that . Qft ; Qgt / D .f .t; QX.t/; Qut /; g.t; QX.t/; Qut //, QP -a.s. for t � s. Then an optimal
solution QX of the optimal control problem (1.3) with the performance functional
(2.4) can be expressed by the formula

QX.t/ D x C
Z t

s

f .�; QX.�/; Qu� /d� C
Z t

s

g.�; QX.�/; Qu� /d QB�

QP -a.s. for t � s. Therefore, .Qu; QX/ 2 ƒfg.s; x/. In a similar way, we deduce that
for every weak solution .PF; X;B/ of SFI.F;G/ satisfying the initial condition
X.s/ D x a.s. with the above-defined set-valued mappings F and G, there exists
an F-nonanticipative stochastic process u D .ut /t�s with values in U such that
.u; X/ 2 ƒfg.s; x/. By the properties of the performance functional JXD .s; x/
defined by (2.4), one has

J
QX
D .s; x/ D supfJXD .s; x/ W X 2 CDs;xg D supfJXD .s; x/ W .u; X/ 2 ƒf;g.s; x/g

with CDs;x D 
.ƒf;g.s; x//; where 
.u; X/ D X for .u; X/ 2 ƒfg.s; x/. Then
.Qu; QX/ is the optimal pair for the optimal control problem (1.3) with the performance
functional defined by (2.4). ut
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In a similar way, we can prove the following existence theorem.

Theorem 2.3. Let D be a bounded domain in Rd , U a bounded subset of C.RC �
Rd ; U /, and .'n/1nD1 a dense sequence of U . Assume that conditions .C / are
satisfied and that f and g are such that f .t; x; � / and g.t; x; � / are linear. There
exists an optimal pair .Qu; QX/ for the optimal control problem (1.3) with the perfor-

mance functional JXD .s; x/ defined by (2.5) and Qu D limw
j!1

Pmj
kD1 ICjk '

nkj .�; QX�/,
where limw denotes the weak limit of sequences in the space L.RC � �;†F;R

k/,

fCj
1 ; : : : ; C

j
mj g is a finite †F-partition of RC � �, and f'n1j ; : : : ; 'n

mj
j g � f'n W

n � 1g for every j � 1.

Proof. Let F and G be defined by F.t; x/ D ff .t; x; '.t; x// W ' 2 Ug
and G.t; x/ D fg.t; x; '.t; x// W ' 2 Ug for .t; x/ 2 RC � Rd . By virtue
of Lemma 2.1, F and G satisfy the conditions of Theorem 2.1. Therefore, for
every .s; x/ 2 RC � Rd , there exists a weak solution . QP QF; QX; QB/ of SFI.F;G/
satisfying the initial condition QX.s/ D x, QP -a.s., with QP QF D . Q�; QF ; QF; QP/ such that

J
QX
D .s; x/ D supfJXD .s; x/ W X 2 Xs;xg. By virtue of Theorem 1.5 of Chap. 3, there

are Qf 2 S QF.F ı QX/ and Qg 2 S QF.G ı QX/ such that QXt D x C R t
s

Qf�d� C R t
s

Qg�d QB� ,
QP -a.s. for t � s. By the properties of the sequence .'n/1nD1, it follows that
F.t; x/ D clff .t; x; 'n.t; x// W n � 1g and G.t; x/ D clfg.t; x; 'n.t; x// W n � 1g
for .t; x/ 2 RC � Rd . Therefore, by virtue of Lemma 4.1 of Chap. 2, it
follows that S QF.F ı QX/ D decff .�; QX�; 'n.�; QX�// W n � 1g and S QF.G ı
QX/ D decfg.�; QX�; 'n.�; QX�// W n � 1g. Hence it follows that . Qf ; Qg/ 2

decf.f; g/.�; QX�; 'n.�; QX�// W n � 1g. Thus there exists a sequence .˛j /1jD1 of

decff; g/.�; QX�; 'n.�; QX�// W n � 1g converging to . Qf ; Qg/ in the metric topology
of L2.RC � �;†F;R

d � Rd�m/. But decf.f; g/.�; QX�; 'n.�; QX�// W n � 1g D
.f; g/.�; QX�; decf'n.�; QX�/ W n � 1g/. Therefore, for every j � 1, there exist a

finite †F-partition fCj
1 ; : : : ; C

j
mj g of RC � � and a family of f'n1j ; : : : ; 'n

mj
j g �

f'n W n � 1g such that ˛j D .f; g/.�; QX�;
Pmj

kD1 ICjk '
nkj .�; QX�// for j � 1. By the

boundedness of the set U , it follows that the sequence .
Pmj

kD1 ICjk '
nkj .�; QX�//1jD1 is

relatively sequentially weakly compact. Then there exist Qu 2 L.RC � �;†F;R
k/

and a subsequence, still denoted by .
Pmj

kD1 ICjk '
nkj .�; QX�//1jD1; weakly converging

to Qu. Hence, by the properties of the functions f and g, it follows that . Qf ; Qg/ D
.f .�; QX�; Qu/; g.�; QX�; Qu//. Similarly as in the proof of Theorem 2.3, it follows that
.Qu; QX/;with the optimal control Qu described above, is the optimal pair for the optimal
control problem (1.3) with the performance functional JXD .s; x/ defined by (2.5). ut
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3 Optimal Problems for Systems Described by Partial
Differential Inclusions

Let F W RC � Rd ! Cl.Rd / and G W RC � Rd ! Cl.Rd�m/ be such that the
following conditions .D/ are satisfied:

(i) F andG are bounded, continuous, and convex-valued, and for every g 2 C.G/,
the matrix-valued mapping l.g/ D g � g� is uniformly positive definite.

(ii) G is diagonally convex, i.e., for every .t; x/ 2 RC �Rd , the set D.G/.t; x/ D
fv � v� W v 2 G.t; x/g is convex.

(iii) For every � 2 C.D.G//, there exists a sequence .gn/1nD1 of C.G/ such that
sup.t;x/2RC�Rd j�n.t; x/��.t; x/j ! 0 as n ! 1, where �n D l.gn/ for n�1.

For a bounded domain D � Rd , T > 0, .s; x/ 2 RC � Rd , Qh 2 C2
0 .R

dC1/,
u 2 C.Œ0; T � � D;R/, and a continuous function ˆ W .0; T / � @D ! R, we shall
consider the initial and boundary values problems (6.3) and (6.4) of Chap. 6 of the
form:

8<
:
v0
t .t; s; x/ � v0

s.t; s; x/ 2 .LFGv.t; �// .s; x/ � c.s; x/v.t; s; x/
for .s; x/ 2 Œ0; T / � Rd and t 2 Œ0; T � s�;

v.0; s; x/ D Qh.s; x/ for .s; x/ 2 Œ0; T / � Rd ;

and

�
u.t; x/� v0

t .t; x/ 2 .LFGv/ .t; x/ � c.t; x/v.t; x/ for .t; x/ 2 .0; T / �D;
limD3x!y v.t; x/ D ˆ.t; y/ for .t; y/ 2 .0; T � � @D:

Let H W Œ0; T �� Rd ! R be measurable and uniformly integrably bounded and let
ƒFG.c; Qh/ and 	FG.c; u; ˆ/ denote the sets of all solutions of the above initial and
boundary value problems, respectively. For every .s; x/ 2 Œ0; T /� Rd , let Hs;x and
Zx denote the mappings defined on ƒFG.c; Qh/ and 	FG.c; u; ˆ/; respectively, by
setting

Hs;x.v/ D
Z T

0

H.t; v.t; s; x//dt for v 2 ƒFG.c; Qh/

and

Zx.w/ D
Z T

0

H.t;w.t; x//dt for w 2 	FG.c; u; ˆ/:

For every fixed .s; x/ 2 Œ0; T / � Rd , we shall look for Qv 2 ƒC
FG.c;

Qh/ and Qv 2
	C
FG.c; u; ˆ/ such that Hsx. Qv/ D inffHs;x.v/ W v 2 ƒC

FG.c;
Qh/g and Zx. Qv/ D

inffZx.u/ W u 2 	C
FG.c; u; ˆ/g, whereƒC

FG.c;
Qh/ D ƒFG.c; Qh/\C1;1;2

b .RdC2/ and
	C
FG.c; u; ˆ/ D 	FG.c; u; ˆ/ \ C1;2.RdC1/.
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Theorem 3.1. Assume that conditions .D/ are satisfied. Let c 2 C.Œ0; T ��Rd ;R/

be bounded, Qh 2 C1;2.RdC1/, and let H W Œ0; T � � R ! R be measurable
and uniformly integrally bounded such that H.t; �/ is continuous. If F and G are
furthermore such that for Qh and c as given above, the set ƒC

FG.c;
Qh/ is nonempty,

then there is QX 2 Xs;x.F;G/ such that the function Qv 2 ƒC
FG.c;

Qh/ defined by

Qv.t; s; x/ D QE
�

exp

�
�
Z sCt

s

c.�; QX.�//d�
�

Qh.s C t; QX.s C t//

�

for every .s; x/ 2 Œ0; T / � Rd and t 2 Œ0; T � s� satisfies Hs;x. Qv/ D inffHs;x.v/ W
v 2 ƒC

FG.c;
Qh/g .

Proof. Let .s; x/ 2 Œ0; T / � Rd be fixed. The set fHs;x.v/ W v 2 ƒC
FG.c;

Qh/g is
nonempty and bounded, because there is k 2 L.Œ0; T �;RC/ such that jHs;x.v/j �R T
0
k.t/dt for every v 2 ƒC

FG.c;
Qh/. Therefore, there exists a sequence .vn/1nD1 of

ƒC
FG.c;

Qh/ such that ˛ DW inffHs;x.v/ W v 2 ƒC
FG.c;

Qh/g D limn!1 Hs;x.v
n/. By

virtue of Theorem 6.4 of Chap. 6, for every n D 1; 2; : : : and .s; x/ 2 Œ0; T / � Rd ,
there is Xn

s;x 2 Xs;x.F;G/ such that

vn.t; s; x/ D Es;x

�
exp

�
�
Z sCt

s

c.�; Xn
s;x.�//d�

�
Qh.s C t; Xn

s;x.s C t//

�

for .t; x/ 2 Œ0; T�s��Rd . By the weak compactness ofXs;x.F;G/ and Theorem 2.3
of Chap. 1, there are an increasing subsequence .nk/1kD1 of .n/1nD1, a probability
space . Q�; QF ; QP /, and stochastic processes QXnk and QX on . Q�; QF ; QP/ such that
P.Xnk

s;x/
�1 D P. QXnk /�1 for k D 1; 2; : : : and sup0�t�T j QXnk.t/ � QX.t/j ! 0

a.s. Hence in particular, it follows that

vnk .t; s; x/ D Es;x

�
exp

�
�
Z sCt

s

c.�; Xnk
s;x.�//d�

�
Qh.s C t; Xnk

s;x.s C t//

�

D QE
�

exp

�
�
Z sCt

s

c.�; QXnk .�//d�

�
Qh.s C t; QXnk .s C t//

�
;

where QE is the mean value operator taken with respect to the probability measure QP .
By the properties of processes QXnk , QX and functions c and Qh, it follows that

lim
k!1 vnk .t; s; x/ D QE

�
exp

�
�
Z sCt

s

c.�; QX.�//d�
�

Qh.s C t; QX.s C t//

�
:

By virtue of Theorem 6.3 of Chap. 6, it follows that the function Qv.t; s; x/ DW
limk!1 vnk .t; s; x/ belongs to ƒC.F;G; Qh; c/, because .AFGv.t � //.s; x/ �
v0
s.t; s; x/ C .LFGv.t � //.s; x/ for .s; x/ 2 Œ0; T � � Rd and t 2 Œ0; T � s�. Hence,

by the properties of the functionH , we get ˛ D limk!1 Hs;x.v
nk / D Hs;x. Qv/. ut
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Theorem 3.2. Assume that conditions .D/ are satisfied, T > 0, andD is a bounded
domain in Rd . Let c 2 C.Œ0; T ��Rd ;R/, u 2 C..0; T /�D;R/, andˆ 2 C.Œ0; T ��
@D;R/ be bounded. Assume thatH W Œ0; T ��R ! R is measurable and uniformly
integrally bounded such thatH.t; �/ is continuous. If F andG are furthermore such
that forˆ, u, and c given above, the set 	C

FG.c; u; ˆ/ belongs to Œ0; T /�Rd for every
.s; x/, then there is QXs;x 2 Xs;x.F;G/ such that the function Qv 2 	C

FG.c; u; ; ˆ/
defined by

Qv.s; x/ D Es;x

�
ˆ.�D; QXs;x.�D// exp

�
�
Z �D

s

c.t; QXs;x.t//dt
��

� Es;x

�Z �D

s

�
u.t; QXx.t// exp

�
�
Z sCt

s

c.z; QXs;x.z//dz

��
dt

�

with �D D inffr 2 .s; T � W QXs;x.r/ 62 Dg satisfies Zx. Qv/ D inffZx.v/ W v 2
	C
FG.c; u; ˆ/g.

Proof. Similarly as above, we can select a sequence .vn/1nD1 of 	C
FG.c; u; ; ˆ/ such

that ˛ D supfZx.v/ W v 2 	C
FG.c; u; ; ˆ/g D limn!1 Zx.vn/ for fixed x 2 Rd .

By virtue of Theorem 6.6 of Chap. 6, for every .s; x/ 2 Œ0; T / � Rd , there exists a
sequence .Xn

s;x/
1
nD1 of Xs;x.F;G/ such that

vn.s; x/ D Es;x
n

"
ˆ.�nD;X

n
s;x.�D// exp

 
�
Z �nD

s

c.t; Xn
s;x.t//dt

!#

�En
(Z �nD

s

�
u.t; Xn

s;x.t// exp

�
�
Z sCt

s

c.z; Xn
s;x.z//dz

��
dt

)

for n � 1, where �nD D inffr 2 .s; T � W Xn
s;x.r/ 62 Dg. By virtue of Theorem 4.1

of Chap. 4 and Theorem 2.3 of Chap. 1, there are an increasing subsequence
.nk/

1
kD1 of .n/1nD1, a probability space . Q�; QF ; QP /, and stochastic processes QXnk

s;x

and QXs;x on . Q�; QF ; QP / such that P.Xnk
s;x/

�1 D P. QXnk
s;x/

�1 for k D 1; 2; : : : and
sups�t�T j QXnk

s;x.t/ � QXs;x.t/j ! 0 a.s. Hence by Theorem 5.2 of Chap. 4, it follows
that

vnk .s; x/ D Es;x
nk

"
ˆ.�

nk
D ;X

nk
s;x .�

nk
D // exp

 
�
Z �

nk
D

s

c.t; Xnk
x .t//dt

!#

�Es;x
nk

(Z �
nk
D

s

"
u.t; Xnk

s;xx.t// exp

 
�
Z sCt

s

c.z; Xnk
s;x .z//dz

!#
dt

)

D QE
"
ˆ. Q�nkD ; QXnk

s;x . Q�nkD // exp

 
�
Z Q�

nk
D

s

c.t; QXnk
s;x .t//dt

!#

� QE
(Z Q�

nk
D

s

"
u.t; QXnk

s;x .t// exp

 
�
Z sCt

s

c.z; QXnk
s;x .z//dz

!#
dt

)
D Qvnk .s; x/
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for .s; x/ 2 Œ0; T / � D and k � 1, where Q�nkD D inffr 2 .s; T � W QXnk
s;x.r/ 62 Dg.

Therefore, by Lemma 10.1 of Chap. 1, Theorem 5.1 of Chap. 4, and the properties
of the sequence . QXnk

s;x/
1
kD1, one obtains

lim
k!1 Qvnk .s; x/ D QE

"
ˆ. Q�D; QXs;x. Q�D// exp

 
�
Z Q�D

s

c.t; QXx.t//dt
!#

� QE
(Z Q�D

s

�
u.t; QXs;x.t// exp

�
�
Z sCt

s

c.z; QXs;x.z//dz

��
dt

)
;

where Q�D D inffr 2 .s; T � W QXs;x.r/ 62 Dg. Immediately from Theorem 6.6 of
Chap. 6, it follows that the function Qv defined by

Qv.s; x/ D QE
"
ˆ. Q�D; QXs;x. Q�D// exp

 
�
Z Q�D

s

c.t; QXx.t//dt
!#

� QE
( Z Q�D

s

�
u.t; QXs;x.t// exp

�
�
Z sCt

s

c.z; QXs;x.z//dz

��
dt

)

belongs to	C
FG.c; u; ˆ/. Finally, similarly as above, we get ˛ D limk!1 Zx. Qvnk / D

Zx. Qv/. ut
In a similar way, we can also prove similar theorems for control systems de-

scribed by set-valued stochastic Dirichlet, Poisson, and Dirichlet–Poisson problems.
To formulate them, let us recall the basic notation dealing with such problems.
Let T > 0 and let D � Rd be a nonempty bounded domain. Assume that
F W RC � Rd ! Cl.Rd / and G W RC � Rd ! Cl.Rd�m/ are measurable
and bounded, and let ˆ W .0; T / � @D ! R, ' W .0; T / � D ! R and
 W .0; T / � D ! R be continuous and bounded. Let DFG.ˆ/, PFG.'/ and
RFG.ˆ; / be defined by

DFG.ˆ/ D fu.s; x/ D Es;xŒˆ.�D;Xs;x.�D//� W Xs;x 2 Xs;x.F;G/g;

PFG.'/ D
�
v.s; x/ D Es;x

�Z �D

0

'.�D;Xs;x.�D//

�
W Xs;x 2 Xs;x.F;G/

�
;

and

RFG.ˆ; / D
�

w W w.s; x/ D Es;xŒˆ.�D;Xs;x.�D//�

CEs;x

�Z �D

0

'.�D;Xs;x.�D//

�
W Xs;x 2 Xs;x.F;G/

�
:
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Immediately from Theorem 6.7, Theorem 6.8, and Theorem 6.9 of Chap. 6,
it follows that DFG.ˆ/, PFG.'/, and RFG.ˆ; / are subsets of the sets of all
solutions of the following stochastic set-valued boundary value problems:

�
0 2 .LFGu/ .t; x/ for .t; x/ 2 Œ0; T / �D;
limt!�D u.t; Xs;x.t/ D ˆ.�D;Xs;x.�D// for .s; x/ 2 .0; T / �D a:s:;

� �'.s; x/ 2 .LFGv/ .t; x/ for .t; x/ 2 Œ0; T / �D;
limt!�D v.t; Xs;x.t// D 0// for .s; x/ 2 .0; T / �D a:s:;

and

� �'.s; x/ 2 .LFGw/ .t; x/ for .t; x/ 2 Œ0; T / �D;
limt!�D w.t; Xs;x.t// D ˆ.�D;Xs;x.�D// for .s; x/ 2 .0; T / �D a:s: ;

respectively. Similarly as above, we obtain the following results.

Theorem 3.3. Assume that conditions .D/ are satisfied, T > 0, andD is a bounded
domain in Rd . Let ˆ 2 C.Œ0; T ��@D;R/ be continuous and bounded. Assume that
H W Œ0; T � � R ! R is measurable and uniformly integrally bounded such that
H.t; �/ is continuous. For every .s; x/ 2 .0; T /�D, there is QXs;x 2 Xs;x.F;G/ such
that the function Qu.s; x/ D Es;xŒˆ. Q�D; QXs;x. Q�D//� satisfies Zx.Qu/ D supfZx.u/ W
u 2 DFG.ˆ/g, where Q�D D inffr 2 .0; T � W QXs;x.r/ 62 Dg.

Proof. Similarly as above, we can select a sequence .un/1nD1 of DFG.ˆ/ such
that ˛ D supfZx.u/ W u 2 DFG.ˆ/g D limn!1 Zx.un/. By the definition of
DFG.ˆ/, there exists a sequence .Xn

x /
1
nD1 of Xs;x.F;G/ such that un.s; x/ D

Es;xŒˆ.�nD;X
n
s;x.�

n
D//�, where �nD D inffr 2 .0; T � W Xn

x .r/ 62 Dg. By virtue
of Theorem 4.1 of Chap. 4 and Theorem 2.3 of Chap. 1, there are an increasing
subsequence .nk/1kD1 of .n/1nD1, a probability space . Q�; QF ; QP/, and stochastic
processes QXnk and QX on . Q�; QF ; QP/ such that P.Xnk

s;x/
�1 D P. QXnk /�1 for k D

1; 2; : : : and sup0�t�T j QXnk.t/ � QX.t/j ! 0 a.s. Hence, similarly as in the proof
of Theorem 3.2, it follows that ˛ D limn!1 Zx.unk / D Zx.Qu/, where Qu.s; x/ D
Es;xŒˆ. Q�D; QXs;x. Q�D//�.ut
Theorem 3.4. Assume that conditions .D/ are satisfied, T > 0, andD is a bounded
domain in Rd . Let ' W .0; T / � D ! R be continuous and bounded, and let
H W Œ0; T � � R ! R be measurable and uniformly integrally bounded such that
H.t; � / is continuous. For every .s; x/ 2 .0; T /�D, there is QXs;x 2 Xs;x.F;G/ such
that the function Qu.s; x/ D Es;xŒˆ. Q�D; QXs;x. Q�D//� satisfies Zx.Qu/ D supfZx.u/ W
u 2 PFG.'/g, where Q�D D inffr 2 .0; T � W QXs;x.r/ 62 Dg. �

Theorem 3.5. Assume that conditions .D/ are satisfied, T > 0, andD is a bounded
domain in Rd . Let ˆ 2 C..0; T /� @D;R/ and  W .0; T /�D ! R be continuous
and bounded, and let H W Œ0; T � � R ! R be measurable and uniformly integrally
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bounded such that H.t; � / is continuous. For every .s; x/2.0; T / � D, there
exists QXs;x 2 Xs;x.F;G/ such that the function Qu.s; x/ D Es;xŒˆ. Q�D; QXs;x. Q�D//�
satisfies Zx.Qu/ D supfZx.u/ W u 2 RFG.ˆ; /g, where Q�D D inffr 2 .0; T � W
QXs;x.r/ 62 Dg. �

4 Notes and Remarks

The results of this chapter are consequences of the properties of the set Xs;x.F;G/
of all (equivalence classes of) weak solutions for SFI.F;G/ and the representation
theorems presented in Chap. 6. It is possible to consider problems with weaker
assumptions. It is important to observe that such an approach reduces the opti-
mal control problems described by stochastic functional and partial differential
inclusions to the existence of optimal problems of functionals defined on weakly
compact subsets of the space M.X / of probability measures defined on a Borel �-
algebra ˇ.X / of a complete metric space X . Furthermore, this approach, together
with representation theorems, leads to the representation of optimal solutions of the
above type of optimal control problems by weak solutions of stochastic functional
inclusions. This allows us in some special cases to determine explicit solutions of
such optimal control problems. Some applications of weak solutions of multivalued
stochastic equations to optimal control problems are given by A. Zălinescu in
[97]. Some optimal control problems described by stochastic differential equations
depending on control parameters can be solved explicitly by solving appropriate
HJB equations. As pointed out (see B. Øksendal [86]) at the beginning of this
chapter, some solutions of these equations can also be represented by weak solutions
of stochastic differential equations. More information dealing with such problems
can be found in B. Øksendal [86] and J. Yong and X.Y. Zhou [96].

Let us observe (see [45]) that there are three major approaches to stochastic
optimal control: dynamic programming, duality, and the maximum principle.
Dynamic programming obtains, by means of the optimality principle of Bellman,
the Hamilton–Jacobi–Bellman equation, which characterizes the value function (see
[28, 29, 37, 64, 98]). Under some smoothness and regularity assumptions on the
solution, it is possible to obtain, at least implicitly, the optimal control. This is the
content of the so-called verification theorem, which appears in W.H. Fleming and
R.M. Rishel [28] or W.H. Fleming and H.M. Soner [29]. However, the problem of
recovering the optimal control from the gradient of the value function by means
of solving a static optimization remains, and this can be difficult to do. Duality
methods, also known in stochastic control theory as the martingale approach, have
become very popular in recent years, because they provide powerful tools for
studying some classes of stochastic control problems, usually connected with some
approximative procedures (see [73]). Martingale methods are particularly useful for
problems appearing in finance (see [26]), such as the model of R.C. Merton [74].
Duality reduces the original problem to one of finite dimension. The approach is
based on the martingale representation theorem and the Girsanov transformation.
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The stochastic maximum principle has been developed completely in recent years
in S. Peng [87]. It is a counterpart of the maximum principle for deterministic
problems. The distinctive feature is the use of the concept of forward–backward
stochastic differential equations, which arise naturally, governing the evolution of
the state variables. See H.J. Kushner [67], J.M. Bismut [19,20], or U.G. Haussmann
[36].

Control problems and optimal control problems for systems described by
stochastic and partial differential equations have been considered by many authors.
The classical optimal control problems for systems described by stochastic differ-
ential equations and inclusions were considered by, among others, N.A. Ahmed [1],
A. Friedman [30], W.H. Fleming and M. Nisio [27], and M. Michta [75]. Optimal
control problems for partial differential equations were considered by, for example,
W. Huckbusch in [34]
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