
Chapter 5
Viability Theory

The results of this chapter deal with the existence of viable solutions for stochastic
functional and backward inclusions. Weak compactness of sets of all viable weak
solutions of stochastic functional inclusions is also considered.

1 Some Properties of Set-Valued Stochastic Functional
Integrals Depending on Parameters

Let F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/ be measurable
and square integrably bounded set-valued mappings. Given a set-valued stochastic
process .K.t//0�t�T with values in Cl.Rd /, we denote by SFI.F;G;K/ the
following viability problem:

�
xt � xs 2 clLfJst ŒSF.F ı x/�C Jst ŒSF.G ı x/�g for 0 � s � t � T;

xt 2 K.t/ a:s: for t 2 Œ0; T �; (1.1)

associated with SFI.F;G/. Similarly, we denote by BSDI.F;K/ the backward
viability problem:

�
xs 2 EŒxt C R t

s
F .�; x� /d� jFs� a:s: for 0 � s � t � T;

xt 2 K.t/ a:s: for t 2 Œ0; T �; (1.2)

associated with BSDI.F;K.T //.
We precede the existence theorems for such problems by some properties of

set-valued stochastic functional integrals depending on parameters. Given a Banach
space .X; k � k/, by Cl.X/ we denote the space of all nonempty closed subsets
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182 5 Viability Theory

of X . In particular, we shall consider X to be equal to Rd , L2.�;F ;Rr /, and
L2.Œ0; T � � �;†F;R

r with r D d and r D d � m, respectively. The Hausdorff
metrics on these spaces will be denoted by h, D, and H , respectively.

Let PF D .�;F ;F;P/ be a filtered probability space with a filtration F D
.Ft /0�t�T satisfying the usual conditions. Similarly as above, for set-valued map-
pings F and G as given above and an F-nonanticipative d -dimensional stochastic
process x D .xt /0�t�T , we shall denote by SF.F ı x/ and SF.G ı x/ the sets
of all F-nonanticipative stochastic processes f D .ft /0�t�T and g D .gt /0�t�T ,
respectively, such that ft 2 F.t; xt / and gt 2 G.t; xt / a.s. for a.e. t 2 Œ0; T �.
It is clear that SF.F ı x/ and SF.G ı x/ are decomposable closed subsets of
L2.Œ0; T � � �;†F;R

d / and L2.Œ0; T � � �;†F;R
d�m/, respectively, where †F

denotes the �-algebra of all F-nonanticipative subsets of Œ0; T � � �. Therefore,
by virtue of Theorem 3.2 of Chap. 2, there exist †F-measurable mappings ˆ and
‰ such that SF.F ı x/ D SF.ˆ/ and SF.G ı x/ D SF.‰/, which by virtue of
Corollary 3.1 of Chap. 2, implies that ˆ D F ı x and ‰ D G ı x.

In what follows, we shall denote by j � j the norm of the Banach space X r D
L2.Œ0; T � � �;†F;R

r / with r D d or r D d � m. Similarly as above, C.F;Rd /

denotes the space of all d -dimensional continuous F-adapted stochastic processes
x D .xt /0�t�T with norm kxk D .EŒsup0�t�T jxt j2�/1=2. Given a measurable and
uniformly square integrably bounded set-valued mappingK W Œ0; T ��� ! Cl.Rd /,
we shall assume that the set K.t/ D fu 2 L2.�;Ft ;Rd / W u 2 K.t; � / a:s:g
is nonempty for every 0 � t � T . It is clear that this requirement is satisfied
for a square integrably bounded multifunction K W Œ0; T � ! Cl.Rd /. Recall that
K W Œ0; T � � � ! Cl.Rd / is said to be uniformly square integrably bounded
if there exists � 2 L2.Œ0; T �;RC/ such that kK.t; !/k � �.t/ for a.e. .t; !/ 2
Œ0; T � � �, where kK.t; !/k D h.K.t; !/; f0g/. Let us observe that for the above
multifunctions F and G and a d -dimensional Ft -measurable random variable X;
the set-valued processes F ıX and G ıX are ˇT ˝ Ft -measurable.

Assume that the above set-valued mappings F and G satisfy the following
conditions .H1/:

(i) F W Œ0; T ��Rd ! Cl.Rd / and G W Œ0; T ��Rd ! Cl.Rd�m/ are measurable
and uniformly square integrably bounded, i.e., there exists m 2 L2.Œ0; T �;RC/
such that max.kF.t; x/k; kG.t; x/k/ � m.t/ for a.e. t 2 Œ0; T � and x 2 Rd ,
where kF.t; x/k D supfjzj W z 2 F.t; x/g and kG.t; x/k D supfjzj W z 2
G.t; x/g;

(ii) F.t; �/ and G.t; �/ are Lipschitz continuous for a.e. fixed t 2 Œ0; T �, i.e., there
exists k 2 L2.Œ0; T �;RC/ such that H.F.t; x/; F.t; z// � k.t/jx � zj and
H.G.t; x/;G.t; z// � k.t/jx � zj for a.e. t 2 Œ0; T � and x; z 2 Rd .

Lemma 1.1. If F and G satisfy conditions .H1/, then the set-valued mappings
C.F;Rd / 3 x ! SF.F ı x/ 2 Cl.X d / and C.F;Rd / 3 x ! SF.G ı x/ 2
Cl.X d�m/ are Lipschitz continuous with Lipschitz constant L D Œ

R T
0
k2.t/dt �1=2.
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Proof. The proof is quite similar to the proof of Lemma 3.7 of Chap. 2. Let x; z 2
C.F;Rd / and f x 2 SF.F ı x/. By virtue of Theorem 3.1 of Chap. 2 applied to the
†F-measurable set-valued mapping F ı z; we get

dist2.f x; SF.F ı z// D inf

�
E

Z T

0

jf x
� � f� j2d� W f 2 SF.F ı z/

�

D E

Z T

0

dist2.f x
� ; F .�; z� //d�

� E

Z T

0

k2.t/jxt � zt j2dt � L2kx � zk2:

Then H.SF.F ı x/; SF.F ı z// � Lkx � zk: In a similar way, we also get
H.SF.F ı z/; SF.F ı x// � Ljjx � zjj: Therefore, H.SF.F ı x/; SF.F ı z// �
Lkx � zk. In a similar way, we obtain H.SF.G ı x/; SF.G ı z// � Lkx � zk. �

Lemma 1.2. Let K W Œ0; T � � � ! Cl.Rd / be F-adapted and square integrably
bounded uniformly with respect to t 2 Œ0; T �. If K. �; !/ is continuous for a.e. ! 2
�, then the set-valued mapping K W Œ0; T � ! Cl.L2.�;FT ;Rd // is continuous.

Proof. Let t0 2 Œ0; T � be fixed and let .tk/1kD1 be a sequence of Œ0; T � converging to
t0. By virtue of Theorem 3.1 of Chap. 2, for every u 2 K.t0/ and k � 1, one has

dist2.u;K.tk// D inf
˚
Eju � vj2 W v 2 K.tk/

�
� E

�
dist2.u; K.tk; �/

�
� E

�
h2.K.tk; �/;K.t0; �//

�
:

Then D
2
.K.t0/;K.tk// � E

�
h2.K.tk; �/;K.t0; �//

�
: In a similar way, we also

get D
2
.K.tk/;K.t0// � E

�
h2.K.tk; �/;K.t0; �//

�
. Therefore, for every k � 1,

one has D2.K.tk/;K.t0// � E
�
h2.K.tk; �/;K.t0; �//

�
: Hence, by the continu-

ity of K.�; !/ and its uniformly square integrable boundedness, it follows that
limk!1D.K.tk /;K.t0// D 0. �

Lemma 1.3. If F and G satisfy conditions .H1/, then the set-valued mappings
C.F;Rd / 3 x ! clLfJst ŒSF.F ı x/�g � L2.�;FT ;Rd / and C.F;Rd / 3 x !
clLfJst ŒSF.G ı x/�g � L2.�;FT ;Rd / are Lipschitz continuous uniformly with
respect to 0 � s < t � T with Lipschitz constants equal to

p
TL and L;

respectively, where L is as in Lemma 1.1.

Proof. Let x; z 2 C.F;Rd / and f x 2 SF.F ı x/. For fixed 0 � s < t � T , we
have dist2 .Jst .f x/; Jst ŒSF.F ı z�/ D inf

˚
EjJst .f x � f z/j2 W f z 2 SF.F ı z/

�
:

But for every 0 � s < t � T , one has

E jJst .f x � f z/j2 � TE

�Z T

0

jf x � f zj2dt
�
:
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Therefore, by Lemma 3.6 of Chap. 2, it follows that

dist2 .Jst .f x/; Jst ŒSF.F ı z/�/ � T inf

�
E

Z T

0

jf x � f zj2dt W f z 2 SF.F ı z/

�

D T dist2 .f x; SF.F ı z//

� TH.SF.F ı x/; SF.F ı z// � TL2kx � zk2:
Then for every 0 � s < t � T , one obtains

D
2
.Jst ŒSF.F ı x/�; Jst ŒSF.F ı z/�/ � TL2kx � zk2:

Similarly, for every fixed 0 � s < t � T , we also get

D
2
.Jst ŒSF.F ı z/�; Jst ŒSF.F ı x/�/ � TL2kx � zk2:

Therefore, for every 0 � s < t � T , one has

D .Jst ŒSF.F ı x/�; Jst ŒSF.F ı z/�/ � p
TLkx � zk:

In a similar way, for fixed 0 � s < t � T , we obtain

D .Jst ŒSF.G ı x/�;Jst ŒSF.G ı z/�/ � Lkx � zk:

Hence it follows that

sup
0�s<t�T

D .clLfJst ŒSF.F ı x/�g; clLfJst ŒSF.F ı z/�g/ � p
TLkx � zk

and

sup
0�s<t�T

D .clLfJst ŒSF.G ı x/�g; clLfJst ŒSF.G ı z/�g/ � Lkx � zk:

�

Lemma 1.4. Assume that F and G satisfy (i) of .H1/ and let xn; x 2 C.F;Rd /

for n D 1; 2; : : : be such that sup0�t�T jxn.t/ � x.t/j ! 0 a.s. as n ! 1.
If F.t; �/ and G.t; �/ are continuous for a.e. fixed 0 � t � T , and .�n/1nD1 is
a sequence of functions �n W Œ0; T � ! Œ0; T � such that �n.t/ ! t as n ! 1
for every t 2 Œ0; T �, then clL fJst ŒSF.F ı .xn ı �n//�C Jst ŒSF.G ı .xn ı �n//�g !
clL fJst ŒSF.F ı x/�C Jst ŒSF.G ı x/�g in the D-metric topology of Cl.L2

.�;F ;Rd / as n ! 1 for every 0 � s � t � T .

Proof. Let 0 � s � t � T be fixed and set yn D xn ı �n for every n D 1; 2; : : :.
One has
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jynt .�/ � x.�/j D jxn.�n.�// � x.�/j
� jxn.�n.�// � x.�n.�//j C jx.�n.�//� x.�/j
� sup

0�u�T
jxn.u/� x.u/j C jx.�n.t// � x.t/j

for n D 1; 2; : : : and 0 � � � T . Then ynt .�/ ! x.�/ a.s. for every 0 � � � T

as n ! 1. Similarly as in the proof of Lemma 1.3, we can verify that the set-
valued mappings C.F;Rd / 3 x ! clLfJst ŒSF.F ı x/�g 2 Cl.L2.�;F ;Rd //

and C.F;Rd / 3 x ! clLfJst ŒSF.G ı x/�g 2 Cl.L2.�;F ;Rd // are con-
tinuous. Therefore, clL fJst ŒSF.F ı .xn ı �n//�C Jst ŒSF.G ı .xn ı �n//�g ! clL
fJst ŒSF.F ı x/�C Jst ŒSF.G ı x/�g in the D-metric topology as n ! 1. �

2 Viable Approximation Theorems

The existence of solutions of viability problems (1.1) and (1.2) will follow from
some viable approximation theorems by applying the standard methods presented
in the proofs of the existence of strong and weak solutions for stochastic functional
inclusions. We shall now present such approximation theorems. In what follows,
it will be convenient to denote by d.x;A/ the distance dist.x; A/ of x 2 X

to a nonempty set A � X . We shall also denote the set-valued functional
integrals Jst ŒSFˆ/� and Jst ŒSF‰/� of F-nonanticipative set-valued processes ˆ 2
L2F.T;�;Rd / and ‰ 2 L2F.T;�;Rd�m/ by

R t
s
ˆ�d� and

R t
s
‰�dB� ; respectively.

We shall prove the following approximation theorems.

Theorem 2.1. Assume that F and G satisfy condition (i) of .H1/ and let PF D
.�;F ;F; P / be a complete filtered probability space with a filtration F D
.Ft /0�t�T such that there exists an m-dimensional F-Brownian motion
B D .Bt /0�t�T defined on PF. Let K W Œ0; T � ! Cl.Rd / be such that a set-valued
process .K.t//0�t�T is continuous. If

lim inf
h!0C

1

h
D

"
x C clL

 Z tCh

t

F .�; x/d� C
Z tCh

t

G.�; x/dB�

!
;K.t C h/

#
D 0

(2.1)

for every .t; x/ 2 Graph.K"/ and every " 2 .0; 1/, where K".t/ D fu 2
L2.�;Ft ;Rd / W d.u;K.t// � "g for every 0 � t � T , then for every " 2 .0; 1/ and
x0 2 K.0/, there exist a step function �" W Œ0; T � ! Œ0; T � and F-nonanticipative
stochastic processes f " D .f "

t /0�t�T and g" D .g"t /0�t�T such that

(i) f " 2 SF.F ı .x" ı �"// and g" 2 SF.G ı .x" ı �"//, where x".t/ D x0 CR t
0
f "
� d� C R t

0
g"�dB� for 0 � t � T ;

(ii) EŒdist.x".�".t//;K.�".t//� � " for 0 � t � T ;
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(iii) E
h
l.x".s//

	
h.x".t// � h.x".s//� R t

s .L
x"

f "g"h/�d�

i

D 0 for every 0 � s �
t � T , l 2 Cb.Rd ;R/ and h 2 C2

b .R
d ;R/.

Proof. Let " 2 .0; 1/ and x0 2 K.0/ be fixed. Select ı 2 .0; "/ such thatR tCı
t

m2.�/d� � "2=24 and D.K.t C ı/;K.t// � "=22 for t 2 Œ0; T �. By virtue
of (2.1), there exists h0 2 .0; ı/ such that

D

"
x0 C clL

 Z h0

0

F.�; x0/d� C
Z h0

0

G.�; x0/dB�

!
;K.h0/

#
� "h0

22
:

Then for every u0 2 x0 C clL

	R h0
0
F.�; x0/d� C R h0

0
G.�; x0/dB�



, one has

d.u0;K.h0// � "h0=2
2. Let t0 D 0 and t1 D h0. Select arbitrarily ˇT ˝ F0-

measurable selectors f 0 and g0 of F ı x0 and G ı x0; respectively. It is clear that
f 0 2 SF.F ı x0// and g0 2 SF.G ı x0//. Let x".t/ D x0 C R t

0
f 0
� d� C R t

0
g0�dB�

for 0 � t � t1. Put �".t/ D 0 for 0 � t < t1 and �".t1/ D t1. We have

x".h0/ 2 x0 C clL2

 Z h0

0

F.�; x0/d� C
Z h0

0

G.�; x0/dB�

!
:

Therefore, d.x".h0/;K.h0// � "h0=2
2 � "=22. Together with the properties of the

number ı > 0, it follows that

d.x".t/;K.t// � kx".t/ � x".h0/k C d.x".h0/;K.h0//

� "=2C "h0=2
2 CD.K.h0/;K.t// � "

for 0 � t � t1; because

kx".t/ � x".h0/k

�
p
h0

"
E

Z h0

0

jf 0
� j2d�

#1=2
C
"
E

Z h0

0

jg0� j2d�
#1=2

� 2"=22 D "=2

for 0 � t � t1. Let x1 2 K.t1/ be such that kx".h0/ � x1k � d.x".h0/;K.h0//C
"=22. Hence, by Theorem 3.1 of Chap. 2, it follows that

EŒdist.x".h0/;K.h0//� D inffEjx".h0/ � uj W u 2 K.h0/g �
EŒjx".h0/� x1j� � .EŒjx".h0/ � x1j2�/1=2 D jjx".h0/� x1jj � "=22 C "=22 � ":

By Itô’s formula, for every h 2 C2
b .R

d ;R/ and 0 � s � t � T , we have

h.x".t// � h.x".s//�
Z t

s

.Lx
"

f 0g0
h/�d� D

nX
iD1

mX
jD1

Z t

s

h00
xi xj

.x".�//g0ij .�/dB
j
� ;
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a.s., where B D .B1; : : : ; Bm/ and g0� D .g0ij .�//d�m. But x".s/ is Fs-measurable.
Then for 0 � s � t � t2, i D 1; 2; : : : ; n, and j D 1; 2; : : : ; m, we have

E

�
l.x".s//

Z t

s

h00
xi xj

.x".�//g0ij .�/dB
j
�

�
D E

�Z t

s

l.x".s//h00
xixj

.x".�//g0ij .�/dB
j
�

�
D 0:

Therefore, for every l 2 Cb.Rd ;R/, h 2 C2
b .R

d ;R/, and 0 � s � t � t1, we get

E

�
l.x".s//

�
h.x".t// � h.x".s// �

Z t

s

.Lx
"

f 0g0
h/�d�

��
D 0:

Suppose h0 < T . We have .h0; x".h0// 2 Graph.K"/ because d.x".h0/;K.h0//
� ". Therefore, we can repeat the above procedure and select h1 2 .0; ı/ such that

D

"
x".h0/C clL

 Z t1Ch1
t1

F .�; x".h0//d�C
Z t1Ch1
t1

G.�; x".h0//dB�

!
;K.t1Ch1/

#
� "h1

22
:

Similarly as above, we can select f 1 2 SF.F ıx".h0// and g1 2 SF.Gıx".h0//;
and define x".t/ D x".t1/C

R t
t1
f 1
� d�CR t

t1
g1�dB� for t1 � t � t2, where t2 D t1Ch1.

We can also extend the function � on Œ0; t2� by taking �.t/ D t1 for t1 � t < t2 and
�".t2/ D t2. We have

x".t2/ 2 x".t1/C clL

�Z t2

t1

F .�; x".t1//d� C
Z t2

t1

G.�; x".t1//dB�

�
:

Therefore, for every t1 � t � t2, one has

d.x".t/;K.t// � kx".t/ � x".t2/jj C d.x".t2/;K.t2//CH.K.t2/;K.t// � ";

because similarly as above, we get kx".t/ � x".t2/k � "=2 for every t1 � t � t2.
Similarly as above, for every l 2 Cb.Rd ;R/, h 2 C2

b .R
d ;R/, and t1 � s � t � t2,

we also get

E

�
l.x".s//

�
h.x".t// � h.x".s// �

Z t

s

.Lx
"

f "g"h/�d�

��
D 0:

Let x2 2 K.t2/ be such that kx".t2/ � x2k � d.x".t2/;K.t2// C "=22. Hence it
follows that EŒdist.x".t2/;K.t2//� � ". Let us observe that the above relations
can be written in the form presented in (i)–(iii) above with T D t2, where f " D
1Œ0;t1/f

0C1.t1;t2�f
1, g" D 1Œ0;t1/g

0C1.t1;t2�g
1 and x".t/ D x0C

R t
0
f "
� d�CR t

0
g"�dB�

for 0 � t � t2.
Continuing the above procedure, we can extend the function �" and processes

f ", g", and x" on the whole interval Œ0; T � such that the above conditions (i)–
(iii) are satisfied. To see this, let us denote by ƒ" the set of all extensions of the
vector function ˆ" D .�"; f

"; g"; x"/ on Œ0; ˛� �� with ˛ 2 .0; T � and �"jŒ0;˛� not
depending on ! 2 �. We have ƒ" ¤ ;. Let us introduce in ƒ" the partial order
relation � by setting ˆ˛" � ˆ

ˇ
" if and only if ˛ � ˇ and ˆ˛" D ˆ

ˇ
" jŒ0;˛�, where ˆ˛"
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and ˆˇ" denote extensions of ˆ" to Œ0; ˛� and Œ0; ˇ�, respectively. Let P˛
" be a set

containing an extension ˆ˛" and all its restrictions ˆ˛" jŒ0;a� for every a 2 .0; ˛�. It is
clear that each completely ordered subset of ƒ" is of the form P˛

" determined by
some extensionˆ˛" . It is also clear that every set P˛

" hasˆ˛" as its upper bound. Then
by the Kuratowski–Zorn lemma, there exists a maximal element ‰" of ƒ" defined
on Œ0; b� � � with b � T . It has to be b D T . Indeed, if it were b < T , then we
could repeat the above procedure and extend ‰" to the vector function �" defined
on Œ0; 	� �� with b � 	 . It would be ‰" � �", in contradiction to the assumption
that‰" is a maximal element ofƒ". Then ˆ" can be extended on Œ0; T ��� in such
a way that conditions (i)–(iii) are satisfied. �

Remark 2.1. Theorem 2.1 is also true if instead of (2.1), we assume that

lim inf
h!0C

1

h
D

"
x C clL

 Z tCh

t

F .�; x/d�

!
C
Z tCh

t

G.�; x/dB� ;K.t C h/

#
D 0

(2.2)

for every .t; x/ 2 Graph .K"/. �

Theorem 2.2. Assume that F and G satisfy conditions .H1/. Suppose PF D
.�;F ;F; P / is a complete filtered probability space with a filtration F D
.Ft /0�t�T such that there exists an m-dimensional F-Brownian motion B D
.Bt /0�t�T defined on PF. Let K W Œ0; T � � � ! Cl.Rd / be F-nonanticipative
such that K.t/ ¤ ; for every 0 � t � T and .K.t//0�t�T is continuous. If (2.1)
is satisfied for every .t; x/ 2 Graph.K/, then for every " 2 .0; 1/, a 2 .0; T /,
x0 2 K.0/ , and F-nonanticipative processes 
 D .
t / 0�t�T and  D . t /0�t�T
with 
t 2 L2.�;FT ;Rd /,  t 2 L2.�;FT ;Rd�m/ for 0 � t � T and .
0;  0/ 2
F.0; x0/ � G.0; x0/ a.s., there exist a partition 0 D t0 < t1 < � � � < tp D a of
the interval Œ0; a�, a step function �" W Œ0; a� ! Œ0; a�, F-nonanticipative stochastic
processes f " D .f "

t /0�t�a and g" D .g"t /0�t�a, and a step stochastic process
z" D .z".t//0�t�a such that

(i) tjC1�tj � ı, where ı 2 .0; "/ is such that max
	R tCı

t
k2.�/d�;

R tCı
t

m2.�/d�



� "2=24 andD.K.t C ı/;K.t// � "=22 for t 2 Œ0; T �;
(ii) �".t/ D tj for tj � t < tjC1 for j D 0; 1; : : : p � 2 and �".t/ D tp�1 for

tp�1 � t � a;
(iii) f " 2 SF.F ı .x" ı �"//, g" 2 SF.G ı .x" ı �"//, j
t .!/ � f "

t .!/j �
dist.
t ; F .t; .x" ı �"/.t/// and j t.!/ � g"t .!/j � dist. t ; G.t; .x" ı �"/.t///
for .t; !/ 2 Œ0; a���, where x".t/ D x0 C R t

0 .f
"
� C z".�//d� C R t

0 g
"
�dB� a.s.

for 0 � t � a;
(iv) kz".t/k � "=22 for 0 � t � a, where kz".t/k2 D Ejz.t/j2;
(v) d.x".�".t//;K.�".t// D 0 for 0 � t � a;

(vi) d
	
x".t/ � x".s/; clL

	R t
s
F .�; .x" ı �"/.�//d� C R t

s
G.�; .x" ı �"/.�//dB�




� " for every 0 � s < t � a.
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Proof. Let x0 2 K.0/, " 2 .0; 1/ and a 2 .0; T / be fixed. Without loss of generality,
we can assume that T D 1. By virtue of (2.1), there exists h0 2 .0; ı/ such that

D

"
x0 C clL

 Z h0

0

F.�; x0/d� C
Z h0

0

G.�; x0/dB�

!
;K.h0/

#
� "h0

22
;

where ı > 0 is such that condition (i) is satisfied. By virtue of Corollary 2.3 of
Chap. 2 applied to †F-measurable multifunctions F ı x0 and G ı x0; and given the
above processes 
 and  ; there exist f 0 2 SF.F ı x0/ and g0 2 SF.G ı x0/ such
that j
t .!/�f 0t .!/j D dist.
t ; F .t; x0// and j t.!/�g0t .!/j D dist. t ; G.t; x0//
for .t; !/ 2 Œ0; a� ��. Similarly as in the proof of Theorem 2.1, we define now the
function �" by taking �".t/ D 0 for 0 � t < t1 and �".t1/ D t1; where t1 D h0.
Hence it follows that f 0

t 2 F.t; �".t// and g0t 2 G.t; �".t// a.s. for 0 � t < t1. Let
y0 D x0 C R t1

0
f 0
� d� C R t1

0
g0�dB� a.s. We have

y0 2 x0 C clL

 Z h0

0

F.�; x0/d� C
Z h0

0

G.�; x0/dB�

!
:

Then d.y0;K.h0// � "h0=2
2, which by Theorem 3.1 of Chap. 2, implies that

d2.y0;K.h0// D EŒdist.y0;K.h0; � /�2. Therefore, by Corollary 2.3 of Chap. 2,
there exists an Ft1-measurable random variable x1 such that x1 2 K.h0; �/ for! 2 �
and

ky0 � x1k D 

E
�
dist2.y0;K.h0; � /

��1=2D d.y0;K.h0// � "h0=2
2:

Define z"t D .1=h0/.x1 � y0/ a.s. for 0 � t � t1. We get jjz".t/jj � .1=h0/jjx1 �
y0jj � .1=h0/."h0=2

2/ D "=4 for 0 � t � t1. We define now a process x" on Œ0; t1/
by setting

x".t/ D x0 C
Z t

0

.f 0
� C z".�//d� C

Z t

0

g0�dB� a:s: for 0 � t � t1:

We have x".0/ D x0 2 K.0/ and x".t1/ D y0 C h0.1=h0/.x1 � y0/ D x1 2 K.h0/;
which is equivalent to d.x".�".t/;K.�".t/// D 0 for t 2 Œ0; t1�. Similarly, for 0 �
s � t < t1, one obtains

d

�
x".t/ � x".s/; clL

�Z t

s

F .�; .x" ı �"/.�//d� C
Z t

s

G.�; .x" ı �"/.�//dB�
��

� d

�Z t

s

f 0
� d� C

Z t

s

g0�dB�; clL

�Z t

s

F .�; x0/d� C
Z t

s

G.�; x0/dB�

��

C.t � s/ sup
0���t1

jjz".�/jj � "

4
< ":
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If h0 < a, we can repeat the above procedure. Applying (2.1) to .t1; x1/ 2
Graph.K/, we can select h1 2 .0; ı/ such that

D

"
x1 C clL

 Z t1Ch1

t1

F .�; x1/d� C
Z t1Ch1

t1

G.�; x1/dB�

!
;K.t1 C h1/

#
� "h1

22
:

Similarly as above, we can select x2 2 K.t1 C h1/, f 1 2 SF.F ı x1/, and g1 2
SF.G ı x1/ such that j
t .!/� f 1

t .!/j D dist.
t ; F .t; x1// and j t.!/� g1t .!/j D
dist. t ; G.t; x1// for .t; !/ 2 Œ0; a� � � and ky1 � x2k � "h1=2

2; where y1 D
x1CR t1Ch1t1

f 1
� d�CR t1Ch1t1

g1�dB� a.s. We can extend the function �" and the process
z" on the interval Œ0; t2� by setting �".t/ D t1 for t1 � t < t2, �.t2/ D t2, and
z".t/ D .1=h1/.x2 � y1/ for t1 < t � t2, where t2 D t1 C h2. Define on the interval
Œ0; t2� the process x" by setting

x".t/ D x0 C
Z t

0

.f "
� C z".�//d� C

Z t

0

g"�dB� a:s: for 0 � t � t2;

where f " D 1Œ0;t1/f
0 C 1Œt1;t2/f

1 and g" D 1Œ0;t1/g
0 C 1Œt1;t2/g

1. Similarly as
above, we obtain d.x".�".t/;K.�".t/// D 0 for 0 � t < t2 and d.x".�".t2/;
K.�".t2/// D 0, because x".t2/ D x2. Then d.x".�".t/;K.�".t/// D 0 for
0 � t � t2. It is clear that kz"t k � "=4 � " for every 0 � t � t2. Then for
every 0 � s � t � t2, we get

d

�
x".t/ � x".s/; clL

�Z t

s

F .�; .x" ı �"/.�//d� C
Z t

s

G.�; .x" ı �"/.�//dB�
��

� d

�Z t

s

f "
� d� C

Z t

s

g"�dB� ; clL

�Z t

s

F .�; .x" ı �"/.�//d�

C
Z t

s

G.�; .x" ı �"/.�//dB�
��

C .t � s/ sup
0���t2

jjz".� jj � "

4
< ":

Suppose that for some i � 1, the inductive procedure is realized on Œ0; ti / �
Œ0; a� and the above step function �", and stochastic processes z" f "; g", and x" are
extended to Œ0; ti � and Œ0; ti /, respectively, with the above properties on this interval.
Denote by Si the set of all positive numbers h such that h 2 .0;min.ı; a � ti // and

D

"
xi C clL

 Z tiCh

ti

F .�; xi /d� C
Z tiCh

ti

G.�; xi /dB�

!
;K.ti C h/

#
� "h

23
;

where xi D x".ti /. We have Si ¤ ; and supSi > 0. Choose hi 2 Si such that
supSi � .1=2/ supSi � hi . Put tiC1 D ti C hi and let f i 2 SF.F ı xi / and gi 2
SF.Gıxi / be such that j
t .!/�f i

t .!/j D dist.
t ; F .t; xi // and j t.!/�git .!/j D
dist. t ; G.t; xi //: We can now extend �", f ", and g" to the interval Œ0; tiC1� by
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taking �".t/ D ti for ti � t < tiC1 and �".tiC1/ D tiC1 , f "
t D f i

t , g"t D git for
ti � t < tiC1. Then j
t .!/ � f "

t .!/j � dist.
t ; F .t; .x" ı �"/.t/// and j t.!/ �
g"t .!/j � dist. t ; G.t; .x" ı �"/.t/// for .t; !/ 2 Œ0; tiC1/ ��, where

x".t/ D x0 C
Z t

0

.f "
� C z".�//d� C

Z t

0

g"�dB�

a.s. for 0 � t � tiC1 with

z".t/ D .1=hi/

�
xiC1 � xi �

Z tiC1

ti

f "
� d� �

Z tiC1

ti

g"�dB�

�

a.s for ti < t � tiC1, where xiC1 2 K.tiC1/ is such that

����xi C
Z tiC1

ti

f "
� d� C

Z tiC1

ti

g"�dB� � xiC1
���� � "hi=4:

Similarly as above, we obtain jjz".t/jj � "=4 for ti < t � tiC1. Hence it follows
that

d

�
x".t/� x".s/; clL

�Z t

s
F .�; .x" ı �"/.�//d� C

Z t

s
G.�; .x" ı �"/.�//dB�

��

� d

�Z t

s
f "� d� C

Z t

s
g"�dB� ; clL

�Z t

s
F .�; .x" ı �"/.�//d� C

Z t

s
G.�; .x" ı �"/.�//dB�

��

C.t � s/ sup
0���t2

jjz".� jj � "

4
< "

for 0 � s < t < tiC1 and d.x".�".t/;K.�".t/// D 0 for 0 � t � t2.
We can continue the above procedure up to n > 1 such that tn 2 Œa; 1�. Suppose

to the contrary that such n > 1 does not exist, i.e., that for every n > 1, one has
0 < tn < a. Then we obtain a sequence .ti /1iD1 converging to t� � a such that for
every 0 � j < k � i C 1 and i � 0, we have

jjx".tk/ � x".tj /jj �
�����
Z tk

tj

f "
� d�

�����C
�����
Z tk

tj

g"�dB�

�����C
�����
Z tk

tj

z".�/d�

�����

� 2

 Z tk

tj

m2.�/d�

!1=2
C " � .tk � tj /=4:

Let xj D x".tj / and xk D x".tk/ for 0 � j < k < 1: For every 0 � j < k < 1,
one gets

kxk � xj k � 2

 Z tk

tj

m2.�/d�

!1=2
C " � .tk � tj /=4:
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Then .xi /1iD1 is a Cauchy sequence of L2.�;FT ;Rd /. Therefore, there exists x� 2
L2.�;FT ;Rd / such that kxi � x�k ! 0 as i ! 1. By the continuity of the
set-valued mapping K, we get .t�; x�/ 2 Graph.K/. Then by (2.1), there exists
h� 2 .0;min.ı; 1 � a// such that

D

"
x� C clL

 Z t�Ch�

t�
F.�; x�/d� C

Z t�Ch�

t�
G.�; x�/dB�

!
;K.t� C h�/

#
� "h�

23
:

Let N > 1 be such that for every i � N , one has 0 < t� � ti < min.h�; a; �"/,
kxi � x�k � "h�=.26A/, and D.K.ti /;K.t�// � "h�=26, where A D 1 C
2
	R 1

0
k2.t/dt


1=2
and �" 2 .0; 1 � a/ is such that

	R tC�"
t

m2.�/d�

1=2 � "h�=27

for every 0 � t � a. For every i � N and arbitrarily taken 
i 2 SF.F ı xi / and
 i 2 SF.G ı xi /, we can select f � 2 SF.F ı x�/ and g� 2 SF.G ı x�/ such that
j
it .!/ � f �

t .!/j D dist.
i ; F .t; x�// and j it .!/ � g�
t .!/j D dist. i ; G.t; x�//

for .t; !/ 2 Œti ; t� C h�� ��. In particular, this implies

k
i � f �k2� � E

Z t�Ch�

ti

Œh.F.t; xi /; F .t; x
�//�2dt �

Z t�Ch�

ti

k2.t/kxi � x�k2dt

and

k i � f �k2� � E

Z t�Ch�

ti

Œh.G.t; xi /; G.t; x
�//�2dt �

Z t�Ch�

ti

k2.t/kxi � x�k2dt

for i � 1. Therefore, for every i � N , we get

d

"
xi C

Z tiCh�

ti


i� d� C
Z tiCh�

ti

 i�dB� ;K.ti C h�/

#

�
����
"
xi C

Z tiCh�

ti


i�d� C
Z tiCh�

ti

 i�dB�

#
�
"
x� C

Z t�Ch�

t�
f �
� d� C

Z t�Ch�

t�
g�
� dB�

#����

C d

"
x� C

Z t�Ch�

t�
f �
� d� C

Z t�Ch�

t�
g�
� dB� ;K.t� C h�/

#
CD.K.t� C h�/;K.ti C h�//

� jjxi � x�jj C
����
Z t�Ch�

ti

.
i� � f �
� /d�

����C
����
Z t�Ch�

ti

. i� � g�
� /dB�

����

C
����
Z t�Ch�

tiCh�

i�d�

����C
����
Z t�Ch�

tiCh�
 i�dB�

����C
����
Z t�

ti

f �
� d�

����C
����
Z t�

ti

g�
� dB�

����

C d

"
x� C

Z t�Ch�

t�
f �
� d� C

Z t�Ch�

t�
g�
� dB� ;K.t� C h�/

#
CD.K.t� C h�/;K.ti C h�//

� kxi � x�k C 2
p
.t� � ti /C h� kxi � x�k

 Z t�Ch�

tn

k2.�/d�

!1=2
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C
	
1Cp

.t� � ti /

 Z t�Ch�

tiCh�
m2.�/d�

!1=2
C
	
1Cp

.t� � ti /

 Z t�

ti

m2.�/d�

!1=2

C 2
"h�

26
C "h�

26
�
2
41C 2

p
.t� � ti /C h�

 Z t�Ch�

ti

k2.�/d�

!1=23
5 kxi � x�k

C
	
1Cp

.t� � ti /



max

8<
:
"Z t�Ch�

tiCh�
m2.�/d�

#1=2
;

"Z t�

ti

m2.�/d�

#1=29=
;C 2

"h�

26

C "h�

26
�
2
41C 2

 Z 1

0
k2.�/d�

!1=23
5 kxi � x�k

C
	
1Cp

.t� � ti /



max

8<
:
"Z t�Ch�

tiCh�
m2.�/d�

#1=2
;

"Z t�

ti

m2.�/d�

#1=29=
;

C 2
"h�

26
C "h�

26
� "h�

26 � A � AC 2 � "h
�

2 � 26 C 2 � "h
�

26
C "h�

26

D 5 � "h
�

26
D 5

8
� "h

�

23
<
"h�

23
:

Then for every i � N , we have

D

"
xi C clL

 Z tiCh�

ti

F .�; xi /d� C
Z tiCh�

ti

G.�; xi /dB�

!
;K.ti C h�/

#
� "h�

23

and h� 2 .0;min.ı; 1 � a//. But ti < a for every i � 1. Then 1 � a < 1 � ti for
every i � 1. Therefore, for every i � N , we have h� 2 .0;min.ı; 1 � ti //. Hence
it follows that h� 2 Si for every i � N . Then for every i � N , one has .1=2/h� �
.1=2/ supSi � hi D tiC1 � ti , which contradicts the convergence of the sequence
.ti /

1
iD1. Therefore, there exists p � 1 such that 0 D t0 < t1 < � � � < tp D a. �

Remark 2.2. Theorem 2.2 is also true if instead of (2.1), we assume that (2.2) is
satisfied for every .t; x/ 2 Graph.K/. �

Theorem 2.3. Assume thatF satisfies conditions .H1/, and let PF D .�;F ;F; P /
be a complete filtered probability space with a continuous filtration F D .Ft /0�t�T
such that FT D F . Suppose K W Œ0; T � �� ! Cl.Rd / is an F-adapted set-valued
process such that K.t/ ¤ ; for every 0 � t � T and such that the set-valued
mapping K W Œ0; T � ! Cl.L.�;FT ;Rd / is continuous. If

lim inf
h!0C

1

h
D

�
S

�
E

�
x C

Z t

t�h
F.�; x/d� jFt�h

��
;K.t � h/

�
D 0 (2.3)

is satisfied for every .t; x/ 2 Graph.K/, where S.EŒx C R t
t�h F.�; x/d� jFt�h�/ D

fEŒxC R t
t�h f�d� jFt�h� W f 2 S.coF ıx/g; then for every " 2 .0; 1/, xT 2 K.xT /,

a 2 .0; T / and measurable process 
 D .
/0�t�T such that 
t 2 L.�;FT ;Rd /

for 0 � t � T and 
T 2 F.T; xT / a.s., there exist a partition a D tp < tp�1 <
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� � � < t1 < t0 D T of the interval Œa; T �, a step function �" W Œa; T � ! Œa; T �; a step
stochastic process z" D .z"t /a�t�T , and a measurable process f " D .f "

t /a�t�T on
PF such that

(i) tj � tjC1 � ı, where ı 2 .0; "/ is such that maxfR tCı
t

k.�/d�;
R tCı
t

m.�/d�g
� "2=24 andD.K.t C ı/;K.t// � "=2 for t 2 Œ0; T �;

(ii) kz"t k � "=2 for every a � t � T , where kz"t k D Ejz"t j;
(iii) �".t/ D tj�1 for tj < t � tj�1 and �".tj / D tj with j D 1; : : : ; p � 1 and

�".t/ D tp�1 for a � t � tp�1;
(iv) f " 2 S.coF ı .x" ı �"//, j
t.!/�f "

t .!/j D dist.
t ; coF.t; .x" ı �"/.t/// for
.t; !/ 2 Œa; T � � �, where x".t/ D EŒxT C R T

t
f "
� d� jFt � C R T

t
z"�d� a.s. for

a � t � T and S.coF ı .x" ı �"//=ff 2 L.Œa; T ���;ˇT ˝FT ;Rd / W ft 2
coF.t; x".�".t/// a:s: for a:e: a � t � T g;

(v) EŒdist.x".s/; EŒx".t/CR t
s
F .�; .x" ı �"/.�/d� jFs�/� � " for a � s � t � T ,

(vi) d.x".�".t//;K.�".t/// D 0 for a � t � T .

Proof. Let " 2 .0; 1/, a 2 .0; T /, xT 2 K.T /, and a measurable process 
 D
.
/0�t�T be given. By virtue of (2.3), there exists h0 2 .0;min.ı; T // such that

D

�
S

�
E

�
xT C

Z T

T�h0
F .�; xT /d� jFT�h0

��
;K.T � h0/

�
� "h0=2:

Let t1 D T � h0. By virtue of Corollary 2.3 of Chap. 2, there exists f 0 2 S.coF ı
xT / such that j
t .!/�f 0

t .!/j D dist.
t .!/; coF.t; xT .!// for .t; !/ 2 Œt1; T ���.
Let y0 D EŒxT C R T

t1
f 0
� d� jFt1 � a.s. We have y0 2 EŒxT C R T

t1
F .�; xT /d� jFt1 �

a.s., i.e., y0 2 S.EŒxT C R T
t1
F .�; xT /d� jFt1 �/. Therefore, d.y0;K.t1// � "h0=2.

Similarly as above, we can see that there exists x1 2 K.t1/ such that Ejy0 � x1j D
EŒdist.y0;K.t1� //� D d.y0;K.t1// � "h0=2. Then ky0 � x1k � "h0=2. Let
z"t D 1=h0.x1 � y0/ a.s. for t1 � t � T . We have kz"t k � .1=h0/ky0 � x1k � "=2.
Furthermore, by the definition of z"t , it follows that

R T
t

z"�d� is Ft1-measurable.
Define �".t/ D T for t1 < t � T and �.t1/ D t1. One has f 0

t 2 coF.t; xT /
a.s. for t1 � t � T . Let

x".t/ D E

�
xT C

Z T

t

f 0
� d� jFt

�
C
Z T

t

z"�d�

for t1 � t � T . We have x".T / D xT and x".t1/ D y0 C h0.1=h0/.x1 � y0/ D x1.
Therefore, d.x".�.t//;K.�.t/// D 0 for t1 � t � T and j
t.!/ � f 0

t .!/j D
dist.
t .!/; coF.t; x".�".t/.!/// for .t; !/ 2 Œt1; T ���: By the definition of x", it
follows that it is F-adapted. By properties of f 0 and x", it follows that

E

�
dist

�
x".s/; EŒxT C

Z t

s

F .�; x".�.�///d� jFs�
��

� "=2 for t1 � s � t � T:
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If t1 > a, we can repeat the above procedure starting with .t1; x1/ 2 Graph.K/.
Immediately from (2.3), it follows that there exists an h1 2 .0; ı/ such that

D

�
S.EŒx1 C

Z t1

t1�h1
F .�; x1/d� jFt1�h1 �/;K.t1 � h1/

�
� "h1=2:

Similarly as above, we can select f 1 2 S.coF ı x1/ and x2 2 K.t1 � h1/ such that
j
t.!/ � f 1

t .!//j D dist.
t .!/; co.F ı x1/.t; !/ for .t; !/ 2 Œt1 � h1; t1� �� and
ky1 � x2k � "h1=2

2, where y1 D EŒx1 C R t1
t1�h1 f

1
� d� jFt1�h1 � and t2 D t1 � h1.

We can now extend the step function �" and step process z" on the interval Œt2; T �
by taking �".t2/ D t2; �".t/ D t1 for t2 < t � t1 and z"t D .1=h1/.x2 � y1/ for
t2 � t � t1. We have f 1

t 2 coF.t; �".t// a.s. for t2 � t � t1. We can also extend
the process x" to the interval Œt2; T � by taking

x".t/ D E

�
x1 C

Z t1

t

f 1
� d� jFt

�
C
Z t1

t

z"�d�

a.s. for t2 � t � t1. We have d.x".�".t//;K.�.t/// D 0 for t2 � t � T ,
because x".t2/ D x2. Let f " D 1.t2;t1�f

1 C 1.t1;T �f
0. We have x".t/ D

EŒxT C R T
t f

"
� d� jFt � C R T

t z"�d� a.s. for t2 < t � T . Similarly as above, we
can verify that f "

t 2 coF.t; x".�".t/// a.s. for t2 < t � T and j
t � f "
t /j �

dist.
t ; coF.t; x".�.t/// a.s. for t2 < t � T: Furthermore,d.x".�".t//;K.�".t/// D
0 and EŒdist.x".s/; EŒ

R t
s F .�; x

".�.�///d� jFs� � "=2 for t2 � t � T and
t2 � s � t � T , respectively.

Suppose that for some i � 1, the inductive procedure is realized. Then there
exist ti�1 2 Œa; T / and xi�1 2 K.ti�1/ such that we can extend the step function
�", step process z", and process f " to the whole interval Œti�1; T � such that f "

t 2
coF.t; x".�".t// and j
t � f "

t j D dist.
t ; coF.t; x".�".t/// for ti�1 � t � T .
Define

x".t/ D E

�
xT C

Z T

t

f "
� d� jFt

�
C
Z T

t

z"�d�

a.s. for ti�1 � t � T . We have x".ti�1/ D xi�1, d.x".�".t//;K.�".t/// D 0, and

E

�
dist

�
x".s/; EŒx".t/C

Z t

s

F .�; .x"i�1 ı �"/.�//d� jFs�
��

� "=2

for ti�1 � s � t � T .
Denote by Si the set of all positive numbers h 2 .0;min.ı; ti�1// such that

D

�
S.EŒx".ti�1/C

Z ti�1

ti�1�h
F.�; xi�1/d� jFti�1�h�/;K.ti�1/

�
� "h=2:

By the properties of x", we have x".ti�1/ D xi�1 and .ti�1; x".ti�1// 2 Graph.K/.
Therefore, by virtue of (2.3), we have Si ¤ ; and supSi > 0. Choose hi�1 2 Si
such that .1=2/ supSi � hi�1. Put ti D ti�1 � hi�1. We can extend again the step
function �", step process z", and processes f " and x" to the interval Œti ; T � such
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that d.x".�".t//;K.�.t//// D 0 for ti � t � T; and f "
t 2 coF.t; x".�".t// and

j
t � f "
t j D dist.
t ; coF.t; x".�".t// a.s. for ti � t � T . Furthermore,

EŒdist.x".s/; EŒx".t/C
Z t

s

F .�; .x"i�1 ı �"/.�//d� jFs�/� � "=2

for ti � s � t � T . We can continue the above procedure up to n � 1 such that
0 < tn � a < tn�1. Suppose to the contrary that there does not exist such n � 1,
i.e., that for every n � 1, one has a < tn < T . Then we can extend the step function
�", the step process z", and the stochastic processes f " and x" to the interval Œtn; T �
for every n � 1 such that x".tn/ 2 K.tn/ a.s. for every n � 1 and so that the
above properties are satisfied on Œtn; T � for every n � 1. By the boundedness of
the sequence .tn/1nD1, we can select a decreasing subsequence .ti /1iD1 converging to
t� 2 Œa; T �. Let .xi /1iD1 be a sequence defined by xi D x".ti / a.s. for every i � 0.
In particular, we have xi 2 K.ti / a.s. for every i � 1. For every j > k � 0, we
obtain

Ejxk � xj j � EjEŒxT jFtk � �EŒxT jFtj �j C
Z tk

t�
m.t/dt C

Z tj

t�
m.t/dt

C .tk � tj /Ejz"t j C E

ˇ̌̌
ˇE
�Z T

t�
f "
t dt jFtk

�
� E

�Z T

t�
f "
t dt jFt�

�ˇ̌̌
ˇ

C E

ˇ̌̌
ˇE
�Z T

t�
f "
t dt jFtj

�
� E

�Z T

t�
f "
t dt jFt�

�ˇ̌̌
ˇ :

By the continuity of the filtration F, it follows that limj;k!1Ejxk � xj j D 0.
Then .xi /1iD1 is a Cauchy sequence of L.�;FT ;Rd /. Therefore, there is x� 2
L.�;FT ;Rd such that kxi � x�k ! 0 as i ! 1. But xi 2 K.ti // for every
i � 1 and K is continuous. Then .t�; x�/ 2 Graph.K/, which by virtue of (3),
implies that we can select h� 2 .0;min.ı; t�// such that

D

"
S.EŒx� C

Z t�

t��h�

F.�; x�/d� jFt��h� �/;K.t� � h�/
#

� "h�=25:

Similarly as above, for every i � 1 and 
i 2 S.coF ı xi /, we can select f � 2
S.coF ıx�/ such that j
it�f �

t /j D dist.
it ; F .t; x
�// a.s. for every t��h� � t � t�.

By the continuity of the filtration F, we obtain kEŒx�jFti�h� ��EŒx�jFt��h� �k ! 0

and

E

ˇ̌̌
ˇ̌E
"Z t�

t��h�

f �
� d� jFti�h�

#
� E

"Z t�

t��h�

f �
� d� jFt��h�

#ˇ̌̌
ˇ̌ ! 0

as i ! 1. Let N � 1 be such that for every i � N , we have 0 < ti �
t� < min.h�; ı/, kxi � x�k < "h�=.25 � A/, D.K.ti � h�/;K.t� � h�// �
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"h�=25; kEŒx�jFti�h� � � EŒx�jFt��h� �k � "h�=25; E
R t��h�

ti�h� j
i� jd� � "h�=25,
E
R ti
t� j
i� jdt � "h�=25, andEjEŒR t�t��h� f

�
� d� jFti�h� ��EŒR t�t��h� f

�
� d� jFt��h��j �

"h�=25; where A D 1 C R T
0
k.t/dt . By the properties of the multifunction F.t; � /

and selector f � of F ı x�, it follows that

k1Œt��h�;t��.

i � f �/k D E

Z t�

t��h�

j
i� � f �
� jd�

� E

Z t�

t��h�

h..F.t; xi /; F .t; x
�//�dt

� kxi � x�k
Z t�

t��h�

k.t/dt:

For every i � N , one gets

d

�
EŒxi C

Z ti

ti�h�


i�d� jFti�h� �;K.ti � h�/
�

� E

ˇ̌
ˇ̌̌
EŒxi C

Z ti

ti�h�


i�d� jFti�h� � � EŒx� C
Z t�

t��h�

f �
� d� jFt��h��

ˇ̌
ˇ̌̌

C d

 
EŒx�C

Z t�

t��h�

f �
� d� jFt��h��;K.t��h�/

!
CD.K.t� � h�/;K.ti � h�//:

But for every i � N , we have

E

ˇ̌
ˇ̌̌
E

�
xi C

Z ti

ti�h�


i�d� jFti�h�

�
� E

"
x� C

Z t�

t��h�

f �
� d� jFt��h�

#ˇ̌ˇ̌̌

� EjEŒ.xi � x�/jFti�h��j C EjEŒx�jFti�h� � �EŒx�jFt��h� �j

C E

ˇ̌
ˇ̌
ˇE
"Z t��h�

t�
.
i� � f �

� /d� jFti�h�

#ˇ̌ˇ̌
ˇC E

Z t��h�

ti�h�

j
i� jd� C E

Z ti

t�
j
i� jdt

C E

ˇ̌̌
ˇ̌E
"Z t��h�

t�
f �
� d� jFti�h�

#
�E

"Z t�

t��h�

f �
� d� jFt��h�

#ˇ̌̌
ˇ̌ � 6"h�=25:

Therefore, for every i � N , one gets

d

�
E

�
xi C

Z ti

ti�h�


i�d� jFti�h�

�
;K.ti /

�
� 8"h�=25 D "h�=22;
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which implies that

D.S.EŒxi C
Z ti

ti�h�

F.�; xi /d� jFti�h� �;K.ti // � "h�=22:

But t� � ti for i � 1. Therefore, for every i � N , one has h� 2 SiC1 and
.1=2/h� � supSiC1 � hi D ti � tiC1, which contradicts the convergence of the
sequence .ti /1iD1. Then there is a p > 1 such that a D tp < tp�1; : : : ; t1 < t0 D T .
Taking f " D 1Œa;tp�1�f

p C P0
iDp�2 1.tiC1;ti �f

i , we obtain the desired selector of
coF ı .x" ı �"/. �

Remark 2.3. The above results are also true if instead of continuity of the set-valued
mapping K, we assume that it is uniformly upper semicontinuous on Œ0; T �, i.e., that
limı!0 sup0�t�T D.K.t C ı/;K.t// D 0. �

Conditions (2.1) and (2.3) can be expressed by certain types of stochastic tangent
sets. To see this, let .t; x/ 2 Graph.K/ and denote by TK.t; x/ the set of all pairs
.f; g/ 2 L2.Œt; T � ��;†tF;Rd / � L2.Œt; T � ��;†tF;Rd�m/ such that

lim inf
h!0C .1=h/d

"
x C

Z tCh

t

f�d� C
Z tCh

t

g�dB� ;K.t C h/

#
D 0;

where †tF denotes the �-algebra of all F-nonanticipative subsets of Œt; T � � �. In
a similar way, for .t; x/ 2 Graph.K"/ and " 2 .0; 1/, we can define a backward
stochastic tangent set T b

K .t; x/ with respect to a filtration F D .Ft /0�t�T as the set
of all measurable processes f 2 L.Œ0; T � ��;FT ;Rd / such that

lim inf
h!0C .1=h/d

�
E

�
x C

Z t

t�h
f�d� jFt�h

�
;K.t � h/

�
D 0:

Lemma 2.1. Let PF be a complete filtered probability space. Assume that F and
G satisfy condition (i) of .H1/ and let K W Œ0; T � � � ! Cl.Rd / be F-adapted
and such that K.t/ ¤ ; for every 0 � t � T . The condition (2.1) is satisfied for
every .t; x/ 2 Graph.K/ if and only if StF.F ı x/ � StF.G ı x/ � TK.t; x/ for
every .t; x/ 2 Graph.K/, where StF.F ı x/ and StF.G ı x/ denote the sets of all
restrictions of all elements of SF.F ı x/ and SF.G ı x/, respectively, to the set
Œt; T � ��.

Proof. It is clear that if (2.1) is satisfied for every .t; x/ 2 Graph.K/, then StF
.F ı x/ � StF.G ı x/ � TK.t; x/ for every .t; x/ 2 Graph.K/. Let StF.F ı x/ �
StF.Gıx/ � TK.t; x/ for fixed .t; x/ 2 Graph.K/. Then for every .f; g/ 2 StF.F ı
x/ � StF.G ı x/, one has

lim inf
h!0C .1=h/d

"
x C

Z tCh

t

f�d� C
Z tCh

t

g�dB� ;K.t C h/

#
D 0:
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Thus for every .t; x/ 2 Graph.K/ and .f; g/ 2 StF.F ı x/ � StF.G ı x/ and every

" 2 .0; 1/, there exists hf;g" .t/ 2 .0; "/ such that

d

"
x C

Z tCh

t

f�d� C
Z tCh

t

g�dB� ;K.t C h/

#
� hf;g" .t/ � ":

Let h" D supfhf;g" .t/ W .f; g/ 2 StF.F ı x/ � StF.G ı x//; 0 � t � T g. We have

d

"
x C

Z tCh

t

f�d� C
Z tCh

t

g�dB� ;K.t C h/

#
� h" � "

for every .t; x/ 2 Graph.K/ and .f; g/ 2 SF.F ı x/ � SF.G ı x/. Then

D

"
x C

Z tCh

t

F .�; x/d� C
Z tCh

t

G.�; x/dB� ;K.t C h/

#
� h"";

which implies that

lim inf
h!0C .1=h/D

 
x C

Z tCh

t

F .�; x/d� C
Z tCh

t

G.�; x/dB� ;K.t C h/

!
D 0

for every .t; x/ 2 Graph.K/: �

Remark 2.4. The results of Theorems 2.1 and 2.2 also hold if instead of condi-
tion (2.1), we assume that ŒS tF.F ı x/ � StF.G ı x/� \ TK.t; x/ ¤ ; for every
" 2 .0; 1/ and .t; x/ 2 Graph.K"/. �

There are another types of stochastic tangent sets. For a given F-adapted set-
valued stochastic process K W Œ0; T � � � ! Cl.Rd / and .t; x/ 2 Graph.K/,
by SK.t; x/ we denote the stochastic “tangent set” to K at .t; x/ with respect to
the filtration F defined as the set of all pairs .f; g/ 2 L2.Œt; T � � �;†tF;R

d / �
L2.Œt; T � � �;†tF;R

d�m/ such that for every .f; g/ 2 SK.t; x/, there exist a
sequence .hn/1nD1 of positive numbers converging to 0 and sequences .an/1nD1
and .bn/1nD1 of d - and d � m-dimensional F-adapted stochastic processes an D
.ant /0�t�T and bn D .bnt /0�t�T , respectively, such that

sup
n�1

d

"
x C

Z tChn

t

.f� C ans /d� C
Z tChn

t

.g� C bns /dB� ;K.t C hn/

#
D 0

and

lim
n!1.1=hn/E

2
4
ˇ̌
ˇ̌
ˇ
Z tChn

t

an� d� C
Z tChn

t

bn� dB�

ˇ̌
ˇ̌
ˇ
2
3
5
1=2

D 0:
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We shall show that such stochastic tangent sets are smaller then TK.t; x/, i.e.,
that SK.t; x/ � TK.t; x/ for every .t; x/ 2 Graph.K/.
Lemma 2.2. Let K W Œ0; T � � � ! Cl.Rd / be an F-adapted set-valued process
such that K.t/ ¤ ; for every 0 � t � T . For every .t; x/ 2 Graph.K/, one has
SK.t; x/ � TK.t; x/.

Proof. Let .t; x/ 2 Graph.K/ be fixed and .f; g/ 2 SK.t; x/. There exist a
sequence .hn/1nD1 of positive numbers converging to 0 and sequences .an/1nD1
and .bn/1nD1 of d - and d � m-dimensional F-adapted stochastic processes an D
.ant /0�t�T and bn D .bnt /0�t�T , respectively, such that the above conditions are
satisfied. For every n � 1, one has

d2

"
x C

Z tChn
t

f�d� C
Z tChn
t

g�dB� ;K.t C h/

#
� 2E

2
4
ˇ̌
ˇ̌
ˇ
Z tChn
t

an� d� C
Z tChn
t

bn� dB�

ˇ̌
ˇ̌
ˇ
2
3
5 :

Hence, by the properties of sequences .an/1nD1 and .bn/1nD1; it follows that

lim
n!1.1=hn/d

"
x C

Z tChn

t

f�d� C
Z tChn

t

g�dB� ;K.t C h/

#
D 0;

which implies

lim inf
h!0C .1=h/d

 
x C

Z tCh

t

f�d� C
Z tCh

t

g�dB� ;K.t � h/

!
D 0:

Then .f; g/ 2 TK.t; x/ for every .f; g/ 2 SK.t; x/. �
Denote by �K.t; x/ that stochastic “contingent set” to K at .t; x/ with respect

to F, defined as the set of all pairs .f; g/ 2 L2.Œt; T � � �;†tF;Rd / � L2.Œt; T � �
�;†tF;R

d�m/ such that for every such pair .f; g/, there exist a sequence .hn/1nD1
of positive numbers converging to 0 and sequences .an/1nD1 and .bn/1nD1 of d - and
d � m-dimensional Ft -measurable random variables an and bn, respectively, such
that x C R tChn

t fsdsC R tChn
t gsdBs C hnan C p

hnbn 2 K.t C hn/ for every n � 1

and max
˚
Ejanj2; .1=hn/Ejbnj2

� ! 0 as n ! 1. Similarly as above, we obtain
the following result.

Lemma 2.3. Let K W Œ0; T � � � ! Cl.Rd / be an F-adapted set-valued process
such that K.t/ ¤ ; for every 0 � t � T . For every .t; x/ 2 Graph.K/, one has
�K.t; x/ � SK.t; x/.

Proof. Let .t; x/ 2 Graph.K/ be fixed and .f; g/ 2 �K.t; x/. There are a sequence
.hn/

1
nD1 of positive numbers converging to zero and sequences .an/1nD1 , .bn/1nD1 of

Ft -measurable random variables an W � ! Rd and bn W � ! Rd�m such that the
above conditions are satisfied. For every n � 1, one gets

sup
n�1

d

"
x C

Z tChn

t

.fs C an/ds C
Z tChn

t

.gs C bn/dBs;K.t C h/

#
D 0
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and

2
4E

ˇ̌
ˇ̌̌Z tChn

t

ands C
Z tChn

t

bndBs

ˇ̌
ˇ̌̌2
3
5
1=2

� hn
�
Ejanj2

�1=2 C
p
hn
�
Ejbnj2

�1=2
:

Hence, for n � 1 sufficiently large, it follows that

.1=hn/

2
4E

ˇ̌
ˇ̌̌Z tChn

t

ands C
Z tChn

t

bndBs

ˇ̌
ˇ̌̌2
3
5
1=2

� �
Ejanj2

�1=2C�
1=hnEjbnj2

�1=2
;

which implies that

.1=hn/

2
4E

ˇ̌̌
ˇ̌
Z tChn

t

ands C
Z tChn

t

bndBs

ˇ̌̌
ˇ̌
2
3
5
1=2

! 0 as n ! 1:

Then .f; g/ 2 SK.t; x/. �

Remark 2.5. The results of Theorems 2.1 and 2.2 are also true if instead of
condition (2.1), we assume that ŒS tF.F ı x/ � StF.G ı x/� \ �K.t; x/ ¤ ; for every
" 2 .0; 1/ and .t; x/ 2 Graph.K"/. �

3 Existence of Viable Solutions

We shall prove now that if F andG satisfy conditions .H1/, then for every continu-
ous set-valued F-adapted processK W Œ0; T ��� ! Cl.Rd /, the viability problems
SFI.F;G;K/ and BSDI.F;K/ possess viable strong solutions. Furthermore,
the existence of viable weak solutions of SFI.F;G;K/ is considered. Similarly
as above, we define K.t/ and K".t/ by setting K.t/ D fu 2 L2.�;Ft ;Rd / W
d.u;K.t// D 0g and K".t/ D fu 2 L2.�;Ft ;Rd / W d.u;K.t// � "g.

Theorem 3.1. Let PF D .�;F ;F;P/ be a complete filtered probability space and
B D .Bt /0�t�T an m-dimensional F-Brownian motion on PF. Assume that F and
G satisfy conditions .H1/ and let K W Œ0; T � � � ! Cl.Rd / be an F-adapted set-
valued process such that K.t/ ¤ ; for every 0 � t � T and such that the mapping
K W Œ0; T � 3 t ! K.t/ 2 Cl.L2.�;FT ;Rd // is continuous. If PF, B , F , G, and
K are such that (2.1) is satisfied for every .t; x/ 2 Graph.K/, then the problem
SFI.F;G;K/ possesses on PF a strong viable solution.

Proof. Let a 2 .0; T / and select arbitrarily x0 2 K.0/. Let u0 2 L2.�;F0;Rd /

and v0 2 L2.�;F0;Rd�m/ be such that u0 2 F.0; x0/ and v0 2 G.0; x0/ a.s. By
virtue of Theorem 2.2, for "1 D 1=23=2 and stochastic processes 
1 D .
1t /a�t�T



202 5 Viability Theory

and  1 D . 1t /a�t�T defined by 
1t D u0 and  1t D v0 a.s. for every a � t � T ,
there exist a partition 0 D t10 < t

1
1 < � � � < t1p1�1 < t1p1 D a, a step function �1, and

stochastic processes f 1, g1, and z1 such that conditions (i)–(v) of Theorem 2.2 are
satisfied with

x1.t/ D x0 C
Z t

0

.f 1
� C z1� /d� C

Z t

0

g1�dB�

a.s. for a � t � T . Similarly, for "2 D 1=2 and 
2 D f 1 and  2 D g1, we can
select a partition 0 D t20 < t21 < � � � < t2p2�1 < t2p1 D a, a step function �2, and
stochastic processes f 2, g2, and z2 such that conditions (i)–(v) of Theorem 2.2 are
satisfied with

x2.t/ D x0 C
Z t

0

.f 2
� C z2� /d� C

Z t

0

g2�dB�

a.s. for a � t � T . Continuing this procedure for "k D 1=23k=2 and 
k D f k�1
and  k D gk�1, we obtain a partition 0 D tk0 < t

k
1 < � � � < tkpk�1 < tkpk D a, a step

function �k , and stochastic processes f k , gk , and zk such that conditions (i)–(v) of
Theorem 2.2 are satisfied for every k � 1 with

xk.t/ D x0 C
Z t

0

.f k
� C zk� /d� C

Z t

0

gk� dB�

a.s. for a � t � T such that d.xk.�k.t//;K.�k.t// D 0. For every k � 1, one
has f k 2 SF.F ı .xk�1 ı �k�1//, gk 2 SF.G ı .xk�1 ı �k�1//, jf k � f k�1j �
dist.f k�1

t ; F .t; .xk�1.�k�1.t///; jgk � gk�1j � dist.gk�1
t ; G.t; .xk�1.�k�1.t///;

kzk.t/k � "k, and

d

�
xk.t/ � xk.s/; clL

�Z t

s

F .�; .xk ı �k/.�//d� C
Z t

s

G.�; .xk ı �k/.�//dB�
��

� "k

for 0 � s � t � a. Furthermore, one has j�k.t/ � �k�1.t/j � ık�1;
Z �k.t/

�k�1.t/

jf k�1
� j2d� � "2k�1=24 and

Z �k.t/

�k�1.t/

jgk�1
� j2d� � "2k�1=24

for 0 � t � a, because by (i) of Theorem 2.2, ık 2 .0; "k/ is such that

max

"
sup

0�s<t�T

Z tCık

t

k2.�/d�; sup
0�s<t�T

Z tCık

t

m2.�/d�

#
� "2k=2

4:

We shall now evaluate EŒsup0���t jxkC1.�/ � xk.�/j2� for k D 1; 2; : : : and 0 �
t � a. Let us observe first that EŒsup0���t jxk.�kC1.�// � xk.�k.�//j2� ! 0 as
k ! 1, because j�kC1.t/ � �k.t/j � ık and

EŒ sup
0���t

jxk.�kC1.�//� xk.�k.�//j2� � 3.ık C 1/

Z �kC1.t/

�k.t/

m2.�/d� C "2k
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for k D 2; 3; : : : and 0 � t � a. Hence it follows that

EŒ sup
0���t

jxkC1.�/� xk.�/j2� � ˛"2k C ˇ

Z t

0

k2.�/EŒ sup
0�u��

jxk.u/� xk�1.u/j2�d�

for every k D 1; 2; : : : and 0 � t � a, where x0t D x0; ˛ D .4T /2 and ˇ D
22.T C 1/.

Now, by the definition of the processes x1 and x0; one gets EŒsup0���t jx1.�/�
x0.�/j2� � 	 with 	 D 22Œ.T C 1/

R T
0 m

2.t/dt C T 2�. Therefore,

EŒ sup
0���t

jx2.�/ � x1.�/j2� � ˛"21 C ˇ	

Z t

0

k2.�/d�

for 0 � t � a. From this and (3), it follows that

EŒ sup
0���t

jx3.�/ � x2.�/j2� � ˛"22 C ˛ˇ"21

Z t

0

k2.�/d� C ˇ2	

2Š

�Z t

0

k2.�/d�

�2
:

Similarly, we get

EŒ sup
0���t

jx4.�/� x3.�/j2�

� ˛"23 C ˛ˇ"22

Z t

0

k2.�/d� C ˛
ˇ2"21
2Š

�Z t

0

k2.�/d�

�2
C 	

ˇ3

3Š

�Z t

0

k2.�/d�

�3

for 0 � t � a. By the inductive procedure, we obtain

EŒ sup
0���t

jxnC1.�/� xn.�/j2�

� ˛"2n C ˛ˇ"2n�1

Z t

0
k2.�/d� C ˛"2n�2

ˇ2

2Š

�Z t

0
k2.�/d�

�2
C � � � C 	

ˇn

nŠ

�Z t

0
k2.�/d�

�n

� M"2n

"
1C 8ˇ

Z t

0

k2.�/d� C .8ˇ/2

2Š

�Z t

0

k2.�/d�

�2
C � � � C .8ˇ/n

nŠ

�Z t

0

k2.�/d�

�n#

� M"2nexp

�
8ˇ

Z t

0
k2.�/d�

�

for n � 1 with M D max.˛; 	/. By Chebyshev’s inequality, we obtain

P

"
sup
0���a

jxnC1.�/� xn.�/j > 2�n
#

� 22nEŒ sup
0���T

jxnC1.�/ � xn.�/j2� � 22n"2nM exp

�
8ˇ

Z t

0

k2.�/d�

�

D 2�nM exp

�
8ˇ

Z t

0

k2.�/d�

�
:



204 5 Viability Theory

Therefore, by the Borel–Cantelli lemma, one gets

P

"
sup
0���a

jxnC1.�/� xn.�/j > 2�n for infinitely many n

#
D 0:

Thus for a.e. ! 2 �, there exists n0 D n0.!/ such that sup0���a jxnC1.�/ �
xn.�/j � 2�n for n � n0.!/. Therefore, the sequence fxn.�/.!/g1

nD1 is uni-
formly convergent on Œ0; a� for a.a. ! 2 �, because xn.t/.!/ D x1.t/.!/ CPn�1

kD1ŒxkC1.t/.!/ � xk.t/.!/� for every 0 � t � T and a.a. ! 2 �. Denote
the limit of the above sequence by xt .!/ for 0 � t � a and a.a. ! 2 �. By virtue
of (3), it follows that EŒsup0���t jxnC1.�/� xn.�/j2� ! 0 as n ! 1. On the other
hand, by the properties of sequences .f k/1kD1 and .f k/1kD1; we get

Z a

0

EŒjf kC1
� � f k� j2�d� �

Z a

0

EŒh2.F.�; .xk ı �k/.�///; F .�; .xk�1 ı �k�1/.�////�d�

�
Z a

0

k2.�/EŒ sup
0�u��

jxk.u/ � xk�1.u/j2�d�

and
Z a

0

EŒjgkC1
� � gk� j2�d� �

Z a

0

EŒH2.G.�; .xk ı �k/.�///; G.�; .xk�1 ı �k�1/.�////�d�

�
Z a

0

k2.�/EŒ sup
0�u��

jxk.u/ � xk�1.u/j2�d�

for every k D 0; 1; : : : : Hence it follows that .f k/1kD1 and .gk/1kD1 are Cauchy
sequences of Banach spaces .L2.Œ0; a� � �;†F;R

d /; j � j/ and .L2.Œ0; a� �
�;†F;R

d�m/; j � j/, respectively. Then there exist f 2 L2.Œ0; a� � �;†F;R
d /

and g 2 L2.Œ0; a� � �;†F;R
d�m/ such that jf n � f j ! 0 and jgn � gj ! 0 as

n ! 1. Let yt D x0 C R t
0
f�d� C R t

0
g�dB� for 0 � t � a. For every n � 1, one

gets

EŒ sup
0�t�a

jxn.t/ � yt j2�

� EŒ sup
0�t�a

ˇ̌
ˇ̌Z t

0

.f n
� � f�/d� C

Z t

0

.gn� � g� /dB� C
Z t

0

zn.�/d�

ˇ̌
ˇ̌2

� 3T jf n � f j2 C 3jgn � gjj2 C 3T 2"n:

Therefore, we have EŒsup0�t�a jxn.t/ � yt j2� ! 0 and EŒsup0�t�a jxn.t/ �
x.t/j2� ! 0 as n ! 1, which implies that x.t/ D yt a.s. for every 0 � t � a.
Then x.t/ D x0 C R t

0
f�d� C R t

0
g�dB� a.s. for 0 � t � a. Now, by Lemma 1.3 and

Theorem 2.2, we obtain
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0 � d

�
x.t/ � x.s/; clL

�Z t

s
F .�; x.�//d� C

Z t

s
G.�; x.�//dB�

��

� jj.x.t/ � x.s//� .xn.t/ � xn.s//jj

C d

�
xn.t/� xn.s/; clL

�Z t

s
F .�; .xn ı �n/.�//d� C

Z t

s
G.�; .xn ı �n/.�//dB�

��

C H

�
clL

�Z t

s
F .�; .xn ı �n/.�//d� C

Z t

s
G.�; .xn ı �n/.�//dB�

�
;

clL

�Z t

s
F .�; x.�//d� C

Z t

s
G.�; x.�//dB�

��

� 2jjxn � xjj C "n C .1C p
T /

 Z T

0
k2.t/dt

!1=2
kxn ı �n � xk

for every 0 � s � t � a. But

kxn ı �n � xk2 D EŒjxn.�n.t// � x.t/j�
� EŒ sup

0�u�a
jxn.u/� x.u/j2�C EŒ sup

0�t�a
jx.�n.t// � x.t/j�:

Then limn!1 kxn ı �n � xk D 0. Therefore, for every 0 � s � t � a, we get

d

�
x.t/ � x.s/; clL

�Z t

s

F .�; x.�//d� C
Z t

s

G.�; x.�//dB�

��
D 0:

Thus

x.t/ � x.s/ 2 clL

�Z t

s

F .�; x.�//d� C
Z t

s

G.�; x.�//dB�

�

for every 0 � s � t � a. In a similar way, we get d.x.t/;K.t// � kxn � xk C
d.xn.t/;K.t// � kxn � xk C "n for every n � 1 and 0 � s � t � a. Therefore,
d.x.t/;K.t// D 0 for every 0 � t � a, which by Theorem 3.1 of Chap. 2, implies
that x.t/ 2 K.t; �/ a.s. for 0 � t � a.

We can now extend our solution to the whole interval Œ0; T �. Let us denote by
ƒx the set of all extensions of the viable solution x of SFI.F;G;K/ obtained
above. We have ƒx ¤ ;, because we can repeat the above procedure for every
interval Œa; ˛� with ˛ 2 .a; T /. Let us introduce in ƒx the partial order relation �
by setting x � z if and only if ax � az and x D zjŒ0;ax �, where az 2 .0; T / is such
that z is a strong viable solution for SFI.F;G;K/ on Œ0; az�, and zjŒ0;ax � denotes
the restriction of the solution z to the interval Œ0; ax�. Let  W Œ0; ˛� ! Rd be an
extension of x to Œ0; ˛� with ˛ 2 .a; T / and denote by P 

x � ƒx the set containing
 and all its restrictions  jŒ0;ˇ� for every ˇ 2 Œa; ˛/. It is clear that each completely
ordered subset ofƒx is of the form P

 
x , determined by some extension  of x. It is

also clear that every P 
x has  as its upper bound. Then by the Kuratowski–Zorn
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lemma, there exists a maximal element 	 of ƒx . It has to be a	 D T . Indeed, if we
had a	 < T , then we could repeat the above procedure and extend 	 as a viable
strong solution � 2 ƒx of SFI.F;G;K/ to the interval Œ0; b� with a	 < b, which
would imply that 	 � �, a contradiction to the assumption that 	 is a maximal
element of ƒx . Then x can be extended to the whole interval Œ0; T �. �

In a similar way, by virtue of Remark 2.2, we can prove the following existence
theorem for SFI.F ;G/.

Theorem 3.2. Let PF D .�;F ;F;P/ be a complete filtered separable probability
space and B D .Bt /0�t�T an m-dimensional F-Brownian motion on PF. Assume
that F and G satisfy conditions .H1/ and that K W Œ0; T � � � ! Cl.Rd / is F-
adapted such that K.t/ ¤ ; for every 0 � t � T and such that the mapping
K W Œ0; T � ! Cl.L2.�;FT ;Rd // is continuous. If PF, B , F , G, and K are such
that (2.2) is satisfied for every .t; x/ 2 Graph.K/, then the problem

�
xt � xs 2 clLfR t

s
F .�; x� /d�g C R t

s
G.�; x� /dB� for 0 � s � t � T;

xt 2 K.t/ a:s: for t 2 Œ0; T �;

possesses on PF a strong viable solution. �

We shall now prove the existence of weak viable solutions for stochastic
functional inclusions. The proof of such an existence theorem is based on the first
viable approximation theorem presented above.

Theorem 3.3. Assume that F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd !
Cl.Rd�m/ are measurable, bounded, convex-valued and are such that F.t; � / and
G.t; � / are continuous for a.e. fixed t 2 Œ0; T �. Let G be diagonally convex
and let K W Œ0; T � ! Cl.Rd / be continuous. If there exist a complete filtered
probability space PF D .�;F ;F;P/ and a d -dimensional F-Brownian motion
on PF such that (2.1) is satisfied for every " 2 .0; 1/ and .t; x/ 2 Graph.K"/, then
SFI.F;G;K/ possesses a weak viable solution.

Proof. Let x0 2 K.0/ be fixed and let "n D 1=2n. By virtue of Theorem 2.1, we can
define on Œ0; T � a step function �n D �"n and F-nonanticipative stochastic processes
f n D f "n , gn D g"n , and xnt D x0 C R t

0 f
n
� d� C R t

0 g
n
� dB� for 0 � t � T such

that conditions (i)–(iii) of Theorem 2.1 are satisfied. In particular, for every m � 1,
n � 1, and 0 � s � t � T , we obtain

Ejxn.t/ � xn.s/j2m � C1
mE

"ˇ̌
ˇ̌Z t

s

f n
� d�

ˇ̌
ˇ̌2m
#

C C2
mE

"ˇ̌
ˇ̌Z t

s

gn� dB�

ˇ̌
ˇ̌2m
#

� C1
mT

mE

�Z t

s

jf n� j2d�
�m

C C2
mE

"ˇ̌
ˇ̌Z t

s

gn� dB�

ˇ̌
ˇ̌2m
#
;
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where C1
m and C2

m are positive integers depending onm � 1. Let us observe that

E

�Z t

s

jf n
� j2d�

�m
� M2mjt�sjm and E

"ˇ̌
ˇ̌Z t

s

gn� dB�

ˇ̌
ˇ̌2m
#

� M2m.2m�1/ŠŠjt�sjm:

Therefore,

Ejxn.t/ � xn.s/j2m � �
C1
mT

m C C2
m.2m � 1/ŠŠ�M2m jt � sjm

for every 0 � s � t � T and n;m � 1. In a similar way, we can verify that
there exist positive numbers K and 	 such that Ejxn0 j	 � K . Then the sequence
.xn/1nD1 of continuous processes xn D .xnt /0�t�T satisfies on the probability space
.�;F ; P / the assumptions of Theorem 3.5 of Chap. 1. Furthermore, immediately
from Theorem 2.1, it follows that EŒdist.xn.�n.t//;K.�n.t///� � "n and

E

�
l.xn.s//

�
h.xn.t// � h.xn.s// �

Z t

s

.Lx
n

f ngnh/�d�

��
D 0

for every 0 � s � t � T , l 2 Cb.Rd ;R/, and h 2 C2
b .R

d ;R/.
By virtue of Theorems 3.5 and 2.4 of Chap. 1, there exist an increasing

subsequence .nk/1kD1 of .n/1nD1, a probability space . Q�; QF ; QP/, and d -dimensional
continuous stochastic processes Qxnk and Qx on . Q�; QF ; QP / for k D 1; 2; : : : such
that P.xnk /�1 D P. Qxnk /�1 for k D 1; 2; : : : and sup0�t�T j Qxnk � Qxj ! 0 as
k ! 1. Let QFnk

t D T
">0 �. Qxnku W u � t C "/ for 0 � t � T and let QFnk D

. QFnk
t /0�t�T . For every k � 1, xnk and Qxnk are continuous F- and QFnk -adapted.

Furthermore, immediately from (3), it follows that Mxnk
FG ¤ ; for every k � 1,

which by Lemma 1.3 of Chap. 4, implies that MQx
FG ¤ ;. This, by Theorem 1.3

of Chap. 4, implies the existence of an QF-Brownian motion OB on the standard
extension OP OF D . O�; OF ; OF; OP / of the filtered probability space . Q�; QF ; QF; QP /, with
QF D . QFt /0�t�T defined by QFt D T

">0 �. Qx.u/ W u � tC"/, such that . OP OF; Ox; OB/ is a
weak solution of SF I.F;G/ with Oxt . O!/ D Qxt .
. O!// satisfying the initial condition
P Ox�1

0 D P Qx�1
0 , where 
 W O� ! Q� is the . OF ; QF/-measurable mapping described in

the definition of the extension of . Q�; QF ; QF; QP /, because the standard extension OP OF
is also an extension. Similarly as in the proof of Corollary 3.2 of Chap. 1, we obtain
P.es ı xnk /�1 D P.es ı Qxnk /�1 with s D �nk .t/ for 0 � t � T . This, together with
the inequality EŒdist.xnk .�nk .t//;K.�nk .t///� � 1=2nk for k � 1 and properties
of the sequence . Qxnk /1kD1; implies that EŒdist. Qxt ;K.t//� D 0. Similarly as in the
proof of Theorem 1.3 of Chap. 4, by the definition of the process Ox, it follows that
P Ox�1 D P Qx�1;which implies thatP.et ı Ox/�1 D P.et ı Qx/�1 for every 0 � t � T .
Therefore, EŒdist. Oxt ;K.t//� D 0 for every 0 � t � T . Thus Oxt 2 K.t/, OP -a.s. for
0 � t � T . �
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Remark 3.1. The results of Theorem 3.3 again hold if instead of (2.1), we assume
that (2.2) is satisfied. It is also true if instead of (2.1), we assume that ŒS tF.F ı x/ �
StF.G ı x/� \ TK.t; x/ ¤ ; for every .t; x/ 2 Graph.K"/ and " 2 .0; 1/. �

In a similar way as above, we obtain immediately from Theorem 2.3 the
following existence theorem.

Theorem 3.4. Let PF D .�;F ;F;P/ be a complete filtered probability space with
a continuous filtration F D .Ft /0�t�T such that FT D F . Assume that F satisfies
conditions .H1/ and let K W Œ0; T � � � ! Cl.Rd / be an F-adapted set-valued
process such that K.t/ ¤ ; for every 0 � t � T and that the mapping K W Œ0; T � 3
t ! K.t/ 2 Cl.L.�;FT ;Rd // is continuous. If PF, F , andK are such that (2.3) is
satisfied for every .t; x/ 2 Graph.K/, then BSDI.F;K/ possesses a strong viable
solution.

Proof. Let xT 2 K.T / and a 2 .0; T / be fixed. Put x0t D EŒxT jFt � a.s. for a �
t � T and let f 0 D .f 0

t /a�t�T be a measurable process on PF such that f 0
t 2

coF.t; .x0 ı �0/.t// a.s. for a.e. a � t � T , where �0.t/ D T for a � t � T . Let

t D f 0

t a.s. for a.e. a � t � T . By virtue of Theorem 2.3, for "1 D 1=23=2 and
the above process 
 D .
t /a�t�T , there exist a partition a D t1p1 < t1p1�1 < � � � <
t11 < t10 D T , a step function �1 W Œa; T � ! Œa; T �, a step process z1 D .z1t /a�t�T ,
and a measurable process f 1 D .f 1

t /a�t�T on PF such that conditions (i)–(vi) of
Theorem 2.3 are satisfied. In particular, f 1

t 2 coF.t; .x1 ı �1/.t//, jf 1
t � f 0

t j D
dist.f 0

t ; coF.t; .x1 ı �1/.t/// a.s. for a.e. a � t � T and d.x1.t/;K.t// � "1 for
a � t � T , because d.x1.t/;K.t// � jx1.t/� x1.�.t//j C d.x1.�.t//;K.�.t///C
D.K.�.t//;K.t// � "1, where x1t D EŒxT C R T

t
f 0
� d� jFt � C R T

t
z1�d� a.s. for

a � t � T . In a similar way, for 
 D .f 1
t /a�t�T and "2 D 1=23, we can define

a partition a D t2p2 < t2p2�1 < � � � < t21 < t20 D T , a step function �2 W Œa; T � !
Œa; T �, a step process z2 D .z2t /a�t�T , and a measurable process f 2 D .f 2

t /a�t�T
such that f 2

t 2 coF.t; .x2 ı �2/.t//, jf 2
t � f 1

t j D dist.f 1
t ; coF.t; .x2 ı �2/.t/// a.s.

for a.e. a � t � T and d.x2.t/;K.t// � "2 for a � t � T , where x2t D EŒxT CR T
t
f 1
� d� jFt �C

R T
t

z2�d� a.s. for a � t � T . Furthermore, for i D 1; 2, we have

E

�
dist

�
xi .s/; E

�
xi .t/C

Z t

s

F .�; .xi ı �i /.�//d� jFs
���

� "i

a.s. for a � s � t � T . By the inductive procedure, for "k D 1=23k=2 and

k D .f k

t /a�t�T , we can select for every k � 1, a partition a D tkpk <

tkpk�1 < � � � < tk1 < tk0 D T , a step function �k W Œa; T � ! Œa; T �, a step

process zk D .zkt /a�t�T , and a measurable process f k D .f k
t /a�t�T such that

f k
t 2 coF.t; .xk ı �k/.t//, jf k

t � f k�1
t j D dist.f k

t ; coF.t; .xk ı �k/.t/// a.s. for
a.e. a � t � T and d.xk.t/;K.t// � "k for a � t � T , where

xkt D EŒxT C
Z T

t

f k�1
� d� jFt �C

Z T

t

zk� d�
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a.s. for a � t � T . Furthermore,

E

�
dist

�
xk.s/; E

�
xk.t/C

Z t

s

F .�; .xk ı �k/.�//d� jFs
���

� "k

for a � s � t � T . Of course, xk 2 S.F;Rm/ for k � 1. By Corollary 3.2 of
Chap. 3 and the continuity of the filtration F, the process xk is continuous for every
k � 1. Furthermore, by the properties of the sequence .f k/1kD1; one gets

jxkC1.t/ � xk.t/j � E

�Z T

t

jf k
� � f k�1

� j2d� jFt
�

C
Z T

t

EjzkC1
� � zk� jd�

� E

�Z T

t

dist2.f k�1
� ;coF.�; .xk ı �k/.�///d� jFt

�
C 8T 2"k

� ˛"k CE

"Z T

t

k.�/ sup
��s�T

jxk.s/ � xk�1.s/jd� jFt
#
;

a.s. for a � t � T , where ˛ D 8T 2. Therefore,

sup
t�u�T

jxkC1.u/ � xk.u/j � ˛"k C sup
t�u�T

E

"Z T

u
k.�/ sup

��s�T

jxk.s/ � xk�1.s/jd� jFu

#

� ˛"k C sup
t�u�T

E

"Z T

t

k.�/ sup
��s�T

jxk.s/ � xk�1.s/jd� jFu

#

a.s. for a � t � T and k D 1; 2; : : :. By Doob’s inequality, we get

E

"
sup
t�u�T

EŒ

Z T

t

k.�/ sup
��s�T

jxk.s/� xk�1.s/jd� jFu�

#2

� 4E

"Z T

t

k.�/ sup
��s�T

jxk.s/ � xk�1.s/jd��
#2

for a � t � T . Therefore, for every a � t � T and k D 1; 2; : : :, we have

EŒ sup
t�u�T

jxkC1.u/� xk.u/j2� � ˛2"2k Cˇ

Z T

t

k2.�/EŒ sup
��s�T

jxk.s/� xk�1.s/j2�d�;

where ˇ D 8T . By the definitions of x1 and x0, we obtain EŒsupt�u�T jx1.u/ �
x0.u/j2� � L; where L D T

R T
0
m2.t/dt . Therefore,

EŒ sup
t�u�T

jx2.u/� x1.u/j2� � 2˛2"21 C Lˇ

Z T

t

k2.�/d�
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for a � t � T . Hence it follows that

EŒ sup
t�u�T

jx3.u/� x2.u/j2� � 2˛"22 C ˛ˇ"21

Z T

t

k2.�/d� C Lˇ2
Z T

t

k2.�/

�Z T

�

k2.u/du

�
d�

� 2˛2"22 C ˛2ˇ"21

Z T

t

k2.�/d� CL
ˇ2

2Š

�Z T

t

k2.�/d�

�2

for a � t � T . By the inductive procedure, for every k D 1; 2; : : : and a � t � T ,
we obtain

EŒ sup
t�u�T

jxnC1.u/� xn.u/j2�

� M"22

�
1C .8ˇ/

Z T

t

k2.�/d� C .8ˇ/2

2Š

�Z T

t

k2.�/d�

�2
C � � � C .8ˇ/n

nŠ

�Z T

t

k2.�/d�

�n�

� M"2nexp

�
8ˇ

Z T

t

k2.�/d�

�
;

where M D maxf2˛2; Lg. Hence, by Chebyshev’s inequality and the Borel–
Cantelli lemma, it follows that the sequence .xk/1kD1 of stochastic processes
.xk.t//a�t�T is for a.e. ! 2 � uniformly convergent in Œa; T � to a continuous
process .x.t//a�t�T . We can verify that the sequence .f k/1kD1 is a Cauchy sequence
of L.Œa; T � ��;ˇT ˝ FT ;Rm/. Indeed, for every k D 0; 1; 2; : : :, one hasZ a

0

EŒjf kC1
� � f k

� j�d�

�
Z a

0

EŒH.F.�; .xk ı �k/.�///; F .�; .xk�1 ı �k�1/.�////�d�

�
Z a

0

k.�/EŒ sup
0�u��

jxk.u/� xk�1.u/j�d�;

which by the properties of the sequence .xk/1kD1; implies that .f k/1kD1 is a Cauchy
sequence. Then there is an f 2 L.Œa; T ���;ˇT ˝FT ;Rm/ such that jf k�f j ! 0

as k ! 1. Let yt D EŒxT C R T
t f�d� jFt � a.s. for a � t � T . For every k � 1, we

have

EŒ sup
a�t�T

jx.t/� yt j� � EŒ sup
a�t�T

jx.t/� xkt j�CEŒ sup
a�t�T

jxk.t/� yt j�

� EŒ sup
a�t�T

jx.t/� xkt j�CE

"
sup

a�t�T

EŒ

Z T

t

jf k
� � f� jd� jFt �

#
C
Z T

t

Ejzk� jd�

� EŒ sup
a�t�T

jx.t/� xkt j�CE

�
EŒ

Z T

0

jf k
� � f� jd� jFt �

�
C T"2k

� EŒ sup
a�t�T

jx.t/� xkt j�CE

Z T

0

jf k� � f� jd� C T"2k ;
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which implies that EŒsupa�t�T jx.t/�yt j� D 0. Then x.t/ D EŒxT C R T
t
f�d� jFt �

a.s. for a � t � T . Now, for every a � s � t � T , we get

E

�
dist

�
x.s/; E

�
x.t/C

Z t

s

F .�; x.�//d� jFs
���

� E
�jx.s/� xk.s/j� C E

�
dist

�
xk.s/; E

�
xk.t/C

Z t

s

F .�; xk.�k.�///d� jFs
���

C E

�
H

�
E

�Z t

s

F .�; xk.�k.�///d� jFs
�
; E

�Z t

s

F .�; xk.�//d� jFs
���

C E

�
H

�
E

�Z t

s

F .�; xk.�//d� jFs
�
; E

�Z t

s

F .�; x.�//d� jFs
���

� jjxk � xjj C "k C E

Z T

a

k.t/jxk.�k.t//� xk.t/jdt C E

Z T

a

k.t/jxk.t/� x.t/jdt:

But

EŒjxk.�k.t// � xk.t/j� � jjxk � xjj C EŒ sup
a�t�T

jx.�k.t// � xk.t/j�

for every k � 1 and a � t � T . Then

E

�
dist

�
x.s/; E

�
x.t/C

Z t

s

F .�; x.�//d� jFs
���

�
�Z T

0

k.t/dt

�(
EŒ sup

a�t�T
jx.�k.t// � xk.t/j�C EŒ sup

a�t�T
jx.t/ � xkt j�

)

Ckxk � xk C "k � jjxk � xjj
�
1C

Z T

0

k.t/dt

�
C "k

for every k � 1 and a � s � t � T . Thus

E

�
dist

�
x.s/; E

�
x.t/C

Z t

s

F .�; x.�//d� jFs
���

D 0

for every a � s � t � T . In a similar way, we also get that d.x.t/;K.t// D 0 for
every a � t � T . Then x is a strong solution of BSDI.F;K/ on the interval Œa; T �
for every a 2 .0; T /.

We can now extend the above solution to the whole interval Œ0; T �. Let us
denote by ƒx the set of all extensions of the above-obtained viable solution x of
BSDI.F;K/. We have ƒx ¤ ;, because we can repeat the above procedure for
every interval Œ˛; T � with ˛ 2 .0; a� and get a solution x˛ of BSDI.F;K/ on the
interval Œ˛; T �. The process z D 1Œ˛;a�x

˛C1.a;T �x is an extension of x to the interval
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Œ˛; T �. Let us introduce inƒx the partial order relation � by setting x � z if and only
if az � ax and x D zjŒax ;T �, where ax; az 2 .0; a/ are such that x and z are strong
viable solutions for BSDI.F;K/ on Œax; T � and Œaz; T �; respectively, and zjŒax ;T �
denotes the restriction of the solution z to the interval Œax; T �. Let  W Œ˛; T � ! Rd

be an extension of x to Œ˛; T � with ˛ 2 .0; a� and denote by P 
x � ƒx the set

containing  and all its restrictions  jŒˇ;T � for every ˇ 2 .˛; a/. It is clear that each
completely ordered subset of ƒx is of the form P

 
x determined by some extension

 of x and contains its upper bound . Then by the Kuratowski–Zorn lemma, there
exists a maximal element 	 of ƒx . It has to be a	 D 0, where a	 2 Œ0; T / is such
that 	 is a strong viable solution of BSDI.F;K/ on the interval Œa	 ; T �. Indeed, if
we had a	 > 0, then we could repeat the above procedure and extend 	 as a viable
strong solution � 2 ƒx of BSFI.F;K/ to the interval Œb; T � with 0 � b < a	 .
This would imply that 	 � �, a contradiction to the assumption that 	 is a maximal
element of ƒx . Then x can be extended to the whole interval Œ0; T �. �

Remark 3.2. Theorem 3.4 is also true if K.t/ D fu 2 L.�;F0;Rd / W u 2
K.t/g. In such a case, instead of (2.3), we can assume that lim infh!0CD.x CR t
t�h F.�; x/d�;K.t// D 0 for every .t; x/ 2 Graph.K/.

Proof. For every .t; x/ 2 Graph.K/, f 2 S.coF ı x/, and u 2 K.t/, we have

E

�ˇ̌̌
ˇEŒx C

Z t

t�h
f�d� jFt�h� � u

ˇ̌̌
ˇ
�

D E

�ˇ̌̌
ˇEŒx C

Z t

t�h
f�d� jFt�h� �EŒujFt�h�

ˇ̌̌
ˇ
�

� E

�
E

�ˇ̌ˇ̌x C
Z t

t�h
f�d� � u

ˇ̌
ˇ̌
ˇ̌
ˇ̌Ft�h

��

D E

ˇ̌̌
ˇx C

Z t

t�h
f�d� � u

ˇ̌̌
ˇ :

Therefore, d.EŒx C R t
t�h f�d� jFt�h�;K.t// � d.x C R t

t�h f�d�;K.t// for every
f 2 S.coF ı x/. Then

D

�
S.EŒx C

Z t

t�h

F.�; x/d� jFt�h�/;K.t � h/

�
� D

�
x C

Z t

t�h

F.�; x/d�;K.t � h/

�

for every .t; x/ 2 Graph.K/. Thus, lim infh!0CD.x C R t
t�h F.�; x/d�;

K.t � h// D 0 implies that (2.3) is satisfied. �

Remark 3.3. The results of the above existence theorems are also true if instead
of continuity of the set-valued mapping K, we assume that it is uniformly upper
semicontinuous on Œ0; T �, i.e., that limı!0 sup0�t�T D.K.t C ı/;K.t// D 0. �

It can be verified that the requirement Xt 2 K.t/ a.s. for 0 � t � T in the
above viability problems is too strong to be satisfied for some stochastic differential
equations. For example, the stochastic differential equation dXt D f .Xt / C dBt
with Lipschitz continuous and bounded function f W R ! R does not have any
solution X D .Xt /0�t�T with Xt belonging to a compact set K � R a.s. for every
0 � t � T . This is a consequences of the following theorem.
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Theorem 3.5. Let PF D .�;F ;F; P / be a filtered probability space and B D
.Bt /t�0 a real-valued F-Brownian motion on PF. Assume that � D .�t /0�t�T is
an Itô diffusion such that d�t D ˛t .�/dt C dBt , �0 D 0 for 0 � t � T . Then
P.fR T

0
˛2t .�/dt < 1g/ D 1 and P.fR T

0
˛2t .B/dt < 1g/ D 1 if and only if �

and B have the same distributions as CT -random variables on PF, where CT D
C.Œ0; T �;R/.

Example 3.1. Let f W R ! R be bounded and Lipschitz continuous. Let PF and B
be as in Theorem 3.5. Put ˛t .x/ D f .et .x// for x 2 CT , where CT D C.Œ0; T �;R/

and et is the evaluation mapping on CT , i.e., et .x/ D x.t/ for x 2 CT and 0 � t �
T . Assume thatK is a nonempty compact subset of R such that 0 2 K and consider
the viable problem

�
dXt D f .Xt /dt C dBt a:s: for 0 � t � T;

Xt 2 K a:s: for t 2 Œ0; T �:

Suppose there is a solution X , an Itô diffusion, of the above viability problem
such that X0 D 0. By the properties of f , we have

R T
0 f

2.Xt/dt < 1 andR T
0
f 2.Bt /dt < 1 a.s. Therefore, by virtue of Theorem 3.4, for every A 2 ˇ.CT /

with PX�1.A/ D 1, one has PX�1.A/ D PB�1.A/. By the properties of the
process X , one has P.fXt 2 Kg/ D 1. But P.fXt 2 Kg/ D P.fet .X/ 2
Kg/ D PX�1.e�1

t .K//, where et is the evolution mapping. Hence it follows that
1 D PX�1.e�1

t .K// D PB�1.e�1
t .K// D P.fBt 2 Kg/ < 1, a contradiction.

Then the problem (3) does not have anyK-viable strong solution.

Remark 3.4. We can consider viability problems with weaker viable requirements
of the form P.fXt 2 K.t/ g/ 2 ."; 1/ for 0 � t � T and " 2 .0; 1/ sufficiently
large. Solutions to such problems can be regarded as a type of approximations to
viable solutions. �

4 Weak Compactness of Viable Solution Sets

Let us denote by X .F;G;K/ the set of (equivalence classes of) all weak viable
solutions of SFI.F;G;K/. We shall show that for every F , G, and K satisfying
the assumptions of Theorem 3.3, the set X .F;G;K/ is weakly compact, i.e., the
set XP .F;G;K/ of distributions of all weak solutions of SFI.F;G;K/ is weakly
compact subsets of the space M.CT / of all probability measures on the Borel �-
algebra ˇ.CT /, where CT DW C.Œ0; T �;Rd /.

Theorem 4.1. Assume that F and G are measurable, bounded, and convex-valued
such that F.t; � / and G.t; � / are continuous for a.e. fixed t 2 Œ0; T �. Let G be
diagonally convex and K W Œ0; T � ! Cl.Rd / continuous. If there exist a complete
filtered probability space PF D .�;F ;F;P/ with a filtration F satisfying the usual
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conditions and an m-dimensional F-Brownian motion on PF such that (2.1) is
satisfied for every " 2 .0; 1/ and .t; x/ 2 Graph.K"/, then the set X .F;G;K/
of all weak viable solutions .PF; x; B/ of SFI.F;G;K/ is weakly compact.

Proof. By virtue of Theorem 3.3, the set X .F;G;K/ is nonempty. Similarly as in
the proof of Theorem 4.1 of Chap. 4, we can verify that X .F;G;K/ is relatively
weakly compact. We shall prove that it is a weakly closed subset of the space
M.CT /. Let .xr /1rD1 be a sequence of X .F;G;K/ convergent in distribution. Then
there exists a probability measure P on ˇ.CT / such that P.xr/�1 ) P as r ! 1.
By virtue of Theorem 2.3 of Chap. 1, there are a probability space . Q�; QF ; QP / and
random variables Qxr W Q� ! CT and Qx W Q� ! CT for r D 1; 2; : : : such that
P.xr /�1 D P. Qxr/�1 for r D 1; 2; : : : ; QP. Qx/�1 D P and limr!1 sup0�t�T j Qxrt �
Qxt j D 0 with . QP :1/: By Theorem 1.3 of Chap. 4, we have Mxr

FG ¤ ; for every
r � 1, which by Theorem 1.5 of Chap. 4, implies that MQx

FG ¤ ;: Therefore, by
Theorem 1.3 of Chap. 4, there exist a standard extension OP OF D . O�; OF ; OF; OP / of
. Q�; QF ; QF; QP/ and an m-dimensional Brownian motion OP OF such that . OP OF; Ox; OB/ is a
weak solution of SFI.F;G;�/ with an initial distribution� equal to the probability
distribution P Qx�1

0 . Similarly as in the proof of Theorem 3.3, this solution is defined
by Ox. O!/ D Qx.
. Ox// for O! 2 O�. Similarly as in the proof of Theorem 4.1 of Chap. 4,
we obtain P.xr /�1 ) P. Ox/�1 as r ! 1, which by the properties of the sequence
. Qxr/1nD1 implies that P. Qxr /�1 ) P. Ox/�1 as r ! 1. By the properties of the
sequence .xr /1rD1, we have ErŒdist.xr .t/;K.t//� D 0 for every r � 1; which
implies that QEŒdist. Qxr.t/;K.t//� D 0 for every r � 1. Hence, by the continuity
of the mapping dist. �; K.t// and properties of the sequence . Qxr/1nD1, it follows that
OEŒdist. Oxt ;K.t//� D 0. Thus . OP OF; Ox; OB/ is a weak solution of SFI.F;G;�/; with

an appropriately chosen initial distribution �, such that xr ) Ox and Oxt 2 K.t/

with ( OP .1) for every t 2 Œ0; T �. Then . OP OF; Ox; OB/ 2 X .F;G;K/, and X .F;G;K/ is
weakly closed. �

Remark 4.1. The results of Theorem 4.1 continue to hold if instead of (2.1), we
assume that ŒS tF.F ı x/ � StF.G ı x/� \ TK.t; x/ ¤ ; for every .t; x/ 2 K" and
" 2 .0; 1/. �

5 Notes and Remarks

The viability approach to optimal control problems is especially useful for problems
with state constraints. There is a great number of papers dealing with viability
problems for differential inclusions. The first results dealing with viability problems
for differential inclusions were given by Aubin and Cellina in [5]. The first result
extending to the stochastic case of Nagumo’s viability theorem due to Aubin and Da
Prato [7]. Most of the results concerning this topic have now been collected in the
excellent book by Aubin [6]. Interesting generalizations of viability and invariance
problems were given by Plaskacz [88]. A new approach to viability problems for
stochastic differential equations was initiated by Aubin and Da Prato in [8] and [9]
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and by Millian in [79]. Later on, these results were extended by Aubin, Da Prato, and
Frankowska [10,12] in the case of stochastic inclusions written in differential form.
Independently, viability problems for stochastic inclusions were also considered
by Kisielewicz in [54] and Motyl in [85]. Viability theory provides geometric
conditions that are equivalent to viability or invariance properties. Illustrations of
viability approach to some issues in control theory and dynamical games with
the problem of dynamic valuation and management of a portfolio, can be found
in Aubin et al. [13]. The stochastic viability condition presented in Example 3.1
was constructed by M. Michta. The results contained in the present chapter are
mainly based on methods applied in Aitalioubrahim and Sajid [3], Van Benoit and
Ha [18], and Aubin and Da Prato [9]. The main results of this chapter dealing
with the existence of viable strong and weak solutions of stochastic and backward
stochastic inclusions and weak compactness with respect to convergence in the sense
of distributions of viable weak solution sets are due to the author of this book.
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