Chapter 5
Viability Theory

The results of this chapter deal with the existence of viable solutions for stochastic
functional and backward inclusions. Weak compactness of sets of all viable weak
solutions of stochastic functional inclusions is also considered.

1 Some Properties of Set-Valued Stochastic Functional
Integrals Depending on Parameters

Let F : [0,T] x RY — CI(RY) and G : [0, T] x R? — CI(R?*") be measurable
and square integrably bounded set-valued mappings. Given a set-valued stochastic
process (K(t))o<;<r with values in CI(R?), we denote by SFI(F,G,K) the
following viability problem:

% X — x5 € clp{Js [SE(F 0 X)] + T [Sp(G o x)]} for 0 <s<t<T, (1.1)

x; € K(t) as. for t €]0,T],

associated with SFI(F, G). Similarly, we denote by BSDI(F, K) the backward
viability problem:

{ X, € Elx, + [/ F(r,x,)dt|F,] as. for 0<s<t<T,

1.2
x; € K(t) as. for tel0,7T], (12)

associated with BSDI(F, K(T)).

We precede the existence theorems for such problems by some properties of
set-valued stochastic functional integrals depending on parameters. Given a Banach
space (X, | - ||), by CI(X) we denote the space of all nonempty closed subsets
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182 5 Viability Theory

of X. In particular, we shall consider X to be equal to R4, L*(Q,F,R"), and
L>(0,T] x Q,%p,R" withr = d andr = d x m, respectively. The Hausdorff
metrics on these spaces will be denoted by 4, D, and H, respectively.

Let Pr = (Q,F,F,P) be a filtered probability space with a filtration F =
(Fi)o<i<r satistying the usual conditions. Similarly as above, for set-valued map-
pings F and G as given above and an IF-nonanticipative d -dimensional stochastic
process x = (xX;)o<<7, We shall denote by Sp(F o x) and Sp(G o x) the sets
of all F-nonanticipative stochastic processes f = (f/)o<i<r and g = (g/)o<i<7>
respectively, such that f; € F(t,x,) and g, € G(¢,x;) as. forae. t € [0,T].
It is clear that Sp(F o x) and Sp(G o x) are decomposable closed subsets of
L2([0,T] x €, 2, R?) and L2([0, T] x , =g, R¥*™), respectively, where Tp
denotes the o-algebra of all IF-nonanticipative subsets of [0, T'] x €. Therefore,
by virtue of Theorem 3.2 of Chap. 2, there exist Xp-measurable mappings ¢ and
W such that Sp(F o x) = Sp(P) and Sp(G o x) = Sp(¥), which by virtue of
Corollary 3.1 of Chap. 2, implies that ® = Fox and ¥ = G o x.

In what follows, we shall denote by | - | the norm of the Banach space X" =
L2([0,T] x 2, Zp,R") with r = d or r = d x m. Similarly as above, C(IF, R¢)
denotes the space of all d-dimensional continuous [F-adapted stochastic processes
x = (X)o<r<r with norm ||x|| = (E[supy<, <7 |x;*])"/?. Given a measurable and
uniformly square integrably bounded set-valued mapping K : [0, T|xQ — CI(R),
we shall assume that the set K(f) = {u € L2(Q,F.R?) : u € K(t,-) a.s.}
is nonempty for every 0 < ¢ < T. It is clear that this requirement is satisfied
for a square integrably bounded multifunction K : [0, 7] — CI(R?). Recall that
K : [0,T] x @ — CI(RY) is said to be uniformly square integrably bounded
if there exists A € L2([0, T],R") such that [|K(z,w)|| < A(¢) for ae. (t,w) €
[0, T] x 2, where ||K(t,w)|| = h(K(t,w),{0}). Let us observe that for the above
multifunctions F and G and a d-dimensional F;-measurable random variable X,
the set-valued processes F o X and G o X are 87 ® F;-measurable.

Assume that the above set-valued mappings F and G satisfy the following
conditions (H;):

() F:[0,T]xR?Y - CI(RY) and G : [0, T] x RY — CI(RY*™) are measurable
and uniformly square integrably bounded, i.e., there exists m € L2([0, T], R™")
such that max(|| F(¢, x) ||, |G(t, x)||) < m(¢t) forae.t € [0,T] and x € R,
where || F(z,x)|| = sup{|z| : z € F(¢,x)} and |G(¢, x)|| = sup{|z| : z €
G(t, x)};

(ii) F(t,-) and G(¢,-) are Lipschitz continuous for a.e. fixed ¢ € [0, T], i.e., there
exists k € IL2([0, T],R™) such that H(F(t,x), F(t,z)) < k(t)|x — z| and
H(G(t,x),G(t,2)) < k(t)|x —z| forae.t € [0,T] and x,z € R¢.

Lemma 1.1. If F and G satisfy conditions (H,), then the set-valued mappings
C(F.,RY) 3 x — Sp(F ox) € CI(X?) and CF,RY) 5 x — Sp(G ox) €
CI(X?¥*™Y are Lipschitz continuous with Lipschitz constant L = [ fOT k2 (t)de]'/2.
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Proof. The proof is quite similar to the proof of Lemma 3.7 of Chap. 2. Let x,z €
C(F,R9) and f* € Sg(F o x). By virtue of Theorem 3.1 of Chap. 2 applied to the
Y p-measurable set-valued mapping F o z, we get

T
dist?(f*, Sp(F 0z)) = inf{E/ | = fePPde: f € Sp(F oz)
0
T
=E / dis?®(f*, F(t,2,))dt
0
T
< E/ K2 (t)|x; — z[*dt < L?||x —2||*.
0

Then H(Sp(F o x),Sp(F 0z2)) < L|x —z||. In a similar way, we also get
H (Sp(F o2z),Sp(F ox)) < L||x — z||. Therefore, H(Sp(F o x), Sp(F o0z)) <
L||x —z]|. In a similar way, we obtain H(Sp(G o x), Sp(Goz)) < L||x—z|. O

Lemma 1.2. Let K : [0,T] x Q — CI(R?) be F-adapted and square integrably
bounded uniformly with respect tot € [0, T). If K(-, ) is continuous for a.e. w €
Q, then the set-valued mapping KC : [0, T] — CW(IL2(2, Fr, R%)) is continuous.

Proof. Lettg € [0, T] be fixed and let (# )72, be a sequence of [0, T'] converging to
to. By virtue of Theorem 3.1 of Chap. 2, for every u € IC(fy) and k > 1, one has

dist’(u, K(tx)) = inf {E|u—v|* : v € K(t)}
< E [dist (u, K(tx.-)]
< E [hz(K(Zkv ')7 K(t()v ))] .

Then D (K(t), K(tr)) < E [h*(K(tx.). K(f0.-))] . In a similar way, we also
get ﬁZ(IC(tk),IC(to)) < FE [hz(K(tk,-), K(to,-))]. Therefore, for every k > 1,
one has D*(K(#),.K(to)) < E [hz(K(tk,-),K(to,-))]. Hence, by the continu-
ity of K(-,w) and its uniformly square integrable boundedness, it follows that
limg o0 D(K(t), K(tp)) = 0. |

Lemma 1.3. If F and G satisfy conditions (H,), then the set-valued mappings
C(IF,RY) 3 x — clp{Ju[Sr(F o x)|} € LX(Q, Fr,RY) and C(F,RY) 3 x —
clp{ Ty [SE(G o x)]} C LX(R, Fr,R?) are Lipschitz continuous uniformly with
respect to 0 < s < t < T with Lipschitz constants equal to /T L and L,
respectively, where L is as in Lemma 1.1.

Proof. Let x,z € C(IF,RY) and f* € Sp(F ox). Forfixed0 <s <t < T, we
have dist® (Jo (/). Ju[Se(F o)) = inf{ E|Jy(f* — [P+ f* € Sp(F 02)}.
But forevery 0 <s <t < T, one has

T
E\Ju(f* = fOP < TE [/0 - f1|2dz} .
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Therefore, by Lemma 3.6 of Chap. 2, it follows that

T
dis® (o (), Iy [Se(F 0 2)]) < Tinf{ E /0 5= fdr s 7 e Sp(F o)

= Tdist? (f*, Sp(F 02))
TH(Sp(F o x), Sp(F 0z)) < TL*||x —z||*.

IA

Then for every 0 < s <t < T, one obtains
—
D" (Ju[Se(F o x)], Ju[Sk(F 02)]) < TL*||x —z|*.

Similarly, for every fixed 0 < s <t < T, we also get
D (Jy[Se(F 0 9], Ju[Sk(F 0 x)]) < TL?|x —|/*.
Therefore, forevery 0 < s <t < T, one has
D (Ju[Se(F o X)), Ju[Sk(F 0 9)])) < VTL|x —z|.
In a similar way, for fixed 0 < s <t < T, we obtain
D (T5:[Sr(G 0 x)]. Ts: [Sk(G 02)]) < L|x —z]|.
Hence it follows that

sup D (clpdJu[Su(F o )]}, cled Ju[Sw(F 0 9)]}) < VTL|x —2|

0<s<t<T
and

sup D (clp{T[Sr(G o x)]}, clp{ T [Sr(G 0 2)]}) < L|x —z]|.

0<s<t<T
O

Lemma 1.4. Assume that F and G satisfy (i) of (H1) and let x,,x € C(F,R?)
forn = 1,2,... be such that supy., .7 |x,(t) — x(¢)] — 0 as. asn — oo.
If F(t,-) and G(t,-) are continuous for a.e. fixed 0 < t < T, and (0,)22, is
a sequence of functions 6, : [0,T] — [0,T] such that 6,(t) — t asn — o0
foreveryt € [0, T, then cly {Js [Sp(F o (x, 0 0,)] + Tt [Sr(G o (x, 0 0,))]} —
clp {J [SE(F o x)] + Ty [Sr(G o x)]} in the D-metric topology of CI(IL?
(2, F.RY) asn — oo forevery0 <s <t <T.

Proof. Let0 <s <t < T be fixed and set y" = x, o 0, foreveryn = 1,2,....
One has



2 Viable Approximation Theorems 185

Iyt (t) = x (D) = [x2(6x (7)) — x (D)
1% (0 (7)) = x (60 ()] + [x (6, (7)) — x(7)]
sup X, (u) = x ()| + [x (6, (1)) — x (@]

0<u<T

IA

IA

forn =1,2,...and 0 < v < T.Then y/(r) = x(r) as.forevery0 <7 < T
as n — oo. Similarly as in the proof of Lemma 1.3, we can verify that the set-
valued mappings C(IF, RY) > x — clp{Jy[Sr(F o x)]} € CI(IL2*(22,F,R))
and C(F,RY) > x — clp{Jx[Sr(G o x)]} € CIIL*(2,F,RY)) are con-
tinuous. Therefore, cly, {Js; [SE(F o (x, © 0,))] + Ts:[Sk(G o (x, 0 6,))]} — clL
{Js:[SF(F o x)] + J5:[Sr(G o x)]} in the D-metric topology as n — o0o. O

2 Viable Approximation Theorems

The existence of solutions of viability problems (1.1) and (1.2) will follow from
some viable approximation theorems by applying the standard methods presented
in the proofs of the existence of strong and weak solutions for stochastic functional
inclusions. We shall now present such approximation theorems. In what follows,
it will be convenient to denote by d(x, A) the distance dist(x, A) of x € X
to a nonempty set A C X. We shall also denote the set-valued functional
integrals Jy; [Sp®)] and J;,[Sr¥)] of IF-nonanticipative set-valued processes ® €
L3(T, 2, RY) and W € L2(T, Q, R by [! ®.dr and ] W.dB,, respectively.
We shall prove the following approximation theorems.

Theorem 2.1. Assume that F and G satisfy condition (i) of (H) and let Pr =
(2, F,F, P) be a complete filtered probability space with a filtration F =
(Fi)o<i<t Such that there exists an m-dimensional F-Brownian motion
B = (B))o<i<r defined on Pg. Let K : [0, T] — CI(R?) be such that a set-valued
process (IC(t))o<: <7 is continuous. If

1_ t+h t+h
lim ianD x +clg (/ F(r,x)dt + / G(z, x)dB,) JKE+h)| =0
t t

h—0+
2.1)

for every (t,x) € Graph(K?) and every ¢ € (0,1), where K°(t) = {u €
L2(2, F.RY) : d(u, K(1)) < &} forevery0 <t < T, then for every ¢ € (0, 1) and
Xxo € K(0), there exist a step function 0, : [0, T] — [0, T]| and F-nonanticipative
stochastic processes f° = (f,*)o<i<r and g§° = (8°)o<i<T such that

(i) ¢ € Sp(F o (xf080,)) and g° € Sp(G o (x* o 6,)), where x°(t) = xo +

[y fede + [ g°dB, for0 <1 < T;
(i) E[dist(x®(0:(2)), K(0:(t))] < efor0 <t <T;



186 5 Viability Theory

(iii) E [l(xS(s)) (h(xS(z)) — h(xe(s)) — fvt(Efngh)rdt)] — 0forevery0 <s <
t <T, 1 €CyRR)and h € C}(R, R).
Proof. Let ¢ € (0,1) and xo € K(0) be fixed. Select § € (0,&) such that

f;“ m?(t)dr < &2/2% and D(K(t + 8),K(t)) < ¢/2% fort € [0,T]. By virtue
of (2.1), there exists /¢ € (0, §) such that

_ /’lo /’lo Sh()
D | xo +cly, / F(z, xo)dt + / G(t,x0)dB; | ,K(hy) | < —.
0 0

Then for every uy € xo + clp, (foho F(z, xo)dz + Oho G(Tyx())dBr)’ one has

d(ug, K(ho)) < eho/2% Letty = 0 and t; = hy. Select arbitrarily B ® Fo-
measurable selectors £ and g° of F o x¢ and G o x, respectively. It is clear that
f% € Sp(F o xp)) and g° € Sp(G o xp)). Let x°(t) = xo + fot £t + fot gdB,
forO0 <t <t,.Putf,(t) =0for0 <t <t and 0.(t;) = t;. We have

ho

ho
x®(ho) € xo + cly2 (/ F(z, xp)dt + / G(z, xo)dBT) .
0 0

Therefore, d(x*(ho), K(ho)) < eho/2? < &/22. Together with the properties of the
number § > 0, it follows that

d(x*(1), K@) < [|x*(@) — x*(ho) || + d(x* (ho), K(ho))
<e&/2+ eho/2* + D(K(ho).K(t)) < ¢
for0 <t < 1t;, because

[l (@) = x*(ho) |

A 1/2 A 1/2
0 0
<Vho [E / |fr°|2dc] + [E / |g8|2dr} <2¢/2 =¢/2
0 0

for0 <t < t;. Let x; € K(#;) be such that ||x®(ho) — x1|| < d(x?(hg), K(hg)) +
e/ 22, Hence, by Theorem 3.1 of Chap. 2, it follows that

E[dist(x* (ho), K(ho))] = inf{ E|x*(ho) —ul : u € K(ho)} <
E[|x*(ho) — x1]] < (E[|x*(ho) — x1’D"/* = [|x*(ho) — x1|| < &/2> + &/2* < &.

By Itd’s formula, for every /i € Cbz(]Rd, R)and 0 <s <t < T, we have

B 0) = hx o) = [ @ghiede = 323 [ (ol 0!,

i=1j =179
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a.s., where B = (Bl, ..., B™)and g? = (g?j (7))axm- But x°(s) is Fs-measurable.
Thenfor0 <s <t <f,i =1,2,...,n,and j = 1,2,...,m, we have

E 1 [t ey oan! | = E | [C160 00 oy s | = o

Therefore, for every [ € C,(R?,R), h € CZ(R?,R),and 0 < s < < 11, we get

100 (o) = b = [ @) | <o

Suppose hg < T. We have (hg, x(ho)) € Graph(K?) because d(x°(ho), K(ho))
< ¢. Therefore, we can repeat the above procedure and select 7, € (0, §) such that

_ 11+ t1+h ch
D | x¥(ho) + clr / Fr.x* (ho))dr+ / Ge.x“(ho))dBe) Kty | = 0.
t n

Similarly as above, we can select ! € Sp(F ox®(ho)) and g' € Sp(G ox®(hy)),
and define x*(t) = xg(tl)—i-ftt1 ftldr+ftt1 gldB, fort; <t <1y, wheret, = t;+h;.
We can also extend the function 8 on [0, £,] by taking (z) = ¢, for#; <t < t, and
0:(t2) = t,. We have

X(6) € x*(11) + cl, (/t2 F(r,x%(t)))dr + /tz G(r, xf(zl))dBt) .

5] 1

Therefore, for every t; <t < t,, one has
d(xf(1), K(1)) < [|x°(t) — x*()|| + d(x°(12), K(12)) + H(K(12), K(1)) < &,

because similarly as above, we get | x°(¢) — x°(f)|| < ¢/2 forevery t; <t < 1.
Similarly as above, for every I € C,(R?,R), h € CZ(R*,R), and 1} <s <1 < 5,
we also get

E [l(xs(s)) (h(xg(t)) — h(x%(s)) — / (]L_"igsh)rdt)} =0.

Let x, € K(t,) be such that [[x*(12) — x2|| < d(x°(t2),K(t2)) + &/2% Hence it
follows that E[dist(x®(#2), K(¢2))] < e. Let us observe that the above relations
can be written in the form presented in (i)—(iii) above with T = t,, where f* =
]l[OJfl)fo"‘]l(tlsl‘z]f17g‘9 = 11[(l,tl)go"‘]l(tlsl‘z]gl and x*(7) = x0+f0t fradt"_fot 8:dB:
forO <t <t,.

Continuing the above procedure, we can extend the function 6, and processes
f¢, g°, and x® on the whole interval [0, 7] such that the above conditions (i)-
(iii) are satisfied. To see this, let us denote by A, the set of all extensions of the
vector function &, = (6, 1, g%, x%) on [0, ] x Q2 with o € (0, T] and 6| o] nOt
depending on w € 2. We have A, # 0. Let us introduce in A, the partial order
relation < by setting ¢ < ®F if and only if @ < § and ®* = ®f| ), where ®*
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and CIJf denote extensions of &, to [0, «] and [0, B], respectively. Let P be a set
containing an extension ®¢ and all its restrictions ®%||p 4 for every a € (0, «]. Itis
clear that each completely ordered subset of A, is of the form P determined by
some extension ®Y. Itis also clear that every set P¥ has ®2 as its upper bound. Then
by the Kuratowski—Zorn lemma, there exists a maximal element W, of A, defined
on [0,b] x Q with b < T.Ithas tobe b = T. Indeed, if it were b < T, then we
could repeat the above procedure and extend W, to the vector function I, defined
on [0, y] x Q with b < y. It would be ¥, < I',, in contradiction to the assumption
that W, is a maximal element of A,. Then ®, can be extended on [0, 7] x € in such
a way that conditions (i)—(iii) are satisfied. O

Remark 2.1. Theorem 2.1 is also true if instead of (2.1), we assume that

1_ t+h t+h
lim infED X +cly, (/ F(r,x)dt) + / G(t,x)dB.,K(t+h)| =0
t t

h—0+

2.2)

for every (¢, x) € Graph (K?). |

Theorem 2.2. Assume that F and G satisfy conditions (H1). Suppose Pp =
(2, F,F, P) is a complete filtered probability space with a filtration I =
(Ft)o<i<t such that there exists an m-dimensional I-Brownian motion B =
(B))o<i<r defined on Py. Let K : [0,T] x Q — CI(R?) be F-nonanticipative
such that IC(t) # O for every 0 <t < T and (K(t))o<:<r is continuous. If (2.1)
is satisfied for every (t,x) € Graph(K), then for every ¢ € (0,1), a € (0,T),
xo € K(0), and F-nonanticipative processes ¢ = (¢;) o<i<r and ¥ = (Y1)o<i<T
with ¢, € L2(Q, Fr,R?), v, € LX2(Q, Fr.R>™) for 0 <t < T and (¢o, Vo) €

F(0, x0) x G(0,x0) a.s., there exist a partition 0 = ty < t; < --- < t, =a of
the interval [0, a], a step function 6, : [0,a] — [0, a], IF-nonanticipative stochastic
processes f° = (f)o<i<a and g° = (g7)o<i<a, and a step stochastic process

= (Zg(t))()sffa such that

(i) tj+1—t; <6, where§ € (0, ¢) is such that max (ftt+8 k*(r)dr, ftH_5 mz(t)dr)

< &2/2% and D(K(t + 8), K (1)) < &/2 fort € [0,T];

(ii) 0:(t) =t fort; <t <tjy1forj =0,1,...p—2and 0:(t) = t, for
tpt1 <t <a

(iti) f° € Sp(F o (x* 0 6)), g € Sp(G o (x* 0 0,)), |¢(w) — ff(w)| <
dist(¢y, F(z, (x* 0 0,)(1))) and [ () — g/ (w)| < dist(Yr, G(z, (x* 0 6:)(2)))
for (t,w) € [0,a] x Q, where x*(t) = xo + [y (£ +2°(x))dt + [, g¢dB; a.s.
for0 <t <a;

(iv) (0] < &/2% for 0 <1 < a, where ||Z*(1)||> = Elz(1)[*;

(v) d(x*(0:(1)), K(6:(1)) = 0 for0 <t < a;

i) d (xS(t) — x%(s),cly (ff F(z,(x* 0 0)(x))dr + [' G(r. (x* o @)(r))dBt))

<eforevery) <s <t <a.



2 Viable Approximation Theorems 189

Proof. Letxy € K(0),e € (0,1)and a € (0, T) be fixed. Without loss of generality,
we can assume that 7 = 1. By virtue of (2.1), there exists iy € (0, §) such that

— ho ho 8]1()
D | xo +cly, / F(z, xo)dt + / G(t,x0)dB; | ,K(hy) | < 2
0 0

where § > 0 is such that condition (i) is satisfied. By virtue of Corollary 2.3 of
Chap. 2 applied to Xp-measurable multifunctions F o xo and G o xo, and given the
above processes ¢ and v, there exist ° € Sp(F o xo) and g° € Sp(G o xo) such
that |, (0) — f,*(@)| = dist(¢r, F (2, x0)) and |y (@) — g ()| = dist(y:, G(t, x0))
for (¢, w) € [0,a] x Q. Similarly as in the proof of Theorem 2.1, we define now the
function 6, by taking 6.(t) = 0 for 0 < t < t; and 6.(t;) = t;, where t; = hy.
Hence it follows that f° € F(z,0.(t)) and g° € G(z, 0:(1)) a.s. for 0 <t < 1,. Let
yo = xo+ fo' f0dt + [;' g’dB; a.s. We have

h() h()
Yo € X0 + cl, (/ F(z, x0)dt + / G(z, xo)dBt) .
0 0

Then d(yo, K(ho)) < eho/2%, which by Theorem 3.1 of Chap. 2, implies that
d?(yo.K(ho)) = E[dist(yo, K(ho,-)]*. Therefore, by Corollary 2.3 of Chap. 2,
there exists an JF;,-measurable random variable x; such that x; € K(hy, ) forw € Q
and

o — x1]| = (E [dist*(yo. K(ho.-)]) "= d(yo. K(ho)) < sho/22.

Define z2 = (1/ho)(x1 — yo) a.s. for 0 <t < #;. We get ||z°(¢)]| < (1/ ho)||x1 —
yol| < (1/ ho)(eho/2%) = e/4for 0 <t < t;. We define now a process x* on [0, ;)
by setting

t t
x5(t) = xo + / (f° 4+ (v))dr + / g%dB, as. for 0<t<t.
0 0

We have x°(0) = xo € K(0) and x*(11) = yo + ho(1/ho)(x1 — yo) = x1 € K(ho),
which is equivalent to d(x°(6.(t), K(6.(¢))) = 0 for ¢ € [0,#,]. Similarly, for 0 <
s <t < t;, one obtains

d |:x£(t) —x%(s), clg, (/t F(z, (x* 0 0,)(1))dr + /t G(t,(x*o 98)(t))dBr)i|

N s

t t t t
<d [/ £t + / gYdB,,cly, (/ F(z,x%)dr + / G(r,xo)dBr)i|

e
+(t —s) sup ||Z%(D)]] < 1 <e.

0=<t=n
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If hy < a, we can repeat the above procedure. Applying (2.1) to (¢1,x1) €
Graph(K), we can select 1, € (0, §) such that

o t1+hy t1+hy 8]’11
D | x +clg, / F(‘L’,Xl)d‘lf—i-/ G(t,x))dB, |, K(t; + hy) | < .

- 2
5] n 2

Similarly as above, we can select x, € K(t; + hy), f' € Sp(F o x1), and g' €
Sp(G o x1) such that |¢; (w) — f;'(@)| = dist(¢;, F(z,x")) and |, (0) — g/ (®)| =
dist(yy, G(¢, x")) for (t,w) € [0,a] x Q and ||y1 — x2|| < eh1/2%, where y, =
X1+ fttll+hl Sflde —i—ft?ﬂl gldB, a.s. We can extend the function 6, and the process
z° on the interval [0, 2] by setting 6.(t) = ¢; fort; <t < 1, 8(t;) = 1, and
() = (1/hy)(x, — yy) fort; <t < tp, where t, = t; + h,. Define on the interval
[0, ;] the process x° by setting

t t
x4(t) = xo +/ (ff +2°(x))dr +/ gidB; as. for 0 <t <1,
0 0

where ¢ = ll[oﬁtl)fo + ]l[,lmfl and g°¢ = ]l[o.tl)go + ]l[,lmgl. Similarly as
above, we obtain d(x®(6.(¢),C(6:(¢))) = 0 for 0 < ¢t < £, and d(x°(6:(12),
K(6:(t2))) = 0, because x°(t2) = x2. Then d(x°(6.(¢),K(6.(z))) = O for
0 <t < t. Itis clear that ||zf|] < &/4 < e forevery 0 < t < . Then for
every 0 <s <t <1, we get

d |:x£(t) —x°(s), ¢l (/t F(z, (x% 0 6:)(t))dr + /t G(z,(xfo 95)(t))dBT):|
<d [/f fede + /t g°dB..cly (/t F(t, (x° 0 8,)(1))dt

+[Co o caaonuan )|+ -0 s < <o

0=<r=n

Suppose that for some i > 1, the inductive procedure is realized on [0,#;) C
[0, a] and the above step function 6, and stochastic processes z° f¢, g°, and x° are
extended to [0, #;] and [0, ¢;), respectively, with the above properties on this interval.
Denote by S; the set of all positive numbers % such that 2 € (0, min(8,a — ¢;)) and

o ti+h ti+h eh
D | x; + cl, / F(zr,x;)dt + / G(t,x;)dB; |, K@t + h) | < 55
ti t

where x; = x°(t;). We have S; # 0 and supS; > 0. Choose h; € S; such that
supS; — (1/2)supS; < h;. Putt;y | =t; + h; and let f' € Sp(F ox;)and g’ €
Sr(G ox;) be such that |¢; (w) — f, (w)| = dist(¢;, F(¢, x;)) and |y, (w)— g} ()| =
dist(y,, G(¢, x;)). We can now extend 6., f*, and g° to the interval [0, 1] by
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taking 0,(t) = t; fort; <t < tix1 and O:(ti41) = tiy1, £ = f!, g° = g for
ti <t < tiy1. Then |¢(w) — ff(®)| < dist(r, F (2, (x* 0 6:)(1))) and | (w) —
gi ()| = dist(Y, G(t, (x* 0 6:)(1))) for (1, w) € [0, 1;41) x 2, where

t t
x(t) = xo + / (ff+ 2 (x))dr + / g:dB;
0 0
a.s. for0 <t <t with
lit1 fit1
@)= /h;) ()C,'.H —X; — frsd‘lf —/ gidBT)
ti

asfort; <t <tj4, where x;4+| € K(t;+1) is such that

ti

<eh;/4.

fit1 fit1
X + fldr +/ gidB; — Xi41
ti

t

Similarly as above, we obtain ||z°(¢)|| < e/4 fort; < t < t;4,. Hence it follows
that

d |:x€(t) — x°(s),cly, (/[ F(t,(x® 0 6;)(1))dr + /t G(t,(xf o @)(r))dBf)]

<d [/t fidr + /t gidB, cly, (/f F(z,(x® 0 6,)(r))dr + /t G(t,(x%0 05)(1))dBT)]

&
+(@—s) sup [[Z°(z]| < - <e
0<t=<n 4

forO0 <s <t <ty and d(x°(0:(¢), K(6,(¢t))) =0for0 <t < t,.

We can continue the above procedure up to n > 1 such that ¢, € [a, 1]. Suppose
to the contrary that such n > 1 does not exist, i.e., that for every n > 1, one has
0 < t, < a. Then we obtain a sequence (#;)72, converging to t* < a such that for

every0 < j <k <i+ 1landi > 0, we have
179 179
/ g:dB, / ZF(r)dr
ti ti

173
/ Sfidr
lj J J
<2/
Py

J

[1x* (1) = x* @Il < + +

tk 1/2
mz(r)dt) +e-(tx—1t;)/4.

Let x; = x°(t;) and x; = x®(#) for0 < j <k < oo.Forevery0 < j <k < oo,

one gets
k
e — x| <2 /
i

, 1/2
mz(t)dr) +e-(t —1t))/4.
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Then (x;)%2, is a Cauchy sequence of L*(2, Fr, R¢). Therefore, there exists x* €
L2(Q, Fr,R?) such that ||x; — x*|| — 0 as i — oo. By the continuity of the
set-valued mapping C, we get (t*,x*) € Graph(K). Then by (2.1), there exists
h* € (0, min(8, 1 — a)) such that

o t*4n* t*4-h* ch*
D | x* +cly, / F(r,x")dr + / G(t,x")dB, | .Kt* +h*)| < >
t t*

*

Let N > 1 be such that for every i > N, one has 0 < t* —¢; < min(h*,a, 1),
lx;i — x*|| < eh*/(2°A4), and D(K(;),K(t*)) < eh*/2° where A = 1 +

1/2 1/2
2 ( s kz(z)dz) and 7. € (0,1 — a) is such that ( Jrtn mz(r)dt) < eh*/27
for every 0 < t < a. For every i > N and arbitrarily taken ¢ € Sp(F o x;) and
¥ € Sp(G o x;), we can select f* € Sp(F ox*)and g* € Sp(G o x*) such that
p; () — f;" (@) = dist(¢", F(z,x¥)) and |y} (@) — g/ ()| = dist(y*, G(z, x™))

for (t,w) € [t;,t* + h*] x Q. In particular, this implies
. t*+h* t*+h*
I — f*2 < E / h(F(t. x). F(t, x*)Pdt < / K2(0)x — x*|dr
ti ti
and
) t*+h* t*+h*
W — f*I2<E / (Gt x). Gt x*)Pdr < / K2(0)lx — x*|Pdr
ti ti

fori > 1. Therefore, for every i > N, we get

ti+h* ti+h*
d | x; +/ ¢;dr+/ YidB,, K(t; + h™)
11 1

i+h* i+n* t*4n* t*4+h*
Xi +/ ¢;dr+/ YidB, | — | x* +/ fr*dr—i-/ grdB, ‘
ti ti t* t*

*4n* *4n*
+d |:x* +/ fr*dr +/ g:‘dB,,IC(l* + h*)i| + DK™ + 1™, Kt + 1™))
r* t*
[t
| wi-gnan.
4

t* t*
/ fr*d.[ + / g;kdBT
ti ti

t*+h* t*4n*
+d |:x* +/ frde +/ grdB,, K(1t* + h*)} + DK™ + 1™, K(t; +1™))
t* t*

.

t*+hn* )
<l — ")l + H/ @ — f)dr) +
1

[ N n*
/ ¢le‘[ / I//;dBf
ti+h* ti+h*

+ +

t*+hn* 172
<l —x™ [+ 2/ @* — 1) + 2* [y — x| (/ kz(r)dr)
tn
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t*+n*

i +h*

1/2 o 1/2
+ (l + M) (/t mz(r)dr) + (1 + M) (/, mz(f)df)

sh*  eh* n 1z
+25 + S s 12/ + / K (2)de I — x|
1i

i

* 1 1/2
+ SZL() < {1 +2 (/0 kz(r)dr) } lxi —x*|
4t 1/2 r* 1/2
+ (1 + /" = z,-)) max {[/ mz(r)dri| , [/ m2(r)dr] }
ti+h* ti

i

¥ +h* 1/2 * 172 *
+ (1 +V(@* —t,-)) max {|:/t+h* mz(f)dfi| |:/r: mz(f)df] } +282h_6

£+£<_€h* .A+2._€h* +2.£ £
26 26 — 26. 4 2.26 26 26
eh* 5 eh* eh*
26 Ty T

+2
=5.

Then for every i > N, we have

ti+h* ti+h* eh*
D | x; + clg, / F(z,x;)dt +/ G(t,x;)dB, | . K@ +h*) | < >
ti t

and 1* € (0,min(8,1 —a)). Butt; < a foreveryi > 1. Thenl —a < 1 —¢; for
every i > 1. Therefore, for every i > N, we have h* € (0, min(8, 1 — ¢;)). Hence
it follows that 4* € S; for every i > N. Then for every i > N, one has (1/2)h* <
(1/2)sup S; < h; = ti+1 — t;, which contradicts the convergence of the sequence
(#:)72,. Therefore, there exists p > 1suchthat0 =# <t <:-- <, = a. O

Remark 2.2. Theorem 2.2 is also true if instead of (2.1), we assume that (2.2) is
satisfied for every (¢, x) € Graph(K). |

Theorem 2.3. Assume that F satisfies conditions (H,), and let Pp = (2, F, I, P)
be a complete filtered probability space with a continuous filtration I = (F;)o<i<T
such that Fr = F. Suppose K : [0, T] x @ — CI(R?) is an F-adapted set-valued
process such that K(t) # @ for every 0 < t < T and such that the set-valued
mapping K : [0, T] — CI(IL(2, Fr, RY) is continuous. If

t
liminf - D [S (E |:x + / F(z, x)drm_hD K@ — h)} -0 (23)
h—0+ I’Z t—h

is satisfied for every (t,x) € Graph(K), where S(E[x + ftt_h F(r,x)dt|F=p]) =
{E[x +f:_h frdt|Fi—n] o f € S(coF ox)}, then for every € € (0, 1), xr € K(x7),
a € (0, T) and measurable process ¢ = (¢p)o<i<r such that ¢, € L(Q, Fr,R?)
for0 <t < T and ¢v € F(T, x7) a.s., there exist a partitiona = t, < t,| <
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.o <ty <ty =T of the interval [a, T], a step function 0, : [a,T] — [a,T], a step
stochastic process 2° = (Z)a<i<t, and a measurable process f* = (f)a<i<T On
Pr such that

(i) t; —tj41 <8, where § € (0, ¢) is such that max{ft’H k(t)dr, ftt+8m(r)dt}
< &?/2%and D(K(t + 8),K(t)) < e/2fort € [0,T];

(ii) |z2|| < e/2foreverya <t < T, where ||Z}|| = E|Z¢|;

(iii) 6.(t) =tj_1fort; <t <tj_jandO:(t;) =t;jwithj =1,...,p—1and
O:(t) =tp_1 fora <t <t,_y;

(iv) f¢ € S(coF o(xf0by)), |¢:(w)— ff(w)| = dist(¢;, co F(z, (x* 0 6,)(t))) for
(t,w) € [a,T] x Q, where x(t) = E[xr + ftT Srdo|F] + ftT Zdr a.s. for
a<t<TandS(coFo(x*08,))={f eL(a,T]xQ,pr ® Fr.RY): f, €
co F(t,x%(0:(t))) as. for a.e. a <t <T};

(v) E[dist(x*(s), E[x*(t)+ [ F(z,(x* 0 0.)(r)dt|F])] <efora<s <t <T,

(vi) d(x*(0:(1)), K(O:(1))) =0fora <t <T.

Proof. Lete € (0,1),a € (0,T), xr € K(T), and a measurable process ¢ =
(¢)o<:<T be given. By virtue of (2.3), there exists /g € (0, min(8, 7)) such that

T
D [S (E [xr + / F(z, xT)dz|fT_h0D (T - ho)} < ¢eho/2.
T—ho

Lett; = T — hy. By virtue of Corollary 2.3 of Chap. 2, there exists f° € S(co F o
x7) such that ¢, (w)— £,°(w)| = dist(¢; (w), co F(t, xr(w)) for (t,w) € [t;, T]x Q.
Let yo = E[xr + ftlT fodz|F,] as. We have yo € E[xr + ftlT F(t,x7)dt|F,]
a.s., i.e., yo € S(E[xr + f,lT F(t,x7)dt|F;,]). Therefore, d(yo, K(t1)) < eho/2.
Similarly as above, we can see that there exists x; € K(¢;) such that E|yy — x;| =
E[dist(yo, K(t1-))] = d(yo,K(t1)) < eho/2. Then [yo — x1|| < eho/2. Let
7, = 1/ho(x1 — yo) as. fort; <t < T.Wehave ||zf|| < (1/ho)llyo—x1]| <&/2.
Furthermore, by the definition of z¢, it follows that ftT Ztdt is JF; -measurable.
Define 0.(t) = T fort; < ¢t < T and 6(f;) = t;. One has f° € coF(t, xr)
as.forty <t <T.Let

T T
x(t) = E [xr +/ frodt|]-',:| +/ Fdr
1 t

fort)y <t <T.Wehave x°(T) = xr and x°(¢1) = yo + ho(1/ho)(x1 — yo) = x1.
Therefore, d(x*(0(1)), K(0(t))) = Ofort; <t < T and |¢(w) — f2w)| =
dist(¢; (w), co F (¢, x*(6:(t)(w))) for (¢, ) € [t1, T] x 2. By the definition of x*, it
follows that it is IF-adapted. By properties of £ and x¢, it follows that

E [dist (xg(s), Elxr + /t F(r,xs(é’(r)))dt|]-}])i| <eg/2 for 1 <s<t<T.

s
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If t; > a, we can repeat the above procedure starting with (¢1, x;) € Graph(K).
Immediately from (2.3), it follows that there exists an &; € (0, §) such that

5[S(E[x1 + /l F(z, x)dt|F—n ), Kt —hl):| <eh/2.
t—hy

Similarly as above, we can select /! € S(coF o x;) and x, € K(¢; — h;) such that
|p: (@) — f;}(w))| = dist(¢; (@), co(F o x1)(t, w) for (t,w) € [ty — hy, 1] x Q2 and
ly1 — x2|| < ehy/2%, where y; = E[x; + fttll—hl frldf|}',l_hl] and t, = t; — hy.
We can now extend the step function 6, and step process z° on the interval [t5, T
by taking 0,(f2) = £, 0:(t) = ti fort, <t <ty and ¥ = (1/h1)(x2 — y1) for
t, <t < t;. We have ft1 € coF(t,0.(t)) as. fort, <t < t;. We can also extend
the process x° to the interval [t,, T'] by taking

1 1
xf(t)=FE [xl +/ frldr|]-',i| +/ Zdr
t t

as. for t, < t < t;. We have d(x°(6,(¢)),K(0()) = Ofort, <t < T,
because x°() = xp. Let f¢ = L f' + Lo /0 We have x°(r) =
Elxr + ftT frdt|F] + ftT Zfdr as. for t, < t < T. Similarly as above, we
can verify that f,° € coF(t,x°(0,(¢))) as. fort < ¢t < T and |9, — f°)| <
dist(¢;, co F(z,x%(6(t))) a.s.fort, <t < T.Furthermore, d(x%(0:(1)), K(0:(1))) =
0 and E[dist(xg(s),E[f; F(z,x*(0(0)))dt|Fs] < ¢/2forty <t < T and
1 <s <t < T,respectively.

Suppose that for some i > 1, the inductive procedure is realized. Then there
exist ;1 € [a,T) and x;—; € K(t;—1) such that we can extend the step function
0, step process z°, and process f° to the whole interval [t;_;, T'] such that f* €
co F(t,x°(0:(¢)) and |¢; — f°| = dist(¢;,co F(t,x°(0,(2))) for t;—y <t < T.

Define ’ ’
xf(t)=E |:xT +/ ftadr|]-',i| +/ Zdr
t t

as.fort;_ <t <T.Wehave x°(t;_1) = xi_1, d(x°(0:(t)), K(6:(¢))) = 0, and

1
E |:dist (xs(s), E[x°(t) + / F(r,(x{_; 0 95)(r))dr|]:s])i| <eg/2
s
fort;i_ <s<t<T.
Denote by S; the set of all positive numbers 4 € (0, min(§, #;—;)) such that

o li—1

D |:S(E[x€(t,-_1) + / F(t,xi—)dz|Fi,_—n)), K:(Zi_l)i| <eh/2.
ti—1—h

By the properties of x¢, we have x®(t;—;) = x;— and (¢;—1, x°(¢;—1)) € Graph(K).

Therefore, by virtue of (2.3), we have S; # @ and sup S; > 0. Choose h;—; € S;

such that (1/2)sup S; < h;—;. Putt; = t;_; — h;—;. We can extend again the step

function 6., step process z°, and processes f* and x° to the interval [¢;, T] such
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that d(x®(0.(¢)), K(0(¢)))) = Ofort; <t < T, and f*° € coF(¢t,x°(8,(¢)) and
|p: — f,°| = dist(¢;, coF (¢, x*(0,(¢)) a.s. for t; <t < T. Furthermore,

Edist(e* (s). E[x* (1) + / P (x5, 0 6) ()t D] < £/2

s

fort; < s <t < T. We can continue the above procedure up to n > 1 such that
0 <1, <a < t,—. Suppose to the contrary that there does not exist such n > 1,
i.e., that for everyn > 1, one hasa < t, < T. Then we can extend the step function
0., the step process z°, and the stochastic processes f*¢ and x° to the interval [z,, T']
for every n > 1 such that x°(¢,) € K(t,) a.s. for every n > 1 and so that the
above properties are satisfied on [t,, T'] for every n > 1. By the boundedness of
the sequence (¢,)°2 |, we can select a decreasing subsequence (f;){2, converging to
t* € [a, T]. Let (x;){2, be a sequence defined by x; = x°(f;) a.s. for every i > 0.
In particular, we have x; € K(¢;) a.s. for every i > 1. For every j > k > 0, we
obtain

t

i j
Bl — x| < E|ELer 7] - Bl 7 + [ m@ar + [ moar
t* t

*

T T
+(tk—tj)E|zf|+E‘E [/ ﬁdt|]-',k:|—E|:/ ffdt|]—",f*:|
t* t*

T T
—I—E‘E[/ ﬁdﬂﬁ,}—E[/ ffdrlff*]
t* r*

By the continuity of the filtration IF, it follows that lim; x>0 E|xx — x;| = 0.
Then (x;){2, is a Cauchy sequence of L(2, Fr, RY). Therefore, there is x* €
L(Q, Fr,R? such that |x; — x*|| — 0asi — oo. But x; € K(t;)) for every
i > 1 and K is continuous. Then (t*,x*) € Graph(K), which by virtue of (3),
implies that we can select 2* € (0, min(8, *)) such that

f*

D |:S(E[x* + / F(t,x*)dt|Fpe—p+]), K@* — h*)] <eh*/2°.
PR

Similarly as above, for every i > 1 and ¢; € S(coF o x;), we can select f* €
S(coFox*) suchthat |¢/ — £,*)| = dist(¢!, F(t,x*)) as. forevery t*—h* <t < t*.
By the continuity of the filtration IF, we obtain || E [x™*|F;,—p* ]| — E [x* | F=—p*]|| = O
and

r* r*
E |:/ f:dtlﬁi_h*] ) |:/ ft*df|]:t*—h*:|
R PR A

asi — oo. Let N > 1 be such that for every i > N, we have 0 < 1 —
t* < min(h*,$), ||x;i — x*|| < eh*/(2° - A), D(K(t; — h*),K(@* — h*)) <

E

-0
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eh* 25, | E[x* | Fypr] — Elx*| Foempe |l < eh*/25, E [0 |gilde < eh* /25,
E [\ |g1de < eh*/2%,and E|E[[\_ju f2dt|Fyopr]=ELf5_je f3dT|Forpl] <

eh*/2°, where A = 1 + fOT k(t)dt. By the properties of the multifunction F(¢,-)
and selector f* of F o x*, it follows that

t*

i sy (@ — )] = E/

61— f*|de
R
t*
<E / B((F (s x1), F(t,x*))di
t*—h*
t*

< |lxi —x*| k(t)dt.

t*—h*

For everyi > N, one gets

t X
d (E[xi +/t ¢l dt|Fy ). Kt —h*))

,'—h*

t*

ti X
Elx + [ idr|F, ] — Elx* + [ F5dt| Foe ]
1,

L —h* 1% —h*

<E

l‘*
+d (E[x*+/
t*—h

But for every i > N, we have

. ft*drm*_h*],/ca*—h*)) FDK(* — h*), K(t: — h*)).

t*

ti .
E [xi +/ ¢idf|}—n—h*i| -E [X* +/ fz*df|}—r*—h*:|
ti—h* t*—h*

< E|E[(xi = x*) [ Fynsll + EIE[X7|Fype] — E[x"| Frx ]|

t*—nh*
E |:/* (¢lr - fr*)df|-7:ti—h*:|

t*—h*
E [ / f:drm-_h*} —E [ / fr*drm*_h*}
t* PR

Therefore, for every i > N, one gets

E

t*—nh* t )
+ E +E/ |¢;|dr+E/ |@: |dt
f t*

i—h*

4+ E < 6eh*/2°.

ti .
d [E [x,- + [ ¢>;dr|ff,-_h*} ,/C(zi)} < 8eh*/25 = eh*/ 2,
ti—h*
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which implies that

DS(E + / P el Fyne) K1) < eh* )22

ti—h*

But t* < ¢ for i > 1. Therefore, for every i > N, one has h* € S;;; and
(1/2)h* < sup S;+1 < h; = t; — t;+1, which contradicts the convergence of the

sequence (¢;){2,. Then thereisa p > 1 suchthata =¢, <t,,....ti <to =T.
Taking f* = 1j4s, 1 /7 + Z?=p—2 11(,fl.+1,,,.]f", we obtain the desired selector of
coF o (xf 0 0,). |

Remark 2.3. The above results are also true if instead of continuity of the set-valued
mapping K, we assume that it is uniformly upper semicontinuous on [0,T1],i.e., that
limg—q supy<, <7 D(K(t + ), K(2)) = 0. O

Conditions (2.1) and (2.3) can be expressed by certain types of stochastic tangent
sets. To see this, let (z, x) € Graph(K) and denote by Tk (¢, x) the set of all pairs
(f.g) € L2([t, T] x Q, L, RY) x L2([t, T] x Q, Xk, RY*™) such that

t+h t+h
liminf(1/h)d | x +/ fodr +/ g dB. Kt +h) | =0,
- t t

where X, denotes the o-algebra of all IF-nonanticipative subsets of [¢, 7] x Q. In
a similar way, for (¢,x) € Graph(K®) and ¢ € (0, 1), we can define a backward
stochastic tangent set 'TKb (t, x) with respect to a filtration ' = (F;)o<s<r as the set
of all measurable processes f € IL([0, T] x Q, Fr, R¢) such that

I}ilrgérif(l/h)d (E [x + [_h ffdrlﬁ_h} Kt — h)) =0.

Lemma 2.1. Let Py be a complete filtered probability space. Assume that F and
G satisfy condition (i) of (H,) and let K : [0,T] x @ — CI(R?) be F-adapted
and such that K(t) # @ for every 0 < t < T. The condition (2.1) is satisfied for
every (t,x) € Graph(K) if and only if S.(F o x) x Si(G o x) C Tx(t,x) for
every (t,x) € Graph(K), where Si,(F o x) and Si(G o x) denote the sets of all
restrictions of all elements of Sy(F o x) and Sp(G o x), respectively, to the set
[t, T] x Q.

Proof. 1t is clear that if (2.1) is satisfied for every (t,x) € Graph(K), then S
(F ox) x Si(G ox) C Tk(t,x) for every (t,x) € Graph(K). Let S.(F o x) x
Sip(Gox) C Tk(t, x) for fixed (¢, x) € Graph(K). Then for every (f. g) € SL(F o
x) X SE(G o x), one has

t+h t+h
liminf(1/ )d |:x + / fudr + / . dB. K( + h)} —o.
h—> t t
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Thus for every (¢, x) € Graph(K) and (f, g) € SL(F o x) x Si.(G o x) and every
e € (0, 1), there exists h;;f’g (t) € (0, &) such that

t+h t+h .
d |:x T / fudr + / ¢edB, Kt + h)} < hfe(@) &
t t

Let h, = sup{hi®(t): (f.g) € Sp(F ox) x Sp(G ox)), 0 <t < T}. We have

t+h t+h
d [x + / frdt + / g.dB,, K(t + h)} <hg-¢
t t

for every (¢, x) € Graph(K) and (f, g) € Sp(F o x) X Sp(G o x). Then

. t+h t+h
D|x+ / F(r,x)dt + / G(t,x)dB;,K(t + h) | < h.e,
t t

which implies that

t+h t+h
lim inf(1 /h)D (x + / F(t.x)dt + / G(t,x)dB,, K(t + h)) =0
n—> t t

for every (¢, x) € Graph(K). |

Remark 2.4. The results of Theorems 2.1 and 2.2 also hold if instead of condi-
tion (2.1), we assume that [SL(F o x) x SL(G o x)] N Tk(t,x) # @ for every
€€ (0,1)and (¢, x) € Graph(K®). |

There are another types of stochastic tangent sets. For a given IF-adapted set-
valued stochastic process K : [0,T] x @ — CI(R?) and (t,x) € Graph(K),
by Sk (¢, x) we denote the stochastic “tangent set” to K at (¢, x) with respect to
the filtration I defined as the set of all pairs (f,g) € L*([t,T] x 2, 26, RY) x
L2([t, T] x Q, 24, RP™) such that for every (f,g) € Sk(t,x), there exist a
sequence (h,)°2, of positive numbers converging to 0 and sequences (a")7,
and (b")72, of d- and d x m-dimensional [F-adapted stochastic processes a” =
(a)o<t<r and b" = (b))o<: <1, respectively, such that

n>1

t+hy, t+hy
supd x—i—/ (ft—i—af)dr—i-/ (8 +b)dB. . K(t +h,) | =0
t t

and
) 1/2

lim (1/hy)E 0.
n—o0

t+h, t+h,
/ a'dr + / b"dB,
t t
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We shall show that such stochastic tangent sets are smaller then Tk (¢, x), i.e.,
that Sk (¢, x) C Tk(¢, x) for every (¢, x) € Graph(K).

Lemma 2.2. Let K : [0,T] x @ — CI(R?) be an F-adapted set-valued process
such that KC(t) # @ for every 0 <t < T. For every (t,x) € Graph(K), one has
Sk (t,x) C Tk(t, x).

Proof. Let (t,x) € Graph(K) be fixed and (f,g) € Sk(t,x). There exist a
sequence (h,)52, of positive numbers converging to 0 and sequences (a")72,
and (b")72, of d- and d x m-dimensional IF-adapted stochastic processes a” =
(a)o<i<t and b" = (b]")o<:<r, respectively, such that the above conditions are

satisfied. For every n > 1, one has
2:|

t+hy t+h,
d? | x+ Sedr + [ g:dB. . K(t + h) | <2E
t

t

t+h, t+h,
/ atar + [ baB,
t

t

Hence, by the properties of sequences (a");2, and (b");2,, it follows that

t+h, t+hy
lim (1/h,)d |:x + / Sfedr + / g.dB., K(t + h)} =0,
n—>oo t t

which implies

t+h t+h
1}11m012f(1/h)d (x + / fedr + / g:dB., K(1 — h)) =0.
- t t

Then (f, g) € Tx(t, x) forevery (f, g) € Sk(t, x). |

Denote by 7k (¢, x) that stochastic “contingent set” to K at (¢, x) with respect
to IF, defined as the set of all pairs (f, g) € L*([t, T] x , 24, RY) x L2([r, T] x
Q, X4, R4>*™) such that for every such pair ( f, g), there exist a sequence (hn)52,
of positive numbers converging to 0 and sequences (a,)>, and (b,)°2, of d- and
d x m-dimensional F;-measurable random variables a, and b,, respectively, such
that x + ftt+h” feds + ftH_h” gsdB; + hya, + /h,b, € K(t + h,) foreveryn > 1
and max {E|a,,|2, (l/hn)E|b,,|2} — 0 as n — oo. Similarly as above, we obtain
the following result.

Lemma 2.3. Let K : [0,T] x @ — CI(RY) be an F-adapted set-valued process
such that KC(t) # @ for every 0 <t < T. For every (t,x) € Graph(K), one has
tx(t,x) C SK(I, x).

Proof. Let (t,x) € Graph(K) be fixed and ( f, g) € tk(t, x). There are a sequence
(hp)52, of positive numbers converging to zero and sequences (a,)52, , (b,)72, of
F,-measurable random variables a,, : @ — R< and b, : Q@ — RY*™ such that the
above conditions are satisfied. For every n > 1, one gets

n>1

t+h, t+hy
sup d [x + / (fy +ay)ds + / (gs + bn)dBy, K(t + h)] =0
t t
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and

5172

E < hy[Elas?]"? + Vi [Eba?]".

t+hy, t+hy
/ a,ds + / b,dB;
t t

Hence, for n > 1 sufficiently large, it follows that

t+h, t+h,
/ a,ds + / b,dB;
t t

which implies that

)12
1/2

(/h) | E < [Ela,2]"* +[1/haE|ba?]"*

,11/2

—0 as n— o0.

(1/ ) | E

t+h, t+h,
/ a,ds + / b,d By
t t

Then (f, g) € Sk(t, x). |

Remark 2.5. The results of Theorems 2.1 and 2.2 are also true if instead of
condition (2.1), we assume that [SL(F o x) x SL(G o x)] N tx (¢, x) # @ for every
e € (0,1)and (¢, x) € Graph(K?). |

3 Existence of Viable Solutions

We shall prove now that if F and G satisfy conditions (#), then for every continu-
ous set-valued IF-adapted process K : [0, T] x @ — CI(R¥), the viability problems
SFI(F,G,K) and BSDI(F, K) possess viable strong solutions. Furthermore,
the existence of viable weak solutions of SFI(F,G, K) is considered. Similarly
as above, we define KC(¢) and K®(¢) by setting K(t) = {u € L*(Q,F, RY) :
d(u,K(t)) = 0} and K°(¢) = {u € L2(Q, F;,RY) : d(u, K(t)) < &}.

Theorem 3.1. Let Pp = (2, F, I, P) be a complete filtered probability space and
B = (B/)o<t<r an m-dimensional IF-Brownian motion on Py. Assume that F and
G satisfy conditions (H,) and let K : [0, T] x Q — CI(R?) be an F-adapted set-
valued process such that K(t) # 0 for every 0 <t < T and such that the mapping
K:[0,T] 3t — K(t) € CLA(X, Fr.RY)) is continuous. If Py, B, F, G, and
K are such that (2.1) is satisfied for every (t,x) € Graph(K), then the problem
SFI(F,G, K) possesses on Py a strong viable solution.

Proof. Let a € (0,T) and select arbitrarily xo € K(0). Let uy € L*(Q2, Fo, RY)
and vy € L2(Q, Fo, R¥*™) be such that uy € F(0,x0) and vy € G(0, xo) a.s. By
virtue of Theorem 2.2, for &; = 1/2%? and stochastic processes ¢! = (¢!)a</<r
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and ¥! = (Y)a<i<r defined by ¢! = ug and ! = vy a.s. foreverya <t < T,
there exist a partition 0 = 7} <} <--- < tpll_l < t;l = a, a step function 6;, and
stochastic processes f!, g!, and z! such that conditions (i)~(v) of Theorem 2.2 are
satisfied with

t t
x'(1) = xo +/ (f} +zhyde +/ gldB,
0 0

as. fora <t < T. Similarly, for &, = 1/2 and ¢> = f! and ¥?> = g!, we can
select a partition 0 = 1§ < 1} < --+ < tiz_l < tﬁl = a, a step function 6,, and
stochastic processes f 2 gz, and 72 such that conditions (i)—(v) of Theorem 2.2 are
satisfied with

t t
X(0) = xo + / (f2 + 2)de + / ¢2dB,
0 0

a.s. fora <t < T. Continuing this procedure for gy = 1/2%/2 and ¢* = f+~!
k — k=1 : " _ ik k k ko _

and Y* = ¢g"7", we obtain a partition 0 = 15 <1 <--- <1, | <1, =a,astep

function 6, and stochastic processes f k gk, and z* such that conditions (i)—(v) of

Theorem 2.2 are satisfied for every k > 1 with
t t
x¥(t) = xo +/ (fF +)dr +/ gkdB,
0 0

as. fora <t < T such that d(x*(6;(t)), K(6x(¢)) = 0. For every k > 1, one
has f* € Sp(F o (x*"1 0 6;-1)), g € Sp(G o (x* ' 0 6py)), [fF — f*7!] <
dist( £, F(r, (1 (Oe1(1)), 18F = 7' < dist(gf ™", G, (XF 1 (G- (1)),
(@)1 < ex, and

d (xk(t) — xK(s), cly, ( / t F(t, (x* 0 0p)(x))dr + f t G(r,(x* o Gk)(r))dBT)> <&

for 0 < s <t < a. Furthermore, one has |6; (t) — 0x_1(t)| < 8x_1,

8e® k—112 2 4 5@ k—112 2 4
[9 S5 1Pdr < ,/20 and /9 185 Pde < €2, /2

k—1(1) e—1(7)

for 0 <t < a, because by (i) of Theorem 2.2, §; € (0, &) is such that

1468k 1+68k
max | sup / k*(t)dr, sup / m?(7)dt 58%/24.
t t

0<s<t<T 0<s<t<T

We shall now evaluate E[sup,, <, [xkF1(r) — x¥(¢)|?] for k = 1,2,...and 0 <
t < a. Let us observe first that E[supy, <, |x* (6x+1(7)) — x* (6 ())[)] — 0 as
k — oo, because |0+1(t) — Ok (¢)| < 8 and

Ok+1(1)
Elsup |50 (0) — X @) <3G+ 1) [ m(@)de + &2

0<r<t Ok (1)
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fork =2,3,...and 0 <t < a. Hence it follows that

E[sup [x*T'(0) —x*(0)"] < ae} + B / t K2(T)E[ sup |x*(u) — x* " (w)*]dr
0

0<t<t 0<u<rt

forevery k = 1,2,...and 0 < t < a, where xto = xp, @ = (4T)*> and B =
22(T + 1).

Now, by the definition of the processes x! and x°, one gets E [Supp<, < |x!(7) —
X)) < y with y = 22[(T + 1) J; m2(t)dt + T?]. Therefore,

E[sup |1¥(0) — ¥ (0] < ae? + By / K(0)de

o<t<t

for 0 < ¢ < a. From this and (3), it follows that

E[ sup |x3(r) — x2(1))?] <ot82+0l,381/ k2(t)dr + g (/ kz(r)dt) .

0<r=<t
Similarly, we get

E[sup |x*(t) = x*(0)[]

o<t<t

2.2 2 3 : 3
< ozs% + O{,BSZ/ k2(t)dt + 05'328 (/ kz(‘f)dt) + y% (/0 kz(‘f)dt)

for 0 < ¢ < a. By the inductive procedure, we obtain

E[ sup [x"T!(x)—x"(0)|*]

0<t<t

< Olé‘” + aﬂan 1 / kz(r)dr + aan_z T (/ kz(r)dr) + 4 y (/ kz(r)dr)
2 t n t n
[14—8,3/ K (v)dt + —— ®p) ’3) (/0 kz(r)dr) ++%(/0 kz(r)dr) }
< Me2exp [85 /t kz(r)dr]
0

forn > 1 with M = max(«, y). By Chebyshev’s inequality, we obtain

P |: sup [x"t (1) = x"(v)| > 2_"]

0<t<a

t
<2"E[ sup |x"T(z) — x"(v)|?] < 2*"e>Mexp [8,8/ kz(t)dri|
0

0<t<T

=2"Mexp [8,3 /t kz(r)dti| .
0
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Therefore, by the Borel-Cantelli lemma, one gets

P |: sup |x"t1(7) — x"(r)| > 27" for infinitely many n:| = 0.
0<t=<a
Thus for ae. @ € Q, there exists ng = ng(w) such that supy.,, [x"T1(r) —
x"(t)] < 27" for n > ng(w). Therefore, the sequence {x”" (')_(65)}311 is uni-
formly convergent on [0,a] for a.a. € R, because x"(¢)(w) = x'(t)(w) +
',;11 [xk 1 (1) (w) — x*(t)(w)] for every 0 < ¢t < T and a.a. ® € . Denote
the limit of the above sequence by x;(w) for 0 < ¢ < a and a.a. w € Q. By virtue
of (3), it follows that E[sup,. , |x"*!(t) —x"(7)|?] = 0 as n — oo. On the other
hand, by the properties of sequences ( f k),fozl and (f* )iz, we get

/O E[f5H — f4Pldr < fo E[(F(r. ( 0 8)(0). F(r. (™ 0 6o (0)]dr

< /akz(f)E[ sup |x*(u) — x* 7! (w)*Jde
0

o<u<rt

and
[O E[lgt+! — g Pldr < [0 E[H(G(x. (+* 0 6)(1))). G(z. (¢~ 0 6_) (0))]dr

< f a KX(D)E[ sup [x* () — x* 7 (w)|P)de
0

o<u<rt

for every k = 0,1,.... Hence it follows that (fk)]f‘;l and (gk)]f"=1 are Cauchy
sequences of Banach spaces (L?([0,a] x Q,Xp,R9),| - |) and (I%([0,a] x
Q, g, RY™), | - |), respectively. Then there exist f € L2([0,a] x , Zp, RY)
and g € I2([0,a] x Q, Zp, R*") such that | /" — f| — O and |g" — g| — 0 as
n — oo.Let y, = xo + fot fedt + fot g.dB; for0 <t < a.Foreveryn > 1, one
gets

E[sup |x"(1) = y:|’]

0<t<a
2
[ sup

0<t<a

<3T|f"— fI* +3|g" —glI* + 3T %,.

/ (S~ fode + / (8" - g)dB, + /0 I (0)de

Therefore, we have E[supy, ., |x"(1) — y:|*] — 0 and E[supy.,, |x" (1) —
x(t)]*] = 0asn — oo, which implies that x(t) = y, a.s. forevery 0 < ¢ < a.
Then x(t) = xo + f; f;dt + [, g:dB; a:s.for0 < ¢ < a. Now, by Lemma 1.3 and
Theorem 2.2, we obtain
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0<d (x(t) —x(s),cly, (/t F(r,x(t))dt + /t G(z, x(r))dBT))

N S

< Ge@) = x(s)) — (X" (1) —x" ()]
+d (x" (t) — x"(s),cly, (/t F(r,(x" 0 6,)(7))dr + /t G(r,(x" o Gn)(r))dBr))

t t
+ H (cl]L (/ F(z, (x" 0 6,)(z))dr + / G(t,(x" o Gn)(r))dBr) ,

N s

cly, (/t F(r,x(t))dr + /t G(‘E,X(‘[))dBl—))

T 1/2
<2/x" = x| +en + (1 +VT) (/ kz(t)dt) [[x" 0 6y — x|
0

forevery0 <s <t <a.But

Ix" 0 6, — x|I> = E[|Ix" (6,(1)) — x(1)]]
< E[sup [x"(w) —x()|’] + E[Oiltl<p X (6 (1)) = x()]].

0<u<a

Then lim,, o ||x" © 6, — x|| = 0. Therefore, forevery 0 < s <t < a, we get

d (x(t) —x(s),clp, (/t F(r,x(r))dt + /t G(r,x(t))dBr)) =0.

Thus . .
x(t) —x(s) €cly (/ F(z,x(7))dt +/ G(r,x(t))dBr)

N N
forevery 0 < s <t < a. In a similar way, we get d(x(¢), (t)) < ||x" — x| +
d(x"(),K()) < ||x" — x| + &, foreveryn > 1 and 0 < s <t < a. Therefore,
d(x(t),K(t)) = 0 forevery 0 <t < a, which by Theorem 3.1 of Chap. 2, implies
that x(¢) € K(¢,-) a.s. for0 <t < a.

We can now extend our solution to the whole interval [0, T']. Let us denote by
A the set of all extensions of the viable solution x of W(F , G, K) obtained
above. We have A, # @, because we can repeat the above procedure for every
interval [a, @] with & € (a, T). Let us introduce in A, the partial order relation <
by setting x < zif and only if a, < a, and x = z|[,], Wwhere a, € (0,T) is such
that z is a strong viable solution for SF1(F, G, K) on [0,a,], and z|j,] denotes
the restriction of the solution z to the interval [0, a,]. Let ¥ : [0,a] — R? be an
extension of x to [0, «] with @ € (a, T') and denote by PY C A, the set containing
¥ and all its restrictions ¥|[o g) for every B € [a, o). It is clear that each completely
ordered subset of A is of the form P;// , determined by some extension ¥ of x. It is
also clear that every P! has Y as its upper bound. Then by the Kuratowski—Zorn
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lemma, there exists a maximal element y of A . Ithas to be a, = T'. Indeed, if we
had a, < T, then we could repeat the above procedure and extend y as a viable
strong solution § € A, of SFI(F,G, K) to the interval [0, b] with a,, < b, which
would imply that y < &, a contradiction to the assumption that y is a maximal
element of A,. Then x can be extended to the whole interval [0, T']. |

In a similar way, by virtue of Remark 2.2, we can prove the following existence
theorem for SFI(F, G).

Theorem 3.2. Let Pp = (2, F, I, P) be a complete filtered separable probability
space and B = (B;)o<i<r an m-dimensional I'-Brownian motion on Pg. Assume
that F and G satisfy conditions (M) and that K : [0,T] x @ — CI(RY) is IF-
adapted such that K(t) # 0 for every 0 < t < T and such that the mapping
K :[0,T] - CIIL2(Q, Fr.RY)) is continuous. If Py, B, F, G, and K are such
that (2.2) is satisfied for every (t, x) € Graph(K), then the problem

X, —xg €clp{ ! F(r,x.)dt} + [/ G(r.x;)dB, for 0<s <t <T,
x; € K(t) as. for t €[0,T],

possesses on P a strong viable solution. O

We shall now prove the existence of weak viable solutions for stochastic
functional inclusions. The proof of such an existence theorem is based on the first
viable approximation theorem presented above.

Theorem 3.3. Assume that F : [0,T] x R — CI(R?) and G : [0,T] x R —
CI(RY>*™) are measurable, bounded, convex-valued and are such that F(t,-) and
G(t,-) are continuous for a.e. fixed t € [0,T]. Let G be diagonally convex
and let K : [0,T] — CI(R?) be continuous. If there exist a complete filtered
probability space Pr = (2, F,F,P) and a d-dimensional IF-Brownian motion
on Pr such that (2.1) is satisfied for every ¢ € (0, 1) and (t, x) € Graph(K?), then
SFI(F,G, K) possesses a weak viable solution.

Proof. Let xo € K(0) be fixed and let &, = 1/2". By virtue of Theorem 2.1, we can
define on [0, T'] a step function 6, = 6., and IF-nonanticipative stochastic processes
fr=fo,g" =g, and x!' = xo + [y f'dt + [y g"dB, for 0 < ¢ < T such
that conditions (i)—(iii) of Theorem 2.1 are satisfied. In particular, for every m > 1,

n>1,and0 <s <t < T, we obtain
2m t 2m
] + CZE [ / g"dB, }

t
/ft”dr
t 2m
/g?dBr .
s

t m
<C!T"E |f"?dr ) + C2E
m T m
s

E[x"(1) = x"(s)]" < C;E[
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where Cnl1 and C,ﬁ are positive integers depending on m > 1. Let us observe that
} < M*Q2m—-1)N|t—s|™.

t m t 2m
E(/ |f:|2dr) < M?"|t—s|™ and ED/ g"dB

Therefore,

Elx"(t) —x"(s)]"" < [CAT™ + CE2m — D] M*" |t — 5™

forevery 0 < s <t < T and n,m > 1. In a similar way, we can verify that
there exist positive numbers K and y such that E|x{j|* < K. Then the sequence
(x™)22, of continuous processes x" = (x})o<;<7 satisfies on the probability space
(2, F, P) the assumptions of Theorem 3.5 of Chap. 1. Furthermore, immediately
from Theorem 2.1, it follows that E[dist(x" (6,(¢)), K(6,(?)))] < &, and

E [z(x"(s)) (h(x”(t)) — h(x"(5)) — / (]L_X’;gnh)rdt):| =0

forevery0 <s <t <T,l € C;(RY,R),and h € C}(RY,R).

By virtue of Theorems 3.5 and 2.4 of Chap. 1, there exist an increasing
subsequence (1 )52, of (17)72,, a probability space (Q.F, P), and d-dimensional
continuous stochastic processes X"+ and X on (fl,f", IS) for k = 1,2,... such
that P(x")~' = P(x")~! for k = 1,2,... and supy, 7 [¥" — %] — 0 as
k — oo. Let F'* = (),op0 (X% :u < t—i—s)forO <t =<TandletF, =
(]—' o<i<r. For every k > 1, x"¥ and X¥"* are continuous IF- and F, -adapted.
Furthermore, immediately from (3), it follows that ML # 0 for every k > 1,
which by Lemma 1.3 of Chap. 4, implies that M ;é @ This, by Theorem 1.3
of Chap. 4, implies the existence of an IF- Brownlan motion B on the standard
extension 73 = (Q, F. I, P) of the filtered probability space (2, F,IF, P), with
[ (}1:)0<z<r defined by F, = (), 0 (¥ () : u < t+¢), such that (75 £, B)isa
Weak solution of SFI(F, G) with % (&) = X (7 (@)) satisfying the initial condition
Pyl = Px;", where 7 : Q — Qs the (]—" F)-measurable mapping described in
the definition of the extension of (Q, F , IF, P), because the standard extension PF
is also an extension. Similarly as in the proof of Corollary 3.2 of Chap. 1, we obtain
P(es 0 x")7l = P(e; 0 X))~ with s = 6, (t) for 0 < ¢ < T. This, together with
the inequality E[dist(x"*(6,,(¢)), K(6,, (¢)))] < 1/2" for k > 1 and properties
of the sequence (X"*)p2,, implies that E[dist(X,, K(¢))] = 0. Similarly as in the
proof of Theorem 1.3 of Chap. 4, by the definition of the process X, it follows that
Px~!' = Px7!, which implies that P(e; 0%)™! = P(e;0%) ! forevery0 <t < T.
Therefore, E[dist(X;, K(¢))] = O forevery 0 < ¢ < T. Thus &, € K(t), P-as. for
0<t=<T. O
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Remark 3.1. The results of Theorem 3.3 again hold if instead of (2.1), we assume
that (2.2) is satisfied. It is also true if instead of (2.1), we assume that [Sf.(F o x) x
Si(G o x)] N Tk(t,x) # @ forevery (t,x) € Graph(K?) and ¢ € (0, 1). O

In a similar way as above, we obtain immediately from Theorem 2.3 the
following existence theorem.

Theorem 3.4. Let Py = (2, F,F,P) be a complete filtered probability space with
a continuous filtration F = (F;)o<i<t sSuch that Fr = F. Assume that F satisfies
conditions (M) and let K : [0,T] x @ — CI(R?) be an F-adapted set-valued
process such that KC(t) # 0 for every 0 <t < T and that the mapping K : [0, T] >
t — K(t) € CI(IL(Q, Fr.RY)) is continuous. If P, F, and K are such that (2.3) is
satisfied for every (t, x) € Graph(K), then BSDI(F, K) possesses a strong viable
solution.

Proof. Let xy € K(T) and a € (0,T) be fixed. Put x* = E[x7|F] as. fora <
t < T andlet O = ( f,o)asth be a measurable process on Pr such that f[O €
coF(t, (x0 0 6p)(t)) a.s. forae.a <t < T,where Oy(t) =T fora <t < T. Let
¢ = f[O a.s. fora.e.a <t < T. By virtue of Theorem 2.3, for &; = 1/2%/? and
the above process ¢ = (¢ )q,</<7, there exist a partition a = tzln < t1171—l <<
1t} <1t} =T, astep function 6, : [a, T] — [a, T], a step process z! = (z})a<i<7,
and a measurable process f! = ( f,l)as,fr on P such that conditions (i)—(vi) of
Theorem 2.3 are satisfied. In particular, f;' € coF(z, (x! 0 6))(1)), | f,' = f°] =
dist(f,°, coF (t, (x' 0 6;)(1))) as. forae.a <t < T and d(x'(1),K(t)) < & for
a<t<T,because d(x'(t), K@) < |x'(t) =x"(0@))| +d(x"(0(r)), K(O(1))) +
D(K(B(1)),K(t)) < &1, where x} = El[xr + [ f°dt|F] + [| z'dr as. for
a <t < T.In a similar way, for ¢ = (f,l)asth and &, = 1/23, we can define
a partition a = tﬁz < tlzjz_l <<t} <1 =T,astep function 6, : [a,T] —
[a,T], a step process 2> = (z?)a<:i<7, and a measurable process f2 = (f;})a<i<r
such that f;> € coF (1, (x2 0 01)(2)), | /> — ;1] = dist(f;!, coF (¢, (x? 0 62)(1))) a.s.
forae.a <t < T andd(x*(t),K(t)) < & fora <t < T, where x> = E[xr +
ftT flde|F] + ftT z2dr as. fora <t < T. Furthermore, fori = 1,2, we have

E [dist (x’(s), E [xi(t) + /t F(r,(x' o 9,<)(t))df|]~]j|):| <e

as. fora < s <t < T. By the inductive procedure, for ¢y = 1/23](/2 and
oF = (ftk)ustsT, we can select for every k > 1, a partition ¢ = t’p‘k <
th_y < - <tf <1 = T,astep function 64 : [a,T] — [a,T], a step
process F = (Zf)ugzsr, and a measurable process fk = (ﬂk)asth such that
£k e coF(t, (x* 0 6)(1)), | £F — £F71 = dist(fF, coF(t, (x* o 6;)(1))) as. for
ae.a <t <Tandd(x*(t),K(t)) < e fora <t <T,where

T T
xF = Elxr +/ flde| 7] +/ Fde
t t
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a.s. fora <t < T. Furthermore,

E [dist (o [xka) A 9k><r>)drmm <o

s

fora < s <t < T.Of course, x* € S(F,R™) for k > 1. By Corollary 3.2 of
Chap. 3 and the continuity of the filtration I, the process x is continuous for every
k > 1. Furthermore, by the properties of the sequence ( f* i<, one gets

T T
|xk+‘(r)—xk(z>|sE[/ |ff—ff—‘|2dc|ﬁ}+ / B+ — dr
t t

T
<E [ / dis?(fF"'¢o F(z, (x* o Qk)(f)))dt|]:,i| + 8T%¢;

t

T
<ag +E [ k(z) sup |x*(s) —xk_l(S)IdrIff} .
t 1<s<T
a.s.fora <t < T, where « = 8T2. Therefore,

T
sup |x* () — x¥(u)| < aer + sup E|: k(z) sup |x*(s) —xk_l(s)|dr|}'u:|

t<u<T t<u<T T<s<T

T
<owaegr+ sup E |: k() sup |xK(s) —xk_l(s)|dr|}'u:|
t

t<u<T T<s<T

as.fora <t <Tandk = 1,2,.... By Doob’s inequality, we get

t<u<T t T<s<T

r 2
E|: sup E[| k(z) sup |x*(s)— k_l(s)|dt|]-'u]:|

<s<T

T 2
< 4E [/ k(t) sup |xk(s)—xk_l(s)|dr]:|

fora <t < T. Therefore, foreverya <t < T andk = 1,2,..., we have
E[ sup |x**'(w) —x*W)|] < o’ +/3/ K*()E[ sup |x"(s) = x*"(s)]]dx,
t<u<T T<s<T

where f = 8T. By the definitions of x' and x°, we obtain E[sup, <7 |x'(u) —
W) )< L,where L=T fOT m?(t)dt. Therefore,

t<u<T

T
E[ sup |x*(u) —x"(w)|*] < 20%e] + LB / k2(t)dt
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fora <t < T. Hence it follows that

T T T
E[ sup |x*(u) —x*(w)|*] < 2ae3 + aﬂe%/ k2(t)dr + Lﬂz/ k(1) (/ kz(u)du) dr

t<u<T
52 T
< 202 sz + o ﬂsl / 2(r)dr + L— (/ k2(f)dr)

fora <t < T. By the inductive procedure, forevery k = 1,2,...anda <t < T,
we obtain

2

E[ sup |x" ') —x" )]

t<u<T

2 n n
< M52|:1 + (Sﬂ)/kz( r)dr + ( ’3)2 (/Zz(r)dr) . (8ﬂ) (/kz( )dr ) }
< Mé&lexp |:8ﬂ/ k2(t)dri| ,

where M = max{2a?, L}. Hence, by Chebyshev’s inequality and the Borel-
Cantelli lemma, it follows that the sequence (xk),‘:o=1 of stochastic processes
(xk(#))a<i<7 is for ae. @ € Q uniformly convergent in [a, 7] to a continuous
process (x(¢))a</<7. We can verify that the sequence (f* )52, is a Cauchy sequence
of L([a, T] x 2, Br ® Fr,R™). Indeed, for every k = 0,1, 2, ..., one has

[ CEfA - fHde
0
< /0 " ELH(F (. (¢ 0 6)(0). F(r. (" 0 i) (0)lde
/ k(x)E[ sup |x*(u) — x*7'(u)|]dz,
0<u<rt

which by the properties of the sequence (x* )72 . implies that ( f k )72, is a Cauchy
sequence. Then thereisan f € I([a, T]x2, Br ® Fr, R™) such that | f¥— f| — 0
ask — oo.Lety, = E[xr + ftT frdz|F]as. fora <t < T.Foreveryk > 1, we
have

E[ sup |x(®) =yl < E[ sup_|x(&) = x| + E[ sup_|x*(t) — y]
a<t<T a<t<T a<t<T

IA

a<t<T a<t<T

T
E[ sup |x(r) —xF |]+E|: sup E[ Ifk frldrl]-",]:| +/ E|Z|dr

IA

,
E[ sup |x(t) —xF||+ E |:E[/ | fF— j;ldrl]-',]] + Tel
0

a<t<T

IA

ELswp |v(0) = xf |1+E/ | £} = filde + Té,
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which implies that E{sup, ., <7 [x(t) — y/[] = 0. Then x(¢) = E[xr + ftT Jfrdt|Fr]
as.fora <t <T.Now,foreverya <s <t <T, we get

E [dist (x(s), E [x(t) + [ F(‘E,x(‘[))dr|]—'{|)i|
< E[lx = ol + 8 fas (0.5 [0 + [ Fed @z )]
+E [H (E Ul F(r,x’f(@k(r)))dzm} E Ur F(z, xk(r))dzm]ﬂ
+E [H (E [/l F(r,xk(z))drm] JE [/l F(r,x(r))dzm])]

T T
<|lx* = x| + e + E/ k@)|x* (6 (1)) — x*(0)|dr + E/ k@)|x* @) — x(1)|dr.

But

E[Ix*(0c (1)) — x* ()] < |Ix* —x|] + E[ sup X0k (1)) — x* ()]

a=

foreveryk > landa <t < T.Then

E [dist (x(s), E |:x(t) + /t F(t,x(r))drlst}
T
< ( / k(z)dt)
0

T
+x* = x| + e < [|x* = x|| (1 +/ k(t)dz) + &
0

E[ sup |x(8(t)) = x* ()] + E[ sup IX(t)—XfI]§

a<t<T a<t<T

foreveryk > landa <s <t < T. Thus

E [dist (x(s),E |:x(t) + /f F(r,x(t))dt|]-}:|):| =0

foreverya < s <t < T.In a similar way, we also get that d(x(¢), /C(¢)) = 0 for
everya <t < T.Then x is a strong solution of BSDI(F, K) on the interval [a, T]
foreverya € (0,T).

We can now extend the above solution to the whole interval [0, T]. Let us
denote by A, the set of all extensions of the above-obtained viable solution x of
BSDI(F,K). We have A, # 0, because we can repeat the above procedure for
every interval [, T] with @ € (0, a] and get a solution x* of BSDI(F, K) on the
interval [or, T']. The process z = L[y 4)x* + 14 7)x is an extension of x to the interval
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[, T']. Let us introduce in A, the partial order relation < by setting x < zif and only
ifa, < a, and x = z|j,, 17, where a,,a; € (0,a) are such that x and z are strong
viable solutions for BSDI(F, K) on [a.,T] and [a,, T], respectively, and z|(,, 1]
denotes the restriction of the solution z to the interval [a,, T]. Let ¥ : [o, T] — R?
be an extension of x to [o, 7] with @ € (0,a] and denote by P! C A, the set
containing v and all its restrictions ¥ |(g,7] for every 8 € («, a). It is clear that each

completely ordered subset of Ay is of the form P} determined by some extension
Y of x and contains its upper bound 1. Then by the Kuratowski—Zorn lemma, there
exists a maximal element y of A. It has to be a, = 0, where a,, € [0, T) is such
that y is a strong viable solution of BSDI(F, K) on the interval [a,, T']. Indeed, if
we had a,, > 0, then we could repeat the above procedure and extend y as a viable
strong solution § € Ay of BSFI(F, K) to the interval [b, T] with0 < b < a,.
This would imply that y < &, a contradiction to the assumption that y is a maximal
element of A,. Then x can be extended to the whole interval [0, T']. |

Remark 3.2. Theorem 3.4 is also true if K(t) = {u € IL(Q,F RY) tu €
K(t)}. In such a case, instead of (2.3), we can assume that liminf,—o+ D(x +
[, F(z.x)dt,K(t)) = 0 for every (¢, x) € Graph(K).

Proof. Forevery (t,x) € Graph(K), f € S(coF o x), and u € K(t), we have

t
E (‘E[x + / Fidt| Fi] —
t—h

) _E (’E[x + / :h Fidt|Fi] = ElulFis]

<E (E [ E_hD

t
X +/ Sfrdt —u
t—h

t
X +/ Sfrdt —u
t—h

=F

Therefore, d(E[x + [, fidt|Fiop]. K(t)) < d(x + [, frdt, K(t)) for every
f € S(coF o x). Then

D [S(E[x + /l ) F(z, x)dt| F_p)), K(t — h)] <D [x + /l F@x0de K = h)]

for every (t,x) € Graph(K). Thus, liminfy—or D(x + [, F(r,x)dr,
IKC(t — h)) = 0 implies that (2.3) is satisfied. |

Remark 3.3. The results of the above existence theorems are also true if instead
of continuity of the set-valued mapping K, we assume that it is uniformly upper
semicontinuous on [0, T'], i.e., that lims—¢ supy, <7 D(K(t +6),K(z)) =0. O

It can be verified that the requirement X; € K(¢) a.s. for 0 < ¢t < T in the
above viability problems is too strong to be satisfied for some stochastic differential
equations. For example, the stochastic differential equation dX;, = f(X;) + dB;
with Lipschitz continuous and bounded function f : R — R does not have any
solution X = (X;)o<s<r With X; belonging to a compact set K C R a.s. for every
0 <t < T. This is a consequences of the following theorem.
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Theorem 3.5. Let Pr = (,F,F, P) be a filtered probability space and B =
(B:)i>0 a real-valued T-Brownian motion on Pg. Assume that § = (&)o<i<71 is
an Ité diffusion such that d& = o (§)dt + dB;, & = 0 for 0 <t < T. Then
P[] a2(§)dr < oo}) = 1 and P({f] a>(B)dt < oo}) = 1 if and only if &
and B have the same distributions as Cr-random variables on Pg, where Ct =

C([0,T],R).

Example 3.1. Let f : R — R be bounded and Lipschitz continuous. Let Py and B
be as in Theorem 3.5. Put o, (x) = f(e;(x)) for x € Cr, where Cr = C([0,T],R)
and e, is the evaluation mapping on Cr, i.e., ¢,(x) = x(¢) forx € Crand 0 <t <
T. Assume that K is a nonempty compact subset of R such that 0 € K and consider
the viable problem

dX; = f(X))dt +dB, a.s. for 0<t<T,
X; € K a.s. for t €[0,T].

Suppose there is a solution X, an It6 diffusion, of the above viability problem
such that Xy = 0. By the properties of f, we have fOT f2(X;)dt < oo and

fOT f2(B;)dt < oo a.s. Therefore, by virtue of Theorem 3.4, for every 4 € B(Cr)
with PX~1(4) = 1, one has PX~!'(4) = PB~'(A). By the properties of the
process X, one has P({X; € K}) = 1. But P{X; € K}) = P({e/(X) €
K}) = PX!(e;!(K)), where ¢, is the evolution mapping. Hence it follows that
1 = PX e Y (K)) = PB™!(e;'(K)) = P({B: € K}) < 1, a contradiction.
Then the problem (3) does not have any K-viable strong solution.

Remark 3.4. We can consider viability problems with weaker viable requirements
of the form P({X; € K(¢)}) € (e,1) for0 <t < T and ¢ € (0, 1) sufficiently
large. Solutions to such problems can be regarded as a type of approximations to
viable solutions. a

4 Weak Compactness of Viable Solution Sets

Let us denote by X (F, G, K) the set of (equivalence classes of) all weak viable
solutions of SFI(F, G, K). We shall show that for every F, G, and K satisfying
the assumptions of Theorem 3.3, the set X'(F, G, K) is weakly compact, i.e., the
set X° (F, G, K) of distributions of all weak solutions of SFI(F, G, K) is weakly
compact subsets of the space M (Cr) of all probability measures on the Borel o-
algebra B(Cr), where Cr =: C([0, T], RY).

Theorem 4.1. Assume that F and G are measurable, bounded, and convex-valued
such that F(t,-) and G(t,-) are continuous for a.e. fixed t € [0,T]. Let G be
diagonally convex and K : [0, T] — CI(R?) continuous. If there exist a complete
filtered probability space Py = (2, F, I, P) with a filtration ¥ satisfying the usual
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conditions and an m-dimensional T-Brownian motion on Pr such that (2.1) is
satisfied for every ¢ € (0,1) and (t,x) € Graph(K?), then the set X(F, G, K)
of all weak viable solutions (Py, x, B) of SFI(F, G, K) is weakly compact.

Proof. By virtue of Theorem 3.3, the set X (F, G, K) is nonempty. Similarly as in
the proof of Theorem 4.1 of Chap. 4, we can verify that X (F, G, K) is relatively
weakly compact. We shall prove that it is a weakly closed subset of the space
M(Cr). Let (x")22, be a sequence of X'(F, G, K) convergent in distribution. Then
there exists a probablhty measure P on B(Cr) such that P(x")™! = P asr — oo.
By virtue of Theorem 2.3 of Chap. 1, there are a probability space (Q.,F.P)and
random variables ¥ : Q — Cr and X : Q — Cr forr = 1,2,... such that
P(x")™' = P forr = 1,2,..., P(¥)™' = P and lim, o0 Supy, 7 | X —
%] = 0 with (P.1). By Theorem 1.3 of Chap. 4, we have Yo # 0 for every
r > 1, which by Theorem 1.5 of Chap. 4, implies that M’}G # 0. Therefore, by
Theorem 1.3 of Chap. 4, there exist a standard extension 75@ = (fz, F , ﬁ‘ 13) of
(§2, F.F, }3) and an m-dimensional Brownian motion 75]@ such that (73@, X, 1§) isa
weak solution of SF I (F, G, i) with an initial distribution 1 equal to the probability
distribution PX;'. Similarly as in the proof of Theorem 3.3, this solution is defined
by X(®) = X(w(x)) ford € Q. Similarly as in the proof of Theorem 4.1 of Chap. 4,
we obtain P(x")~' = P(X)~! as r — oo, which by the properties of the sequence
(&), implies that P(¥")"! = P(X)~! as r — oo. By the properties of the
sequence (x")72,, we have E"[dist(x" (1), K(¢))] = 0 for every r > 1, which
implies that E[dist(x"(¢), K(t))] = O for every r > 1. Hence, by the continuity
of the mapping dist( -, K(¢)) and propertles of the sequence (X");2,, it follows that
E[dlst(x,, K(t))] = 0. Thus (P]F, X, B) is a weak solution of SFI(F G, i), with
an appropriately chosen initial distribution p, such that x” = X and X, € K()
with (P.1) for every ¢t € [0, T]. Then (PF,x B) e X(F,G,K),and X(F,G,K) is
weakly closed. |

Remark 4.1. The results of Theorem 4.1 continue to hold if instead of (2.1), we
assume that [SL(F o x) x SL(G o x)] N Tx(t, x) # @ for every (¢,x) € K° and
e€ (0,1). |

5 Notes and Remarks

The viability approach to optimal control problems is especially useful for problems
with state constraints. There is a great number of papers dealing with viability
problems for differential inclusions. The first results dealing with viability problems
for differential inclusions were given by Aubin and Cellina in [5]. The first result
extending to the stochastic case of Nagumo’s viability theorem due to Aubin and Da
Prato [7]. Most of the results concerning this topic have now been collected in the
excellent book by Aubin [6]. Interesting generalizations of viability and invariance
problems were given by Plaskacz [88]. A new approach to viability problems for
stochastic differential equations was initiated by Aubin and Da Prato in [8] and [9]
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and by Millian in [79]. Later on, these results were extended by Aubin, Da Prato, and
Frankowska [10, 12] in the case of stochastic inclusions written in differential form.
Independently, viability problems for stochastic inclusions were also considered
by Kisielewicz in [54] and Motyl in [85]. Viability theory provides geometric
conditions that are equivalent to viability or invariance properties. [llustrations of
viability approach to some issues in control theory and dynamical games with
the problem of dynamic valuation and management of a portfolio, can be found
in Aubin et al. [13]. The stochastic viability condition presented in Example 3.1
was constructed by M. Michta. The results contained in the present chapter are
mainly based on methods applied in Aitalioubrahim and Sajid [3], Van Benoit and
Ha [18], and Aubin and Da Prato [9]. The main results of this chapter dealing
with the existence of viable strong and weak solutions of stochastic and backward
stochastic inclusions and weak compactness with respect to convergence in the sense
of distributions of viable weak solution sets are due to the author of this book.
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