
Chapter 4
Stochastic Differential Inclusions

This chapter is devoted to the theory of stochastic differential inclusions. The main
results deal with stochastic functional inclusions defined by set-valued functional
stochastic integrals. Subsequent sections discuss properties of stochastic and back-
ward stochastic differential inclusions.

1 Stochastic Functional Inclusions

Throughout this section, by PF D .�;F ;F; P / we shall denote a complete filtered
probability space and assume thatF W Œ0; T ��Rd ! Cl.Rd / andG W Œ0; T ��Rd !
Cl.Rd�m/ satisfy the following conditions .H/:
(i) F and G are measurable,

(ii) F and G are uniformly square integrably bounded.

For set-valued mappings F and G as given above, by stochastic functional
inclusions SFI.F;G/, SFI.F ;G/, and SFI.F;G/ we mean relations of the form

xt � xs 2 Jst ŒSF.F ı x/�C Jst ŒSF.G ı x/�;

xt � xs 2 clLfJst ŒSF.F ı x/�g C Jst ŒSF.G ı x/�g;
and

xt � xs 2 clLfJst ŒSF.F ı x/�C Jst ŒSF.G ı x/�g;
respectively, which have to be satisfied for every 0 � s � t � T by a system
.PF; X;B/ consisting of a complete filtered probability space PF with a filtration
F D .Ft /0�t�T satisfying the usual conditions, an d -dimensional F-adapted
continuous stochastic process X D .Xt/0�t�T , and an m-dimensional F-Brownian
motion B D .Bt /0�t�T defined on PF. Such systems .PF; X;B/ are said to
be weak solutions of SFI.F;G/, SFI.F ;G/, and SFI.F;G/, respectively. If
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148 4 Stochastic Differential Inclusions

� is a given probability measure on ˇ.Rd /, then a system .PF; X;B/ is said to
be a weak solution of the initial value problems SFI.F;G;�/, SFI.F ;G;�/,
or SFI.F;G;�/, respectively, if it satisfies condition (1)–(1), respectively, and
PX�1

0 D �. The set of all weak solutions of SFI.F;G;�/, SFI.F ;G;�/,
and SFI.F;G;�/ (equivalence classes Œ.PF; X;B/� consisting of all systems
.P 0

F; X
0; B; / satisfying (1)–(1), respectively and such that PX�1

0 D P.X 0
0/

�1 D �

and PX�1 D P.X 0/�1) are denoted by X�.F;G/, X�.F ;G/, and X�.F;G/,,
respectively. By X 0

�.F;G/ we denote the set of all Œ.PF; X;B/� 2 X�.F;G/ with a
separable filtered probability space PF.

Remark 1.1. We can also consider initial value problems for SFI.F;G/, SFI
.F ;G/, and SFI.F;G/ with an initial condition xs D x a.s. for a fixed 0 � s � T

and x 2 Rd . The sets of all weak solutions for such initial value problems are
denoted by Xs;x.F;G/, Xs;x.F ;G/, and X s;x.F;G/, respectively. �

Remark 1.2. The following inclusions follow immediately from Lemma 1.6 of
Chap. 3: X�.F;G/ � X�.F ;G/ � X�.F;G/ � X�.coF; coG/ for all measurable
set-valued functions F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/
and probability measure � on ˇ.Rd /. �

Remark 1.3. In what follows, we shall identify weak solutions (equivalence classes
Œ.PF; X;B/�) of SFI.F;G/, SFI.F ;G/, and SFI.F;G/, respectively, with pairs
.X;B/ of stochastic processes X and B defined on PF or with a process X . �

If apart from the set-valued mappings F and G, we are also given a
filtered probability space PF and an m-dimensional F-Brownian motion on PF,
then a continuous F-adapted process X such that .PF; X;B/ satisfies (1)–(1), re-
spectively, is called a strong solution for SFI.F;G/, SFI.F ;G/, and SFI.F;G/,
respectively. For a given F0-measurable random variable � W � ! Rd , the sets of
all strong solutions of the above stochastic functional inclusions corresponding
to a filtered probability space PF and an m-dimensional F-Brownian motion B
satisfying an initial condition X0 D � a.s. will be denoted by S�.F;G;B;PF/;

S�.F ;G;B;PF/, and S� .F;G;B;PF/; respectively. Immediately from Lemma 1.6
of Chap. 3, it follows that S� .F;G;B;PF/ � S�.F ;G;B;PF/ � S�.F;G;
B;PF/ � S�.coF; coG;B;PF/ � S.F;Rd /; where S.F;Rd / denotes the
Banach space of all d -dimensional F-semimartingales .Xt/0�t�T on PF such that
EŒsup0�t�T jXt j2� < 1. If PF is separable, then by virtue of Lemma 1.7 of Chap. 3,
one has S�.F ;G;B;PF/ D S�.coF;G;B;PF/.

In what follows, norms of Rr ; L2.�;F ;Rr /, and L2.Œ0; T � � �;†F;R
r / with

r D d and r D d �m will be denoted by j � j. It will be clear from the context which
of the above normed space is considered.

Theorem 1.1. Let B D .Bt /0�t�T be an m-dimensional F-Brownian motion on
PF, and � W � ! Rd an F0-measurable random variable. If F and G satisfy
conditions .H/ and are such that F.t; � / and G.t; � / are Lipschitz continuous with
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a Lipschitz function k 2 L2.Œ0; T �;RC/ such that K.
p
T C 1/ < 1, where K D

.
R T
0
k2.t/dt/1=2, then S�.F;G;B;PF/ ¤ ;.

Proof. Let X D L2.Œ0; T � � �;†F;R
d / � L2.Œ0; T � � �;†F;R

d�m/ and put
X
fg
t D � C R t

0 f�d� C R t
0 g�dB� a.s. for 0 � t � T and .f; g/ 2 X . It is clear

that Xfg D .X
fg
t /0�t�T 2 S.F;Rd /. Define on X a set-valued mapping Q by

setting Q.f; g/ D SF.F ı Xfg/ � SF.G ı Xfg/ for every .f; g/ 2 X . It is clear
that for every .f; g/ 2 X , we have Q.f; g/ 2 Cl.X /.

Let �.A � C;B � D/ D maxfH.A;B/;H.C;D/g, for A;B 2 Cl.L2.Œ0; T � �
�;†F;R

d / and C;D 2 Cl.L2.Œ0; T � � �;†F;R
d�m/, where for simplicity, H

denotes the Hausdorff metric on Cl.L2.Œ0; T � � �;†F;R
d / and Cl.L2.Œ0; T � �

�;†F;R
d�m/. It is clear that � is a metric on Cl.X /. By virtue of Lemma 3.7

of Chap. 2, we have H.SF.F ı Xfg/; SF.F ı Xf 0g0

// � KkXfg � Xf 0g0kc and
H.SF.GıXfg/; SF.GıXf 0g0

// � KkXfg�Xf 0g0kc for every .f; g/; .f 0; g0/ 2 X ;
where k �kc denotes the norm of S.F;Rd / defined by kxk2c D EŒsup0�t�T jxt j2� for
x D .xt /0�t�T 2 S.F;Rd /. But

kXfg �Xf 0g0kc D
 

E sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z t

0

.f� � f 0
� /d� C

Z t

0

.g� � g0
� /dB�

ˇ
ˇ
ˇ
ˇ

2
!1=2

�
 

E sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z t

0

.f� � f 0
� /d�

ˇ
ˇ
ˇ
ˇ

2
!1=2

C
 

E sup
0�t�T

ˇ
ˇ
ˇ
ˇ

Z t

0

.g� � g0
� /dB�

ˇ
ˇ
ˇ
ˇ

2
!1=2

� p
T

 

E sup
0�t�T

Z t

0

jf� � f 0
� j2d�

!1=2

C
 

E sup
0�t�T

Z t

0

jg� � g0
� j2d�2

!1=2

D p
T jf � f 0j C jg � g0j � .

p
T C 1/ k.f; g/ � .f 0; g0/k;

where k � k denotes the norm on X . Therefore,

�.Q.f; g/;Q.f 0; g0// � K.
p
T C 1/ k.f; g/ � .f 0; g0/k

for every .f; g/; .f 0; g0/ 2 X , which by th Covitz–Nadler fixed-point theorem,
implies the existence of .f; g/ 2 X such that .f; g/ 2 Q.f; g/. Hence it follows
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that
R t
s
f�d� C R t

s
g�dB� 2 Jst ŒSF.F ı Xfg/� C Jst ŒSF.G ı Xfg/� for every

0 � s � t � T . This, by the definition ofXfg; implies thatXfg 2 S� .F;G;B;PF/.

�

Remark 1.4. By an appropriate changing the norm (see Remark 1.1 of Chap. 7)
of the space X , the result of Theorem 1.1 can be obtained for every T > 0 and
k 2 L2.Œ0; T �;RC/ without the constraintK.

p
T C 1/ < 1. �

Let us denote by ƒ�.F;G;B;PF/ the set of all fixed points of the set-valued
mappingQ defined in the proof of Theorem 1.1.

Theorem 1.2. If the assumptions of Theorem 1.1 are satisfied, then

(i) ƒ�.F;G;B;PF/ is a closed subset of X ;
(ii) S� .coF; coG;B;PF/ ¤ ; if and only if ƒ�.coF; coG;B;PF/ ¤ ;;

(iii) S� .coF; coG;B;PF/ is a closed subset of S.F;Rd /;
(iv) for every x 2 S�.F;G;B;PF/ and " > 0, there exists x" 2 S.F;Rd / such

that sup0�t�t .Ejx�x"j2/1=2 � " and dist.xt �xs; Jst ŒSF.F ıx/�CJst ŒSF.Gı
x/�/ � ";

(v) X�.F;G/ ¤ ; for every probability measure � on ˇ.Rd /.

Proof. (i) The closedness of ƒ�.F;G;B;PF/ follows immediately from the
properties of the set-valued mappings X 3 .f; g/ ! SF.F ı Xfg/ �
L2.Œ0; T � � �;†F;R

d / and X 3 .f; g/ ! SF.G ı Xfg/ � L2.Œ0; T � �
�;†F;R

d�m/. Indeed, if f.f n; gn/g1
nD1 is a sequence of ƒ�.F;G;B;PF/

converging to .f; g/, then dist.f; SF.F ıXfg// D 0, because

dist.f; SF.F ıXfg// � jf � f nj C dist.f n; SF.F ıXf ngn//

CH.SF.F ıXfg/; SF.F ıXf ngn//;

and by virtue of Lemma 3.7 of Chap. 2, for every n � 1 one has

H.SF.F ıXfg/; SF.F ıXf ngn/ � K.
p
T C 1/k.f; g/ � .f n; gn/k:

In a similar way, we also get dist.g; SF.G ı xfg// D 0. Hence, by the
closedness of SF.F ı xfg/ and SF.G ı xfg/, it follows that .f; g/ 2 Q.f; g/.
Then .f; g/ 2 ƒ�.F;G;B;PF/.

(ii) The implication ƒ�.coF; coG;B;PF/ ¤ ; ) S�.coF; coG;B;PF/ ¤ ;
follows immediately from the proof of Theorem 1.1. The converse implication
follows immediately from Theorem 1.5 of Chap. 3.

(iii) Let .un/1nD1 be a sequence of S� .coF; coG;B;PF/ converging to u 2
S.F;Rd /. By Theorem 1.5 of Chap. 3, there exists a sequence f.f n; gn/g1

nD1
of SF.coF ı un/ � SF.coG ı un/ such that unt D � C J0t .f

n/ C J0t .gn/
for n � 1 and t 2 Œ0; T �. By Remark 3.1 of Chap. 2, there is a subsequence
f.f nk ; gnk /g1

kD1 of f.f n; gn/g1
nD1 weakly converging to .f; g/, which implies

that J0t .f nk / C J0t .gnk / ! J0t .f / C J0t .g/ for every t 2 Œ0; T � in the
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weak topology of L2.�;F ;Rd / as k ! 1. But for every t 2 Œ0; T �, a
sequence .unkt /

1
kD1 also converges weakly in L2.�;F ;Rd / to ut . Therefore,

ut D �CJ0t .f /CJ0t .g/ for every t 2 Œ0; T �: Then u 2 S�.coF; coG;B;PF/.
(iv) For every x 2 S�.F;G;B;PF/ and " > 0, there exists x" 2 S� .F;G;B;PF/

such that sup0�t�t .Ejx � x"j2/1=2 � "=Œ2 C L.
p
T C 1/�, where L D

.
R T
0
k2.t/dt/1=2. Similarly as in the proof of Lemma 3.7 of Chap. 2 (see

Lemma 1.3 of Chap. 5), it follows that set-valued mappings S.F;Rd / 3 x !
Jst ŒSF.F ı x/� � L2.�;F ;Rd / and S.F;Rd / 3 x ! Jst ŒSF.G ı x/� �
L2.�;F ;Rd / are Lipschitz continuous with Lipschitz constants

p
TL and L,

respectively. Therefore,

dist.xt � xs; Jst ŒSF.F ı x/�C Jst ŒSF.G ı x/�/
� j.xt � xs/� .x"t � x"s /j

Cdist.x"t � x"s ; Jst ŒSF.F ı x"/�C Jst ŒSF.G ı x"/�/
CH.Jst ŒSF.F ı x"/�; Jst ŒSF.F ı x/�/
CH.Jst ŒSF.G ı x"/�;Jst ŒSF.G ı x/�/

� Œ2CL.
p
T C 1/�kx � x"kc � ":

(v) If � is a given probability measure on ˇ.Rd /, then taking an F0-measurable
random variable � such that P��1 D �, we obtain the existence of a
strong solution X for SFD.F;G/ such that PX�1

0 D �, which implies that
X�.F;G/ ¤ ;, because .PF; X;B/ 2 X�.F;G/. �

We associate now with SFI.F;G/ and its weak solution .PF; x; B/ a set-valued
partial differential operator LxFG defined on the space C2

b .R
d / of all real-valued

continuous bounded functions h W Rd ! R having continuous bounded partial
derivativesh0

xi
and h00

xi xj
for i; j D 1; 2; : : :. Assume thatF W Œ0; T ��Rd ! Cl.Rd /

and G W Œ0; T � � Rd ! Cl.Rd�m/ are measurable and uniformly square integrably
bounded such that F.t; � / and G.t; � / are continuous for fixed t 2 Œ0; T �: Let G
be diagonally convex and x D .xt /0�t�T a d -dimensional continuous process on a
filtered probability space PF D .�;F ;F; P /: For every .f; g/ 2 SF.coF ı x/ �
SF.G ı x/, we define a linear operator Lxfg W C2

b .R
d / ! L2.Œ0; T � � �;Rd / by

setting

.Lxfgh/t D
nX

iD1
h0
xi
.xt /f

i
t C 1

2

nX

iD1

nX

jD1
h00
xixj

.xt /�
ij
t

a.s. for 0 � t � T and h 2 C2
b .R

d /, where ft D .f 1
t ; : : : ; f

n
t /; and � D g � g� D

.�ij /n�m. For a process x as given above and sets A � L2.Œ0; T ���;†F;R
d / and

B � L2.Œ0; T ���;†F;R
d�m/, by LxAB we denote a family fLxfg W .f; g/ 2 A�Bg.
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We say that Lxfg 2 LxAB generates on C2
b .R

d / a continuous local F-martingale if
the process Œ.'xfgh/t �0�t�T defined by

.'xfgh/t D h.xt / � h.x0/�
Z t

0

.Lxfgh/�d� with .P:1/ (1.1)

for t 2 Œ0; T � is for every h 2 C2
b .R

d / a continuous local F-martingale on PF:

The family of all Lxfg 2 LxAB generating on C2
b .R

d / a family of continuous local
F-martingales is denoted by Mx

AB: In what follows, for the set-valued mappings
F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/ as given above, the
families LxSF.coF ıx/SF.Gıx/ and Mx

SF.coF ıx/SF.Gıx/.C 2
b / will be denoted by LxFG and

Mx
FG , respectively.

Lemma 1.1. Assume that F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd !
Cl.Rd�m/ are measurable and uniformly square integrably bounded such that
F.t; � / and G.t; � / are continuous for fixed t 2 Œ0; T �: Let G be diagonally convex,
and let x D .xt /0�t�T and Qx D . Qxt /0�t�T be d -dimensional continuous F- and
QF-adapted processes on PF D .�;F ;F; P / and . Q�; QF ; QF; QP/; respectively, such
that Px�1 D P Qx�1: Then Mx

FG ¤ ; if and only if MQx
FG ¤ ;.

Proof. Let Mx
FG ¤ ;: There exist f 2 SF.coF ı x/ and g 2 SF.G ı x/ such that

for every h 2 C2
b .R

d /, the process Œ.'xh /t �0�t�T defined by (1.1) is a continuous
local F-martingale on PF: Therefore, there exists a sequence .rk/1kD1 of F-stopping
times on PF such that rk�1 � rk for k D 1; 2; : : : with r0 D 0; limk!1 rk D C1
with .P:1/ and such that for every k D 1; 2; : : : ; the process Œ.'xh /t^rk �0�t�T is a
continuous square integrable F-martingale on PF: In particular, it follows that for
every 0 � s < t � T , one has EŒ.'xh /t^rk jFs� D .'xh /s^rk with .P:1/: Thus for
every 0 � s < t � T and h 2 C2

b .R
d /, we have EfŒ.'xh /t^rk /� .'xh /s^rk �jFsg D 0

with .P:1/. Let l 2 C1. By the continuity of l 2 C1 and the Fs-measurability of xs;
the random variable l.xs/ is also Fs-measurable. Therefore, Ef.l.xs/Œ.'xh /t^rk / �
.'xh /s^rk �jFsg D 0 with .P:1/ for every 0 � s < t � T; which, in particular,
implies that E.l.xs/Œ.'xh /t^rk / � .'xh /s^rk �/ D 0. Thus in the limit k ! 1, we
obtain Ef.l.xs/Œ.'xh /t � .'xh /s�/ D 0. Then

E .l.xs/Œ.h.xt / � h.xs/�/ D E

�

l.xs/

Z t

s

.Lxfgh/�d�

�

for every 0 � s < t � T; l 2 C1, and h 2 C2
b .R

d /: By virtue of Theorem 4.2 of
Chap. 3, there exist Qf 2 S QF.coF ı Qx/ and Qg 2 S QF.G ı Qx/ such that

E

Z t

s

l.xs/.L
x
fgh/�d� D QE

Z t

s

l. Qxs/.L Qx
Qf Qgh/�d�

for every 0 � s < t � T; l 2 C1, and h 2 C2
b .R

r /. But
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E

Z t

s

l.xs/.L
x
fgh/�d� D E

�

l.xs/

Z t

s

.Lxfgh/�d�

�

;

QE
Z t

s

l. Qxs/.L Qx
Qf Qgh/�d� D QE

�

l. Qxs/
Z t

s

.L Qx
Qf Qgh/�d�

�

and

Efl.xs/Œh.xt / � h.xs/�g D QEfl. Qxs/Œh. Qxt /� h. Qxs/�g
for every 0 � s < t � T , because l 2 C1 and h 2 C2

b .R
d / are continuous and

Px�1 D P Qx�1: Therefore,

QE fl. Qxs/Œh. Qxt /� h. Qxs/�g D QE
�

l.xs/

Z t

s

.L Qx
Qf Qgh/�d�

�

for 0 � s < t � T; l 2 C1, and h 2 C2
b .R

d /: Then QEfl. Qxs/Œ.' Qx
h /t � .' Qx

h /s�g D 0;

which, in particular, implies that QEŒl. Qxs/ �EfŒ.' Qx
n /t � .' Qx

n /s�j QFsg� D 0 for 0 � s <

t � T; l 2 C1, and h 2 C2
b .R

d /: By the monotone class theorem, it follows that
the above equality is also true for every measurable bounded function l W Rd ! R.
Taking in particular l such that l. Qxs/ D QEfŒ.' Qx

h /t � .' Qx
h /s�j QFsg with . QP :1/, we get

QEj QEfŒ.' Qx
n /t � .' Qx

n /s�j QFsgj2 D 0 for 0 � s < t � T and h 2 C2
b .R

d /: Therefore,
QEfŒ.' Qx

n /t � .' Qx
n /s�j QFsg D 0 with . QP :1/ for every 0 � s < t � T and h 2 C2

b .R
d /:

Then L Qx
Qf Qg 2 MQx

FG.C
2
b /: In a similar way, we can verify that MQx

FG ¤ ; implies

that Mx
FG ¤ ;. �

Lemma 1.2. Assume that F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd !
Cl.Rd�m/ are measurable and uniformly square integrably bounded such that
F.t; � / and G.t; � / are continuous for fixed t 2 Œ0; T �: Let G be diagonally convex
and let .xt /0�t�T and .xkt /0�t�T be d -dimensional continuous stochastic processes
on .�;F ;F; P / for every k D 1; 2; : : : such that limk!1 P.fsup0�t�T jxt �xkj >
"g/ D 0 for every " > 0 and Mxk

FG ¤ ; for every k D 1; 2; : : : . Then Mx
FG ¤ ;:

Proof. Let f k 2 SF.coF ı xk/ and gk 2 SF.G ı xk/ be such that Lx
k

fkgk
2 Mxk

FG

for every k D 1; 2; : : : . Let .xkr /1rD1 be a subsequence of .xk/1kD1 such that
limr!1 sup0�t�T jxt � x

kr
t j D 0 with (P .1). By the uniform square integrably

boundedness of F ı xk , it follows that the sequence .f kr /1rD1 is weakly compact.
Then there exist a d -dimensional F-nonanticipative process f and a subsequence,
still denoted by .f kr /1rD1, of .f kr /1rD1 weakly converging to f . For every A 2 †F

and k D 1; 2; : : :, one has

dist

�Z

A

ft .!/dtdP;
Z

A

coF.t; xt .!//dtdP

�

�
ˇ
ˇ
ˇ
ˇ

Z

A

ft .!/dtdP �
Z

A

f
kr
t dtdP

ˇ
ˇ
ˇ
ˇ

Ch
�Z

A

coF.t; xkrt .!//dtdP;
Z

A

coF.t; xt .!//dtdP/

�

:
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Then
R
A
ft .!/dtdP 2 R

A
coF.t; xt .!//dtdP for every A 2 †F, which implies

that f 2 S.coF ı x/. Hence, by the properties of the set-valued mapping ˆ.'; � /
defined in Sect. 4 of Chap. 3, it follows that

lim
r!1E

�

l.xkrs /

Z t

s

ˆ.'.h/; f kr
� /.x

kr
� /d�

�

D E

�

l.xs/

Z t

s

ˆ.'.h/; f� /.x� /d�

�

for every 0 � s < t � T; l 2 C1, and h 2 C2
b .R

d /: In a similar way, we can verify
the existence of g 2 SF.G ı x/ such that

lim
r!1E

�

l.xkrs /

Z t

s

‰. .h/; �kr� /.x
kr
� /d�

�

D E

�

l.xs/

Z t

s

‰. .h/; �� /.x� /d�

�

for every 0 � s < t � T; l 2 C1, and h 2 C2
b .R

d /; where ‰. ; � / is defined in
Sect. 4 of Chap. 3, �kr D gkr � .gkr /�, and � D g � g�. By the definitions of Lxfg and
mappingsˆ.'; �/ and ‰. ; �/, it follows that

lim
r!1E

�

l.xkrs /

Z t

s

.Lx
kr

f kr gkr
h/�d�

�

D E

�

l.xs/

Z t

s

.Lxfgh/�

�

d�;

for every 0 � s < t � T; l 2 C1, and h 2 C2
b .R

d /. But Lx
k

f kgk
2 Mxk

FG for
k D 1; 2; : : : . Then

E
�
l.xkrs /Œh.x

kr
t /� h.xkrs /�

	
D E

�

l.xkrs /

Z t

s

.Lx
kr

f kr gkr
h/�d�

�

for every 0 � s < t � T; k D 1; 2; : : : ; l 2 C1, and h 2 C2
b .R

d /: Passing to
the limit as r ! 1, we obtain Efl.xs/Œ.'xh /t � .'xh /s�g D 0 for 0 � s < t � T;

l 2 C1, and h 2 C2
b .R

d /: Similarly as in the proof of Lemma 1.1, it follows that
Lxfg 2 Mx

FG . Then Mx
FG ¤ ;. �

Remark 1.5. In a similar way, it can be verified that by the assumptions of
Lemma 1.2, without the continuity of F.t; �/ and G.t; �/ for fixed t 2 Œ0; T � the,
nonemptiness of Mxk

FG for every k D 1; 2; : : : implies that Mx
FG ¤ ;: �

Lemma 1.3. Assume that F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd !
Cl.Rd�m/ are measurable and uniformly square integrably bounded such that
F.t; � / and G.t; � / are continuous for fixed t 2 Œ0; T �: Let G be diagonally convex
and let .xkt /0�t�T be for every k D 1; 2; : : :, ad -dimensional continuous Fk-

adapted stochastic process on .�k;Fk;Fk; P k/ such that Mxk

FG ¤ ; for every
k D 1; 2; : : : . Let Qxk D . Qxkt /0�t�T and Qx D . Qxt /0�t�T be for k D 1; 2; : : :, con-
tinuous d -dimensional QF-adapted processes on . Q�; QF ; QF; QP / such that P. Qxk/�1 D
P.xk/�1 for k D 1; 2; : : : and limk!1 QP .fsup0�t�T j Qxt � Qxk j > "g/ D 0 for every
" > 0. Then MQx

FG ¤ ;.
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Proof. By virtue of Lemma 1.1, one has MQxk
FG ¤ ; for every k D 1; 2; : : : ; which

by Lemma 1.2, implies that MQx
FG ¤ ;. �

Lemma 1.4. Let F W Œ0; T �� Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/ be
measurable and uniformly square integrably bounded. If .xt ; Bt /0�t�T is a weak
solution of SFI.coF;G/ on a complete probability space PF D .�;F ;F; P /
with a filtration F D .Ft /0�t�T , then there is a sequence .xk/1kD1 of Itô processes
xk D .xkt /0�t�T of the form xkt D x0CR t

0
f k
� d�CR t

0
gk� dB� a.s. for t 2 Œ0; T � with

f k 2 SF.coF ıx// and gk 2 SF.Gıx// such that limk!1 P.fsup0�t�T jxt�xkt j >
"g/ D 0 for every " > 0.

Proof. By virtue of Theorem 1.4 of Chap. 3, there are sequences .f k/1kD1 and
.gk/1kD1 of SF.coF ı x/ and SF.G ı x/; respectively, such that sup0�t�T Ejxt �
xkt j2 ! 0 as k ! 1, where xkt D x0 C R t

0 f
k
� d� C R t

0 g
k
� dB� with (P .1) for

t 2 Œ0; T � and k D 1; 2; : : : : By Theorem 3.4 of Chap. 1, we can assume that
.xt /0�t�T and .xkt /0�t�T are continuous for k � 1 because for ˛ D 2r; and ˇ D r

with r � 1, there is a positive numberM such that Ejxt � xsj˛ � M jt � sj1Cˇ and
Ejxkt � xks j˛ � M jt � sj1Cˇ for every 0 � s < t � T and k D 1; 2; : : : : For every
" > 0; 0 � s < t � T , and k D 1; 2; : : : ; we have

P.fjxt � xkt j > "g/ � 1

"˛
Ejxt � xkt j˛; P.fjxt � xs j > "g/ � 1

"˛
Ejxt � xsj˛

and

P.fjxkt � xks j > "g/ � 1

"˛
Ejxkt � xks j˛:

Then for everym D 1; 2; : : : , there is a positive integer km such that

max ŒP.fjxi=2m � xki=2m j > 1=2mag/;

P.fjx.iC1/=2m � xi=2m j > 1=2mag/;

P.fjxk.iC1/=2m � xki=2m j > 1=2mag/� � M
2m˛

2m.1Cˇ/
for k � km and 0 � i � 2mT � 1; where a > 0 is such that a < ˇ=˛:

Hence in particular, it follows that

max

�

P

��

max
0�i�2mT�1 jxi=2m � xki=2m j > i=2ma

��

;

P

��

max
0�i�2mT�1 jx.iC1/=2m � xki=2m j > i=2ma

��

;

P

��

max
0�i�2mT�1 jxk.iC1/=2m � xki=2m j > i=2ma

���

� MT2�m.ˇ�a˛/
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for k � km and m D 1; 2; : : : . For " > 0 and ı > 0 select 	 D 	."; ı/ such that
.1 C 2=.2a � 1//=2	a � " and

P1
mD	 2�m.ˇ�a˛/ � ı

3MT
: For every m � 	 and

k � km, one gets

P

 1[

mD	

�

max
0�i�2mT�1 jxi=2m � xki=2m j > 1=2ma

�!

� ı="; P

� 1[

mD	

�

max
0�i�2mT�1 jx.iC1/=2m � xi=2m j > 1=2ma

��

� ı="

and P

 1[

mD	

�

max
0�i�2mT�1 jxk.iC1/=2m � xki=2m j > 1=2ma

�!

� ı":

Let

�1;k
	 D

1[

mD	

�

max
0�i�2mT�1 jxi=2 � xki=2m j > 1=2ma

�

;

�2
	 D

1[

mD	

�

max
0�i�2mT�1 jx.iC1/=2m � xi=2m j > 1=2ma

�

and �3;k
	 D

1[

mD	

�

max
0�i�2mT�1 jxk.iC1/=2m � xki=2m j > 1=2ma

�

for k � k	: Taking �k
	 D �1;k

	 [ �2
	 [ �3;k

	 , one obtains P.�k
	 / � ı for every

k � k	: By the definition of �k
	 , for every ! 62 �k

	; k � k	 , and 0 � i � 2	T � 1,
we get

jxi=2	 � xki=2	 j � 1

2	a
; jx.iC1/=2	 � xi=2	 j � 1

2	a
and jxk.iC1/=2	 � xki=2	 j � 1

2	a
:

LetDT be the set of dyadic numbers of Œ0; T �: For every t 2 DT \Œi=2	; .iC1/=2	�,
one has t D i=2	 C Pj

iD1 ˛l=2	C1 with ˛l 2 f0; 1g for l D 1; 2; : : : ; j: For every
k � k	; ! 62 �k

	 and i fixed above, we get

jxt � xkt j � jxt � xi=2	 j C jxi=2	 � xki=2	 j C jxki=2	 � xkt j

�
jX

rD1
jxi=2	CPr

lD1 ˛l =2
	Cl � x

i=2	CPr�1
lD1 ˛l =2

	Cl j C jxi=2	 � xki=2	 j

C
jX

rD1
jxi=2	CPr

lD1 ˛l =2
	Cl � xi=2	CPr

lD1 ˛l =2
	Cl j � 2

jX

rD1
1=2.	Cr/a C 1

2	a
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� 2

1X

rD1
1=2.	Cr/a C 1

2	a
D 2

.2a � 1/2	a C 1

2	a

D .1C 2=.2a � 1/2	a/ � ":

But DT is dense in Œ0; T �, and .xt /0�t�T and .xkt /0�t�T are continuous. Then for
every k � k	 and ! 62 �k

	 , one obtains jxt .!/ � xkt .!/j � " for t 2 Œ0; T �, which
implies that

P.f max
0�t�T jxt � xkt j > "g/ � P.�k

	/ < ı

for every k � k	: Thus for every " > 0 and ı > 0, there is k	 D k	.";ı/ such that

P

 (

sup
0�t�T

jxt � xkt j > "
)!

� ı

for k � k	; i.e., limk!1 P.fsup0�t�T jxt � xkt j > "g/ D 0 for every " > 0. �

Theorem 1.3. Let F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/
be measurable and uniformly square integrably bounded and let G be diagonally
convex. For every probability measure � on ˇ.Rd /, the problem SFI.coF;G;�/
possesses at least one weak solution with an initial distribution � if and only
if there exist a filtered probability space PF D .�;F ;F;P/ with a filtration
F D .Ft /0�t�T and a d -dimensional continuous F-adaptive stochastic process
x D .xt /0�t�T on PF such that Px�1

0 D � and Mx
FG ¤ ;:

Proof. .)/ Let .PF; x; B/ be a weak solution of SFI.coF;G;�/ with x D
.xt /0�t�T . By virtue of Lemma 1.4, there exist sequences .f k/1kD1 and .gk/1kD1
of SF.coF ı x// and SF.G ı x/; respectively, such that the sequence .xk/1kD1 of
continuous F-adapted processes xk D .xkt /0�t�T defined by xkt D x0 C R t

0
f k
� C

R t
0
gk� dB� a.s. for 0 � t � T is such that limk!1 P.fsup0�t�T jxt � xkt j > "g/ D 0

for every " > 0: By Itô’s formula, for every h 2 C2
b .R

d / and k D 1; 2 : : : one
obtains

h.xkt / � h.xk0 /�
Z t

0

.Lx
k

f kgk
h/�d� D

nX

iD1

nX

jD1

Z t

0

h0
xi
.xk� /.g

k/ij� dBj
�

with .P:1/ for t 2 Œ0; T �; where Bt D .B1
t ; : : : ; B

m
t /

� and gkt D Œ.gk/
ij
t �d�m for

0 � t � T . By the definition of Œ'x
k

f kgk
h�t , the above equality can be written in

the form

Œ'x
k

f kgk
h�t D

nX

iD1

nX

jD1

Z t

0

h0
xi
.xk� /.g

k/ij� dBj
�
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with .P:1/ for t 2 Œ0; T �: Hence, by the properties of Itô integrals, it follows that
Œ.'x

k

f kgk
h/t �0�t�T is a continuous local F-martingale on PF for every k D 1; 2; : : :

and h 2 C2
b .R

d /. Therefore, Mxk

FG ¤ ; for k D 1; 2; : : : ; which by Remark 1.5
implies that Mx

FG ¤ ;:
.(/ Let PF D .�;F ;F; P / be a filtered probability space with a filtration

F D .Ft /0�t�T and .xt /0�t�T a d -dimensional continuous F-adapted process on
PF such that x�1

0 D � and Mx
FG ¤ ;: Then there exist f 2 SF.coF ı x/ and

g 2 SF.G ı x/ such that Lxfg 2 Mx
FG: Let .�k/1kD1 be a sequence of stopping times

�k D infft 2 Œ0; T � W xt 62 Kkg, where Kk D fx 2 Rd W jxj � kg for k D 1; 2; : : : :

Select now, in particular, hi 2 C2
b .R

d / such that hi .x/ D xi for x 2 Kk; where
x D .x1; : : : ; xn/: For such hi 2 C2

b .R
d /, we have

Z t^�k

0

.Lxfghi /�d� D
Z t^�k

0

f i
� d� and hence .'xhi /t^�k D xit^�l �xi0�

Z t^�k

0

f i
� d�

a.s. for k � 1 and i D 1; 2; : : : ; d and t 2 Œ0; T �: But Lxfg 2 Mx
FG.C

2
b /: Then

Œ.'xhi /t^�l �0�t�T is for every i D 1; : : : ; d and k D 1; 2; : : : a continuous local
F-martingale on PF. Let Mi

t D .'xhi /t for i D 1; : : : ; d and t 2 Œ0; T �. Taking,
in particular, hij 2 C2

b .R
d / such that hij .x/ D xixj for x 2 Kk and i; j D

1; 2; : : : ; d; we obtain a family .M ij
t /0�t�T for i; j D 1; : : : ; d of continuous local

F-martingales on PF such that

M
ij
t D xit x

j
t � xi0xj0 �

Z t

0

Œxi� f
j
� C xj� f

i
� x� /C �ij� �d�

a.s. for i; j D 1; 2; : : : ; n and t 2 Œ0; T �; where � D g � g�. Let � D .�ij /d�d .
Similarly as in the proof of Theorem 9.1 of Chap. 1, it follows that

hMi;Mj it D
Z t

0

�ij� d�

a.s. for i; j D 1; 2; : : : ; d and t 2 Œ0; T �; which similarly as in the proof of
Theorem 9.1 of Chap. 1, implies that there exist a standard extension OP OF D
. O�; OF ; OF; OP/ of .�;F ;F; P / and an m-dimensional OF-Brownian motion OB D
. OBt/0�t�T on . O�; OF ; OF; OP / such that

Mi
t D

mX

jD1

Z t

0

Ogij� d OBj
�

OP -a.s. for i D 1; 2 : : : ; d and t 2 Œ0; T �; with Ogt . O!/ D gt .
. O!// for O! 2 O�;
where 
 W O� ! � is the . OF ;F/-measurable mapping described in the definition
of the extension of PF D .�;F ;F; P / because a standard extension OP OF of PF is
also an extension of it. Let Oxt . O!/ D xt .
. O!// for O! 2 O�. For every A 2 ˇT , we
get .P Ox�1

0 /.A/ D OP Œ Ox�1
0 .A/� D OP Œ.x ı 
/�1.A/� D . OP ı 
�1/Œ.x�1

0 .A/� D
P Œx�1

0 .A/� D .Px�1
0 /.A/ D �.A/, which implies that P Ox�1

0 D �. By the
definition of Mi

t , it follows that
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Oxit D Oxi0 C
Z t

0

Of i
� d� C

mX

jD1

Z t

0

Ogij .�; Ox�/d OBj
�

OP -a.s. for i D 1; 2; : : : ; d and t 2 Œ0; T �; where Oft . O!/ D ft .
. O!// for O! 2 O�.
Then

Oxt D Ox0 C
Z t

0

Of�d� C
Z t

0

Og�d OB�
OP -a.s. for 0 � t � T: Therefore, Oxt � Oxs 2 Jst ŒS OF.coF ı Ox/� C Jst ŒS OF.G ı Ox/�

for every 0 � s < t � T and P Ox�1
0 D �. Thus . OP OF; Ox; OB/ is a weak solution of

SFI.coF;G;�/. �

Theorem 1.4. Let F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/
be measurable and uniformly square integrably bounded, and let G be diagonally
convex. For every probability measure � on ˇ.Rn/, the problem SFI.coF;G;�/
possesses a weak solution .PF; x; B/ with a separable filtered probability space PF

if and only if there exist a separable filtered probability space PF D .�;F ;F;P/
with a filtration F D .Ft /0�t�T and a d -dimensional continuous F-adaptive
stochastic process x D .xt /0�t�T on PF such that Px�1

0 D � and Mx
FG ¤ ;:

Proof. Similarly as of the proof of Theorem 1.3, we can verify that if .PF; x; B/ is
a weak solution of SFI.coF;G;�/ with a separable filtered probability space PF,
then Mx

FG ¤ ;: Let PF D .�;F ;F; P / be a separable filtered probability space
with a filtration F D .Ft /0�t�T , and .xt /0�t�T a d -dimensional continuous F-
adapted process on PF such that Mx

FG ¤ ;: Then there exist f 2 SF .coF ıx/ and
g 2 SF.G ıx/ such that Lxfg 2 Mx

FG: Similarly as in the proof of Theorem 1.3, we

can define a local F-martingale .M i
t /0�t�T ; onPF such that hMi;Mj it D R t

0 �
ij
� d�

with .P:1/ for i; j D 1; : : : ; d and t 2 Œ0; T �: Therefore, by virtue of Theorem 8.2 of
Chap. 1 and Remark 8.2 of Chap. 1, there exist a standard separable extension OP OF D
. O�; OF ; OF; OP/ of .�;F ;F; P / and an OF-Brownian motion OB D . OB1

t ; : : : ;
OBm
t /0�t�T

on . O�; OF ; OF; OP / such that

Mi
t D

mX

jD1

Z t

0

Ogij� d OBj
�

OP -a.s. for i D 1; 2; : : : ; d and t 2 Œ0; T �; where Ox and Og denote extensions of x
and g on . O�; OF ; OF; OP / defined in the usual way. It is clear that P Ox�1

0 D �. Hence it
follows that

Oxit D Oxi0 C
Z t

0

Of i
� d� C

mX

jD1

Z t

0

Ogij� d OBj
�
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OP -a.s. for i D 1; 2; : : : ; d and t 2 Œ0; T �; where Of denotes an extension of f on
. O�; OF ; OF; OP/. Then

Oxt D Ox0 C
Z t

0

Of�d� C
Z t

0

Og�d OB�
OP -a.s. for 0 � t � T with P Ox�1

0 D �. Therefore, . OP OF; Ox; OB/ is a weak solution of
SFI.co F;G;�/ with a separable filtered probability space OP OF. �

It follows immediately from Theorem 1.2 that if F andG satisfy the assumptions
of Theorem 1.1, then X�.F;G/ ¤ ; for every probability measure� on ˇ.Rd /. We
shall show that if F and G are convex-valued and G is diagonally convex, then
for nonemptiness of X�.F;G/, it is enough to assume that F.t; � / and G.t; � / are
continuous instead of Lipschitz continuous.

Theorem 1.5. Let F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/
be measurable, uniformly square integrably bounded, and convex-valued such that
F.t; �/ andG.t; �/ are continuous for a.e. fixed t 2 Œ0; T �: IfG is diagonally convex,
then X�.F;G/ ¤ ; for every probability measure � on ˇ.Rd /.

Proof. Let PF D .�;F ;F; P / be a complete filtered probability space with a
filtration F D .Ft /0�t�T such that there exists an m-dimensional F-Brownian
motion .Bt /0�t�T on PF: Assume that x0 is an F0-measurable random variable
such that Px�1

0 D �: By virtue of Lemma 3.8 of Chap. 2, there exist ˇT ˝ ˇ.Rd /-
measurable selectors f and g of F and G; respectively, such that

R t
0
f .�; � /d� and

R t
0 g.� � /d� are continuous on Rd for every t 2 Œ0; T �. Define for every k D 1; 2; : : :

a continuous process .xkt /0�t�T by setting

xkt D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

x0 a:s: for � T
k

� t � 0;

x0 C
Z t

0

f .�; xk
�� T

k

/d� C
Z t

0

g.�; xk
�� T

k

/dB�

a:s: for t 2 Œ0; T �:

(1.2)

It is clear that xk is continuous and F-adapted for every k D 1; 2; : : : ;. it follows
immediately from (1.2) that P.fjxk0 j > N g/ D P.fjx0j > N g/ for every k � 1 and
N � 1. Then limN!1 supk�1 P.fjxk0 j > N g/ D limN!1 P.fjx0j > N g/ D 0:

For every � and k � 1, we get

P

˚jxkt � xks j > ��� � P

��ˇˇ
ˇ
ˇ

Z t

s

f .�; xk
�� 1

k

/d�

ˇ
ˇ
ˇ
ˇ > �

��

CP
��ˇˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ > �

��

:
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By Chebyshev’s inequality, it follows that

P

��ˇˇ
ˇ
ˇ

Z t

s

f .�; xk
�� 1

k

/d�

ˇ
ˇ
ˇ
ˇ > �

��

� 1

�4
E

"ˇ
ˇ
ˇ
ˇ

Z t

s

f .�; xk
�� 1

k

/d�

ˇ
ˇ
ˇ
ˇ

4
#

� T 2

�4

�Z t

s

K2.t/dt

�2
;

where K 2 L2.Œ0; T �;RC/ is such that max.kF.t; x/k; kG.t; x/k/ � K.t/ for a.e.
t 2 Œ0; T � and every x 2 Rd . Similarly, we obtain

P

��ˇˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ > �

��

� 1

�4
E

"ˇ
ˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ

4
#

:

By the definition of
R t
s g.�; x

k

�� 1
k

/dB� , one has

ˇ
ˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ D max

1�i�d

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

mX

jD1

Z t

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� max
1�i�d

mX

jD1

ˇ
ˇ
ˇ
ˇ

Z t

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

�
mX

jD1

�

max
1�i�d;1j�m

ˇ
ˇ
ˇ
ˇ

Z t

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

�

D m � max
1�i�d;1�j�m

ˇ
ˇ
ˇ
ˇ

Z t

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ :

Then
ˇ
ˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ

4

� m4 � max
1�i�d;1�j�m

ˇ
ˇ
ˇ
ˇ

Z t

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

4

:

By Itô’s formula, we obtain

E

"ˇ
ˇ
ˇ
ˇ

Z t^�N

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

4
#

D 6E

"Z t^�N

s

 ˇ
ˇ
ˇ
ˇ

Z �

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇgij .�; xk

�� 1
k

/
ˇ
ˇ
ˇ
2

!

d�

#

� 6E

"Z t

s

 ˇ
ˇ
ˇ
ˇ

Z �

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

2

�K2.�/

!

d�

#
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D 6

Z t

s

"

K2.�/ �E
ˇ
ˇ
ˇ
ˇ

Z �

s

gij .�; xk
�� 1

k

/dBj
�

ˇ
ˇ
ˇ
ˇ

2
#

d� � 6

�Z t

s

K2.t/dt

�2
;

for every 1 � i � d and 1 � j � m, where

�N D inf

�

t > 0 W sup
s���t

ˇ
ˇ
ˇ
ˇ

Z �

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ � N

�

^ T:

Then

E

"ˇ
ˇ
ˇ
ˇ

Z t^�N

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ

4
#

� 6m4

�Z t

s

K2.t/dt

�2

for every N � 1, which implies that

E

"ˇ
ˇ
ˇ
ˇ

Z t

s

g.�; xk
�� 1

k

/dB�

ˇ
ˇ
ˇ
ˇ

4
#

� 6m4

�Z t

s

K2.t/dt

�2
:

Hence it follows that

P

˚jxkt � xks j > ��� � T 2

�4

�Z t

s

K2.t/dt

�2
C 6m4

�4

�Z t

s

K2.t/dt

�2

� 1

�4
j�.t/� �.s/j2

for s; t 2 Œ0; T �, where

�.t/ D
p
T 2 C 6m4

Z t

0

K2.�/d� for 0 � t � T:

This, by virtue of Theorem 3.6 of Chap. 1, Theorem 2.2 of Chap. 1, and Theorem 2.3
of Chap. 1, implies that there exist an increasing sequence .kr /1rD1 of positive
integers, a probability space . Q�; QF ; QP /, and d -dimensional continuous stochastic
processes Qx and Qxkr on . Q�; QF ; QP / for r D 1; 2; : : : ; such thatP.xkr /�1 D P. Qxkr /�1
for 1; 2; : : : and sup0�t�T j Qxkrt � Qxt j ! 0 with . QP :1/ as r ! 1: By Corollary 3.3

of Chap. 1, it follows that P Qx�1
0 D �, because P.xkr0 /

�1 D � for r D 1; 2; : : :

and P.xkr0 /
�1 ) P Qx�1

0 as r ! 1. Let QF be a filtration defined by a process Qx.
Similarly as in the proof of Theorem 1.3, immediately from (1.2), it follows that
Lx

kr

fg generates on C2
b .R

d / a family of continuous local F-martingales for every

r D 1; 2; : : : ; i.e., that Mxkr

FG ¤ ; for every r D 1; 2; : : : ; which by Lemma 1.3,
implies that MQx

FG ¤ ;. Thus there exist a filtered probability space . Q�; QF ; QF; QP /
and a continuous QF-adapted process Qx such that P Qx�1

0 D � and MQx
FG ¤ ;.

Therefore, by virtue of Theorem 1.3, for every probability measure � on ˇ.Rd /,
one has X�.F;G/ ¤ ; . �
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Remark 1.6. If the assumptions of Theorem 1.5 are satisfied without the convexity
of values of F , then X 0

�.F ;G/ ¤ ;.

Proof. By Lemma 1.7 of Chap. 3, one has X 0
�.F ;G/ D X 0

�.coF;G/. Similarly as
in the proof of Theorem 1.5, by virtue of Theorem 1.4, one gets X 0

�.coF;G/ ¤ ;.

Then X 0
�.F ;G/ ¤ ;. �

2 Stochastic Differential Inclusions

Assume that F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/ satisfy
conditions .H/: By stochastic differential inclusions SDI.F;G/ and SDI.F;G/,
we mean relations of the form

xt � xs 2
Z t

s

F .�; x� /d� C
Z t

s

G.�; x� /dB� ; a:s: (2.1)

and

xt � xs 2 cl

�Z t

s

F .�; x� /d� C
Z t

s

G.�; x� /dB�

�

; a:s:; (2.2)

which have to be satisfied for every 0 � s � t � T by a system .PF; x; B/

consisting of a complete filtered probability space PF with a filtration F D
.Ft /0�t�T satisfying the usual conditions, a d -dimensional F-adapted continuous
stochastic process x D .xt /0�t�T , and an m-dimensional F-Brownian motion
B D .Bt /0�t�T on PF, where

R t
s
F .�; x� /d� and

R t
s
G.�; x� /dB� denote Aumann

and Itô set-valued integrals of set-valued processes F ı x D .F.t; xt //0�t�T and
G ı x D .G.t; xt //0�t�T ; respectively. Similarly as above, systems .PF; x; P /

are said to be weak solutions of SDI.F;G/ and SDI.F;G/; respectively. If �
is a given probability measure on ˇ.Rd /, then a system .PF; x; B/ is said to be
a weak solution of the initial value problems SDI.F;G;�/ or SDI.F;G;�/; if
it satisfies conditions (2.1) or (2.2) and Px�1

0 D �. If apart from the set-valued
mappings F and G, we are also given a filtered probability space PF and an m-
dimensional F-Brownian motion B on PF, then a continuous F-adapted process X
such that the system .PF; X;B/ satisfies (2.1) or (2.2) is said to be a strong solution
of SDI.F;G/ or SDI.F;G/, respectively.

Corollary 2.1. For every measurable set-valued mappings F W Œ0; T � � Rd !
Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/ every weak (strong) solution of
SFI.F;G/ is a weak (strong) solution of SDI.F;G/.

Proof. If .PF; x; B/ is a weak solution of SFI.F;G/, then SF.F ı x/ ¤ ; and
SF.G ı x/ ¤ ;. A set clLfJst ŒSF.F ı x/� C Jst ŒSF.G ı x/�g is a subset of
clLfdecfJst ŒSF.F ıx/�gCdecfJst ŒSF.G ıx/�gg for every 0 � s � t � T and every
continuous F-adapted d -dimensional stochastic process x D .xt /0�t�T . From this
and Theorem 2.1 of Chap. 3, it follows that every weak solution of SFI.F;G/ is a
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weak solution of SDI.F;G/: In a similar way, the above result for strong solutions
can be obtained. �

Corollary 2.2. For set-valued mappings F W Œ0; T � � Rd ! Cl.Rd / and G W
Œ0; T ��Rd ! Cl.Rd�m/ satisfying conditions .H/, every weak (strong) solution of
SFI.F;G/ is a weak (strong) solution of SDI.F;G/.

Proof. By (iv) of Theorem 2.1 of Chap. 3, a system .PF; x; B/ is a weak solution
of SDI.F;G/ if and only if xt � xs 2 decfJst ŒSF.F ı x/�g C decfJst ŒSF.G ı x/�g
for every 0 � s < t � T . But Jst ŒSF.F ı x/�C Jst ŒSF.G ı x/� � decfJst ŒSF.F ı
x/�g C decfJst ŒSF.G ı x/�g for every 0 � s < t � T . Then every weak solution of
SFI.F;G/ is a weak solution of SDI.F;G/. But for every F and G satisfying
conditions .H/, a stochastic differential inclusion SDI.F;G/ is reduced to the
form SDI.F;G/, because in this case,

R t
s
F .�; x� /d� C R t

s
G.�; x� /dB� is a closed

subset of Rd . Therefore, every weak solution of SFI.F;G/ is a weak solution of
SDI.F;G/. In a similar way, the above result for strong solutions of the above
inclusions can be obtained. �

It is natural to expect that for every strong solution .PF; x; B/ of SDI.F;G/
and every " > 0, there exist a partition .Ak/

N
kD1 2 ….�;FT / and a fam-

ily .PF; x
k; B/NkD1 of strong solutions of SFI.F;G/ such that k.xt � xs/ �

PN
kD1 1Ak .xkt � xks /k � " for every 0 � s < t � T , where k � k is the norm

of L2.�;FT ;Rd /. It seems that the proof of such a result depends in an essential
way on the L2-continuity of the mapping Œ0; T � 3 t ! xt 2 L2.�;Ft ;Rd /.
By the definition of solutions of SDI.F;G/, it follows that the mapping Œ0; T � 3
t ! xt .!/ 2 Rd is continuous for a.e. ! 2 �. Therefore, a family .xt /0�t�T of
random variables xt W � ! Rd has to be uniformly square integrably bounded. But
this depends, among other things, on the uniform square integrable boundedness of
.
R t
0
G.�; x� /dB�/0�t�T . From the properties of set-valued integrals

R t
0
G.�; x� /dB� ,

it follows that such a property of the family .
R t
0
G.�; x� /dB�/0�t�T is difficult to

obtain. Therefore, the desired above property is difficult to obtain. We can prove the
following theorem.

Theorem 2.1. Let B D .Bt /t�0 be an m-dimensional F-Brownian motion on a
filtered probability space PF D .�;F ;F; P / with a filtration F satisfying the usual
conditions and Hölder continuous with exponential ˛ D 3. Assume that F W Œ0; T ��
Rd ! Cl.Rd / andG W Œ0; T ��Rd ! Cl.Rd�m/ are measurable, uniformly square
integrably bounded, and Lipschitz continuous with respect to the second variable for
every fixed t 2 Œ0; T � with a Lipschitz function k 2 L2.Œ0; T �;R/. Then for every
" > 0 and every strong solution x of SDI.F;G/, there exist a number �" > 0 and
a strong "�"-approximating solution x" of SFI.F;G/ such that sup0�t�T kxt �
x"t k � "�"; i.e., there exists a continuous F-adapted stochastic process x" such that
x"t � x"s 2 fJst ŒSF.F ı x"/�C Jst ŒSF.G ı x"/�g C "�"B for every 0 � s < t � T;

where B denotes the closed unit ball of L2.�;F ;Rd /.
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Proof. Let x D .xt /0�t�T be a strong solution of SDI.F;G/ and " > 0. By virtue
of Remark 2.3 of Chap. 3, for N" D "=L.1 C p

T / there exist a number �" D 1 C
m"ˇ

h
3
p
6d.T C 2ı"/C T C ı3"

p
ı"

i
and processes f " 2 SF.F ı x/ and g" 2

SF.G ı x/ such that sup0�t�T kxt � x"t k � �""=L.1C p
T /; where L2 D R T

0
k2t dt

and x"t D x0 C R t
0
f "
� d� C R t

0
g"�dB� a.s. for 0 � t � T . Hence in particular, it

follows that x"t � x"s 2 Jst ŒSF.F ı x/�C Jst ŒSF.G ı x/� for every 0 � s < t � T .
Similarly as in the proof of Remark 4.1 of Chap. 2, we obtain

H .clLfJst ŒSF.F ı x/�CJst ŒSF.G ı x/�g; clLfJst ŒSF.F ı x"/�CJst ŒSF.G ı x"/�g/
D H .Jst ŒSF.F ı x/�C Jst ŒSF.G ı x/�; Jst ŒSF.F ı x"/�C Jst ŒSF.G ı x"/�/
� L.1C p

T / sup
0�t�T

kxt � x"t k

for every 0 � s � t � T . Therefore, for every 0 � s � t � T , we get

dist


x"t � x"s ; Jst ŒSF.F ı x"/�C Jst ŒSF.G ı x"/��

� H .Jst ŒSF.F ı x�C Jst ŒSF.G ı x/�; Jst ŒSF.F ı x"/�C Jst ŒSF.G ı x"/�/
� L.1C p

T / sup
0�t�T

kxt � x"t k:

Then x"t � x"s 2 fJst ŒSF.F ı x"/�CJst ŒSF.G ı x"/�g C "�"B for every 0 � s <

t � T; where B denotes the closed unit ball of L2.�;F ;Rd /. �

Remark 2.1. It is difficult to obtain better properties of SDI.F;G/, because up to
now, we have not been able to prove that the uniform integrable boundedness of G
and continuity of G.t; �/ imply the integrable boundedness and continuity of the Itô
integral

R T
0
G.t; �/dBt: �

3 Backward Stochastic Differential Inclusions

We shall consider now a special case of stochastic differential inclusions. They
are written as relations of the form xs 2 EŒxt C R t

s
F .�; x� /d� jFs� a.s., where

F W Œ0; T � � Rd ! Cl.Rd / is a given measurable set-valued mapping and
EŒxt C R t

s
F .�; x� /d� jFs� denotes the set-valued conditional expectation of xt C

R t
s F .�; x� /d� . Such relations are considered together with a terminal condition
xT 2 H.xT / a.s. for a given set-valued mapping H W Rd ! Cl.Rd /. In what
follows, the terminal problem presented above will be denoted by BSDI.F;H/
and called a backward stochastic differential inclusion. By a weak solution of
BSDI.F;H/, we mean a system .PF; x/ consisting of a complete filtered
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probability space PF D .�;F ;F; P / with a filtration F D .Ft /0�t�T satisfying
the usual conditions and a càdlàg d -dimensional stochastic process x D .xt /0�t�T
such that the following conditions are satisfied:

8
<

:

xs 2 EŒxt C R t
s
F .�; x� /d� jFs� a:s: for 0 � s < t � T;

xT 2 H.xT / a:s:
(3.1)

Similarly as in the theory of stochastic differential inclusions, we can consider the
terminal problem BSDI.F;H/ if apart from F and H , a filtered probability space
PF is also given. In such a case, a d -dimensional càdlég process x on PF such that
a system .PF; x/ satisfies (3.1) is said of be a strong solution of BSDI.F;H/ on
PF. It is clear that if x is a strong solution of BSDI.F;H/ on PF, then the pair
.PF; x/ is a weak solution. The set of all weak solutions ofBSDI.F;H/ is denoted
by B.F;H/, and a subset containing all .PF; x/ 2 B.F;H/ with a continuous
process x is denoted by CB.F;H/. We obtain the following result immediately
from Theorem 3.1 of Chap. 3.

Corollary 3.1. If F W Œ0; T � � Rd ! Cl.Rd / and H W Rd ! Cl.Rd / are
measurable and uniformly integrably bounded, then .PF; x/ 2 B.F;H/ if and only
if xT 2 H.xT / a.s. and there exists f 2 S.coF ı x/; a measurable selector of
coF ı x; such that xt D EŒxT C R T

t
f�d� jFt � a.s. for every 0 � t � T . �

Backward stochastic differential inclusions can be regarded as generalizations of
backward stochastic differential equations:

xt D E

�

h.x/C
Z T

t

f .�; x� ; z� /d� jFt
�

a:s:; (3.2)

where the triplet .h; f; z/ is called the data set of such an equation. Usually, if we
consider strong solutions of (3.2) apart from .h; f; z/, a probability space P D
.�;F ; P / is also given, and the filtration Fz is defined to be the smallest filtration
satisfying the usual conditions and such that the process z is Fz-adapted. The process
z is called the driving process. In practical applications, the driving process z is taken
as a d -dimensional Brownian motion or a strong solution of a forward stochastic
differential equation. In the case of weak solutions of (3.2) apart from h and f , a
probability measure � on the space DT .R

d / of d -dimensional càdlàg functions
on Œ0; T � is also given, a weak solution of which with an initial distribution �
is defined as a system .PF; x; z/ satisfying (3.2) and P z�1 D �, and such that
every Fz-martingale is also an F-martingale. Let us observe that in a particular
case, for a given weak solution .PF; x/ of BSDI.F;H/ with H.x/ D fh.x/g and
F.t; x/ D ff .t; x; z/ W z 2 Zg for .t; x/ 2 Œ0; T � � Rm, where f and h are given
measurable functions and Z is a nonempty compact subset of the space DT .R

d /,
there exists a measurable F-adapted stochastic process .zt /0�t�T with values in Z
such that

xt D E

�

h.x/C
Z T

t

f .�; x� ; z� /d� jFt
�

a:s: (3.3)
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For given probability measures �0 and �T on Rd , we can look for a weak solution
.PF; x/ for BSDI.F;H/ such that Px�1

0 D �0 and Px�1
T D �T . If F and H are

as above, then there exists a measurable and F-adapted stochastic process .zt /0�t�T
such that (3.3) is satisfied and such that EŒh.x/C R T

0
f .�; x� ; z� /d�� D R

Rd ud�0.
If f .t; x; z/ D f .t; x/C g.z/ with g 2 C.DT .R

d /;Rd /, then
Z T

0

Z

DT .Rd /

g.v/d��d� D
Z

Rd

ud�0 �
Z

Rd

h.u/d�T � E

Z T

0

f .�; x� /d�;

where �t D P z�1
t for t 2 Œ0; T �.

In some special cases, weak solutions of BSDI.F;H/ describe a class of
recursive utilities under uncertainty. To verify this, suppose .PF; x/ is a weak
solution of BSDI.F;H/ with H.x/ D fh.x/g and F.t; x/ D ff .t; x; c; z/ W
.c; z/ 2 C � Zg, where h and f are measurable functions and C, Z are nonempty
compact subsets of C.Œ0; T �;RC/ and DT .R

d /, respectively. Similarly as above,
we can find a pair of measurable F-adapted stochastic processes .ct /0�t�T and
.zt /0�t�T with values in C and Z , respectively, such that

xt D E

�

h.x/C
Z T

t

f .�; x� ; c� ; z� /d� jFt
�

a:s: (3.4)

for 0 � t � T . In such a case, (3.4) describes a certain class of recursive
utilities under uncertainty, where .ct .s; �//0�s�T denotes for fixed t 2 Œ0; T � the
future consumption. Let us observe that in some special cases, a strong solution x
of BSDI.F;H/ on a filtered probability space PF with the “constant” filtration
F D .Ft /0�t�T , i.e., such that Ft D F for 0 � t � T , is a solution of a
backward random differential inclusion �x0

t 2 coF.t; xt / with a terminal condition
xT 2 H.xT / that has to be satisfied a.s. for a.e. t 2 Œ0; T �.

Throughout this section, we assume that PF D .�;F ;F; P / is a complete
filtered probability space with a filtration F D .Ft /0�t�T satisfying the usual
hypotheses, and by D.F;Rd / and C.F;Rd /, we denote the spaces of all d -
dimensional F-adapted càdlàg and continuous, respectively, processes X on PF

such that kXk2 D EŒsups2Œ0;T �jXsj2� < 1. Similarly as above, we denote by
S.F;Rd / the set of all d -dimensional F-semimartingales X on PF such that
kXk2 D EŒsups2Œ0;T �jXsj2� < 1. We have C.F;Rd / � D.F;Rd / and S.F;Rd / �
D.F;Rd /. It can be proved that .S.F;Rd /; k�k/ is a Banach space. In what follows,
we shall assume that F W Œ0; T ��Rd ! Cl.Rd / andH W Rd ! Cl.Rd / satisfy the
following conditions .A/:

(i) F is measurable and uniformly square integrably bounded;
(ii) H is measurable and bounded;

(iii) F.t; �/ is Lipschitz continuous for a.e. fixed t 2 Œ0; T �;
(iv) there is a random variable � 2 L2.�;FT ;Rd / such that � 2 H.�/ a.s.

We shall prove that conditions .A/ are sufficient for the existence of strong solutions
for BSDI.F;H/, which implies that B.F;H/ is nonempty. It is natural to look for
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weaker conditions implying the nonemptiness of B.F;H/. The problem is quite
complicated. It needs new sufficient conditions for tightness of sets of probability
measures. We do not consider it in this book.

Lemma 3.1. Let F W Œ0; T � � Rd ! Cl.Rd / and H W Rd ! Cl.Rd / satisfy
conditions .A/. For every filtered probability space PF D .�;F ;F; P / and a
random variable � W � ! Rd , there exists a sequence .xn/1nD0 of S.F;Rd / defined

by xnt D EŒ� C R T
t
f n�1
� d� jFt � a.s. and 0 � t � T with x0 2 S.F;Rd / satisfying

x0T D � a.s. and f n�1 2 SF.coF ı xn�1/ for n D 1; 2; : : : such that

EŒ sup
t�u�T

jxnC1
u � xnu j2� � 4E

"Z T

t

K.�/ sup
��s�T

jxns � xn�1
s jd�

#2

for n D 1; 2 : : : and 0 � t � T , with K.t/ D Kd � k.t/ for 0 � t � T , where
k 2 L2.Œ0; T �;RC/ is a Lipschitz function of F.t; � / and Kd is the number defined
in Remark 2.6 of Chap. 2.

Proof. Let PF be a filtered probability space and let x0 D .x0t /0�t�T 2 S.F;Rd /

be such that x0T D � a.s. Put f 0
t D s.coF.t; x0t // a.s. for 0 � t � T , where s

is the Steiner point mapping defined by formula (2.1) of Chap. 2. It is clear that
f 0 2 SF.coF ı x0/, because by virtue of Corollary 2.2 of Chap. 2, the function
s.coF.t; � // is Lipschitz continuous for a.e. fixed 0 � t � T , and x0 is F-adapted.
We now define a sequence .xn/1nD1 by the successive approximation procedure, i.e.,

by taking xnt D EŒ� C R T
t f

n�1
� d� jFt � a.s. for n D 1; 2; : : : and 0 � t � T ,

where f n�1
t D s.coF.t; xn�1

t // a.s. for 0 � t � T . Similarly as above, we have
f n�1 2 SF.coF ı xn�1/. By Corollary 3.2 of Chap. 3, we have xn 2 S.F;Rd /.
Immediately from the above definitions and Corollary 2.2 of Chap. 2, it follows that
jf n
t � f n�1

t j � K.t/ supt�s�T jxns � xn�1
s j a.s. for a.e. 0 � t � T and n D 1; 2; : : :.

Hence it follows that

jxnC1
t �xnt j � E

�Z T

t

jf n
� �f n�1

� jd� jFt
�

� E

�Z T

t

K.�/ sup
��s�T

jxns �xn�1
s jd� jFt

�

a.s. for 0 � t � T . Therefore,

sup
t�u�T

jxnC1
u � xnu j � sup

t�u�T
E

� Z T

u
K.�/ sup

��s�T
jxns � xn�1

s jd� jFu

�

� sup
t�u�T

E

� Z T

t

K.�/ sup
��s�T

jxns � xn�1
s jd� jFu

�

a.s. for 0 � t � T and n D 1; 2; : : :. By Doob’s inequality, we obtain

E

�

sup
t�u�T

E

�Z T

t

K.�/ sup
��s�T

jxns �xn�1
s jd� jFu

��2
� 4E

�Z T

t

K.�/ sup
��s�T

jxns �xn�1
s jd�

�2
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for 0 � t � T . Therefore, for every n D 1; 2; : : : and 0 � t � T , we have

E

"

sup
t�u�T

jxnC1
u � xnu j2

#

� 4E

�Z T

t

K.�/ sup
��t�T

jxns � xn�1
s jd�

�2
: �

We obtain the following result immediately from the properties of multivalued
conditional expectations.

Lemma 3.2. If F satisfies conditions .A/, then for every x; y 2 S.F;Rd /, one has

E

�

h

�

E

�Z t

s

F .�; x� / d� jFs
�

; E

�Z t

s

F .�; y� /d� jFs
���

�
Z t

s

k.�/Ejx��y� jd�

for every 0 � s � t � T , where h is the Hausdorff metric on Cl.Rd /.

We can now prove the following existence theorem.

Theorem 3.1. If F W Œ0; T � � Rd ! Cl.Rd / and H W Rm ! Cl.Rm/ satisfy
conditions .A/, then for every complete filtered probability space PF and fixed point
� of H , there exists a strong solution of (3.1).

Proof. Let PF be given and assume that � 2 L2.�;FT ;Rd / is such that � 2 H.�/.
By virtue of Lemma 3.1, there exists a sequence .xn/1nD1 of S.F;Rd / such that
xnT D �, xns 2 EŒxnt C R t

s
F .�; xn�1

� d� jFt � a.s. for 0 � s � t � T and

E

"

sup
t�u�T

jxnC1
u � xnu j2

#

� 4E

 Z T

t

K.�/ sup
��s�T

jxns � xn�1
s jd�

!2

for n D 1; 2; : : : and 0 � t � T: By properties of F and H , one has
EŒsupt�u�T jx1u � x0u j2� � L, where L D 4ŒEj�j2 C R T

0
m2.�/d�� C 2EŒsup0�t�T

jx0t j2� with m 2 L2.Œ0; T �;RC/ such that kF.t; x/k � m.t/ for every x 2 Rd and
a.e. 0 � t � T . Therefore,

E

"

sup
t�u�T

jx2u � x1u j2
#

� 4TL

Z T

t

K2.�/d�:

Hence it follows that

E

"

sup
t�u�T

jx3u � x2u j2
#

� .4T /2L

Z T

t

�

K2.�/

Z T

�

K2.s/ds

�

d�

D .4T /2L

2

�Z T

t

K2.�/d�

�2
:
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By the inductive procedure, for every n D 1; 2; : : : and 0 � t � T , we get

E

"

sup
t�u�T

jxnC1
u � xnu j2

#

� .4T /nLn�1

nŠ

�Z T

t

K2.�/d�

�n
:

Then .xn/1nD1 is a Cauchy sequence of S.F;Rd /. Therefore, there exists a process
.xt /0�t�T 2 S.F;Rd / such that EŒsup0�t�T jxnt � xt j2� ! 0 as n ! 1: By
Lemma 3.2, it follows that

E dist

�

xs; E

�

xt C
Z t

s

F .�; x� /d� jFs
��

� Ejxs � xns j�C E

�

dist

�

xns ; E

�

xnt C
Z t

s

F .�; xn�1
� /d� jFs

���

CE
�

h

�

E

�

xnt C
Z t

s

F .�; xn�1
� /d� jFs

�

; E

�

xt C
Z t

s

F .�; x� /d� jFs
���

� Ejxns � xsj C Ejxnt � xt j C
Z t

s

K.�/Ejxn�1
� � x� jd�

� 2kxn � xk C
�Z T

0

K2.�/d�

� 1
2

kxn�1 � xk

for every 0 � s � t � T and n D 1; 2; : : : : Therefore, dist.xs; EŒxt CR t
s
F .�; x� /d� jFs�/ D 0 a.s. for every 0 � s � t � T , which implies that

xs 2 E
h
xt C R t

s
F .�; x� /d� jFs

i
a.s for every 0 � s � t � T . By the definition of

.xnt /0�t�T , we have xnT D � 2 H.�/ a.s. for every n D 1; 2; : : :. Therefore, we also
have xT D � a.s. Thus xT 2 H.xT / a.s. Then x satisfies (3.1). �

4 Weak Compactness of Solution Sets

For given measurable multifunctions F W Œ0; T � � Rd ! Cl.Rd /; G W Œ0; T � �
Rd ! Cl.Rd�m/ and a probability measure � on ˇ.Rd /, by X�.F;G/ we denote,
similarly as above, the set of all weak solutions (equivalence classes defined in
Sect. 1) of SFI.F;G;�/. Elements Œ.PF; X;B/� of X�.F;G/ will be identified
with equivalence classes ŒX� of all d -dimensional continuous processes Z such
that PX�1 D PZ�1. In what follows, ŒX� will be denoted simply by X . It is
clear that we can associate with every Œ.PF; X;B/� 2 X�.F;G/ a probability
measurePX�1; a distribution ofX , defined on a Borel �-algebraˇ.CT / of the space
CT DW C..Œ0; T �;Rd /. The family of all such probability measures, corresponding
to all classes belonging to X�.F;G/; is denoted by XP

� .F;G/: It is a subset of the
space M.CT / of probability measures onCT . The set X�.F;G/ is said to be weakly
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compact, or weakly compact in distribution, if XP
� .F;G/ is a weakly compact

subset of M.CT /. We now present sufficient conditions for the weak compactness
of X�.F;G/.
Theorem 4.1. Let F W Œ0; T � � Rd ! Cl.Rd / and G W Œ0; T � � Rd ! Cl.Rd�m/
be measurable, uniformly square integrably bounded, and convex-valued such that
F.t; �/ and G.t; �/ are continuous for fixed t 2 Œ0; T �: If G is diagonally convex,
then for every probability measure � on ˇ.Rd /, the set X�.F;G/ is nonempty and
weakly compact.

Proof. The nonemptiness of X�.F;G/ follows from Theorem 1.5. To show that
X�.F;G/ is relatively weakly compact in the sense of distributions, let us note that
by virtue of Theorem 1.5 of Chap. 3, for every .PF; x; B/ 2 X�.F;G/ there are
f 2 SF.F ı x/ and g 2 SF.G ı x/ such that Px�1

0 D � and xt D x0 C R t
0
f�d� C

R t
0 g�dB� for every t 2 Œ0; T �. Similarly as in the proof of Theorem 1.5, we can

verify that every sequence .Pn
Fn ; x

n; Bn/1nD1 of X�.F;G/ satisfies the conditions of
Theorem 3.6 of Chap. 1. Therefore, for every sequence .Pn

Fn ; x
n; Bn/ of X�.F;G/,

there exists an increasing subsequence .nk/1kD1 of .n/1nD1 such that the sequence
fP.xnk /�1g1

nD1 is weakly convergent in distribution. Then the sequence .xn/1nD1
possesses a subsequence converging in distribution.

Let .xr /1rD1 be a sequence of X�.F;G/ convergent in distribution. Then there
exists a probability measure P on ˇ.CT / such that P.xr /�1 ) P as r ! 1.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space . Q�; QF ; QP/ and
random variables Qxr W Q� ! CT and Qx W Q� ! CT for r D 1; 2; : : : such that
P.xr /�1 D P. Qxr /�1 for r D 1; 2; : : : ; QP . Qx/�1 D P and limr!1 sup0�t�T j Qxrt �
Qxt j D 0 with . QP :1/: Immediately from Corollary 3.3 of Chap. 1, it follows that
xr0 ) Qx0 as r ! 1, because P.xr /�1 ) P. Qx/�1 as r ! 1. But P.xr0/

�1 D �

for every r � 1. Then P Qx�1
0 D �. By Theorem 1.3, we have Mxr

FG ¤ ;
for every r � 1, which by Lemma 1.3, implies that MQx

FG ¤ ;: Therefore, by
virtue of Theorem 1.3, there exist a standard extension OP OF D . O�; OF ; OF; OP/ of

. Q�; QF ; QF; QP/ and anm-dimensional Brownian motion OB such that . OP OF; Ox; OB/; with
Ox. O!/ D Qx.
. O!// for every O! 2 O�, is a weak solution of SFI.F;G;�/; where

 W O� ! Q� is an . OF ; QF/-measurable mapping as described in the definition of the
extension of . Q�; QF ; QF; QP/, because its standard extension OP OF is also its extension.
Let Oxr . O!/ D Qxr.
. O!// for O! 2 O�. For every A 2 ˇ.C /, one has P. Oxr /�1.A/ D
OP Œ. Oxr /�1.A/� D OP Œ. Qxr ı 
/�1.A/� D . OP ı 
�1/Œ. Qxr/�1.A/� D QP Œ. Qxr /�1.A/� D
P. Qxr /�1.A/. Therefore, P. Oxr /�1 D P. Qxr/�1 D P.xr /�1 for every r � 1. By
the properties of the sequence . Qxr /1rD1, it follows that Qxrt . Q!/ ! Qxt . Q!/ with . QP :1/
as r ! 1 uniformly with respect to 0 � t � T . Hence in particular, it follows
that Qxrt .
. O!// ! Qxt .
. O!// with . OP :1/ as r ! 1 uniformly with respect to
0 � t � T . Therefore, for every f 2 Cb.C /, one has f . Oxr . O!// ! f . Ox. O!//
with . OP :1/ as r ! 1. By the boundedness of f 2 Cb.C /, this implies that
OEff . Oxr /g ! OEff . Ox/g as r ! 1, which by Corollary 2.1 of Chap. 1, is equivalent
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to P. Oxr /�1 ) P Ox�1. But P. Oxr /�1 D P.xr /�1 for every r � 1. Then xr ) Ox;
which implies that X�.F;G/ is weakly closed. �

In a similar way, we can prove the following theorem.

Theorem 4.2. Let F W RC � Rd ! Cl.Rd / and G W RC � Rd ! Cl.Rd�d / be
measurable and uniformly square integrably bounded such that F.t; �/ and G.t; �/
are continuous for fixed t 2 Œ0; T �: If G is convex-valued and diagonally convex,
then for every probability measure � on ˇ.Rd /, the set X 0

�.F ;G/ is nonempty and
weakly compact.

Proof. The nonemptiness of X 0
�.F ;G/ follows from Remark 1.6. In a similar way

as above, we can verify that the set X 0
�.coF;G/ of all weak solutions .PF; x; B/ of

SFI.coF;G/ with a separable filtered probability space PF is weakly compact in
distribution. By virtue of Lemma 1.7 of Chap. 3, one has X 0

�.F ;G/ D X 0
�.coF;G/:

Then X 0
�.F ;G/ is nonempty and weakly compact. �

5 Some Properties of Exit Times of Continuous Processes

Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that X D .X.�; t//t�0
and Xn D .Xn.�; t//t�0 are continuous stochastic processes on a stochastic base
PF D .�;F ;F; P / such that X.�; s/ D Xn.�; s/ D x a.s. for n D 1; 2; : : : and
supt�0 jXn.�; t/ � X.�; t/j ! 0 a.s. as n ! 1. Let � D inffr > s W X.�; r/ 62 Dg
and �n D inffr > s W Xn.�; r/ 62 Dg for n D 1; 2; : : :. We shall show that if �n < 1
a.s. for every n � 1, then �n ! � a.s. as n ! 1. We begin with the following
lemmas.

Lemma 5.1. Let D be a domain in Rd , .s; x/ 2 RC � D, and X D .X.�; t//t�0
a continuous d -dimensional stochastic process on PF D .�;F ;F; P / such that
X.�; s/ D x a.s. and � D inffr > s W X.�; r/ 62 Dg < 1 a.s. If T W � ! R is such
that T > � a.s., then � D inffr 2 .s; T / W X.�; r/ 62 Dg a.s.

Proof. For simplicity, assume that the above relations are satisfied for every ! 2 �
and let us observe that �.!/ D infX�1.!; �/.D�/, where D� D Rd nD. We have
X�1.!; �/.D�/ D X�1.!; �/.D�/ \ .s; T .!// [ X�1.!; �/.D�/ \ ŒT .!/;1/.
Therefore, infX�1.!; �/.D�/ � inf.X�1.!; �/.D�/ \ .s; T .!///. For every
! 2 �, there exists t.!/ 2 X�1.!; �/.D�/ such that s < t.!/ < T .!/,
because �.!/ < T .!/ for ! 2 �. Therefore, X�1.!; �/.D�/ \ .s; T .!// ¤ ;
and inf.X�1.!; �/.D�/ \ .s; T .!/// � T .!/ for a.e. ! 2 �. Suppose � D
infX�1.!; �/.D�/ < �T .!/ DW inf.X�1.!; �/.D�/ \ .s; T .!/// on a set �0 2 F
such that P.�0/ > 0. Then for every ! 2 �0, there exists Nt .!/ 2 X�1.!; �/.D�/
such that s < Nt .!/ < �T .!/ < T .!/, which is a contradiction, because for
every ! 2 � and t 2 X�1.!; �/.D�/ \ .s; T .!//, we have �T .!/ � t . Then
�.!/ D inffX�1.!; �/.D�/ \ .s; T .!//g for a.e. ! 2 �. �
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Lemma 5.2. Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that
X D .X.�; t//t�0 and Xn D .Xn.�; t//t�0 are continuous d -dimensional stochastic
processes on a stochastic base PF D .�;F ;F; P / such thatX.�; s/ D Xn.�; s/ D x

for n D 1; 2; : : : and supt�0 jXn.�; t/ � X.�; t/j ! 0 a.s. as n ! 1. Then
LiX�1

n .!; �/.D�/ D X�1.!; �/.D�/ D LsX�1
n .!; �/.D�/ for a.e. ! 2 �.

Proof. For simplicity, assume that X.!; �/ and Xn.!; �/ for n D 1; 2; : : : are
continuous and limn!1 supt�0 jXn.!; t/�X.!; t/j D 0 for every! 2 �. For every
! 2 � and " > 0, there exists N".!/ � 1 such that Xn.!; t/ 2 X.!; t/ C "B

and X.!; t/ 2 Xn.!; t/ C "B for t � s and n � N".!/, where B is a
closed unit ball of Rd . Then X�1

n .!; �/.fXn.!; t/g/ � X�1
n .!; �/.fX.!; t/ C

"Bg/ and X�1.!; �/.fX.!; t/g/ � X�1.!; �/.fXn.!; t/ C "Bg/ a.s. for n �
N".!/. Let us observe that for every A � RC and C � Rd , one has A �
X�1
n .!; �/.Xn.!;A//, A � X�1.!; �/.X.!;A//,Xn.!;X�1.!; �/.C // � C C "B ,

and X.!;X�1.!; �/.C // � C for n D 1; 2; : : :. Taking in particular A D
X�1.!; �/.D�/ and C D D� in the above inclusions, we obtainX�1.!; �/.D�/ �
X�1
n .!; �/.Xn.!;X�1.!; �/.D�// � X�1

n .!; �/.D� C "B/ a.s. for n � N".!/.
Similarly, taking A D X�1

n .!; �/.D�/ and C D D�, we obtain X�1
n .!; �/.D�/ �

X�1.!; �/.X.!;X�1
n .!; �/.D�/// � X�1.!; �/.Xn.!;X�1

n .!; �/.D�// C "B/ �
X�1.!; �/.D� C "B/ a.s. for n � N".!/. Hence it follows that

X�1.!; �/.D�/ �
1\

kD0
X�1
kCN".!; �/.D� C "B/

�
N"�1[

nD1

1\

kD0
X�1
kCn.!; �/.D� C "B/

[
1\

kD0
X�1
kCN".!; �/.D� C "B/

[
1[

nDN"C1

1\

kD0
X�1
kCn.!; �/.D� C "B/

D
1[

nD1

1\

kD0
X�1
kCn.!; �/.D� C "B/

D Lim infX�1
n .!; �/.D� C "B/

a.s. for every " > 0, which by virtue of Corollary 1.1 of Chap. 2, implies
X�1.!; �/.D�/ � T

">0 Lim infX�1.!; �/.D� C "B/ D Lim infX�1
n .!; �/.D�/

a.s. Hence, by virtue of (ii) of Lemma 1.2 of Chap. 2, we obtain X�1.!; �/.D�/ �
Li X�1

n .!; �/.D�/. In a similar way, we get
S1
kD0 X�1

kCN".!; �/.D� C "B/ �
X�1.!; �/.D� C "B/. Then
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N"�1\

nD1

1[

kD0
X�1
kCn.!; �/.D�/ [

1[

kD0
X�1
kCN".!; �/.D�/ [

1\

nDN"C1

1[

kD0
X�1
kCn.!; �/.D�/

� X�1.!; �/.D� C "B/

for every " > 0. Hence, by virtue of (v) of Lemma 1.2 of Chap. 2, it follows that

Ls X�1
n .!; �/.D�/ D

1\

nD1

1[

kD0
X�1
kCn.!; �/.D�/ � X�1.!; �/.D� C "B/

for every " > 0. Thus Ls X�1
n .!; �/.D�/ � T

">0 X
�1.!; �/.D� C "B/ D

X�1.!; �/.D�/ a.s. From the above inclusions, we obtain X�1.!; �/.D�/ �
Li X�1

n .!; �/.D�/ � Ls X�1
n .!; �/.D�/ � X�1.!; �/.D�/ a.s. Then

Ls X�1
n .!; �/.D�/ � X�1.!; �/.D�/ � Li X�1

n .!; �/.D�/;

which by (i) of Corollary 1.2 of Chap. 2, implies that Li X�1
n .!; �/ .D�/ D

Ls X�1
n .!; �/.D�/ D X�1.!; �/.D�/: �

Lemma 5.3. Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that
X D .X.�; t//t�0 and Xn D .Xn.�; t//t�0 are continuous d -dimensional stochastic
processes on a stochastic base PF D .�;F ;F; P / such thatX.�; s/ D Xn.�; s/ D x

for n D 1; 2; : : : and supt�0 jXn.�; t/ � X.�; t/j ! 0 a.s. as n ! 1. If there
exists a mapping T W � ! RC such that max.�; �n/ < T a.s. for n D 1; 2; : : :,
where � D inffr > s W X.�; r/ 62 Dg and �n D inffr > s W Xn.�; r/ 62
Dg, then .X�1.!; �/.D�// \ Œs; T .!// D Li .X�1

n .!; �/.D�/ \ .s; T .!/// D
Ls .X�1

n .!; �/.D�/ \ .s; T .!/// for a.e. ! 2 �.

Proof. Assume that X.!; �/ and Xn.!; �/ for n D 1; 2; : : : are continuous,
max.�.!/; �n.!// < T .!/ for n D 1; 2; : : :, and limn!1 supt�0 jXn.!; t/ �
X.!; t/j D 0 for every ! 2 �. By virtue of (iv) and (vi) of Lemma 1.2 of Chap. 2
and Lemma 5.2, we get

Ls .X�1
n .!; �/.D�/ \ .s; T .!/// � LsX�1

n .!; �/.D�/ \ Œs; T .!//
D X�1.!; �/.D�/\ Œs; T .!//:

Similarly, by virtue of (iii) and (vi) of Lemma 1.2 of Chap. 2, we also have

Li .X�1
n .!; �/.D�/\ .s; T .!/// � .Li .X�1

n .!; �/.D�// \ Œs; T .!//:
By virtue of (ii) of Corollary 1.2 of Chap. 2, for every t 2 .Li .X�1

n .!; �/.D�// \
Œs; T .!//, there exists Nn � 1 such that for every n > Nn, there is tn 2
X�1
n .!; �/.D�/ \ Œs; T .!// such that tn ! t as n ! 1. Then dist.t; X�1

n .!; �/
.D�// ! 0 as n ! 1. Therefore, for every " > 0, there exists N" > Nn such
that t 2 X�1

n .!; �/.D�/ C "B for n � N". Hence, similarly as in the proof of
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Lemma 5.2, it follows that for every t 2 Li .X�1
n .!; �/.D�//\ Œs; T .!// and " > 0,

one has

t 2
1\

kD0
f.X�1

kCN".!; �/.D�/C "B/\ Œs; T .!//g

�
1[

nD1

1\

kD0
f.X�1

kCn.!; �/.D�/C "B/\ Œs; T .!//g

D Lim inff.X�1
n .!; �/.D�/C "B/\ Œs; T .!//g:

Then

Li.X�1
n .!; �/.D�//\ Œs; T .!// � Lim inffX�1

n .!; �/.D�/\ Œs; T .!//g

� Li .X�1
n .!; �/.D�/\ Œs; T .!/// � Li.X�1

n .!; �/.D�//\ Œs; T .!//:

Thus

X�1.!; �/.D�/ \ Œs; T .!// D .LiX�1
n .!; �/.D�// \ Œs; T .!//

D Li .X�1
n .!; �/.D�/ \ Œs; T .!///:

Therefore, by (iv) and (vi) of Lemma 1.2 of Chap. 2 and Lemma 5.2, one has

Ls .X�1
n .!; �/.D�/\ Œs; T .!///

� X�1.!; �/.D�/\ Œs; T .!//

D Li .X�1
n .!; �/.D�/\ Œs; T .!///: �

Lemma 5.4. Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that
X D .X.�; t//t�0 and Xn D .Xn.�; t//t�0 are continuous d -dimensional stochastic
processes on a stochastic base PF D .�;F ;F; P / such thatX.�; s/ D Xn.�; s/ D x

for n D 1; 2; : : : and supt�0 jXn.�; t/ � X.�; t/j ! 0 a.s. as n ! 1. If
infX�1

n .!; �/.D�/ < 1 for a.e.! 2 � for n D 1; 2; : : :, then infX�1.!; �/.D�/ <
1 for a.e. ! 2 �.

Proof. Let �n.!/ D infX�1
n .!; �/.D�/ < 1 and �.!/ D infX�1.!; �/.D�/ for

! 2 �. Put ƒ D f! 2 � W �.!/ D 1g and ƒn D f! 2 � W �n.!/ D 1g for
n D 1; 2; : : :. For every ! 2 ƒ, one hasX.!; t/ 2 D for t � s. By the properties of
the sequence .Xn/1nD1 for a.e. fixed ! 2 ƒ, there exists a positive integerN.!/ � 1

such that Xn.!; t/ 2 D for t � s and every n � N.!/. Then for a.e. ! 2 ƒ and
every n � N.!/, we have �n.!/ D 1. For simplicity, assume that �n.!/ D 1 for
every n � N.!/ and ! 2 ƒ. By the assumption that �n < 1 a.s. and the definition
of ƒn, we have P.ƒn/ D 0 for every n � 1. Then P.

S1
nD1 ƒn/ D 0. But for every

! 2 ƒ and n � N.!/, we have �n.!/ D 1. Therefore, ƒ � S1
nD1 ƒn. Then

P.ƒ/ D 0. �
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Lemma 5.5. Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that
X D .X.�; t//t�0 and Xn D .Xn.�; t//t�0 are continuous d -dimensional stochastic
processes on a stochastic base PF D .�;F ;F; P / such thatX.�; s/ D Xn.�; s/ D x

for n D 1; 2; : : : and supt�0 jXn.�; t/ � X.�; t/j ! 0 a.s. as n ! 1 and
let �n.!/ D infX�1

n .!; �/.D�/ and �.!/ D infX�1.!; �/.D�/ for ! 2 �.
If max.�n; �/ < 1 a.s. for n D 1; 2; : : :, then there is a mapping T W � ! RC such
that max.�n; �/ < T a.s. for n � 1.

Proof. By virtue of Lemma 5.2, we have �.!/ D inf.LiX�1
n .!; �/.D�// for a.e.

! 2 �. By virtue of (ii) of Corollary 1.2 of Chap. 2, for a.e. ! 2 � there is Nn � 1

such that for every n > Nn, there exists tn 2 X�1
n .!; �/.D�/ such that tn ! �

a.s. as n ! 1. For every n > Nn, we have �n � � , because X�1.!; �/.D�/ �
X�1
n .!; �/.D� C "B/, �"n � � and �"n ! �n a.s. as " ! 0, where �"n.!/ D

infX�1
n .!; �/.D� C "B/ for n � Nn. Then lim sup �n � � a.s., which implies that

for a.e. ! 2 �, there exists a positive integerN.!/ � 1 such that �n.!/ < �.!/ for
n � N.!/. Taking T .!/ D maxf�1.!/C1; �2.!/C1; : : : ; �N.!/.!/C1; �.!/C1g
for a.e. ! 2 �, we have defined a mapping T W � ! RC such that max.�n; �/ < T
a.s. for n � 1. �

Now we can prove the following convergence theorem.

Theorem 5.1. Let D be a domain in Rd and .s; x/ 2 RC � D. Assume that
X D .X.�; t//t�0 and Xn D .Xn.�; t//t�0 are continuous d -dimensional stochastic
processes on a stochastic base PF D .�;F ;F; P / such thatX.�; s/ D Xn.�; s/ D x

for n D 1; 2; : : : and supt�0 jXn.�; t/�X.�; t/j ! 0 a.s. as n ! 1. If �n D inffr >
s W Xn.�; r/ 62 Dg < 1 a.s. for n D 1; 2; : : :, then limn!1 �n D � a.s., where
� D inffr > s W X.�; r/ 62 Dg:
Proof. By virtue of Lemma 5.4, we have max.�n; �/ < 1 a.s. for n D 1; 2; : : :.
Therefore, by virtue of Lemma 5.5, there is a mapping T W � ! RC such
that max.�n; �/ < T a.s. for n D 1; 2; : : :. Then by virtue of Lemma 5.1, we
have �n.!/ D inf.X�1

n .!; �/.D�/ \ .s; T .!/// and �.!/ D inf.X�1.!; �/.D�/ \
.s; T .!/// for ! 2 � and n D 1; 2; : : :. By virtue of Lemma 5.3, Remark 1.2 of
Chap. 2, and Theorem 1.1 of Chap. 2, we get

lim
n!1h..X�1

n .!; �/.D�/\ .s; T .!///; X�1.!; �/.D�/\ .s; T .!////

D lim
n!1h..X�1

n .!; �/.D�/ \ .s; T .!///; X�1.!; �/.D�/ \ .s; T .!////
D 0

for a.e. ! 2 �, where h is the Hausdorff metric on Cl.Œs; T .!/�/ for every fixed
! 2 �. Let " > 0 and t".!/ 2 X�1.!; �/.D�/ \ .s; T .!/// be such that
t".!/ < �.!/ C " for fixed ! 2 �. By the above property of the sequence
.X�1

n .!; �/.D�/ \ .s; T .!///1nD1 and the definition of the Hausdorff metric h, we
have dist.t".!/;X�1

n .!; �/.D�/\ .s; T .!/// ! 0 for fixed ! 2 � and every " > 0
as n ! 1. Therefore, for every fixed ! 2 �, there exists a sequence .tn" .!//

1
nD1
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such that tn" .!/ 2 X�1
n .!; �/.D�/ \ .s; T .!// for n � 1 and jtn" .!/ � t".!/j ! 0

as n ! 1. Hence it follows that

�n.!/ � tn" .!/ � jtn" .!/� t".!/j C t".!/ < jtn" .!/ � t".!/j C �.!/C "

for " > 0 and n � 1. Then lim supn!1 �n.!/ � �.!/.
Similarly, for fixed ! 2 � and every " > 0 and n � 1, we can select tn" .!/ 2

X�1
n .!; �/.D�/\ Œs; T .!// and Ntn" 2 X�1.!; �/.D�/\ Œs; T .!// such that tn" .!/ �

�n.!/C " and jNtn" .!/� tn" .!/j ! 0 as n ! 1. Hence it follows that

�.!/ � Ntn" .!/ � jNtn" .!/ � tn" .!/j C tn" .!/ � jNtn" .!/ � tn" .!/j C �n.!/C "

for every " > 0 and n � 1. Therefore, �.!/ � lim infn!1 �n.!/. Then
lim supn!1 �n.!/ � �.!/ � lim infn!1 �n.!/ for a.e. ! 2 �, which implies
that limn!1 �n D � a.s. �

LetD be a domain in Rd and .s; x/ 2 RC �D. Assume thatX D .X.t//t�0 and
QX D . QX.t//t�0 are continuous d -dimensional stochastic processes on .�;F ; P /

and . Q�; QF ; QP /, respectively, such that X.s/ D x a.s. and PX�1 D P QX�1. We shall
show that P.�D/�1 D P. Q�D/�1, P.X ı �D/�1 D P. QX ı Q�D/�1, and P.�D;X ı
�D/

�1 D P. Q�D; QX ı Q�D/�1, where �D D infft > s W Xt 62 Dg and Q�D D infft > s W
QXt 62 Dg.

The next results will follow from the following fundamental lemma, similar to
Lemma 2.1 of Chap. 1.

Lemma 5.6. Let X and QX be as above, .Y;G/ a measurable space, and C DW
C.RC;Rd /. If ˆ W C ! Y is .ˇ;G/-measurable, where ˇ is a Borel �-algebra on
C , then P.ˆ ıX/�1 D P.ˆ ı QX/�1.
Proof. Let Z D ˆ ıX and QZ D ˆ ı QX . For every A 2 G, one has P.fZ 2 Ag/ D
P.fˆıX 2 Ag/ D P.X�1.ˆ�1.A/// D QP . QX�1.ˆ�1.A/// D QP .fˆı QX 2 Ag/ D
QP.f QZ 2 Ag/. Then P.ˆ ıX/�1 D P.ˆ ı QX/�1. �

The following theorem can be derived immediately from the above result.

Theorem 5.2. Let D be a domain in Rd and .s; x/ 2 RC �D. Assume that X D
.X.t//t�0 and QX D . QX.t//t�0 are continuous d -dimensional stochastic processes
on .�;F ; P / and . Q�; QF ; QP/, respectively, such that X.s/ D x a.s. and PX�1 D
P QX�1. Then P.�D/�1 D P. Q�D/�1, P.X ı �D/�1 D P. QX ı Q�D/�1, and P.�D;X ı
�D/

�1 D P. Q�D; QX ı Q�D/�1, where �D D infft > s W Xt 62 Dg and Q�D D infft > s W
QXt 62 Dg.

Proof. Let � W C ! RC be defined by �.x/ D infft > s W x.t/ 62 Dg for
x 2 C . It is clear that � is .ˇ; ˇC/-measurable, where ˇC denotes the Borel �-
algebra on RC. Taking Y D RC, G D ˇC, and ˆ D �, we get �D D ˆ ı X and
Q�D D ˆ ı QX . Therefore, by virtue of Lemma 5.6, we obtain P.�D/�1 D P. Q�D/�1.
Let  .t; x/ D x.t/ for x 2 C and t 2 RC and put ˆ.x/ D  .�.x/; x// for x 2 C .
It is clear that the mapping ˆ satisfies the conditions of Lemma 5.6 with Y D Rd
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and G D ˇ, where ˇ denotes the Borel �-algebra on Rd . Furthermore, we have
ˆ ı X D X ı �D and ˆ ı QX D QX ı Q�D . Therefore, by virtue of Lemma 5.6, we
obtain P.X ı �D/�1 D P. QX ı Q�D/�1. Finally, let ˆ.x/ D .�.x/;  .�.x/; x// for
x 2 C . Immediately from the properties of the mappings  and �, it follows that ˆ
satisfies the conditions of Lemma 5.6 with Y D RC � Rd and G D ˇC � ˇ, where
ˇC denotes the Borel �-algebra of RC. Furthermore, ˆ ı X D .�D;X ı �D/ and
ˆ ı QX D . Q�D; QX ı Q�D/, which by virtue of Lemma 5.6, implies P.�D;X ı �D/�1 D
P. Q�D; QX ı Q�D/�1. �

Corollary 5.1. If the assumptions of Theorem 5.2 are satisfied, then for every
continuous bounded function f W RC � Rd ! R, one has EŒf .�D;X ı �D/� D
QEŒf . Q�D; QX ı Q�D/�, where E and QE denote the mean value operators with respect to

probability measures P and QP , respectively. �

6 Notes and Remarks

The first papers concerning stochastic functional inclusions written in the set-valued
integral form are due to Hiai [38] and Kisielewicz [51, 55], where stochastic
functional inclusions containing set-valued stochastic integrals were independently
investigated. In the above papers, only strong solutions were considered. An ex-
tension of the Fillipov theorem for stochastic differential inclusions was given by
Da Prato and Frankowska [23]. Existence and stability of solutions of stochastic
differential inclusions were considered by Motyl in [82] and [83], resp. Weak
solutions of stochastic functional inclusions have been considered by Aubin and
Da Prato [9], Kisielewicz [53] and Levakov [71]. Weak compactness with respect
to convergence in distribution of solution sets of weak solutions of stochastic
differential inclusions was considered in Kisielewicz [56, 58, 60]. Also, Levakov
in [71] considered weak compactness of all distributions of weak solutions of some
special type of stochastic differential inclusions. Compactness of solutions of second
order dynamical systems was considered by Michta and Motyl in [78]. The results
of the last three sections of this chapter are based on Kisielewicz [56, 58], where
stochastic functional inclusions in the finite intervals Œ0; T � are considered. The
results dealing with backward stochastic differential inclusions were first considered
in the author’s paper [59]. The results contained in Sect. 5 are taken entirely from
Kisielewicz [55]. The properties of stochastic differential inclusions presented in
Sect. 2 are the first dealing with such inclusions. By Theorem 2.1 of Chap. 3,
stochastic differential inclusions SDI.F;G/ are equivalent to stochastic functional
inclusions of the form xt � xs 2 decfJ.F ı x/g C decfJ .G ı x/g. Therefore,
for multifunctions F and G satisfying the assumptions of Theorem 1.5, the set
Sw.F;G;�/ of all weak solutions of SDI.F;G/ with an initial distribution �
contains a set considered in optimal control problems described by SDI.F;G/.
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For the existence of solutions of such optimal control problems, it is necessary
to have some sufficient conditions implying weak compactness of a solution set
Sw.F;G;�/. Such results are difficult to obtain by the methods used in the
proof of Theorem 4.1, because boundedness or square integrable boundedness of
decfJ.F ı x/g and decfJ .G ı x/g is necessary in such a proof.
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