Chapter 4
Stochastic Differential Inclusions

This chapter is devoted to the theory of stochastic differential inclusions. The main
results deal with stochastic functional inclusions defined by set-valued functional
stochastic integrals. Subsequent sections discuss properties of stochastic and back-
ward stochastic differential inclusions.

1 Stochastic Functional Inclusions

Throughout this section, by Prp = (2, F, IF, P) we shall denote a complete filtered
probability space and assume that F : [0, T]xR¢ — CI(RY) and G : [0, T]xR¢ —
CI(R4*™) satisfy the following conditions ():

(i) F and G are measurable,
(i) F and G are uniformly square integrably bounded.

For set-valued mappings F and G as given above, by stochastic functional
inclusions SFI(F,G), SFI(F,G),and SFI(F, G) we mean relations of the form

X — X5 € Jt[Se(F o x)] + T5t[Sr(G o x)],

X; — X5 € clp{Jy [Sr(F o x)]} + J5 [Sr(G o x)]},

and
X — X5 € clp{Jy[Sw(F o x)] + T [Sw(G o x)]},

respectively, which have to be satisfied for every 0 < s < t < T by a system
(Pr, X, B) consisting of a complete filtered probability space Pr with a filtration
F = (F)o<<r satistying the usual conditions, an d-dimensional IF-adapted
continuous stochastic process X = (X;)o</<r, and an m-dimensional IF-Brownian
motion B = (B;)o</<r defined on Pr. Such systems (Pr, X, B) are said to
be weak solutions of SFI(F,G), SFI(F,G), and SFI(F,G), respectively. If
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148 4 Stochastic Differential Inclusions

W is a given probability measure on B(RY), then a system (Pp, X, B) is said to
be a weak solution of the initial value problems SFI(F,G, p), SFI (7, G, ),
or W(F , G, ), respectively, if it satisfies condition (1)—(1), respectively, and
PXO_1 = . The set of all weak solutions of SFI(F,G, ), SFI(F,G, ),
and SFI(F,G, ) (equivalence classes [(Pr, X, B)] consisting of all systems
(Pg, X', B,) satisfying (1)—(1), respectively and such that PX;! = P(X))™' = p
and PX~!' = P(X’)7") are denoted by X, (F,G), X,(F,G), and X, (F,G),,
respectively. By XS(F, G) we denote the set of all [(Pr, X, B)] € X,(F,G) witha
separable filtered probability space Pr.

Remark 1.1. We can also consider initial value problems for SFI(F,G), SFI
(F,G), and SFI(F, G) with an initial condition x; = x a.s. forafixed0 <s < T
and x € R?. The sets of all weak solutions for such initial value problems are
denoted by X; «(F, G), X;.» (7, G), and ?S,X (F, G), respectively. O

Remark 1.2. The following inclusions follow immediately from Lemma 1.6 of
Chap. 3: A, (F,G) C Xu(f, G) C ?M(F, G) C X, (co F,co G) for all measurable
set-valued functions F : [0, T] x RY — CI(R?) and G : [0, T] x RY — CI(R4*™)
and probability measure 1 on B(RRY). |

Remark 1.3. In what follows, we shall identify weak solutions (equivalence classes
[(Pr, X,B)])of SFI(F,G), SFI(F,G), and SFI(F,G), respectively, with pairs
(X, B) of stochastic processes X and B defined on Py or with a process X . (|

If apart from the set-valued mappings F and G, we are also given a
filtered probability space Pr and an m-dimensional I'-Brownian motion on Py,
then a continuous [F-adapted process X such that (Pr, X, B) satisfies (1)—(1), re-
spectively, is called a strong solution for SFI(F, G), SFI(f, G),and SFI(F,G),
respectively. For a given Fy-measurable random variable £ : Q — R, the sets of
all strong solutions of the above stochastic functional inclusions corresponding
to a filtered probability space Pr and an m-dimensional IF-Brownian motion B
satisfying an initial condition Xo = £ a.s. will be denoted by S¢(F, G, B, Pr),
St (F,G, B, Pr), and gg(F , G, B, Pr), respectively. Immediately from Lemma 1.6
of Chap.3, it follows that S¢(F,G,B,Pr) C Sg(f, G,B,Pr) C SS(F, G,
B,Pr) C Si(coF,c0G,B,Pr) C SEF,R?), where S(F,R?) denotes the
Banach space of all d-dimensional IF-semimartingales (X;)o<;<r on Pr such that
E[supy<, <7 | X; ] < oo. If Py is separable, then by virtue of Lemma 1.7 of Chap. 3,
one has S¢(F, G, B, Pr) = S¢(co F, G, B, Pr).

In what follows, norms of R", L2(Q2, F,R’), and IL*([0, T] x Q, =, R") with
r =d and r = d xm will be denoted by | - |. It will be clear from the context which
of the above normed space is considered.

Theorem 1.1. Let B = (B;)o<i<r be an m-dimensional I-Brownian motion on
Pr, and £ : Q@ — RY an Fy-measurable random variable. If F and G satisfy
conditions (H) and are such that F(t,-) and G(t,-) are Lipschitz continuous with



1 Stochastic Functional Inclusions 149

a Lipschitz function k € 12([0, T],R") such that K(NT + 1) < 1, where K =
(s k2(£)dt)'/2, then S¢(F, G, B, Pr) # 0.

Proof Let X = 12([0,T] x Q,Zp,RY) x L2([0,T] x €, g, R¥™) and put
X/® =&+ fo fedt + [5 g.dB; as.for0 <t < T and (f,g) € X.Itis clear
that X/¢ = (X/*)o<i<r € S(F,RY). Define on X a set-valued mapping Q by
setting Q(f. g) = Sp(F o X/%) x Sp(G o X/¢) for every (f.g) € X. Itis clear
that for every (f, g) € X, we have Q(f, g) € CI(X).

Let A(A x C, B x D) = max{H(A, B), H(C, D)}, for A, B € CI(L2([0, T] x
Q.2p,RY and C,D € CIILA([0,T] x Q, Zp, R¥*™), where for simplicity, H
denotes the Hausdorff metric on CI(IL2([0, T] x €, X, R?) and CI(IL?([0, T] x
Q,Zp, RY¥™). Tt is clear that A is a metric on CI(X). By virtue of Lemma 3.7
of Chap.?2, we have H(Sp(F o X/2), Sp(F o X/'¢')) < K||X/¢ — X/'¢|, and
H(Sp(GoX /%), Sp(GoX/'¢")) < K| X/8—XT"¢||. forevery (f.g).(f'.g) € X,
where || - || denotes the norm of S(FF, R?) defined by ||x||> = E[supy<, <7 |x;|*] for
X = (X )o<i<T € S(]F,Rd). But

2)1/2

t t
Ix7¢ - x/'¢)|, /0 (fe — fHdr + /0 (8 — &,)dB;

2) 1/2
2) 1/2

) 12
< ﬁ(E sup /0 Ifz—fr/lzdt)

E sup
0<t<T

E sup
0<t<T

+ (E sup

0<t<T

IA

/ - fde

t
/0 (g — &,)dB;

0<t<T

, 12
+(E sup / 1ge — . Pde?
0<t<T JO

=VTIf = fl+lg-gI=NT+D(fg)—(f.&)l.

where || - || denotes the norm on X. Therefore,

MO(£.9).0(f.¢) < KWNT+DI(f.e)—(f.g)l

for every (f,g),(f’,g’) € X, which by th Covitz—Nadler fixed-point theorem,
implies the existence of (f,g) € X such that (f,g) € Q(f, g). Hence it follows
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that [ fodt + [/ g.dB, € Jyu[Sp(F o X/)] + J[Se(G o X/#)] for every
0 < s <t < T.This, by the definition of X /¢, implies that X /¢ € S¢(F, G, B, Pr).

|

Remark 1.4. By an appropriate changing the norm (see Remark 1.1 of Chap.7)
of the space X, the result of Theorem 1.1 can be obtained for every T > 0 and
k € 12([0, T], R*) without the constraint K(+/T + 1) < 1. O

Let us denote by A¢(F, G, B, Pr) the set of all fixed points of the set-valued
mapping Q defined in the proof of Theorem 1.1.

Theorem 1.2. [f the assumptions of Theorem 1.1 are satisfied, then

(i) Ae(F,G, B, Pr) is a closed subset of X;
(ii) Sg(co F,coG, B, Pr) # 0 if and only if A¢(co F,co G, B, Pr) # 0,
(iii) Sg(co F,coG, B, Pg) is a closed subset of S(IF, Rd);
(iv) for every x € gg(F, G,B,Pr) and & > 0, there exists x° € S(F,R?) such
that sup0<,<,(E|x—x‘€|2)1/2 < e and dist(x; —x;, J5; [Sp(F ox)]| 4+ J5: [Sp(G o
) <&
(v) X, (F,G) # @ for every probability measure i on (RY).

Proof. (i) The closedness of A¢(F,G, B, Pr) follows immediately from the
properties of the set-valued mappings X > (f.g) — Sp(F o X/%) C
L2([0,T] x Q,Zp,RY) and X > (f.g) — Sp(G o X/¢) c L2([0,T] x
Q, Zp, R4*™), Indeed, if {(f", g")}°, is a sequence of A¢(F,G, B, Pr)
converging to ( £, g), then dist( f, Sp(F o X/¢)) = 0, because

dist(f, Sp(F o X7$)) < | f — f"| + dist(f", Sy (F o X/"¢"))
+H(Sp(F o X/%), Sp(F o X/"¢")),

and by virtue of Lemma 3.7 of Chap. 2, for every n > 1 one has
H(SE(F o X7, Sp(F o X'y < K(VT + DII(f.8) = (/" 8"

In a similar way, we also get dist(g, Sp(G o x/¢)) = 0. Hence, by the
closedness of Sp(F o x/¢) and Sp(G o x/%), it follows that (£, g) € O(f. g).
Then (f, g) € Ae(F, G, B, Pr).

(ii) The implication A¢(co F,coG, B, Pr) # @ = Si(coF,coG, B, Pr) # 0
follows immediately from the proof of Theorem 1.1. The converse implication
follows immediately from Theorem 1.5 of Chap. 3.

(iii) Let (u");2, be a sequence of Sg(co F,coG, B, Pr) converging to u €
S(IF,R?). By Theorem 1.5 of Chap. 3, there exists a sequence {( ", g")1o,
of Sp(co F o u") x Sp(coG o u”) such that u] = & + Jo:(f") + Jo:(g")
forn > 1 and ¢t € [0, T]. By Remark 3.1 of Chap. 2, there is a subsequence
L, g™ ), of {1(f", g") )2, weakly converging to ( f, g), which implies
that Jo, (™) + Jo:(g™) — Jo:(f) + Jo:(g) for every t € [0,T] in the
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weak topology of L2 (R, F, ]Rd) as k — oo. But for every t € [0,T], a
sequence (u;*)?° | also converges weakly in L?(Q2, F, R?) to u,. Therefore,
uy = &+Jo (f)+Joi (g) foreveryt € [0, T]. Thenu € Sg(co F,co G, B, Pr).

(iv) For every x € gg(F, G, B, Pr) and ¢ > 0, there exists x° € S¢(F, G, B, Pr)
such that supy<,<,(E|x — x*|>)"/? < ¢/[2 + L(JT + 1)], where L =
(fOT k?(t)dt)'/2. Similarly as in the proof of Lemma 3.7 of Chap.2 (see
Lemma 1.3 of Chap. 5), it follows that set-valued mappings S(F, RY) > x —
Ju[Sp(F o x)] € L2(Q,F.RY) and S(F,R?Y) 5 x — Ju[Sk(G o x)] C
LX(Q, F, Rd) are Lipschitz continuous with Lipschitz constants VTL and L,
respectively. Therefore,

dist(x; — xg, Jo: [Sp(F 0 x)] + T5:[Sw(G o x)])
< (o — x0) = (xf = x0)]
Fdist(xf — xf, Jy [Sg(F 0 x°)] + T [Sk(G 0 x°)])
+H(Ju[SE(F 0 x°)]. Ju[Se(F o x)])
+H (T [SE(G 0 x°)], T[Sk (G o x)))
<R+ LT +Dlx — x| <e.

(v) If p is a given probability measure on B(IR¢), then taking an JFo-measurable

random variable £ such that PE€~! = p, we obtain the existence of a
strong solution X for SFD(F, G) such that PX; ! = 1, which implies that
X, (F,G) # 0, because (Pr, X, B) € X, (F,G). |

We associate now with SFI(F, G) and its weak solution (P, x, B) a set-valued
partial differential operator ILy,; defined on the space Cbz(]Rd ) of all real-valued
continuous bounded functions 4 : R?Y — R having continuous bounded partial
derivatives /). and hgix/_ fori,j =1,2,....Assumethat F : [0, T]xR¢ — CI(R?)
and G : [0, T] x R? — CI(RY*™) are measurable and uniformly square integrably
bounded such that F(t,-) and G(¢,-) are continuous for fixed t € [0,T]. Let G
be diagonally convex and x = (x;)o<;<r a d-dimensional continuous process on a
filtered probability space Pr = (2, F, I, P). For every (f. g) € Sp(co F o x) x
Sr(G o x), we define a linear operator L%, - Cbz(]Rd) — L2([0,T] x Q,R%) by
setting

W), = YR G S+ 5 0 (o
i=1 i=1j=1
as.for0 <t <Tandh e Cbz(IRd),wheref, =(f...,f",ando = g-g* =
(0" )uxm. For a process x as given above and sets A C ]LZ([O, TIxQ,Zp, Rd) and
B C 12([0, T]1x Q, g, R¥™), by LY ; we denote a family {]L")i.g 2 (f,g) € AxB}.
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We say that I, € I}, generates on C 2(]Rd ) a continuous local IF-martingale if
the process [((pfgh) lo<:t<7 defined by

(@) = h(x) = h(xo) _/0 (LY h).dr  with  (P.1) (1.1)

fort € [0,T] is for every h € C; 2(R%) a continuous local F-martingale on Pp.
The family of all I, € I}, generatlng on C; 2(R¢) a family of continuous local
IF -martingales is denoted by M’ g. In what follows for the set-valued mappings

[0, T] x R — CI(RY) and G [0, 7] x R — Cl(RdX’") as given above, the
famlhes 54 (co Fox)sp(Gox) 1A Mg o FOX)SF(GOX)(C ) will be denoted by IL7.; and
M, respectively.

Lemma 1.1. Assume that F : [0,T] x RY — CI(RY) and G : [0,T] x RY —
CI(RY*™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex,
and let x = (x;)o<i<r and X = (X;)o<i<r be d-dimensional continuous - and
F-adapted processes on Py = (2, F,F, P) and (R, F. I, P), respectively, such
that Px~' = PX~'. Then M%.; # @ if and only if M., # 0.

Proof. Let M} # 0. There exist f € Sy(co F o x) and g € Sy(G o x) such that
for every h € Cbz(le), the process [(¢;)/Jo<:<r defined by (1.1) is a continuous
local Ir-martingale on Pp. Therefore, there exists a sequence (rx )72, of IF-stopping
times on P such that rp,_; < ri fork = 1,2,... with ro = 0, limg_s00 't = +00
with (P.1) and such that for every k = 1,2,..., the process [(¢})iarJo<i<T is a
continuous square integrable IF-martingale on Pr. In particular, it follows that for
every 0 < s <t < T, one has E[(¢;)iar|Fs] = (@5)snrn With (P.1). Thus for
every0 <s <t < T and h € C}(R?), we have E{[(¢})inr,) — (¢} )sar ]| Fs} = 0
with (P.1). Let [ € C;. By the continuity of / € C; and the F;-measurability of x;,
the random variable /(x;) is also Fs-measurable. Therefore, E{(/(xs)[(¢})inr) —
(@)san ]l Fsy = 0 with (P.1) for every 0 < s < ¢t < T, which, in particular,
implies that E(I(x;)[(¢};)iar) — (©3)sar]) = 0. Thus in the limit k — oo, we
obtain E{(/(x,)[(¢}): — (¢7),]) = 0. Then

E ) [(h(x) — h(x)]) = E (z(xs) / (L5, ), dr)

forevery0 <s <t <T,l € Cj,and h € Cbz(le). By virtue of Theorem 4.2 of
Chap. 3, there exist f* € Sp(coF o X) and § € Sz (G o X) such that

/l(xs)(]L h).dtr = E /l(xs)(]L _h).dt

forevery0 <s <t <T,l €Cj,and h € Cbz(IR’). But
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E / tl(xs)(]L“}gh)rdt =E |:l(x5) / I(Ejpgh)rdr},

E / tl(xs)(mffgh)tdf =F [l(xs) / t(]L“j;gh)td‘L':| and

E{l(x)[h(x:) = h(x,)]} = EU(E)AE) = h(%)]}

forevery 0 < s <t < T, because ! € C; and h € CbZ(IRd) are continuous and
Px~' = Px~!. Therefore,

E UG - hE)] = E {lm) / <1L§~,§h)fdr}

for0 <s <t <T, 1 €Candh € CA(RY). Then E{I(%,)[(¢}): — (¢f)s]} = 0,
which, in particular, implies that E[/(%,) - E {[(qo,’f ) — (¢f)5]|f5}] =0for0<s <
t <T |l eCy,and h € Cbz(]Rd ). By the monotone class theorem, it follows that
the above equality is also true for every measurable bounded function / : RY — R.
Taking in particular / such that [(X;) = E{[(¢}): — (¢})s]|Fs} with (P.1), we get
E~|E{[(<p;f)t — ((p;f)s]|ﬁg}|2 =0for0<s<t<Tandh € Cbz(le). Therefore,
E{l(¢): — (¢})s]|1F} = 0 with (P.1) forevery 0 < s <t < T and h € CZ(RY).
Then ]Lf?'g € M%;(C2). In a similar way, we can verify that M}, # @ implies
that M7, # 0. O

Lemma 1.2. Assume that F : [0,T] x RY — CI(RY) and G : [0,T] x R —
CI(RY™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex
and let (X;)o<i<T and (x,k Jo<t<T be d-dimensional continuous stochastic processes
on (2, F, I, P) foreveryk = 1,2,... such that limg oo P({Supo<, <7 |X: —xk| >

e}) = 0 for every ¢ > OandM“‘FkG # 0 foreveryk =1,2,.... Then My, # 0.

Proof. Let f* € Sp(coF o x¥) and g& € Sp(G o x¥) be such that ]L“}ng € M}kc
for every k = 1,2,.... Let (x*")%, be a subsequence of (xk),‘:‘;1 such that
lim; - 00 SUPy<, <7 |X: — xf’l = 0 with (P.1). By the uniform square integrably
boundedness of F o x*, it follows that the sequence ( f k’)fil is weakly compact.
Then there exist a d -dimensional F-nonanticipative process f and a subsequence,
still denoted by (f*r)% |, of (f*r)%2, weakly converging to f. For every A € Xy

r=1-

andk = 1,2,...,one has
dist (/ f,(a))dth,/ coF(t,x,(a)))dth)
A A

=

/Af,(w)dzdP—/Af,"fdzdP'

+h ( / CoF (1, xk (w))ded P, / coF(t,x,(a)))dth)).
A A
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Then [, fi(w)dtdP € [, coF(t,x;(w))dtdP for every A € X, which implies
that f € S(co F o x). Hence, by the properties of the set-valued mapping ® (¢, -)
defined in Sect. 4 of Chap. 3, it follows that

tim £ (16 [ @i, pioedar) = £ (16 [ ot £

forevery0 <s <t <T,l € Cland h € C}?(Rd). In a similar way, we can verify
the existence of g € Sy (G o x) such that

tim £ (164 [ weon.ofear ) = £ (16 [ woptin. oo o)

forevery0 <s <t <T,l e C',and h € Cbz(le), where W (¥, -) is defined in
Sect. 4 of Chap. 3, o = gk . (¢")*,and 0 = g - g*. By the definitions of L%, and
mappings (¢, ) and W(1, -), it follows that '

tim £ (16 [ @5 mae) = B (1) [, )

forevery 0 < s <t < T,1 € C!, andhEC(Rd) But]ka GMFG for
k=1,2,.... Then

(z<x et ek ) = (10 [ mea)

forevery0 < s <t <T,k =1,2,...,1 € Ci,and h € Cbz(IRd). Passing to
the limit as r — oo, we obtain E{/(x,)[(¢;): — (¢;)s]} = 0for0 <s <t < T,
l €eCi,and h € C ,f(]Rd ). Similarly as in the proof of Lemma 1.1, it follows that
L%, € Mg Then My # 0. O

Remark 1.5. In a similar way, it can be verified that by the assumptions of
Lemma 1.2, without the continuity of F(¢,-) and G(t,-) for fixed t € [0, T] the,
nonemptiness of J\/l forevery k = 1,2,... implies that M7}, # 0. O
Lemma 1.3. Assume that F : [0,T] x R — CI(RY) and G : [0,T] x R¢ —

CI(RY>*™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex

and let (x¥)o<,<1 be for every k = 1,2,..., ad-dimensional continuous F*-
adapted stochastic process on (QF, F*, Tk, P*) such that Mg o % 0 for every
k=1,2,....Let (xt Jo<i<r and X = (X;)o<i<1 befork =1,2,..., con-

tinuous d dtmenstonal IF- -adapted processes on (Q, F.I, P) such that P(xk) =
P(xX*) fork =1,2,...and lim;_ o P({SUPosrsT |% — %5| > &}) = 0 for every
e > 0. Then M’E:G # 0.
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Proof. By virtue of Lemma 1.1~, one has M’;‘ch # @ foreveryk = 1,2,..., which
by Lemma 1.2, implies that M%.; # 0. O

Lemma 1.4. Let F : [0, T] x RY — CI(RY) and G : [0, T] x R — CI(R¥*") be
measurable and uniformly square integrably bounded. If (x;, B;)o<:<1 is a weak
solution of SFI(co F,G) on a complete probability space Py = (2, F,IF, P)
with a filtration F = (F;)o<i<T, then there is a sequence (xk),‘:o=l of Ité processes
xk = (xF)o<i<r of the form x¥ = x, —}—fot fkdr —}—fot g*dB; as. fort € [0, T) with
f* € Sp(coFox)) and g¢ € Sp(Gox)) such that limg_eo P({supg, <7 |X;—xF| >
e}) = 0 foreverye > 0. o

Proof. By virtue of Theorem 1.4 of Chap.3, there are sequences (f k),fozl and
(gk),‘:"=l of Sg(co F o x) and Sy(G o x), respectively, such that sup,, . E|x; —
xF|2 — 0as k — oo, where x¥ = xo + fot fkdr + fot g¥dB, with (P.1) for
t € [0,T] and k = 1,2,.... By Theorem 3.4 of Chap.1, we can assume that
(x1)o<t<r and (X,k)05r5T are continuous for k > 1 because fora = 2r,and 8 = r
with r > 1, there is a positive number M such that E|x; — x,|* < M|t —s|'*# and
E|xkF —xF|* < M|t —s|'*P forevery0 <s <t < T andk = 1,2,.... For every
e>0,0<s<t<T,andk =1,2,..., wehave

1 1
Pl = x| > e}) < ZElv —x{|" Py — x| > e}) < — Elx —x,|”

and
1
P({Jxf = xf| > e}) < — Elxf —x{|"
Then for every m = 1,2, ..., there is a positive integer k,, such that

max [P({[xijn — xf/m| > 1/27}),

P({|x(+1y/2m — Xijom| > 1/2™9}),

mao
om(1+p)

fork >k, and0 <i <2"T — 1, where a > O is such thata < /a.
Hence in particular, it follows that

P({Ixi p1y/2n = ¥lyan] > 1/27D] < M

k - 1 Ama
max | P max Xi/om — X4 >1i/2 ,
[ ({051‘52an—1| 2 il >4/ })

[ m — k 7 ma
P(% 051'2122}")(7"_1 Ix(l+1)/2 xl/2m| > 1/2 })’

k k . 1Ama
F (%Osgzavxr—l [XG1y/2m = Xigom| > /2 }):|

< M T2 mB—aa)
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fork > k,, andm = 1,2,....Fore > 0 and § > 0 select v = v(g, §) such that

(1+2/(24—1))/2"* < gand Y o0 27mFa0) < % For every m > v and

k > k,, one gets
P (
m

(@

0<i<2m"T—1

% max  |x;/om —xf/zm| > 1/2’"”})

v

o0
< P m — Xj/om ma <
<ofe. P (U], mms b =5 > 17270 )< e
m=v
o0
k k ma
naf (UgosirsnzamXT—l |x(i+l)/2"l —x,-/2m| > 172 })S %
m=v
Let
o0
Lk _ Lk ma
"= U {OSiISnZE'l"XT—l g2 = Xijon| > 1/2 } ’
m=vy

o0
N — ma
U max i+ m i/om| >

' — { 0<i<2mT—1 |X(, /2 Xi/2 | >1/2 }

m=v

o0
3k _ k k
and QU —_ L_J %05[212%}7"—1 |X(l'+1)/2m - xi/2m| > 1/27"0}
for k > k,. Taking QF = Q¥ U Q2 U Q3*, one obtains P(QX) < § for every
k > k,. By the definition of Q¥, for every w & Q% k > k,,and 0 <i <2'T — 1,
we get

k 1 1 k k 1
|)Ci/2u —xi/zul < 27, |X(,‘+1)/2u —xi/2u| < 27 and |X(i+l)/2u _Xi/2v| < 27
Let D7 be the set of dyadic numbers of [0, T']. Forevery t € DrN[i/2", (i +1)/2"],
onehast =i/2" + > /_ /2" with ey € {0,1} for/ = 1,2,..., j. For every
k>k,,0¢d Q’V‘ and i fixed above, we get
= xf | < 10 = Xijov | 4 i = xfo] + |xf — xf]

j
k
= Z X245 a2t = Xijr 4352t oyt | X2 = X
r=1

J J
1
+ Z |xi/2v+21’=1 oy /2vH — xi/zv +Z[’=l o /2vH | < 2 Z 1/2(V+r)a + ﬁ

r=1 r=1
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<2 G 1 2(v+r)u 1 _ 2 1
<2y 1/ Y T @ e T e

r=1

= (142/Q2°=1)2") <=

But Dr is dense in [0, 7], and (x;)o</<r and (xf)ostsT are continuous. Then for
every k > k, and @ ¢ QF, one obtains |x,(w) — x¥(w)| < & fort € [0, T], which
implies that

P({ max |x, —x/| > ¢}) < P(2}) <§
0<t<T

for every k > k,. Thus for every ¢ > 0 and § > 0, there is k, = k, () such that

g

fork > ky, ie., limg—oo P({SUpg<, <7 | X1 — x| > &}) = 0 forevery & > 0. |

sup |x,—x,k| >s}) <$§

0<t<T

Theorem 1.3. Let F : [0, 7] x RY — CI(R?) and G : [0, T] x R¢ — CI(R¥>*™)
be measurable and uniformly square integrably bounded and let G be diagonally
convex. For every probability measure 1 on B(R?), the problem SFI(co F, G, )
possesses at least one weak solution with an initial distribution @ if and only
if there exist a filtered probability space Pr = (2,F,F,P) with a filtration
F = (F)o<i<r and a d-dimensional continuous ¥-adaptive stochastic process
X = (x:)o<i<1 on Py such that Px;' = p and M # 0.

Proof. (=) Let (Pr,x, B) be a weak solution of SFI(coF,G, ) with x =
(x1)o<t<r. By virtue of Lemma 1.4, there exist sequences (fk),‘:‘;1 and (gk)}:":l
of Sp(co F o x)) and Sy(G o x), respectively, such that the sequence (xk)}:":l of
continuous FF-adapted processes x* = (X,k)osth defined by x,f‘ = xo + fot ftk +
[y g¥dB; as.for0 < ¢ < T is such that lim o P({Supy<,<7 |X: —x¥| > £}) =0
for every ¢ > 0. By Itd’s formula, for every i € Cbz(]Rd) and k = 1,2... one
obtains

t non t
ot =) - [ =% [ b ahiehas]
i=1j=1

with (P.1) for 1 € [0, T], where B, = (B!,...,B™)* and g* = [(g%)?4xm for
0 <t < T. By the definition of [qoﬁgkh],, the above equality can be written in
the form

n n ¢
LD 3 Y ARt

i=1j=1
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with (P.1) for ¢ € [0, T]. Hence, by the properties of Itd integrals, it follows that
[(¢j.kgkh),]05,§T is a continuous local IF-martingale on Py forevery k = 1,2,...

and h € Cbz(IRd). Therefore, ./\/l“}kG # @ fork = 1,2,..., which by Remark 1.5
implies that M}, # 0.

(&) Let Pr = (2, F,F, P) be a filtered probability space with a filtration
F = (F)o<i<r and (x;)o</<r a d-dimensional continuous [F-adapted process on
Pr such that x;! = p and M}, # 0. Then there exist f € Sp(coF o x) and
g € Sr(G o x) such that L%, € M. Let (1), be a sequence of stopping times
7 =inf{t € [0,T] : x; & K}, where Ky = {x e R? : |x| < k}fork =1,2,.
Select now, in particular, ; € Cbz(]Rd ) such that 4; (x) = x; for x € Ky, where
x = (x',...,x"). For such h; € C}(R?), we have

tATE ATk INTE

/0 (L hi)rdr = X f!dr and hence (¢} )ing, = X/p —Xo— i flde
as. fork > landi = 1,2,...,d and ¢ € [0,T]. But I}, € M5;(C;). Then
[(‘P/fi)tArz]Osz‘sT is foreveryi = 1,...,d and k = 1,2,... a continuous local
F-martingale on Pp. Let M = (gp)r fori = 1,....d and ¢ € [0, T]. Taking,
in particular, h;; € C2(R?) such that /;;(x) = x'x/ for x € K and i,j =
1,2,...,d, we obtain a family (M,ij)OS,ST fori,j = 1,...,d of continuous local
IF-martingales on Py such that

t
MY = xix] —xixd - [ W f7 4 xd fixg) + oV]de
0

as. fori,j = 1,2,...,nandt € [0,T], where 0 = g-g*. Let o = (0" )yxqa.
Similarly as in the proof of Theorem 9.1 of Chap. 1, it follows that

t
(M, M), =/ o' dr
0

as. fori,j = 1,2,...,d and ¢ € [0,T], which similarly as in the proof of
Theorem 9.1 of Chap 1 implies that there exist a standard extension 73 =

(Q F. I, P) of (2, F.F, P) and an m-dimensional IF-Brownian motion B =
(By)o<i<r on (Q, F. T, P) such that

m t
=3 [ ava
j=1"0

P-as. fori = 1,2....d and ¢ € [0,T], with 8,(®) = g/ (n(®)) for & € K,
where 7 : Q@ — Q is the (]:" , F)-measurable mapping described in the definition
of the extension of Pr = (2, F,F, P) because a standard extension 751@ of Pr is
also an extension of it. Let X;(®) = x;(w(®)) for & € Q. For every A € fr, we
get (PR;)(4) = PR7N(A)] = Pl(x o m) ' (A)] = (P oz H[(x"(A)] =
Plx; ' (A)] = (Pxo_l)(A) = w(A), which implies that PX;' = p. By the
definition of M/, it follows that
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. . t AL mn t . A .
=34 / fldr + Z/ 8Y(z, %,)dB/
0 . 0
Jj=1

P-as.fori = 1,2,...,d and ¢ € [0, T], where ﬁ(@) = fi(n(®)) for & € Q.
Then

t t
2, =xo+/ ftdr—i-/ 2.8,
0 0

P-as. for 0 < ¢t < T. Therefore, £, — £, € Jy [Si(co F o X)] + Tu[Si(G o X)]
forevery0 < s <t < T and P%;' = . Thus (75]@,)?, é) is a weak solution of
SFI(coF,G, ). |

Theorem 1.4. Let F : [0,T] x RY — CI(RY) and G : [0,T] x R? — CI(R4*™)
be measurable and uniformly square integrably bounded, and let G be diagonally
convex. For every probability measure |1 on B(R"), the problem SFI(co F, G, |1)
possesses a weak solution (Pr, x, B) with a separable filtered probability space Pr
if and only if there exist a separable filtered probability space Pr = (2, F,F,P)
with a filtration ' = (F)o<i<r and a d-dimensional continuous F-adaptive
stochastic process x = (X;)o<i<r on Py such that Pxy' = p and M’ # 0.

Proof. Similarly as of the proof of Theorem 1.3, we can verify that if (Pp, x, B) is
a weak solution of SFI(co F, G, ) with a separable filtered probability space Py,
then M}, # 0. Let Pr = (2, F,F, P) be a separable filtered probability space
with a filtration ' = (F;)o<i<7, and (X;)o<;<7 a d-dimensional continuous IF-
adapted process on Py such that M., # 9. Then there exist f € Sy (coF ox) and
g € Sr(G ox) such that L%, € M. Similarly as in the proof of Theorem 1.3, we

can define a local F-martingale (M, )o<;<7, on P such that (M', M /), = fot o dr
with (P.1) fori, j = 1,...,d andt € [0, T]. Therefore, by virtue of Theorem §.2 of
Chap. 1 and Remark 8.2 of Chap. 1, there exist a standard separable extension Py, =
(fz, f" ﬁ‘ 13) of (2, F,IF, P) and an I"-Brownian motion B = (étl, R étm)ofth
on (fz, f', IAF, 13) such that

m t R
M = Z/ g/dBJ,
j=170

P-as. for i =1,2,..., d and t € [0,T], where X and ¢ denote extensions of x

and g on (Q, F.I P ) defined in the usual way. It is clear that PX; ! = u. Hence it
follows that

t m t
& :xg+/0 f;‘dr+2/0 gUdB;
j=1
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A

-a.S. onriA =1,2,...,d and t € [0, T], where f denotes an extension of f on
(R, F,IF, P). Then

t t
B= o+ / fdr+ / 4.dB,
0 0

P-as.for0 <t < T with P)%O_l = . Therefore, (75]@, X, é) is a weak solution of
SFI(co F, G, u) with a separable filtered probability space 731@. |

It follows immediately from Theorem 1.2 that if ' and G satisfy the assumptions
of Theorem 1.1, then X, (F, G) # @ for every probability measure . on B(RY). We
shall show that if F and G are convex-valued and G is diagonally convex, then
for nonemptiness of X, (F, G), it is enough to assume that F(z,-) and G(z,-) are
continuous instead of Lipschitz continuous.

Theorem 1.5. Let F : [0,T] x RY — CI(RY) and G : [0,T] x RY — CI(R¥*™)
be measurable, uniformly square integrably bounded, and convex-valued such that
F(t,-) and G(t,-) are continuous for a.e. fixed t € [0, T]. If G is diagonally convex,
then X,,(F, G) # @ for every probability measure . on B(R?).

Proof. Let Pr = (Q,F,F, P) be a complete filtered probability space with a
filtration ' = (F;)o<s<r such that there exists an m-dimensional IF-Brownian
motion (B;)o<;<r on Pr. Assume that x¢ is an Fp-measurable random variable
such that Px; ! = p. By virtue of Lemma 3.8 of Chap. 2, there exist 7 ® S(R)-
measurable selectors f and g of F and G, respectively, such that f(; f(z,-)dt and
fot g(z - )dr are continuous on R forevery ¢ € [0, T]. Define forevery k = 1,2, ...
a continuous process (xX)o<,<7 by setting

Xo a.s. for —%ftfo,
k 1 1
X, =3 Xo +/ f(r,xk r)dt +/ g(z, xk 7)dB; (1.2)
0 Tk 0 T
a.s. for t €[0,T].
It is clear that x* is continuous and [F-adapted for every k = 1,2,...,. it follows
immediately from (1.2) that P({|x§| > N}) = P({|xo| > N}) forevery k > 1 and

N > 1. Then limy oo sup;s; P({|x5| > N}) = limy—oo P({|xo| > N}) = 0.
For every A and k > 1, we get
> A})

P({Ixf=xk|>a)) <P ({ [ f(r,x]r‘_kl)dt
> /\})

+r |

t
/ g(t.x* ,)dB,
S t_k
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el

where K € I2([0, T], RT) is such that max(|| F (¢, x)||, ||G(z, x)|) < K(¢) for a.e.
t € [0, T] and every x € R?. Similarly, we obtain
4:|

(1 st ] ) <

By the definition of f; g(z,x* )dB., one has
Tk

By Chebyshev’s inequality, it follows that

(i )

IA

[ et [ e

IA
|’ﬂ
35}
N
=
[3%)
=
N
o
~
v
NS

t t
/ g(t,xk )dB; / gt x* 1)dB;
s K S R

t
/ g(z, xk 1)dB;
s t_k

m t
= max E g7 (z, x* 1 )dB/
1<i<d |4 s T
=

m

IA

max
1<i<d 4
J

t
/ g (r,x* )dB/
s T

m

E max
“Li<i<d.lj<m

j=

IA

t
/ g (r,x* )dB/
\) t_z

)

=m- max
Isi=d.l<j=m

t
gij (, x¥ l)dBj
s Tk ‘

Then

4 4
< 4
<m"- max

I<i<d.1<j=<m
4:|

/ gij (ts xk L)dBrj
s Tk

t t
/g(t,xk 1)dB; / gij(t,xf 1)dB/
s Tk s ok

By It6’s formula, we obtain

E

INTN .. .
[ et s
s k

:6E[[Am(
fﬁE[[’(

2

. gij(f,xf_é)‘z) dt:|
2

. Kz(t)) d‘C:|

T
/ g (r,x* )dB/
\) I_E
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t 2 t 2
= 6/ [K%) ) :|dt <6 (/ Kz(t)dt) ,

forevery 1 <i <dand1 < j < m, where

rN:inf%t>0: sup /g(t,xk 1)dB;
s t_k

s<t<t
tATN 4 t
E / g(t,x* )dB.| | <6m* ( / Kz(z)dt)
N t_k N

for every N > 1, which implies that

d

Hence it follows that

[ st s,
s k

zN}/\T.

Then
2

47

t 2

<6m* (/ Kz(t)dt) .
T2 t 2 6m4 t 2
= (/ Kz(t)dt) + =7 (/ Kz(t)dt)

1
7700 =T

t
/ g(r.x* )dB,
S t_k

P ({|xf —x¥| > 1})

IA

IA

fors,t € [0, T], where

t
I'(t) = VT2 +6m4/ K*(r)dr for 0<t<T.
0

This, by virtue of Theorem 3.6 of Chap. 1, Theorem 2.2 of Chap. 1, and Theorem 2.3
of Chap. 1, implies that there exist an increasing sequence (k,)?2, of positive
integers, a probablhty space (Q F. P), and d-dimensional continuous stochastic
processes X and X% on (£, ]—' P)forr =1,2,...,suchthat P(x*)~! = P(&kr)~!
for 1,2,... and supy., <7 |x, — X;| — 0 with (P.l) as r — oo. By Corollary 3.3
of Chap. 1, it follows that PX;! = p, because P(xg’)_l =pforr =1,2,...
and P(xloc’)_l = Pi;'asr — oo. Let IF be a filtration defined by a process ¥.
Similarly as in the proof of Theorem 1.3, immediately from (1.2), it follows that
]L_’}‘,;' generates on CZ(R”’) a family of continuous local F-martingales for every

r=1,2,...,1.e., that M ~ # @ forevery r = 1,2,..., which by Lemma 1.3,
implies that /\/l ;é @. Thus there exist a filtered probablhty space (Q, F. T, P)
and a contmuous IF- adapted process X such that PxO = o and M3 Yo 7= 9.

Therefore, by virtue of Theorem 1.3, for every probablhty measure i on B(RY),
one has X, (F,G) # 0. |
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Remark 1.6. If the assumptions of Theorem 1.5 are satisfied without the convexity
of values of F, then X(F, G) # 9.

Proof. By Lemma 1.7 of Chap. 3, one has Xg(f, G) = X)(co F, G). Similarly as
in the proof of Theorem 1.5, by virtue of Theorem 1.4, one gets XI? (coF,G) # 0.
Then XJ(F.G) # 0. O

2 Stochastic Differential Inclusions

Assume that F : [0, T] x R — CI(R?) and G : [0, T] x R? — CI(R?*™) satisfy
conditions (7). By stochastic differential inclusions SDI(F, G) and SDI(F, G),
we mean relations of the form

t t
X — X5 € / F(z,x;)dt +/ G(t,x;)dB;, as. 2.1
and
t t
X; — x5 €cl (/ F(r,x;)dt + / G(r,xr)dBr) , as., 2.2)
s s

which have to be satisfied for every 0 < s < ¢t < T by a system (Pp, x, B)
consisting of a complete filtered probability space Pr with a filtration F' =
(F)o<i<r satisfying the usual conditions, a d-dimensional IF-adapted continuous
stochastic process x = (X;)o<:<r, and an m-dimensional F-Brownian motion
B = (B;)o<i<r on P, where f; F(t,x;)dr and fst G(t,x;)dB; denote Aumann
and It6 set-valued integrals of set-valued processes F o x = (F(t,x;))o<:<r and
G o x = (G(t,x:))o<t<r, respectively. Similarly as above, systems (Pr, x, P)
are said to be weak solutions of SDI(F,G) and SDI(F,G), respectively. If
is a given probability measure on B(IRY), then a system (Pp, x, B) is said to be
a weak solution of the initial value problems SDI(F, G, 1) or SDI(F, G, ), if
it satisfies conditions (2.1) or (2.2) and Px; 1 = w. If apart from the set-valued
mappings F and G, we are also given a filtered probability space Pr and an m-
dimensional IF-Brownian motion B on Py, then a continuous IF-adapted process X
such that the system (Pr, X, B) satisfies (2.1) or (2.2) is said to be a strong solution
of SDI(F,G) or SDI(F, G), respectively.

Corollary 2.1. For every measurable set-valued mappings F : [0,T] x RY —
CI(RY) and G : [0,T] x R? — CIRY™) every weak (strong) solution of
SFI(F,G) is a weak (strong) solution of SDI (F, G).

Proof. If (Pp, x, B) is a weak solution of SFI(F,G), then Sp(F o x) # @ and
SF(G o x) # 0. A set clp{Jy[Sr(F o x)] + Ju[Sr(G o x)]} is a subset of
cly,{dec{Js;[Sr(F ox)]} +dec{ s [Sr(G ox)]}} forevery 0 < s <t < T and every
continuous IF-adapted d -dimensional stochastic process x = (X;)o<;<7. From this
and Theorem 2.1 of Chap. 3, it follows that every weak solution of SFI(F,G) is a
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weak solution of SDI (F, G). In a similar way, the above result for strong solutions
can be obtained. a

Corollary 2.2. For set-valued mappings F : [0,T] x R? — CI(R?) and G :
[0, T] x RY — CI(RY*™) satisfying conditions (H), every weak (strong) solution of
SFI(F,G) is a weak (strong) solution of SDI(F, G).

Proof. By (iv) of Theorem 2.1 of Chap. 3, a system (Pr, x, B) is a weak solution
of SDI(F, G) if and only if x; — x, € dec{J;[Sr(F o x)]} + dec{ T[Sk (G o x)]}
forevery 0 < s <t < T.But Jy[Sp(F o x)] + J5:[Sr(G o x)] C dec{J;[Sr(F o
X)]} 4 dec{J:[Sr(G o x)]} forevery 0 < s <t < T. Then every weak solution of
SFI(F,G) is a weak solution of SDI(F,G). But for every F and G satisfying
conditions (), a stochastic differential inclusion SDI(F,G) is reduced to the
form SDI(F, G), because in this case, f; F(r,x;)dt + f; G(t,x,)dB; is a closed
subset of R?. Therefore, every weak solution of SFI(F,G) is a weak solution of
SDI(F,G). In a similar way, the above result for strong solutions of the above
inclusions can be obtained. O

It is natural to expect that for every strong solution (P, x, B) of SDI(F, G)
and every ¢ > 0, there exist a partition (Ak),’(v=1 e II(2,Fr) and a fam-
ily (PF,xk,B),i\;l of strong solutions of SFI(F,G) such that |(x, — x;5) —
S 14, (xF = xF)| < eforevery0 < s <t < T, where | - || is the norm
of ]LZ(Q LT, Rd). It seems that the proof of such a result depends in an essential
way on the IL>-continuity of the mapping [0,T] > t — x, € L*(Q,F,RY).
By the definition of solutions of SDI(F, G), it follows that the mapping [0, 7] >
t — x;(w) € RY is continuous for a.e. € Q. Therefore, a family (xt)o<t<r Of
random variables x; : @ — R? has to be uniformly square integrably bounded. But
this depends, among other things, on the uniform square integrable boundedness of
(f(; G(t, x;)dB;)o</<7. From the properties of set-valued integrals fot G(z, x;)dB;,
it follows that such a property of the family ( f(; G(7,x;)dB;)o< <7 is difficult to
obtain. Therefore, the desired above property is difficult to obtain. We can prove the
following theorem.

Theorem 2.1. Let B = (B;);>0 be an m-dimensional F-Brownian motion on a
filtered probability space Pr = (2, F, T, P) with a filtration I satisfying the usual
conditions and Holder continuous with exponential « = 3. Assume that F : [0, T] x
RY — CI(RY) and G : [0, T]xR? — CI(R?*™) are measurable, uniformly square
integrably bounded, and Lipschitz continuous with respect to the second variable for
every fixed t € [0, T| with a Lipschitz function k € 1>([0, T], R). Then for every
e > 0 and every strong solution x of SDI (F, G), there exist a number A, > 0 and
a strong eAg-approximating solution x° of SFI(F, G) such that supy<, 7 || x; —
X;|| < €A, i.e., there exists a continuous F¥-adapted stochastic process x¢ such that
x{ = x5 e {Ju[Sr(F o x°)] + T [Sw(G o x°)]} + eA B forevery0 <s <t <T,
where B denotes the closed unit ball of L>(2, F,RY).
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Proof. Let x = (x;)o<:<r be a strong solution of SDI(F, G) and ¢ > 0. By virtue
of Remark 2.3 of Chap.3, for £ = ¢/L(1 4+ +/T) there exist a number A, = 1 +

mgp [3\/6d(T +28,)+T + 83\/8_5] and processes f¢ € Sp(F o x) and g° €

Sp(G o x) such that supy, <7 [|lx; — x{|| < Ase/L(1 + v/T), where L> = [ k2dr
and xf = xo + fot fidT + fot g°dB; as. for 0 < ¢ < T. Hence in particular, it

follows that x¥ — x¢ € Jy [Sp(F o x)] + Ju[Sr(G o x)] forevery0 <s <t < T.
Similarly as in the proof of Remark 4.1 of Chap. 2, we obtain

H (clp{ T [Se(F 0 )]+ T [SE(G o x)]}, clp{J5 [Sr (F o x*)]+ T [SE(G o x¥)]})
= H (Ju[Sr(F 0 x)] + Tt [SE (G 0 x)], Jy [SE(F 0 x*)] + T5t[Sr(G 0 x)])
< LA+ VT) sup |x — x|

0=t=T

=<t<
forevery 0 <s <t < T. Therefore, forevery 0 <s <t < T, we get

dist (x7 — x{, Jo[Se(F 0 x)] + T[S (G 0 x%)])
< H (Jy[Se(F 0 x] + Ty [S¥(G 0 )], JulSe(F 0 x)] + T [Se(G 0 )]
< LA+ ~T) sup [lx, —x¢|.
0 T

<t<

Then x; — x¢ € {Jo[Sw(F o x°)] + T [Sr(G o x°)]} + eA B forevery 0 <s <
t < T, where B denotes the closed unit ball of L?(2, F, Rd). O

Remark 2.1. Tt is difficult to obtain better properties of SDI(F, G), because up to
now, we have not been able to prove that the uniform integrable boundedness of G
and continuity of G (¢, -) imply the integrable boundedness and continuity of the It6

integral fOT G(t,-)dB;. O

3 Backward Stochastic Differential Inclusions

We shall consider now a special case of stochastic differential inclusions. They
are written as relations of the form x; € E[x; + f; F(z, x;)dt|F;] a.s., where
F : [0,7] x RY — CI(RY) is a given measurable set-valued mapping and
Elx, + fst F(z, x;)dz|F;] denotes the set-valued conditional expectation of x, +
f; F(z,x;)dt. Such relations are considered together with a terminal condition
xr € H(xr) as. for a given set-valued mapping H : RY — CI(R?). In what
follows, the terminal problem presented above will be denoted by BSDI(F, H)
and called a backward stochastic differential inclusion. By a weak solution of
BSDI(F,H), we mean a system (Pp,x) consisting of a complete filtered
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probability space Pr = (2, F,F, P) with a filtration ' = (F;)o</<r satisfying
the usual conditions and a cadlag d-dimensional stochastic process X = (x;)o<t<7
such that the following conditions are satisfied:

x5 € E[x; + f; F(r,x)dt|F] as. for 0<s<t<T,
(3.1)
XT € H(XT) a.s.

Similarly as in the theory of stochastic differential inclusions, we can consider the
terminal problem BSDI(F, H) if apart from F and H, a filtered probability space
Pr is also given. In such a case, a d-dimensional cadlég process x on Py such that
a system (Pr, x) satisfies (3.1) is said of be a strong solution of BSDI(F, H) on
Pr. It is clear that if x is a strong solution of BSDI(F, H) on Py, then the pair
(Pr, x) is a weak solution. The set of all weak solutions of BSDI(F, H) is denoted
by B(F, H), and a subset containing all (Pr,x) € B(F, H) with a continuous
process x is denoted by CB(F, H). We obtain the following result immediately
from Theorem 3.1 of Chap. 3.

Corollary 3.1. If F : [0,T] x RY — CI(RY) and H : RY — CI(RY) are
measurable and uniformly integrably bounded, then (Pr, x) € B(F, H) if and only
if xr € H(xr) a.s. and there exists f € S(co F o x), a measurable selector of
co F o x, such that x, = E[x7 + ftT frdt|F] a.s. foreveryO <t <T. |

Backward stochastic differential inclusions can be regarded as generalizations of
backward stochastic differential equations:

T
X, = E|:h(x) +/ f(z, xf,zt)dt|}',:| a.s., (3.2)

where the triplet (4, f;z) is called the data set of such an equation. Usually, if we
consider strong solutions of (3.2) apart from (, f,z), a probability space P =
(2, F, P) is also given, and the filtration IF* is defined to be the smallest filtration
satisfying the usual conditions and such that the process z is I'*~adapted. The process
zis called the driving process. In practical applications, the driving process z is taken
as a d-dimensional Brownian motion or a strong solution of a forward stochastic
differential equation. In the case of weak solutions of (3.2) apart from / and f, a
probability measure  on the space Dr(R?) of d-dimensional cadlag functions
on [0, 7] is also given, a weak solution of which with an initial distribution
is defined as a system (P, x,z) satisfying (3.2) and Pz~! = pu, and such that
every I*-martingale is also an IF-martingale. Let us observe that in a particular
case, for a given weak solution (Pr, x) of BSDI(F, H) with H(x) = {h(x)} and
F(t,x) = {f(t,x,z) : z € Z} for (t,x) € [0,T] x R™, where f and h are given
measurable functions and Z is a nonempty compact subset of the space Dr(RY),
there exists a measurable IF-adapted stochastic process (z;)o<s<r With values in Z
such that

T
x =F |:h(x) +/ f(r,xr,zr)dt|]:,:| a.s. (3.3)
t
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For given probability measures f1o and ;7 on R¢, we can look for a weak solution
(Pr, x) for BSDI(F, H) such that Px;' = poand Px7' = pr. If F and H are
as above, then there exists a measurable and IF-adapted stochastic process (z;)o<i<7
such that (3.3) is satisfied and such that E[h(x) + fOT f(t, x¢,20)dt] = [pa udpio.
If f(t,x,2) = f(t,x) + g(z) with g € C(Dr(R?),RY), then

T T
[ swaiar = [ wdpo- [ hdur—£ [ fexoae
0 JDr(RY) R4 R4 0

where A, = Pz, ! forz € [0, T].

In some special cases, weak solutions of BSDI(F, H) describe a class of
recursive utilities under uncertainty. To verify this, suppose (Pr,x) is a weak
solution of BSDI(F, H) with H(x) = {h(x)} and F(t,x) = {f(t,x,¢,2) :
(c,z) € C x Z}, where h and f are measurable functions and C, Z are nonempty
compact subsets of C([0, T],R*) and D7 (R?), respectively. Similarly as above,
we can find a pair of measurable IF-adapted stochastic processes (c;)o<:<r and
(zt)o<t<r With values in C and Z, respectively, such that

T
x =F [h(x) +/ f(z, x,,c,,z,)drl]—",f:| a.s. (3.4)
t

for 0 < ¢t < T. In such a case, (3.4) describes a certain class of recursive
utilities under uncertainty, where (c;(s, -))o<s<7 denotes for fixed t € [0, 7] the
future consumption. Let us observe that in some special cases, a strong solution x
of BSDI(F, H) on a filtered probability space Pr with the “constant” filtration
F = (F)o<i<r, i-e., such that /; = F for 0 < ¢t < T, is a solution of a
backward random differential inclusion —x, € o F(z, x;) with a terminal condition
x7r € H(xr) that has to be satisfied a.s. for a.e. t € [0, T'].

Throughout this section, we assume that Pp = (Q,F,F, P) is a complete
filtered probability space with a filtration ' = (F;)o<;<r satisfying the usual
hypotheses, and by ]D(]F,Rd) and C(]F,Rd), we denote the spaces of all d-
dimensional F-adapted cadlag and continuous, respectively, processes X on P
such that | X||*> = E[supsep 7| Xs|*] < oc. Similarly as above, we denote by
S(F,RY) the set of all d-dimensional F-semimartingales X on Pp such that
X1 = E[supsep 7| Xs|*] < 00. We have C(F, R?) C D(F, R?) and S(F, R?) C
D(IF, R¥). It can be proved that (S(IF, R?), || - ||) is a Banach space. In what follows,
we shall assume that F : [0, T] x R¢ — CI(RY) and H : R — CI(R?) satisfy the
following conditions (A):

(i) F is measurable and uniformly square integrably bounded;
(i1) H is measurable and bounded;
(iii) F(¢,-) is Lipschitz continuous for a.e. fixed ¢ € [0, T'];
(iv) there is a random variable £ € I.2(Q, Fr, R?) such that £ € H(§) a.s.

We shall prove that conditions (.A4) are sufficient for the existence of strong solutions
for BSDI(F, H), which implies that B(F, H) is nonempty. It is natural to look for
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weaker conditions implying the nonemptiness of B(F, H). The problem is quite
complicated. It needs new sufficient conditions for tightness of sets of probability
measures. We do not consider it in this book.

Lemma3.l. Let F : [0,T] x RY — CI(RY) and H : RY — CI(RY) satisfy
conditions (A). For every filtered probability space Pr = (2, F,F, P) and a
random variable £ : Q — RY, there exists a sequence (x" 2 oof S(IF, RY) defined
byx! = E[§ + j;T fr=Vde|Flas. and 0 <t < T with x° € S(F,R?) satisfying

T

x) =Eas. and f"' € Sp(coF o x"Y) forn = 1,2, ... such that

u
t<u<T t T<s<T

2
T
E[ sup |x"T! —x,:’|2] < 4E |: K(z) sup |x! —xﬁ_lldr:|

forn = 1,2...and 0 <t < T, with K(t) = Ky -k(t) for0O <t < T, where
k € 12([0, T), R™) is a Lipschitz function of F(t,-) and K, is the number defined
in Remark 2.6 of Chap. 2.

Proof. Let Py be a filtered probability space and let x* = (x*)o<,<r € S(IF, RY)
be such that x). = & as. Put f,° = s(© F(t,x")) a.s. for 0 < ¢t < T, where s
is the Steiner point mapping defined by formula (2.1) of Chap.2. It is clear that
f% € Sp(co F o x°), because by virtue of Corollary 2.2 of Chap. 2, the function
s(co F(t,-)) is Lipschitz continuous for a.e. fixed 0 < ¢ < T, and x° is IF-adapted.
We now define a sequence (x”)S2, by the successive approximation procedure, i.e.,

by taking x] = E[§ + ftT frde|Flas forn = 1,2,...and 0 <t < T,
where f"~! = s(co F(t,x" ")) as. for 0 < ¢ < T. Similarly as above, we have
f"7! € Sp(co F o x"~"). By Corollary 3.2 of Chap. 3, we have x" € S(F,RR%).
Immediately from the above definitions and Corollary 2.2 of Chap. 2, it follows that
| £ — £ < K(t)sup, <y |x" —x""| as. forae.0 <t < Tandn =1,2,....
Hence it follows that o

T T
] < E[ / Iff”—ff"_lldflﬁ} SE[ () sup |x;?—x:?—‘|dr|ft}
t

t T<s<T
a.s. for 0 <t < T. Therefore,

T
sup [x"T'—x"| < sup E[ K(z) sup |x§1—x;’_1|dr|]-"u:|

u
t<u<T t<u<T t<s<T

T
< sup E[ K(t) sup |xf—x§’_1|dr|]-"u:|
t

t<u<T t<s<T

as.forO0 <t <Tandn = 1,2,.... By Doob’s inequality, we obtain

T 2 T 2
E( sup E|: K(t)sup |x"—x""" |dr|]—'ui|) < 4E( K(t)sup |x"—x""" |dr)
t t

t<u<T T<s<T T<s<T
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for0 <t < T. Therefore, foreveryn = 1,2,...and 0 <t < T, we have

T 2
E|: sup |x"t! —xZ|2:| < 4E( K(t) sup |x} —x;’_lldr) . O
t

t<u<T r<t<T
We obtain the following result immediately from the properties of multivalued
conditional expectations.

Lemma 3.2. If F satisfies conditions (A), then for every x,y € S(F,R?), one has

E |:h (E [/t F (t,x;) dr|]—'{|, E [/t F(z, yr)dr|]:si|)i| < /t k(t)E|x;—y.|dt

forevery0 <s <t < T, where h is the Hausdorff metric on CI(R?).
We can now prove the following existence theorem.

Theorem 3.1. If F : [0,7] x RY — CI(RY) and H : R" — CI(R") satisfy
conditions (A), then for every complete filtered probability space Pr and fixed point
& of H, there exists a strong solution of (3.1).

Proof. Let Pr be given and assume that £ € L.2(, Fr, R?) is such that § € H(£).
By virtue of Lemma 3.1, there exists a sequence (x");2, of S(IF, R?) such that
xp =& x! € E[x] + fst F(r,x"'dt|F]as. for0<s <t <T and

2
T
E|: sup |x"T! —x;1|2:| < 4E< K(zr) sup |x! —xf_l|dt)
t

t<u<T t<s<T

forn = 1,2,... and 0 < ¢t < T. By properties of F and H, one has
E[sup, < <7 |x} — x0] < L, where L = 4[E|§[* + fOT m?*(t)dr] 4+ 2E[supy<, <7
|x02] with m e L2([0, T], R*) such that || F(z, x)|| < m(t) for every x € R and
a.e.0 <t < T. Therefore,

T
E|: sup |x5 —x;|2:| < 4TL/ K?(1)dr.
t<u<T t

Hence it follows that
T T
E| sup |x}—x2| < 4T)°L / (Kz(t) / Kz(s)ds) dr
t<u<T t T

2
= (4T2)2L (/T Kz(‘l,')d‘l,’) .
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By the inductive procedure, foreveryn = 1,2,...and 0 <t < T, we get

AT nLn—l T n
E |: sup |x"t! —xZI{| < # (/ Kz(‘l,')d‘l,’) .
t<u<T n: t

Then (x")72, is a Cauchy sequence of S(IF, RY). Therefore, there exists a process
(x)o<i=r € S(F,RY) such that E[supy<,<r |x — x;[*] = 0 asn — oc. By
Lemma 3.2, it follows that

t
E dist (xS,E [x,f +/ F(z, x,)drl]—"s:D

t
<Elx;—x!||+ E |:dist (xj?,E |:xt” +/ F(r,xg_l)dr|fs:|)i|

+E [h (E [xf +/t F(wﬁ“MrIE} E [x, +/r F(r,xr)dtIFsD}

t
< E|x} — x|+ E|x] — x| +/ K(@)E|x"" - x,|dt
s

1

T 2
sz||x"—x||+(/ Kz(r)dr) et — ]
0

forevery 0 < s <t < T and n = 1,2,.... Therefore, dist(x, E[x; +
f; F(t,x.)dt|Fs]) = 0 as. forevery 0 < s < ¢t < T, which implies that

x, € E [x,f + f; F(z, xt)dt|}'s] a.s forevery 0 < s <t < T. By the definition of

(x)o<i<r, wehave x7. = £ € H(§) as. foreveryn = 1,2, . ... Therefore, we also
have xy = £ a.s. Thus x7 € H(xr) a.s. Then x satisfies (3.1). O

4 Weak Compactness of Solution Sets

For given measurable multifunctions F : [0,7] x RY — CI(R?), G : [0,T] x
R? — CI(R¥*™) and a probability measure i on S(IR?), by X, (F,G) we denote,
similarly as above, the set of all weak solutions (equivalence classes defined in
Sect. 1) of SFI(F,G, ). Elements [(Pr, X, B)] of X,(F,G) will be identified
with equivalence classes [X] of all d-dimensional continuous processes Z such
that PX~! = PZ~'. In what follows, [X] will be denoted simply by X. It is
clear that we can associate with every [(Pr, X, B)] € A, (F,G) a probability
measure PX !, a distribution of X, defined on a Borel o-algebra 8(Cr) of the space
Cr =: C(([0, T],R?). The family of all such probability measures, corresponding
to all classes belonging to &), (F, G), is denoted by le (F, G). Itis a subset of the
space M (Cr) of probability measures on Cr. The set X, (F, G) is said to be weakly
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compact, or weakly compact in distribution, if le (F,G) is a weakly compact
subset of M(Cr). We now present sufficient conditions for the weak compactness
of X, (F,G).

Theorem 4.1. Let F : [0,T] x RY — CI(R?) and G : [0, T] x R¢ — CI(R¥>*™)
be measurable, uniformly square integrably bounded, and convex-valued such that
F(t,-) and G(t,-) are continuous for fixed t € [0,T). If G is diagonally convex,
then for every probability measure i on B(RY), the set X, (F, G) is nonempty and
weakly compact.

Proof. The nonemptiness of X, (F,G) follows from Theorem 1.5. To show that
X, (F, G) is relatively weakly compact in the sense of distributions, let us note that
by virtue of Theorem 1.5 of Chap. 3, for every (Pr, x, B) € X, (F, G) there are
f € Sp(F ox)and g € Sp(G o x) such that Pxo_1 = pand x; = xo + fot frdr +
fof g:dB; for every ¢t € [0, T]. Similarly as in the proof of Theorem 1.5, we can
verify that every sequence (Pp., x", B")°2 | of X, (F, G) satisfies the conditions of
Theorem 3.6 of Chap. 1. Therefore, for every sequence (Py., x", B") of X, (F, G),
there exists an increasing subsequence (n;)72, of (n)72, such that the sequence
{P(x"*)~13%  is weakly convergent in distribution. Then the sequence (x"
possesses a subsequence converging in distribution.

Let (x")%2, be a sequence of X, (F, G) convergent in distribution. Then there
exists a probablhty measure P on ,B(CT) such that P(x")™!' = P asr — oc.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space (2, F, P) and
random variables ¥ : Q — Cr and X : Q - Cr forr = 1,2,... such that
P(x")~' = P@E) forr = 1,2,..., P(X)"! = P and lim, 0 SUpy<, <1 |5 —
%| = 0 with (P.1). Immediately from Corollary 3.3 of Chap. 1, it follows that
X, = Xo asr — oo, because P(x")~! = P(%¥)"'asr — co.But P(x))"! =
for every r > 1. Then PX,' = p. By Theorem 1.3, we have M7}, # 0
for every r > 1, which by Lemma 1.3, implies that ./\/l # (. Therefore, by
virtue of Theorem 1.3, there exist a standard extension P (Q F. I, P) of
(fz, F , ﬁ‘ 13) and an m-dimensional Brownian motion B such that (P]F, X, B), with
(@) = X(n(®)) for every & € $, is a weak solution of SFI(F, G, 1), where
7:Q—> Qisan (}' ]-") measurable mapping as described in the definition of the
extension of (£, F.IF, P), because its standard extension P]F is also its extension.
Let (@) = X' (nA(a))) for ® € €. For every A € B(C), one has P(2")~ '(4) =
PIE)™H(A)] = P[(F om)~H(A)] = (P ox H(EF")(A)] = PIE)TH(A)] =
P(x")"'(A). Therefore, P(£")~! = P(F")~' = P(x")7! for every r > 1. By
the properties of the sequence (¥")°2,, it follows that X (&) — X;(®) with (P.1)
as r — oo uniformly with respect to 0 < ¢ < T. Hence in particular, it follows
that X} (w(®)) — X:/(7(d)) with (P.1) as r — oo uniformly with respect to
0 <t < T. Therefore, for every f € C,(C), one has f(x"(®)) — f(x(®))
with (13.1) as r — o00. By the boundedness of f € C,(C), this implies that
E{f(X")} — E{f(%)}as r — oo, which by Corollary 2.1 of Chap. 1, is equivalent

n= l



172 4 Stochastic Differential Inclusions

to P(")~' = P£7'. But P(&")™' = P(x")~! for every r > 1. Then x" = X,
which implies that X}, (F, G) is weakly closed. a

In a similar way, we can prove the following theorem.

Theorem 4.2. Let F : RT x RY — CI(RY) and G : RT x RY — CI(RY*?) be
measurable and uniformly square integrably bounded such that F(t,-) and G(t,-)
are continuous for fixed t € [0, T). If G is convex-valued and diagonally convex,
then for every probability measure w on B(R?), the set XS(T, G) is nonempty and
weakly compact.

Proof. The nonemptiness of XS (F, G) follows from Remark 1.6. In a similar way
as above, we can verify that the set X 3 (co F, G) of all weak solutions (Pr, x, B) of
SFI(co F, G) with a separable filtered probability space Py is weakly compact in
distribution. By virtue of Lemma 1.7 of Chap. 3, one has XS (F.G) = XS (co F, G).

Then X 3 (F, G) is nonempty and weakly compact. |

5 Some Properties of Exit Times of Continuous Processes

Let D be a domain in R and (s,x) € R™ x D. Assume that X = (X(-,1));>0
and X" = (X"(-,1))/>0 are continuous stochastic processes on a stochastic base
Pr = (2, F,F, P) such that X(-,s) = X"(,s) = x as.forn = 1,2,... and
sup,so | X"(,t) — X(-,t)] > Oas.asn — oo.Lett = inf{r > s : X(-,7) & D}
and 7, = inf{r > s : X"(-.,r) ¢ D} forn = 1,2,.... We shall show that if 7, < oo
a.s. for every n > 1, then 7, — t a.s. as n — oco. We begin with the following
lemmas.

Lemma 5.1. Let D be a domain in RY, (s,x) € RT x D, and X = (X(-,1)):>0
a continuous d-dimensional stochastic process on Py = (2, F,F, P) such that
X(,s)=xas andt =inf{r > s : X(,r) € D} <ocoas. If T : @ — R is such
thatT > t a.s., thent = inf{r € (s,T) : X(-,r) & D} a.s.

Proof. For simplicity, assume that the above relations are satisfied for every w € Q
and let us observe that t(w) = inf X "' (w,-)(D ™), where D~ = R? \ D. We have
X0, )(DY) = X o, )(DY) N (s, T(@)) U X (w,)(D™) N [T(w),00).
Therefore, inf X '(w,)(D~) < inf(X (w,)(D~) N (s, T(w))). For every
w € , there exists t(w) € X '(w,)(D~) such that s < t(w) < T(w),
because 7(w) < T(w) for w € Q. Therefore, X ' (w, )(D~) N (s, T(w)) # 0
and inf(X Y(w,)(D~) N (s,T(w))) < T(w) for ae. ® € Q. Suppose T =
inf X Y(w,)(D~) < t7(w) =: inf(X Nw,)(D~) N (s, T(w))) onaset Ly € F
such that P(£2y) > 0. Then for every w € Q, there exists f(w) € X (w,)(D™)
such that s < f(w) < r(w) < T(w), which is a contradiction, because for
every w € Qandt € X Yw,)(D™) N (s, T(w)), we have t7(w) < t. Then
(w) = inf{X (w,)(D~) N (s, T(w))} forae. v € Q. O
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Lemma 5.2. Let D be a domain in R and (s,x) € Rt x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F,F, P) suchthat X(-,s) = X"(-,5) = x
forn = 1,2,... and sup,~ | X"(-,t) — X(-,t)] — 0 as. asn — oo. Then
LiX ' (@,)(D~) = XY@, ) (D) = Ls X; (w0, )(D™) fora.e. v € Q.

Proof. For simplicity, assume that X(w,-) and X,(w,-) forn = 1,2,... are
continuous and lim,,— o0 SUP,~¢ | X" (@, 1)—X(w, t)| = O forevery w € 2. For every
w € Qand e > 0, there exists N,(w) > 1 such that X, (w.7) € X(w.t) + ¢B
and X(w,t) € X,(w,t) + eB fort > s and n > N.(w), where B is a
closed unit ball of RY. Then X, '(w,)({X,(®,0)}) C X, (w,)({X(w,t) +
eB}) and X N, )({X(,1)}) C X Yo, )({X,(w,t) + eB}) as. for n >
N.(w). Let us observe that for every A ¢ RT and C C R?, one has 4 C
X N0, ) (Xp(@,A4), A C X Yo, )(X(@, A)), X,(0, X (o,)(C)) C C +¢B,
and X(w, X '(w,)(C)) € C forn = 1,2,.... Taking in particular A =
X Yw,-)(D~) and C = D™ in the above inclusions, we obtain X ~!(w, -)(D™) C
X, N0, ) (Xp(@, X Yw,) (D) C X, Hw,)(D~ + &B) as. forn > N(w).
Similarly, taking 4 = X, '(w,-)(D~) and C = D™, we obtain X, ' (w,-)(D~) C
X0, )(X (@, X, (@,)(D7) € X N, )(Xy(@, X, (@,) (D)) + ¢B) C
X Yw, ) (D~ + eB) as. for n > N,(w). Hence it follows that

X' (@,)(DY) C () Xify, (@, ) (D~ +&B)
k=0
N.—1 oo
c | NXili@. (D~ +eB)
n=1 k=0

oo

U () Xy, @.)(D™ +¢B)
k=0

o U

38

;in(w,-)(DN +¢&B)
k

I
||C8

+
ﬂ Xl (@.)(D™ +&B)

= Limiann_l(w, (D™~ +¢B)

a.s. for every ¢ > 0, which by virtue of Corollary 1.1 of Chap.2, implies
X Yo, ) (D) C N,ooLiminf X' (w,-)(D~ 4+ ¢B) = Liminf X, ' (w,)(D™)
a.s. Hence, by virtue of (ii) of Lemma 1.2 of Chap. 2, we obtain X ! (w,-)(D~) C
Li X, (w,)(D~). In a similar way, we get | J72, Xk__iN&_(a),-)(D“ +eB) C
X Yw,)(D~ + &B). Then
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N:—1 oo o0 00 o)
N U X, @20 u Xy @aom)u () X, @.(D)
n=1 k=0 k=0 n=Ng+1k=0

C X (o,)(D~ + ¢B)

for every ¢ > 0. Hence, by virtue of (v) of Lemma 1.2 of Chap. 2, it follows that

oo o0

Ls X, (0.)(D™) = () Xilu(@.)(D~) € X' (@.)(D~ + ¢B)
n=1k=0

for every ¢ > 0. Thus Ls X, '(®,")(D~) C (Voo X Y@, )(D~ + €B)
XYw,-)(D~) as. From the above inclusions, we obtain X ~'(w,-)(D")
Li X, '(w,)(D~) CLs X, Y(w,)(D~) C X Y, )(D~) a.s. Then

N

Ls X, (0, )(D™) € X Yw,)(D™) CLi X, (»,)(D™),

which by (i) of Corollary 1.2 of Chap.2, implies that Li X, !(w,-) (D~) =
Ls X, Y(w,)(D™) = X Yw, (D). |

Lemma 5.3. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1)is0 and X" = (X"(,t))r>0 are continuous d -dimensional stochastic
processes on a stochastic base Prp = (2, F,F, P) suchthat X(-,5) = X"(-,5) = x
forn = 1,2,... and sup,-o | X"(-,t) — X(-,t)| — 0 as. asn — oo. If there
exists a mapping T + Q — RY such that max(t,7,) < T a.s. forn = 1,2,...,
where T = inf{r > s : X(,r) € D}and v, = inf{r > s : X,(-,r) &
D}, then (X~ '(0,)(D™) N [s,T(@)) = Li(X, " (@,)(D™) N (5,T(w)) =
Ls (X, Y(w,)(D™) N (s, T(w))) for a.e. v € Q.

Proof. Assume that X(w,-) and X,(w,-) for n=1,2,... are continuous,
max(t(w), i, (w)) < T(w) forn = 1,2,..., and lim,_o sup,~, | X" (w, 1) —
X(w,1)| = 0 for every w € Q. By virtue of (iv) and (vi) of Lemma 1.2 of Chap.2
and Lemma 5.2, we get

Ls (X, (@,)(D7) N (5. T(@))) € Ls X,/ (@,)(D™) N [s. T ()
= X" @.) (D7) N 5. T(@)).
Similarly, by virtue of (iii) and (vi) of Lemma 1.2 of Chap. 2, we also have
Li (X, (@.)(D7) N (5, T(@))) C Li (X, (@.)(D7) N [s. T ().

By virtue of (ii) of Corollary 1.2 of Chap. 2, for every ¢ € (Li (X, '(w,-)(D™)) N
[s, T (w)), there exists 7 > 1 such that for every n > 7, there is f, €
X, Yw,)(D~) N [s, T(w)) such that t, — t as n — oo. Then dist(z, X, ! (w, )
(D~)) — 0 asn — oo. Therefore, for every ¢ > 0, there exists N, > 7 such
that t € X, "(w,)(D~) + ¢B for n > N.. Hence, similarly as in the proof of
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Lemma 5.2, it follows that for every 7 € Li (X, '(w,-)(D~))N[s, T (»)) and & > 0,
one has

t e ({(Xiiy(@.)(D™) +eB) N [s. T(w))}
k=0

c |J X @ )(D™) +eB) N [s. T(w))}

n=1k=0

= Liminf{(X " (w,)(D~) + eB) N[5, T (»))}.
Then
Li(X, (o, )(D™)) N[5, T(w)) C Liminf{X, (@, ) (D) N[5, T (»))}

CLi(X, (0. (D7) N [s.T(®))) C Li(X, (. )(D™) N[5, T (w)).
Thus

X @, )(D™) N s, T()) = LiX, (@, ) (D) N[5, T (@)
= Li (X, (@, (DY) N s, T())).

Therefore, by (iv) and (vi) of Lemma 1.2 of Chap. 2 and Lemma 5.2, one has

Ls (X, (0. )(D™) N[5, T(»)))
C X N, ) (D™) N[5, T(w))
=Li(X, (@, (D7) N s, T())). O

Lemma 5.4. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))r>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F, ¥, P) such that X(-,s) = X"(-,5) = x
for n = 1,2,... and sup,~, | X"(-,t) — X(-,t)] > O as. asn — oo. If
inf X' (w,)(D™) < cofora.e.w € Qforn = 1,2,..., theninf X' (w,)(D™) <
oo fora.e. w € Q2.

Proof. Let t,(w) = iann_l(a),-)(D”) < o0 and 7(w) = inf X '(w,-)(D™) for
we QPutA ={weQ:t(w) =oc}and A, = {w € Q : 1,(w) = oo} for
n=1,2,....Foreveryw € A, onehas X(w,t) € D fort > s. By the properties of
the sequence (X,)52, for a.e. fixed w € A, there exists a positive integer N (w) > 1
such that X, (w,t) € D fort > s and every n > N(w). Then for a.e. w € A and
every n > N(w), we have 1, (w) = oo. For simplicity, assume that 7, (w) = oo for
every n > N(w) and w € A. By the assumption that 7, < oo a.s. and the definition
of A,, we have P(A,) = 0 for every n > 1. Then P(U:‘;l A,) = 0. But for every
w € A andn > N(w), we have 1,(w) = oo. Therefore, A C U:‘J:I A,. Then
P(A) =0. |
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Lemma 5.5. Let D be a domain in R and (s,x) € Rt x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F,F, P) suchthat X(-,s) = X"(-,5) = x

forn = 1,2,... and sup,5o |X"(-,1) — X(-,1)] — 0 as. asn — oo and
let t,(w) = inf XY (w,)(D~) and t(w) = inf X Yw, ") (D) for o € Q.
Ifmax(z,,7) <ocoa.s forn =1,2,..., then there is a mapping T : Q@ — R such

that max(t,,7) < T a.s. forn > 1.

Proof. By virtue of Lemma 5.2, we have t(w) = inf(Li X, '(w,-)(D™)) for a.e.
o € 2. By virtue of (ii) of Corollary 1.2 of Chap. 2, for a.e. € Q2 thereisin > 1
such that for every n > 7, there exists 7, € X, '(w,-)(D™) such that 1, — 7
a.s. as n — oo. For every n > n, we have 7, < t, because X Yw,)(D~) C
X, Y(w,)(D~ + ¢B), tf < tand tt — 1, as. as ¢ — 0, where 7f(w) =
iann_l(a), )(D~ + eB) for n > n. Then limsup t, < t a.s., which implies that
for a.e. w € Q, there exists a positive integer N(w) > 1 such that 7,(w) < t(w) for
n > N(w). Taking T (w) = max{t;(w) + 1, 2(w) +1,..., tn@w (@) + 1, t(w) + 1}
fora.e. w € Q, we have defined a mapping T : Q@ — R such that max(z,,7) < T
a.s. forn > 1. O

Now we can prove the following convergence theorem.

Theorem 5.1. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1))is0 and X" = (X"(,t))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F, ¥, P) such that X(-,s) = X"(-,5) = x
forn =1,2,...andsup,-y | X"(-,t)— X(-,t)] = Oa.s.asn — oo. If 1, = inf{r >
s X,(,r) € D} < 00 a.s. forn = 1,2,..., then lim,, 7, = T a.s., where
r=inf{r > s: X(,r) & D}.

Proof. By virtue of Lemma 5.4, we have max(t,,7) < oo a.s.forn = 1,2,....
Therefore, by virtue of Lemma 5.5, there is a mapping T : 2 — R™ such
that max(z,,7) < T as. forn = 1,2,.... Then by virtue of Lemma 5.1, we
have 7, (w) = inf(X, ' (w,)(D~) N (s, T(»))) and t(w) = inf(X " (w,)(D~) N
(5, T(w))) forw € Qandn = 1,2,.... By virtue of Lemma 5.3, Remark 1.2 of
Chap. 2, and Theorem 1.1 of Chap. 2, we get

lim B((X, (@.)(D7) N (5. T(@))). X~ (. )(D7) N (5. T(@))))

= lim A((X; (@, ) (D7) N (5, T(@))), X~ (@, ) (D7) N (s, T())))
=0

for a.e. w € 2, where & is the Hausdorff metric on CI([s, T'(w)]) for every fixed
w € Q Lete > 0and t,(w) € X Yw,)(D~) N (s,T(w))) be such that
t:(w) < t(w) + ¢ for fixed @ € Q. By the above property of the sequence
(X, "(w,)(D™) N (s, T(w)))%2, and the definition of the Hausdorff metric h, we
have dist(z: (@), X, '(w,)(D~) N (s, T(w))) — 0 for fixed v € Q and every & > 0
as n — oo. Therefore, for every fixed w € 2, there exists a sequence (¢ (w))>2,
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such that 7 (w) € X, Y(w,)(D~) N (s, T(w)) forn > 1 and |1 (w) — t:(w)| — 0
as n — oo. Hence it follows that

(@) < 1 (@) < [ (0) — ()] + (@) < [(0) — (@) + T(0) + ¢

fore > 0and n > 1. Then lim sup,_, o, T () < T(w).

Similarly, for fixed w € Q and every ¢ > 0 and n > 1, we can select 1/ (w) €
X, Yo, )(D7)N[s, T(w)) and " € X~ '(w,)(D~) N [s, T (w)) such that " (w) <
7,(w) + € and |1 () — 1! (w)| — 0 as n — co. Hence it follows that

(@) = 1] (@) <17 (@) — 1] (@)] + 1] (@) <] () =1 (@) + () + &

for every ¢ > 0 and n 1. Therefore, t(w) < liminf,_ 7,(w). Then
limsup, o T(w) < (W) liminf, o0 T (w) for a.e. @ € 2, which implies
that lim,, 00 7, = T a.s. O

Let D be a domain in R? and (s, x) € R* x D. Assume that X = (X(¢));>0 and
X = (X (#))r>0 are continuous d-dimensional stochastic processes on (Q F,P)
and (Q, F, P), respectlvely, such that X(s) = x a.s.and PX~! = PX~!. We shall
show that P(rD) P(rD) LU P(Xotp)™' = P(Xo%p)~!,and P(zp,X o
™)~ '= P(ip. X oTp)~", where 1p = inf{t > s : X, ¢ D} and 7p = inf{t > s :
X, ¢ D}.

The next results will follow from the following fundamental lemma, similar to
Lemma 2.1 of Chap. 1.

z
=

Lemma 5.6. Ler X and X be as above, (Y,G) a measurable space, and C =:
CRYRY).If®:C - Y is (B, G)-measurable, where B is a Borel o-algebra on
C, then P(® o X)™! = P(®o X)~!

Proof. Let Z = ®o X and Z = ® o X. For every A € G,one has P({Z € A}) =
P({®oX € A}) = P(X~1(®71(4))) = P(X(®71(4)) = P({do X € A}) =
P({Z € A}). Then P(® o X)™' = P(®o X)L O

The following theorem can be derived immediately from the above result.

Theorem 5.2. Let D be a domain in R¢ and (s, x) € RT x D. Assume that X =
(X(@))i>0 and X = (X (#)):>0 are continuous d-dimensional stochastic processes
on (2, F, P) and (Q.F, P), respectlvely, such that X(s) = x a.s. and PX~ I =
PX~\. Then P(zp)~ I = P(‘L’D) ,P(Xotp) ' = P(X 0o%p)~", and P(xp, X o
)~ = P(ip. X oTp)~!, where tp = inf{t > s : X, & D} and Tp = inf{t > s :
X, ¢ D).

Proof. Let n : C — R™* be defined by n(x) = inf{t > s : x(t) ¢ D} for
x € C. It is clear that n is (B, B+)-measurable, where 8+ denotes the Borel o-
algebra on R™. Taking Y = R*, G = B4, and ® = 1, we get 1p = ® o X and
7p = ® o X. Therefore, by virtue of Lemma 5.6, we obtain P(tp)~' = P(%p)~".
Let ¥ (¢t,x) = x(¢) forx € C andt € R™ and put ®(x) = ¥ (n(x), x)) forx € C.
It is clear that the mapping ® satisfies the conditions of Lemma 5.6 with ¥ = R?
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and G = f, where 8 denotes the Borel o-algebra on RR?. Furthermore, we have
PoX =Xorpand Po X=Xo Tp. Therefore, by virtue of Lemma 5.6, we
obtain P(X o 7p)~' = P(X o %p)~'. Finally, let ®(x) = (n(x), ¥ (5(x), x)) for
x € C.Immediately from the properties of the mappings ¥ and n, it follows that ®
satisfies the conditions of Lemma 5.6 with Y = RT x R? and G = B4 x B, where
B+ denotes the Borel o-algebra of R*. Furthermore, ® o X = (zp. X o 7p) and
doX = (Tp, Xo Tp), which by virtue of Lemma 5.6, implies P(tp, X o )~ =
P(ip, X o%p)~ L. O

Corollary 5.1. If the assumptions of Theorem 5.2 are satisfied, then for every
continuous bounded function f : Rt x RY — R, one has E[f(tp, X o 1p)] =
E[f(Zp, X o%p)], where E and E denote the mean value operators with respect to
probability measures P and P, respectively. O

6 Notes and Remarks

The first papers concerning stochastic functional inclusions written in the set-valued
integral form are due to Hiai [38] and Kisielewicz [51, 55], where stochastic
functional inclusions containing set-valued stochastic integrals were independently
investigated. In the above papers, only strong solutions were considered. An ex-
tension of the Fillipov theorem for stochastic differential inclusions was given by
Da Prato and Frankowska [23]. Existence and stability of solutions of stochastic
differential inclusions were considered by Motyl in [82] and [83], resp. Weak
solutions of stochastic functional inclusions have been considered by Aubin and
Da Prato [9], Kisielewicz [53] and Levakov [71]. Weak compactness with respect
to convergence in distribution of solution sets of weak solutions of stochastic
differential inclusions was considered in Kisielewicz [56, 58, 60]. Also, Levakov
in [71] considered weak compactness of all distributions of weak solutions of some
special type of stochastic differential inclusions. Compactness of solutions of second
order dynamical systems was considered by Michta and Motyl in [78]. The results
of the last three sections of this chapter are based on Kisielewicz [56, 58], where
stochastic functional inclusions in the finite intervals [0, T'] are considered. The
results dealing with backward stochastic differential inclusions were first considered
in the author’s paper [59]. The results contained in Sect. 5 are taken entirely from
Kisielewicz [55]. The properties of stochastic differential inclusions presented in
Sect.2 are the first dealing with such inclusions. By Theorem 2.1 of Chap. 3,
stochastic differential inclusions SDI(F, G) are equivalent to stochastic functional
inclusions of the form x, — x;, € dec{J(F o x)} + dec{7(G o x)}. Therefore,
for multifunctions F and G satisfying the assumptions of Theorem 1.5, the set
Sw(F,G, ) of all weak solutions of SDI(F,G) with an initial distribution u
contains a set considered in optimal control problems described by SDI(F, G).
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For the existence of solutions of such optimal control problems, it is necessary
to have some sufficient conditions implying weak compactness of a solution set
Sw(F, G, ). Such results are difficult to obtain by the methods used in the
proof of Theorem 4.1, because boundedness or square integrable boundedness of
dec{J(F o x)} and dec{7 (G o x)} is necessary in such a proof.
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