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Preface

There has been a great deal of interest in optimal control systems described by
stochastic and partial differential equations. These optimal control problems lead to
stochastic and partial differential inclusions. The aim of this book is to present a
unified theory of stochastic differential inclusions written in integral form with both
types of stochastic set-valued integrals defined as subsets of the space I.>($2, R")
and as multifunctions with closed values in the space R”. Such defined inclusions
are therefore divided into two types: stochastic functional inclusions (SFI(F, G))
and stochastic differential inclusions (SDI(F, G)), respectively. The main results of
the book deal with properties of solution sets of stochastic functional inclusions and
some of their applications in stochastic optimal control theory and in the theory
of partial differential inclusions. In particular, apart from the existence of weak
solutions for initial value problems of stochastic functional inclusions, the existence
of their strong and weak viable solutions is also investigated. An important role
in applications is played by theorems on weak compactness of solution sets of
weak and viable weak solutions for the above initial value problems. As a result of
these properties, some optimal control problems for dynamical systems described
by stochastic and partial differential inclusions are obtained. Let us remark that
for a given pair (F, G) of multifunctions, the sets X'(F, G) and S(F, G) of all
weak solutions of SFI(F, G) and SDI(F, G), respectively, are defined as families
of systems (Pr, x, B) consisting of a filtered probability space Pr, a continuous
process X = (X;);>0, and an IF-Brownian motion B = (B;);> satisfying these
inclusions. Immediately from the definitions of SFI(F,G) and SDI(F,G), it
follows that X(F,G) C S(F,G). It is natural to extend the results of this book
to the set S(F, G) and consider weak solutions with x a cadlag process instead of
a continuous one. These problems are quite complicated and need new methods.
Therefore, in this book, they are left as open problems.

The first papers dealing with stochastic functional inclusions written in integral
form are due to Hiai [38] and Kisielewicz [50-56,58,60—62]. Independently, Ahmed
[2], Da Prato and Frankowska [23], Aubin and Da Prato [9], and Aubin et al.
[10] have considered stochastic differential inclusions symbolically written in the
differential form dx, € F(¢,x,)dt + G(t, x,)dB; and understood as a problem

ix
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consisting in finding a system (Pr, x, B) consisting of a filtered probability space
Pr, a continuous process x = (x;);>0, and an F-Brownian motion such that
X, = x0+f0t ftdt+f0t g.dB, with f; € (Fox), =: F(t,x;)and g, € (Gox), =:
F(t,x;) a.s. for t > 0. Stochastic functional inclusions defined by Hiai [38] and
Kisielewicz [51] are in the general case understood as a problem consisting in
finding a system (P, x, B) such that x, — x; € clp{Js (F o x) + J5 (G o x)} for
every 0 < s <t < oo, where J, (F ox) and Jy (G o x) denote set-valued functional
integrals on the interval [s, z] of F ox and G o x, respectively. It is evident that some
properties of stochastic functional inclusions written in integral form follow from
properties of set-valued stochastic integrals. Such properties are difficult to obtain
for stochastic differential inclusions written in differential form.

The first results dealing with set-valued stochastic integrals with respect to the
Wiener process with application to some set-valued stochastic differential equations
are due to Bocsan [22]. More general definitions and properties of set-valued
stochastic integrals were given in the above-cited papers of Hiai and Kisielewicz,
where set-valued stochastic integrals are defined as certain subsets of the spaces
L2(2,R") and I?(2, X) of all square integrable random variables with values at
R" and X, respectively, where X is a Hilbert space. In this book, such integrals
are called stochastic functional set-valued integrals. Unfortunately, such integrals
do not admit a representation by set-valued random variables with values in R”
and X, because they are not decomposable subsets of I>(22, R”") and I>(22, X),
respectively. Later, Jung and Kim [46] (see also [98]) defined a set-valued stochastic
integral as a set-valued random variable determined by a closed decomposable hull
of the above-mentioned set-valued stochastic functional integral. Unfortunately, the
authors did not obtain any properties of such integrals. In Chap. 3, we apply the
above approach to the theory of set-valued stochastic integrals of IF-nonanticipative
multiprocesses and obtain some properties of such integrals.

The first results dealing with partial differential inclusions were in fact simple
generalizations of ordinary differential inclusions. They dealt with hyperbolic
partial differential inclusions of the form z:’y € F(x,y,z). Later on, partial

differential inclusions z;/y y €F (x,y,z, z;, z;,) were also investigated. Such partial
differential inclusions have been considered by Kubiaczyk [65], Dawidowski and
Kubiaczyk [24], Dawidowski et al. [25], and Sosulski [92,93], among others. Some
hyperbolic partial differential inclusions were considered in Aubin and Frankowska
[11]. A new idea dealing with partial differential inclusions was given by Bartuzel
and Fryszkowski in their papers [15-17], where partial differential inclusions of
the form Du € F(u) with a lower semicontinuous multifunction F and a partial
differential operator D are considered. The existence and properties of solutions of
initial and boundary value problems of such inclusions follow from classical results
dealing with abstract differential inclusions. As usual, certain types of continuous
selection theorems for set-valued mappings play an important role in investigations
of such inclusions.

The partial differential inclusions considered in this book have the forms

u;(t,x) € (Lrgu)(t, x)4c(t, x)u(t,x) and ¥ (¢, x) € (Lrpgu)(t, x)+c(t, x)u(t, x),
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where ¢ and Y are given functions and Lrs denotes the set-valued diffusion
generator defined by given multifunctions F' and G. The first results dealing with
such partial differential inclusions are due to Kisielewicz [60, 61]. The initial and
boundary value problems of such inclusions are investigated by stochastic meth-
ods. Their solutions are characterized by weak solutions of stochastic functional
inclusions SFI(F,G). Such an approach leads to natural methods of solving
some optimal control problems for systems described by the above type of partial
differential inclusions. It is a consequence of weak compactness with respect to the
convergence in distribution of sets of all weak solutions of considered stochastic
functional inclusions.

The content of the book is divided into seven parts. Chapter 1 covers basic
notions and theorems of the theory of stochastic processes. Chapter 2 contains
the fundamental notions of the theory of set-valued mappings and the theory of
set-valued stochastic processes. Chapter 3 is devoted to the theory of set-valued
stochastic integrals. Apart from their properties, it contains some important selection
theorems. The main results of Chap. 4 deal with properties of stochastic functional
and differential inclusions. In particular, it contains theorems dealing with weak
compactness with respect to convergence in distribution of solution sets of weak
solutions of initial value problems for stochastic functional inclusions. Chapter 5
contains some results dealing with viability theory for forward and backward
stochastic functional and differential inclusions, whereas Chaps. 6 and 7 are devoted
to some applications of the above-mentioned results to partial differential inclusions
and to some optimal control problems for systems described by stochastic functional
and partial differential inclusions.

The present book is intended for students, professionals in mathematics, and
those interested in applications of the theory. Selected probabilistic methods and
the theory of set-valued mappings are needed for understanding the text. Formulas,
theorems, lemmas, remarks, and corollaries are numbered separately in each chapter
and denoted by pairs of numbers. The first stands for the section number, the second
for the number of the formula, theorem, etc. If we need to quote some formula or
theorem given in the same chapter, we always write only this pair. In other cases,
we will use this pair with information indicated the chapter number. The ends of
proofs, theorems, remarks, and corollaries are denoted by [J.

The manuscript of this book was read by my colleagues M. Michta and J. Motyl,
who made many valuable comments. The last version of the manuscript was read
by Professor Diethard Pallaschke. His remarks and propositions were very useful
in my last correction of the manuscript. It is my pleasure to thank all of them for
their efforts.

Zielona Gora, Poland Michat Kisielewicz
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Chapter 1
Stochastic Processes

In this chapter we give a survey of concepts of the theory of stochastic processes. It
is assumed that the basic notions of measure and probability theories are known to
the reader.

1 Filtered Probability Spaces and Stopping Times

Let (2, F, P) be a probability space and ' = (F;),>0 a family of sub-o-algebras
F; of o-algebra F such that F; C F; for 0 < s <t < 00. A system Pp =
(2, F,F, P) is said to be a filtered probability space. It is called complete if P
is a complete measure, i.e., 28 ¢ F for every B € F suchthat P(B) = 0. We
say that a filtration I' satisfies the usual conditions if Fy contains all P-null sets of
F and F; = (.o Fi+e forevery t > 0. If the last condition is satisfied, we say
that a filtration IF is right continuous. We call a filtration I left continuous if F;
is generated by a family {F;: 0 <s <t} forevery t > 0,i.e., F/; =o({F;: 0 <
s < t}) forevery ¢t > 0. A filtration IF is said to be continuous if it is right and left
continuous.

Remark 1.1. From a practical point of view, a filtered probability space Pr =
(2, F,F, P) is usually regarded as a probability model of a given experiment with
results belonging to €2 . The family F is treated as a set of informations on elements
of €2, whereas the filtration contains all informations contained in F given up to
t>0. O

Given a filtered probability space Pr and a metric space (X, p), by an X-
random variable on Pr we mean an (F, 8x)-measurable mapping X : Q — X,
i.e.,suchthat X~'(A4) € F forevery A € B(X),where asusual, S(X) denotes the
Borel -algebraon X and X~ !(4) = {w € Q : X(w) € A}. We shall also say that
X is a random variable on Pr with values at X'. In particular, if X = R" then,
an X-random variable is also called an n-dimensional random variable. Given a

M. Kisielewicz, Stochastic Differential Inclusions and Applications, 1
Springer Optimization and Its Applications 80, DOI 10.1007/978-1-4614-6756-4_1,
© Springer Science+Business Media New York 2013



2 1 Stochastic Processes

random variable X : @ — X, we denote by Fx the o-algebra generated by
X, i.e., the smallest o-algebraon Q containing all sets X ~'(U) for all open sets
U C X.ltis easy to see that Fy = {X'(4) : A € B(X)}.

Remark 1.2. Tt can be verified thatif X,Y : 2 — R" are given functions, then Y
is Fx-measurable if and only if there exists a Borel-measurable function g : R" —
R” such that ¥ = g(X). |

From a practical point of view, random variables can be applied to mathematical
modeling of static random processes. In the case of dynamic ones, instead of
random variables, we have to apply families X = (X;);>0 of random variables
parameterized by a parameter ¢ > 0 usually treated as the time at which
the modeled dynamical process is taking place. Families X = (X;);>¢ of n-
dimensional random variables X; : 2 — IR" are called n-dimensional stochastic
processes on Pr. Such processes are called continuous if for a.e. w € 2 mappings
Rt st - X, (w) € R", called trajectories of X, are continuous. In a similar
way, we define cadlag and caglad stochastic processes on Pr. An n-dimensional
process X is said to be a cadlag process if for ae. w € €, its trajectory
Rt >t — X,(w) € R" is right continuous and possesses the left-hand limit
X;—(w) for every ¢t > 0. Similarly, a process X is called a caglad process if for
ae. w € Q, its trajectory R 3t — X,(w) € R" is left continuous and possesses
the right-hand limit X, 4 (w) forevery ¢ > 0. If for every ¢ > 0, a random variable
X, is F;-measurable, then a process X is called F-adapted. Many more notions
and properties dealing with stochastic processes are given in Sect. 3.

Remark 1.3. Tt can be proved that all random variables X : Q2 — C and X :
Q — D with ¢ = C@RT,R") and D = D(R*,R"), where C(R",R") and
D(RT,R") denote the metric spaces of all continuous and cadlag functions x :
R*™ — R” with appropriate metrics, can be described respectively as n-dimensional
continuous and cadlag processes. |

A random variable T : Q — [0, 00] on Pr such that {T" <t} € F; for every
t > 0 is said to be an IF-stopping time. If a filtration I is right continuous, then the
condition {7" <t} € F; in the above definition can be replaced by {T < t} € F;
for every ¢ > 0. This follows from the following theorem.

Theorem 1.1. Ifa filtered probability space Py is such that It is right continuous,
then a random variable T : Q2 — [0, 00| is an F-stopping time on Py if and only
if{T <t} e F; foreveryt >0.

Proof. Let {T <t} e F, foru>t and t > 0.Since {T <t} = ()4, {T <
u} forevery ¢ > 0 and F is right continuous, we have {T' <t} € (., Fu = F
for t > 0. Therefore, the condition {T < t} € F; for t > 0 implies that {T <
t} € F; for t > 0. Conversely, if {T <t} € F; for t > 0, then we also have
{T <t} = Ueeo Useonoi—etT = s} € Fi, where Q is the set of all rational

numbers of the real line R . O
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Example 1.1. Let X = (X;);>0 be a cadlag process and A C R a Borel set. We
define a hitting time of A for X by taking T(w) = inf{t > 0 : X;(w) € A}
for € Q.1If A is an open set, then by right continuity of X, we have {T <
t} C UsEQﬂ[O,t){XS € A}. If furthermore, X is F-adapted, then {X; € A} =
XS_I(A) € F, for s € Q NJ[0,t). Therefore, for such a process X , one has
{T <1t} e UsEQﬂ[O.t) Fs = JF; forevery t > 0. From the above theorem, it
follows that if a filtration I is right continuous, then for the above process X and
anopen set A C R, a hitting time of A for X is an F-stopping time.

Theorem 1.2. Let X = (X;);>0 be a cadlag and ¥-adapted process on Py. Then
for every closed set A C R, the random variable T : Q — R defined by T (w) =
inf{t > 0: X,(w) € A or X;—(w) € A} for v € Q is an F-stopping time.

Proof. Let A, = {x € R : dist(x,A) < 1/n}. It is easy to see that A, is an
open set. But X,—(w) = lims_;;; X;(w) for w € Q. Therefore, {X,— € A} =
(Mus1 UseononiXs € An} for t > 0. Then {T <t} ={X; € AJU{X,— € A} =
{X: € A} UN,51 UseonjoniXs € An} for ¢ > 0. By the properties of a family
X it follows that {X; € A} € F; and ﬂnzl UseQﬂ[O,t){XS € A,y € F, fort >0.
Therefore, for every ¢ > 0 one has {T <t} € F;. O

The above result can be easily extended for n-dimensional cadlag and F-adapted
processes.

Theorem 1.3. Let X = (X,)i>0 be an n-dimensional cadlag and T-adapted
process. Then for every domain D in R", the random variable T : Q2 — R
defined by T(w) = inf{t > 0: X,(w) &€ D} for w € Q is an F-stopping time.

Proof. Let A = R"\ D .Theset A isclosedand T(w) = inf{t > 0: X;(w) € A}
for w € Q2. Hence, similarly as in the proof of Theorem 1.2, it follows that 7" is an
F-stopping time. |

The IF-stopping time defined in Theorem 1.3 is said to be the first exit time of the
process X from D . Usually it is denoted by 73 , or simply by tp if X is fixed.

Remark 1.4. Immediately from the definition of stopping times it follows that for
all F-stopping times S and 7 on Pp,also SAT, SvT, S+ T ,and S with
a > 1 are F-stopping times on Pr. a

Given a filtered probability space Pr = (2, F,F, P) with ' = (F;);>0, the
o-algebra F; can be thought as representing all (theoretically) observable events
up to and including time #. We would like to have an analogous notion of events
that are observable before a random time 7 . To get that, we have to define an IF-
stopping time o-algebra F7 induced by an IF-stopping time 7. It is defined by
setting Fr = {A € F: AN{T <t} € F,, for t > 0}. The present definition
represents “knowledge” up to time 7'. This follows from the following theorem.

Theorem 1.4. Let cad(IF) denote the family of all ¥-adapted cadlag processes
X = (Xi)i>0 on Pg. Then for every finite F-stopping time T, one has Fr =
o({ X7 : X € cad(IF)}).
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Proof. Let Gr = o({Xr : X € cad(IF)}) and let A € Fr. Define a process
X = (X:)i>0 on Pp by setting X; = 14-1gy>7y for t > 0. We have Iyr>ry = 1.
Therefore, X7 = 1,4. By the above definition of a process X, we have X €
cad(IF) , which implies that A € Gy. Then Fr C Gr.

Let X € cad(IF) . We need to show that X7 is Fr-measurable. We can consider
X as a function X : [0,00) x 2 — R. Construct a function ¢ : {T <t} —
[0, 00) x Q by setting ¢p(w) = (T (w),w) for w € {T <t}.Since X € cad(FF),
then X7 = X o ¢ is a measurable mapping from ({7 < ¢}, F, N {T < t}) into
(R, B(R)), where B(IR) denotes the Borel o-algebra on R. Therefore, {w € Q :
X(T(w),w) € ByN{T <t} € F; foreveryt > 0 and B € S(R). Then X7 is
Fr-measurable. Thus Gr C Fr. O

The following result follows immediately from the above definitions of an -
stopping time and an o-algebra Fr .

Theorem 1.5. Let S and T be IF-stopping times on Py such that S < T a.s.
Then Fs C Fr and Fs N\ Fpr = Fsar. O

2  Weak Compactness of Sets of Random Variables

Let (X,p) be a separable metric space and B(X) a Borel o-algebra on X.
Denote by M (X)) the space of all probability measures on S(X’) and let C;(X) be
the space of all continuous bounded functions f : X — RR. We say that a sequence
(P)3, of M(X) weakly converges to P € M(X) if lim, o0 [} fdP, =
/ + fdP forevery f € Cy(X). We shall denote this convergence by P, = P. We
have the following theorem.

Theorem 2.1. The following conditions are equivalent to weak convergence of a
sequence (P,)°2, of M(X) to P € M(X):

(i) limsup,_, o, P.(F) < P(F) forevery closed set F C X.
(ii) liminf, o P,(G) = P(G) for every open set G C X.

Proof. Let P, = P. Hence it follows that limsup, ., P,(F) < lim, e [,
frdP, = fx frdP forevery closed set F C X', where fi(x) = ¥ (k -dist(x, F))
with ¥ (t) =1 fort <0, ¥y(t) =0fort>1,and y(t) =1—¢t for0 <t <1.
Passing in the above inequality to the limit with kK — oo, we see that (i) is satisfied.
It is easy to see that (i) is equivalent to (ii). Indeed, by virtue of (i), for every open
set G C X we obtain limsup,_,., Pr(X \ G) < P(X \ G), which implies that
liminf, o P,(G) > P(G). In a similar way, we can see that from (ii), it follows
that lim sup,,_, ., P, (F) < P(F) forevery closed set FF C X.

Assume that (i) is satisfied and let f € C,(X). We can assume that 0 < f(x) <
1 for x € X. Then
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k.
Z’ {xeX T<f(x)< } /f(x)dP

i=1

=

k. . .
i i—1 i
EE E'P%)CEXI = E}
i=1

Forevery F; = {x e X :i/k < f(x)}, the right-hand side of the above inequality
is equal to Z ! P,(F;)/k , and the left-hand side to Zf:é P,(F))/k—1/k . This
and (i) imply

k—1 k—1
lim sup/ f(x)dP, <limsup Y P,(F)/k <> P(F)/k < 1/k+/ f(x)dP.
Then limsup, . [y f(x)dP, < [, f(x)dP. Repeating the above procedure
with a function g = 1 — f, we obtain liminf, »eo [, f(x)dP, > [, f(x)dP.
Therefore,

/X f(x)dP < limint /X F()dP, = timsup /X F(0dP, < /X F(0dP .

Thus lim, o0 [ f(X)dP, = [, f(x)dP forevery f € Cy(X). O

We can consider weakly compact subsets of the space M (X). Let us observe that
we can define on M(X) a metric d such that weak convergence in M(X) of a
sequence (P,),2, to P isequivalentto d(P,, P) — 0 as n — oo. Therefore, we
say that aset A C M(X) is relatively weakly compact if every sequence (P,)52,
of A possesses a subsequence (P, )72, weakly convergentto P € M(X).
If P € A then A, is called weakly compact. We shall prove that for relative weak
compactness of a set A C M(X), it suffices that A be tight, i.e., that for every
€ > 0 there exist a compact set K C X suchthat P(K) > 1—¢ forevery P € A.

Theorem 2.2. Every tight set A C M(X) is relatively weakly compact.

Proof. Assume first that (X, p) is a compact metric space. By the Riesz theorem,
we have M(X) = {u € C*(X) : u(f) = 0for f > 0 and u(1) = 1}, where
1(x) = 1 for x € X and C*(X) is the dual space of C(&X). Since C(X) =
Cy(&X), weak convergence of probability measures is in this case equivalent to
weak *-topology convergenceon C*(X’). Then M(X) is weakly compact, because
every weakly *-closed subset of the unit ball of C*(X) is weakly *-compact.

In the general case, let us note that X is homeomorphic to a subset of a
compact metric space. Therefore, we can assume that X’ is a subset of a compact
metric space X. For every probability measure p on (X, B(X)) let us define on
(X, B(X)) a probability measure ji by setting j1(A) = u(A N X) for A € B(X).
Let us observe that A C X' belongs to (X)) if and only if A = A N X for every
A e B(X).
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We shall show now that if A C M(X) is tight, then every sequence (i,),2,
of A possesses a subsequence weakly convergent to u € M(X). Assume
that a sequence (u,)s—, is given and let (ji,);2, be a sequence of probability
measures defined on ,8(2() by the sequence (,un 2, such as above, i.e., by taking
fn(A) = w(ANX) for A e B(X) and n > 1. It is clear that a sequence (fi,)52,
possesses a subsequence (fi,, ), weakly convergent to a probability measure
v on (X, ,3(22)) We shall show that there exists a probability measure @ on
(X, B(X)) such that ft = v and that a subsequence (,u,,k)]fo=1 converges weakly
to . Indeed, by tightness of A, forevery r = 1,2,..., there exists a compact set
K, C X such that u,(K,) > 1 —1/r foreveryn > 1 It is clear that K, is also a
compact subset of X, and therefore, K, € B(X)NA(X) and fn, (Kr) = pn, (K7).
But fi,, = v. Therefore, v(K,) > limsup,_, ., pin,(K;) = 1 — 1/r. Thus
E = U,-, K C X and E € B(X) N B(X). For every A € B(X), we have
ANE € B(X) because ANE=ANXNE=ANE for every A € B(X). Put
w(A) = v(ANE) forevery A € B(X).Itisclear that p is a probability measure on
(X, B(X)) and v = v. Finally, we verify that i, = w.Indeed, let A be a closed
subset of X. Then A = AN X for every closed set AC X and fi,(A) = ua(A).
Therefore, limsup;_, o, tn, (A) = limsup,_, o, ,u,,k(A) < ji(A) = u(A), which
by virtue of Theorem 2.1, implies that p,, = pas k — oo. a

Let (X,);2, be a sequence of X-random variables X, : ©, — X ona
probability space (£2,, F,, P,) for n > 1. We say that (X,);2, converges in
distribution to a random variable X : @ — & defined on a probability space
(2, F, P) if the sequence (PX, 1)§°=1 of distributions of random variables X,
Q, — X is weakly convergent to the distribution PX~! of X. It is denoted by
X, = X.If X,, and X are defined on the same probability space (2, F, P), then
we can define convergence of the above sequence (X,)72, in probability and a.s.

to a random variable X. We denote the above types of convergence by X, LY X
and X, — X a.s., respectively. We have the following important result.

Corollary 2.1. If (X,)72, and X are as above, then X, = X if and only if
E{f(X,)} = E{f(X)} as n — oo forevery f € Cy(X), where E, and E
are mean value operators taken with respect to probability measures P, and P,
respectively.

Proof. By the definitions of convergence of sequences of random variables and
probability measures, it follows that X, = X if and only if [, f(x)d
[P(X)™] —>fX f(x)d[P(X)7'] as n — oo for every f € Cu(X). The
result follows now immediately from the equalities | v f x)d[P(X,)™] =
Jo, fX)dPy = EJ{f(X,)} and [, f()d[P(X)7'] = [, f(X)dP =
ELf(X)}) O
Theorem 2.3. Let (X, p) be a Polish space, i.e., a complete separable metric
space, and (P,)2, a sequence of M(X) weakly convergent to P € M(X) as
n — oc. Then there exist a probability space (2, F, P) and X-random variables
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X, and X on (Q,ﬁ,f’) for n = 1,2,... such that (i) P, = PX,T_l for
n=12,..., P=PX7\ and (ii) p(X,,X) = 0 a.s. as n — oo.

Proof. Let @ = [0,1), F = B([0,1)),and P = p, where j is Lebesgue measure
on fB(][0,1)). To every finite sequence (iy,...,ix) for k = 1,2,... of positive
integers we associate a set S;, _;, € B(X)) with the boundary 9S;, _; such that

1° If (g, ix) % (jiaeo. o Jji) s then S, ,,(ms,1 _____ =0 fork=12,...,
2° ]fo=1 Sil i ZX and Uoo_l il

By virtue of 1° and 2°, a family {S,1 ,,,,, i,y is for every fixed k € IN a disjoint
covering of X that is a subd1v1510n of a covering for k¥’ < k. Such a system of
subsets can be defined in the following way. For every k and m = 1,2,..., we
take balls cr,i,k) with radii not greater then 2~**1 that cover X and are such that
P, (ao(k)) = 0 and P(aa(k)) = 0 for every n,k,m € IN. For fixed k € IN
D = o1, D =00\ o D= ol \ Uil and 5, =

presented above.
Now for fixed k, let us introduce in the set of all sequences (ii,...,i;) the

lexicographic order and define in [0, 1) intervals A;, ; and A(n) . such that

an It G, ..., i) < iy -y Jx) s then A,l i, and A() . are on the left-hand

A U,y Aioi = [0, 1) and g, ) A . =0,1) forn > 1.

Such intervals are defined in a unique way. For every (ij,...,i;) such that

g i 7 9, select a point x;, E:S)‘,l ir» Where §,~1 ,,,,, i, denotes the interior of
S, i Forevery w€0,1), k=1,2,...,and n = 1,2,... we define X*(w)

and Xw) = Xiy .oy

.......... ik

hmk_moX (w) exist. Furthermore P(S,1 ,,,,, i) = |A(") | - |A; . ,k|

P(Xu(@), X (@) < p(Xn (@), XF (@) +p(Xf (@), X (@) +p(X " (w). X(w) <2/2F

for n > ng . Thus for every o € Qo =: (o Ui 2, i we get X,(0) —

X(w) as n — oo. It is easy to see that P(Qo) =1.



8 1 Stochastic Processes

Finally, we shall show that PX,! = P, for n = 1,2,... and PX_1 = P.
Let us first observe that P({Xs 17 € ;. ..} = P({Xk+p ES,l ,k}) =

of a countable disjoint famlly of sets S;, .. . Then by Fatou’s lemma, it follows
that liminf, . P(X7)~1(0) = P,(0) for every open set O C X . Therefore, by
virtue of Theorem 2.1, we have P(X/)™' = P, as p — oo, which implies that
PX; ' = P,.Similarly, we also get PX~! =P. O

Consider now the case X = C , where C is the space of all continuous functions
x 1 [0,00) — RY with a metric p defined by p(x;,x2) = Y o2, 27"[1 A
maxo<;<n |X1(t)—x2(t)|] for x1, x, € C .Itcanbe verified that (C, p) is acomplete

separable metric space. We prove the following theorem.

Theorem 2.4. Let (X,);2, be a sequence of C-random variables X, on a
probability space (2,, F,, Py) for n = 1,2, ... such that

() Timy oo SUPyo; Pa({|X,(0) > N}) =0 and
(ii) limy, o sup,s; Pn(Amax; sefo.7).ji—s|<n | Xn (1) — Xn(s)| > €}) =0

forevery T > 0 and & > 0. Then there exist an increasing subsequence ()7 |
of (n)>2,, aprobablllty space (Q.F.P), and C-random variables Xnk and X
for k =1,2,... on (Q,F.P) such that PXnk1 = PXnk for k =1,2,... and
p()?nk,)?) — 0 a.s. as k — oo.

Proof. We shall show that conditions (i) and (ii) imply that the set A = {PX, ! :
n > 1} is a tight subset of M(C). Let us recall that by the Arzela—Ascoli theorem,
aset A C C is relatively compactin (C, p) if and only if the following conditions
are satisfied:

(I) A is uniformly bounded, i.e., sup, ., max;ejo,7] |x(t)| < oo forevery T > 0,
(II) A is uniformly equicontinuous, i.e., limy o Sup,¢ 4 VhT (x) = Oforevery T >0,

where VhT(x) = max; sefo,7],)r—s|<h | Xn(t) — X, (s)|. By virtue of (i), for every
¢ > 0, there exists a number a > 0 such that PX;'({x : [x(0)| < a}) > 1 —¢/2
for n > 1. By (ii), for every ¢ > 0 and k = 1,2,... there exists s > 0
such that hx | 0 and PX;'({x : V[T (x) > 1/k}) < &/2"F! forevery n > 1.
Therefore, we have PX, (7o {x : VT(x) < 1/k}) > 1 —¢/2. Taking K, =
{x € C:|x(0)] <a}n (ﬂzo:l{x hk(x) < 1/k}) we can easily see that K,
satisfies conditions (I) and (II). Therefore, K, is a compact subset of C such that
PX;'(K;) > 1 —¢ forn > 1. Then the set A is a tight subset of M (C). Hence,
by virtue of Theorems 2.2 and 2.3, there exist an increasing subsequence ()2 |
of )52, a probablhty space (Q, F, P), and C-random variables Xnk and X

fork =1,2,... on (Q F.P ) such that conditions (1) and (ii) of Theorem 2.3 are
satisfied, i.e., such that PX, 1 — PX ! and p(Xnk,X) —0as.ask >o00. O
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Remark 2.1. Theorem 2.4 holds if instead of a condition (ii) of this theorem, the
following condition is satisfied for every ¢ > 0:

;E)I})ilill) ,25:1 P ({jss?sl?fﬁw | X, (s) — X(j6)| > s}) =0. 2.1
S

Proof. Let us note that Theorem 2.4 holds if we consider its condition (ii) with 3e
instead of ¢. Forevery § € (0,1) and s, € [0, T] such that |t —s| < § there is an
integer 0 < j < 87! such that s,¢ € [j§,(j + 1)§] or s At € [j8,(j + 1)8] or
sVt el[jé,(j+ 1)3]. Therefore, for every 6 € (0,1) and s,¢ € [0, T] such that
|t —s| < & onehas s,t € U05j<5_1[j8,(j + 1)8]. Thus for every § € (0, 1) and
n > 1 we have

max | X,(s) — X, (2)]
5,1 €[0,T],|t—s]|<8

< sup {1 X, () = Xu0) 5.1 € [ [78.G + D3}

j<871
< sup{|X, () = X, (7 :s € | 8. (j + D3}
j<871
+sup {|X,(0) = X,(j8)| 1 € | 18,/ + D3I},
j<8~!

Therefore,

p ({ max |Xn(s)—Xn(t)|>3s})

5,1 €[0,T],|t—s]|<8

Sr (] me 60 - XG> o ).

j<6—1

Then condition (ii) of Theorem 2.4 is satisfied for every & > 0 if condition (2.1) is
satisfied. O

Remark 2.2. If X and Y are given random variables defined on a probability space
(2, F, P) with values in a metric space (X, p), then X and Y are said to have
equivalent distributions if PX~!'(4) = 0 if and only if PY ~!(A) = 0 for A €
B(X). |

In what follows, we shall need the following results.

Lemma 2.1. Let (X, p) and (Y,G) be a metric and a measurable space, respec-
tively, and ® : X — Y a (B(X),G)-measurable mapping, where B(X) is a Borel
o-algebra on X. If X and X are X-random variables defined on a probability
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space (2, F P) and .{2,]},}5), respectively, such that PX~' = PX~', then
P(@oX) ' =P(@oX) L

Proof. Let Z = ®oX and Z = d>o)Z.Forevery A€ Gonehas P({Z € A}) =
P({®PoX € A}) = P(X71(®7'(4))) = P(X7'(@7'(4))) = P({PoX € A}) =
P({Z € A}).Then P(®o X)™ ! = P(®o X)L O

Lemma 2.2. Let (X,p) and (Y,d) be metric spaces, and let X" and X be
X-random variables defined on probability spaces (2,,F, P,) and (2, F P),
respectively for n = 1,2,... suchthat X" = X as n — oo. For every continuous
mapping ® : X — Y onehas ®o X" = ®o X as n — oo.

Proof. By virtue of Theorem 2.1, for every open set G C X’ one has liminf,_,
P(X")™'(G) > PX~'(G). By continuity of &, for every open set U C Y,
a set ®~!(U) is an open set of X. Taking in particular in the above inequality
G = &7 '(U), we obtain liminf, o P(X")~(®~'(U)) > PX~1 (7' U)). But
P(X")(@7'U)) = Pu[(X") (@' U))] = P(® o X")"'(U) and PX (D!
U)) = PIX (@7 'U))] = P(PoX)~'(U) forevery openset U C Y. Therefore,
for every openset I/ C Y onehas liminf, oo P(Po X))~ (U) > P(PoX)~ (U)],
which by Theorem 2.1 and the definition of weak convergence of sequences of
random variables implies that ® o X" = ® o X as n — oo. a

3 Stochastic Processes

Throughout this section we assume that Py = (2, F, F, P) is a complete filtered
probability space with a filtration I = (F;);>o satisfying the usual conditions.
We shall consider a family X = (X;);>0 of A-random variables X, on Pr with
X =R or X = R?. Such families are called one- or d-dimensional stochastic
processes on Pr. It is easy to see that such stochastic processes can be regarded as
functions X : RT x Q@ — R and X : Rt x Q — R, respectively, such that
X(t,-) is an R- or R-random variable. We can also consider stochastic processes
with the index set / C R7T instead of Rt. If I = IN, we call X a discrete
stochastic process on Pp. Given a d -dimensional stochastic process X = (X;);>0
on Pr and fixed @ € Q, we call a mapping RT 5 — X,(w) € R? a trajectory
or a path of X corresponding to w € 2. We can characterize stochastic processes
by properties of their trajectories. In particular, a process X = (X;);>o defined on
Pr is said to be:

1. Continuous if almost all its paths are continuous on R™*.

2. Right (left) continuous on R™ if almost all its paths are right (left) continuous
on RT.

3. A cadlag process if it is right continuous and almost all its paths have at every
t > 0 aleft limit limg—s; < X.
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4. A caglad process if it is left continuous and almost all its paths have at every
t > 0 aright limit limg—; s>, X;.

Stochastic processes X = (X;);>0 and ¥ = (¥;),>0 defined on Py are called:

5. Indistinguishable if P({X, =Y, :t > 0}) = 1.
6. Y is amodification of X if P({X;, =Y,}) =1 forevery ¢t > 0.

The properties of the above types of “equivalence” of two stochastic processes
are quite different. If X and Y are modifications, then for every ¢ > 0, there exists
anull set ; C Q such that if w & Q;, then X;(w) = Y;(w) . Since the interval
[0, 00) is uncountable, the set A = | J,., 2 could have any probability between
0 and 1, and it could be even unmeasurable. If X and Y are indistinguishable,
however, then there exists a null set A C Q such that if v € A, then X;(w) =
Y:(w) for all ¢ > 0. In other words, the paths of X and Y are the same for all
w & A.Wehave A € Fy C F; forall t > 0. In some special cases, the above
types of “equivalence” are equivalent.

Theorem 3.1. Let X and Y be two stochastic processes, with X a modification
of Y.If X and Y are right continuous, then they are indistinguishable.

Proof. Let Q2o C 2 be such that all paths of X and Y corresponding to @ €
Q \ Qo are right continuous on R* and P(p) = 0. Let A, = {X, # Y;}
and A = Ut €0 Ay, where Q denotes the set of all rational numbers of Rt. We
have P(A) = 0 and P(20 U A) = 0. Then X;(w) = Y,(w) for t € Q and
o & Qo U A. For fixed t € R, we can select a sequence (7,)°2, of Q such that
t, — t asn — oo. We can assume that the #, decrease to ¢ through Q. Then we
get X;(w) = limy00 Xy, (0) = limy00 ¥, (0) = Yi(w) for & Qo U A and
every t > 0. a

A d-dimensional stochastic process X = (X;);>0 on Pr is said to be:

(i) F-adaptedif X, is (F;, B(IR?))-measurable for every ¢ > 0.

(i) Measurable if a mapping X : RT x Q@ — R defined by X(1,w) = X;(w)
for (1,0) € Rt x Q is (B(R') ® F, B(RY))-measurable.

(iii)) IF-nonanticipative if it is measurable and IF-adapted.

(iv) IF-progressively measurable if for all + > 0, a restriction to I; x Q of a
mapping X : Rt x Q@ — RY defined in (ii) with I, = [0,7] is (B(];) ®
Fi. B(RY))-measurable.

(v) IF-predictable or simply predictable if it is measurable with respect to a o-
algebra P(IF) generated by all F-adapted caglad processes on Pr.

(vi) IFF-optional or simply optional if it is measurable with respect to a o-algebra
O(F) generated by all [F-adapted cadlag processes on Pr.

It can be verified that P(F) C O(F) C B(R") ® F. Therefore, each predictable
process is optional, and both are measurable. It is clear that every F-progressively
measurable process is IF-nonanticipative. Let us note that for a given stochastic
process X = (X;);>0 on Pr, we may identify each w € Q with its path RT >
t - X,(w) € R?. Thus we may regard Q as a subset of the space Q = (R¥)[*>)
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of all functions from [0, 00) into R?. Then the o-algebra F will contain the
o-algebra B, generated by sets {w € Q : w(t)) € Ay,...,0(tx) € A} for all
f1,...,tr € RT and all Borel sets 4; € R? for i = 1,2,...,k and k € IN.
The space (R¢)[®* contains some important subspaces such as C = C(R*T,RY),
Cy = C+(R*T,RY),and C_ = C_(R*,RY) of respectively all continuous, right
continuous, and left continuous functions x : RT — R4. A special role in such
an approach to stochastic processes is played by an evaluation mapping defined for
every fixed t > 0 by setting ¢; : (R)[%* 5 x — x(t) € R?. We can define on
the space X = (RY)[*%) a g-algebra of cylindrical sets, denoted by G(X), as a
o-algebra generated by a family {e, : t > 0}, i.e,, G(X) = o({e; : t > 0}).Ina
similar way, we can define a filtration (G;);>0 by taking G, = o({e; : 0 < s <1}).
We have the following important result.

Theorem 3.2. The o-algebra G(C) of cylindrical sets of C coincides with the o-
algebra B(C) of Borel sets of C.

Proof. We have only to verify that S(C) C G(C). Let us observe that a family of
sets {x € C : maXo</<u |¥(t) — x0(z)] < &} with fixed xo € C, ¢ > 0 and
n =1,2,... is a base of neighborhoods in C. On the other hand, we have {x € C :
maxo<;<n [X() — x0(t)| < &} = ﬂ,,GQ,OSI,Sn{x € C:x(r) € U(xo(r),e)}, where
Ua,e) = {x € R? : |x —a| < &}. Therefore, {x € C : maxo<;<, |x(t) — xo(t)| <
g} € G(C), which implies that S(C) C G(C). O

Remark 3.1. The above result is also true for the space D of all d-dimensional
cadlag functions on [0, 00), i.e., B(D) = G(D), where G(D) denotes the g-algebra
of cylindrical sets of D. O

Corollary 3.1. A stochastic process X = (X;)i>0 on Pr can be regarded as an
(RY)[0%)_random variable on Py, i.e., as a mapping from Q into (R?)1%% that is
(F, G(X))-measurable. In particular, by virtue of Theorem 3.2 and Remark 3.1, a d -
dimensional continuous (cadlag) process X = (X;)r>0 on Pr can be considered

as a mapping from Q2 into C (D) that is (F, B(C))- ( (F, B(D)))-measurable. O

Remark 3.2. Given a d-dimensional continuous (cadlag) stochastic process X =
(X¢)t>0 on Pr by PX ~1 we denote the distribution of C-random (D-random)
variable X : Q@ — C (X : Q — D), i.e., a probability measure defined by
(PXH(A) = P(X71(A)) for A € B(C) (A € B(D)). |

Corollary 3.2. Let X = (X;);>1 and X = ()Z,)tzl be d-dimensional continuous
stochastic processes on probability spaces (Q, F, P) and (., F, P), respectively,
suchthat PX~' = PX~\. For every (s,x) € Rt xRY suchthat X; = x, P-as.,
one has )ZS =X, P-as.

Proof. The result follows immediately from Lemma 2.1. Indeed, assume that there
is (s,x) € Rt x R? such that X, = x, P-as. Taking, in particular, X =
CRT,RY, ¥ = RY, and ® = e, in Lemma 2.1, where e, is an evolution
mapping corresponding to s > 0, we obtain P(e; o X)™! = P(e; o X)~!. Hence,
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for Ay = {x} C ]E{d , it follows that P (e o X)_1(4x) = P(es0 X)~'(Ay). Then
P{X; = x}) = P({X; = x}), which implies that P({X; = x}) = 1. |

Corollary 3.3. Let X" = (X' )i»0 and X = (X:)i>0 be d-dimensional con-
tinuous stochastic processes on probability spaces (2, F,, P,) and (2, F, P),,
respectively, for n = 1,2,.... If a sequence (X")°2, converges weakly in
distribution to X , then X! = X, as n — oo for every s > 0.

Proof. The result follows immediately from Lemma 2.2. Indeed, assume that a
sequence (X")72, converges weakly in distribution to X , and let s > 0. Taking,
in particular, X = C(R, ]Rd), Y = R?, and ® = e, in Lemma 2.2, one obtains
e;0 X" = e;0X as n — oco. Then X! = X as n — oo. O

Remark 3.3. A finite-dimensional distribution of a d-dimensional stochastic pro-
cess X = (X;);>0 on Py is defined as a probability measure [, , on ,B(Ide)
for k =1,2,... definedby py, 5 (A1 x---xAr) = P({X;, € A1,..., Xy, € Ar})

fort,-e[O,oo) and 4; € B(RY) for i =1,2,...,k. |

Remark 3.4. 1f d-dimensional continuous (cadlag) stochastic processes X =
(X¢)i>0 and X = (X,);>o on P]F and P, respectively, have the same dis-
tributions, then PX~! = PX ! is equivalent to ., (A1 X -+ x Ay) =
Pty (A% - -xAy) forevery t; € [0,00) and 4; € BMRY) fori =1,2,.... k.0

We have the following important theorems due to Kolmogorov.

Theorem 3.3 (Extension theorem). Let i, , beforall ty,.... t; € [0,00) and
k € IN a probability measure on B(R*?) such that (i) Ketoityotoy (Ao X =+ X

,,(k)) = .., (A1 X -+ X Ag) for all permutations 0 = (0(1),...,0(k)) of
11,2, k) and (ii) puy..q (Ar X oo X AR) = [yt gy oot (A1 X o X Ag X
RY x ---xR?) for all m € IN. Then there exist a probability space (2, F, P)

and a d-dimensional stochastic process X = (Xi)i>0 on (2, F, P) such that
Pt (A1 X oo x A) = P({Xy, € Ai,.... Xy, € Ax}) for t; € [0,00) and
A; € BRY) wzthi:l,Z,...,kandke]N. O

Theorem 3.4 (Existence of continuous modification). Suppose a d-dimensional
stochastic process X = (X;)i>0 on Pr is such that for all T > 0, there exist
positive constants «, B, and y such that

E[1X, = X,|"] < ylt —s|'*P

for s,t € [0, T]. Then there exists a continuous modification of X. O
We shall now prove the following theorem.

Theorem 3.5. Let (X"), be a sequence of d-dimensional continuous stochastic
processes X" = (X[');»0 on a probability space (2,,F,, P,) forn =1,2,...
such that:
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(i) There exist positive numbers M and y such that E,[|X[|"] < M for n =
1,2,...

(ii) Forevery T > 0, there exist Mt > 0 and positive numbers o, 8 independent
of T > 0 such that E,[| X" — X"|*] < Mr|t —s|'* forn = 1,2,... and
t,s €0,T].

Then (X")02, satisfies conditions (i) and (ii) of Theorem 2.4.

Proof. By virtue of Chebyshev’s inequality, we get P({|X//| > N}) < M/N? for
n = 1,2,.... Therefore, condition (i) of Theorem 2.4 is satisfied. For simplicity, we
assume now that 7" > 0 is a positive integer. By (ii), the process ¥ = (Y (¢)):>0
defined by Y(z) = X' for fixed n = 1,2,... satisfies E,[|Y(t) — Y(s)|*] <
Mr|t —s|' T8 for t,s € [0, T]. Hence, by Chebyshev’s inequality applied to every
a > 0, it follows that

Py({IY (G + 1)/2") =Y (/2™ > 1/27")) < Mp2(HRgmae
— MTz—m(l+ﬂ—aoz)

fori =0,1,2,...,2"T — 1. Taking now a number a such that 0 < a < §/«, one
obtains

P, ({0 max |Y(( 4+ 1)/2") = ¥(/2")] > 1/2ma}) < TMy 2B,

Let e > 0 and § > 0, and select v = v(§,¢) suchthat (1 +2/(2¢—1))/2%" <e¢
and ) 00 2 mF=a®) < §/TMr. We get

P,,(U{ max |Y((i+1)/2’")—Y(i/2m)|>1/2’"“})

0<i<2mT—1

o0
< TMy Z p—m(p-ae) g

m=v

Put Q, = (U5 {maxo<j<omr—1 |Y(( + 1)/2™) — Y(i/2™)| > 1/2™9}. We have
P,(2,) <6 andif v ¢ Q, then |Y((G +1)/2")—-Y(i/2™)| < 1/2"* for m > v
andall i =0,1,2... suchthat (i + 1)/2" < T.Let Dr be the set of all dyadic
rational numbers of [0, T].If s € Dy N[i/2", (i +1)/2"), then it can be expressed
by the formula s = i/2" + > /_, oy /2" ! with o € {0, 1}. Therefore, for such s
and w & Q,, one has

J
Y(s) = YG/2) <Y

k=1

k k—1
Y (f/2“ + sz”’) -Y (f/2“ + Za;/Z”H)

=1 =1

J o0
< Zal/z(v-i-k)a < Zal/z(v-i-k)a — 1/(2(1 _ 1)2111)'
k=1 k=1
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Therefore, for v & 2, and s,¢ € Dr satistying |s —¢| < 1/2", we get

Y(s) = Y(1)| < (1 + 2—2_1) /2% <.

Indeed, if t € [(i —1)/2",i/2") and s € [i/2",(i + 1)/2"), then
[Y(s) = Y@ = [Y(s) = Y(i/2")| + [Y(1) = Y(( —1)/2")]

HY(@/2") = Y((i —1)/2")] < (1 - 202_ 1) /2%

If t,s €[i/2", (i +1)/2"), then

. IAD Y 2

[Y(s) = Y@ < |[Y(s) = Y(@/2")| + |Y(@) = Y(i/2")| < @i e

But Dt isdensein [0,7T] and |Y(s)—Y(¢)| < ¢ forevery s,¢ € Dr. Then for ev-
ery s,t € [0, T] satisfying |s —¢| < 1/2", we also have P,({max, se[o.7]ji—s|<1/2"
[Y(s) = Y(@)| > ¢}) < P,(RQ)) < é.But v = v(6,¢) does not depend on n.
Therefore, this implies that condition (ii) of Theorem 2.4 is also satisfied. O

There are some weaker sufficient conditions for relative weak compactness of
sequences of continuous stochastic processes. We shall show here that for a given
sequence (X")72, of d-dimensional continuous stochastic processes (X;');>o
defined on a probability space (£2,F, P) such that the sequence (u,);2, of
probability distributions s, of X/ is tight, then the sequence (P(X")™1H)%2,
of distributions of X" is tight if there are numbers y > 0, « > 1 and a real-
valued continuous nondecreasing stochastic process (I'(¢));>o such that E[I"(T)—
I'0)] < oo and P({|X] — X!| > A} < 1/AYE[|I'(t) — '(s)|%] forevery T > 0,
s,t € [0,T],and A > 0. To begin with, let us introduce the following notation.
Given a probability space P = (2, F, P) and random variables & : Q@ — R¢ for
i=1,2,...,n,letusdefine Sy =& +---+ & fork =1,...,n and Sy = 0.
Then let M,, = maxo<k<n |Sk| and M, = maxo<x<,(min{|Sk|, |S, — Sk|}). It is
easy to see that M, < M, and M, < M, + |S,| a.s. Therefore, for every A > 0,
we have

P({M, > 1}) < P({M,; > A/2}) + P({|Sa] = A/2}). (3.1

In what follows, we shall need the following auxiliary results.

Lemma 3.1. Let y > 0 and o > 1/2 be given and suppose there are positive
random variables u, . .. ,u, such that £ (27=1 ul)za < oo and

1
P({|S] —Sii Z/\,isk—Sj| ZA}) < ATyE(ui+1+"'+uk)2a (3.2)



16 1 Stochastic Processes

is satisfied for 0 < i < j < k < n and every A > 0. Then there exists a number
K, o such that for every positive A, one has

/ K,
P ({M > x}) < SHE it ) . (3.3)
Proof. Let § = 1/(2y + 1). We have 2°[1/2%% 4 1/K%] < 1 for sufficiently
large K > 0. We shall show that (3.3) is satisfied if K satisfies the above inequality

and K > 1. It can be verified ([21], Theorem 2.12.1) that the minimal number K
satisfying the above inequalities is given by

—Q2y+1)
© 3 1 1 20 4
ve = S+ -\ pl/@y+D :

The proof of (3.3) we get by induction on n. For n = 1, the inequality (3.3) is trivial.
Let n = 2. Immediately from (3.2) for K > 1, it follows that

P ({8, = 2}) = P (min[IS1[.15:= $11) = A})

3 B+ )™ £ 2 4 )

for A > 0. Assume now that (3.3) is satisfied for every positive integer £ < n.
We shall show that it is also satisfied for k = n. Let v = E (u; + -+ + un)za,
vo=0,and v, = E (u; +---+ uh)za,with 1 < h < n. We can assume that v >
0. We have vp—1 < vp. Then 0 < v;/v < vy/v <--- < v,—1/v < 1. Therefore,
[0,1] = Uj,—; [ua—1/v, vp/v]. By virtue of the assumption o > 1/2, we have
1/2%* € [0, 1]. Therefore, there is 1 < & < n such that v,_;/v < 1/2% < v, /v.
Define U, U,, D;,and D, by setting

Uy = max min {81, 1Sh—1 = S;1}, Ua= jmax min {187 = Sull, 182 = 8,1},

D, = min{|Sh_1|, |Sn - Sh—ll}s and D, = min{|Sh|, |Sn - Shl}-

Let us observe that for 1 < & < n and « taken as above, we have v;,_; < (22“ —
v/2% and 7,41 < (2% — 1)v/2%, where 2,41 = E(upt1 + -+ + u,)**. Indeed,
we have v,_; < v/2%* < (22® — 1)v/2*. Furthermore,

Uh | Fh E [(”l + b w)® o e+ un)z‘)‘]

v v v
E [(u1 4+ up) + ey + -+ u) P
v

1
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and —v, /v < 1—-1/2%¢ = (22¢—1)/2%%, Therefore, z;4+1 < (22*—1)v/2%*. Letus
observe that (3.2) will be satisfied if we take & — 1 instead of n. Since h — 1 < n, we
can assume that (3.3) is satisfied for random variables &y, ..., &,y and uy, ..., ujp—1.
Consequently, the above inequalities imply

K w K 2% —1)
P{U =A}) < WE(M +oodup)T < WU
Similarly, taking indices # < i < j < n in (3.2), we shall consider only random
variables &,41,...,&, and up41,...,u,, and we can assume that (3.3) is satisfied
for these random variables because n — h < n. With this and the above inequalities,
we obtain

K@% —1)

K o
P (U= M) = 35 (i + -+ Un)* < 5

Next, by (3.2), we have

1 o v
P({D1Z)k})fATYE(ul—i-m—i-un)2 :,XTY and P({Dzzk})fﬁ.
Let us observe that in the particular cases # = 1 and & = n, the above

inequalities are trivial. Similarly as in ([21], Theorem 2.12.1), we can verify that
M,: < max[U; + Dy, U, + D;] and therefore,

P({M=2}) s PAUI+ DI = A) + P (U + D22 A). G4

On the other hand, we have

P U+ Dy = A)) = P({Ur = Ao)) + P ({D1 = A1})

200
B ERCEINER | 5

wom

for positive numbers Ay and A; such that A = Ay + A;. It can be verified ([21],
Theorem 2.12.1) that for positive numbers Cy, C, A, §, and y such that§ = 1/2y+
1), we have

. G G I s 571/8

min | — + —[=—|C  +C ,
Ao+A =2 [Aéy ,\%V] ,\%V [ 1]

where the minimum is taken over all positive numbers A and A; such that Ag+A4; =

A. Therefore, (3.5) implies

o 5 1/8
P(WﬁD@M)S%[(%) +1} :
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In a similar way, we obtain

200 s
P (U2 4 Dy = ) = 52 [(M) + 1}

1/6

220{

Therefore, (3.4) implies

: w [ (KE® -1))° e
Pz =35 | (N52) |

For o > 1/2 and sufficiently large K > 1 satisfying 2°[1/2°% + 1/K%] < 1, we
have s
KQ* - 1)\’

20 _1\" 1 2% — ]
(5) +w )~ (5)
as K — oo. Therefore, for sufficiently large K > 1, we get
1/8 1/8
KQ* — 1)\’ B 20 1\
220 =K ) T =K

Then for sufficiently large K > 1, we get

Indeed, we have
§

P ({M': = A}) = I;Z’:E(ul ot uy)™

with K, o = 2K. O

Lemma 3.2. Let y > 1 and an integer « > 1 be given and suppose there are
random variables & : Q — R™ and u; : Q — Rt for i = 1,...,n such that
E( + -+ 4 u,)* < oo and

1
P ({IS; —Si Zl})SA—YE(ui+1+"'+Mj)a (3.6)

forevery A > 0and 0 <i < j < n. Then there is a positive number K)/,,a such that

K,
P (M, > A}) = TE (M1 +-+ “n)a . 3.7
Proof. Taking into account the inequalities P(E; N E,) < [P(E1)]"/*[P(E;)]"/?
and xy < (x + y)? for E;,E; € F and x,y € R, we can easily see that (3.6)
implies
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P({IS; = Sil = A, Sk = S;| = A})
<[P ({18, —Si1 = A1 [P ({ISe = 551 = ah)]"*

— a—1/2 — a1/2
1 1
= 72 E Z u T E Z u
i<l<j L j<I<k
- o o
1
([ Zu]e 2
i<l<j j<l<k
— o
<25 1 »
= Zul-l-z u —ﬁ(u,’+1+"'+uk) .
_i<l§j j<I<k

Then the assumption (3.2) of Lemma 3.1 with y/2 and «/2 instead of y and «,
respectively, is satisfied. Therefore, by virtue of Lemma 3.1, we obtain

, K
P({My=2}) = SE @+ +u)"
with K = K, /3.4/2. On the other hand, (3.6) implies

P (IS = A1) = 2B (4o 4 )

With this and inequality (3.1), we obtain

’

KO(
P ({M, > 2}) < Ayy’ E @+ -+ ny)®

with K;’a =27 (1% + 1). Then (3.7) is satisfied. O
We can prove now the following result.

Theorem 3.6. A sequence (X"):2, of continuous m-dimensional stochastic pro-
cesses X" = (X"(t))o<t<r on a probability space P = (2, F, P) is tight if for
every € > 0 there is a number a > 0 such that P(|X"(0)| >a) < € forn > 1
and there are y > 0, an integer o > 1, and a continuous nondecreasing stochastic
process I' = (I'(t))o<i<r on P such that E[T'(T) —T'(0)]* < oo and

P ({|X"() = X" ()| = A}) = %EIF(I)—F(S)I“ (3.8)

forevery n > 1, A >0, and s,t € [0,T].
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Proof. For simplicity, assume that 7 = 1 and I'(0) = 0 a.s. It is clear that
(X™)p2, satisfies condition (i) of Theorem 2.4. Therefore, by virtue of Remark 2.1,
it is enough only to verify that for every & > 0, one has

sup |X"(s)—X"(j8)|28}> =0. (3.9)

lim sup Z P
5—1 Jjé<s<(j+D$

§—0 ,,>1 .
-

Fix n > 1 and j > 1. For a positive integer k, consider m-dimensional random
variables &/,... &/ defined by

' . 1
o xr(js+Ls)—xm(js+ s
&; (1 +tx ) (/ +—
fori = 1,..., k. Immediately from (3.8), it follows that (3.6) is satisfied with

. -1

for [ =1,2,...,k, because
P(i[s; =S|z} =P ({ ‘X (j8 + ’Eé’) _x (j8 + is)

1 o AT
A—yE‘r(erE(s)—r(ﬂs+;)

1)

IA

o

_ ;—yE Y [r (j8+£8)—1“(j8+1%8)}

i<l<j
el i\
_A_)/ (ul+1++u1) .

Therefore, by virtue of Lemma 3.2, there is K}/,’a > (0 such that

’

K)’a o
zk}) < A_};E(”1+"'+Mk)

X (j8+ ’Eé’) — X" (j§)

P ({ max
0<i<k

7

K, , -
= E[CG+DH-T "
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Similarly as in [21], Theorem 2.12.3, by continuity of X", it follows that

d
Therefore, for every n > 1 one has

>

j<§—1

’

K
sup | X" (s) = X" (jO)| = l}) < ZED(( + D8 —T (oI

J6<s<(+1)s AY

sup X" (s) = X" ()| = /\§)

Jé=s=(j+1)8
Ky . .
< FEQAs YL TG+ DO =T8¢

j<81
where -
A= max I+ 08 -T GBI
Hence it follows that

>

j<§71

’

K o
sup | X" (s) — X" (jO) 2/1}) < RE[AT(1)],

J8<s<(i+1)8 AY

because Zj w1 [D((j +138) =T (jé)] <T'(1) as. By continuity of the stochas-
tic process I' = (I'(¢))o<s<1 and the assumption o > 1, we get lims—o Hs(w) = 0
fora.e. w € Q, where Hs(w) = supy.,; [['(t + 8)(w) — L) ()] forw € Q.
Hence, by the properties of T, it follows that lims_o E [HsT'(1)] = 0 for every
n>1.But As < Hs a.s. Then

>

j<871

’

K
sup | X" (s) = X" (j§)| = Ay | < ZEE[HsT(1)].
J8<s<(i+1)s AY

Therefore, (3.9) is satisfied, which together with the property of the sequence
(X"(0))72, implies that (X")72, is tight. |

n=1

4 Special Classes of Stochastic Processes

There are two important classes of stochastic processes: martingales and Markov
processes. We characterize them by giving their most important properties. Sim-
ilarly as above, we shall denote by Pr a complete filtered probability space
(2, F,F, P) with a filtration I = (F;),>0 satisfying the usual conditions.
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A real-valued IF-adapted stochastic process X = (X;);>¢ is said to be an F-
martingale or simply martingale (supermartingale, submartingale) on Pr if (1)
E|X/| < oo fort >0 and (2) E[X|Fs] = X; (E[X:|F] < X, E[X/|Fs] =
Xs)as.for 0 < s <t < oo. A martingale X = (X;);>0 on Pr is said to be
closed by a random variable Y on Pr if E|Y| < oo and X, = E[Y|F;] a.s. for
t>0.

We shall present some properties of martingales.

Theorem 4.1. Let X = (X,),;>0 be a supermartingale on Py. The function Rt >

t — E[X;] € R is right continuous if and only if there exists a unique modification
Y of X thatis cadlag. a

Corollary 4.1. If X = (X;)i>0 is a martingale on Pr, then there exists a
modification Y of X that is cadlag.

Proof. If X is a martingale, then the function R* > 1 — E[X,] € R is constant,
and hence it is continuous. By Theorem 4.1, there exists a unique modification Y
of X thatis cadlag. |

Theorem 4.2. Let X = (X;);>0 be a right continuous supermartingale (martin-
gale)on Py, and S and T bounded ¥ -stopping times such that S < T a.s. Then
Xs and Xt are integrable and Xs > E[Xr|Fs] (Xs = E[X7|Fs]) a.s. O

If T is an IF-stopping, time then sois t A T for each # > 0. Given a stochastic
process X = (X;);>o then the process (X,a7);>0 is denoted by X7 and said to
be the process stopped at 7.

Corollary 4.2. If X = (X;)i>0 is an F-adapted and cadlag process and T
is an IF-stopping time, then XIT = Xy, + Xrlysry and XT is also
F-adapted. O

We shall show now that if X is a right continuous and uniformly integrable
martingale, then the stopped process X7 is also a martingale. Recall that a
family (Xy)qep of random variables on Py is said to be uniformly integrable if
limy o0 SUPyep Jijx, (zny [ XaldP = 0.

Theorem 4.3. Let X = (X;);>0 be a uniformly integrable right continuous
martingale on Py and let T be an F-stopping time. Then X7 is also a uniformly
integrable right continuous martingale.

Proof. Ttis clear that X7 isright continuous. By Corollary 4.2, it is also IF-adapted.
Hence, by the equality X71y>73 = X — X, 1 <7y and properties of stopping
times, it follows that X71y>7y is F;-measurable for every 1 > 0. Let 0 < s <
I < oo be fixed. We have 1.7y = Loy — Lgery - Loy and Lgspy =
L>7y + Lgs<ry - Ly=13. Therefore,
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EX!|F] = E[Ly<ry X, + Lysry X7 | F]
= E[lyry Xi|F] — E[lsery - L1y Xi | Fil
+E[Lg>ry X7l F] + Elg<ry - Lusry X7]F]
= Ly E[X|F] + E[l=my X7 | F].

But X71y>7y is Fy-measurable and E[X;|F;] = X, for every t > 0.
Therefore, E[X]|F,] = Loy X + Loy X7 = X[ O

In what follows, we shall need the following results.

Lemma 4.1 (Jensen’s inequality). Assume that ¢ : R — R is convex, and let X
and ¢(X) be integrable random variables on Py . For every o-algebra G C F,
one has ¢ (E[X|G]) < E[p(X)[G].

Corollary 4.3. Let X = (X,);>0 be a martingale and let ¢ : R — R be convex
such that ¢(X;) is integrable for 0 <t < oco. Then ¢(X) is a submartingale. In
particular, | X| and X?* are submartingales. |

Theorem 4.4 (Doob’s martingale inequality). If X = (X;);>0 is a continuous
martingale on Py, then for all p > 1, T > 0, and A > 0, one has
P ({supo< <7 1X/] = A}) < L E[| X7|7]. g

Theorem 4.5. Let X = (X,);>0 be a positive submartingale on Py . Forall p >
1, one has || sup,>q | X||| < ¢ sup,¢ [| X, where q is suchthat 1/p+1/q =1,
and | - || denotes the norm on the space LP (2, F, P,R). |

Corollary 4.4. If X is as in Theorem 4.5 with p = 2, then E (sup,s |X,f|)2 <
4supt20E|X,|2. |

Theorem 4.6. Let X = (X;);>0 be F-adapted cadlag process on Py such that
E|Xr| < 00 and EXr = 0 for any F-stopping time T. Then X is a uniformly
integrable martingale on Py.

Proof. Let 0 <s <t <oo and A € F;.Forfixed u > 0,let up =u if v € A
and uy = oo if w € A. It can be verified that for u > s, the random variable
up : Q2 — R U {oo} is an IF-stopping time. Moreover,

/XL,AdP = / XL,AdP—/ XoodP :—/ XoodP,
A Q Q\A Q\A

because E[X,,] =0 for u > s. Thusfor A € F; and s <¢,onehas E[X,;1A] =
E[X;17] = —E[Xoolg\a]- Then E[X;|F] = X, for 0 <s <t < 00. |

We can also consider discrete-time martingales. Given a probability space
(2, F, P) and an increasing sequence (F,)2, of sub-o-algebras F, of F, we
define a discrete-time martingale as a sequence (X,)52, of random variables on
(2, F, P) adapted to (F,)72, such that E|X,| < oo and E[X,1|F,] = X,
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for n > 0. We can also consider the discrete martingales (Xn)”z(loo with respect
to a discrete filtration (fn);;z&oo. For such martingales, we have the following
backward convergence theorem.

Theorem 4.7. Let (X,)n,<0 be a uniformly integrable discrete-time martingale on
a probability space (2, F, P) with respect to a discrete filtration (F,)n<o. Then
X, = E[Xo|F-wo] a.s. and X, — E[Xo|F-co] in the L-norm topology, where
Feoo = \u<oFn- a

As a consequence of this theorem, we obtain the following result.

Lemma 4.2. Let Py = (Q,F,F, P) with F = (F;)o<t<r be such that Fr = F
and let (tx)72, be a decreasing sequence of [0,T] converging to t* as k —
00. Then for every X € L(Q,R), one has E[X|F,] — E[X|F+] as. and
E[X|F:] = E[X|Fi*] in the L-norm topology as k — oo.

Proof. Let F, = F;_, and X, = E[X|F,] forn = —k with k = 1,2,....
Put tp = T and Xo = E[X|F,]. We have sup,_, E|X,|* < E|X|*> < oo, and
(X»)n<o is a uniformly integrable discrete martingale with respect to the discrete
filtration (F;),<o. Then by virtue of Theorem 4.7, we have X, — E[Xo|F-oo]
a.s.and X, - E[Xo|F-c] in the L-norm topology as n — —oo. But

Xy = E[X|F_,] = EIX|F,], Xo=E[X|Fr]=E[X|F]=X

and F_oo = (,<0 Fieny = (ko Fu = Fi+ . Therefore, E[X|F,] — E[X|F+]
a.s.and E[X|F,] — E[X|F;+] in the LL-norm topology as k — oo. |

Remark 4.1. Tt can be verified that if ¥ € (2, R?) and (Fi)i> is a filtration of
F and Fo isa o-algebra generated by {F1, F2,...},then E[Y|Fi] — E[Y|Foo]
a.s.and E[Y|Fi] — E[Y|Foo] in the LL-norm topology as k — oo.

Proof. Let My =: E[Y|F] for every k > 1. It is clear that a discrete martingale
(My)r>1 is uniformly integrable. Then there exists M € IL(Q,R¢) such that
M, — M as. in the IL-norm topology as k — oo. It remains to prove that
M = E[Y|Fs]. To see this, let us observe that

My — EIM|F]|| = | E[Mk|F] — EIM|Fe]|l < |Mx — M ||
for every k > 1, which implies that ||My — E[M|F]|| — 0 as k — oo. Hence

it follows that for every k > 1 and every A € Fj, we have fA(Y —M)dP =0,
because

/(Y — M)dP = / E[(Y — M)|F]dP = /(Mk — E[M|F])dP
A A A

for k > k and J(My — E[M|Fi])dP — 0 as k — oo. This implies that [, (Y —
M)dP =0 forevery A € | J;—, Fk. Therefore, E[Y |Foo] = E[M|Foo] = M. O
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An F-adapted cadlag process X = (X;);>0 on Pp is said to be a local F-
martingale if there exists an increasing sequence (7},)2, of IF-stopping times T,
with lim, o 7T, = 00 a.s. such that the process (X;a7, 1¢z;,>03)r>0 is a uniformly
integrable martingale for each n > 1. Such a sequence (7,);2, of IF-stopping
times is called a fundamental sequence of a local martingale X. It can be verified
that if X and Y are continuous real-valued local martingales, then there exists
a unique (up to indistinguishability) IF-adapted continuous process of bounded
variation (X,Y) with (X,Y)o = O a.s. such that XY — (X,Y) is a continuous
local martingale. The process (X, Y) is called the cross-variation of X and Y. If
X =Y, wewrite (X) = (X, X) and call this process the quadratic variation of
X. It is nondecreasing and IF-adapted. For a continuous process X = (X;)/efo,1]
on a probability space (€2, F, P), its quadratic variation can be also defined in
the following way. Given a partition A = {O =1 < tl <--<t, =T}, we
can define the process (X)2 by setting ( = > O(X,A,kJrl Xing)? . If a
sequence (A,)>2, of partitions 0 = " < tl < ... <ty of [0,T] is such that
the sequence (|A,[)S2, definedby |A,| = maxg<p<rn—| |t,’j_H — 1| convergingto
zero as n — oo, then we can consider for every ¢ € [0, T'], the limit in probability
of the sequence ({X )A” ° .. If such a limit exists and is independent of the choice
of sequence (A,)72,, then it is equal to the quadratic variation of X . It can be
provedthatif X = (X;);ep,] is a continuous bounded IF-martingale, then for every
sequence of partitions (A,)%2, such that |A,| — 0 as n — oo, the sequence
(0.6 ),A” ° , converges uniformly in the L2-norm topology to ({X);)o</<7-

From many viewpoints, very interesting applications have stochastic processes
X = (X;)i>o that are representable (not necessarily in a unique way) as sums
X =Xo+ A+ M, where A = (A;);>0 is a cadlag, IF-adapted process with paths
of finite variation on compacts and M = (M,);>o is a local F-martingale on a
given filtered probability space Pr = (2, F,IF, P) satisfying the usual conditions.
Such processes are said to be semimartingales on Pr. Similarly as above, we
can define semimartingales that are measurable, IF-adapted, continuous, and right
and left continuous. The class of semimartingales is stable with respect to many
transformations, such as absolute changes of measure, time changes, localization,
and changes of filtration.

By the definition of martingales and the interpretation of conditional expectations
of random variables, it follows that the martingale property means that for a given
present time s, the process has no tendency in future times ¢ > s, that is, the
average over all future possible states of X, gives just the present state X;. In
contrast, the Markov property, which will follow in the next definition, means that
the present has no memory, that is, that the average of X, knowing the past is
the same as the average of X; knowing the present. Let X = (X;);>0 be an n-
dimensional IF-adapted process on Py. Itis called an IF-Markov process if for every
0 < s <t < oo and every bounded Borel measurable function f : RY > R, one
has E[f(X))|Fs] = E[f(X))]o(X,)] as.
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Remark 4.2. Equivalently, the above process X = (X;);>o is an F-Markov
process if for each ¢ > 0, the o-algebras JF; and o({X, : 0 < u < t}) are
conditionally independent given X,. O

Remark 4.3. In particular, for f(x) = x, the Markov property defined above takes
the form E[X,|F;] = E[X/|0(X,)] a.s. forevery 0 <s <t < oo0. |

Using the Markov property, one can define a transition function for a Markov
process on Pr in the following way: for every 0 < s <t < oo and bounded and
Borel measurable function f : RY — R, we take P (X5, f) = E[f(X)|F]
In particular, if f = 1,4, the indicator function of a measurable set A C R,
then the preceding equality reduces to P(X; € A|F;) = P,;(X;,1,4). Usually, we
write Ps;(X;, A) instead of Ps;(X;,14). A Markov process X on Pr is said to
be time-homogeneous if its transition function Py, satisfies Py, = P,_; for every
0<s<t<oo.

Remark 4.4. 1f a Markov process X is time-homogeneous, then the family (P;);>o
of its transition functions P; = P;— is a semigroup of operators known as the
transition semigroup (P );>o. |

Corollary 4.5. If X is a time-homogeneous Markov process on Py, then for every
ACRY and 0 <5 <1t < o0, one has E[Lix,, en|Fi] = P(X;, A). O

In contrast to the Markov property, we can define the strong Markov property
if we require that the Markov property hold for every IF-stopping time. More
precisely, a time-homogeneous IF-Markov process X is said to be a strong IF-
Markov process if for every IF-stopping time 7 with P(T < oo) = 1, every
measurable set A C RY, and s > 0, onehas E[lyy,, ex|Fr] = Ps(X1, A).

Remark 4.5. The strong Markov property for a process X on Pr can be equiv-
alently written as follows: E[f(Xr+5)|Fr] = Ps(Xr, f) for every IF-stopping
time T and every bounded Borel measurable function f : RY — R. (|

In the next section, we define two special processes known as the Poisson
process and the Brownian motion. They are important examples of strong Markov
processes with respect to their natural filtrations. The Brownian motion belongs to
both classes of processes presented above.

5 Poisson Processes and Brownian Motion

Poisson processes and Brownian motion are the two most important examples in the
theory of stochastic processes. Assume that we are given a filtered probability space
Pr = (2, F,F, P) with a filtration I = (F;);>o satisfying the usual conditions.
Let (7,,)2, be astrictly increasing sequence of positive random variables such that
To = 0 a.s. The process N = (N;);>o definedby N, = Zn>l 1y>7,; with values
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in INU {oo}, where N = {0, 1, 2,...}, is called the counting process associated to
the sequence (7,,)72,.

Remark 5.1. If T = sup, T, , then we have [T},,00) = {N > n} = {(t,w) :
Ni(w) = n}, [T,, Ty+1) = {N =n} and [T,00) = {N = oo}. |

If sup,-, T, < oo a.s., then the random variable T = sup, | T, is called the
explosion time of N.If T = oo a.s., then N is said to be a counting process
without explosions.

Corollary 5.1. Forevery 0 <s <t < 0o, one has N, — N, = anl lger,<n- O

The increments N, — N; count the number of random times 7, that occur
between the fixed times s and ¢. Immediately from the definition of a counting
process, it follows that it is not necessarily adapted to the filtration F'. In particular,
if 7, are IF-stopping times for n = 1,2,..., then the counting process is
F-adapted. This follows from the following theorem.

Theorem 5.1. A counting process N is F-adapted if and only if the associated
random variables T, are IF-stopping times for n = 1,2,....

Proof. If T, are IF-stopping times for n = 1,2,...,with Ty = 0 a.s., then {N, =
ny ={T, <t}N{T,4+1 >t} € F, for n =1,2,.... Thus N, is F;-measurable.
If N is FF-adapted, then {7, <t} = {N, > n} € F, forevery ¢, and therefore,
T, is an IF-stopping time. |

Remark 5.2. A counting process without explosions has right continuous paths with
left limits. a

An F-adapted counting process N = (N;);>o without explosion is said to be a
Poisson process if the following conditions are satisfied:

(i) Forevery 0 < s <t < oo, the random variable N; — N; is independent of
Fs.

(i1)) Forevery 0 <s <f <oo and 0 <u <v < oo suchthat t —s = v —u, the
random variables N; — Ng; and N, — N, have the same distributions.

Remark 5.3. Properties (i) and (ii) are known as increments independent of the past
and stationary increments property, respectively. O

Theorem 5.2. Let N be a Poisson process on Pp. Then P({N; = n}) =
e ™ . (At)"/n! for n =0,1,2,... for some A > 0.

Proof (Sketch of proof). The proof runs into the following four steps.

Step 1. By the properties of the Poisson process from {N, = 0} = {N;, = 0} N
{N; — N; = 0}, it follows that P({N; = 0}) = P({N;, = 0}) - P({N; — N =
0}) = P{Ns; = 0}) - P{Ni—s = 0} for 0 < s <t < oo. Taking a(t) =
P({N, =0}),we get a(t) = a(s)a(t —s) forall 0 <s <t < co. By the right
continuity of «, we deduce that either a(f) = 0 for ¢ > 0 or a(t) = e * for
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some A > 0.If «(t) = 0, it would follow that N,(w) = 0 a.s. forall t > 0,
which would contradict that N is a counting process.
Step 2. 1Tt is verified that lim;—o(1/t) P({N; > 2}) = 0.

Step 3. By Step 2, we have P({N; > 2}) = o(t), which together with the equality
PN, =1}) =1—P({N, = 0} — P({N; = 2}) gives

1—e ™ +o(1) .
t

1
fin 7PN = 1) = i 8
Step 4. Let ¢(t) = E[a™] for 0 < a < 1. By the properties of the Poisson
process, forevery 0 < s <t < oo, we get ¢o(t +5) = ¢(¢) - ¢(s), which
in turn implies that ¢(t) = V@, where ¥ (t) = lim,_o[(¢(t) — 1)/¢]. But
p(t) = 255,a" PN, = n}), ¥(@) = ¢'(0) and y(1) = limo(p(r) —
1)/t = —A + A« . Therefore,

pt) = Za”P({N, =n})=eM Z (A1)« ’

n=0 n=

which implies that P({N; = n}) = e * - (A1)"/n!. O

Remark 5.4. The parameter A associated to a Poisson process N such that
P({N; = n}) = e . (At)"/n! is called the intensity or the arrival rate of the
process N . O

Theorem 5.3. A Poisson process N with intensity A satisfies: (i) E[N;] = At
and (ii) D[N;] = Var(N;) = At. O

Remark 5.5. A counting process N without explosion is a Poisson process if and
only if there is A > 0 such that E[N;] < oo and E[N, — N|F;] = A(t — ) for
every 0 <s <t <o00. O

Theorem 5.4. Let N be a Poisson process with intensity A. Then N, — At and
(N; — At)?> — At are martingales.

Proof. By Theorem 5.3, we have E[N, — At] = E[(N, — At)> — At] = 0. By the
independence of N; — N; on Fy,forevery 0 <s <t < oo, we get E[(N; —At)—
(Ns—As)|Fs] = E[(N;—At)—(N;—As)] = 0. Similarly, forevery 0 < s <t < 00,
we also get E[(N; — At)> — At|F,] = (Ny — As)*> — As. |

An m-dimensional F-adapted process B = (B;);>0 on Pr is called an
m-dimensional F-Brownian motion or a Brownian motion on Py if (1) for every
0 <s <t < oo, B,— By isindependentof F; and (2) forevery 0 <s <t < o0,
B, — By is a Gaussian random variable with mean zero and variance matrix (¢ —s)C
for a given nonrandom matrix C .

Remark 5.6. A Brownian motion starts at x € R? if P({By =x}) =1. |
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Remark 5.7. The existence of an IF-Brownian motion can be proved using a path-
space construction together with Kolmogorov’s extension theorem. But it is not
true that there exists a Brownian motion on every complete filtered probability
space Pr. Sometimes, the underlying probability space Py is just too small.
Nevertheless, it can be proved that there exists a complete filtered probability space
such that there exists a Brownian motion on that space. |

Corollary 5.2. If B = (B;);>0 is an F-Brownian motion on Py and E|By| < o0,
then it is a martingale on Py .

Proof. Forevery t > 0,onehas E|B;| < E|B,— Bo|+ E|Bo| < v E|B; — Bo|?+
E|By| < oo . Furthermore, forevery 0 < s <t < oo, we have E[B,— Bs|F;] =0
a.s., which implies E[B;|F;s] = By . |

Theorem 5.5. Let B = (B;);>0 be a Brownian motion on Py . Then there exists
a modification of B that has continuous paths a.s.

Proof. It can be verified that if X is a random variable with normal distribution
N(0,0?), then

2n)! 52
2mn!

Ein —

and EX>tl =0 for n=0,1,2,....

Then in particular, it follows that E|B, — B|*" = C,|t —s|" with any constant C,.
The result now follows by Kolmogorov’s continuity theorem. O

In what follows, we shall always assume that we are using the version of a
Brownian motion with continuous paths. We shall also assume that we always have
to deal with a Brownian motion with a matrix C equal to the identity matrix. We
have the following results dealing with some properties of Brownian motions.

Theorem 5.6. (i) For every o < 1/2, almost all paths of Brownian motions are
Holder continuous with exponent «. (ii) For every a > 1/2, almost all paths of
Brownian motions are nowhere Holder continuous with exponent «. a

Corollary 5.3. (i) Almost all sample paths of a Brownian motion are nowhere
differentiable. (ii) Almost all sample paths of a Brownian motion have infinite
variation on any finite interval.

Proof. (i) If the function R™ > ¢ — B,(w) € R™ were differentiable at a point
to € (0,00) for w € Q¢ C Q with Q¢ € F such that P(29) > 0, then it
would be Lipschitz continuous at that point, which is a contradiction to (ii) of
Theorem 5.6.

(ii) Since a function f : RT — R™ with finite variation is almost everywhere

differentiable, then (ii) is a consequence of (i). O

Theorem 5.7. Let B = (B;);>0 be a one-dimensional F-Brownian motion on
Pr with By = 0 a.s. Then the process M = (M,;);>0 with M; = B,2 —tisa
martingale.
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Proof. We have E[M,] = E[B? —t] = 0, E[M, — M,|F,] = E[B? — B> — (t —
$)|Fs], and E[B;Bs|Fs] = ByE[B/|Fs] = Bsz. Hence it follows that E[M, —
M| F,] = E[(B, — By)?> — (t — 5)|Fs] = E[(B, — By)*] — (t —s) = 0 for every
0 <s <t < oo. Therefore, E[M;|F;] = M, a.s.forevery 0 <s <t < o0. O

Theorem 5.8. Let X = (X;)i>0 be an m-dimensional continuous F-adapted
process on Py such that (i) E[X;— X,|F,] =0 a.s.and (i) E[(X! —X;)(th -
X{)] = 0;;(t —s) a.s. forevery 0 < s <t < oo, where 8;; = 0 for i # j and
8ij =1 fori = j. Then X isan IF-Brownian motion on P . O

Remark 5.8. It can be verified that an m-dimensional IF-Brownian motion on Pp
satisfies the strong Markov property with the stationary transition function

! [x =3P
PI(X,A)Zw/AeXp[—T dy O

Remark 5.9. It can be verified that if B = (B),>¢ is an m-dimensional Brownian
motion on Pr and ty > 0, then the process B = (B;);>0 with B, = B+, — B,
for t > 0 is an IF-Brownian motion on Py . O

Remark 5.10. A real Brownian motion can be defined on a given probability space
(2, F, P) as a continuous stochastic process § = (f;);>0 such that fp = 0 and
B is a stationary process with independent Gaussian increments such that E[f; —
Bs] = 0 and E[(B; — Bs)?] = 0%(t —s) forevery 0 < s <t < oo. Insuch a
case, we can define a filtration F# = (F,ﬂ )r>0 with an augmented o-algebra Ftﬂ
defined for every t > 0 by a family {f; : 0 < s < ¢} of random variables, i.e.,
}',’3 = (s o(Fsﬂ U N), where F,ﬂ = o{B; : s <t} and N is the collection of
all P-null sets in F. It can be verified that B is a real IF#-Brownian motion on a
filtered probability space (Q,F,F#, P). O

We shall prove that the above-defined filtration (F,’3 )¢>0 is continuous, i.e., that

FL = Ff = F), where Fl. =o(( JF}) F!. =(\o(F}) and F} =F].

s<t s>t

Theorem 5.9. Let (2, F, P) be a probability space such that a real Brownian

motion B = (B,)i=0 can be defined on this space. The filtration TF = (F,ﬂ),zo
defined in Remark 5.10 is continuous.

Proof. Let us observe that F,ﬂ_ = Ftﬂ follows immediately from continuity of the
Brownian motion f. Indeed, we have

Fl =¢ (U Ff) and F =0 (U Ffu Fﬂ(z)) ,
s>t s>t
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where FFP(1) = o(f:). But B, = lim,y, B,, where r € Q. Then FF(r) C
U(Us>t Fsﬂ) ThuS Eﬂ_ = Ftﬂ

To verify that F,’i = F,ﬂ , let us observe that for every ¢+ > s, one has
Elexp{iA(B; — ,BS)}|FS’3] = exp{—A%/2(t — s)}. Indeed, it suffices to observe that
a differential equation z/(t) = —A2/2z(¢) possesses on the interval [s, c0) exactly

one solution satisfying the initial condition z(s) = exp{iAf;}. It is defined by
z(t) = z(s)exp{—A?/2t}. In particular, we can verify that z(¢) = E[exp{i)k,B,HFf]
satisfies the above differential equation. Therefore, E[exp{iA(8; — ,BS)}|FS’8 ] =
exp{—A2/2(t — s)}. Hence it follows that

Elexpli A} F]1 = EElexpliAB}| FL1 FF] = explidBs — A% /2(t — 5)}.

Let ¢ > 0 besuchthat 0 <& <t —s. Then
Elexp{iAB}|F/,] = E[Elexp{iAB,}| F, 1 FL,]
= ElexpliAore — A2/2(t —s — )} | FL, ).

Hence, in the limit ¢ | 0, it follows that

Elexpli AB} FLL] = ElexpliABs —22/2(t—5)}| FL] = expliaf, —22/2(t—5)}.

Then E[exp{i A,B,}|Ff; ] = Elexp{i A,B,}|Ff:_] Therefore, for every measurable
and bounded function f : R — R, it follows that E[f(,Bt)|Fsﬁ] = E[f(,Bt)|Ff|_]
Let s <ty < t; and fi, f» : R — R be measurable and bounded. The above

equalities imply E[£2(Bs,) fi(Bi)IFF] = E[(By) fi(B)| FL,). In a similar way,
for s < t; <--- <t, and measurable bounded functions fi,..., f, : R —> R, we
obtain E[{fi(By)-- fu (B} EL] = ELLfi(Bu)--~ fo( By, )} FL,). Therefore, for
every t > s and F,f’3 -measurable bounded random variable 1, we have E [n|Fsﬁ =
E [anﬁ] a.s. Taking in particular the Ff:_-measurable random variable 7,, we get
E[n|F. P ] = n a.s. Hence, by the properties of the filtration F# it follows that 7 is
Fsﬂ -measurable. Then Ff:_ C Fsﬂ . It is clear that we also have Fsﬂ C Ff:_ Then

Fl =F’. O

6 Stochastic Integrals

Stochastic integrals with respect to finite-variation stochastic processes can be
thought of as an extension of path-by-path Lebesgue—Stieltjes integration. Unfortu-
nately, in practical applications we have to deal with processes with almost all paths
of infinite variation on compacts. The most important example of such processes
is Brownian motion. Therefore, it was important to define stochastic integrals in a
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way other than via Lebesgue—Stieltjes integration. A new idea for such a definition
was introduced by K. It6. We shall present it for some special classes of stochastic
processes with respect to a Brownian motion.

Given a filtered probability space Pr = (2, F,F, P) with F = (F;);50, we
say that a d-dimensional process X = (X;);>0 on Pr is F-nonanticipative if it
is measurable and IF-adapted. In what follows, we shall denote by M%F(a, b) the
family of restrictions of all IF-nonanticipative processes to the interval [a, b] such
that P({fab |X,|*dt < oo}) = 1.By L%(a,b), we denote the subset of M3 (a,b)
ofall X € M2 (a,b) suchthat E[f” |X,|*dr] < oo.

A stochastic process X € MZ.(a,b) is called simple if there exists a partition
a=1t<th <---<t =bof [a,b] such that X, = Xt,- for t; <t < tip
with i =0,1,...,r —2 and X, = X, _, for t,_; <t < b. The class of all simple
processes of M2 (a,b) is denoted by Sg(a,b).

Corollary 6.1. Every F € Sg(a,b) can be presented by F = Z;;é L g ei +
1y, 51@r—1, where @; is an JF;-measurable R4 -random variable on Py fori =
0,1,...,r—1. O

Let B = (B:);>0 be a one-dimensional IF-Brownian motion on Pp such that
B, = 0. By a stochastic Itd integral of F € Sp(a,b) with respect to a Brownian
motion B we mean an RY-random variable on Py, denoted by fa b F;dB; and
defined by fab F,dB;, = Z:f;(l)fp,-(B,iH — B,), where for i = 0,1,...,r — 1,
the F;-measurable random variables ¢; are such that F' = Z;;%)]l[,i,ti e+
L,y 010r—1-

Lemma 6.1. Let F, F.'! F?> € Sp(a,b), A1, A, €R, £ >0, and N > 0. Then:

(i) [P F) + 22F2)dB, = A, [” F'dB, + %, [” F2dB, a.s.
(ii) If F € Sp(a,b) N L3(a,b), then E[[’ F,dB,] = 0.
(iii) PU|[) FdB| > e}) < P(UJ, |F Pt > N}) + N/é>.
(iv) If F € Sp(a,b) N L2(a,b), then E| [* F,dB,|> = E [”|F,2dr.
Proof. Conditions (i) and (ii) follow immediately from the definition of the It6

integral. Assume F € Sg(a,b) N L2(a,b). By the above definition of the Itd
integral, it follows that

b
/ F,dB,

2 r—1

= Y ENFP(Byy, — B,

i=0

E

r—1

=Y E|F,E[(By,, — B,)’]
i=0

r—1 b
:ZE|F,;I.|2(I,'+1—1;‘)=E/ | Fy|dr.
i=0 “
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For the proof of (iii), let @y (¢) be defined by

B (t) = Foif t<t<ty and Y5_(|F [Pt —t;) <N
N 0 if t<t<tyy; and Z];=0|th|2(tj+l —Zj) >N

for k = 0,1,2,....,r — 1, where a = tH, < t; < --- < t. = b. The
process @y = (®y (t)4<i<» belongsto Sp(a,b)NL:(a,b) and fab | Dy (1)|?dt =
> =0 |Fi;[P(tj+1—1;) , where v is the largest integer such that ZIJ‘.ZO |F 12(1 41—
tj) < N, v < r — 1. Hence it follows that Efab |®y(1)|>dt < N. Further,
F,— ®dy(t) =0 forall ¢ € [a,b] if fab |®y(2)|>dt < N. Therefore,

( [ m.zdw}).

By Chebyshev’s inequality, the first integral on the right-hand side is bounded by
(1/6))E)| fab @y (t)dB;|> < N/&%. Therefore, (iii) is satisfied. O

/a oy (4B,

To extend the above definition of stochastic integrals on the whole space
M%F(a, b) , we need the following results.

Lemma 6.2. Let F € M3.(a,b). Then:
(i) There exists a sequence (G")S2, of continuous processes G" € Mi.(a,b)
such that 1im, e [ |G — F,[2dt = 0 a.s.

(ii) There exists a sequence (Fk),‘:o:1 of Sw(a,b) such that fab |F"— F,|*dt X 0
as k — oo.

Proof (Sketch of proof). Let

cexp[=1/(L=1)] if |t] <1

p(t):{o if 1] > 1

with ¢ > 0 be such that f_+oz° p(t)dt = 1. Forevery ¢ € (0,1/2), we define

b
VP =+ / ) (HT‘S) Fas,

where F, = F, for s € [a,b] and F, = 0 for s € R\ [a, b]. For every
fixed w € Q, we can select nonrandom functions u, such that u,(t) = 0 for
t € R\ [a,b] and fub lu,(t) — F,(w)|>dt — 0 as n — oo. It can be verified
that (Jeu,)(t) — u,(¢t) uniformly in ¢ € [a,b] as ¢ — 0 and hence that
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lim sup,_,, fab |(JeF)(t) — F,|*dt = 0 as. Taking G" = Jy;, F, we obtain (i).
To prove (ii), we take h’,j’m(t) =G"(k/m)ifa+k/m<t<a+(k+1)/m for
k > 1. Forevery § > 0, there are n = ny and m = my such that

b 8 8
P /|F,—G;’°|2dt>— < — and
p 2 2
b
" 8 8
P( / |Gf°—h,’j0’m0|2dt>§})<§

for k > 1. Hence it follows that P({fab |Fi — h )2t > 8}) < § for k > 1.
Taking § = 1/k and denoting correspondingly h* by FF, we obtain F¥ e

n9,Mo

Sp(a.b) and [°|FF — F|?dt 50 as k — oo. O
Lemma 6.3. Let F € L}(a,b). Then:

(i) There exists a sequence (H")72, of continuous processes H" € L%(a,b)
such that Efab |H!" — F;|*dt — 0 as n — oo.

(ii) There exists a sequence (h")%2, of Sp(a,b) N L} (a,b) such that E fab |hy —
F|?dt — 0 as n — oc.

Proof. Let G" be asin Lemma 6.2 and let N > 1. Put

t if [t|<N
dy(t) =
v Nt/|t|  if |t|>N.
We obtain |®y (t) — Py (s)| < |t — s|. Therefore, f“b |y (F)— Py (GM|?dt — 0
a.s.as n — oo. Hence, by the Lebesgue dominated convergence theorem, it follows
that Efab |®y(G) — F;|*dt — 0 as n — oo. Then forevery k = 1,2,. .., there
are N = N(k) and n = n(k, N) such that E [”|®y(G") — F[2dt < 1/k.
Taking H* = ®y(G") with N = N(k) and n = n(k, N), we can see that (i) is
satisfied. The proof of (ii) is similar to thr of (ii) of Lemma 6.2. The A" are of the
form @y (F"), where F" are as in Lemma 6.2. |

Lemma 6.4. Forevery F € M%F(a, b) and every sequence (F")72, of Sr(a,b)

P
such that fab |F'" — F;]?dt — 0 as n — oo, there is an R?-random variable
J(F) on Py, independent of the particular choice of sequence (F")° ., such that

n=1-
[P FrdB, 5 J(F) as n — oo,

Proof. Let (F")%2, be a sequence of Sg(a, b) such that fab |F" — F|dt L0 as

n — oo. Hence it follows that f“b |F'" — F™|*dt £ 0 as n,m — oo. By virtue of
Lemma 6.1, for every ¢ > 0 and p > 0, we get
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b b b
P( /F,"dB,—/ F"dB, >£§)§p+P< / |E"—F;"|2dt>52p§).
a a a

Then the sequence ( f“b F'dB,)?2, is a Cauchy sequence with respect to conver-
gence in probability. By completeness with respect to convergence in probability
of the space of all R4-random variables on Py, there is an R¢-random variable

J(F) on Py such that [* F'dB, - J(F) as n — .

Suppose (G")32, is a sequence of Sp(a,b) such that f“b |G — F;|*dt LY 0
as n — oo. The sequence (H")%, defined by H>" = F" and H>'*! = G"

satisfies f“b |H" — F,|*dt LY 0 as n — oo. Hence it follows that the sequence
(f, b H'dB;)32, converges in probability to a random variable K(F'). Therefore,
its subsequence ( f“b H?"dB,)%, also converges in probability to K(F). By the
definition of H?" , it follows that J(F) = K(F) a.s. a

The random variable J(F) defined in Lemma 6.4 is denoted by f“b F,dB, and
said to be an It6 integral of F € M2 (a, b) with respect to the F-Brownian motion

B = (B:)i»o. In particular, [” F,dB, € L3(Q,F,R?) for F € L}(a,b).

Theorem 6.1. Let F,F,' F? € Mk(a,b), A1, 22 € R, ¢ > 0, and N > 0.
Then M F! + M F? € M%F(a, b), and the following relations are satisfied.:

(i) [PuF! + 22F?)dB, = A1 [ F'dB, + A, [* F2dB, a.s.
(i) P{| [’ FdB/|>¢}) < PA[’ |F|Pdt > N}) + N/&>.

Proof. The equality (i) is a consequence of the definition of the Itd integral and
Lemma 6.1. For the proof of (ii), let us assume that (F")52, is a sequence of

Sr(a,b) such that lim,e0 [ |F/—F,|2dt = 0 a.s. By the definitionof [ F,dB

we have fub F'dB, £> fab F,dB; as n — oo. By virtue of Lemma 6.1, we have

b , N’
P( /aFtndBt>8§)fP< )+W

for ¢ > ¢ and N < N’.Passing to the limit n — oo, using the above property of
the sequence (/ ab FI'dB;)% |, and taking ¢ 1 ¢ and N’ | N, we obtain

n=1>
b

N
P( [F,dB,>e})§P( )+—2.
a &

b
/ |F'?dt > N’

a

b
/ |F,|*dt > N
a
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Theorem 6.2. Let F € M3.(a,b) and let (F")°2, be a sequence of M%(a,b)
such that fab |F'" — F|’dt L0 as n - oo. Then fub F'dB, EN f“b F,dB, as

n — oQ.

Proof. By Theorem 6.1, for every ¢ > 0 and p > 0, one has

b
P( >8})§p+P< / |Ft”—Ft|2dt>£2p})

for n = 1,2,.... From this and the properties of the sequence (F")%2,, the result

follows. O

Theorem 6.3. If F € Lk(a,b), then (i) E [’ FdB, = 0 and (ii) E| [’
FdB.2=E [7|Fdt.

b
/ (F' — Fy)dB;

Proof. Let (F")%, be a sequence of Sg(a,b) N L3(a,b) such that E fab |F" —
F|?dt — 0 as n — oo. This implies that E [ |F"|’dt — E [”|F,|2dr as
n — oo. By virtue of Lemma 6.1, we get Efab F'dB, =0 and E| fab F'dB,|* =

E fab |F) |2dt for every n = 1,2,.... Hence in particular, it follows that ( fab F"
dB;)?2, is a Cauchy sequence of L*(Q,F, P, ]Rd). By virtue of Theorem 6.2,

it converges in probability to f“b F,dB;, which implies that E| [, b F'dB,|* —
E| [’ FdB,|* as n — oo. Then E| [’ FdB,|> = lim, 00 E| [* F'dB,|?> =
lim, o0 E [ |F2dt = E [ |F|dz . O
Remark 6.1. For every F € L% (a,b), we can define the integral E fab F,dt as
the integral of a Y'p-measurable function on [a, b] x © with respect to the product
measure df X P a.s., where )|, denotes a -algebra of IF-nonanticipative subsets
of [a,b] x Q. O
Corollary 6.2. For every G € L*([a,b] x Q, Zp,RY), F € Mk(a,b), and ¢ €
L2(Q, F,, R), one has E [(¥ - G)dt = E[y [* G,dt] and [*(y - F),dB; =
v [* FdB,.

Proof. It is clear that ¢ - G € L?([a,b] x Q, Zp,RY) and ¢ - F € M2.(a,b).
Immediately from Fubini’s theorem and properties of the integral fab (¥ -G),dt, one

obtains
b b b
E/ (Y- G),dt :E|:/ (w-G)fdt] :E|:10/ Gfdti|.

Let (F")?2, be asequence of Sy(a, b) such that fab |F'—F,|dt LY 0 as n — oo.
It is clear that ¢ - F" € Sp(a,b) for every n > 1 and fab (¥ - F")y — (Y -
F),2dt 5 0, because [* |y - F"), — (¢ - F),’dt = v2 [*|F" — F|*dt and
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f |F'" — F|2dt 5 0 as n — oo. Therefore, f (¥ - F"),dB; X f (¥ - F),dB,
as n — oo. Immediately from the definition of fa (¢ - F"),dB,, it follows that
f“b (- F"),dB;, = ¢ fub F!"dB,. Furthermore, we have fab F"dB, 5 fab F,dB; as

n — oo. Therefore, wfub F'dB, E> wfab F,dB, as n — oco.Butforevery n > 1,
we have

IA

b b

/ (W - F),dB, / (v - F"),|dB,
b b

w/ F,"dB,—vf/ F.dB,

/ " P8, - / " F)ldB,

/ab(w . F),dB, —w/ab FdB,

+

b b
+ul| [ Fras- [ Fas,|.
a a
Therefore, dB, — v fab F,dB,| = 0 a.s., because fab(w - F"),dB, 5
[P - F)dB, and [” F'dB, > [’ F,dB, as n — oo. O

7 The Indefinite It6 Integral

Given the above filtered probability space Py, by £2 we shall denote the space of
all F-nonanticipative processes f = (fi)i>0 such that f € L3(0,T) for every
T > 0.For f € ﬁ% and a one-dimensional Brownian motion B = (B;):>0
on Pr, a stochastic process ( fot f:dB:);>o is called an indefinite Itd integral
corresponding to the pair (f, B).

Corollary 7.1. For the pair (f, B) given above, the indefinite It0 integral (fot fud
B:):>0 is F-adapted.

Proof. Let T > 0 and suppose f €8r(0,T) N LE(0,T). Forevery t € [0, T],
one has fo f:dB, = Zi:l Ji (B, — By), where 1 = t. Hence it follows
that fot frdB; is F;-measurable, because f, (B, , — B;) is }',k -measurable for
i = 1,2,...,k—1.If (f")22, is asequence of Sp(0,7) N L2.(0,T) such that

EfOT | f* — fi|’dt — 0 as n — oo, then fo fl'dB; is F;-measurable for every
fixed t € [0,T] and n > 1. Hence it follows that fot f:dB; is F;-measurable for
every 0 <t < T andevery T > 0, because fot Sfl*dB, — fot f:dB; as. as
k — oo for every increasing subsequence ()72, of (n);2, . O
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Theorem 7.1. For every T > 0 and f € E%F, there exists a continuous
modification (J;)o<i<r of (fy fedB:)o<i<t -
Proof. Let (f")%2, be a sequence of Sp(0,7) N E%F(O, T) such that f" =

n=1
it 0 L + ¢4 Ly and E [T 1 £ = fidi — 0 as n — oo. Put
I,(t) = [y f'dB, and I(t) = [y f:dB, for t € [0,T]. Immediately from
the definition of 7,(¢), it follows that for every 0 < s < t < T, one has
fof f'dB, — ) f'dB, = f; f"dB, a.s. Hence continuity of 1, = (I,(1))o</<T
for every n = 1,2,... follows. Furthermore, for every 0 < s < ¢t < T and
n=1,2,...,o0nehas

ElL,(0)\F] = E [ /0 " f1aB, + / t ft”dBrlfs}

S
- [ flaB+E| Y ¢NBy,, - ByIR

s<t"<t" | <
sStj<ti <t

= [ £raB o+ X EWEB, L, - BIFF]
J

- /0 F14B, = 1,(5).

because B = (B;);>0 is an F-martingale. Then I, = (1,,(¢))o<:<r is for every
n = 1,2,... an F-martingale. Thus [/, — I,, is also an F-martingale for each
n,m = 1,2,.... Therefore, by Doob’s inequality, we get

g

which by the properties of the sequence (f”);2,, implies that P({supy<,r

[Lnjy, () — L (1) > 27%1) < 27% forevery k = 1,2,... and every increasing
subsequence (nx)72, of (n)°2,. By the Borel-Cantelli lemma, we obtain

IA

L BT - 1T
&

0<t<T

sup |1,(t) — I,(¢)| > £§ )

1 r n m|2
SE \ | = S,

g2

P({ sup Ly, (1) — In ()] > 27k for infinitely many k}) =: 0.
T

0<t<

Therefore, for ae. w € Q, there exists kj(w) such that supy, <7 [ln,, (1) —
I, (t)] > 27% for k < ki(w). Then the sequence (I, (1))g2, is uniformly
convergent for ¢ € [0, T'] a.s. Let J = (J(¢)o<:<7 be an a.s. limit of the sequence
(In, )72, of continuous processes I, = (I, (t))o<;<r. Itis a continuous stochastic
process on Py. Since I, (1) — I(t) forevery t € [0,T] as k — oo in the L.2-
norm topology, we must have /(z) = J(¢) a.s. forall ¢ € [0, T]. |
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Corollary 7.2. Forevery T > 0 and f € L3, the process 1 = (fot J:dB)o<i<r
is an ¥-martingale and

g

forevery A >0, where 1(t) = fot f-dB:.

T
sup |1(7)] zx}) < %E/ | fi|de (7.1)
0

0<t<T

Proof. We can assume that [ is a continuous process. For every n = 1,2,...,
let I, be the stochastic process defined in the proof of Theorem 7.1. It is an IF-
martingale. Therefore, by Doob’s inequality, it follows that there exists an increasing
subsequence (ny)g>, of (n)S2, suchthat [, (t) — I(¢) inthe IL2-norm topology
forall + € [0,T] as k — oo. Then the process I = (I(t)o<;<r is also an -
martingale. The inequality (7.1) now follows immediately from Doob’s martingale
inequality. |

From the above results, it follows that forevery 7' > 0 and f € L2 the process
I = (f(; f+dB.)o</<T is a continuous FF-martingale such that E|I(z)|> < oo for
0 <t < T. This is not true in the general case for f € M%(O, 00). But it can be

verified that in such a case, the process ( fot deBt) is a local F-martingale.

0<t<T

It is enough to define for every n = 1,2,... an F-stopping time 7, by setting
T, = inf{t > 0 : [j|f[’dt > n} An.Then P({T, < n}) = 1, P({T, <
Ti+1}) = 1, and P({lim,00 T, = oo0}) = 1. For every n = 1,2,..., we
have I(t N Tn) = ()tATn frdBr = f()t ]l{tST,,}frdBr and foooE[ﬂ{rsTn}lfr|2]df =
fon E[Li;<r| fe|’ldt < n. Then the process {I(t A T,) : ¢ > 0} is a square
integrable IF-martingale for every n = 1,2, .... It can be verified that for every
n=12,...,afamily {I/(t A T,) : t > 0} is uniformly integrable.

Let us note that the above-defined It6 integral can be defined for IF-nonanticipative
matrix-valued processes with respect to vector-valued F-Brownian motions B =
(B',..., B'™), where B!, ..., B™ denote real-valued F-Brownian motions on Py
such that B’ and B/ are independent for i # j . In such a case, we consider a
matrix-valued stochastic process F = (f"),xn with f € M%(0, c0) and define
for every T > 0, a multidimensional Itd integral fOT F,dB; tobe an n x 1 matrix
of the form

*

T mo T nooer o
/ FdB, =: Z/ f,‘de,f,...,Z/ fVdB! | .
0 0 0

J=1 J=1
where x* denotes the transpose of x € IR". It can be verified that all properties of
the Itd integral presented above can be extended to the multidimensional case.

Remark 7.1. Similarly as above, we can define stochastic integrals with respect to
continuous local martingales. In particular, if M is a continuous local martingale
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and @ is an FF-predictable process on a filtered probability space Pr = (2, F,F, P)
such that E| fOT <I>t2d (M),] < oo for every T > 0, then a stochastic integral
of ® with respect to M on the interval [0,¢] is denoted by fof o, dM, . It
can be verified that a family I(®, M) = ( fot d,dM;),>0 is a continuous local

martingale on P and that for every continuous local martingale N on Py, one
has (I(®, M), N), = [; ®,d (M, N), forevery t > 0. O

8 Ito’s Formula and the Martingale Representation Theorem

In the theory of stochastic processes, we have no differentiation theory in the
classical sense, only an integration theory. Nevertheless, it turns out that it is possible
to establish an Itd-integral version of the chain rule, called It6’s formula. It is very
useful for applications and is connected with Itd processes. Let Py = (2, F, F, P)
with F = (F,),;>0 satisfying the usual conditions, and let B = (B',..., B™) be
an m-dimensional F-Brownian motion on Pp. Assume that F = (f!,..., f")*
and G = (g"),xm are F-nonanticipative processes with f? and g” such that
PASC I fildr < oo}) =1 and P({ [y |g/ Pdt < oo}) =1 fori =1,2,....n
and j =1,2,...,m

An n-dimensional stochastic process X = (X;);>0 on Pr defined by X, =
Xo+ fot F.dr + fot G.dB; as.fort > 0 is said to be an n-dimensional Itd process
starting at X with stochastic differential dX on [0, co0) denotedby dX, = F,dr+
G,dB, for t > 0. We have the following theorem, known as It6’s lemma.

Theorem 8.1. Let X = (X,)/>0 be an n-dimensional Itd process on Pr having a
stochastic differential dX;, = F,dt + G,dB, for t > Owith F = (f',..., f"*
and G = (g7),xm such as above. Assume that g : [0,00) x R" — R” isa
C'2 -map. Then the process Y = (Y,);>o0 defined by Y, = g(t,X,) for t > 0 is
a p-dimensional It6 process having a stochastic differential dY = (dY;);>0 with
dY, = (dY},...,dY,”) and dY} defined by

n

92 gk
k i
dyf = —(t X,)dr + E —(z X)dX! + = § E o, (z X,)dx!dx;/

i=1 l—l

for k = 1,2,...,p, where dB,idBf = §;;dt and dB{dt = dtdB,i = 0 for
i,j=12,....,m. O

Example 8.1. Let r,a € R and let X = (X;);>0 be a stochastic process on Pp
such that dX; = r X;dt + o X;dB; for t > 0, where B = (B;):;>0 is a given
F-Brownian motion on Py . Using It6 formula, we can determine the process X .
To do this, let us rewrite the above equation in the form dX,/X; = rdt + adB;.
Taking g(#,x) = In(x) for x > 0, immediately from It6’s formula we obtain

dX,f 1

1 1 1
d(In(X,)) = 7 X+ (_F) (dX,)* = < 2X2a2X,2dt = T—Eazdt.
t t t ¢ t
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Therefore,

dx. ‘ 1
rt+aB, = | —L = / d(In(X,)) + =t .
o Xi 0 2

Assuming that X, # 0 a.s., we get

a.s. for t > 0. Then

1
X, = Xoexp [(r — Eaz) t+ ozB,i| a.s.

Thus X = (X,),>o is defined by X, = Xpexp(ut + aB;) as. for t > 0 with
p=(r—z0?).

A process X = (X;);>0 of the form X, = Xoexp(ut + aB;) with o, 0 € R
is called a geometric Brownian motion. Such processes are important as models for
stochastic prices in mathematical economics.

Remark 8.1. As an application of Itd’s formula, it follows that for every p > 2,
there exist positive constants K; = K;(p) and K, = K,(p) such that

K E[(M)!] < E[ sup IMIIP] < KE[(M)}?
0<t<T
for 0 <t < T,every T > 0 and every continuous local martingale M such that
E[|M7|?] < o0. O

Immediately from the properties of stochastic processes defined by indefinite 1t6
integrals, it follows that for a given matrix-valued process G = (g ),xn Wwith
g7 € M%(0,00) and an m-dimensional F-Brownian motion B = (B;),»o, the
process X = (X;);>1 with X; = X, + fot G.dB; for t > 0 is a continuous
n-dimensional local IF-martingale. It can be proved that for local martingales of
certain types, the converse is also true. We precede the presentation of such a
theorem by notions dealing with extensions of filtered probability spaces. Given
a filtered probability space Pr = (2, F,IF, P) with a filtration ' = (F;),>0, we
will say that a filtered probability space P]F = (Q.F.F, P) with T = (-7:t)r20 is
an extension of Py if there exists an (}' F)-measurable mapplng T:Q - Q
such that 7= '(F,) ¢ F, fort > 0, P = P on™ "', and for every Z €
L®(Q, F, P,R?), an R¥-random variable Z on 75]§ defined by setting Z (&) =
Z(n(®)) for @ € Q satisfies E[Z|F;](&) = E[Z|]F](n(&)) forevery & € Q.
There is a more general extension, called the standard extension, of a probability
space Pr. It is connected with the following problem: given an IF-adapted stochastic
process X = (X;);>0 on a filtered probability space Pr = (2, F,F, P) with
a filtration ¥ = (F;);>0, we may need an m-dimensional [F-Brownian motion
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independent of X. But because Pr may not be rich enough to support such a
Brownian motion, we must extend the probability space in order to construct this.
To do this, suppose (22, F’, P’) is a another probability space on which we have
given an m-dimensional Brownian motion B’ = (B’);>¢, and let

Q=QxQ, F=F®F, P=PxP, téd=0w for ® = (w,0') € Q.

IfF = (]—",f),f>0 is a filtration on (Q F, P) such that F,@F D F, D F,® {Q, 0},
then 73]? = (Q,F.F, P) with IF = (]:,),>o is called a standard extension of the
filtered probability space Pp . It can be verified that a standard extension of a filtered
probability space Py is an extension of this space. Let us observe that the filtration
IF defined above may not satisfy the usual conditions, so we augment it and make it
right continuous by defining Fi = Mo a(]-" UN), where AV is the collection of
all P-null sets in F . We also complete F by defining F = cr(}' UN). We may
extend X and B to F- -adapted processes on P by defining X, (&) = X;(w) and
B/(®) = B;(«') for & = (w,®’) € Q.Then B = (B,),o is an m-dimensional
Brownian motion, independent of X = (X )0 -

Remark 8.2. 1f Pr = (2, F,F, P) is separable, then there is a separable standard
extension of this space.

Proof. Let us take in the above definition of the standard extension of Pp a prob-
ability space (', F’, P’) that is separable and denote by (4,)52, and (A;n);’;l
sequences dense in ]—" and F’', respectively. Let A € F, A’ € F’ and denote
by (An,)72, and (A e subsequences of (A4,);Z; and (A )y » respectively
such that P(AAA,,) — 0 and P'(A’AA;, ) — 0 as k — oo. We obtain
Ap, x Ay, € FxF' and P[(Ax A)A(A, x A,’nk)] = (P x PH[(Ax A)A(Ap, x
A, ] <3P(AAAy)-P'(A'AA;, ) . Therefore, P[(AxA’)A(AnkxAjnk)] — 0 as
k — oo . Hence it follows that for every A € F, there is a subsequence (Cy)p2,
of (4, x A},)%°, _, such that P(AACK) — 0 as k — co. |

Now we can formulate the following representation theorem.

Theorem 8.2. Suppose M = (M',..., M%), with M = (M});> for i =
1,2,...,d, is a d-dimensional continuous local T-martingale on Py such that
for every i,j = 1,2,...,d, the function Rt > t — (Mi Mj) (w) € R
is absolutely continuous for ae. w € Q. Then there are a standard extension
PfF = (Q F.F, P) of Pr, a d-dimensional IF-Brownian motion B = (B,;),f>0
on PF, and a matrix-valued process p = (0 )gxa with p/ € M%F(O, 00) for
i,j=12,...,d suchthat:

(i) M; = [y p.dB, fort >0;
(i) (M' M7) =Y%_, fopikplide as.for t =0 and i, j =1,2,....d. O
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9 Stochastic Differential Equations and Diffusions

There are several approaches to the study of diffusions, running from the purely
analytic to the purely probabilistic. We present the stochastic differential equations
approach. It was suggested by P. Levy and was carried out in a masterly way by K.
1t6. The stochastic differential equations approach to diffusion processes provides
a powerful methodology and useful representation for a very large class of such
processes.

Given Borel-measurable vector- and matrix-valued mappings f : RT x R —
RY and g : Rt x RY — RY*™, by a stochastic differential equation SDE(f, g)
we mean a relation

t t
X, = Xo +/ f(z, X,)dt +/ g(t, X;)dB,, 9.1
0 0

written usually in the differential form
de == f(l,X[)dt +g([,X[)dBt, (92)

which has to be satisfied a.s. for every ¢ > 0 by a system (Pp, X, B) consisting of
a complete filtered probability space Pr = (2, F,F, P) with a filtration ' =
(Fi)i>0 satisfying the usual conditions, a d-dimensional FF-adapted continuous
stochastic process X = (X;);>0, and an m-dimensional FF-Brownian motion
B = (B:):>0 on Pr such that

P [/t{lfi(f,Xz)I +[gY (z. Xo)|Pydr < oo:| =1
0

holds forevery 1 <i <d, 1 < j <m and ¢ > 0. Such system is said to be a weak
solution of the stochastic differential equation (9.1). A weak solution (Pp, X, B)
of (9.1) is said to be unique in law if for every other weak solution (731@, X, ﬁ)
of (9.1), one has PX~ ' = PX!.

Corollary 9.1. If (Pg, X, B) is a weak solution of (9.1), then P({fot | f(s, Xy)
|ds + fot llg(s, Xs)||?ds < oo}) =1 forevery t > 0, where | -| and || - || denote
norms of R¢ and R4*™, respectively. O

Given a probability measure 1 : B(RY) — [0, 1], a weak solution (Pp, X, B)
of (9.1) such that PX; ' = 44 is called a weak solution of (9.1) (or equivalently
of (9.2)) with an initial distribution .

Remark 9.1. For a given (s,x) € Rt x R?, we can also define a weak solution
(Pr, X, B) of (9.1) with the initial condition X; = x a.s. O

If apart from the above mappings f and g, we are also given a complete filtered
probability space Pr and an m-dimensional IF-Brownian motion B = (B;);>0 on
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Pr , then we can look for a d-dimensional IF-adapted continuous stochastic process
X = (X:)i>0 such that a system (Pr, X, B) satisfies (9.2) a.s. for every t > 0.
Such a process X is called a strong solution of (9.2). It is clear that every strong
solution of (9.2) is also a weak solution; more precisely, a strong solution determines
a weak one. There are, however, stochastic differential equations having weak
solutions that do not admit strong ones. One such example is Tanaka’s equation,
of the form dX; = sgn(X;)dB, for t > 0.

In what follows, a weak solution (P, X, B) of (9.2) can be identified with a pair
(X, B) of stochastic processes defined on Pr . Many properties of weak solutions
of (9.2) are represented by properties of the process X . Therefore, a weak solution
(Pr, X, B) of (9.2) is often identified with the process X.

Let f = (f'....f9)* and ¢ = (g7)yxm be as above. Associate to the
pair (f.g) alinear operator L, defined on the space Coz(]Rd) of all continuous
functions /2 : RY — R with compact support and having continuous and bounded
derivatives h;i and h:,-x,- fori,j =1,2,...,d, by setting

d d
(Lyeh)(t.x) =Y £t x)h, (x) +% Y o0, (x)  (93)

i=1 ij=1

for h € C}(R?), t > 0,and x € R?, where (07)yxqs = g - g*. We shall prove
the following theorem.

Theorem 9.1. Let f : RT x RY — RY and g : Rt x RY — R pe
Borel-measurable mappings and let . be a probability measure on B(R?). The
stochastic differential equation (9.2) possesses at least one weak solution with
an initial distribution p if and only if there exist a filtered probability space
Pr = (2, F,F, P) with a filtration ¥ = (F;);>0 satisfying the usual conditions
and a d-dimensional continuous F-adapted process X = (X;)i>0 on Pr with
PX;' = w and such that for every h € COZ(]Rd), the process ¢" = (¢)1>0
defined by ¢! = h(Xf)—h(Xo)—fOt(]Lfgh)(s, X)ds a.s. for t > 0 is a continuous
local ¥-martingale on Py .

Proof. Let (Pr, X, B) be a weak solution of (9.2) such that PX;' = j. By Itd’s
formula, for every h € COZ(]Rd ), one gets

¢ d m .
HO0) =X = [ Xods+ Y [0, 0067 6. X0dB] 0.4
0 i=1j=1"0

a.s. for 1 > 0. Therefore, for every h € CZ(RY), we have ¢!' = Z?:l P
N h;i (X,) - g (s, X,)dB] as. for t > 0, where L, is defined by (9.3). Hence,
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by the properties of X and Itd integrals, it follows that a process ¢" = (¢/);>0
is a continuous local F-martingale. Indeed, let 7, = inf{r > 0 : |X,| >
n or fot lg(s. Xy)||’ds > n}. We have T, < T,4; a.s., and by Corollary 9.1,
lim, 00 T, = oco. Immediately from (9.4) and the properties of Itd integrals, we
obtain that ((p,hAT”),ZO is for every n = 1,2,... a continuous square integrable

F-martingale. Then (goth),fzo is a continuous local [F-martingale.

Assume that there exist Pr = (2, F,F, P) with a filtration F = (F;)s>0
satisfying the usual conditions and a d -dimensional continuous IF-adapted process
X = (X:)r>0 on Pp with PXO_l = u and such that for every h € COZ(IRd) , the
process ¢" = (p"),>o defined above is a continuous local IF-martingale on P . In
particular, the process (p,h" = (GﬂrhiT,)rZO defined by

tAT)

oy =Xl — Xo— i Fi(s. X)ds .

for h; € CHR?) such that h;(x) = x; for x € K; := {x € R? : |x| <[} for
[l =1,2,... with T} = inf{t >0: X, & K;} for /] = 1,2,...is a continuous
local IF-martingale on Py . Therefore, forevery [ = 1,2, ..., thereis an increasing

sequence (S1)%, of finite F-stopping times S! such that lim,— e S} = 00 a.s.

Taking 7, = T;AS,’ for [ = 1,2,..., we obtain that (qo,f’,"\fl),zo is an IF-martingale
for / =1,2,.... Then a process ((p,h"),zo is a continuous local martingale and

t
ol =X — X} —/ Fi(s, Xy)ds
0

fori =1,2,...,d and t > 0.
Similarly, for every h;; € CZ(R?) such that &;;(x) = x;x; forx € K, the
process @i = (" );> is a continuous local FF-martingale and

o = X/ x] — XjX{ _/ (X ST (s, Xs) + X7 f' (s, Xs) + 0" (s, Xy)]ds
0
fori,j =1,2,...,d and ¢t > 0. Hence it follows that

t . ..
ol g —/0 o' (s, X,)ds = ¢, — Xoo!! = X{g" + M (95)

a.s., where

M = /I(X;' — X)) f7 (s, X;)ds +/[(X! = X)) f1(s. X)ds
o 0

. ( /0 i, Xs)ds) ' ( /0 s, Xs)ds)
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for i,j = 1,2,...,d and ¢t > 0, which by It6’s formula, can be written in the
form

t t
. _ i hp by g
M7 = /0 @ — ") £ (5. X)ds + /0 @ — ) £ (s, X,)ds

_/Ot (/0 fiu, Xu)du) dl —/Ot (/0 fi(u,Xu)du) dgy .

But X is IF-adapted. Then by virtue of Remark 7.1, (M,ij )i>0 is a continuous

local IF-martingale. It is clear that ((p,”’ Xio, b X({ qo,h"),zo is a continuous local
F-martingale, too. Therefore, immediately from (9.5), it follows that

t
(" (ph/) :/ o (s, Xs)ds as. for t>0.
0

By virtue of Theorem 8.2, there exist a standard extension PF = (Q,F.F, P)
of Pr, a d-dimensional F-Brownian motion B = (B,),>0 on P- , and a matrix-
valued process p = (p")yxq with p/ € M%(O, oo) satisfying P[[, (p")2dt <
ool =1 fori,j=1,2,...,d and such that

Z/ p’de/ P —as. for t >0,

with (ph’(a)) = got"(n(cf))) for @ € Q, where 7 : Q@ — Q is the (F,F)-
measurable mapping described in the definition of the extension of Pr because
its standard extension Py is also its extension. But

t
= )Zf—)?é—/ fi(s,)zs)ds P—as. for t>0 and i =1,2,....d,
0
where X/ (@) = X! (n(®)) for & € Q. Therefore,
X, = Xo+ f(s, Xy)ds +/ psdB; P —as. for t>0. (9.6)
0 0

Furthermore, for every A € B(RY), we have (P)?O_I)(A) = 13[)20_1(A)] =
Pl(Xo o 1)7'(A)] = (P o 77 H[Xg (D] = P[Xg'(A)] = (PX;)(A) =
w. Hence it follows that if we are able to establish the existence on Pp of
an m-dimensional TF-Brownian motion B = (ﬁ,),zo such that fot psdﬁs =
fof g(s, )?S)dl?s a.s. for ¢ > 0, then the system (75]§, X, l§) will be a weak solution
of (9.2) with an initial distribution w . Indeed, by (9.6), it follows that (9.2) will be
satisfied. Furthermore, by the identities

t
((ph’ (ph’) =/ crij(s,Xs)ds, Z/ p’/dB]
0
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and the definition of o , it follows that
d
Zp;jpf’ =o', X,) for ae. t>0]|=1

for i <i,k <d, which implies that
~ t . ~
P[/ (g”)z(t,Xt)dt<ooi|=1 for 1<i<d,1<j<m and 1>0.
0

Let us observe first that it suffices to construct a process B with m = d . Indeed,
if d < m,wemay augment X, f o X and go X by setting X! = fi(t,X,) =
g7(t,X)=0ford+1<i<mand 1 < <m.This d-dimensional process
X satisfies the conditions presented in the second part of the proof, and we may
proceed as before except now we shall obtain a matrix p, which, like g o X, will
be of dimension d x d . On the other hand, if m < d , we have only to augment
go X bysetting g/ (t,X,)=0for 1 <i <d and m +1 < j <d , and nothing
else is affected. Both p and g o X are then d x d matrices.

By diagonalization, p - p* = g - g%, where g = go X, and studying the effect
of the diagonalization transformation on p and g, we can show that there exists a
Borel-measurable d x d-matrix-valued function R(p, &) defined on the set

D={(p,&):p and g are d x d — matrices with p-p* = g-g*}

such that & = pR(p, g) and R(p,g) - R*(p,g) = I, the identity d x d
matrix. We set B, = fo R*(ps. g(s, X;))dB, for 1 > 0. It is easy to see that

B = (B))>0 is a continuous local FF-martingale such that (l§i,1§/> = 16
t

for i,j = 1,2,..; d and t > 0. By Theorem 5.8, B is an TF-Brownian
motion such that dB, = RT(p,,g(Z X,))dB, for t > 0. Hence it follows that
pR(p. g(t. X1))dB, = PR (p, g (2. X)) - RT(P g(t, X,))dB, = p,dB, for t >0,
which is equivalent to g(z, X,)dB, = pdB; . |

Corollary 9.2. If a pair (Pr,X) satisfies the conditions of Theorem 9.1, then
the distribution PX~' is a probability measure on (C,B(C)) with a filtration
B:i(C) = o(U,eciw(s) : 0 < s < t}) such that the process (h(w(t)) —
h(w(0)) — fot(]Lfgh)(s,w(s))ds),Zo is a continuous local (B;(C)),>o-martingale
on (C,B(C)) forevery h € C()Z(Rd)), where C = C(R*,RY). |

The properties of the distribution PX ™' described above can be equivalently
expressed by saying that a measure Py =: PX ™! is a solution of the local martin-
gale problem for the differential operator L 7,. Such a problem is also called a local
IL s,-martingale problem. More generally, for a given differential operator Lz, and
(s,x) € [0,00) x R?, a solution of the local martingale problem for I f¢ (or for
a pair (f, g)) starting from (s,x) is a probability measure P, on (C, B(C))
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satisfying P; . ({x(t#) = x for 0 < ¢t < s}) = 1 and such that the process
(h(x(@)) — h(x) — IVI(E_fgh)(r,x(t))dt)tzs is a continuous (Pj., (B:(C))i>0)-
local martingale for every h € C()Z(Rd) . The local I so-martingale problem is said
to be well posed if for each (s, x), there is exactly one solution of the martingale
problem starting from (s, x).

Corollary 9.3. Given bounded measurable functions f : RT™ xR — R? and g :
RtxRY — R and (s,x) € R+ xRY, the stochastic differential equation (9.2)
possesses at least one weak solution starting from (s,x) if and only if the L f,-
local martingale problem possesses at least one solution starting from (s, x). The
stochastic differential equation (9.2) possesses exactly one in law weak solution
starting from (s, x) if and only if the local 1L r,-martingale problem starting from
(s, x) is well posed. |

Sufficient conditions for the well-posedness of martingale problems are given by
the following theorem.

Theorem 9.2. Let f :RY xRY - R? and g : Rt x R — R be bounded

and measurable and such that o = g-g* satisfies info<, <7 infyega\ (o} % >

0 and limy_,, supy, <7 |lo (¢, y)—0 (1, x)|| = 0 forevery T > 0 and x € R? . For
every (s,x) € RT x RY, the local IL o-martingale problem starting from (s,x) is
well posed. O

We can now prove the following existence theorem.

Theorem 9.3. Let f:RTxR? — R? and g : Rt xR? — R¥™ be continuous
and bounded. Then for every probability measure . on B(R?), there exists a weak
solution (Pg, X, P) of (9.2) with an initial distribution (.

Proof. By virtue of Theorem 9.1, for the existence of a weak solution (P, X, P)
of (9.2) with an initial distribution w, it suffices to construct a d -dim§n§ional
process X = ()2,),20 on any filtered probability space Pp = (Q,F. T, P)
such that X is IAF-adapted, PYO_I = p and for every h € C02, the process
@" = (9110 with ! = h()?,f) — h()?o) — fot(]Lfgh)(s, X,)ds as.for 7 >0 isa
continuous local ]@‘-martingale. To do this, let us select a filtered probability space
Pr = (2, F,F, P) with a filtration ' = (F;),>0 satistying the usual conditions
and such that there exists an m-dimensional F-Brownian motion B = (B;);>0
defined on this space. Let ¢f = k/2' for every k,/ = 0,1,2,... and define f;
and g by setting f;(t,.x) = f(tf,x) and g(t,x) = g(tf,x) for x € R?
and k/2' <t < (k +1)/2! for k,l = 0,1,2,.... Forevery [ = 1,2,..., the
functions f; and g; are Borel-measurable and bounded. Select an Fj-measurable
R¢-random variable £ defined on Pp such that PE~! = . Letus define on P a
sequence (X')%  of d-dimensional stochastic processes X' = (X/);>o by setting
Xl =€ as and X! = Xt[,( + f;(t,Xt’k)(t — ) + gl(t,Xt[,()(B, — By) as. for
1 1 1

I=12,...and 1f <t < tlk+1 with k = 0,1,2,... .Ttis clear that X' is defined
a.s.for t > 0,and forevery t > 0 and [ = 1,2,... is F;-measurable. It is easy
to see that X' is continuous and that
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t t
x! :X§+/ f;(r,Xf)chr/ g (v. X!)dB,
N N

as. for 0 <s <t <T andevery T > 0. Hence in particular, it follows that for
every m = 1,2,..., thereis C,, > 0 such that

E[X! — X'P™) < CoE [( / ’ |ﬁ(r,X£)|2dc)m}
+CoE [(/ e X£>||2dr)m} < CuM?Jt — 5"

where M > 0 is such that max(| £ (¢, x)|, |g(¢,x)]|) < M for x e R¢ and t > 0.
Furthermore, sup;~, supy<,<r E[|X!|*"] < C,, for every T > 0. Therefore, by
virtue of Theorem 2.4, there are an increasing subsequence (/;)72, of (I)j2,,

a probability space P = (Q F. P) and d-dimensional continuous stochastic
processes X, Xl i= 1 2,...,defined on P such that P(XH)™! = P(Xl) !
for i = 1,2,... and sup, g |X — Xt| — 0 a.s.as i — 00. By Itd’s formula, for

every h € CZ(RY) and i = 1,2,..., one gets

E [h(X,”') —h(x') - / t (L, ¢, h) (2. Xf)l}‘s}

N

= ZZ/h (X’)gl](er)dB |Fs| =0

r=1j=1

a.s. forevery 0 < s <t < co. Then for every continuous and bounded function
F :RY > R, we have

E (E [F(X!f) (h(x,’f) —hoed - | (L) Xff)) mD —0

forevery 0 <s <t <oo andi =1,2,.... Thus

E [F(Xf) (h(X!") h(x!) - / (Lo ) (. Xif))} —0

forevery 0 <s <t <ooc and i = 1,2,...,, which implies
A ~ A ~ t ~
E |:F(Xs) (h(Xt) —h(Xy) —/ (L sgh) (z. Xr))}

_ ‘l_i)m E [F(Xgl) (h()?fli) —h()fs) _ /t (]Lﬁ,.gl,- h) (7, Xil))i| =0
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A

forevery 0 <s <t < oo.Letf', =00l Xu:0<u<t+eg]forr>0.
Therefore,

E (F()fs) E [(h()f,) — h(X,) — /t (Lyh) (z, Xr)) |ﬁSD =0

for every 0 < s <t < oo, which by the monotone class theorem can be extended
for every bounded measurable function F'. Taking in particular F' such that

F(X) = E [(ho&) ) [ (L) (e Xr)) m},
we obtain
E| (mt)=ncto = [ () %)) 17| =0

as.for0<s<t<ooand h e Coz(Rd) . Then a process ¢" = (¢!');>0 defined
by (pt” = h()f,) — h()?o) — fot (L fgh) (7, Yr)dr a.s. for ¢ > 0 is a continuous local
]f‘-martingale on 75]@ = (SAZ,}A',]@‘, }3) with Tr = (ﬁ),zo. O

Remark 9.2. The boundedness of f and g in Theorem 9.3 can be weakened to the
following linear growth condition: there exists a positive number K such that

L.+ llgt. x) > < K*(1 + |x]?) (9.5)

for every ¢+ > 0 and x € R¥. The condition (9.5) is necessary for the existence of
global solutions of (9.2), i.e., of solutions of the form X = (X;);>o. O

The following uniqueness theorem follows immediately from Corollary 9.3 and
Theorem 9.2.

Theorem 9.4. Let f: RTxRY — R? and g : R xR¢ — RY*™ be continuous
and bounded. If g is such that the matrix function o : Rt xR? — R4*? defined by
o(t,x) = g(t,x)-g*(t,x) is uniformly positive, then for every (s,x) € R* x R¢,
the stochastic differential equation (9.2) possesses exactly one in law weak solution
starting from (s, Xx).

Proof. Tt is enough to observe that for fixed (s,x) € R* x RY and T > 0, the
restriction of ¢ to [0, T]x By , where B, is a compact neighborhood of x € R?,is
uniformly continuous. Therefore, lim, ., supy,<7 [[0(s,¥) —0o(s,x)|| = 0. Now
the result follows from Theorem 9.2 and Corollary 9.3. |

We can now define diffusion processes generated by weak solutions of stochastic
differential equations. Let us note that a diffusion can be thought of as a continuous
strong Markov process X = (X;);>0 on a filtered probability space Pr =
(2, F,F, P). It can be represented as a unique solution of the autonomous
stochastic differential equation

t t
X, = Xo+ / F(Xo)ds + / ¢(X,)dB ., 9.6)
0 0
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where f : RY — R and g : RY — R?" are given functions such that (9.6)
has a unique in law weak solution. In what follows, by a diffusion starting with
(s,x) € R*TxR? we shall mean a unique in law weak solution (Pr, X, B) for (9.6)
with an initial condition X; = x a.s. Usually, it will be identified with a continuous
process X = (X(¢));>o instead of (Pp, X, B). It is denoted simply by X; . or
X S"f % . The following result can be obtained immediately from Theorem 9.4.

Corollary94. If f : R — R? and g : RY — RY™ are continuous and
bounded, and g is such that the matrix function o : R? — R defined by
o(x) = g(x) - g*(x) is uniformly positive, then for every (s,x) € RT x R?, there
is a diffusion process Xff = (ng(‘f(t))po on a filtered probability space Pr =
(Q,F,F,P) supportlng an m-dimensional F-Brownian motion B = (B;)i>0
such that (P, X‘ %, B) is a unique in law weak solution of (9.2) with the initial
condition X; = x a.s. O

In what follows, for a given (s,x) € R* x RY, by E** we shall denote
the mean value operator with respect to the probability law Q** of a diffusion
X5% = (X;*):>0. To define it, let M, be a o-algebraon Q generated by random
variables X; : @ 3 @ — X" (w) € R? with t > s and x € R?. Define a
probability measure Q** on M, suchthat Q**({X; € A;,..., X, € Ax}) =
PUX," € Ar,.... X" € Ax}) for A; € BRY) with i =1,2,....k and k > 1.
If s =0, we will writt E¥ and Q* instead of E%* and Q%*. We shall now
prove that the above-defined diffusion has the following Markov properties.

Theorem 9.5. Let f : R? — R? and g : R?Y — R be continuous and
bounded, assume that g is such that the matrix function o : R? — R4*¢ defined
by o(x) = g(x) - g*(x) is uniformly positive, and let X = (X;);>0 be a diffusion
on Pr starting with (0,x) for x € R?. For every bounded continuous function
F:RY >R and t,h > 0, one has

E*[F(X, 1) Fl(w) = EX@[F(Xy)], 9.7)

where E*[F(X;41)|F:] denotes the conditional expectation with respect to Q.

Proof. For r > t, we have X! = X" + [/ f(X!")dt + [ g(X!*)dB; as.
By the uniqueness in law of X , we have E[F(X!*(-)] = E[F(X/*(-)]. Denoting
X by o(x,t,r,) for r > 1, we get E[F(X!*()] = E[F(¢(x,t,r,-))] for
r >t .Note that X r”" is independent of ;. Then

E[F(p(X;.t.1 4+ h,))|F] = E[F(p(x,0,h,))| File=x, -

Let ¥(x,w) = F o @(x,t,t + h,w)). It is clear that v is measurable. Then
it can be approximated pointwise boundedly by a sequence (/x);2, of functions of

the form Zf g{i kk (x) y}‘ (w) . Therefore,
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E[Y (Xe.)|F) = E[Jim (X,.-)| 7]

p(k)
Jim 3 A5 (XD E[yf (I F]
i=1

p(k)
= lim >~ ERSO)yf (I Fl=x,
j=1

E[l/f(y, . )I‘/—"t]y=X; = E[I//(y’ . )]y=X; .
From the time-homogeneity of X = (X;);>0, it follows that

E[F(p(X;.t,t + h,-)|F] = E[F(e(y.t.t +h,-)])=x,
= E[F((p(y70vh"))]y=Xt .

Then (9.7) is satisfied. O

Theorem 9.6. Let f : RY — R and g : RY — R be continuous and
bounded and assume that g is such that the matrix function o : R? — R4
defined by o(x) = g(x) - g*(x) is uniformly positive, and let X = (X,);>0 be a
diffusion on Pp starting with (0,x) for x € R?. For every bounded continuous
function F : RY — R and T -stopping time t < 00, a.s. one has

E*[F(Xean)| F: (@) = EX@[F(X},)] for all h >0. 9.8)

Proof. We have

t+h t+h
X:_:h =x+ / f(X7)ds + / g(X;")dB;.
T T

By the strong Markov property for Brownian motions, the process B, = B,4,— B
with v > 0 is again an IF-Brownian motion independent of F; . Therefore,

h h
xig, = [+ [ e e,

Thus the process (X Tih)hzo has the same distribution as (Y3,);>o defined by

T

h h
Yh=x+ f(Yy)dv + / g(Yy)dB, .
0 0

Then E[F(X;j_‘h)] = E[F(Yy)] for h > 0. Since (Y3)n>0 is independent of
F., it follows that (X, )s>0 must be independent of 7., too. From the unique-

ness in law of (X,?’x)hzo it follows that (¥;,)n=0 and (X", )r=0 have the same law
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as (X,?’x)hzo.Let p(x,t,r,0) = X*(w) for r >t and w € Q. Hence it follows
that E[F(¢(x,0.7 + h,-))|F] = E[F(p(x.0,h.-))],_yox . Setting X, = X",
we get

t+h t+h
0(x,0, 74+ h,w) = Xegpn(w) = x + f(X5)ds + / g(Xy)dB;
0 0

=x+ /OT f(X5)ds + /OT g(X;)dB;

t+h t+h
[ rxoas + / ¢(X.)dB,

T

=X, 1,1+ hw).

Therefore, (9.8) can be written in the form E[F(¢p(X;,t,T + h,-))|F] =
E[F(¢(x,0,h,-))]x=x, . Putting ¥(x,t,r,0) = F(p(x,t,r,w)), we can assume,
similarly as in the proof of Theorem 9.5, that  has the form ¥ (x,f,r,w) =
> Aj(x)y;(t,r,w). Therefore,

Ely(Xe.t.T +h )| F] =Y E;(X0)y;(r.t + h.)|F]
j

=Y A (X)E[y;(x.T +h.)|F]
j

= Z EXj(x)y;(r, T+ h, )| Fele=x,
j
= EY(x, 0.t +h, )| Foli=x, = E[F(X})l=x,

T

= E[F(X;")s=x, = E[F(p(x,0,h,-))]x=x,. O

Remark 9.3. By induction, we can extend (9.8) to k bounded Borel functions fj :
RY - R...., fr : R = R and get the relation

E*[fi(Xewn) L Xetn) <o [eXepn)] = EX [/ (Xn) o(Xny) - fie(Xn)]

for the IF-stopping time 7 and Ay < hy < --- < hj, which can be written in the
general form E~[0,n|F.] = E*[n], where 6 denotes the shift operator defined by

tin = fl(Xt1+t)f2(th+t) fk(th+t) for n = fl(th)fZ(th) fk(th) .0
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10 The Infinitesimal Generator of Diffusion

A diffusion process defined as the unique solution of the autonomous stochas-
tic differential equation (9.6) is also known as It6 diffusion. There is another
definition of diffusion processes. For a d-dimensional process X = (X;);>0
on a filtered probability space Py, it must be a diffusion that is a continuous
time-homogeneous [F-Markov process starting with (0, x) such that the limit
lim,—o(1/¢) [E*[h(X,)] — h(x)] exists for every A in a suitable subclass Dy of
the space C(R?,R). The existence of the above limit admits the definition of
an operator on Dy , called the infinitesimal generator of X . Such a diffusion is
known as a Kolmogorov—Feller diffusion. Let us note that we can also associate
the infinitesimal generator to an It6 diffusion X = (X;);>o starting with (s,x) €
R+ x R? . To define it, let us denote by Dy the set of all functions 4 : RY > R
such that the limit lim,—(1/¢) [EX[h(X;)] — h(x)] exists for every h € Dy . The
operator Ay defined on Dy by setting

(10.1)

(Axh)(x) = }E)I(l) Ex[h(Xti] — f(x)

for every h € Dy and x € RY is called the infinitesimal generator of the Ito
diffusion X. The set Dy is called the domain of Ay.

Remark 10.1. If X is the unique in law solution of the stochastic differential
equation (9.6) starting from (0, x), then Ay will be denoted by Ay,. In such a
case, the domain Dy is also denoted by D ,. O

Similarly as above, we shall consider an infinitesimal generator A, on the
space COZ(R”’) defined above. It can be verified that if 4 € COZ(]Rd ), then all partial
derivatives of & up to order two are continuous and bounded. We have the following
result.

Theorem 10.1. Ler f : RY — R? and g : RY — R¥™ be continuous and
bounded and assume that g is such that the matrix function o : RY — R4
defined by o(x) = g(x) - g*(x) is uniformly positive, and let X = (X,);>0 be an
1t6 diffusion on Py starting with (0,x) € RT x R defined by the weak solution
(Pr, x, P) of (9.6). Then COZ(]Rd) C Dy, and for every h € COZ(IRd), one has
Afgh = ]Lfgh, Le.,

d

d
[ ’ 1 P ”
(Apeh)(x) =Y fH@)h, (x) + 3 Y a0k, (%) (10.2)

i=1 ij=1

for x € R?, where (67 (x))axa = o(x).
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Proof. By 1t6’s formula, for every h € CZ(R?), we obtain

! d l ’ 1 d l 4
hx) = hxo) + [ 2 OO0+ 5 30 0¥ (K, ) |
d m t
+Y ) / o' (Xy)h, (X,)dB. (10.3)
0

i=1j=1

Hence it follows that

t d d
IO~ = [ B | 2 0n, () + 5 Y 0 (i, () | ds
i=1

ij=1

for t > 0, because Xy = x a.s. Therefore, by the continuity of functions f and
g, the limit (10.1) exists for every x and is equal to the right-hand side of (10.2).
In particular, it follows that CZ(R?) C Dy . O

Corollary 10.1. If the conditions of Theorem 10.1 are satisfied, then for every
h e Coz(]Rd) and every F-stopping time t such that E*[t] < oo, the following
Dynkin’s formula is satisfied:

E*[h(X,)] = h(x) + E* |:/0 (Afgh)(Xs)ds:|

for x e RY.

Proof. Let G : RY — R be continuous and such that |G(x)| < M for M > 0.
For every positive integer k , one has E*| OMk G(X,)dB;] = E"[fok 1y G(X5)
dB;] = 0, because G(X;) and 1., are bounded and F;-measurable. Moreover,

™Ak 2 ™Ak
E* ( / G(XS)dBS) = E~ [ / |G(XS)|2ds] <M*E[t] < 0.
0 0

Therefore, the family ( OMk G(XS)dBS)k 1 is uniformly integrable and
>

2

E~ —0

/OMk G(X,)dB, — /T G(X,)dB;

0

as k — o0o. Then limy_ oo E"[fOMk G(X;)dB,] = E*[f, G(X,)dB,] = 0. Now
the result follows immediately from (10.3). O
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There are some problems for which it is much more suitable that the operators
be defined in a more general way than the infinitesimal ones. Let X = (X;)r>0
be an Itd diffusion defined by a weak solution (Pr, X, B) of (9.6) with f and g
satisfying the conditions of Corollary 9.4. The characteristic operator Ly of X is
defined by

EMh(Xq)] — f(x)
EX[r]
where the Uy are open sets decreasing to the point x, i.e., such that (jo, U =
{x}, e =inf{t > 0: X, €U}, and h belongs to the set Cx of all functions # :
RY — R such that the above limit exists for all sequences U, I E¥[] =0
for every open neighborhood U, of x, then we define (Lxh)(x) = 0. The set

Cx is called the domain of Ly.

(Lxh)(x) = lim

3

Remark 10.2. Tt can be verified that Dy C Cy and that for every h € Dy , one has

Lxh = Axh.If X is defined by (9.6), then Ly and Cy are denoted by L, and

C g, respectively. O
A point x € R¢ is called a trap for X = (X,);>0 if Q*({X, = x for all t >

0}) =1,ie.,if Q*({ry = 00}) =1, where 7, = inf{sr > 0:|X;| > |x|}.

Remark 10.3. 1t can be verified that if x is not a trap for X, then there exists an

open set U containing x such that E*[ry] < co. |

Let us consider characteristic operators on the space Coz(Rd). We have the
following result.

Theorem 10.2. Let f and g satisfy the conditions of Corollary 9.4 and let X =
(Xt)t>0 be an Ité diffusion defined by the weak solution (Py, X, B) of (9.6). Then

(L peh)(x) = Zf(x)hxl(xw Za’f(x)hxlx x)

i=l1 i,j=1
forevery h € COZ(IRd) and x € RY, where 0 = g - g* and 0 = (67) gxq. |
In applications of diffusion processes, very often the following question arises:
when is the inequality E*[tp] < oo satisfied for a d -dimensional diffusion process

(X ¢(t));>0, a bounded domain D C R", and p = inf{t > 0 : ng(t) g
D} ? The answer is given by the following lemma.

Lemma 10.1. Let D C R? be a bounded domain and suppose f : R? — R4
and g : RY — RP™ are continuous, bounded, and such that the matrix function
o :R" — R"™" defined by o(x) = g(x)-g*(x) for x € RY is uniformly positive
on D, andlet X = (X; g(l))t>0 be a unique in law weak solution of SDE(f, g)
with initial condition Xxfg(O) = Xx a.s. Then E*[tp] < 0.

Proof. By the properties of the function g, we have min, 5 sz ; 0ij (0)§i§

AE]? > 0 forevery £ € R and A > 0. Hence it follows that min_ . j 07;(x)
0 forevery 1 <i <d.Fix 1 <i <d andlet a = min .50;;(x), b

v v
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max, .5 | f(x)|, ¢ = min ;5 x;,and v > (2b/a) . Consider the function A(x) =
—u - exp(vx;) for x = (x1,...,x4) € D, where the constant © > 0 will be
appropriately selected later. It is clear that # € C*°(D,R) and f;(x) > —| fi(x)| >
—b. Then

(L) (x) = e szoﬁ(x) of (x)} > Mg ( - iz—b)
for x € D . Choosing u sufficiently large, we can guarantee that (ILgph)(x) < —1
for every x € D . The function / and its derivatives are bounded on D, so by the
last inequality and It6’s formula, we get E*(t Atp) < h(x)—E*[h (Xxfg (tAtp))] <
2max_¢ 5 |h(z)| < oo forevery x € D and ¢ > 0 which in the limit 1 — oo leads
to the inequality E*[tp] < 00. |

Remark 10.4. The above result is also true for continuous bounded functions f :
RY - RY, g : RY - R, £ :[0,T] xRY — RY, and g : [0,7] x
R? — R4 such that min 5 0;;(x) > 0 and ming e, 7)xp 0ii (£, x) > 0,
respectively, for some 1 < i < d, where o(x) = g(x) - g*(x), 6(t,x) =
g(t,x)-g*(t,x),and G = (Gij)nxn- |

11 Diffusions Defined by Nonautonomous Stochastic
Differential Equations

Let f: Rt xR? - R? and g : Rt x R — R4*" be given. In what follows,
we shall say that f and g satisfy conditions (C) if f and g are continuous
and bounded, and g is such that the matrix function ¢ = g - g* is uniformly
positive. Immediately from Theorem 9.4, it follows that for such f and g and
every (s,x) € Rt x R, the stochastic differential equation

X; :x—}—/ f(t,Xf)dt—}—/ g(t, X;)dB, (11.1)

possesses a unique in law weak solution (Pr, X, B). Let us observe that the
process X = (X;);>o0 defined by (11.1) is not a strong Markov process, which
makes it unable to be a diffusion process. However, with an extra argument, by
extending its state space, we can conclude that the above weak solution X defines
a (d + 1)-dimensional It6 diffusion ¥ = (Y;),;>0 of the form Y; = (s +1, X}, )*.
To get an appropriate stochastic differential equation for Y , let us define new
functions f : RT x RY > (t,x) — f(t,x) € R and g : RT* x R? >
(t,x) — g(t,x) € RUTD" by setting f(r,x) = (1, f(¢,x))* and g(t,x) =
0,81(t,x),...,84(¢t,x))* with 0,g;(z,x) € R, where 0 = (0,...0) and
g (t,x) denotes for every i = 1,2,...,d, the ith row of the matrix g. It is
clear that (Pp, Y, E) is a weak solution of the autonomous stochastic differential
equation
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Y, = (s, x) + / f(Y,)dr + / g(Y,)dB,, (11.2)
0 0

where B = (é,),zo with é, = Bsy: — B; for t > 0. Indeed, by a change of
variables 7 to s + 7 in the formula (11.1) defining X+, we get

t t
Xo4r =X+ / f(s + 1, Xgq4o)dT + / g(s + 7, Xs4.)dB;
0 0

a.s. for ¢t > 0. Therefore,
Y, =06+t Xs4:) = (s +1,x +/ f(Yy)dz +/ g(YT)dET)
0 0
— o0+ [T+ [ g (),
0 0

— (.0 + /0 E(v)de + /0 "e(Vo)dB,

a.s. for ¢ > 0. It can also be proved that uniqueness in law of (Pp, X, B) implies
that (Pp, Y, l?) is a unique in law weak solution of (11.2). In what follows, for
simplicity of notation we shall denote a vector (s +1¢, X% ,)* by (s +1, X;4,). We
have the following theorem.

Theorem 11.1. If f and g satisfy conditions (C), and (Pr, X, B) is a unique
in law weak solution of (11.1) with X = (X)i>o0 then the process Y = (Yi)i>0
defined by Y; = (s + t, Xs+4¢) for t = 0 is an (d + 1)-dimensional It6 diffusion
defined for every fixed (s,x) € R* x R? by a weak solution of (11.2).

Proof. Tt has been verified that (Pg, Y, B) is a weak solution of (11.2) with f and
g as defined above. We have, therefore, only to verify its uniqueness in law. For
simplicity, let us assume that s = 0. Assume that (Ps, X, é) is another weak
solution of (11.1) and let (Pg, Y, é) be a weak solution of (11.2) with s = 0
such that 17, = (t, X ¢) . By the uniqueness in law of the solution (P, X, B), we
have PX~' = PX~' on B(R?). This is equivalent to P(X,,....X, )" =
P(X,.....X,)™" on BR?) for 0 < t; < - < f, < oo.Let Q =
{tAxB : A e BB € ,B(Rﬁf)}. It is clear that Q is a m -system such
that B(R/_ fo) =o0(Q).Forevery 0<f) < - < t, <ooand AxBe(Q,
one has P((Y;.....Y,) (A x B)) = L4 )(A)P(Xsy.....X,) " (B) =
Dynkin’s theorem, it follows that P(Y;,,...,Y;,)"! = P(f,l, e, f’,r)_l on o(Q)
forevery 0 <1, < --- < 1, < oo thatis equivalentto PY ™' = PY~! on B(C),
where C = C(R*,R4*). O

Remark 11.1. In a similar way as above, we can prove that if f and g are
measurable, bounded, and such that for every (s,x) € RT x RY, the stochastic
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differential equation (11.1) possesses a unique in law weak solution (Pr, X, B)
with X = (X;):>0, then the process ¥ = (¥;);>o definedby Y; = (s + ¢, X54+)
for t > 0 is a (d + 1)-dimensional It6 diffusion. O

The properties of d-dimensional It6 diffusions presented above are also true
for (d + 1)-dimensional diffusions defined by unique in law weak solutions of
nonautonomous stochastic differential equations. In particular, the infinitesimal
generator and the characteristic operator for ¥ = (¥;);>0 with Yy = (s,x) and

= (s + ¢, Yy4,) for t > 0 can be defined by

d

d
(Ageh)(s,x) = hy(s,x) + Y [ (s, )k (s, %) + % Y o5, (s, %)

i=1 ij=1

forevery i € Cy*(R4*") and (s,x) € RT x R? and

(L seh) (s, x) = h(s.x) + Zf (s, ) (5,%) + Z ol (s, ), (5. %)

i=l1 1]—1

for every i € Cy?(R4*t") and (s,x) € R* x R?, where 0 = g - g* and
Co?(RIFY) = C?(RT xR, R).

12 The Feynman-Kac Formula

Given functions f and g defined above satisfying conditions (C), we shall
consider their restrictions to the set [0, 7] x RY with T > 0. They will still
be denoted by f and g, respectively. A weak solution of (11.1) corresponding

to a pair (f.g) and (s,x) € [0,7] x RY are denoted by X S"j $. We still denote
by Ay, the infinitesimal generator of a (d + 1)-dimensional It6 diffusion Y, S‘f‘ f =
(Ys‘f i ())1>0 with Ys‘f‘ i ) =+t X S{ 4 (s+1)) . We obtain the following Feynman—
Kac theorem.

Theorem 12.1. Assume that f and g satisfy conditions (C), T > 0, and let
c € C([0,T] x R?) be bounded Then for every (s,x) € [0,T) x R?, there is a

unique in law solution (P, XS v, B) of (9.2) satisfying Xsff(s) = X a.s. such that
the function v defined by

ott.s.0) = 5 [exp (= [ v ronar ) vtz |
0
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forh e Col’z(Rd'H), (5,x) €[0,T) x RY and t € [0, T — s] satisfies

vi(t,8,x) = (Agu(t,-)) (s, x) — c(s, x)v(t, 5, X)
for (s,x) €[0,T) xR andt € [0, T — 5]
v(0,s,x) = h(s, x) for (s,x) € [0,T) x R? .
Proof. The existence and in law uniqueness of X S"f ¢ follow immediately from Theo-

rem 9.4. Fix s € [0, T) and let U = fz(YS{;g(t)) and V* = exp(— fot C(Ys,ff(l’))d‘[)
fort € [0, T — s]. Then

U = h(s.x) + /t(Afgﬁ)(vaf(f))df
0

t noom
* /0 D0 (g8 (Y/E )R, (Y5 (2))dB, .
i=1j=1
v(t,s,x)) = ES[UV]], and dV = =V - c(Y;ﬁCf(t))dt. Hence it follows that

dU V) = UfdVy + ViEdU/, since dU; - dV; = 0. Then (U;V)o</<r is an It6
process, and by Itd’s formula, we get

BV =t + £ [ [ oo
0

—ES¥ [ /0 t U: - C(Yy{f(T))VTSdT}

fort € [0, T — s]. Hence it follows that v(-, s, x)) is differentiable for fixed (s, x) €
[0, T) x R¢ and

Lo V5] - v 5,00

I:Es,X{EYs.ff(r) [Vt‘]/;(stf(t))] — EY [VtY}:I‘(YS}:‘(g (t))]}]

~N | =

= %E” {E” [E(Ygf}’(t + 7))

exp (= [ vt mar) 7] - B a7
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1 §,X s (v /fe
= ;E Vt+rh(Ys‘,x (t+71))

exp (/Or C(Y{f(f))dt) — I/I‘Yﬁ(ysfg(t))}

= B [V RO+ ) = RO 0)]

+1E“ { VL h(YE( + 1)) [exp ( / ' c(xv{f(c))dc) — 1}} .
r 0 ’

But

lim * [mm 8+ ) - V)]

r—

—hm [v(t+rs x)) —v(t,s,x))] = v(t,s,x)

and
hm I:Vt‘_Hh(Y ff(t +r)) [exp (/r C(Ys,ff(l'))dt) — 1:|i|
r—> B 0

= e firzanwy - tim - exp ([ corfeconar) <1}
: r—>0r 0 '

— g {ﬁ(ysfg(z))V hrn |:C(Y€§(r)exp (/r C(YS-{}’(r))dr)]}
0
=v(t,s,x)-c(s,x).
Therefore, (Afgv(t, ')) (s,x) = v/(t,s,x) + v(t,5,x) - c(s,x) and v(0, 5, x) =
ESh(Y/$(0)) = h(s, x). O

Corollary 12.1. Assume that f and g satisfy conditions (C), T > 0, and let
c € C([0, T] x R?, R) be bounded. Thenfor every x € RY, there is a unique in law
solution Xof f of (9.2) satisfying X (O) = X a.s. such that the function

v(t,x) = EY [exp (— /0 t c(¥y® (‘C))dt) (ho p)(Yy* (t)):|

satisfies
{ vi(t,x) = (Agu(t,-)) (1, x) — c(t, x)v(t, x) for
(t,x) € (0,T] x R?,v(0, x) = h(x) for x € R¢

forh € COZ(IRd) and (t,x) € [0, T] x R¢, where p, is the orthogonal projection of
RY*! onto RY. |
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We can also prove the following theorem.

Theorem 12.2. Assume that [ and g satisfy conditions (C), T > 0, and let
ce C(RT xR",R)and v € C'12([0, T] x Rt x R?, R) be bounded such that

vi(t,5,x) = (Apu(t,)) (s.x) — (s, x)v(t, 5, X)
for (s,x) €[0,T)xR"and t € [0, T — 5] (12.1)
v(0,s5,x) = ﬁ(s,x) for (s,x) €[0,T) x R4

Sfor he Col’z(]Rd). For every (s, x) € [0,T) x RY, there is a unique in law solution
X§{§ of (9.2) satisfying Xsf,ﬁ(s) = x such that

s+t
v(t,s,x) = E® [exp (—/ c(t, X{f(r))dr) ﬁ(s + t,Xsff;’(s + t)):|

with (s,x) € [0,T) x R andt € [0, T —s].

Proof. By virtue of Theorem 9.4, for every (s,x) € RT x R, there is a
unique in law weak solution (P, Xsf,ﬁ, B) of (9.2) such that X&{%(S) = X as.
Hence by Theorem 11.1, the process Y/ = (Y% (¢));>0 defined by Y/8(r) =

(s + ¢, Xs'{r,gc(s + 1)) is a (d + 1)-dimensional It6 diffusion on Pg. Assume that
v e CH2([0,T] x [0, T] x R4, R) is bounded and satisfies conditions (12.1).

Define Afg by setting (flfgv(t,-)) (s,x) = —v/(t,s,x) + (Afgv(t, ')) (s, x) —
c(s, x)v(t,s,x) for (s,x) € [0,T) x R¢ and ¢t € [0,T — s]. We have
(flfgv(t,')) (s,x) = 0 for (s,x) € [0,T) x R and t+ € [0,T — s]. Fix
(,5,x,2) € RT x RT x R? x R and define Z,(t) = z + [, c(Y{%(v))dr

and H,(t) = (u—t, YS{‘;g(t), Zx(t)) for t € [0, T —s]. Similarly as in the proof
of Theorem 11.1, we can verify that (H;(¢))o<:<7—s is a (d + 3)-dimensional It6
diffusion with infinitesimal generator Ay defined by

(AHw(Zv'))(Ss-xs Z) = _wl‘/(tsss-xs Z) + (Afgw(lv')(svxvz) + c’(s,x)w;(t,s,x,z)

for ¥ € Col’l’z’z([O, T]x Rt x R? x R) . By Dynkin’s formula, for ¥ (z,s, x,z) =
exp(—z)v(t, s, x), we get

ES’X’Z[W(HI/\TR)] =Y(t,s,x,2) + E**s I:/() R(AH)W)(HYV (r)dr:|

forall t € [0,T —s) and R > 0, where tg = inf{t > 0 : |H, ()| > R}. For
such ¥, we have



12 The Feynman—Kac Formula 63

(Am)v(t,-)(s, x,2)
= exp(—Z)[ —v[(t,5,x) + (Agv(t, ) (5. x) — c(s,x)v(t,s,x)} =0.
Therefore,
v(t,s,x) = ¥(t,s,x,0)= ES’X’O[w(H,NR)]

INTR )
= E%* [exp( - / c(Y;if(r))dr)v(u —t AR, YR A rR):| .
) : :

By continuity and the boundedness of v, it follows that

INTR
lim ES* [exp( - / c(YS’ff(r))dr)v(u —tATR, Ysﬁf(t A rR):|
0

R—>00

= 5o - [ carfzionarJou-rxzo)].
0

Taking in particular u = ¢, we obtain

=

E*

_exp( B /t C.(Ys.g;g(r))dr)v(o, Y/2 (r)}

L 0

= E%* [exp( - / t c(YS{’f(r))dr)ﬁ(Ys{’f(z)} = (s, x),
0

which can be written in the form
s+t »
v(t,s,x) = E™* [exp (—/ c(x, X{f(t))dt) h(s +t, Xsff;’(s + t)):|

for (s,x) € [0,T) x R? and ¢ € [0, T — s]. O

Corollary 12.2. Ifthe assumptions of Theorem 12.1 are satisfied, w € C'2([0, T]x
R?, R) and u € C([0,T] x RY) are bounded such that the function v defined by
v(s,x) =w(T —s,x) for 0 <s < T satisfies

{ V28, X) + (Arg)(s, x) = —u(s, x) for (s,x) €[0,T) xR,
v(0,x) = };(T, x) for x € RY,

then for every (s, x) € [0,T) x R, there is a unique in law weak solution vag
of (9.2) satisfying X;$(s) = x such that w(T — s,x) = E** [ﬁ(T, peks (T))] n

ESx [ JT u(r, x {8 (‘L’))d‘C:I. 0
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13 Harmonic Measure and the Mean Value Property
of Diffusions

Let H C R? be measurable and let 7y be the first exit time from H for an
Itd diffusion X = (X;);>0. Let o be another stopping time and g a bounded
continuous function on RY. Put n = 88Xy )y, <00y and t§ = inf{t > o :
X, ¢ H}. It can be verified that Oynliy<c0} = &(vf) L4 <00}, Where 6, is
the shift operator defined above. Indeed, taking 7* = Y ; g(th_c)]l[t;_cJ/;H)(tH),

tf = j/2F for k = 1,2,... and j = 0,1,2,..., we obtain 6,5 =
limy o0 6,7 = Timysoo 3 €(X,ey iy b 4 (Tir) = &) i, cooy » be-
cause, Qtll[t;g!t;;Jrl)(tH) = ﬂ[rf+t,r;¥+l+r)(7;1)- In particular, if « = 1t for a

measurable set G C H and ty < oo, QF as., then we have tf; = 1y (see
Fig.1.1). Thus 6,,8(X:,) = g(X¢,) .
Therefore, for a measurable bounded function f , we obtain

Ex[f(XtH)] = EX[EXIG [f(XrH)]] = /86 Ey[f(XfH)] : QX[XIG edy] (13.1)

for x € G. In other words, the expected value of f at X,, when starting at
x € G can be obtained by integrating the expected value when starting at y € G
with respect to the “hitting distribution” uy; of X on 0G defined by ug(F) =
0 *({X+; € F}) for F C 9G and x € G . The measure puf; is called the harmonic
measure of X on dG . The formula (13.1) can be written in the following form:

EX[f(Xoy)] = /a BN ).

The above formula defines the mean property of an It6 diffusion X for x € G
and Borel sets G C H .

Fig. 1.1 The mean property
of It6 diffusion
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14 Notes and Remarks

The definitions and most results of this chapter are classical. They are selected from
Friedman [31], Ikeda and Watanabe [43], Karatzas and Shreve [47], @ksendal [86],
Protter [89], Jacod and Shiryaev [44], and Gihman and Skorohod [33]. In particular,
the definition and the classical properties of stopping times are taken from Protter
[89], whereas the properties of sequences of the first exit times of continuous
processes contained in Sect. 5 of Chap. IV come from Kisielewicz [61]. Section
2 is entirely based on Ikeda and Watanabe [43]. The definitions and results dealing
with stochastic processes contained in Sect. 3 are selected from Ikeda and Watanabe
[43], GBksendal [86], Protter [89], and Billingsley [21]. In particular, Theorem 3.6
presented in this section is a slight author’s generalization of Theorem 2.12.1
of Billingsley given in [21]. The properties of Poisson process and Brownian
motion are taken from Protter [89], Friedman [31], and Lipcer and Shiryaev [72].
Stochastic integrals are mainly based on Friedman [31] and @ksendal [86]. The 1t6
formula is taken from @ksendal [86], and the martingale representation theorems
from Karatzas and Shreve [47]. The theory of stochastic differential equations and
diffusion processes is based on Ikeda and Watanabe [43], Karatzas and Shreve [47],
@ksendal [86], and Stroock and Varadhan [94, 95]. In particular, the uniqueness
of in law weak solutions of stochastic differential equations is based on Stroock
and Varadhan [95]. Properties of diffusion processes described by nonautonomous
stochastic differential equations are taken from Kisielewicz [60, 61]. The last two
sections are entirely taken from @ksendal [86]. The proof of Remark 1.2 can be
found in Jacod and Shiryaev [44]. Example 1.1 and Fig. 1.1 are also taken from
@ksendal [86]. The proof of Theorem 1.5 can be found in Ikeda and Watanabe [43]
and Gihman and Skorohod [33]. The proofs of Remark 3.1 and Theorem 3.3 are
given in Jacod and Shiryaev [44], and Theorem 3.4 in Gihman and Skorohod [33]
and Jacod and Shiryaev [44], where proofs of Theorems 4.4 and 4.5 can also be
found. The proof of Remark 4.1 is taken from @ksendal [86]. Remarks 4.2 and 4.3
come from Proter [89]. The complete proof of Theorem 5.2 can be found in Protter
[89], whereas Remark 5.7 is proved in @ksendal [86]. Theorems 5.6, 5.8, and 5.9 are
proved in Friedman [31], Gihman and Skorohod [33], Jacod and Shiryaev [44], and
Karatzas and Shreve [47]. Proofs of Remark 5.9 and Theorems 8.1 and 8.2 can be
found in Pksendal [86], Kunita [68], Gihman and Skorohod [33], and Karatzas and
Shreve [47]. Finally, proofs of Remark 9.3, Theorem 9.2, and Corollary 12.2 can be
found in Ikeda and Watanabe [43], Strook and Varadhan [95], and Friedman [31].



Chapter 2
Set-Valued Stochastic Processes

This chapter is devoted to basic notions of the theory of set-valued mappings and
set-valued stochastic processes. We begin with the notions and basic properties
of the space of subsets of a given metric space. Selected properties of set-valued
mappings, Aumann integrals, and set-valued stochastic processes are presented.
The last two parts of this chapter discuss properties of a set-valued conditional
expectation and selection properties of set-valued integrals depending on random
parameters.

1 Spaces of Subsets of a Metric Space

Let (X,p) be a metric space and (4,);2, a sequence of subsets of X. The
sets (oo Ureo Ant+x and |52, Nio, Antk are denoted by Limsup 4, and
Liminf A,, respectively and said to be a limit superior and a limit inferior,
respectively of a sequence (A4,)52,. Immediately from the above definitions, the
following properties of Lim sup A, and Lim inf 4, follow.

Lemma 1.1. Let (A,)52, and (B,);2, be sequences of subsets of X and let
C C X. Then

(i) LiminfA, = (Limsup A;)~, where D~ =X\ D for D C X,
(ii) Liminf(A4, N B,) = Liminf A, N Liminf B,
(iii) Liminf(4, N C) = (LiminfA4,) N C,

(iv) (o2, A, C Liminf A, C Limsup A, C |72, 4.

Corollary 1.1. For every family {A! :i,n = 1,2,...} of subsets of X , one has
N2, [Liminf A)) = Liminf[(;2, A’]. O

Apart from the limits Limsup A, and LiminfA,, we can also define the
Kuratowski limits Li A, and Ls A,. The set LiA, is defined by the property
x € Li A, if and only if for every neighborhood ¢/ of x, there is an integer N > 1
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Springer Optimization and Its Applications 80, DOI 10.1007/978-1-4614-6756-4_2,
© Springer Science+Business Media New York 2013
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such that 4 N A, # @ for every n > N. It is said to be the Kuratowski limit
inferior of a sequence (4,)52,. Similarly, the Kuratowski limit superior Ls A, of
a sequence (A4,)2, is defined by the property: x € Ls 4, if and only if for every
neighborhood U of x , there are infinitely many n with & N A, # @.

Corollary 1.2. For every sequence (A,)52, of subsets of X, one has

(i) LiA, CLsA,,
(ii) x € Li A, if and only if there exist an integer N > 1 and a sequence (x,)52 ,
of X with x, € A, forn > N such that x = lim, 0 Xy,
(iii) x € Ls A, if and only if there exist an increasing subsequence (ny)72., of
(n)72, and a sequence (x,,)7>, of X such that x,, € Ay, fork = 1,2,...
and x = limy 00 Xy, O

The following properties of the Kuratowski limits follow immediately from the
above definitions.

Lemma 1.2. Let (A,)52, and (B,)52, be sequences of subsets of X. Then

(i) if A, C B, forn>1,then LiA, CLiB, and Ls A, C Ls B,
(ii) Liminf A, C LiA4,,
(iii) Li(A, N B,) C (LiA4,) N (Li B,),

(iv) Ls(A, N B,) C (Ls A,) N (Ls By),

(v) Ls A, = ﬂ:il ]?o=0 Ak-l—nr B

(vi) if A, = A for n>1, then LiA, = A =LsA,.

Let CI(X) denote the family of all nonempty closed subsets of X. For every
A,B € CI(X), we define the Hausdorff distance /(A, B) with respect to the
metric p on X by setting h(A,B) = inf{fe : A C Vi (B)and B C V.(A)},
where V;(C) denotes the e-neighborhood of C € CI(X), i.e., Ve(C) = {x € X :
dist(x, C) < €}.

Lemma 1.3. The function h : CI(X) x CI(X) — [0,00] has the following
properties:

(i) h(A,B) =0 ifandonlyif A= B for A, B € CI(X),
(ii) h(A, B) = h(B, A) forevery A, B € CI(X),
(iii) h(A, B) < h(A,C) + h(C, B) forevery A, B,C € CI(X).

Proof. To prove (i), let us observe that h(A4,B) = max{h(A, B), (B, A)},
where h(C,D) = sup,ccdist(x,D) for C,D € CI(X). Hence it follows
that h(A,B) = 0 implies that A C B and B C A, because A,B ¢
CI(X). Then A = B. Statement (ii) is evident. To prove (iii), if 4 C V,(C)
and C C Vy(B), then A C V.y,(B). Consequently, we get h(A,B) <
h(A,C) + h(C, B). Thus h(A, B) = max{h(A, B),h(B, A)} < max{h(4,C) +
h(C,B),h(B,C) + h(C,A)} < max{h(A,C) + h(C,B),h(B,C) + h(C, A)}
= h(A,C) + h(C, B). O
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Theorem 1.1. Let (X,p) be a compact metric space. Then (CU(X),h) is a
compact metric space, too. In such a case, a sequence (A,);2, of CL(X) converges
to A € CI(X) in the h-metric topology if and only if Li A, = A = Ls A,.

Proof. By virtue of Lemma 1.3, the mapping £ is a metric on CI(X). The proof of
compactness of (C1(X), /) can be found in [49]. If a sequence (A4,)52, of Cl(X)
converges to A € CI(X) in the h-metric topology, then by the definitions of the
metric & and the Kuratowski limits Li A, and Ls A,, we get A C LiA, and
LsA, C A. Then Lid, = A = LsA,. Conversely, let A C X be such that
LiA, = A = LsA,. By the compactness of the metric space (X, p), we have
A # (. Then A € CI(X). We have to show that for every ¢ > 0 and sufficiently
large n > 1,one has A, C V,(A) and A C V,(A,). If the first inclusion were
false, we would obtain a contradictionto A = Ls A4,,. If the second inclusion were
false, we would obtain a contradiction to Li A, = A. O

Remark 1.1. The above results can be extended to the case of a locally compact
separable metric space (X, p), because it possesses a one-point compactification,
denoted by X U {oo}. |

We can extend the definition of Hausdorff distance on the family P, (X) of all
nonempty bounded subsets of a metric space (X, p). Similarly as above, for every
A, B € Pp(X), we define h(A, B) = inf{e > 0: A C V;}, and then the Hausdorff
pseudometric i on P,(X) is defined by h(A, B) = max{h(A, B), h(B, A)} for
every A, B € Py(X). It can be verified that (4, B) = 0 if and only if 4 = B.

Corollary 1.3. Forevery A, B € Py(X), one has h(A, B) = sup{dist(a, B) : a €
A}, where dist(a, B) = inf{p(a,b) : b € B}.

Proof. For every A, B € Pp(X), we have A C V.(B) if for every a € A, we
have dist(a, B) < ¢. Then A C V,(B) implies h(A, B) < . Similarly, we can
verify that (A, B) < ¢ implies A C V.(B). Hence it follows that inf{e > 0: 4 C
Ve(B)} = inf{e > 0:e > h(A,B)} = h(A, B). |

Lemma 1.4. For every A, B € Py(X), one has h(A, B) < h(A, B).

Proof. For every a € A and & > 0, there is a, € A such that p(a, a;) < e
Therefore, dist(a, B) < p(a, a;) + dist(a;, B) <e+ inf{p(a.,b) : b € B} <e+
inf{p(as,b) : b € B} < &+ h(A, B). Thus sup{dist(a, B) ae A} <e+h(A, B),
ie., h(A B) <&+ h(A, B) forevery & > 0. Then h(A, B) < h(A, B). Similarly,
we get (B, A) < h(B, A). |

Remark 1.2. 1t can be verified that for every A, B € P (X), one has h(4, B)
h(A, B).

If X is a linear normed space and A, B € P,(X), then we define A + B =
{xeX:x=a+b,aec A, be B}. Similarly, for A € P,(X) and p € R, we
define u-A ={x € X : x = na, a € A}. Immediately from the last definition, it
follows that we can define a set A 4+ (—1) B, which is often called the Minkowski
difference of sets A, B € P,(X). In the general case, we have A + (—1)A # {0}.

ol
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For some nonempty compact convex sets A, B C X, a difference A — B, known
as a Hukuhara difference, can be defined such that A — A = {0}. It is easy to verify
that for all compact convex sets A, B € P, and A, u € R*,onehas (i) A+{0} =
{0}+A=A4, (i) (A+B)+C =A4A+(B+C) (ili) A+ B =B+ A, (iv)
A+C = B+C implies A=B,(v)1-A=A, (vi) A-(A+B)=A-A+A-B,
and (vi) A+ p) - A=A2-A+p- A

Lemma 1.5. Let (X,||-||) be a linear normed space. For every A,B,C,D €
Py(X) and p € R, one has (i) h(wA, wB) = uh(A, B) and (ii) h(A+ B,C +
D) < h(A,C) + h(B, D).

Proof. (i)If A C Vi(B),then uA C V,.(uB). Hence it follows that inf{n > 0 :
A C Vy(uB)y = pinf{n > 0 : A C V,(B)} = wh(A, B). (i) If A C V.(C)
and B C Vy(D), then A+ B C Viyy(C + D). Therefore, inf{e +7n : A +
B C Vigy(C 4+ D)} < infle : A C Vi(C)} +inf{n : B C V,(D)} = h(4,C)
+h(B, D). O

Corollary 1.4. For every u € [0,1] and A, B,C, D € Py(X), one has h(nA +
(1—=wB. uC + (1 —p)D) < ph(A,C) + (1 — p)h(B, D). O
Corollary 1.5. For every A,B,C,D € Py(X), one has l_z(A +B,C+ D) <
h(A,C) + h(B, D). |

Corollary 1.6. For every A,B,C,D € Py(X), one has h(A+ B,C + D)
h(A,C) + h(B, D).

OIA

2 Set-Valued Mappings

Let X and Y be nonempty sets and let P(Y) denote the family of all nonempty
subsets of Y. By a set-valued mapping defined on X with values in P(Y) we
mean a mapping F : X — P(Y). It is clear that a set-valued mapping F can be
defined as a relation contained in X X Y with the domain Dom(F) = X. It is
defined by its graph: Graph(F) = {(x,y) € X xY : y € F(x)}. In applications,
we need set-valued mappings having some special regularities, such as continuity
and measurability. To define such set-valued mappings, we have to consider X and
P(Y) as topological or measurable spaces. It can be verified that if (¥,7) is a
topological space, then we can define on P(Y) the upper topology 7, generated
by the base U = {[-,G] : G € T}, where [-,G] = {4 € P(Y) : A C G}.
Similarly, the lower topology 7; on P(Y) is generated by the subbase £ defined
by L={lg:G e T}, where I¢c ={U e P(Y): UNG # @}.If (Y,d) isa
separable metric space, then the Borel o-algebra of the metric space (Comp(Y), i)
is generated by sets {K € Comp(Y) : K NV # @} for every open set V C
Y, where Comp(Y) C P(Y) contains all compact subsets of Y, and % is the
Hausdorff metric on Comp(Y'). These observations lead to the following definitions.
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Fig. 2.1 A mapping that is

H-u.s.c. butnot u.s.c.att =0 g'\q

L F(0)

Fit)

/V(F(o),_e)

A §\>\»
/
A

If (X,7x) and (Y,7y) are given topological spaces, then F : X — P(Y)
is said to be lower semicontinuous (l.s.c.) at x € X if for every U € Ty with
F(x)NU # @, thereis V € Ty suchthat x € V and F(x) N U # @ for every
x € V.Wecall F: X — P(Y) upper semicontinuous (u.s.c.) at x € X if for
every U € Ty such that F(x) C U, thereis V € Ty such that x € V and
F(x) Cc U forevery x € V.If (X,p) and (Y,d) are given metric spaces, then a
set-valued mapping F : X — P(Y) is said to be H-l.s.c. at x € X if for every
e > 0, there exists § > 0 such that F(x) C V(F(x),¢) for every x € B(X,§),
where V(F(x),e) = {z € X : dist(z, F(x)) < ¢} and B(x,§) is an open ball of
X centered at x with radius §. It is clear that if F is H-l.s.c. at X € X, then
it is also ls.c. If F(x) € Comp(Y), then F is H-lLs.c. at x € X if and only
ifitis Ls.c.at x € X. We say that F is ls.c. (H-l.s.c.) on X ifitis Ls.c. (H-
l.s.c.) at every point X € X. In a similar manner, we can define H-u.s.c. set-valued
mappings on X. There are some H-u.s.c. set-valued mappings that are not u.s.c.
This is is illustrated in Fig.2.1, where F(t) = {(y.z) € R*>:y =t} for t € R.

Let us observe that for a given l.s.c. set-valued mapping, we can change its values
at finite points in such a way that it remains 1.s.c. This follows from the following
result.

Remark2.1. If F : X — P(Y) is Ls.c.on X and (xo, yo) € Graph(F), then
the set-valued mapping G : X — P(Y) defined by taking G(x) = F(x) for
x € X\ {xo} and G(x) = {yo} for x = xq, is also l.s.c. on X.

i |

Proof. It is clear that G is l.s.c. at every point x € X \ {xo}. By the lower
semicontinuity of F at xo and the property of the point (xo, yo), for every
neighborhood U of yo we have F(xo) NU # @, and there is a neighborhood
V of x¢ suchthat F(x) NU # @ forevery x € V . Therefore, for every U € Ty
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such that G(xo) NU # @, there is V € Ty, a neighborhood of x(, such that
G(x)NU # @ forevery x € V. Then G is ls.c. at xg. |

A set-valued mapping F : X — P(Y) is said to be continuous (H-continuous)
on X ifitis Ls.c. (H-Ls.c.) and u.s.c. (H-u.s.c.) on X. It can be verified that a
multifunction F : X — Comp(Y) is continuous if and only if it is H-continuous.
If Y =RY and F : X — Comp(Y) takes convex values, then F is continuous
if and only if a function X > x — o(p, F(x)) € R is continuous for every
p € RY, where o(-, A) denotes the support function of A C R?. In optimal
control theory, we have to deal with parameterized set-valued functions of the form
F(x) ={f(x,u) :ue U},where f: X xU — Y is a given function. We shall
show that if f(-,u) is continuous, then the multifunction F is L.s.c. Some other
properties of such multifunctions are given in Chap. 7.

Lemma 2.1. Assume that X and Y are topological Hausdorff spaces and let f :
X xU — Y, where U # @. If f(-,u) is continuous on X for every u € U,
then the set-valued mapping F : X — P(Y) defined by F(x) = f(x,U) isls.c.
on X .

Proof. Let X € X be fixed and let N be an open set of Y. Suppose & € U is such
that f(x,u) € N. By the continuity of f(-,u#) at X, there is a neighborhood V
of X suchthat f(x,u) € N forevery x € V. Therefore, for every x € V , we get

F(x) NN # 0. O

Let (7, F) be a measurable space and (Y, d) a separable metric space. A set-
valued mapping F : T — P(Y) is said to be measurable (weakly measurable) if
for every closed (open) set E C Y, wehave {t € T : Ft) N E # @} € F.Itis
clear thatif F is measurable, then it is weakly measurable. The converse statement
is not true in general.

Remark 2.2. Let (T, F) be a measurable space and (Y, || ||) a separable Banach
space. For F : T — P(Y), we denote by co F the set-valued mapping co F :
T — P(Y) defined by (co F)(t) = co F(¢) forevery t € T, where co F(t)
denotes the closed convex hull of F (). Itis clear that co F is measurable whenever
F is measurable. |

Remark 2.3. If (T, F) is a measurable space, Y = R?,and F : T — CI(Y) is
measurable, then the function 7 5 ¢t — o(p, F(¢)) € R is measurable for every
peRIIf F: T — CI(RY) is convex-valued, then F is measurable if and only
if o(p, F(-)) is measurable for every p € R?. |

Remark 2.4. It can be proved that if X is a metric space, Y = R? ,and F : X —
Comp(Y) is continuous, then o (p, F(-)) is continuous for every p € R?. a

It is natural to expect that for a given multifunction F : X — P(Y), there exists
a function f : X — Y such that f(x) € F(x) for x € X. The existence of
such a function f, called a selector or a selection for F, follows immediately from
Zermelo’s axiom of choice. We recall first the Kuratowski—Zorn lemma, and then
we will verify how from this principle, the axiom of choice can be deduced.
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Lemma (Kuratowski-Zorn lemma). Let P be a nonempty partially ordered set
with the property that every completely ordered subset of P has an upper bound
in P . Then P contains at least one maximal element.

Lemma (Axiom of choice). Let £ be a nonempty family of nonempty subsets of
aset X. Then there exists a function f : £ — X suchthat f(E) € E foreach E
in &.

Proof. Consider the class P of all functions p : D(p) — X such that the domain
D(p) of p belongsto £ and p(E) € E foreach E in D(p). This is a nonempty
class, because £ contains a nonempty set £, and if x € E, the function with
domain {E} andrange {x} isamemberof P. We order P by the inclusion relation
in £ x X. It can be verified that P satisfies the conditions of the Kuratowski—Zorn
lemma. Therefore, we infer that there exists a function f : & — X such that
f(E) € E foreach E € £. |

Corollary 2.1. For nonempty sets X and Y , every set-valued mapping F : X —
P(Y) possesses at least one selector.

Proof. Let £ = {F(x)}rex. The family £ satisfies the conditions of Zermelo’s
axiom of choice. Therefore, there exists a function g : £ — Y suchthat g(F(x)) €
F(x) for every x € X. Thus the function f : X — Y defined by f(x) =
g(F(x)) for x € X is aselector for F. |

In applications of the theory of set-valued mappings, the existence of special
selectors for given multifunctions plays a crucial role. The most difficult part is to
deduce the existence of selectors with prescribed properties. In what follows, we
shall present some results dealing with the existence of continuous, measurable, and
Lipschitz continuous selectors. The fundamental problem deals with the existence
of continuous selections. The following example shows that continuous set-valued
mappings need not have, in general, continuous selections.

Example 2.1. Let F be the set-valued mapping defined on the interval (—1,1) by
setting

{(v1,v2) : v = cosB, v, =tsinH and % <60 §%+2n—|t|}

F(x) = for t e (—1,2)\{0},
{(v,v): =1 <v; <1, v, =0} for t=0.

For t # 0 and ¢t € (—1,1), F(t) is a subset of an ellipse in R? (see Fig.2.2),
whose minor axis shrinks to zero as ¢ — 0, so that the ellipse collapses to a segment
F(0).

The subset of the ellipse given by F(¢) is obtained by removing a section,
from the angle (1/¢) — |¢| to the angle (1/¢). As ¢ gets smaller, the arc length
of this hole decreases, while the initial angle increases like (1/¢), i.e., it spins
around the origin with increasing angular velocity. However, F' is continuous at
the origin, while no selection f : (—1,0) — R? or g : (0,1) — R?, for example
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Fig. 2.2 The mapping F

f(t) = (cos(1/t),tsin(1/t)), can be continuously extended to the whole interval
(—1,1). In fact, the hole in the ellipse would force this selection to rotate around
the origin with an angle p(¢) between (1/¢) and (1/¢) + 27 — |¢|, and lim,—¢ f(?)
cannot exist.

We shall show that in some special cases, l.s.c. multifunctions possess continuous
selections. This follows from the famous Michael continuous selection theorem. We
precede it by the following lemmas.

Lemma 2.2. Let (X, p) and (Y,|| - ||) be a metric and a Banach space, respec-
tively, andlet ® : X — P(Y) be a convex-valued and L.s.c. multifunction. For every
e > 0, there is a continuous function ¢ : X — Y such that dist(p(x), ®(x)) < e
for x € X.

Proof. Let x € X be fixed and select y, € ®(x) and §, > 0 such that (y, +
eKo) N ®(x') # @ for every x’ € By, where B, = B(x,8,) denotes the open
ball of X centered at x with radius 6, > 0, and Ky is the unit open ball of Y
centered at 0 € Y. Since X is paracompact, there exists a locally finite refinement
{U.};en of {B. };ex. Let {py}ren be a partition of unity subordinated to it and
define a function ¢ : X — Y by setting ¢(x) = > ., pz(x)y; for x € X.Itis
clear that ¢ is a continuous function on X. Furthermore, we have x € U, C B,
whenever p,(x) > 0. Hence it follows that y, € ®(x) + ¢Kj. Since this set is
convex, every convex combination of such y,, in particular ¢(x), belongs to it, too.
Therefore, dist(p(x), P(x)) <e for x € X . O

Lemma 2.3. Let (X,d) and (Y, p) be metric spaces, let G : X — P(Y) be Ls.c.,
andlet g : X — Y be continuous on X. If a real-valued function X > x —
e(x) € RT is Ls.c. on X, then the set-valued mapping ® : X — P(Y) defined by
®d(x) = B(g(x),e(x)) N G(x) is Ls.c. at every x € X such that ®(x) # 0.
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Proof. Let ¥ € X be such that ®(x) # @. Select y € ®(x) and let n > 0.
Assume e(x) > p(y,g(x)) and let 6 > 0 be such that p(y, g(x)) = e(X) — 0.
There exists a1 > 0 such that to every x € X with d(x,X) < o; we can associate
¥x € G(x) such that p(yy, ¥) < min(n, (1/3)0), 02 > 0 such that d(x,Xx) < o2
implies &(x) > &(x¥) — (1/3)0, and o3 > 0 such that d(x,X) < o3 implies
p(g(x), g(x)) < (1/3)0. Thus

P(¥x, (X)) < p(yx, ¥) + p(¥, g(x)) + p(g(x), g(x))
< (1/3)0 + &(X) —0 + (1/3)0 = &(%) — (1/3)0 < &(x),

whenever d(x, X) < min{oy, 02,03}. Then y, € ®(x) and p(yy, y) < n. |
Now we can prove Michael’s continuous selection theorem.

Theorem 2.1 (Michael). Let (X, p) and (Y, |-|) be a metric and a Banach space,
respectively, and let F : X — P(Y) be L.s.c. with closed convex values. Then there
exists a continuous function f : X — Y suchthat f(x) € F(x) for x € X.

Proof. By virtue of Lemma 2.2, for &y = 1/2 and ® = F, there exists a continuous
function f; : X — Y such that dist( fi(x), F(x)) <¢&; for x € X .Let ®;(x) =
(fix)+e1Ko)NF(x) for x € X. Wehave ®;(x) # @ for x € X. By Lemma2.3,
the multifunction ®; is l.s.c. Then by Lemma 2.2, for &, = (1/2)?, there exists a
continuous function f, : X — Y such that dist( f(x), ®1(x)) < & for x € X.
Thus dist( f2(x), F(x)) < & and dist( /2(x), (f1(x) + €1Kp)) < &, i.e., fo(x) —
fi(x) € (e1 + &2)K for x € X. Continuing the above procedure, we can deduce
that for every ¢, = (1/2)" with n =0, 1, 2,.. ., there exists a continuous function
Ju+ X — Y such that dist(f,(x), F(x)) < & and f,(x) — fu—1(x) € (gy—1 +
€,) Ko for x € X. Hence in particular, it follows that sup, .y || f» (x) — fi—1(x)| <
€r—1 + &, for n > 1, which implies that (f,)72, is a Cauchy sequence in the
Banach space C(X,Y) of all continuous bounded functions g : X — Y with the
supremum norm. Thus there exists a continuous function f : X — Y such that
sup,ey [l fu(x) — f(x)|| = 0 as n — oo. Hence it follows that f(x) € F(x) for
x € X, because F(x) is a closed subset of ¥ and dist( f,(x), F(x)) < &, for
xeXadn=1,2,.... O

Remark 2.5. There are closed convex-valued u.s.c. multifunctions that do not
possess continuous selections. A simple example is the set-valued mapping F
defined by the formula

{—1} for x <0,

F(x)=4[-1,1] for x =0,
{+1} for x>0,

with the graph presented in Fig. 2.3. |
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Fig. 2.3 The mapping F 3

+1

Fig. 2.4 Approximation A
continuous selection of u.s.c
mutifunction

Graph (F)

Graph (F)+&8°

It can be proved that the above set-valued mapping possesses an approximation
continuous selection of u.s.c mutifunction

Immediately from Michael’s continuous selection theorem we obtain the exis-
tence of continuous approximation selections for some special multifunctions. The
proof of such a theorem is based on the following lemma.

Lemma 2.4. Let (X,p), (Y,|-|) and (Z,| - |) be Polish and Banach spaces,
respectively. If A : X xY — Z and v : X — Z are continuous and F : X —
P(Y) is Ls.c. such that v(x) € A({x} x F(x)) for x € X, then for every Ls.c.
function ¢ : X — (0,00), the set-valued mapping ® : X — P(Y) defined by
Px)=F(x)N{ueY :|Ax,u)—vx)| <elx)} for x € X islsc.on X.

Proof. Let x € X. For every open set i/ C Y such that & N ®(x) # @, there are
u € ®(x) and n > 0 such that (x,u) € Graph(®) and (u + nKy) C U, where
Ky is the unit ball of Y. There is o > 0 such that ||A(x, u) — v(X))| = e(X) — 0.
Let 6 > 0 be such that ||A(x,u) — A(X,u)|| < (1/3)0 forevery (x,u) € X xY
satisfying max{p(x, X), |u — u|} < §. By the lower semicontinuity of F, there is
o1 > 0 such that forevery x € X satisfying p(x, X) < o7, there exists y, € F(x)
such that |y, —u| < min{n, (1/3)0, §}. By the continuity of v, thereis o, > 0 such
that |[v(x) —v(X)|| < (1/3)o for x € X satisfying p(x,x) < 0,. Furthermore,
by the lower semicontinuity of ¢, there is o3 > 0 such that e(x) > &(x) — (1/3)o
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for every x € X satisfying p(x,Xx) < o3. Then for every x € X satisfying
p(x,x) < min{é, 01,02, 03}, we get

[A(x, yx) = v = [IA(x, yo) — A(x, 0|
HIAG, w) — v + [[v(x) —v(x) ]l
< (1/3)o+e(X)—0 + (1/3)0 < e(x).

Thus y, € ®(x) and ||yx — ]| < 5. For u € ®(x) and n > 0 chosen above,
we can choose &€ = min{$, 01,02, 03} such that (u + nKo) N ®(x) # @ for every
x € B(x, &). Therefore, for every open set A/ C Y such that & N ®(x) # @, there
is £ > 0 such that (u + nKo) N ®(x) # @ and (u + nKp) N d(x) C U N P(x)
forevery x € B(x,¢&). |

Theorem 2.2. Let (X,p), (Y,|-]|) and (Z,| - ||) be Polish and Banach spaces,
respectively. Assume that A : X XY — Z and v : X — Z are continuous
and F : X — P(Y) is Ls.c. with closed convex values. If A(x,-) is affine and
v(x) € A(x, F(x)) for x € X, then for every ¢ > 0, there exists a continuous
function f, : X — Y such that f.(x) € F(x) and |A(x, f:(x)) —v(x)| < ¢ for
xeX.

Proof. By virtue of Lemma 2.4, for every ¢ > 0, the set-valued mapping &, : X —
P(Y) defined by ®.(x) = F(x)N{u €Y : [|[A(x,u) —v(x)| < e} for x € X
is .s.c. on X. Therefore, cl(®,) is also l.s.c. on X. By the convexity of F(x) and
the property of A(x,-) for fixed x € X, it follows that ®,(x) and cl(d.)(x) are
convex for x € X. Therefore, by Michael’s theorem, for every ¢ > 0, there exists a
continuous selector f. for cl(®,). Itis clear that f; is a selector of F and satisfies
IA(x, fo(x)) —v(x)| < e for x € X. |

Now we consider the problem of the existence of more regular selections of
multifunctions. Such selections are connected with special properties of the “Steiner
point map” s : Conv(R?) — R? defined by

d/2)[c(1,A) +o(—1,4)] for d =1,

s(4) = d [r,yo(y, Adr for d > 1,

@2.1)

for A € Conv(RR?), where T'; is the boundary of an open unit ball of R and dr
denotes a differential of the surface measure r on I'; proportional to the Lebesgue
measure such that r(I'})) = 1. As usual, o(+, A) denotes the support functions
of A € Conv(R?), and Conv(R?) is the family of all nonempty convex compact
subsets of R¢.

Immediately from the above definition, it follows that (i) s({x}) = x for every
x € R?. Furthermore, (ii) s(A + B) = s(A) + s(B) and (iii) s(AA4) = As(A) for
A, B € Conv(R?) and A € R. Indeed, for every A, B € Conv(IR?), one obtains
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s(A+B)=d | o(y,A+ B)ydr
I

=d | o(y,A)dr+d | o(y,B)dr
I r

= s(A4) + s(B).

Quite similarly, we also get s(AA4) = As(A4) for A € R and A € Conv(R?). Then
conditions (ii) and (iii) are also satisfied.

We shall show that for every A € Conv(IR?), one has s(4) € A. To prove
this, let us recall some properties of the group O(R9) of all orthogonal linear
transformations on R?. It can be verified that s(/[A]) = [[s(A)] for every
[ € O(RY) and A € Conv(R?). It is also known that the surface measure 7 ()
on T is invariant under the action of elements in O(RR¢).

Lemma 2.5. For every A € Conv(R?), one has s(A) € A.

Proof. Suppose there is A € Conv(R?) such that s(A) ¢ A. Define C = A —
s(A). Then 0 ¢ C, and by (i)—(iii), we get s(C) = 0. Let 0 # ¢ be such that
(c—¢,%) > 0 forevery ¢ € C, where £ = ¢||¢||™!, and (-,-) denotes the inner
productin R? . But (¢, %) = (¢ + (c —¢),X) = (6. %) + (c — &, %) and (¢, %) =
I¢]l. Then for every ¢ € C , one has ||¢|| < {c, X).

Let [ : R? — R? be the linear transformation defined by /(X) = X and
I(x) = —x for x € R? orthogonal to X. It can be verified that / belongs to
the group O(IR?) of orthogonal linear transformations on R¢ and /> = I, the
identity map. So [ = [*.Let D = C +I(C). Then /(D) = D, and so s(D) = 0.
In addition, for every d € D, we have (d,x) > 2||¢|| > 0,andso 0 & D. Now let

I{={yel:(y.8) =0} ={yel:(y.%) >0} and
I ={yel:{yx) <0}

Then Iy = 'Y U T} U T, and these three sets '), T}, I';” are disjoint. Also,
r(I'Y) = 0. So we have

s(D) =d/r+cr(y,D)dr+d/F_cr(y,D)dr

=d g [o(y, D) —o(—y, D)]dr.

Let y € 1"1+ and e € D besuch that o(—y, D) = (—y,e). Then
o(y.D) —o(=y,D) =0o(y.l(D)) —o(-y.D)

=0((y). D) —o(=y. D)
([(y).e) + (y.e) = ([ + 1)(y).e).

A%
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But ({ + I)(y) = 2(y,x)x. Theno(y,D) —o(—y,D) > 2(y,x) - (X,e) > 0,
since y € 1"1+ and (X, e) > 0. Therefore,

(s(D).x) =d g [0(y.D) —o(=y.D)]-(y.X) dr > 0.

which contradicts s(D) = 0. Then s(A) € A for A € Conv(R?). a

Corollary 2.2. There is K > 0 such that for every A, B € Conv(R?), one has
Is(4) —s(B)| = K -h(A, B).

Proof. Let us observe that for A, B € Conv(IR?), we have h(A, B) = max{|o(x, 4)
—o(x, B)| : x| = 1}. Then |s(4) —s(B)| = d [, ylo(y,A) —o(y, B)|dr <
K -h(A, B) forevery K > d. O

Remark 2.6. In the above inequality we can compute the optimal Lipschitz constant

K(d) > 0.Ttisequalto d!"/(d — 1) if d isodd, and K(d) = d!/[x(d — )]
if d is even. |

Theorem 2.3. If (X, p) is a metric space and F : X — Conv(R?) is Lipschitz
continuous, then F admits a Lipschitz continuous selection.

Proof. Let h(F(x;), F(x2)) < Lp(x1,x,) forsome L > 0 andevery x;,x, € X .
Put f(x) = s(F(x)) for x € X. By Corollary 2.2, we get | f(x1) — f(x2)| =
Is(F(x1))=s(F(x2))| < K(d)-h(F(x1), F(x2)) < K(d)-L p(x1,x2), where K(d)
is as in Remark 2.6. By Lemma 2.5, for every x € X, we have f(x) € F(x). O

Remark 2.7. Theorem 2.3 cannot be extended to multifunctions with values in an

infinite-dimensional Banach space (Y, ]| - ||). It can be proved that if a Lipschitz
continuous multifunction F : X — Conv(Y) admits a Lipschitz continuous
selection, then Y is finite-dimensional. O

Remark 2.8. 1t can be proved that if F : X — P(R¢Y) with X € Conv(R™) is
convex-valued such that F~({y}) = {x € X : y € F(x)} isan open setin X for
every y € R?, then F admits an C - selection. a

We shall now show that some measurable multifunctions admit measurable
selections. We begin with the following lemma.

Lemma 2.6. Let (X, p) be a separable metric space and (T, F) a measurable
space. Then a multifunction F : T — P(X) is weakly measurable if and only if
the function T >t — dist(x, F(t)) € Rt is measurable for each x € X.

Proof. Letus observe that F is weakly measurable if and only if F~(B(x,¢)) € F
forevery x € X and ¢ > 0. On the other hand, a function 7 > t — dist(x, F(t)) €
R* is measurable for fixed x € X if and only if {¢t € T : dist(x, F(¢)) < &} € F
forevery ¢ > 0. But F~(B(x,¢e)) ={t €T : Ft)NB(x,e) #0} ={t eT:
dist(x, F(t)) < &}. This completes the proof. |
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Theorem 2.4 (Kuratowski and Ryll-Nardzewski). Let (X, p) be a Polish space
and (T, F) a measurable space. If F : T — CI(X) is measurable, then F admits
a measurable selector.

Proof. Let {x1,x7,...} be a countable dense subset in X and let B,(i) = {x €
X 1 p(x,x;) < 1/n} for i,n > 1. Without any loss of generality, we may assume
that diam(X) < 1, where diam(X) = sup{p(x,y) : x,y € X}. We will construct
a sequence (f,)92, of measurable functions f, : T — X such that

() dist(fu(0), F(t)) <&x and (i)  p(fu(®), fu—1(t)) < &n—

for n >0 and t € T, where ¢, = (1/2)" for n =0,1,2,.... Let fo(t) = x for
t € T. Then dist( fo(2), F(¢)) < 1. Suppose fo,..., fu—1 have been constructed
and let A} = {t € T : dist(fx(t),F(t)) < €3 and C}] = {t € T :
p(xXk, fu=1(t)) < e4—1}. Put D} = A} N Cl'. We claim that T = | J;., D} for
n > 1. Fix t € T. By the inductive hypothesis, we can find z € F(¢) such that
p(fu=1(t),z) < €,—1. On the other hand, there is k > 1 such that p(x;,z) < &,
and p(xi,z2) + p(z, fu—1(t)) < &n + &4—1 < 28,2 = &,—1. Therefore, t € D}
and T C (Jy~,; D}. By virtue of Lemma 2.6 and the continuity of the function
dist(-, F'(t)) for fixed t € T, we obtain that A7 € F. The inductive hypothesis
givesthat C}' € F.Then D} € F.Nowdefine f, : T — X by setting f,(t) = xx

for t € D} \ Uf:i D!. Clearly, f, is measurable. Moreover, by (ii), we see that
(fu(1))52, is a Cauchy sequence in X for every fixed ¢ € T. Then there exists
a function f : T — X such that f,(t) — f(¢) forevery t € T as n — oc.
We also have dist(f(z), F(¢z)) = 0 for every t € T. Hence it follows that f is

measurable such that f(¢) € F(t) forevery t € T. O

In what follows, we shall consider “complete” measurable spaces defined in the
following way. For a given measurable space (7', F) and every probability measure
w1 on F, we denote by F, the u-completion of F and define F =) o Fu- The

space (T, F) is said to be complete if F = F.

Remark 2.9. 1t can be proved that for a given complete measure space (7, F, 1), a
multifunction F : T — P(R") such that Graph(F) € F ® S(R™) is measurable
and admits a measurable selection. a

A consequence of the above measurable selection theorem is the following
implicit function theorem.

Theorem 2.5. Assume that (X, p) is a Polish space, (T, F) a measurable space,
and (Y,d) a metric space. Suppose [ : T x X — Y is a function measurable in
t € T and continuousin x € X, andlet I' : T — Comp(X) be a measurable
multifunctionand g : T — Y a measurable function such that g(t) € f(t,T'(t))
for t € T. Then there exists a measurable function y : T — X such that y(t) €

['(t) and g(t) = f(t,y(@)) fort €T.

Proof. Let us observe that the set-valued function F : T — P(X) defined by
Ft)={xeX: f(t,x) eU} for t € T is measurable for every openset & C Y.
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Indeed, let B be a closed subset of X and let A be a countable dense subset of B.
We have

F~(B)={teT:Ft)NB+#0d}
={teT: f(t,x) elU for some x € B}
={teT: f(t,a) el for some a e A}

= JlteT: fa.0)cuy.

a€A

Therefore, F~(B) € JF, because we have {t € T : f(t,a) € U} € F
for every fixed a € A. Define multifunctions H(t) = T'¢) N{x € X :
d(f(t,x),g(t)) =0} for t € T and F,(¢) = {x € X : d(f(t,x),g()) <
1/n} for t € T and n > 1. For every n = 1,2,..., a multifunction F, is
measurable and also weakly measurable. Hence it follows that its closure F, is
weakly measurable, because F, (B) = F, (B) for every open set B C X.
Clearly, {x € X : d(f(t,x),g(t)) = 0} = (2, F,(¢) for t € T, because
Fu(t) C {x € X : d(f(t.x).g(t)) < 1/n} fort € T and n > 1. Hence it
follows that the multifunction H defined above can be also defined by H(t) =
I'(t) N[N, Fu(2)] for ¢ € T, which implies that H is measurable. Therefore,
by Theorem 2.4, there is a measurable selector y for H that in particular is a
selector for T" satisfying d(f(z,y(t)),g(t)) =0 fort € T. |

Corollary 2.3. If (X, p) is a Polish space, (T, F) a measurable space, and T" :
T — Comp(X) and g : T — X are measurable, then there exists a measurable
selector y for T suchthat dist(g(t), ' (¢)) = p(g(t),y(t)) for t € T. |

The following important result follows immediately from the Kuratowski and
Ryll-Nardzewski measurable selection theorem.

Theorem 2.6. Let (X, p) be a Polish space, (T, F) a measurable space, and let
F : T — CI(X). The following conditions are equivalent:

(i) F is measurable;
(ii) there exists a sequence (f,)22, of measurable selectors of F such that F(t) =

cl{ f1(t), fo(2),...} forevery t € T.

Proof. Let F be measurable and (x,);2, a dense sequence of X. For every
n,k > 1, we define

F(t) N B(xp, &) if t € F7(B(xy, &k)),

F.x () =
ni (1) F(t) otherwise,

where g = (1/2)¥ and F~(B(x,,ex)) = {t € T : F(t) N B(x,, &) # 0}.
Note that F~(B(x,,&r)) € F and that the set-valued function 7 > t — F(t) N
B(x,,er) C X is measurable. So F, ; is measurable, which implies that cl [F, k]
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is also measurable. Therefore, by Theorem 2.4, there exist measurable functions
fok : T — X suchthat f,x(t) € cl[F,x](t) forevery t € T. We shall show that
F(t) =cl{fyx() :n,k > 1} for t € T.Indeed, fix t € T andlet x € F(¢t) and
e>0.Let k > 1 and n > 1 be such that ex_; < ¢ and x € B(x,,&x). Then
t € F(B(x,,60) and fyi(t) € By, 80). S0 p(fyx (1), %) < p(fork (1), %) +
p(x,,x) < e, which proves that F(t) = cl{f,x(¢) : n,k > 1}. Then (i) = (ii).
Assume that (ii) is satisfied. Then for every open set &/ C X , we have

FrUy={eT:FoOynU#0y=|JtreT: fi)elyeF.
n>1

Then F is weakly measurable and therefore measurable. Thus (ii)=>(i). O

Remark 2.10. 1t can be proved that if (7, F) is a complete measurable space,
(G, Q) is a measurable space, X is a Suslin space, g : T x G — X is jointly
measurable, I' : 7 — P(G) is a multifunction such that Graph(I') € F ® G, and
h: T — X is ameasurable map such that h(t) € g(¢,'(¢)) for ¢t € T, then there
exists a measurable selector y : T — G of I' such that h(t) = g(¢,y(¢)) for
teT. |

We shall consider now the existence of Carathéodory-type selections of measur-
able multifunctions depending on two variables. More precisely, let (7, F) be a
measurable space, (X, p) a Polish space, and (Y, || - |) a separable Banach space.
Consider the set-valued mapping F : T x X — CI(Y), which is assumed to be
measurable, i.e., for every closed set A C Y ,wehave F7(A) ={(t,x) e T x X :
F(t,x)N A # 0} € F ® B(X). We are interested in the existence of a function
f:TxX —Y,aselector of F,suchthat f(-,x) is measurable for fixed x € X,
and f(¢,-) is continuous for fixed ¢ € T. Such selectors of F are said to be of
Carathéodory type or simply to be Carathéodory selectors for F.

Theorem 2.7. Let (T, F) be a complete measurable space, (X, p) a Polish space,
(Y, |l -I|) a separable Banach space, and F : T x X — CI(Y) a convex-valued
measurable set-valued mapping. If furthermore, F(t,-) is Ls.c. for fixed t € T,
then F admits a Carathéodory selection.

Proof. Let (y,)52, be a dense sequence of Y. For t € T, n > 1,and ¢ > 0,
define G;(t) = {x € X : y, € (F(¢t,x) + ¢B)}, where B is an open unit ball in
Y. By the lower semicontinuity of F(z,-), a set G/(t) is open for every t € T,
e > 0,and n > 1. Also, the family {G;(¢) : n > 1} is an open covering of X.
Moreover,

Graph(G;) = {(t,x) € T x X : dist(y,, F(¢,x)) < e} € F @ B(X),
because of the measurability of F. Let &, = (1/2)" and

G, () ={x € G, (?) : dist(x, X \ G,) > &} and U, (t) = G, (1) \ U G, (D)

1<k<n
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for n,m > 1. It can be verified that the family {{/5(t) : n > 1} is a locally
finite covering of X and every multifunction ¥: : T — P(X) has a measurable
graph. Hence it follows that the set-valued mapping 7 > ¢t — X \U:(t) C X is
measurable with closed values. Let

dist(x, X \ U (1))
ps1 dist(x, X\ U (1))

Pt x) = 5

By virtue of Lemma 2.6, the function p; (-, x) is measurable for every n > 1
and fixed x € X. By the above definition, p:(t,-) is continuous for fixed t € T.
Then p{ is a Carathéodory function for every ¢ > 0 and n > 1. Furthermore,
doas1 Dot x) = 1. Let fe(t,x) = Y o, pi(t,x) - y,. It is clear that f* is a
Carathéodory function. By the convexity of F(z,x), forevery (1,x) € T x X we
get fe(t,x) € F(t,x)+ ¢B for (t,x) € T x X andevery ¢ > 0.

Let g, = (1/2)" for n = 1,2,.... We define now a sequence (f,)s, of
Carathéodory functions f, : T x X — Y such that f,(z,x) € F(¢,x) + ¢, B and
| fu(t, x) — fu=1ll < €4—1 for (¢z,x) € T x X and n > 2. We start with f; = f*
and then we put F,(t,x) = F(¢t,x) N {fi(t,x) + e B} for (t,x) € T x X. By
virtue of Lemma 2.3, a multifunction F(t,-) is Ls.c. for fixed ¢ € T. It is easy
to see that F, is measurable. Consequently, its closure cl[F;] is measurable and
cl[F>] (¢,-) is Ls.c. for fixed ¢t € T. From this and the first part of the proof, it
follows that for ¢ = &, there exists a Carathéodory function f, suchthat f,(¢, x) €
cl[F>] (t,x)+e&,B for (t,x) € T x X. Itisclearthat f,(¢,x) € F(t,x)+¢&,B and
| /2(¢, x) — fi(t,x)|| < e for (¢,x) € T x X. By the inductive procedure, we can
define a sequence (f,,)52, of Carathéodory functions f, : T x X — Y such that
fu(t,x) € F(t,x) +&,B and || f,(t,x) — fu—1(t,x)|| < &n—1 for (¢,x) € T x X.
Hence it follows that there exists a Carathéodory function f : T x X — Y such
that f,(t,x) — f(t,x) as n — oo for (t,x) € T x X. By the closedness of
F(t,x), this implies that f(¢,x) € F(t,x) for (t,x) e T x X. |

Remark 2.11. Ttcanbe provedthatif T is alocally compact metric space furnished
with a Radon measure @, X is a Polish space, Y is a separable reflexive Banach
space,and F : T x X — CI(Y) is as in Theorem 2.7, then there exists a sequence
(fm)S, of Carathéodory selectors f,, : T x X — Y of F suchthat F(f,x) =
cl{ fu(t,x) :m > 1} forevery (t,x) e T x X. |

There are quite a number of set-valued fixed-point theorems. We present below
one of them that generalizes the classical Banach fixed-point theorem.

Theorem 2.8 (Covitz—Nadler). Let (X, p) be a complete metric space and let
F : X — CU(X) be such that h(F(x), F(x)) < Kp(x,Xx) forevery x,x € X
with K € (0, 1). Then there exists x € X such that x € F(x).

Proof. Let L € (K,1) and A = K~ 'L. For some x € X, we have
B(x, A -dist(x, F(x)))NF(x) # @,because A > 1. Then we can select x; € F(x)
such that p(x, x;) < A-dist(x, F(x)). Forsuch x; € X, we can select x, € F(x)
such that p(xy, x2) < A -dist(x;, F(x1)). Continuing this procedure, we can find a
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sequence (x,)%2, of X suchthat p(x,,x,41) < A -dist(x,, F(x,)) for n > 1.
Hence it follows that p(x,, x,+1) < A -dist(x,, F(x,)) < A-h(F(x,—1, F(x,)) <
Lp(xy—1,x,) < L'dist(x, F(x)). Now, similarly as in the proof of the Banach
fixed-point theorem, we can verify that the above defined sequence (x,);2, has
a limit, say x,, belonging to X. Since F is H-continuous and dist(x, F(x)) <
p(x, x,) + dist(x,, F(xy+1)) + h(F((xy41), F(x)) for n > 1, it follows that
x € F(x). |

3 The Aumann Integral

Let (T, F,u) be a o-finite measure space that is not necessarily complete. For
p > 1,by L(T, ]Rd) we denote the Banach space .7 (T, F, u, Rd) with the norm
| - || defined in the usual way, i.e., by || fI|? = [, |f()|?du for f € L7(T, RY).
In what follows, we shall consider L?(7,R¢) with p = 1 and p = 2. Instead
of LY(T,RY), we shall write I.(T, R?). Let us recall that if 4#(T) < oo, then a
set K C LP(T,R%) is relatively sequentially weakly compact if K is bounded
and uniformly integrable, i.e., if lim,g)—o [ f(r)d = O uniformly for f € K.
By the reflexivity of I2(7,R%), a set K C L*(T,RY) is relatively sequentially
weakly compact if and only if it is bounded. By the Eberlein—-Smulian theorem, it
follows that for a bounded set K C ]LZ(T, Rd) , its closure cl,, K with respect to the
weak topology of IL2(T, R¢) is weakly compact. In particular, if K is also closed
and convex, then it is weakly compact, because in such a case, we have K = cl,, K.

Given a measurable set-valued mapping F : T — CI(R?), we define
subtrajectory integrals S(F) of F as the subset of the space L?(7,R?) defined
by S(F) = {f € L”(T.RY) : f(t) € F(t) a.e.}. It can be verified that
S(F) is a closed subset of IL”(T,R¢). In what follows we shall consider only
the cases p = 1 and p = 2. Immediately from properties of multifunction F
it will be easily seen if S(F) is a subset of I.(T,R?) or L*(T,R?), respectively.
In what follows, we shall denote by M(T, ]Rd) the space of all measurable set-
valued mappings F : T — CI(R¢) and by A(T,R) the subspace of M (T, R¢)
containing all F € M(T,R?) such that S(F) # @. It can be proved that every
F € M(T,RY) belongs to A(T,R?) if and only if there exists k € L?(T,R")
such that dist(0, F(¢)) < k(t) fora.e. t € T. We have the following simple results.

Lemma 3.1. If F € A(T,RRY), then there exists a sequence (fn)S2, of functions
fu € S(F) such that F(t) = cl{ f1(t), fo(t),.. .} for t € T.

Proof. By virtue of Theorem 2.6, there exists a sequence (g,);>, of measurable
functions g, : T — R? such that F(t) = cl{gi(t),g:(t),...} for t € T.
Taking a countable measurable partition {A, Az,...} of T with u(Ax) < oo
and a function f € L7(T,RY) such that f(1) € F(t) for t € T, we
define Bjux = {t € T : m—1 < |g;(®)] < m} N Ax and fimr =
1s,,.8; + 1r\s,,,f for j,m,k > 1.1tis easy to see that f;,x € S(F) and

F(t)={fjmi(t):jmk>1}fort eT. 0
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Corollary 3.1. If F.G € A(T,RY), then S(F) = S(G) if and only if F(t) =
G(t) forae teT. |

Lemma 3.2. Let F € A(T,R?) and let (f, ne, be a sequence of S(F) such
that F(t) = cl{fi(t), [2(t),...} for t € T. Then for every f € S(F) and
e > 0, there exists a finite measurable partition {Ai,...,An} of T such that

If =2 1 fill <&

Proof. Assume f(t) € F(t) forevery t € T andlet p € L?(T,R) be strictly
positive such that |. 7 pdu < &/3. Then there exists a countable measurable partition
{Bi1, By,...} of T suchthat |f(z) — fi(¢)| < p(t) for t € B; and i > 1. Take
an integer m such that 3272 . [ [f(O)]dp < e/6 and 372, 1\ [p | fi(D]dp <
¢/6 and define a finite measurable partition {A,,..., A,} as follows: A; = B; U
(U241 Bi) and A; = B; for 2 < j < m.Then we have

"f_;mifi" =;/};i|f(t)—ﬁ(t)ldu+ Z /Bilf(t)—ﬁ(t)ldu

i=m+1

o0
< [+ ¥
T

i=m+1

[ aror+isoban <. .

Lemma 3.3. Let (T, F, ) be a measure space with a o-finite measure . If F €
A(T,RY), then coS(F) = S(co F).

Proof. We have co S(F) C S(co F). Assume that there exists f € S(co F) such
that f ¢ co S(F). By the strong separation theorem, we can find & € IL°°(T, R%)
such that sup{(h,g) : g € S(F)} < (h, f), where (:,-) denotes the duality bracket.
Hence it follows that [, o(h(r),c0 F(t))d < [ (h(z), f(t)) djx. On the other
hand, f(r) € cOF(r) ae. Then [, (h(t), f(1))du < [,o(h(r),co F(r))dpu, a
contradiction. Therefore, co S(F) = S(coF). |

A multifunction F : T — P(R") is said to be p-integrably bounded if there
is k € LP(T,R") such that |F(t)| =: h({0}, F(t)) < k(¢) forae. t € T.In
particular, for p = 1, we say simply integrably bounded instead of 1-integrably
bounded. Similarly, if p = 2, then instead of 2-integrably bounded, we say square
integrably bounded. It is clear that F' is p-integrably bounded if and only if the
function T > t — ||F(¢)|| € R™ belongs to I.”(T,R*). For every p-integrably
bounded multifunction F € M(T,R"), we have S(F) # 0.

Remark 3.1. Immediately from the definition of subtrajectory integrals, it follows
that for every measurable and p-integrably bounded multifunction F : T —
Conv(R?), its subtrajectory integral S(F) is a nonempty convex weakly sequen-
tially compact subset of L?(T,R?). In particular, it is a weakly compact convex
subset of this space for p > 1. |

Lemma34. If F,G € AT,RY then S(F + G) = S(F) + S(G).
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Proof. Immediately from Theorem 2.6, it follows that H = F + G is measurable.
It is clear that S(H) is closed, and therefore, S(F)+ S(G) C S(H). On the
other hand, we may find sequences (f,)72, C S(F) and (gn)or, C S(G)
such that F(¢) = cl{f,(¢) : n > 1} and G(t) = cl{g,(¢t) : n > 1} ae.
Evidently, H(¢) = {f.(t) + gu(t) : n,m > 1}, which, by Lemma 3.2, implies
that for given 7 € S(H) and ¢ > 0, we can select a finite F-measurable

partition (Ak)]](\'=l of T and positive integers ny,...,ny and mi,...,my such
that ||h — Z]]Ll L4, (fu, + &m)ll < e Hence it follows that 7 € S(F) + S(G).
Then S(H) C S(F) + S(G). O

Let (T, F, /1) be a measure space, R = [—o00,+0c0] andlet ¢ : T x X —
R be an F ® B(R¢)-measurable function. The functional T4 defined on the
space LY(T,R?) of measurable functions f : T — RY by setting T,(f) =
Jr @, f(1))du if the integral exists, permitting +0o or —oo, is called the integral
functional.

Lemma3.5. Let F € M(T,RY) andlet ¢ : T x RY — R be F ® B(RY)-
measurable. Assume either that (i) ¢(t,x) is u.s.c. in x for every fixed t € T or
that (ii) (T, F, n) is complete and ¢ (¢, x) isl.s.c. in x forevery fixed t € T. Then
the function T >t — inf{¢(t,x) : x € F(1)} C R is measurable.

Proof. Let £(t) = inf{¢(¢,x) : x € F(t)} and assume that (i) is satisfied.
By Theorem 2.6, there exists a sequence (f,)72, of measurable selectors of F
such that F(r) = cl({fi(t), fo(t),...}) for t € T. Then we have £(t) =
inf,>; ¢(t, fu(¢)) for t € T, which implies that & is measurable. Let (ii) be
satisfied and let H : T — P(R? x R) be defined by H(t) = {(x,a) e R xR :
x € F(t), ¢(t,x) < a} for t € T. Then H(t) is closed in R x R for every
t € T, and Graph(H) = [Graph(F) N R] N {(z, x, ) : (z,x) — o < 0} belongs
to F ® B(RY) ® B(R) = F ® B(R? ® R). Therefore, by virtue of Remark 2.9
and Theorem 2.6, there exists a sequence (g,,&,)52,; of measurable functions
g : T — RYand &, : T — R such that H(t) = cl({(g1.£)(1), (g2.£)(1),...})
for t € Dom(H). Hence we have £(¢) = inf,>;&,(¢t) for t € Dom(H) and

&(t) = oo for t € T \ Dom(H ). This shows that £ is measurable. |

Theorem 3.1. Ler F € A(T.R?) andlet ¢ : T x X — R be F ® B(R?)-
measurable. Assume either that (i) ¢(t,x) is u.s.c. in x for every fixed t € T, or
that (ii) (T, F, ) is complete and ¢(t,x) is l.s.c. in x for every fixed t € T. If
the integral functional Ty is defined for all f € S(F) and T4(fo) < oo for some
fo € S(F), then inf{Ty(f): f € S(F)} = [, inf{p(t,x) : x € F(t)}dpu.

Proof. Let £(t) = inf{¢(t,x) : x € F(t)}. By virtue of Lemma 3.4, & is
measurable and £(¢) < ¢(¢, f(t)) ae. forevery f € S(F). Taking f = fo,
we can see that the integral of £ exists and [, &du < inf{T4(f) : f € S(F)}.
If 74(fo) = —oo, then the proof is complete. Thus assume 74( fo) to be finite, so
that the function 7 > t — ¢(t, fo(r)) € R is in L(T,R). Let 8 > [ &dp be
given. We shall show that 74(f) < B for some f € S(F). Take a sequence
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(4,);2, of measurable sets A, € JF such that u(4,) < oo and such that
A, 1 T and a strictly positive function p € L(7,R). For n > 1, define
B,=A4,N{t T :¢(, fo(t)) > —n} and

E@)+ p(t)/n textif te€ B, and £(t) > —n,
() = —n+p@)/n if t€ B, and £(t) < —n,
¢, fot)) + p(t)/n if 1 €T\ B, .

It is easy to see that § € I(7T,R) for n > 1 and §,(¢) | &(t) ae., so
that [} &,du < B for some ng. Setting { = §&,,, we have [, ¢du < B and
£(t) < £(t) a.e. We claim now that there exists a measurable function g : T — R
satisfying g(¢) € F(¢t) ae. and ¢(z,g(t)) < ((t) ae. For case (i), take a
sequence (g;)72, of measurable functions such that F(t) = cl({gi(?), g2(¢). ...}
for all + € T. Since infi>; ¢(¢,g:(t)) = &(t) ae., there exists a measurable
function g satisfying the conditions desired above. For case (ii), define Fj(t) =
Fit)yn{x € R? : ¢(t,x) < £(t)} for t € T. Since F\(t) is closed for every
t € T and Graph(Fy) € F ® B(RY) it follows by Remark 2.9 that F; has a
measurable selection on Dom(F}) € F. Thus the desired g is obtained from the
condition p(T \ Dom(F;)) = 0. Using the function g defined above, we define
C,=A,N{teT:|gt) <n}and f, =1c,g + 1Inc, fo for n > 1 such that
fn € S(F) for n > 1 and

Tolf) = /C $(1. g(0)du + /T P SNy
< [ ¢ + [ [, folt)) — Lldp.
T T\C,

Since [, ¢dpu < B and C, 1 T, we have Ty(f,) < B. O

Corollary 3.2. If F € A(T,RY) if ¢ : T x X — R is F ® B(R?)-measurable
and satisfies (i) or (ii) of Theorem 3.1, and if Ty is defined for all f € S(F)
and Ty(fo) > —oo for some fo € S(F), then sup{T,(f) : f € S(F)} =
[ sup{g(t,x) : x € F(r)}dp. |

Corollary 3.3. For every F € A(T,RY), one has sup{|| f|? : f € S(F)} =
[rsup{|x|? : x € F()ydu = [, IF(t)|?d. Then F is p-integrably bounded if
and only if S(F) is a bounded subset of 1.7 (T, R%). |

Let M C LL°%(T,R?) be a set of measurable functions f : T — R?. We call
M decomposable with respect to F if fi, f, € M and A € F imply 14/ +
LIr\afo € M. Itis clear that if M is decomposable, then Y ;- 14 f; € M for
each finite F-measurable partition {A;,..., Ay} of T and {fi,..., fu} C M.
The following theorem is a characterization of decomposable subsets of the space
L7(T,RY).
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Theorem 3.2. Let M be a nonempty closed subset of L?(T,R?) with p > 1.
Then there exists an F € A(T,R?) such that M = S(F) if and only if M is
decomposable.

Proof. Let us observe that S(F) is decomposable for every F € A(T,R?). If
M c LP(T,R?) is such that there exists F € A(T,RY) such that M = S(F),
then it is decomposable. To prove the converse, assume that M is a nonempty
closed decomposable subset of I.” (T, RY). Let us observe that a multifunction G
defined by G(¢) = R? forevery t € T belongs to A(T, R?). Therefore, by virtue
of Lemma 3.1, there exists a sequence (f;)72, of L”(7,R") such that RY =
cl(fi(¢) i = 1} forevery t € T.Let o; = inf{||f; — g| : g € M} for i >
1 and choose a sequence {g;; : j > 1} C M such that ||f; — gij| — o; as
j — oc. Define F € A(T,RY) by F(t) = cl{gi;(t) : i,j > 1}. We shall
prove that M = S(F). By Lemma 3.2, for each f € S(F) and ¢ > 0, we
can select a finite measurable partition {A;,..., A} of T and {hy,...,h,} C
{gij(t) 1 i,j = 1} suchthat || f — Y ) La hill < e Since Y ) Lahx € M,
this implies that f € M. Then S(F) C M . Now suppose that S(F) # M.
Then there existan f € M ,an A € F with u(A) > 0,and a § > 0 such that
inf; j>1|f(t) — gij(t)] = 6 fort € A. Take an integer i, fixed in the rest of the
proof, such that the set B = AN{t € T : |f(t) — fi(¢)] < &/3} has positive
measure, and let g = 15 f + 17\pg;;, for j > 1. Since g; € M for j > 1 and

|fi(@) = &y (O = [ /(1) = g O] = [ f () = fi(t)] > 28/3 it follows that
Ifi = gij 7" —ei = 1fi = gis 17 = I.fi — &I

=/B(Iff(t)—gij(t)lf’—Ifi(t)—f(t)lp)du
> [(28/3)" — (8/3)7] - u(B) > 0

for j > 1.If j tends to infinity, we get lim; oo || fi — gijll > o, a contradiction.
Thus M = S(F). O

Remark 3.2. The above result is also true for nonempty closed subsets of IL.7 (T, X),
where X is a separable Banach space. |

Remark 3.3. Similarly as in the proof of Michael’s continuous selection theorem, it
can be proved that if (X, p) is a separable metric space and (7, F, i) is a measure
space, then every Ls.c. multifunction F : X — CI(IL?(T,R%)) with decomposable
values admits a continuous selection f : X — L?(T,RY).

Proof (Sketch of proof). The proof follows from the following construction proce-
dure. For every ¢ > 0, we define continuous mappings f, : X — L7(T,RY)
and ¢, : X — LP(T,R%") such that F,(x) = {u € F(x) : |ut) — f:(1)| <
@s(t)a.e.} is nonempty and |¢.[, < & Now, by the inductive procedure, we
can define sequences ( f)n>0, (@n)n>0,and (F,)a>0 such that |¢,(x)|| < 1/2",
[ /u () (1) = fum1 ()(D)] = @n(x) () + @u—1(x)(2) ae.,and F,(x) # 0 for x € X.
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Hence the existence of a continuous selector f for F follows similarly as in the
proof of Michael’s theorem. O

Given C C LP(T,RY), by dec{C} we denote the decomposable hull of
C, i.e., the smallest decomposable set of IL?(7,IR?) containing C. The closed
decomposable hull dec{C} of C is defined by dec{C} = cly[dec{C}]. It is easy
to see that

dec{C} =1 14 fi : ()L, € I(T.F) and (fi)jL, C C¢.

i=1

where II(7,F) denotes the family of all finite F-measurable partitions of 7.
Immediately from the above definition, it follows that the decomposable hull of the
unit ball B of L?(T,RY) is equal to the whole space, i.e., dec{B} = L”(T,R%).
We have the following results dealing with decomposable hulls.

Lemma 3.6. Let (X,p) be a metric space. If T : X — PALP(T,R?)) is Ls.c.,
then the multifunction X > x — dec{T'(x)} C L?(T,R?) is also Ls.c.

Proof. By virtue of ([49], Theorem I1.2.8), one has to verify that dec(I')—(C) :=
{x € X : dec{'(x)} C C} is a closed subset of X for every closed set C C
IL7(T,R9). Let C be a closed subset of I.”(T,R¢) and (xn);2, a sequence of
dec(T")_(C) converging to x € X. For every u € dec{I'(x)} C dec{I'(x)} and
e > 0, there exist a measurable partition (Ai),ivil of T and a family (vf{)f\';l C
L?(T,R%) such that |ju — Z,N;l Lavpll < & and vy € I'(x) for every k =
I,...,N..But T isls.c. at x € X. Therefore, by virtue of ([49], Theorem I11.2.9),

forevery k = 1,..., N, and ¢ > 0 there exists a sequence (v,)72, converging
to vf such that v* € I'(x,) forevery n > 1, k = 1,..., N, and & > 0. Hence
it follows that || Z,I{Vgl Lo — Z,I{Vgl Ly vl — 0 as n — oo forevery & > 0.

. N, n,e N; n,e
Therefore, lim, oo [lu—) ;2 Tac vy || < & forevery e > 0.But } ;= T4 v° €

dec{T"(x,)} C C forevery n > 1 and & > 0. Then u € C +¢B, where B denotes
the closed unit ball of I.” (T, R¢). Therefore, for every u € dec{I'(x)}, one has u €
C = C. Thus dec{T'(x)} C C, which implies that x € dec(I")_(C). Therefore,
dec(T")_(C) is a closed subset of X for every closed set C C IL”(T,R9). |

Remark 3.4. Immediately from Lemma 3.6, it follows that by the assumption of
Lemma 3.6, the multifunction X 3 x — dec{I'(x)} C L”(T,RY) is Ls.c.

Proof. By virtue of ([49], Theorem I1.2.9) one has to verify that for every x € X,
every sequence (x,)52, of X convergingto x,and u € dec{T'(x)}, there exists a
sequence (y,),o, of L”(T, R?) converging to u such that y, € dec{I'(x,)} for
every n > 1. Let x € X be fixed, let (x,);2, be a sequence of X converging to
x,and let u € dec{I'(x)}. For every & > 0, one has dec{I'(x)} N B(u,&) # @.
By virtue of ([49], Proposition 11.2.4) and Lemma 3.6, a multifunction ®(x) =

dec{I"(x)} N B(u, &) is l.s.c. Then there exists a sequence (y,)52, of L7(T, RY)
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converging to u such that y, € dec{I'(x,)} N B(u, &), which implies that y, €
dec{I"(x,)}. |

Theorem 3.3. The decomposable hull of a convex set K C L?(T,RY) is itself
convex, and its closure is convex and sequentially weakly closed. If (2, F, ) is
a o-fini te nonatomic space and K is a nonempty subset of ILP(Q2, F, u,R%),
then dec,,{K} = co[dec{K}], where dec,{K} denotes the closure of dec{K} with
respect to a weak topology of L (T, R?).

Proof. Let K be a convex subset of L?(T,R?) and u,v € dec{K}. There are
partitions (A,)_,,(B,)M_, € II(T, F), and (u,)"_,, (vu)M_, C K such that
u=3N 1gu and v =Y 1p v, Let (Dy)K_, € TI(T,F) be such that
u = Z,il]lpkﬁk and v = Zf:l]].Dkl_)k, where iy = u,, and Uy = v, for
ng €{l,...,N} and my € {1,...,M} forevery k = 1,..., K. Forevery A €
[0,1] and 1 < k < K, one has Auy + (1 — A)v; € K. Therefore, Au+ (1 — A7)
v = Zle 1p, [Aux + (1 — A)vx] € dec{K}. Thus dec{K} is a convex subset of
L7(2, F,R"). Hence the convexity of dec,{K} follows. Now, immediately from
Mazur’s theorem ([4], Theorem 9.11), it follows that dec{K} is sequentially weakly
closed. Finally, immediately from ([41], Theorem 2.3.17), the equality dec,,{K} =
co[dec{K}] follows. |

Remark 3.5. 1If K C IL>(T,R¥) is convex and square integrably bounded, then
dec{K} is convex and weakly compact.

Proof. If K C L2(T,RY) is square > integrably bounded, then dec{K} is square
integrably bounded, too. Therefore, dec{K} is relatively weakly compact, which
by virtue of Theorem 3.3, implies that it is convex and weakly compact. |

Remark 3.6. If F : T — R? is measurable and p-integrably bounded, then the
interior Int[S(F)] of S(F) is the empty set and S(F) = dec{f, : n > 1}, where
fn € S(F) for n > 1 are suchthat F(¢t) =cl{f,(t) :n>1} fort € T.

Proof. Suppose Int[S(F)] # @. For every f € Int[S(F)]), there exists an open
ball B(f) containing f such that B(f) C Int[S(F)] C S(F). Hence it follows
that dec{B(f)} C dec{S(F)}. But S(F) is a decomposable subset of I.”(T, R).
Therefore, dec{B(f)} C S(F), which is a contradiction, because S(F) is bounded
and dec{B(f)} = L?(T,R?). Then Int[S(F)] = @. Let us observe that by the
properties of S(F), wehave dec{f, : n > 1} C S(F). On the other hand, by virtue
of Lemma 3.2, for every f € S(F) and & > O there exist a partition (Ak)lf{v=l €

I1(T, F) and a family (fn,(),]{\’=l C {fy, :n > 1} suchthat | f —Z,i\;l Ly, forll <
e, which implies that f € dec{f, : n > 1}. Thus S(F) =dec{f, : n > 1}. |

Lemma 3.7. Assume that (T, F, ) and (X, p) are measure and metric spaces,
respectively. Let F : T x X — CI(RY) be such that F(-,x) is measurable for
fixed x € X and there exist m,k € L*(T,RT) such that |F(t,x)| < m(t)
and h(F(t,x), F(t,x)) < k@)p(x,x) for pu-ae. t € T and x,x € X.
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Then H(S(F(-,x),S(F(-, X)) < Kp(x,Xx) for every x,Xx € X, where K =
(fT k2(t)dp)'/? and H is the Hausdorff metric on CI(IL>(T, R%)).

Proof. Assume x,X € X and select arbitrarily f* € S(F(-, x)). By virtue of
Theorem 3.1, one has

1/2
dist(f*, S(F(-, X)) = inf§ (/Tlf,"—ftlzdu) SIS S(F(-,fc))}
1/2
= ( / dist?( £, F(t,)‘c))d,u)
T

1/2
< (/ kz(t)pz(x,)"c)d,u) < Kp(x, %),
T

where K = (fOT k2(¢)dt)"/2. Then H(S(F(-,x)),S((F(-,X))) < Kp(x,%).Ina
similar way, we obtain H (S(F(-, X)), S(F(-,x))) < Kp(x, %). O

Remark 3.7. Similarly as above, one can prove that if (7, F, ) and (X, p) are as
aboveand F : T x X — CI(RY) is measurable and uniformly square integrably
bounded such that F(z,-) is Ls.c. for a.e. fixed ¢ € T, then a set-valued mapping
X 3 x — S(F(-,x)) € C(LA(T,RY)) is L.s.c.

Proof. Let us observe first that for given metric spaces X and Y , a multifunction
®: X - PX)is Lsc.at x € X ifitis H-ls.c,, i.e., if for every ¢ > 0,
there exists a § > 0 such that for every x € X satisfying p(x,X) < &, one has
h(®P(x), P(x)) < . Indeed, suppose the above condition is satisfied and & is not
Ls.c. at x. There exists an openset U C Y with ®(x) N U # @ such that in every
neighborhood V of x, there exists X € V' such that ®(x)NU = @. Therefore, we
can select a sequence (x,)72, of X converging to X such that ®(x,) N U =0
for every n = 1,2,.... On the other hand, for every ¢ > 0, there exists N, > 1
such that for every n > N, , we have ®(¥) C V°[®(x,). ¢]. Hence in particular, it
follows that ®(X)NU C VO[®(x,),¢] for n > N,.Let y € ®(X)NU, nx = Ny
forevery k = 1,2,... and select y; € ®(x,,) such that d(yx,y) < 1/k. For k
sufficiently large, we have y; € U and therefore ®(x,,) NU # 9, a contradiction.

Let us observe now that if ®(X) is a compact subset of Y, then & is ls.c.
at X € X if and only if for every & > 0, there exists a § > 0 such that for
every x € X satisfying p(x,X) < &, one has h(P(x), P(x)) < e. Indeed,
for i = 1,...,m, let y; be such that {B°(y;,(1/2)e) : i = 1,...,m}
covers ®(x) and for i = 1,...,m, let §; > 0 be such that p(x,x) < §;
implies ®(x) N B%(y;,(1/2)e) # 0. Let § = min{§; : i = 1,...,m}. Then
p(x,X) < § implies that y; € VO(®(x),(1/2)e) for i = 1,....m, ie.,
B%(y;,(1/2)e) C VO(®(x),(1/2)e) for all i = 1,...,m. Therefore, ®(X) C
Nz, B°(yi, (1/2)e) € VO(®(x),(1/2)e) for x € B°(X,8), which is equivalent
to h[®(X), P(x)] < e for x € B(X,§).
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Let m € L2(T,R*) be such that ||F(z,x)|| < m(t) for every x € X and
ae.t € T. Therefore, F(t,x) is a compact subset of R? for every x € X and
a.e.t € T. Similarly as in the proof of Lemma 3.7, we can verify that for every
X,x € X, one has

HIS(F(-. X)), S(F(-,x))] < (/T EZ[F(LX),F(I,X)]dI)

Thus for every X € X and every sequence (x,)72, of X converging to X,
we obtain [, R2[F(1,%), F(t,x,)]dt — 0 as n — oo, which implies that
H[S(F(-,X)),S(F(-,x,))] = 0 as n — oc. Then the set-valued mapping X >
x — S(F(-,x)) € CI(LA(T,RY)) is ls.c.at X. O

Lemma 3.8. Assume that T is an interval of the real line and let F : T x R? —
CI(RY) and G : T x RY — CI(RY*™) be measurable uniformly p-integrably
bounded and such that F(t,-) and G(t,-) are Ls.c. for fixed t € T. There are
continuous functions u : RY — LP(T,RY) and v : RY — LP(T,R¥™) such
that

(i) u(x) e S(F(-,x)) and v(x) € S(G(-,x)) for x € R¢;

(ii) mappings f T xR? 3 (t,x) — u(x)(t) e R and g : T xR? > (¢, x) —
v(x)(t) € R are Br ® B(RY)-measurable such that f(t,x) € F(t,x)
and g(t,x) € G(t,x) forae. t € T and x € RY.

Proof. The existence of continuous functions u# and v satisfying (i) follows
immediately from Remarks 3.3 and 3.7. Let Z be the identity mapping on T
and define (Z x u) : T x R — T x L?(T,RY) by setting (Z x u)(t,x) =
(t,u(x)) for (t,x) € T x R?. The function Z x u is continuous on T x R?
and therefore (87 ® B(RY), Br ® B(ILP))-measurable, where Br, B(R?) and
B(IL?) denote the Borel o-fields on 7, R¢ and L7(T,RY), respectively. Let
p: T xLP(T,RY) — RY be defined by p(t,z) = z(t) for (t,z) € T x L?(T,RY).
The mapping p is (87 ® B(IL?), B(IRY))-measurable because p is such that p(z, )
is continuous and p(-,z) is measurable for fixed ¢+ € T and z € L”(T,RY),
respectively. Hence it follows that a mapping f : T xR? > (¢, x) — u(x)(t) € R?
is measurable on T x R?, ie., is (Br ® B(R?), B(IR?))-measurable because
ft,x) = [po (T xuwl(t,x) = p(t,u(x)) for (t,x) € T x RY. Measurability
of a mapping g can be verified in a similar way. It is clear that f(¢,x) € F(t, x)
and g(t,x) € G(t,x) forae. t € T and x € R?. a

Similarly as above, let T be an interval of the real line. Denote by J the linear
mapping defined on IL?(7T,RY) by setting J(f) = [r f(@)dt for f e LP(T, RY).
For a nonempty set K C I.”(T,R?), by J(K) we denote its image by the mapping
J,ie., asetof the form { [, f(t)dr : f € K}.

Lemma3.9. If K C L”(T,RY) is nonempty decomposable, then J(K) is a
nonempty convex subset of R¢.
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Proof. Let z1,z20 € J(K) and A € [0, 1]. There exist fi, f» € K such that
21 = [p i)dr and 2 = [, fo(t)dr. Let L7 be the family of all Lebesgue
measurable subsets of T and put w(E) = ([, fi(t)de, [, fo(t)dr) for E € Lr.
By Lyapunov’s theorem, u(Lr) is a convex compact subset of R??. Since (0, 0)
and (z1,722) belong to w(Lr), then we have also (Az1,Az2) € u(Lr). Therefore,
there exists H € Lr such that (Az;,Azz) = w(H), which by the definition
of the measure p implies that Azy = [, 1y fi()dt and Az = [, 1y fo(r)dr.
Let f = 1y fi + 1p\u fo. By the decomposability of K, we have f € K.
Therefore, [, f(1)dt € J(K). But [, f(1)dt = [(Aufi + Lpgfo)@)dt =
Jr1u(fi — L)@)dt + [, fo(t)dt = Azi — Azp + 22 = Azt + (1 — A)z2. Then
Az + (1 -2z € J(K). O

For F € A(T,RY), the set J(S(F)) is denoted by fT F(¢)dt and is said to be
the Aumann integral of F on the interval 7.

Corollary 3.4. For every F € A(T,R?), the Aumann integral [ F()dt is a
nonempty convex subset of R?. If furthermore, F is p-integrably bounded, then
fT F(t)dt is a bounded subset of R¢. a

Denote by V(c") the set of r + 1 vertices of the (r + 1)-dimensional simplex
o = {(&,....&) e R0 < & < 1, YI_o& = 1}. It is clear that if
u; € L®(T,RY) for i = 0,1,...,r, then (ug, ..., uy) € L®(T, R’+1), where
IL°°(T,R') consists of all u-essentially bounded measurable scalar functions
defined on 7.

Lemma 3.10. Let Y(¢) be an n x (r + 1)-matrix-valued function with components
in L°(T,R"), ¥ = {u € L®(T,R"*") : u(t) € o” fort € T}, and ¥y = {u €
Lo°(T,R"*Y) : u(t) € V(o) fort € T}. Then {[;Y(@) - u()dt : u € ¥} =
{fT Y(@)-u(t)dt : u e W}, and both of these sets are compact and convex.

Proof. Let J(u) = [, Y(1) - u(r)dr for u € L®(T,R""). Clearly, ¥ is convex
and bounded in the I.°°(7, R”*!)-norm topology. Hence if we can show that W is
weakly™*-closed, it will imply that W is weakly*-compact. Suppose u’ is a weak*-
limit of a sequence of W that does not belong to W. Then thereisaset E C T
of positive measure such that u°(¢) € o” for t € E and u® € W. One may readily
establish the existence of an & > 0 and n € R’*! such that the inner product
satisfies (n,€) > C if § € 0" and (n,u’(1)) < C —¢ for  inasubset E, of E
having a positive measure p(E;). Define a function w(t) = (wo(¢),...,w,(t)) by
setting

ni/u(Er) for t € Ey,

wilt) = 0 for t¢E,

for i = 1,...,r.Itis clear that w € (T, R"™"). From the properties of 7 €
R’ T, it follows that w separates u” and W, contradicting u° being a weak™*-limit
of a sequence of W. Thus W is closed, convex, and weak®-compact. It is easily
seen that J is weak™-continuous, because the weak topology was defined so that
the linear functionals that were continuous on a given normed space X with its
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norm topology are still continuous when X has its weak topology. In particular,
J = (J1,...,J,) is a continuous linear mapping from X* taken with its norm
topology to R such that components J; of J are representable as elements of
X. Then J is continuous as a mapping of X* with the weak*-topology to R¢.
Therefore, JV = {Ju : u € W} is a compac,t convex subset of R, Clearly,
JW¥, C JW. Similarly as in the proof of Lyapunov’s theorem, we can also show
that JW C J . |

Lemma 3.11. Let F : T — CI(RY) be measurable and integrably bounded. Then
[7 F(t)dt = [, co F(1)dt, and both sets are nonempty and convex in RY.

Proof. The nonemptiness and convexity of [, F(z)dt follow from Corollary 3.4.
By the definition of the Aumann integral, it follows that [, F(r)dt C [} co F(r)dr.
Suppose y € [rcoF(r)dr, and let f € S(coF) be such that y = [, f(r)dr.
By Carathéodory’s theorem, for every ¢t € T, the point f(¢) € co F(¢) may be
expressed as a convex combination f(r) = Y9 & () f1(t) with fi(t) € F(1),
0<&() <1, and Z,C'I=0 £(t) = 1.Let 0% denote the simplex in the space R?*!,
ie, o0 = {(§.....60) e R 1 0 < & < 1, Y% & = 1}. Denote by £(1)
the vector (£(t),....£4(t)) € o“. Let us observe that the functions & and f°
can be chosen to be measurable. Indeed, let g(z.£,8°,...,89) = Z?:o £
for t € T and B° ....,8¢ € R andlet T'(t) = o?F' x F(t) x --- x F(t)
with F(t) appearing n + 1 times in the product. Since f is measurable and
f(t) € g(t,T'(¢)) forae. t € T, then by Theorem 2.5, there exists a measurable
function T 3 ¢t — (§0(t),....&,(2), £O(t), ..., f9(t)) € T'(t) such that f(¢) =
g(t, (Eo(t),....E.(t), £O®t),..., fU(1)) forae. t € T. Let the vectors f'(¢) be
the columns of an d x (d + 1)-matrix Y. By virtue of Lemma 3.10 there exists a
measurable vector function £* = (§7,...,£]) on T taking values in the vertices
of the simplex o such that [, f(t)dr = [, Y(r)-E@)dr = [, Y(r) - £*(¢)dr.
Now £*(T) C {0,1} forall i =0,1,...,d and Y/_ &5 (t) = 1. Let T, = {r €
T : & (t) = 1}. Then T; is measurable and U?:()Ti =T ad T,NT; =0
for i # j.Define f*(t) = fi(t) fort € T; for i = 0,1,...,d. It is clear that
f* is measurable and such that f*(r) € F(r) and [, f*(t)dr = [, f(z)dt. Then
[r F()dt = [ coF (t)dr. O

Theorem 3.4 (Aumann). If F : T — CI(RY) is measurable and integrably
bounded, then [ F(t)dt = [} co F(t)dt, and both integrals are nonempty convex,
compact subsets of RY.

Proof. By virtue of Lemma 3.11, we have [, F(t)df = [, co F(t)dt, and both
integrals are nonempty convex subsets of R?. By virtue of Remark 3.1, a set
S(co F) is a weakly sequentially compact subset of IL(T,R¢). By the definition
of the Aumann integral, we have [, co F(z)dt = J(S(co F)), where J is a linear
and continuous mapping defined on IL(7, R?). By the linearity of J , it follows that
J is also continuous on ILL(7,IR?) with respect to its weak topology. Therefore,
J(S(co F)) is a compact subset of R? . O
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Remark 3.8. 1t can be proved that if (X, | - ||) is a separable Banach space, T
is an interval of the real line, and F : T — CI(X) is measurable and integrably
bounded, then cl( fT F(t)dt) = cl( fT co F(¢)dt), where the closure is taken in the
norm topology of X. O

Theorem 3.5. If F : T — CI(RY) is measurable and integrably bounded, then
forevery p e R? and A € Ly, one has fA o(p, F(t))dt = a(p,fA F(t)de).

Proof. Let us observe that o(p, F(-)) is measurable and integrably bounded for
every fixed p € R?. Then it is integrable and S 40(p, F(t))dt < oo for
every p € R? and A € Lr. Forevery f € S(F) and p € R?, we have
(p. [, f()dt) = [, (p. f(t))dt < [, 0(p, F(r))ds. Therefore, for every p € R,
one has o(p, [, F(t)dt) < [,o(p,F(t))dt. We shall show now that for every
@ € Rand p € R? such that o < Ji0(p. F(t))d, there is f € S(F) such
that @ < o(p, [, f(¢)dt). Indeed, let us take arbitrarily g € S(F) and define for
every n > 1 a multifunction F, by setting F,(t) = {x € F(¢) : |x — g(t)| < n}.
Similarly as in the proof of Theorem 2.5, we can verify that F,, and hence also
cl(F,), is measurable. Then o(p, F,(-)) is measurable for every p € R’ and
n > 1. It is also integrably bounded. Furthermore, o(p, F,(t)) — o(p, F(t)) for
t €T as n — oo.Then [, o(p. F,(1))dt — [, o(p, F(t))dt forevery p € R
as n — oo. Thus we have « < [, o(p, F,(t))dt for n large enough. Then there
exists an integrable function ¢ : T — R such that « < [ 4 e()de and @(1) <
o(p, F,(t)) forae. t € T.Let G(t) ={x € F(t) : (p,x) > @)} fort € T. 1t
is clear that G(¢) # @ and that G has a measurable graph. Therefore, by virtue of
Remark 2.9, there exists a measurable selector f of G, and hence also of F', such
that ¢(1) < (p, f(t)). Thus [, @(t)dt < (p. [, f(1)dr). Hence it follows that o <
(p. [, f(t)dt). Now taking in particular «,, = [, o(p, F(1))dr —1/n for n > 1,
we can select f, € S(F) such that o, < o(p, [, fu(t)dt) < U(p,fA F(t)dr) for
every p € R? and n > 1, which implies that [, o(p, F(1))dt < o(p. [, F(t)dt)
forevery p € R and 4 € L. O

Remark 3.9. The above results are also true for measurable and p-integrably
bounded multifunctions with p > 1. |

4 Set-Valued Stochastic Processes

Similarly as in Chap. 1, we assume that we are given a complete filtered probability
space Pr = (2, F,F, P) with a filtration F' = (F;);>0 satisfying the usual
conditions. By a set-valued random variable, we mean an JF-measurable multifunc-
tion Z : Q — CI(RY). If Z € A(Q2,R?), then the Aumann integral fQ ZdP
is denoted by E[Z] and is said to be the mean value of the set-valued random
variable Z. A set-valued random variable Z € A(Q,R?) is said to be Aumann
integrable. Immediately from properties of measurable set-valued mappings, the
following results, dealing with set-valued random variables, follow.
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Lemma4.1. Let Z : @ — CI(RY) be an Aumann integrable set-valued random
variable. Then

(i) S(Z) is a closed decomposable subset of L”(Q, F,R?) and S(co Z) =

coS(2).

(ii) Z is p-integrably bounded if and only if S(Z) is a bounded subset of
L7(Q, F,RY).

(iii) If Z is p-integrably bounded, then Int[S(Z)] = @ and S(Z) # L?
(2, F,R").

(iv) There exists a sequence (2,)ne, of d-dimensional random variables such
that z,(w) € Z(w) and Z(w) = cl{z,(w) :n > 1} for n > 1 and w € Q.
If {zo :n > 1} C S(2), then S(Z) = dec{z,(w) :n > 1}.

(v) If (zn)y2y C S(2) is such that Z(w) = cl{zy(w) : n > 1} for w €
Q, then for every z € S(Z) and every ¢ > 0, there exist a partition
(Ak),iv=l e II(R,F) and a family (z,,,()]](\'=l C {z, : n = 1} such that
Elz— lecv=l Lapzn | < e

(vi) If F and G are Aumann integrable set-valued random variables such that
S(F) = S(G), then F(w) = G(w) fora.e. w € Q.

(vii) If Z is convex-valued and square integrably bounded, then S(Z) is a
decomposable, convex, and weakly compact subset of 1>($2, F,RY).

(viii) If F and G are convex-valued and integrably bounded set-valued random
variables, then S(F + G) = S(F) + S(G).

A family ® = (&;),;50 of set-valued random variables ®, : Q — CI(RY?) is
called a set-valued stochastic process. Similarly as in the case of point-valued
stochastic processes, a set-valued process ® = (®;);>o can also be defined as a
set-valued mapping ® : R x Q 3 (t,w) — ®,(w) € CI(RY) such that ®(z,-)
is a set-valued random variable for every ¢ > 0. If such a multifunction @ is
B(RT) ® F -measurable, then a set-valued process @ is said to be measurable. If
furthermore, for every ¢ > 0, the set-valued mapping ®; is F; -measurable, then
® is said to be F-nonanticipative. It is easy to see that ® is IF-nonanticipative if
and only if it is X -measurable, where Xy = {A € Br Q F : A" € F; fort € T},
and A" denotes the ¢-section of aset A C T x2. Given p > 1, we call a set-valued
process ® = (®,);>0 p-integrably bounded if there exists m € LP(RT x ,R*)
such that ||®,(w)| < m(t,w) for ae. (f,w) € Rt x Q. A set-valued process
® = (P;);>0 is said to be bounded if there exists a number M > 0 such that
[®:(w)|| < M forae. (t,w) € RT x Q. It is clear that every bounded set-
valued process is p-integrably bounded for every p > 1. Similarly as above,
by S(®) we denote the subtrajectory integrals of a set-valued stochastic process
® : Rt x Q — CI(RY), ie., the set of all measurable and dt x P-integrable
selectors of ®. By Sp(®) we denote the subset of S(P) containing all IF-
nonanticipative elements of S(®). If ® is an p-integrably bounded set-valued
process defined on [0, T'] x €2, its subtrajectory integrals will be denoted by S(P)
for every p > 1. In this case, S(®) C L?([0,T] x 2, Br ® Fr,RY). Similarly,
if ®:[0,7T]x Q — CI(R?) is F-nonanticipative and square integrably bounded,
then Sp(®) C IL2([0, T]x R, =, RY). Similarly as above, ® is said to be Aumann
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(Itd) integrable if S(P) # @ (Sw(P) # @). We shall consider set-valued stochastic
processes with ¢ = d and ¢ = d x m.

Letus denoteby M(R*xQ,R?) and Mp(R*x,RY) the spaces of all mea-
surable and IF-nonanticipative, respectively set-valued stochastic, processes on a
filtered probability space (2, F, T, P) with values in CI(R?). Similarly, the space
of all TF-nonanticipative processes on (2, F,F, P) with values in CI(R?*") will
be denoted by Mp(RT x Q,R¥*™). We denote by £*(2,1R?) the space of all
(equivalence classes of) set-valued random variables Z : @ — CI(R?) such that
E||Z|]?> < oo, where || Z|(w) = sup{|x| : x € Z(w)} fora.e. w € Q. Elements of
the space £2(Q2,R) are called RY-set-valued square integrably bounded random
variables. We shall consider £2(2, R?) as a metric space with a metric H defined
by H(Z\, 2,) = [EhZ(Zl(-),Zz(- N2 for Zi, 2, € £2(,R?). Similarly as in
the case of I2(Q2, F,R?), it can be verified that (£2(Q2,R%), H) is a complete
metric space. By £2.(RT x Q,RY) and £3(R* x Q, R¥*™) we shall denote the
spaces of all square integrably bounded elements of spaces Mp(R* x 2, R?) and
Mp(RT xQ, RY™), respectively. Similarly as above, the spaces £2 (R+><Q R%)
and L3, (R* x Q, R4>*™) will be considered metric spaces with metric dy defined
by dH(CD, W) = [E [;° h2(®,, W,)dt]'/? forevery @ = (0;);20. ¥ = (V)10 €
L2RY x Q,RY) or @ = (D)0, ¥ = (V)50 € LL(RT x ©,R¥*™). Tt can be
verified that (LZ(RT x Q,R9), dy) is a complete metric space. For fixed T > 0,
we define £L3(T, 2, R?) = {(1p.11D:)r>0 : (P1)r0 € L3 (RT xQ, R?). The space
L3(T, L, R4 is defined similarly. We shall cons1der L3(T, Q ,R?) with the
metric dy, which in this case, is defined by dy(®, V) = [E fOT R (®,, ¥,)dt]"/?
for ®,¥ € L%F(T Q,RR?). We shall also consider spaces L% AVIRY ,R?%) and
L%(T Q,R?m), defined in a similar way. In what follows, stochastlc processes
® and ¥ belonging to L%F(T,Q,IR‘Z) and ﬁ%(T,Q,IRdX”’) will be written as
families ® = (P;)o<r<r and W = (¥;)o<: <7, respectively. We shall also consider
metric spaces CI[IL2([0, T] x Q, g, R?)] and CI[IL?([0, T] x 2, EF,Rde)] with
Hausdorff metrics denoted in both cases by D. Given a sequence (F")52, of
set-valued stochastic processes, F" = (F")o<i<r € L3 w (T, L, RY) is sald to be
uniformly integrably bounded if there exists m € ]LZ([O T] x Q,Zp,RT) such
that || F"(w)|| < m;(w) for n > 1 and a.e. (f,w) € [0,T] x Q. It is said to be
uniformly integrable if

lim sup / / |F/ (w)|%dtdP = 0.
C—00 ;> {(t,0):|| FI'(w)||>C}

It is clear that every umformly integrably bounded sequence (F")72, of set-valued
stochastic processes of L2 w (T, 9, R?) is also uniformly 1ntegrable It is easy to
see that every sequence ((p”)°° , of IF-nonanticipative selectors ¢" of a uniformly
integrable sequence (F")%2, C L3(T, <, R?) is uniformly integrable. Finally,
let us observe that every sequence (F ")°2., of set-valued stochastic processes of
L3(T,Q, R?) converging in the dp-metric topology to F € [2 w (T, 9, RY) is
uniformly integrable.
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Lemmad.2. Let J and J be linear continuous mappings defined on
L2([0, T] x Q, Zg, RY) and 12([0, T] x Q, Xr, RY>*™), respectively, with values
at 12(Q, Fr.RY). If (9", and (¥")22, are sequences of L3(T, Q. RY) and
L3(T, Q. RP™) converging in the dg-metric topologyto ® € Li(T, Q. R%), and
v c E%F(T, Q, R¥™), respectively, then

(i) 1limy— o0 [max {D(Sp(®"), Sp(P)), D(Sp(¥"), Sp(¥))}] = 0;
(ii) 1imy— o0 [max {H (J (Sp (")), J(Sk(®)), H(T (Se(¥")), T (Sk(V)))}] = 0.

Proof. By Theorem 3.1, forevery ¢ € Sp(®")), one has E[fOT inf{ ¢, (w)—x||* :
x € ®(t,w)ydt] = inf(E [ llgs — fill’dr : f € Sp(®)} = Dist’(¢, Sp(P)).
Similarly, for every f € Sp(®), we get Dist?( £, Sp(®")) = E fOT inf{|| f; (@) —
x||? : x € ®'(w)}dr. Hence it follows that D(Sg(®"), Sp(®)) < dy(®", ®) for
every n > 1, which implies D(Sg(®"), Sp(P)) — 0 as n — oo. In a similar way,
we also get D(Sp(¥W"), Sp(¥)) — 0 as n — oo.

It is easy to see that (ii) follows immediately from (i) and the properties of the

mappings J and J. Indeed, let us observe first that by (i), continuity of J and
boundedness of Sp(®) and Sp(®,)), there exists M > 0 such that (E|J(¢) —
TP < M(fy Elp —wPd)"/? for n = 1, ¢ € Sp(®) and ¢ € Sp(®,)).
Suppose now that (ii) is not satisfied and let A = J[Sp(®)] and A4, = J[Sp(P,)]
for n > 1. There exist £ > 0 and an increasing subsequence (ny)5>, of (1)52,
such that F(A,,k,A) > ¢ forevery k > 1. Hence it follows that for every k > 1,
there exists g& € A,, such that §/2 < (E|gr — f|*)"/? for every f € A. Let
¢* € Sp(®,,) and ¢ € Sp(P) be such that g&¢ = J(¢*) for k > 1 and f =
J(¢). For every k > 1, one has

1/2

T
52 < (Elg = V2 < M ( /0 Elgf —¢f|2dz)

By (i), it follows that for every ¢ € S(®,,), with k > 1 sufficiently large, there
exists £ € Sp(®) such that (E fOT |k — EF|2dr)!/? < &/2M . Taking in particular
¢ = Ek with sufficiently large k > 1, we obtain

T 1/2
§/2<(Elg" - fPHV* <M (/0 Elof — si‘|2dt) M-i/2M =§/2,

a contradiction. Then H[J(SF(®"), J(Sp(P))] — 0 as n — oo. In a similar way,
we also get H[J (Sp(V"), J(Sp(¥))] = 0 as n — oo. |

Remark4.1. If J(9) = [i ¢, dr and J(¥) = [ ¥:dB, for ¢ € L2([0, T] x
Q,Xp, RY) and ¥ € L2([0, T|xR2, =, R¥™), then H (J[Sp(®")], J[Sk(P)]) <
VTdy(®", ®) and H(J[Sr(¥")], J[SE(¥)]) < dy(¥", W) for every n > 1.

Proof. For every u € J[Sp(®")], one has dist>(u, J [Sp(®)]) < E|u — v|*> for
every v € J[Sp(®P)]. But u = fOT ¢:dt and v = fOT Y:dt for some ¢ € Sp(P")



4 Set-Valued Stochastic Processes 99

and ¥ € Sp(®). Therefore, dist?(u, J [Sp(P)]) < E|f0T(g0 — ¥)dz|? for every
¥ € Sp(®). By Theorem 3.1, we have

T T
/ @ dt —/ frdt
0 0

T
§Tinf%E/0 lgr — fi]*de : f ESF(CD)}

2

inf{ E D f € Sp(P)

T
=TE / dist? (¢, ®,)dt < Td}(®", D).
0

|

Thus dist?(u, J [Sp(®)]) < Tdf{(@”, ®) forevery u € J[Sp(P")], which implies
that H (J[Sp(®")], J[Sp(P)]) < VTdy(®", ®) for n > 1.1In a similar way, we
also get H(J[Sg(¥")], J[Sr(W)]) < dy(¥", W) forevery n > 1.

In what follows, we shall deal with a conditional expectation of set-valued
integrals depending on a random parameter. We begin with the general definition
of set-valued conditional expectation and its basic properties. Given a complete
probability space (2, F,IP), a sub-o-algebra G of F, and a set-valued random
variable ® : Q@ — CI(R?) the following result follows immediately from
Theorem 3.2.

Lemma4.3. If ® : Q — CI(RY) is a set-valued random variable such that
S(®) # @, then there exists a unique in the a.s. sense G-measurable set-valued
random variable W : Q — CI(R?) such that S(V) = clp{E[¢|G] : ¢ € S(P)}.

Proof. Let A€ G C F and H = {E[p|G] : ¢ € S(D)}. Forevery ¢y, ¥, € H,
there exist ¢1,¢, € S(P) such that Yy = E[¢1|G] and ¥, = E[¢2|G]. By the
decomposability of S(®), it follows that E[14¢1 + Lo\a92|G] € H. Then H
is decomposable, because E[L4¢1 + Lo\ 4¢2|G] = L4¥1 + Lg\4¥. Therefore,
clp,(#) is a decomposable subset of L?(Q2,G,R¢). By virtue of Theorem 3.2,
there exists a G-measurable set-valued mapping ¥ : @ — CI(R?) such that
S(¥) = clp(H). Suppose there are two G-measurable mappings Wi, W, : Q —
CI(R?) such that S(¥;) = S(¥,;) = cly(#). By Corollary 3.1, it follows that
‘-I—’l = ‘-I—’z a.s. O

A G-measurable set-valued mapping ¥ : @ — CI(RY) such that S(¥) =
clL{Efp|G] : ¢ € S(P)} is denoted by E[P|G] and is said to be a G-conditional
expectation of a set-valued mapping of ® : @ — CI(R¢). Let us observe that
for every square integrably bounded convex-valued set-valued random variable
® : Q@ — CI(R?), the set S(®P) is a convex and weakly compact subset of
IL2(2,R?). Then {E[p|G] : ¢ € S(®)} is a closed subset of this space. Indeed,
foreveryu € clp{E[p|G] : ¢ € S(®)}, there is a sequence (¢,)°%, C S(P) such

n=1

that E[p,|G] — u as n — oo. Let (¢, )72, be a subsequence of (¢,)52, weakly
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converging to ¢ € S(®). Therefore, for every A € G, one has [, E[g,,|G]ldP =
[yomdP — [,@dP = [, E[p|GldP as k — oo. Then E[g,,|G] converges
weakly to E[p|G] as k — oo, which implies that u = E[p|G] € {E[p|G] : ¢ €
S(®)}.

Corollary 4.1. If ® : @ — CI(RY) is a square integrably bounded convex-valued
set-valued random variable, then S(E[®|G]) = {E[p|G] : ¢ € S(D)}. |

Theorem 4.1. Let ® : Q — CI(RY) and ¥ : Q@ — CI(RY) be F-measurable
integrably bounded and let G be a sub-c-algebra of F. Then

(i) E[14E[®|G]] = E[149D] forevery A € G.
(ii) E[E®|G] = EE[®P|G] forevery & € L®°(Q,G,R).
(iii) E[co @|G] = co E[P|]].
(iv) H(E[®|G], E[¥|G]) < H(®, V), where H(®, V) = E[h(D, V)].
(v) E[®+ V¥|G] = E[®|G] + E[V]|]] a.s.

Proof. (i) Let A € G be fixed. If u € S(E[®|F]), then there exists a sequence
(@n)y2, in S(P) suchthat ||u — E[p,|G]|| — 0 as n — oo. Then E[L4u] =
limy,— oo E[L14E[¢,|G]] = lim,—e0 E[1 4¢,]. Hence by the compactness of
the Aumann integral E[1,®], it follows that E[1,4u] € E[14®]. Thus
E[M4E[®|G]) C E[14®]. Let H = {E[p|G] : ¢ € S(¢)}. Then E[14H] =
{E[14E[plG] : ¢ € S(¢p)} = E[1,4®]. Hence it follows that E[1,4P] C
E[lclp(H)] = E[14E[®|F]]. Therefore, E[14E[®|G]] = E[149] for
every A € G.

(i) Let & € L>°(2, G, R). We have to show that S(E[§D|G]) = S(EE[D|F]). By
the definition of a set-valued conditional expectation, we have S(E[ED|G]) =
ce({E[f1G] © f € S(EP)}) and SEE[P|G]) = ES(E[PG]) = &clp
(ElplG] - ¢ € S(P)}). Let u € Sclu({Efp]T] : ¢ € S(P)}) and (¢n);2,
be a sequence of S(®) such that ||EE[p,|G] — u| — 0 as n — oo. But
§E[pn|G] = E[§@n|G] for n = 1. Then ||E[§¢|G] —ul| — 0 as n — oco. We
also have &g, € S(§®) for n > 1. Therefore, E [E¢,|G] € {E[f|G] : [ €
S(E®)} for n > 1, which implies that u € clp{E[f|F] : f € S(§P)}. Thus

§clL({Efpl9] - ¢ € S(P)}) C el ({E[f1G] : | € S(ED))).

Let v € clk{E[f|G] : f € S(EP)} and (¢,)>2, C S(P) be such that
|E[E@n|G] — v]| = 0 as n — oo. Hence it follows that ||EE[¢,|G] — v|| = 0
as n — oo. Similarly as above, we get EE[p,|G] € E{E[p|G] : ¢ € S(P)} C
Eclp({Ep|G] : ¢ € S(®)}) for every n > 1. Therefore, v € &l ({E[p|F] :
¢ € S(®)}). Then cly({E[fIG] : f € S(EP))) C cl({Efpld] : ¢ €
S(®)}), which implies that S(E[ED|G]) = S(EE[D|F]).

(iii) Let G = E[®|G]. By Lemma 3.3, we obtain S(E[co ®|G]) = clp{E[p|d] :
p €coS(P)} =co{E[p|G] : ¢ € S(P)} = co0S(G) = S(coG). Hence, by
Corollary 3.1, it follows E[co ®|G] = co E[®|]].
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(iv) Let A = {0 € Q : sup[dist(y, E[¥|G](w)) : y € E[P|G](w)] =
sup[dist(y, E[®|G](w)) : y € E[¥|G](w)]}. We have A € G and
H(E[®|G]. E[¥|G]) = E[h(E[®|G], E[V]G])]
= E[L4sup[dist(y, E[V|G](w)) : y € E[P|G](w)]
+E[Lg\4 supl[dist(E[y, E[®[G](»)) : y € E[¥|G](w)]
= sup E[1L4 sup[dist(E[¢|G], E[W|G]) : ¢ € S(P)]
+E[Lg\4 sup[dist(E[y|G], E[P|G]) : ¥ € S(V)]

< sup inf E[ﬂAEH(P V1G]
pes(@) VES()

+ su inf E[lgE g
o inf Elta\iElly — v9]

= sup mf E[llAlw V]
pes(d) VES(¥

+ sup inf E[]lsz\A|<p V]
yes(w) 9ES(P)

= / sup[dist(x, ¥(w)) : x € ®(w)]dP
4
+/ sup[dist(x, ®(w)) : x € V(w)]dP
Q\A

_ / h(®(w), Y(w))dP = H(®, V).
Q

(v) By the definition of a multivalued conditional expectation, we have

S(E[® + V|G]) = clp{E[glF] : ¢ € S(® + V). By virtue of Lemma 3.4,
we have

S(E[® + W|G]) = clL({E[¢|G] + E[Y]9] - ¢ € S(P). ¥ € S(¥)})
= S(E[®IG]) + S(E[¥V|G]) = S(E[®|9] + E[V[F)).

which by Corollary 3.1, implies that E[® + W|G] = E[®|G] + E[¥|F] aus.
O

Remark 4.2. It can be proved that if ® € A(Q, F,R?) is convex-valued and T
is sub-g-algebra of G C F, then E[®|T] taken on the base space (2, F, P) is

equal to E[®|T] taken on the base space (2,G, P) and E[E[®|G]|T] = E[®|T],
P-as. a
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5 Notes and Remarks

The definitions and results of the first two sections of this chapter are mainly
based on Aubin and Frankowska [12], Hu and Papageorgiou [41], Aubin and
Cellina [5], Kisielewicz [49], Kuratowski [69], Hildenbrand [40] and Klein, and
Thomson [63]. In particular, Michael’s continuous selection theorem is taken from
Aubin and Cellina [5] and Kisielewicz [49], whereas Theorem 2.2 comes from
Kisielewicz [57]. The proofs of the Kuratowski and Ryll-Nardzewski measurable
selection theorem and the Caratheéodory selection theorem are taken from Hu
and Papageorgiou [41]. The existence of measurable selectors for measurable
multifunctions has been considered first by Kuratowski and Ryll-Nardzewski in
[70]. The existence of Carathéodory selections has been considered by Rybiriski in
[91], Fryszkowski in [32], and Kucia and Nowak in [66]. The proof of Theorem 2.3,
dealing with the existence of Lipschitz-type selectors, is taken from Hu and
Papageorgiou [41]. The idea of this proof is due to Przestawski [90]. The proofs
of Lemmas 1.1 and 1.2, Remark 1.1, and Corollary 1.2 can be found in Kuratowski
[69] and Hildenbrand [40], respectively. Figures 2.1-2.4 are taken from Aubin and
Cellina [5] and Kisielewicz [49]. The proof of Remark 2.9 can be found in Hu
and Papageorgiou [41]. The definition and properties of Aumann integrals are taken
from Hiai and Umegaki [39] and Kisielewicz [49]. The first results dealing with
Aumann integrals are due to Aumann [14]. The existence of continuous selections
of multifunctions with decomposable values was proved by Fryszkowski [32].
The sketch of the proof of this theorem given in Sect.2 is taken from Hu and
Papageorgiou [41]. The definition and properties of conditional expectation of set-
valued mappings are taken from Hiai and Umegaki [39]. More information on the
Hukuhara difference can be found in Hukuhara [42].



Chapter 3
Set-Valued Stochastic Integrals

This chapter is devoted to basic notions of the theory of set-valued stochastic
integrals. In Sect. 1, we present properties of functional set-valued stochastic
integrals defined, like Aumann integrals, as images of subtrajectory integrals of set-
valued stochastic processes by some linear mappings with values in L?(2, Fr, RY).
The set-valued stochastic integrals defined in Sect. 2 are understood as certain set-
valued random variables. Throughout this chapter, we shall deal with set-valued
stochastic processes belonging to the spaces M(T, Q,R?), Mp(T, 2, R¢), and
Mp(T, Q,]Rdx’”) and their subspaces £(7, Q,]Rd), L%F(T, Q,]Rd), and E%F(T, Q,
R?>™) defined in Chap. 2. All of them are defined on a given filtered probability
space Pr = (2, Fr,F, P) with a filtration I = (F;);>¢ satisfying the usual
conditions and such that there exists an m-dimensional IF-Brownian motion B =
(B¢)¢>0 defined on this space. A given F € M(T, Q,Rd) is said to be Aumann
integrable if S(F) # @. Similarly, processes ® € Mp(T,Q,R%) and ¥ €
Mp(T, Q,R?™) are said to be Ito integrable if Sp(®) # @ and Sg(¥) # 0.

1 Functional Set-Valued Stochastic Integrals

Let J : L2([0,T] x Q,Br ® Fr.RY) — L*(Q, Fr,RY) and J : L*([0, T] x K,
Tp, R — 1L2(2, Fr,R?) be mappings defined by J(¢)(w) = (fOT @ dt)(w)
and J (V) (@) = () ¥:dB,)() forae. w € Q, ¢ € L2([0, T] x 2, fr ® Fr,RY)
and v € I2([0,T] x Q,Zp, R¥™), respectively, where X denotes the o-
algebra of all IF-nonanticipative subsets of [0, 7] x 2. The following lemma follows
immediately from the properties of the Lebesgue and It6 integrals.

Lemma 1.1. The mappings J and J are linear and continuous with respect to
the norm topologies of 12([0,T] x Q,Br ® Fr.R"), L2([0,T] x , =g, RY),
L2([0, T] x Q, Zp, R>™), and 12(2, Fr, R?), respectively.
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Proof. The linearity of J and J follows immediately from the properties of the
Lebesgue and Itd integrals, respectively. For every ¢ € L2([0, T]x Q, B ® Fr.R9)
and v € L*([0,T] x Q,Zg, R?™), one has E|J(p)|> < TE fOT |g,|>dt and
E\JW))?>=E fOT |, |>dt. Hence it follows that J and 7 are continuous. O

For given Aumann and It0 integrable set-valued stochastic processes F €
M(T,Q,RY), ® € Mp(T,Q,RY), and ¥ € Mg(T,Q, RY™), their functional
set-valued integrals are defined as images of subtrajectory integrals S(F), Sy(P),
and Sp(¥) by linear mappings J and J, respectively, i.e., as subsets J[S(F)],
J[Sp(®)], and J[Sp(W)] of the space I>(Q, Fr,R¥). It is clear that J [Sg(®) C
J[S(@)] for every It6 integrable process ® € M(T, Q,RY).

Corollary 1.1. For every F € L(T,Q,RY), ® € L2(T,Q,R%), and ¥ €
L3(T,Q, R¥>™), the functional set-valued stochastic integrals J[S(co F)], J[Sr
(co @)], and J[Sw(co V)] are nonempty convex sequentially weakly compact and
weakly compact subsets of 1.(Q, Fr,R?) and 1>(Q2, Fr,RY), respectively.

Proof. By virtue of Remark 3.1 of Chap. 2, the subtrajectory integrals S(co @),
Sr(co @), and Sy(co W) are nonempty convex sequentially weakly compact and
weakly compact subsets of IL([0, T] x 2, Br ® Fr,R?), L2([0, T] x 2, =, R?),
and IL2([0, T] x Q, X, R?™), respectively. Then by virtue of Lemma 1.1, the
sets J[S(co ®)], J[Sr(co D)], and J[Sr(co ¥)] are nonempty convex sequentially
weakly compact and weakly compact subsets of IL.(2, Fr, R?) and I?(Q, Fr, R9),
respectively. O

Lemma 1.2. For every Ité integrable set-valued process ¥ € My (T, 2, R™), a
set-valued stochastic integral J[Sy(W)] is a closed subset of L.2(, Fr, R?).

Proof. Let (u,)92, be a sequence of J[Sr(W¥)] converging to u in the norm
topology of I2(Q2, Fr,RY), and let (¥")22, be a sequence of Sp(W) such that
u, = fOT Y'dB, forn > 1. Forevery n,m > 1, we have

2

T
- /0 Ely? — g7 .

T
|1t _"tm”2 =E ‘/0 (W —me)dBt

Therefore, ()%, is a Cauchy sequence of L2([0, 7] x Q, Z, R¢*™). Thus there

exists ¥ € L2([0, T] x 2, Tp, R¥™) such that E fOT [ — 4, |2dt — 0asn — oo.

By the closedness of Sp(¥), we have ¥ € Sp(W). Let v = fOT Y,dB;. We have
v € J[Sr(¥)] and

T 2
Elu—f* < 2E|u—u,* + 2E '/ (W7 — ¥)dB,
0

T
= 2E|u—u,|* + E/ [y — v |* dr.
0

Therefore, v = u and u € J[Sp(V)]. O



1 Functional Set-Valued Stochastic Integrals 105

Given the above set-valued processes F, &, and ¥, and 0 < s < ¢t < T, the
sets J[LsS(F)], J[Ls.Se(P)], and J[L[;Sr(V)] are denoted by J[S(F)],
J: [Sp(P)], and Ty [Sr(P)], respectively, and are said to be the functional set-
valued stochastic integrals of F', ®, and W, respectively, on the interval [s, ].

Lemma 1.3. For every Aumann integrable set-valued process F € M(T, 2, R%),
there exists an Fr-measurable set-valued mapping A : Q@ — CI(R?) such that
clp{J[S(F)]} = Sr(A), where St(A) denotes the set of all Fr-measurable
selectors of A.

Proof. We shall show that J[S(F)] is a decomposable subset of (2, Fr, R?).
Indeed, for every u, v € J[S(F)], there exist f € S(F) and g € S(F) such that
u = fOT fidt and v = fOT g:dt. For every A € Fr, one has 14u + 14~v =
IOT[ﬂAft + 14~g;]dt, where A~ = Q\ A. But 14 = o7 - 14 = Lo 71ix4a
and 14~ = Ty 7)- La~ = Lp7xa~ = Lo,1)x4)~, because ([0, T] x A)~ =
([0, TIx2)\ ([0, T1xA) = [0, T]x(2\A) = [0, T]x A~ . By the decomposability of
S(F), we get Lo 71x4 f + L(o.r)xa)~& € S(F), which implies that 1 4u + 1 4~v =
fOT[]l[o,T]XAf, + Lo x4~ & ldt € J[S(F)]. Then cly{J[(S(F))]} is a closed
decomposable subset of (2, Fr, R4 ), which by virtue of Theorem 3.2 of Chap. 2,
implies that there exists an Fr-measurable set-valued mapping A : Q@ — CI(R¢)
such that clg,{J[S(®)]} = S7(A). O

Remark 1.1. If F € ﬁ(T,Q,IRd), then the multifunction A defined above is
integrably bounded.

Proof. By the integrably boundedness of F, it follows that J[S(F)] is a bounded
subset of IL(2, Fr,R?). Hence, by Corollary 3.3 of Chap. 2, it follows that A is
integrably bounded. O

Remark 1.2. In the general case, the above procedure cannot be applied to the
integrals J [Sy(P)] and J[Sr(W)], because they are not decomposable subsets of
IL2($2, Fr,R?). This can be seen from the following examples. O

Example 1.1. Let ®(¢,w) =: [0, 1] fort € [0, 1] and w € 2 and suppose J [Sr(D)]
is decomposable. Then for every A € F; and ¢y, ¢ € Sp(P), one has 1 4J(¢;) +
14~ J(p2) € J[Sp(D)], where A~ = Q \ A. Taking, in particular, p; = 1,¢, =
0, we get 14J(¢1) € J[Sp(P)]. Let ¥ = L xp) for A € Fi \ F; with fixed
t € [0,1). We have J(¥) = 14J(¢1), which implies J(y) € J[Sp(P)]. But ¢
is not IF-nonanticipative, because a random variable (¢, -) is not F;-measurable.
Therefore, ¥ & Sp(®) and J(¥) € J[Sr(P)], a contradiction. Thus J [Sp(P)] is
not decomposable.

Example 1.2. Let W(t,w) =: [0,1] fort > 0 and w € Q and suppose J[Sr(¥)]
is decomposable. Then for every A € F| and every u;,u; € J[Sp(¥)], one has
1wy + L 4~u; € J[Sr(¥)], where A~ = Q \ A. Suppose that u; = fol dB, = B,
and u, = fol 0dB;, = 0as.andlet A = {w € Q : B; > ¢} for e > 0. We have
A € Fi. On the other hand, by the definition of 7[SF(W)], there exists ¥ € Sp(¥)
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such that T u; + 1g4~u, = 14- By = fol Y;dB;. Then E(14 - B;) = 0. But
E(l, - By) = f{81>s} BidP > ¢P({B; > &}) > 0, which contradicts the last
equality. -

Immediately from Theorem 3.2 of Chap. 2, we also obtain the following result.

Lemma 1.4. For arbitrary It integrable set-valued processes ® € My (T, Q,R%)
and ¥V € Mp(T, Q,]Rdx’"), there exjt Fr-measurable set-valueﬂandam vari-
ables T, Z : Q@ — CI(R?) such that dec{J [Sp(®)]} = S7(T) and dec{ T [Sr(¥)]}
= S7(2).

Lemma 1.5. For every ® € E%F(T,Q,Rd) and ¥V € L%F(T,Q,]Rdx’”), the set
J[Sp(co ®)] + J[Sr(co W)] is a closed subset of L2(2, Fr, R?).

Proof. Let (u,)72, be a sequence of J [Sk(co ®)] + J[Sw(co ¥)] converging in the
norm topology of I2(Q, Fr,R9) to u € I*(, Fr,R?). Let ¢" € Sp(co ®) and
Y" € Sp(co W) be such that u, = [, ¢rdr + [, ydB, for every n > 1. By
the weak compactness of Sy(co @), there exist ¢ € Sp(co P) and a subsequence,
denoted again by (¢")52,, of (¢")52, weakly converging to ¢. Then the sequence
(u, — fOT ¢7'dt)72 | converges weakly to u — [ ¢; as n — oo. Hence it follows
that the sequence ( fOT YI'dB;)22 | weakly converges to u — fOT ¢.dt € J[Sr(coW)].
Then there exists ¥ € Sp(co W) such that u — fOT ¢ dt = fOT ¥,d B, which implies
thatu € J[Sg(co ®)] + J[Sr(co ¥)]. O

Lemma 1.6. For every ® € E%F(T, Q,Rd) and ¥ € E%F(T, Q,Rdx’"), one has
JISp(®)] + T[Se(W)] C clp{J[Se(P)]} + TISe(¥)] C clp{J[Se(P)] +
JISr(P)]} C J[Sr(co @)] + J[Sr(co V)], where the closures are taken in the
norm topology of L.2(2, F,RY).

Proof. It is enough to verify that
clg, {J [Se(P)]} + T[Se(V)] C cl {J[Se(P)] + T[Sk (V)]} .

The rest of the above inclusions follow immediately from the properties of the space
]LZ(Q,]-'T, R4 ), the definitions and properties of functional set-valued stochastic
integrals, and Lemma 1.5. Let u € cly {J[Sp(®P)]} + J[Sr(¥)]. There exists a

sequence (¢")%2; of Sp(®) and Y € Sp(W) such that u = lim,—, (fOT ¢,”dt) +

n=1

fOT ¥, dB,, where the limit is taken in the norm topology of I.>(Q2, Fr, R¢). Taking
Yy" = 1 for every n > 1, we obtain u = lim,—co (fOT rdr + fOT w,”dB,).
Therefore, u € cly, {J [Sr(P)] + T [Sr(¥)]}- O
Lemma 1.7. Let Py be a filtered separable probability space with a filtration
F = (F)ier satisfying the usual conditions. For every F € L(T,Q,R?) and
D e E%(T,Q,]Rd), one has J[S(co F)] = clp {J[S(F)]} and J[Sp(co®)] =
clp {J[Se(P)]}.
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Proof. We shall prove the second equality. The first one can be verified similarly.
Put H = IL*(Q.,Fr,R?) and let us observe that Sp(®) is a subset of the
space IL2([0,T], H) of all Bochner measurable functions ¢ : T — H such
that [ [l¢]ldt < oo, where |¢y||> = E|p|* Indeed, every ¢ € Sp(®) is
Br ® Fr-measurable, IF-adapted, and such that E fOT |¢/|>dt < oo. By virtue
of Lemma 6.3 of Chap. 1, there exists a sequence (¢");2, of simple -
nonanticipative processes on Pp such that E fOT |p) — ¢?dt — 0as n — oo.
Let ¢ = Z,N;llﬂ[zi,l,zi)(l)(ﬁgﬂ + Iy n] @)@y, for n > 1. It is clear
that ¢" : [0,T] > t — ¢ € H is for every n > 1 a step function such
that fOT E|p" — ¢;|’dt — 0 as n — oo. Hence it follows that there exists a
subsequence (¢"€) , of (¢")22, such that E|¢;* — ¢,|> — 0 for a.e. t € [0,T]
as k — oo. Then the vector function [0, 7] 5 t — ¢, € H is Bochner measurable
such that the sequence (B) fOT @r*dr)?° | of Bochner integrals of simple functions
" : [0,T] — H converges in the norm topology of H to fOT ¢.dt, ie.,
E| fOT ¢:dt — (B) fOT @'*dt|> — 0 as k — oo. Thus the integral fOT ¢:dt can be
regarded as the Bochner integral (B) fOT ¢,dt of the vector function [0,T] 3 t —
¢, € H.

Let us observe that by the closedness of Sp(®) in L2([0, T] x Q, X, RY), for
every sequence (¢")%, of Sp(®) converging in the norm topology of L2([0, T] x
Q.Br ® Fr,RY) to ¢ € L2([0,T] x Q,Br ® Fr,.R?), we have ¢ € Sp(P).
But fOT lg" — ¢:||°dt — 0 as n — oo. Therefore, Sp(®) is a closed subset
of I2([0, T], H). It is also easy to see that Sp(®) is a decomposable subset of
IL2([0,T], H). Indeed, let f,g € Sp(®) and let A be a measurable subset of [0, T].
We have (L4 f + La~g): (@) = (La(?) fr + La~(1)g1) (@) = Laxa(l, o) fi(w) +
Laxa)~(t, )8 (w) € O;(w)) fora.e. (1, w) € [0, T]xQ2, and Lyxq f + Laxe)~)g
is F-nonanticipative for every measurable set A C [0,7]. Then 14f + 14~g €
Sr(P) for every f,g € Sp(®P) and every measurable set A C [0,7T], where
A~ = [0,T]\ A. Therefore, by Remark 3.2 of Chap. 2, there exists a set-valued
mapping Z : T — CI(H) such that S(Z) = Sp(®), where S(Z) is the set
of all (87, B(H))-measurable selectors for Z. Hence it follows that the Aumann
integral for Z can be defined by [, Z(¢)dt = {(B) ST fdt: f e SF(CD)} , which

by the equality J(f) = (B) [y f.de, implies that [ Z(t)dt = J[Sg(®)]. By
the separability of the space P, the Banach space H = L2(Q,Fr,RY) is
separable. Then by virtue of Remark 3.8 of Chap. 2, we have cly,( fOT co Z(t)dt) =

clg, (fOT Z(t)dt). By Lemma 3.3 of Chap. 2 and Corollary 1.1, one has

T T
cly, (/0 c_OZ(t)dt) =cly, %(B)/O fidt: f € S0 2)

T
=cly, {(B)/O fidt:f e ES(Z)} =cly {J(f): f € Sp(co @)} =J[Sy(co D).
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Furthermore, we have cl( fOT Z(t)dt) = clp {J[Sp(P)]}. Therefore, J[Sp
(@ ®)] = cly, (J[Sk(®))). 0

Corollary 1.2. If ® = (®;)ier and V¥ = (V,);er are as in Lemma 1.5, and
Pr is a separable filtered probability space, then J[Sy(co ®)] + J[Sr(¥)] =
clp {J[Se(P)]} + T[Se(V)] C clp {J[Sp(P)] + T[Se(V)]} C J[Se(co D)] +
J[Sk(coW)]. 0

Theorem 1.1. Let ® = (&, )o<i<r and W = (V;)o<;<1 be d x m-dimensional It6
integrable set-valued processes. Then

(i) E{J[Sr(®)]} = {0}. If D is square integrably bounded, then J[Sr(®P)] is a
bounded subset ofle(Q L Fr, Rd).

(ii) T[Sy ()] is decomposable if and only if it is a singleton.

(iii) dec{T[SE(@))} = LX(Q, Fr, RY) if and only if Intfdect T [Sg (®)]}] # 0.

(iv) If © is convex-valued, then J[Sw(P)] and dec[T[Sr(P)]] are convex, and
their closures are weakly closed subsets of 1>(2, Fr, R?).

(v) If (2, F, P) is separable, then there exists a sequence (¢")°2, C Sp(®P)
such that J[Sp(®)] = clp{f) ¢'dB, : n > 1} and dec{J[Sp(®)]} =
dec{ ) ¢pdB, in > 1}

(vi) If ® is convex-valued and square integrably bounded, then there exists a
sequence (¢")°2, C Sp(®) such that J[Sr(P)] = Clw{foT @'dB; :n > 1}
and cl,, {dec{ T[S (®)]}} = cl,[dec{ [, ¢/dB, :n > 1}].

(vii) If ® and \V are convex-valued and square integrably bounded, then J Sy (P +
V)] = J[Se(®)] + T[Sk (¥)].

(viii) If ® is convex-valued and square integrably bounded and P is nonatomic,
then there exists a sequence (¢")%%, C Sp(®) such that dec{ T [Sp(®)]} =

coldec{ [ ¢!dB; :n > 1}].

Proof. (i) By the definition of J[Sr(®)], one has E{T[Sr(D)]} = {E[J(p)] =
0:¢ € Sp(P)}. Then E{T[Sr(P)]} = {0}. If ® is square integrably bounded,
then E fOT [|®;]|>dt < oo. For every u € J[Sgp(®)], there exists ¢ € Sp(P)
such that u = fOT ¢:dB,. Therefore, for every u € J[Sr(®P)], one has

T
/ ¢ dB;
0

(i) It is clear that if J[Sw(P)] is a singleton, then it is decomposable. Suppose
dec{T[Sr(®)]} = J[Sp(P)]. Then for every A € Fr and every u,v €
JI[Sr(®)], onehas 1 4u+1g\4v € J[SF(P)]. But L ju+Tg\4v = L4(u—v)+
v, E[v] € E{T[Se(®)]} = {0}, and E[L4u + Lo\ 4v] € E{T[Sk(P)]} = {0}.
Therefore, E[147 (¢ — ¥)] € E{T[Sr(P)]} = {0} for every A € Fr, which
implies that J (¢ — ¥) = 0, because J (¢ — V) is Fr-measurable. Then for
every u,v € J[Sr(®)], one has u = v. Thus J[Sr(P) is a singleton.

2

T T
EluP = E —E / o Pdr < E / 1@ [1dr.
0 0
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(iii)

(iv)

v)

If dec{ T[Sy (P)]} = LA(RQ, Fr.R?), then Int[dec{ T[Sk (P)]}] # @, because

in this case, dec{J[Sr(®P)]} is an open set. If Int[dec{.7[SF(P)]}] # ¥, then
for every u € Int[dec{.7[Sr(®)]}], there exists an open ball B(u) centered at
u such that B(u) C Int[dec{J[Sr(®)]}] C dec{J[Sr(®)]}, which implies
that dec{B(u)} C dec{J[Sr(P)]}. Hence it follows that dec{.7[Sg(®)]} =
L2(Q2, Fr,R?), because dec{B(x)} = L*(Q, Fr,RY).

If ® is convex-valued, then Sy(®) is closed and convex, which implies
that J[Sr(P)] is convex. By Lemma 1.2, a set-valued integral J[Sy(P)]
is a closed subset of IL2(Q, Fr, R4 ). Therefore, by Mazur’s theorem ([4],
Theorem 9.11), J[Sr(®)] is sequentially weakly closed and hence a weakly
closed subset of I2(Q2, Fr, R?). The properties of dec{.J[Sr(®)]} follow
now immediately from Theorem 3.3 of Chap. 2.

Suppose (€2, F, P) is separable. Then LX(Q, Fr, R4 ) is a separable metric
space, and hence its closed subset [ [Sy(®)] is a separable metric space. Thus
there exists a sequence (u,)52, of J[Sr(®)] such that J[Sr(P)] = clp{u, :
n > 1}. By the definition of J[SE(®P), it follows that there exists a sequence
(952, of Sp(®) such thatu, = J(¢") foreveryn > 1, which together with
the last equality implies that 7 [Sp(®)] = cly2{ fOT @'dB; : n > 1}. Hence it
follows that dec{J[Sr(®)} = dec{clr{ [, ¢'dB, : n > 1}}. We shall show
now that decfcly{ f; ¢/dB, : n > 1}} = dec{/, ¢/dB; : n > 1}. Indeed, it
is clear that @{IOT !B, :n > 1} C E{CIE{fOT @'dB; :n > 1}}. Letu €
deciclr{/, ¢/dB, : n > 1}}. By the definition of dec{clg{ [, ¢/dB, : n >
1}, forevery ¢ > 0 there exist an Fr-measurable partition (4x)_, of Q and a
family (v)Y_, C clp{J(¢") : n > 1} such that E|u—Y"p_, L, vx|? < &/4.
Forevery k = 1,..., N, there exists a subsequence (¢"/®)%% | of (¢")2,
such that max;<x<y E|vy — J(¢"®)> — 0as j — oo. Thus for every
& > 0, there exists ry > 1 such that max;<x<n E|vy — Jp(@" N2 < g/4N
for j > ry. Forevery j > ry, one obtains

2 2

N
D PR

k=1

E <2E

N
u—ZﬂAkvk

k=1

2

N
31, (v — T (9" D))

k=1

+2FE

N
<e/242EY Ly |- T@" ) <e.
k=1

Then u € dec{7 (¢") : n > 1}, and therefore, ﬁ{clm{fg ¢/dB, :n > 1}}
C dec{ [, ¢rdB; :n > 1}. Thus dec{J[Sr(®)]} = dec{ [, ¢'dB, :n > 1}.
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(vi) Let ® be convex-valued and square integrably bounded. By Corollary 1.1,

a set-valued integral J[Sp(®)] is a convex weakly compact subset of
IL2(R2, Fr,R?). Then J[Sp(®)] together with the induced weak topology,
generated by the weak topology of I.2(2, Fr,R?), is a separable topolog-
ical space. Thus there exists a sequence (u,)52, of J[Sr(®)] such that
J[Sr(®)] = cl,,{u, : n > 1}. Forevery n > 1, there exists ¢" € Sp(®P) such
that u,, = fOT @!dB,. Therefore, 7 [Sp(®)] = clw{foT @'dB, :n > 1}. Hence
it follows that cl,,[dec{ T[Sy (D)]}] = clw[dec{clw{fOT @'dB; :n > 1}}]. We
shall show that clw[dec{clw{fOT erdB, :n > 1}}] = clw[dec{foT 'dB; :n >
13]. It is clear that cl,[dec{ ;| ¢/dB; : n > 1}] C cl,[dec{cl,{/f, ¢dB, :
n>1}}]. Letu € clw[dec{clw{fOT @dB; : n > 1}}]. There exists a sequence
(t4m) ey Of dec{clw[{fOT @dB; : n > 1}}] weakly converging to u, i.e., such
that | [, uydP — [, udP| — 0 for every A € Fr as m — ooc. For every
m > 1, there exist an Fr-measurable partition (Af),f’gl of © and a family
(v,’(”)]]g'z1 C cly{J(@") : n = 1} such that u, = fogl 14y vy For every
m > land k = 1,..., N, there exists a subsequence (qo”f'(k”’”)?"=l of
(¢")%2, such that | [. J (" ®™)dP — [.v{'dP| — 0 for every C € Fr
as j — oo. By the weak compactness of Sp(®), for every m > 1 and
k = 1,..., Ny, there exists a subsequence, still denoted by (¢"/*"™)%2,,

of (¢ (k""))?‘;l weakly converging to ¥ € Sp(®), which implies that
| [0 T("i®m)dP — [. pk™dP| — 0 for every C € Fr as j — oo. Now,
for every j,m > 1, one has

Nin

f udP — / Y L T(@Hmydp
A Ak=l

Nm

/udP—/ umdP' + /u,,,dP—/ ZﬂA}(nJB((pﬂj(k,m))dP
A A A 4=

5‘/ udP—/umdP‘
A A

Nim

> [ tapatntmar
k=174

=

+

Nm N
> [ tupanremar=3" [ 1y
k=14 k=174

Nm N

+ Z/ ]lA’k"UZIdP_Z/ Ly T (¢" EMdP| +
k=14 k=174

Nin

_kZ=I/AﬂA}(”j((pk‘m)dP' = ‘/A (u_um)dp‘

+ +

N o
Z/ (vl:ﬂ _j((pn/(k,m)) dP Z/ (j((,ani(k"”))—J((pk””)) dP
= anay = anar
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Hence it follows that

N

/udP—/ ZHAZIJ(<Pk’m)dP
4 A

=

/A(u—um)dP‘

o0
for every A € Fr and m > 1. Then a sequence (Z;{Vgl 1ATJ(¢k’m)) of
m=1
dec{J (¢" : n > 1)} converges weakly to u. Therefore, u € cl,[dec{.T (¢" :
n > 1)}]. Thus cl,[dec{cl,{ /) ¢dB, : n > 1}}] C cl,[dec{/; ¢/dB; :

n > 1}] and then clw[dec{clw{fOT e'dB, i n > 1}}] = clw[dec{fOT @'dB, :
n>1}].

(vii) By virtue of Lemma 3.4 of Chap. 2 and the weak compactness of Sy(®P)
and Sp(¥), one gets Sp(® + ¥) = Sp(P) + Sp(¥), because F and G
are compact-valued and Syp(®) + Sp(W) is convex and weakly compact.
Therefore, 7[Sp(®+ V)] = J[Sr(P) + Sp(V)]. Forevery u € J[Sp(P)+
SE(W)], there are ¢ € Sp(®) and Y € Sp(¥) suchthatu = J(¢)+T(¥) €
TSk (®)]+ T[S (V)] Then T[Sk (P) + Sp (V)] C T[Se(P)]+ T[Sk (V)]
In a similar way, we also get J[Sp(®)] + J[Sr(¥)] C J[Sr(P) + Sr(V)].
Therefore, J[Sp(® + V)] = J[Sp(P)] + T[Sk (¥)].

(viii) Let ® be convex-valued and square integrably bounded. Assume that P is
nonatomic. By virtue of Theorem 3.3 of Chap. 2, one has cl,,[dec{J[SF
(®))]}] = coldec{ T[Sk (P))]} and cl,[dec{T (¢") : n = 1}] = co[dec{T (¢") :
n > 1}]. By virtue of (iv), the sets J[Sp(P)] and dec{T[Sr(P)]} are
convex. Therefore, co[dec{7[Sr(P))]}] = clp(co[dec{T[Sr(P))]}])
dec{J[Sg(®))]}. Hence by (vi), it follows that dec{J[Sr(®))])}
co[dec{T (¢") : n > 1}].

O

Theorem 1.2. Let ® = (®;)o<i<r and V = (V,)o<i<1 be d-dimensional Ito
integrable set-valued processes. Then

(i) If ® is square integrably bounded, then J[Sy(®)] is a bounded subset of
L2(Q, Fr,RY).

(ii) dec{J[Se(®)]} = LX(Q, Fr,RY) if and only if Int{dec{J [S(P)]}] # 0.

(iii) If ® is convex-valued and square integrably bounded, then dec[J[Sy(®)] is
convex and is a weakly closed subset of 12(Q, Fr,R?).

(iv) If (2, F, P) is separable, then there exists a sequence (¢")72, C Sg(P) such
that J [Sg(®)] = clpd ) ¢rdt :n > 1} and dec{J [Sp(®)]} = dect ;| ¢}dr
n>1}.

(v) If ® is convex-valued and square integrably bounded, then there exists a
sequence (¢")72, C Sy(®P) such that J[Sy(P)] = Clw{foT o'dt 1 n > 1}
and cl, {dec{J [Sp(®)]} = cl,[dec{ [, ¢dr :n > 1}].

(vi) If © and ¥ are convex-valued and square integrably bounded, then J [Sg (D +
V)] = J[Se(®)] + J[Sp(¥)D.
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(vii) If @ is convex-valued and square integrably bounded, and P is nonatomic,
then there exists a sequence (¢")72, C Sp(®) such that dec{J [Sp(®)]} =

@[dec{foT erdr :n > 1},

Proof. (i) Immediately from Holder’s inequality, it follows that E|J(¢)]*> <
T fOT E|g|*dt for every ¢ € Sp(®). If ® is square integrably bounded, then
sup{E|ul®: u € J(®)} = sup{E|J(¢)|>: ¢ € Sp(®)} < T [ E||®,|* < oc. The
proofs of (ii)—(vii) are similar to those of (iii)—(viii) of Theorem 1.1. O

Theorem 1.3. Let ® € L2(RT x Q,RY), ¥ € LZ(RT x Q,R™), and let B =
(Bt)i>0 be an m-dimensional IF-Brownian motion on Pg. The set-valued mappings
A :[0,00) 3t — dec{Jo;[Sp(®)]} € CI[L>(RQ, F.R))] and T : [0,00) 3 t —
dec{Jo[Sr(®)]} € CILA(Q, F,R?)] are Ls.c.

Proof. Let H denote the Hausdorff distance on the space CI[IL?(R2, F, R%)] of all
nonempty closed subsets of I.2(2, F,IRY). We shall show that the multivalued
mapping y : [0,00) 3 t — Jo.[Sr(®)] € CIL*(Q, F,R%)]is H-ls.c., i.e., that
for every fixed ¢+ > 0 and every sequence (f,)52, of positive numbers ¢, converging
to t, we have H(y(t),y(t,)) — 0asn — oo. Lett > 0 be fixed and ()22, a
sequence converging to t. Assume ¢, > t for every n > 1. For every ¢ € Sp(®P),
one has diStz(,[()t ¢.dB., V(tn)) = E| ,/;)t ¢ dB; — ()tn (PrdBr|2 = EI ./;t” (PrdBr|2 =
E ["|¢.?dt < [" E||®.|*dt for every n > 1. Therefore, H (y(t), y(ts)) — 0
as n — oo. In a similar way, we can consider the case in which ¢ > 0 and every
sequence (t,)52, of the interval [0,¢] converges to ¢. Thus y is H-l.s.c. Hence,
similarly as in the proof of Remark 3.7 of Chap. 2, it follows that y is L.s.c. at every
t > 0. Now the lower semicontinuity of I" follows immediately from Remark 3.4 of
Chap. 2. The lower semicontinuity of A can be verified in a similar way. O

Theorem 1.4. Let @ € Li(RT x Q,RY), ¥ e LL(RT x Q,R¥™), and
let x = (x;);>0 be a d-dimensional F¥-nonanticipative 1.>-continuous stochastic
process such that

x; — X € clp {5 [Sp(P)] + Tot [Se(W)]} (1.1)

forevery 0 < s <t < oo, where 1> =: 12(Q, F,R?). For every ¢ > 0, there are
f¢ e Sp(P) and g° € Sp(W) such that

t t
X; — Xo —/ fidr — / gidB;
0 0

Proof. Let ¢ > 0 be fixed. Select § € (0, 1) such that

sup
>0

<e. (1.2)

sup sup  Elx, — x> < (¢/3)%,

120 t<s<t+§

t+6 t+46
sup E / 19,2 < (1/4)(e/3)° and sup E / 1w, |2dr < (1/4)(e/3)".
YZO t fZO t
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Let 7; = O and ty = k& for k = 1,2,...,. Select for every k = 1,2,...,
processes f,° € Sp(®) and g; € Sp(¥) such that

€
6.2k

=

74 74
& &€
Xoe — Xgf —/8 fidr — / grdB;
T, T

&
k 1

Define f© = Lo /7 + 250y L o1 /¢ and g° = L8 + 2 00s L, 4184
By the decomposability of Sp(®) and Sp(¥), we have f¢ € Sp(®P) and g° €

Sr(¥). Now we get
3
sup < (sup sup  Elx; —xg |2)

t>0

t t
X — X — (/ fldt+ / gidBr)
0 0 k>1t_ <t<t]
t t 2
/ ftgdt +/ gidBr
Ty T

k 1

1
2

+|sup sup E

& £
k>1<f_ <t<tf

k—1

7 74
Z |:fo X _/ fide _/ gidBT]
1:571 ¢

i=l1 i i—1

=+ sup
k=1

By the definition of 77, we get sup;; sup,e < <.¢ Elx; — xzr_| > < (¢/3)* and

2
sup sup E

k=lg_ <t<t]

t t
/» ffdr +/» gidBT
T i1

e ! 2 ! 2 1ey?
<2-sup sup (t—7_)E . @) |*dc+2-sup sup E . IwH]I7dr < 3 (—)
T T,

k—1 k=1v_ <r<tf k—1 3

k=l <i<t]

+()=6)

Moreover,
k—1 ¢ ¢ oo e e
& &
sup E Xef — Xgp | —/ ffdf—/ gidB, ||| < E T <3
I<k=<Ne ||; =1 T T i=1

Therefore, (1.2) is satisfied because

t 1
X; — Xg — (/ fidt + / gidBr)
0 0

Remark 1.2. Immediately from Theorem 1.4, it follows that the above selection
theorem is also true for every ® € L3.(T, Q, R?) and ¥ € L3(T, L, RA>m)y, O

sup
>0

<8+8+8_€
-3 3 3 7 O
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Remark 1.3. Immediately from Lemma 1.6, it follows that Theorem 1.4 remains
true if instead of (1.1), we assume that

X, — X5 € J[SE(P)] + T[Sk (V)] (1.3)

or

X, — x5 € clp, {J [Se(P)]} + T [Se(W)] (1.4)

forevery 0 < s <t < T. If furthermore, Py is a separable filtered probability
space, then (1.4) is by Lemma 1.7 equivalent to

X — X5 € Ju[Sp(CO )] + T [Sw(W)] (1.5)

forevery0 <s <t <T. O

Theorem 1.5. If the assumptions of Theorem 1.4 are satisfied and ® and V are
convex-valued, then (1.1) is satisfied if and only if there exist f € Sp(®) and g €
Sr(W) such that x; = xo + fot fedr + fot g.dB; a.s. for everyt > 1.

Proof. Tt is clear that if there exist f € Sp(®) and g € Sp(¥) such that x, =
Xo + fot fedt + f(; g.dB; as. for every t > 0, then (1.1) is satisfied for every
0<s=<t<oo.

Suppose (1.1) is satisfied. By virtue of Theorem 1.4, there exist sequences
(f")g2, and (g")72; of Sp(®) and Sg(W¥), respectively, such that sup, [|x; —
Xo — fot Sfldr — fot g?dB;| — 0asn — ooc. Hence in particular, it follows that the
sequence ( [y f'dt + [ g/dB.)S, converges weakly to x; — xo € L2(Q2, Fr,R?)
uniformly with respect to + > 0. By the weak compactness of Sy(®P) and
Sr(W), sequences (f")52, and (g")52, have weak cluster points f € Sp(®P)
and g € Sp(W), respectively. From this and the properties of the mappings J
and 7, it follows that fot fedr + fof g.dB; is a weak cluster point of the sequence
( f(; fldr + fot grdB;);2, for every t > 0. Therefore, x; — xo is a modification of
fot fodTr + fot g.dB;, which implies that x, = xo + fot fodr + fot g.dB; as. for
every t > 0. O

Remark 1.4. 1If ®, ¥ and x = (x;);>0 are as in Theorem 1.4 and condition (1.1)
((1.3), (1.4), (1.5)) is satisfied, then there exist f € Sp(co®) and g € Sp(co V)
such that x; = x¢ + fot fodt + fot g:dB; as. for every ¢ > 0. In that case,
x = (x¢)rer possesses an IF-nonanticipative continuous modification. O

2 Set-Valued Stochastic Integrals

For fixed T > 0 and Aumann and It6 integrable set-valued processes F €
M(T,Q,RY), ® € Mp(T,Q,RY, and ¥ € Mp(T,Q,R"), we define
set-valued stochastic integrals, denoted by (A) fOT F,dz, fOT ®,dr and fOT v, dB,,
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respectively, as Fr-measurable set-valued random variables such that S7[(A) fOT
Fydi] = clp{J[S(F)]}, Self) ®di] = dec{J[Sp(¥)]} and Sr[f] ¥,dB,] =
dec{J[Sr(¥)]}, where the closures are taken in the norm topology of the space
L7(Q2, Fr,R?) with p = 1 and p = 2, respectively. It is clear that for every
(NS L%(T, Q,Rd), one has fOT ®,dr C (A) fOT ®,dr a.s. As usual, for every 0 <
s <t < T, the stochastic set-valued integrals (A) f; F.dr, f; ®.dr, and | "W.dB,
are defined by setting (A) [! Frdt = (A) [ 1 Fede, [/ @.dv = [ 1j,4®.dz,
and f; V.dB, = fOT L) ¥.dB;. It is clear that they are J;-measurable set-valued
random variables such that S;[(A) f; F.dt] = clp{Ju[S(F)]}, S; [f; @, dr] =
dec{J [Se ()]}, and S;[f; WedB.]=dec{ T[Sk (¥)]}.

For given Aumann and It integrable set-valued processes F € M(R*xQ, R?),
® € MpR* x Q,R?), and ¥ € Mp(R* x Q, R?™), the set-valued processes
(@) f(; F.dt);>0, (fot ®.d7);>0, and (fot W.dB;),>o are said to be indefinite set-
valued stochastic integrals of F', @, and W, respectively.

Theorem 2.1. Forfixed T > 0 and Aumann and It6 integrable set-valued processes
F e M(T,Q,RY), ® € Mp(T,Q.R?Y, and ¥ € Mp(T,Q,RP>™M), set-
valued stochastic integrals (A) fOT F.dt, fOT &, dt and fOT W, dB; exist and are
Fr-measurable closed-valued set-valued random variables such that

(i) (A) fOT F,dt and fOT ®,dt are integrably and square integrably bounded,
respectively, if ' and ® are integrably and square integrably bounded.
(ii) If (2, F,F, P) is a filtered separable probability space and F and ® are
integrably and square integrably bounded, respectively, then (A) fOT co I dr =
(A) Jif Fidt and [ @ ®,dt = [ ®,dr.
(iii) For every F-nonanticipative d -dimensional stochastic process X = (X;)o<t<T,

Xt (w) — x5 (w) € cl % (/t CIJIdr) (w) + (/t ‘-I—'IdBI) (a))} 2.1

is satisfied for every 0 < s <t < T and a.e. v € Q if and only if x; — x5 €
cly, [dec{Jy [Se ()]} + dec{ Ty [Sk(¥)]}] for every0 < s <t < T.

(iv) If ® € LL(RT x Q. RY) and ¥ € L3(T, Q, R®™) are convex-valued, then
(2.1) is satisfied for every 0 < s <t < T and a.e. w € Q if and only if
X, — xg € dec{Jy [Sp(®)]} + dec{ T [Sr(¥)]} for every0 <s <t < T.

Proof. The existence of stochastic set-valued integrals (.A4) fOT F.de, fOT ®,dr, and
fOT W,d B, follows from Lemma 1.3 and Lemma 1.4, respectively. Immediately from
the definitions of integrals (A) fOT F,dt, fOT ®,dt and fOT W, dB,, it follows that they

are Fr-measurable set-valued random variables with closed values in R.

(i) By Corollary 1.1 and Remark 3.5 of Chap. 2, the sets J[S(Co F)] and
dec{J[Sr(co ®)]} are convex sequentially weakly compact subsets of the
Banach spaces L(Q,F,RY) and L*(Q,F,R?), respectively. Therefore,
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(i1)

(iii)

(iv)

3 Set-Valued Stochastic Integrals

Sr[(A) fOT F,dt] and ST[fOT ®,dt] are bounded subsets of (2, F,R¢) and
L2(Q2, F,RY), respectively. Hence by Corollary 3.3 of Chap. 2, it follows
that the multifunctions (A) fOT F,dt and fOT ®,d¢ are integrably and square
integrably bounded, respectively.
By virtue of Lemma 1.7 and definitions of closed decomposable hull and
stochastic set-valued integrals, one has dec[cly{J[Sp(®)]}] = dec[{J[Sr
(co®)]}]. Similarly as in the proof of (v) of Theorem 1.1, one has dec[cly.{J [Sr
(®)}] = dec[{J[Sp(®)]}]- Then dec{J [S(®)]} = dec{J[Sk(co )]}. By
the definition of set-valued stochastic integrals, we have St[ fOT d,dt] =
dec{J [Sg(®)]} and Sr[f, <o ®,dr] = dec{J[Sr(co ®)]}. Therefore, Sr[/;
cod,dt] = Sy [fOT ®,dt]. Hence, by Corollary 3.1 of Chap. 2, the second
equality of (ii) follows. The first equality of (ii) can be obtained similarly.
It is clear that (2.1) is satisfied for every 0 < s < t < T and ae.
o € Q if and only if x, — x; is an F;-measurable selector of cly,{ f; o dr +
fst W.dB;}. By virtue of Lemma 3.4 of Chap. 2, the set of all such selectors
is equal to clp{S;[[] ®.dt] + S;[/] W.dB.]}, because S;[[ ®.dr] # @ and
S f; W.dB,;] # 0. By the definition of stochastic set-valued integrals, one
has cl { [ ®cdr + [] W.dB,} = cly{{dectJy[Sr(W)]} + dec{ T, [Se(¥)]}}-
Therefore, (iii) is satisfied.
Immediately from Theorem 3.3 of Chap. 2 and Remark 3.5 of Chap. 2,
it follows that dec{Jy[Sr(®)]} + dec{Jy[Sr(¥)]} is a closed subset of
L2(Q, F;,RY). Indeed, let (un)52, be a sequence of cly, [dec{J: [Sr(¥)]} +
dec{ Ty [Sr(¥)]}] converging to u € L*(.Fr,R"), and let (an)52, and
(bn)S2, be sequences of dec{Jy[Sp(®)]} and dec{J;; [Sr(¥)]}, respectively,
such that u, = a, + b, for n = 1,2,.... By the properties of a set-
valued process D, it follows that J, [Sr(P)] is convex and integrably bounded.
Then, by virtue of Remark 3.5 of Chap. 2, dec{Jy[Sr(®)]} is sequentially
weakly compact. Therefore, there exist a subsequence (a,, )2, and a €
dec{Jy,[Sp(®)]} such that (u,, — an )y converges weakly to u — a, which
implies that a subsequence (b,, )2, of (b,),2, converges weakly to u — a.
By virtue of Theorem 3.3 of Chap. 2, the set dec{ Ty [Sr(W)]} is sequentially
weakly closed. Then u — a € dec{J[Sr(¥)]}, which implies that u =
a + (u — a) belongs to dec{Jy [Sg(®)]} + dec{ T [Sr(¥)]}. From this and
(iii), it follows that (2.1) is satisfied forevery0 < s <t < T and a.e. w € Q if
and only if x; — x; belongs to dec{Jy, [(Sr(¥))]} + dec{J; [S¥ (¥)]} for every
0<s<t<T.

0

Theorem 2.2. Let B = (B;);>0 be an m-dimensional I-Brownian motion, ® =
(®1)o<i<r, and let ¥ = (V,)o<i<T be d x m-dimensional It6 integrable processes
on Pg. Then

(i) Sr(Jy ®dB,) # L2(Q, Fr,RY) if e[St (| ®.dB,)] = 0.
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(ii) fOT ®,dB; is convex-valued if ® is convex-valued.

(iii) If (2, F, P) is separable, then there exists a sequence ("), C Sg(®P) such
that (] ®,dB,)(w) = cl{(f] ¢"dB)(®):n > 1} fora.e o € Q.

(iv) If ® is convex-valued abnd square integrably bounded, and P is nonatomic,
then there exists a sequence (¢")52, C Sp(®P) such that (fo ®,dB))(w) =

Co{(f0 "dB;)(w) :n > 1} fora.e. w € Q.

Proof. (1) The result follows immediately from (iii) of Theorem 1.1.
(i) By the definition of fOT ®,d B, and Theorem 3.3 of Chap. 2, one gets

T T
St ( /0 @tdB,) =decJ[Sp(P)])=c0 [dec T [SE (P)]] =co [ST ( /O <I>,dB,f):| )

But St (fOT dD,dB,) is a closed convex subset of I.2(Q, Fr, R?). Therefore,
by virtue of Lemma 3.3 of Chap. 2, the above equalities imply

St (/OT @tdBt) = ﬁ[sr (/OT <I>,de,f):| = Sr (%/OT @,dB,) .

Hence, by (vi) of Lemma 4.1 of Chap. 2, it follows that fOT o, dB;, =
o [, ®,dB; as.

(iii) By the definition offoT ®,dB; and (v) of Theorem 1.1, one has Sy (fOT ®,dB;) =
@{fOT @/'dB; : n > 1}, where (¢")%2, C Sp(®) is such that T[Sy (P)] =
clL{fOT o'dB, 1 n > 1}.Let A : @ — CI(R") be a set-valued random
variable defined by A(w) = cl{(fOT ¢'dB)(w) : n > 1} for v € Q. By
(iv) of Lemma 4.1 of Chap. 2, one has Sy(A) = dec{J(¢") : n > 1}.
Then S7(f, ®,dB,) = declf; ¢/dB; : n > 1} = Sr(A), which by (vi)
of Lemma 4.1 of Chap. 2, implies that [, ®,dB, = A as. Thus [, ®,dB, =
cl{fOT @"dB, :n > 1} as.

(iv) By (viii) of Theorem 1.1, one has dec{7[Sp(®)]} = ﬁ[dec{fOT 'dB; :

1}], where (¢")52, C Sp(®) is such that J[Sp(P)] = cl {fo "dB, :
n > 1}. From this and the definition of the integral fo ®,dB;, it fol-
lows that Sr(J; ®dB,) = coldec([, ¢'dB, : n > 1}]. Let G(w) =
ﬁ[el{(fOT (pt”dB,)(a)) :n > 1}] forae. w € Q. Similarly as above, for every
n > 1 we have {fo "dB; :n > 1} C S7(G). But S7(G) is a closed, convex,

and decomposable subset of LX(Q, Fr, Rd). Therefore, co[dec{ fo @ldB; :
n > 1}] € S7(G). On the other hand, by (i) of Lemma 4.1 of Chap. 2,
one has S7(G) = Sr(co[cl{/, ¢!dB, : n > 1}]) = co[Sr(cl{ ), ¢/dB, :
n > 1})]. Then for every u € S7(G), there exists a sequence (i), of
co[ST(cl{fOT @"dB; : n > 1})] such that Elu — u,|> — 0 as m — oo.
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Therefore, for every ¢ > 0, there exists m, > 1 such that E|u — u,,|> < /2

for every m > m,. Now for every m > my,, there exist A7, .. ’,f(m) e [0,1]

and vf',... v}, € ST(Cl{fOT @'dB,; : n > 1}) such that Zk(m) A =1
and u, Zk(m) Ay as. By (v) of Lemma 4.1 of Chap. 2, for every

n>0,e>0m>m,andk = 1,...,k(m), there exist an Fr-measurable

partition (Ak m)ﬁv(_klm) of Q and a family (go"./(kv’"))y(:kl’m) C{¢" :n =1}

such that E|v]' — ZNE(’W 1 ne fOT ,nj(k'm)dB |> < n/2k(m;)M(e), where
M(e) = Zk(m )(Am*)z Hence for every m > my, it follows that

k(m) N(k,m) 2

Elu=Y"ap Z 1 km/ 1M ap,
k=1

k(m) k(m) N(k,m) 2

< 2E|u—up P+2E | Y Avp =3 A7 Z 1 k,,,/ SV yp
k=1 k=1

k(m) N(k,m) 2

T
<e+2F Z/an UZ’— Z ]lAk_,m/ @,nj(k’m)dB; —e+42F [(Am’i_-m)]z,
. i Jo
k=1 j=1

where (-,-) denotes the inner product in R, A" = (A7, ... ?(m)) and

E = (e Bl with € = o = T L [ f”‘ " dB,| for
k=1,....k(m) and m > m,. But E[(A™ £™)]* < E[(/\m /\m) (&M, ™) =
AT IZE[IE™?] < |A™)*k(m)n/2k(m;)M (g) for m > m,. In particular, we have
E[(Ame, £m)]? < |A™e*k(mg)n/2k(m)M(e) = n/2 for every & > 0 and
n > 0. Then for every ¢ > 0 and > 0, one gets

k(me) N(k.my) 2

Elu— )" A Z 1 k/ pEmap | <o,
k=1

Taking in particular ¢ = 1/2r and n = 1/2r for r > 1, we obtain a
sequence (z,)%2, of co dec{fo "dB, : n > 1} such that E|z, — ul*> —
0 as r — oo. Therefore, u € @[dec{fOT ¢!dB, : n > 1}, which
implies that S7(G) C @[dec{fOT o!dB, : n > 1}. Thus Sy(G) =
coldec{ fo @/'dB; : n > 1}. But by (viii) of Theorem 1.1 and the definition
of [ ®dB,, one has Sr(f; ®dB,) = coldecl[] ¢rdB, : n > 1}].
Therefore, St (fOT ®,dB;) = Sr(G), which by (vi) of Lemma 4.1 of Chap.
2, implies that [ ®,dB, = G a.s. Thus (/] ®,dB,)(w) = colcl{(f; ¢!dB,)
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(w):n>1}] = ﬁ{(fOT @'dB;)(w) :n > 1} fora.e. o € Q, because ¢6(A) =
co(A) for A C R4.
O

Remark 2.1. In what follows, for a compact set K C R¢, we shall write co(K)
instead of co(K), because for a compact set K C R¢, a set co(K) is compact. O

Theorem 2.3. Let & = (®;)o<i<r and ¥V = (V))o<i<1 be d-dimensional It6
integrable set-valued processes on Pr. Then

(i) fOT ®,dz is square integrably bounded if ® is square integrably bounded.

(ii) fOT ®,dt is convex-valued if ® is convex-valued.

(iii) If (2, F, P) is separable, then there exists a sequence (¢")52, C Sg(®P) such
that (] ®,dr)(w) = cl{(f) @dr)(@):n > 1} fora.e o € Q.

(iv) If ® is convex-valued and square integrably bounded, and P is nonatomic,
then there exists a sequence (¢");2, C Sy(®P) such that (fOT ®,dt)(w) =
@{(fOT @rdr)(w) :n > 1} fora.e. v € Q.

(v) If ® and ¥V are convex-valued and square integrably bounded, and P is
nonatomic, then fOT (® + ¥),dr = fOT o,dr + fOT W,dt a.s.

Proof. (i) By the definition of f, ®,dr, one has sup{E|u|> : u € S(J; ®,dr)} =
sup{Elu> : u € dec{J[Sp(®)]}}. For every u € dec[Jp(®P)], there exist
a partition (4)Y_, € TI(Q,Fr) and a family (¢*)_, C Sp(®) such that
u = Y o_, 14, J(¢"). Hence it follows that Elu|> < E[max;<x<n |J(¢%)].
But max <z <y | ()2 < Ji [[®:[de. Then Elul> < [ E|®;|%dt < oo for
every u € dec{J[Sr(®)]}, which implies that Sz ( fOT @,dt) is a bounded subset

of L2(R, Fr,R?). Therefore, by (ii) of Lemma 4.1 of Chap. 2, fOT ®,dt is square
integrably bounded. Conditions (ii)—(iv) can be verified similarly to the verification
of (i1)—(iv) of Theorem 2.2.

(v) Let (¢")2, C Sp(®) and ("), C Sp(¥) be such that J[Sp(P)] =
cl{f rdr : n > 1} and J[Sp(W)] = cl {f) ¥"dt : m > 1}. By (vi) of
Theorem 1.2, one has J[Sp(® + V)] = J[Sp(P)] + J[Sr(¥)]. Therefore, for
every n,m > 1, one has J(¢" + ¥") € J[Sp(P + W¥)], which implies that
clw{fOT(go,” +y™Mdt cn,m > 1} C J[Sp(P + W), because J[Sp(P + W)] is
a weakly compact subset of I>(Q2, Fr, RY). For every u € J[Sp(® + W)], there
exists (¢, ¥) € Sp(®) x Sp(V) such that u = J(¢ + ). On the other hand, by the
properties of sequences (¢")2, and (™), there exist subsequences (¢"*)22 |
and (Y™ )22, of (¢")y2, and (¥™)S_,, respectively, such that (J(¢"))22, and

m=1’

(J(¥"*))2, converge weakly to J(¢) and J(v), respectively. Therefore, (J(¢"* +
Y"k))e2 | converges weakly to J(¢ 4 ¥) = u, which implies that u € cl,,{ fOT (of +
Y™)dt :n,m > 1}, Then J [Sp(® + W)] C el {f (¢} + y™)dt : n,m > 1}. Now,
by virtue of (iv), we get fOT(CIJ, + W¥)dr = E{fOT(go,” +y™de cn,m > 1} =
ool grde + [ ymde cn,m > 1} as. Let A(@) = {(J) ¢rdi)(@) = n > 1}
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and B(w) = {(fOT Y'de)(w) : m > 1} for fixed w € Q. It is clear that A(w) and
B(w) are compact subsets of R for a.e. w € Q, because for every n,m > 1 and
ae o € £, one has |f0T erde| < fOT lpr|de < fOT m;(w)dt and |f0T yde| <
[T wmde < [ mi(w)dt, where m € L2([0,T] x Q,Tg, RT) is such that
max{||®; (w)|, |V (w)||} < m;(w) for ae. (t,w) € [0,T] x Q, and therefore,
A(w) and B(w) are bounded subsets of R? for a.e. w € Q. Then A(a)) + B(w) =

A(w) + B(w), which implies that co{A(a)) + B(w)} = co{A(w)} + co{B(w)},
because ¢o(A(w)) is compact. Thus co{fo Sde + fo yrdt onom > 1} =
co{(fo erde)(w) :n > 1}+co{(f0 Y"dr)(w) : m > 1}. Hence, by virtue of (iv), it
follows that fOT (D, +W,)dt = fOT ®,dr + fOT W,dt a.s., because @{(fOT prdt)(w) :
n> 1y = [ &dr andco{(/, y/"dr)(w):m > 1} = [ Wdr as. o

Theorem 2.4. Let B = (B;);>0 be an m-dimensional F-Brownian motion and
® = (D;)o<i<7 an r x m-dimensional It6 integrable set-valued process. Then

(i) If ® is square integrably bounded, then ST(fO d,dr) # dec{J(]L )}, where
L2 =: L*([0, T] x Q, T, R¥M).
T 2
| oras }
0

(ii) If (2, F, P) is separable, then
T
/ ®,dB,
0
for every sequence (¢")72, C Sp(®) such that fOT ®,dB;, = Cl{fOT @!dB; :
n>1}a.s.

(iii) If @ is convex-valued and square integrably bounded, and P is nonatomic,

then
T T 2
/ ®,dB; / ¢/ *dB;
0 0

for every sequence (¢")72, C Sw(P) such that fo P dB,fzco{fo @'dB; :n >
1} a.s.

Proof. (i) By virtue of (iii) of Lemma 4.1 of Chap. 2, one has Sy (®) # LZ.. From
this and the definition of fOT ®,dB,, the result follows.

(i) Let (¢")%2, be any sequence of Sp(®) such that fo ®,dB;, = cl{f0 @!dB, :
n>1}as. By virtue of Corollary 3.2 of Chap. 2, one has

E

2
=< sup E |: max

<K<
(@)Y Clgnm>1y | 1SksN

E

2
< sup E | max
) Clyrm=1y | 1Sk=N
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T T
/ ®,dB,| = E [sup { x> :x e (/ @,dB,) (a))}:|
0 0
= sup{E|u|2 ‘u€ St (/T @tdBt)} .
0

By (v) of Theorem 1.1, we have Sr(f; ®dB,) = dec{ [, ¢rdB, :n > 1}.
Therefore,

T
Elul®>:ueSr ([ <I>,dB;)
0
T
/ ¢fdB; :n > 1
0

T
E|u|2:uedec§/ (pde,:nzl}}
0

= sup {E

< sup E | max
@rop clymnzy | 1Sk=N

2
d

sup

= sup E|u|2:ue@

= sup

N T
> g / o'*dB;
k=1 0

2
(A=, €TI(Q, Fr). (¢")p_, C {sv"inzl}}

T 2
/ o kdB| |.
0

The result follows from this and the first inequality.
(iii) Let (¢")%2, be any sequence of Sy (®P) such that fOT ®,dB, = ﬁ[cl{foT @'dB,:
n > 1}] a.s. By the proof of (iv) of Theorem 2.2, it follows that in this case,
we have St (fOT ®,dB;) = E[dec{fOT @"dB, : n > 1}]. Therefore, similarly as

above, we get
2 T
= sup{E|u|z:u€E|:dec{/ ¢/dB, :n > 1}:|}
0

EH/OTCD,dB,
=H(E[dec{/or<p;’d3, n > 1”,{0}) §H(dec{/or<p,"d3, :nzl} ,{0})

T
=sup:E|u|2:u€dec{/ (p,"dB,:nzl}},
0

where H denotes the Hausdorff metric on CI(IL*(R2, Fr, R?). Hence, similarly

as in case (ii), it follows that
T 2
E ‘ / @/ *dB; :| .
0

T
/ ®,dB;
0

2
< sup E | max
@)Y Clgrn=1y | 1Sk=N
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Corollary 2.1. If the assumptions of Theorem 2.4 are satisfied, then fOT ®,dB,
is square integrably bounded if and only if there exists a sequence (¢")72, of
Sw(®) with properties defined in (ii) or (iii) of Theorem 2.4 such that the sequence
(fOT @'dB,;)°2, of d-dimensional random variables is square integrably bounded.

Proof. 1t fOT ®,dB, is square integrably bounded, then by (ii) of Lemma 4.1 of
Chap. 2, the set ST(fOT ®,dB,) is a nonempty bounded subset of I.>($2, Fr, RY).
Therefore, for every sequence (¢")52, C Sp(®P) such that fOT ®,dB, = clf fOT @
dB; : n > 1} as., the set {fOT @'dB; : n > 1} is a bounded subset of this space,
which implies that the sequence ( fOT @/'dB;)°2 | is square integrably bounded.
Conversely, if there exists a sequence (¢”)72, C Sg(®) such that fOT ®,dB;, =
cl{fOT @'dB, : n > 1} as., and the sequence (fOT @'dB,)3 | is square integrably
bounded, then there exists m € L2(Q, Fr,R™) such that |f0T @'dB;| < m as.
for every n > 1. But ST(fOT ®,dB;) = @{IOT @'dB; : n > 1}. Therefore, for
every u € ST(fOT ®,dB;) and & > 0, there exist a partition (A} ]]CV;I e II(2, Fr)
and a family (¢f)N_, C {¢" : n > 1} such that Elu — Y o=, Lygi]* < e
Thus Elul’> < 2e + 2E[Y3%, Lac| fy (9)edB,[?] < 2e + 2E[m?]. Therefore,
for every u € ST(fOT ®,dB,), one has E|u|> < 2E[m?). Then S(fOT ®,dB;)
is a bounded subset of ]LZ(Q,]-"T,IR"), which implies that fOT ®,dB; is square
integrably bounded. O

Immediately from Theorem 1.3 and the definition of set-valued stochastic
integrals, it follows that for every ® € £2(RT x Q,R?), ¥ € LZ(RT x Q,R4*™),
and m-dimensional FF-Brownian motion B = (B;);>o on Py, the set-valued
mappings [0,00) > ¢ — Sr(f; ®.dr) € CIL* (L, F,RY)] and [0,00) >
t — ST(fOt V.dB,) € CI[L*(Q,F,RY)] are Ls.c. This, by Michael’s continuous
selection theorem, implies that if ® and W are convex-valued, then the above set-
valued mappings possess IL?-continuous selectors.

It is natural to ask whether it is possible to get, for set-valued stochastic integrals,
an approximation selection theorem similar to Theorem 1.4. In the general case, the
answer to such a question is negative, because in the proof of Theorem 1.4, the
boundedness of the set-valued integral f(; W.dB; is essential. We can get only the
following result.

Theorem 2.5. Let B = (B;);>0 be an m-dimensional F-Brownian motion on a
filtered probability space Pr = (2, Fr,F, P) with a filtration F = (Fi)i>o0
satisfying the usual conditions and let (®, V) € L2.(T, Q,R") x L1(T, L2, R4>m),
For every ¢ > 0 and a continuous d-dimensional stochastic process x = (X;)1>0

such that
X (w) — x5(w) € cl { (/t <I>,fdt) (w) + (/t \If,dBt) (a))} 2.2)
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forevery) <s <t <T and a.e. w € Q, there exist §. € (0, €], a positive integer
N, € [T/8,,T/8: + 1), and partitions (A¥)7™ | C Fis, of Qfork = 1,..., N, such
that for every partition (Blk)inz"l C F—ns, of Q withk = 1,..., N, there exists a
pair of processes (¢°, ¥°) € Sp(P) x Sp(V) such that

t t
sup |[x; — Xxo —/ pidr —/ YidB, (2.3)
0<t<T 0 0
Joomi kb k8
Se+ sup [ DD (L —1Lp0) / ¢>§dt+/ YidB, |||
lf/SNa k=1i=1 ! ! (k_l)‘gs (k_l)‘gs

Proof. By Theorem 2.1, the relation (2.2) is equivalent to the relation x, — x; €
cly [dec{ s [Sp(®)]} + dec{ T[Sy (¥)]}] forevery 0 < s <t < T.Lete € (0,1)
and select §, € (0,¢] such that supy<,<,<7 SUP; <<, 15, Elx: — x> = (g/4)%,
supo< <7 E [T |@.|2dr < (1/4T)(e/4)* and supy_,q E [/ | 0;|2dr <
(1/4)(e/4)*. Put i, = 0,7, = kd, for k = 1,2,...,N; — 1, where N is
such that (N, — 1)§; < T < N,/b.. For simplicity, assume that N, is such that
T = N Forevery k = 1,2,..., N, there are f° € dec{J;  .£[Sr(P)]} and
g; € dec{Ty  [Sw(V)]} such that |lx;z — xee  — ff — g7 < &/4Ne, where
| - | denotes the norm of (2, Frr, R?). By the definition of closed decomposable
hulls of subsets of ]LZ(Q , ]:f/f’ ]Rd), forevery k = 1,2,..., N, there are partitions
{Af,... AL} C Frrand {Cf, ..., CK} C Fir of Q and families {¢f, ..., ¢} } C

Sp(®) and {yf,.... ¥y} C Sp(¥) such that || fi — 7%, 1 ftzﬁl(wf)tdfu <

¢/8N, and | g — Y15, Lok ft}’é (¥5).dB;| < &/8N.. For simplicity, we can
i —1

assume that my = ng and AX = CF for every i = 1,2,...,my and k =

1,2,...,N. Let (BN, C Fye_, be a partition of Q forevery k = 1,2,..., N,

i=1

and let ¢° and ¥° be defined by

Ne—1 my myg

k Ne
00 =30 D Ml + D ey 11l g,
k=1 i=1 i=1

and

Ne—1 my MmN,

v = Z Z]l[fffl’ff)]lB,-kwik + Z]l[fﬁzgflj]]lgl?"s wiNs'

k=1 i=1 i=1

It is clear that ¢°® and ¥° are IF—nonanticipative selectors of ® and W, respec-
tively, and
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s ([ [ )]

1
2
< sup  sup [Elxr—xf;_llz}

I<k=N®¢_ <t<t;
t t
/ prdet / Y7dB:
¢ ¢
Tk—1 Tk—1

K= — ZII'A"/ (‘P,) dt_ZI[AI‘/ (w )cdB;

i=l1 Tk— i=1 Tpe—

sup |:E

0<t<T

1
212 A 1
£ g2 2
+ Z |:|xr,f — X, _fk _gk| i|
k=1

l

.

+ sup sup {E

1=<k=N, t;_ <t<t;

£l

sup
1</ <N

ZDM — 1) (/ (¢i)edr +/f (wi‘)def)

k=1i=1 Te—1

By the definitions of 7, fi and gi, we get sup; < <ye SUP,e < <o E X — x| 2 <
(8/4)2’ Zki] |xt,§ — X T fk‘9 - g}i ” = Zk;1 5/4Ns = 5/4 and
t t
sup  sup E / pidr + / YidB,| <
I1<k<Npt_ <t=<tf Ty Ty
t t
2T sup sup FE ||<I> )|[?dz [+2 sup sup E / [,)||>de
I<k<Neti_ <t<t] 5 l<k<N¥ T St<t; Ty
HOASHE )
—2\4 2\4/) —\4) ~
Therefore,
t t
sup || x; —xo—/ (pjdt—/ YedB,
0<t<T 0 0
%
<e+ sup ZZ(M — 1,0 ( / (¢hyede + (w!‘)rdBr) H .
1<j=Ne =1 i=1 T L
O

Remark 2.2. 1f (®, W) € L4(T, Q,R") x L4(T, 2, R™) then
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Joomg k6 k6
S 10 ( /( pide + /( wdef)

sup
1<j<Ng k=1i=1 k—1)8, k—1)8,
Ne  my k8
< (\/E+d;‘/3688) S S VPl ABY E/ max (|| @ ||, |, [4)dz.
k=1i=1 (k=13

O

It is natural to look for some additional conditions by which it is possible to select
for every k = 1,2,..., N, a partition (B¥)""* Fe—1ys, of & such that for

i=1
appropriately selected multifunctions ® and W, one has

Ne my ke
lim> >V p(A,mB,k):/E [ maxede. e < oc
= im (k=1)8

or

Ne my ke
: 4 k A Rpky 4 4 Ndyr —
303 rutan >\/E [, i e = oo

“very slowly.” Such conditions may depend on some type continuity of the filtration
IF regarded as a multifunction defined on the interval [0, 7] with values in the space
of all nonempty closed subsets of a metric space (S(P), p) associated to the measure
space (2, Fr, P). Itis known (see [35], p. 169) that (S(P), p) is a complete metric
space. Given a filtration ' = (F;)o</<r on the probability space (2, Fr, P), we
can consider F; for every ¢t € [0, T] a closed subset of S(P), because the metric
space (S;(P), p) associated to the probability space (2, F;, P) is forevery t > 0, a
complete metric space, and S;(P) C S(P). Therefore, we can treat the filtration I
as a multifunction [0, T] 2 t — F;, € CI(S(P)). Let h denote the Hausdorff metric
defined on CI(S(P)). We can now define the following types of continuity of the
filtration IF.

The filtration I is said to be #-continuous if the multifunction [0, T] > t — F; €
CI(S(P)) is continuous with respect to the Hausdorff metric 4 on CI(S(P)). It is
called Holder h-continuous with exponential ¢ > 0 if there exists a number 8 > 0
such that h(F;, Fs) < B|t — s|* forevery ¢,s € [0, T]. It can be easily verified that
every h-continuous filtration I of the probability space (£2, F, P) is continuous.

Remark 2.3. 1f the assumptions of Theorem 2.5 are satisfied with (O, W) €
LE(T, Q,RY) x L3(T, 2, R™) and the filtration F is Holder s-continuous with
exponential « = 3, then for every ¢ > 0, there exist §. € (0, ), a positive integer
m, and a pair of processes (¢, ¥¢) € Sp(P) x Sp(¥) such that

t t
Xy —xo—/ (pfdt—/ YidB,
0 0

sup
0<t<T

<¢ {1+m8,3[3x/3d(T+258)+T+8;’ \/E]} .




126 3 Set-Valued Stochastic Integrals

In particular, if (®, W) and the filtration IF are such that
M, =: sup {ms,B [wéd(T +26)+ T +8 \/5_] Te e (0, 1)} < o0,

then immediately from (2.3) it follows

t t
X; — Xo —/ pidr —/ YidB,
0 0

sup
0<t<T

< 8(1 + Ms)

|

3 Conditional Expectation of Set-Valued Integrals
Depending on Random Parameters

Given an Aumann integrable set-valued process F € M(T,Q,R?), by fOT F;(-)dt
we denote the set-valued mapping 2 > w — fOT F,(w)dt € CI(RY) defined by

T T
/ F(w)dt = {/ fr(w)dt : (f)o<i<r € S(F)
0 0

for a.e. w € Q. By the properties of Aumann integrals, it follows that if F €
L(T, 2, R%), then fOT F,(w)dt is a compact convex subset of R fora.e. w € Q. We
shall consider properties of a conditional expectation of set-valued random variables
ofthe form Q2 > w — fOT F,(w)dt € CI(RY). It will be shown that for every convex-
valued process F € L(T, 2, R?), one has fOT F(w)dt = (A)(fOT F,dt)(w) for a.e.
o € Q. We begin with the following lemmas.

Lemma 3.1. For every F € L(T,Q2,RY), the set-valued mapping fOT F,(-)dt

definedby Q2 > w — fOT F,(w)dt € CI(RY) is Fr-measurable with compact convex
values.

Proof. Let us observe that the set-valued integral fOT F;(w)dt is an Aumann integral
depending on the random parameter @ € 2. Therefore, by virtue of Theorem 3.4
of Chap. 2, for every w € , it is a nonempty compact convex subset of R,
which by Remark 2.3 of Chap. 2, implies that for the Fr-measurability of the
set-valued mapping Q > o — fOT F/(w)dt € CI(RY), it is enough to verify
that the function Q > w — o(p, fOT F,(w)dt) € R is Fp-measurable for
every p € R?. By the measurability of F and its integrably boundedness, the
function [0, 7] x > (t,w) — o(p,co F;(w)) C R is measurable for every
p € RY. By virtue of Theorem 3.5 of Chap. 2, for every p € R, one has
o(p, fOT F(w)dt)) = fOT o(p,co F;(w))dt for every w € Q. Hence, by Fubini’s
theorem, the Fr-measurability of the function Q > w — o(p, fOT F(w)dt) € R
follows for every p € RY. Therefore, fOT F;(-)dt is Fr-measurable. O
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Lemma 3.2. Let F € L(T, 2, RY). The subtrajectory integrals St [fOT F,(-)dt] of
fOT F;(-)dt form a nonempty convex sequentially weakly compact subset of the space
L(Q, Fr,RY), and Sr[f, Fi(-)di] = J[S(co F)].

Proof. Immediately from Remark 3.1 of Chap. 2, by the definition of J[S(co F)]
and the equality fOT Fi(w)dt = fOT co Fi(w)dt for ae. w € Q, it follows that
M fOT F,(-)dt] is a nonempty convex sequentially weakly compact subset of the
space (R, Fr, R?), and J[S(co F)] C Sr[fy co Fi(-)dr] = Sr[f, F.(-)dr].

Assume now that ¢ € ST[fOT F(t,-)dt]. Then for every A € Fr, one has
Esp € E4 O, where & = fOT F(-)dt, Eq¢ = [,9dP ,and E4® = [, ®dP.
Let ¢ > 0 be given and select an F-measurable partition (Afl)fj;l of Q such
that E 4 fOT ||F;(-)||dt < &/2"tL. For every n = 1,..., N, there is an f° €
S(F) such that Eqep = E4¢ fOT fh@,)de. Let f¢ = Zflv;l]lAif,f. By the
decomposability of S(F), one has f* € S(F). We have f* € S(co F) because
S(F) C S(coF). Taking a sequence (gx)5>, of positive numbers g > 0 such
that & — 0 as k — oo, we can select f € S(co F) and a subsequence, denoted
again by (/)22 |, of (f*)72, weakly converging to f in the weak topology of
IL([0,T] x R, Br ® Fr,RR?), because S(co F) is a sequentially weakly compact
subset of IL([0, T] x Q,Br @ Fr.R%). Forevery A € F and k = 1,2, ..., there
is asubset {ny,...,np}of {1,..., N, } such that 4 N Ak #@fori =1,2,...,p
and AN A, =0forr € {1,2,..., Ny} \ {n1,...,np}. Therefore,

T
‘EA(/’ —E4 / S, )de
0

Ne,

>

n=1

T
EAmAquD_ EAmAZk /(; fng"(l‘,')dl‘

P

23

i=1

p T
<2Y £y [ IROI <
tJo

i=1

T
EAﬂAZ'I?(p — EAﬂAZ’l? /0 fnsk([,-)dl

forevery k = 1,2, .... On the other hand, for every A € F, we also have

=<

T T
EA<.0—EA/ A EA‘ﬂ_EA/ S, )de
0 0

T T T T
+EA/0 fgk(t,-)dt—EA/O f(@,-)de EA/O ffk(z,-)dt—EA/O f(t,-)de

<é& +

fork = 1,2,.... Hence it follows that E ¢ = E4 fOT f(t,-)dt for every A € F,
because & — 0 and |EAf0T fek(t,-)dt — Ey fOT f(t,-)dt| — 0ask — oo.

Therefore, p(w) = fOT f(t,w)dt for ae. w € 2, 1ie., ¢ = J(f). Then ¢ €
J[S(co F)]. |
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Corollary 3.1. For every convex-valued process F € L(T,2,R?), one has
Ay Fdt)(@) = [] F(w)d fora.e o € Q.

Proof. By the definition of (A) fOT F,dt and Corollary 1.1, we have St[(A) fOT
Fdt] = cln{J[(S(F))]} = J[(S(F))], because J[(S(F))] is a convex sequentially
weakly compact subset of IL(2, Fr,R?). By virtue of Lemma 3.2, one has
Srlf) Fi(-)dt] = J[S(F)]. Therefore, Sr[(A) [, Fidt] = Sr[f, Fi(-)dt], which
by Corollary 3.1 of Chap. 2, implies (A)(f, Fdf)(@) = i F/(w)d for ae.
w e Q. O

Given a measurable and uniformly integrably bounded set-valued mapping F :
[0,7] x RY — CI(R¢) and a d-dimensional measurable stochastic process z =
(z)o<:<7 on a filtered probability space (2, F, T, P), by S(F o z) we shall denote
the set of all measurable selectors of the set-valued process F o z defined by (F o
2)i(w) = F(t,z(w)) for (t,w) € [0, T] x Q2. Recall that F is said to be uniformly
integrably bounded if there exists k € I.([0, T'], R™) such that || F(z, x)|| < k(t) for
ae.t € [0, T] and every x € R?.

Lemma 3.3. Assume that F : [0, T]| xRY — CI(RY) is measurable and uniformly
integrably bounded, (z;)o<: <t is a d -dimensional measurable stochastic process on
Pr, and G is a sub-o-algebra of F. Then

T T
S(E U F(z,z,)dt|QD:{E[/ f(t,-)dtlg}:feS(coFoz) .
0 0

Proof. By virtue of Lemma 3.2 and the definition of a set-valued conditional
expectation, one gets

T
S (E U F(z,z,)dt|gD = clp {E[u|G] 1 u € J[S(co F o 2)]}
0

T
ZCl]L%E[/ f(t,')dt|g}:feS(coFoz) )
0

To complete the proof, it remains only to verify that H = {E] fOT f(t,-)dt|G] -
f € S(coF o z)} is a closed subset of IL(2, G, R). This follows immediately
from the sequential weak compactness and convexity of S(co F o x). Indeed, by
the sequential weak compactness and convexity of S(co F o z), it follows that H
is a convex sequentially weakly compact subset of IL(Q, G, R¢). Therefore, it is a
closed subset of IL(2, G, Rd). O

Theorem 3.1. Assume that F : [0,T] x RY — CIR?) is measurable and
uniformly integrably bounded and let x = (x;)o<i<r and z = (z)o<i<T be d-
dimensional measurable stochastic processes on a filtered probability space Py =
(2, F,F, P) with a filtration I = (F;);>0 satisfying the usual conditions, and let
El|x7| < o0. Then

t
x, € E [x,f +/ F(r,zt)dr|}'s:| a.s. 3.1
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forevery 0 <s <t <T ifand only ifthere is f € S(coF o z) such that

T
x =FE |:xT +/ f(z, -)dt|}',:| a.s. (3.2)

forevery 0 <t <T.

Proof. Suppose there is f € S(coF o z) such that (3.2) is satisfied. For every
0<s <t <T,onehas

T T
xS=E|:xT+/ f(r,-)dr|]—'si|:E |:/t f(r,-)dr|fs] +E |:xT+/ f(r,-)dr|.7—'si|
N N t

and E[x;|Fs]=E [x7+ ftT f(r,-)dr|]—]] a.s. Then x;=F [x,f+fst f(r,-)dr|]—]]
as. for 0 < s < t < T. Hence, by Lemma 3.3, it follows that x; €
S (E [x, + f; F(z, zr)drl}}]) for0 < s <t < T. Therefore, (3.1) is satisfied
as.for 0<s<t<T.

Assume that (3.1) is satisfied for every 0 < s < ¢t < T as. and let
k € ([0, T],R+) be such that || F(z, x| < k(¢) fora.e.t € [0,T] and x € RY.
Forevery 0 <t < T,onehas E|x,| < E|xr| + EfOT k(t)dt < oo.Letn > 0be
fixed and select § > 0 such that § < 7 and supy.,<7_s ffH k(r)dr < n/2. For
fixedt € [0,T —8]andt <t <t 48, wehave x; € E[x; + [ F(s,2,)ds|F] as.
Therefore, for every A € F;, we get E4(x; —x;) € Ey4 ftr F(s,zg)ds. Then

T t+46
|Ea(v — x| < Ex / |F(s.2)llds < E / k(s)ds < 7/2
t t

forevery0 <t < T —§ and A € F;. Therefore, sup, .., 5 |Ea(xr — x;)| < /2
forevery A € F; and fixed0 <t < T — 4.

Lettg = 0,711 = 6,...,7y—1 = (N —1)§ < T < N§. Immediately from
(3.1) and Lemma 3.3, it follows that for every i = 1,2,..., N — 1, there is fi” S
S(coF o z) such that

E

Xg_, — E [xrl. +/ £, .)dsl}'ri_l} ‘ =0.
Ti—1
Furthermore, there is fy € Sp(coF) such that

E

T
Xy, — E[xT +/ f]:,’(s,-)ds|]-},v_1” =0.
TN—1

Define f(t,w) = YN iy, oy (@) £t @) + Ly, 11 fa(t, @) for (1,0) €
[0, T] x 2. By the decomposability of S(coF o z), we have f"7 € S(coF o z). For
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fixedt € [0, T], thereis p € {1,2,...,N —1}or p = N such thatt € [r,_1, 1)) or
t €fty-1,T] Lett € [tp—1,7,) with1 < p < N — 1. For every A € F;, one has

T
EA(x, — E[xr +/ S, -)dsﬁ])’ <|EaCxr — x| + E|x, — E|:xrp+1
t

Tpt1 K4
+/ fn(59 ')d‘[l}-rp:| + |EA(E[XIF+1|]:‘KP] _xrp+1)| + E‘/ fn(sv')ds
7 '

EA(E[/IMI f”(x,-)ds|.7—}p] - E[/rﬁ+1 f”(x,-)drI]—',])‘ to

P

+

+E

T
Xy — E|:xT + / S, .)d‘['fm_liH + |Ea(E[xey_, |‘FTN—1] - xTN—l)’
-1

T T
+EA(E[/ (s, -)dSIFIN,I} - E[/ f”(s,')dslfr])’

t+35 N—2 Tt
< sup |Ea(x —x)HE / m(s.)ds +)_E|x,—E [xn+1 + s, ')dSIE,}
t<t<t+§ t i=p 7
T N—2
+E X1 — E|:XT + / f”(s, ')d":']‘—m_l:H + Z |EA(E[XT,-+1 |]:ri] - xr,-+1)|
™N—1 i=p

— Tig1 Ti41
EA(E[ f”(s,-)dslf,‘.] —E[ f”(s,~)ds|.7-',i|)‘

N—2
+2
i=p T

T T
E,4 (E[/ S, -)ds|.7-'m_1] — E[/ S, -)ds|.7-',:|) ‘

But 5, C Fy fori = p,p+1,...,N — 1. Then for A € F;, one has

+

N-—2

Z |EA(E[xTi+1|‘FTi] _xfi+1)| =0,

i=p
N—2 Ti+1 Ti+1
Z EA(E [/ f”(s,-)ds|}},.:| —E|: (s, -)dsl]-",f:|)' =0
i=p T T

and

T T
‘EA (E|:/ f”(s,-)ds|}'ml:| - E|:/ f”(s,-)ds|f,:|)' =0.

With this and the definition of f7, it follows that

T
‘EA (xf _E [xT + / f"(s,-)dst

<7 (3.3)
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forfixed0 <t < T and A € F;. Let (y j);?'; , be a sequence of positive numbers
converging to zero. For every j = 1,2,..., we can select f € S(coF o z) such
that (3.3) is satisfied with n = n;. By the weak sequential compactness of S(coF o
z), there are ' € S(coF o z) and a subsequence (/)72 of (f™ )5= weakly

converging to f in the weak topology of ([0, 7] x 2,87 ® F,R¢). Then for
every A € F; C F, one has

T T
lim EA/ (s, )ds = EA/ f(s,-)ds.
k—o00 ¢ ¢

On the other hand, for every fixed ¢t € [0, T] and A € F;, we have

E, (x, - E[XT + [T f(su)dlef,D‘ < |£, (x, - E|:XT + [T o (s,~>ds|ﬁ])’
EA(E“T Fr sl |- E[[T f(Su)dSIFI]))

T T
EA/ S (s,~)ds—EA/ f(s,)ds

+

< m+

fork =1,2,..., Therefore, E 4(x; — E[xr —i—ftT f(s,)ds|F]) =0 forevery A €
Frand fixed 0 < ¢ < T.But x; and E[x7 + ftT f(s,-)ds|F;] are F;-measurable.

Then x, = Exr + ftT f(s,-)ds|F] as. for 0 <t < T. Then there exists f €
S(coF o z) such that (3.2) is satisfied. O

In what follows, by S(IF, R?) we shall denote the set of all d-dimensional
FF-semimartingales x = (x;)o<;<r on the filtered probability space Pr =
(Q,F, T, P) such that E[sup,., .7 |x/|*] < oo. For a measurable process Z on
Pr, by [Z]F we shall denote a “conditional expectation” with respect to a measure
u ® P and an F-optional o-algebra O, i.e., [Z]¥ = E,gp[Z|0], where u denotes
the Lebesgue measure on [0, T'].

Corollary 3.2. If the assumptions of Theorem 3.1 are satisfied, then a process x =
(x1)o<:t<T defined by x; = E [xT + ftT f(z, .)dt|]-",] as. for0 <t < T with
f € S(coF oz) belongs to S(F,RY) and has a semimartingale representation
X = xo + M, + A,, where xo = E[£ + fOT fedt|Fol, Ar = — [y [f1¥dt and
M, = Elxr + [y fude|F] = Elxr + [ fde|Fol = E[fy (f: = [fI))de| Fi]. A

process x is continuous if and only if (M,)o<:<r is a continuous martingale.

Proof. Ttisclearthat x, = xg + M, + A, a.s. for0 <t < T, where xo, M,, and A,
are as above forevery 0 < ¢ < T'. To see that (A4,)o</<r is an F-adapted absolutely
continuous process and (M, )o<;<r is an F-martingale, let us observe first that [ f]*
is F;-measurable for every f € S(co F oz) and ¢t € [0, T], which implies that also
A, is F;-measurable for every f € S(co F oz) and ¢t € [0, T]. Furthermore, the
process (A;)o<:<r is absolutely continuous, because |[f1¥| < |f|F < |F(t,z)||
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a.s. for a.e. t € [0, T]. To verify that (M;)o<;<7 is an IF-martingale, let us observe

that E[fst Sfrdt|F] = f; E[f:|F:]dt as. forevery 0 < s <t < T. Indeed, for
every C € F,and0 <s <t < T, one has

/ {E |:/t ftdrl]-',:l} dp
- LA o= [ rrha= [ v r= | i o

Then E[fst Sfrdt|F] = f; E[f;|Fi]dt as. forevery 0 < s <t < T.Let N, =
E[fy(f; = [f1F)dt|F] as. for 0 < s < ¢ < T.1Itis clear that (M,)o<<r is
an F-martingale if and only if the process (N;)o</<r is an F-martingale. We have
E|N;| < oo forevery 0 <t < T. Furthermore, for every 0 < s <t < T, one has

JoAE[ [ aez]j ar
:/C%/Stftdr}dP:/st{/cfrdP}dtZ/St%/cE[fJ]:t]dP}df
:/C{/SIE[fJ]-",]dt} dP.E[N, — N,|F,]

—[(e[[ v-vias] - e[ [ G-tz ]) 2]
=E[/OIE[(fI—[f1F)|f,] fs}—E[/OSE[(fI—[ fs}

- / El(f—Lf1F)| Filde— / El(f—Lf1F)| Flde= / El(f—f )| Fldr.
0 0 K

But for every C € F;, one has (s, ¢] x C € O. Therefore, for every C € Fy, one
gets

/[/ e )|f]dt}dp //chfrdrdP //<sr1xc[f]]FdrdP
//(“]XC JfrdrdP — //(“]XC frdzdP = 0.

Hence it follows that f; E[(f: — [f1H)|F]dr = 0 as. forevery0 <s <1 < T,
which implies that E[N; — Ny|Fs] = 0 a.s. forevery 0 < s < t < T. Finally,
by the equality x, = xo + M; + A; and the continuity of the process (A;)o</<T,
it follows that the process x is continuous if and only if (M,)o</<r is a continuous
martingale. O
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4 Selection Properties of Set-Valued Integrals Depending
on Random Parameters

Let Pr = (2, F,F, P) be a complete filtered probability space with a filtration
F = (F:):>0 satisfying the usual conditions and let G = (G;)o<; be a measurable
set-valued stochastic process on Pr with values in R"*”. It is said to be diagonally
convex if for every t € [0, 7] and a.e. w € €2, the set D(G),(w) = {v-v* 1 v €
G;(w)} is a convex subset of R"™*", where v* denotes the transpose of v. In what
follows, the set-valued process (D(G);)o<:<r Will be denoted by D(G).

Remark 4.1. 1t can be proved that if the process G = (G;);er on Pr with values
in R takes convex values, than it is diagonally convex. In the general case,
convexity and diagonal convexity are not related to each other. O

Corollary 4.1. If G = (G;)o<i<r Iis a measurable square integrably bounded
set-valued stochastic process on Py with closed values in R™™, then D(G) is
measurable and integrably bounded.

Proof. Tt is enough to observe that D(G) = [(G) and that a mapping [ : R —
R defined by [(u) = u-u* for u € R"™™ is continuous and that |/ ()| < ||u||* for
every u € R™", O

Lemma 4.1. If G = (G;)o<i<r is a measurable square integrably bounded set-
valued stochastic process on Py with closed values in R"™™, then S(D(G)) # @,
and for every 0 € S(D(G)), there exists g € S(G) suchthato = g - g*.

Proof. The result follows immediately from Corollary 4.1 and Theorem 2.5 of
Chap. 2 applied to the function /(x) = u - u* and the set-valued mapping I :
[0, T] x 2 — CI(R"™) defined by I'(¢, w) = G;(w) for (t,w) € [0,T] x Q. O

Denote by C; = Cp(R",R), C, = Cp(R",R"), and C,x, = Cp(R",R"™")
Banach spaces of continuous bounded functions defined on R” with values in R, R”,
and R™", respectively. Define on C, xR" xR" and C, x, x R™*" xIR" mappings ® and
W by setting ®(¢. 1)(2) = Yr—; ¢i(@u; and YW )(@) = ey Xy Ui @vy
forp € C,, ¥ € Coxp,u € R, v € R, and z € R" with ¢ = (¢1,...,¢,),
Y = (Vij)rxr, 4 = (uy,...,u), and v = (vj;),x,. For given A C R", B C R™,
¢ € C, ¥ € Crxr, and z € R, by ®(¢, A)(z) and W(¢, B)(z) we denote sets
P({p(z)} x A) and V({¥ (z)} x B), respectively.

In what follows, we shall restrict the functional parameters ¢ and ¥ to the set
Ki ={ze€ R : |z < k}fork = 1,2,... and consider mappings & and W
on the spaces C¥ x R" x R" and CX,, x R™" x R’, where C¥ = C,(Ky,R")
and CK,, = Cp(Ky, R™"), respectively. We shall also consider mappings ® and
W restricted to the sets {p(h) : h € le(R’,]R)} x R"x R" and {¥(h) : h €
CZ(R", R)} x R™" x R™, respectively, where ¢(h) = (By,s. .. W) and Y (h) =

(h./x/in )rxr for h € C2(R", R). For simplicity, the spaces C([0, 7], R") and C}(R")
will be denoted by C7 and C?, respectively.
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For given measurable and uniformly square integrably bounded set-valued
mappings F : [0,T] x R" — CI(R") and G : [0,T] x R" — CIR™™),
[ € (i, and r-dimensional IF-nonanticipative stochastic process z = (z;)o</<T
on a filtered probability space P, the integrals E f; [[(z5)®(p, F(t,z,))(z)]dT
and E fst [ (zs)¥ (Y, D(G(t,z:)))(z;)dT are understood as set-valued Aumann in-
tegrals of Xp-measurable set-valued multifunctions 1,1/ (x,)®(¢, F o z)(z) and
15,0l (zs) ¥ (¥, D(Goz))(2), respectively, with respect to the product measure dt x P
on the o-algebra Xy, i.e., as set-valued integrals of the form

/ [1(2)®(p. F(r.2)) ()] dv

T
= {/ / 1. (0)(zg)a,dtdP : a € Sp [D(p, F oz)(z)]}
e Jo

and

E/ [[(z)W (¥, D(G(.2:)))(zr)] dT

T
= {/Q/O 115, (0)(z5)BrdrdP : B € Sy [ (¥, D(G Oz))(z)]}

forevery0 <s <t <T.

Remark 4.2. If F, G, 1, ¢, and v are as above with convex-valued multifunctions F
and D(G), then for every r-dimensional F-nonanticipative process z = (2 )o<r<7>
the above-defined integrals are compact, convex subsets of R".

Proof. Let us observe that for F' and G with the properties mentioned above, their
subtrajectory integrals Syp[® (¢, F o z)(z)] and Sp[¥ (¥, D(G o z))(z)] are convex
and sequentially weakly compact subsets of ([0, T]x 2, g, R"), and ([0, 7] x
Q, X, R™"), respectively. Hence it follows that the above integrals are compact,
convex subsets of R". O

Remark 4.3. If F, G, I, ¢, and  are as above, then for every r-dimensional
F-nonanticipative process z = (zt)o<:<7, one has

o(p. E / 1) (g, F(t.2)) (2 )dr) = E / o (p. 1(2)®(g. F(t.2)(z0))d

and

o(p.E / 1)U (¥, D(G(r.2)))(z))dr) = E / 0 (p. 1) V(Y. D(G(T.20)))(z))de

forevery0) <s <t < T and p € R.
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Proof. For the first above-defined integral, we have
t
0. E [ 1000, Fr.20)Ea0
s

= sup%<p,/9/t l(zs)a,drdP> co € Sy [P(p, Foz)(2)];.

Hence, immediately from Corollary 3.2 of Chap. 2 applied to a X p-measurable
multifunction, it follows that

sup %<p,/;2/ l(zs)otfdrdP> ta € Sp[®(p, F 02)(2)]}

t t
= [ [ st v € 10006 Frzedra = [ 0010, Fir.z) @
for every p € R. Hence the first required equality follows. In a similar way, we can
verify that the second equality is also satisfied. O

Lemma 4.2. Assume that A : [0,T] x R" — R is measurable and uniformly
integrably bounded such that A(t,-) is continuous for fixed t € [0,T]. For every
r-dimensional continuous processes x = (x,)0<,<T and X = (X/)o<i<T deﬁned
on probablllty spaces (2, F, P) and (Q, F, P), respectively, such that Px~' =
Px7Y, one has

T T
E/ At x,)dt = E/ A, %,)de,
0 0

where E and E denote the mean value operators with respect to the probability
measures P and P, respectively.

Proof. Let I : C, — R be defined by /(z) = fOT A(t, z(t))dt for z € C,. It is clear
that / is continuous on C,. Hence, by the properties of the processes x and X, it
follows E[I(x)] = E[I(%)]. Then E [ A(t,x,)dt = E [, A(z, %/)dr. o

Lemma 4.3. Assume that F : [0, T] xR" — CI(R") and G : [0,T] x R" —
CI(R™™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T)]. Let F and D(G) be convex-
valued, and let x = (X;)o<t<r and X = (X;)o<t<r be r-dimensional continuous -
and E‘-nonanticipative processes on filtered probability spaces (2, F,F, P) and
(fz,]},ﬁ‘, 13), respectively, such that Px7!' = Px7\. For everyl € Cy, ¢ € C,,
Y € Crxr,and 0 <s <t < T, one has

E / () B0, F(r, x0))(x)dr = B / 15D, F(r. ) (o )dr
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and
E/ [(x)¥ (¥, D(G(z, x1))) (xr)dT = E/ [(X)¥ (Y, D(G (7, %7))) (X7 )dr.
Proof. LetA,(t,u) = o(p,l(u)®(¢, F(t,u)(u)) fort €[0,T], p € R,andu € R".

By the definition of ® (¢, F (¢, u)(u)), the properties of F', Remark 2.3 of Chap. 2,
and Remark 2.4 of Chap. 2, it follows that the function A, satisfies the assumptions

of Lemma 4.2 forevery p € R. Then E [} A,(t,x,)dt = E [! A,(t, %)dt for every
p € R. By virtue of Remark 4.3, for every p € IR, one has

o (p, E /t [(x5)®(p, F(z, xT))(xt)dr) =FE /t Ap(T, xp)dt

and
o (p,E / 1(Z)®(¢, F(z, )?T))(fcr)dt) =F / A, (T, %,)dr.

Then
o (p, e ). F(r,xa)(xadr) =0 (,,, Ef "), F(r,ir))(ir)dr)

for every p € R, which by virtue of Remark 4.2, implies the first equality. In a

similar way, we can verify that the second equality is satisfied. O
Let F : [0,T] xR" — CIR") and G : [0,T] x R" — CIR"™™) be
measurable and uniformly square integrably bounded and let x = (x;):¢[0,r] be

an r-dimensional IF-nonanticipative continuous stochastic process on a filtered
probability space Pr. Similarly as above, by Sp(F o x) and Sp(G o x), we denote
the sets of all IF-nonanticipative selectors of the set-valued stochastic processes
(F(t,x¢))o<t<r and (G(t, x;))o<:<T, respectively. It is clear that for F and G as
given above, one has Sp(F o x) C L*([0,7] x , Zp,R") and Sp(G o x) C
L2([0,T] x Q, Zp, R™™).

For every (f, g) € Sp(F o x) X Sp(G o x), let us define the semielliptic partial
differential operator ]L“}g by setting

n n n
Te@. V) = Z%(xt)ftl + % Z Z vij (xi)o
i=1 i=1j=1
fort € [0,T], ¢ = (¢i)ixr € Cr, ¥ = (Yij)rxr € Crxr, Where o = g - g*.
For every h € Cbz(IPJ) and ¢t € [0,T], by (]L’}gh), we shall denote the random
variable ]L’}g((p(h), ¥ (h));, where ¢(h) and ¥ (h) are as above. We shall show that
if the assumptions of Lemma 4.3 are satisfied, then for every f € Sp(F o x) and
g € Sp(G o x), there exist f € Sz(coF o X) and g € Si(G o X) such that

E [ 100850 ).ac = E [ 1G] (0.9t
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forevery0 <s <t <T,l € Ci, ¢ € Cr,and ¥ € C,x,. To get such a result, we
begin with the following lemmas.

Lemma 4.4. Assume that F : [0,T] x R — CI(R") and G : [0,T] x RY —
CI(R™™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0,T]. Let G be diagonally
convex and x = (Xt)o<t<T a continuous r-dimensional IF- adapted process on Py.
Assume that X = (x,;)0<,<7- is a continuous r-dimensional If- -adapted process on
PfF = (Q.F.F, P)ywithF = (Fo<i<r such that Px~" = PX~'. Then for every
f € Sp(coFox), g € Sp(Gox),l €Ci, ¢ €C,andyy € Crxy, there are IF-
nonanticipative processes (6; (I, ¢))o<i<r and (,B,f(l ¥))o<t<T ON ’P such that
(i)
a(l,p) € ®(p,co F(t, %)) (%), ae. on [0,T]x S,
(ii) 5
ﬁt (ls w) € \I}(W» D(G(Zv jzf)))()?t) a.c. on [07 T] x €
and
(iii)
t ~ t . B 1 -
E [ 100850 9)e = E [ 1G9 + 3509k
forevery0 <s <t <T.

Proof. Let f € Sp(coF ox),g € Sp(Gox),l €y, €Cr,and ¥ € C,x, be
given and let (o )o<<7 and (B;)o<<r be defined by

o = i(pi(x,)ﬂ and B; = Xr:il/fij (x)a for t €[0,T].

i=1 i=1j=1

We have a; € ®(¢,co F(t,x;))(x;) and B, € V(y, D(G(t, x;)))(x;) a.e.on [0, T]x
2, which by virtue of Lemma 4.3, implies that

E / ) < B / 1) (. co F(r. #))(E))dr

s

and
E/t I(x;)B-dt € E /t [(X)¥ (¥, D(G(7, X)) (X))dT

forevery 0 < s <t < T.Let L > 0 be such that |/(x)| < L for every x € R’".
By the definition of ® and the properties of ¢ and F, it follows that there exists
m € L2([0, T]Fr,R™) such that |®(p,co F(t,x))(x)| < m(t) for every x € R
andae. 0 <t <T.

Let ¢ > 0 and select § > 0 such that supy., .7 f;Hm(t)dr < &/4L. Put
19 =0and 1y = k§ fork = 1,..., N, where N is such that (N —1)§ < T < N§.
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From the above inclusions and the definition of the set-valued integral E f; 1(X5)
(¢, co F(t, X)) (X))dr, it follows that for every k = 1,..., N, there exists
(@ )o<i<r € Sp(@(p,co F (-, %)(X)) such thatE[f;"_1 l(x;)a.dt] = E[f;"_1 1(X,)
akdr]. Define @ = L&) + L@ + ... + Ly, @, We get @ €
Sz (®P(¢, co F(-,X))(X)), because Sg(P(¢,co F(-,X))(X)) is decomposable. Let
X% =1pq1%0 + Lig,o)%r, + oo+ Ly 11Xy, and X% = Lo )Xo + Ly 0 %r, +
..+ L(zy_, 71 %y_,- By the continuity of the mapping / and processes x and X,
we have sup,, .y E|I(x;) — I1(x?)| — 0 and sup,, .y E|I[(%) — [(¥%)] — O as
¢ — 0. Thus for every > 0, there exists gy, >0 such that for every & < &y, one
has supy; <7 E|l(x;) — [(x{)| = 1n/2M and supy, <7 E[l(X;) — [(X))| < 1n/2M.,
where M = fOT m(t)dt. We shall show that E f; I(x5)a.dt = E fst 1(X,)é.dr for
0<s<t<T.

For every fixed 0 < s <t < T, there are positive integers | < r <[ < N such
that s € (t,—1,t-] and ¢ € (17, y—1] or s, ¢ € (t,—1, /] or s,¢ € (1;—1, 77]. In the last
two cases, we have

1 1 1
‘E/ I(xy)orrdT — E/ [(F)as| < 2L/ mpdt < g/2 < &.
s s s

Ifs € (t,—1, 7] and t € (1;—1, 77], we obtain

t t t t
‘E/ Z(xs)afdr—b:/ [(Fy)acdr| < ‘E/ l(xs)ardt—E/ 1(x5)adr

t t t t
+’E / [(xSa.dt — E / 1(F)acde| + ’E / [Facdt — E / 1(Ry)atdr

<M sup Ell(x)—I(Hl+M sup E|I(F)—1(F)

0<r<T 0=<t=<T

t t t t
+ ‘E/ 1(x§)afdr—1§/ IFacde| < n+ ‘E/ l(xf)afdr—EN/ 1Easde
s s s s

But

t t
’E / 1(5)ardr — B / 1(5)at de

N N

Tr
< ‘E/ 1(x$)oerdt

K
-1

p>

Tr
_E / 1(55)atdr
s i=r+l1

T - Ti .
E/ 1(xg;_, )ordT — E/ I(%r,_))atdT
Ti—1 Ti—1

t t
+ ’E/ I(x7)ardr — E/ I(Zo)alde
T T—1

1—1

7 t
< ZL/ m(t)dt + ZL/ m(t)dt <e.
s T—1

Therefore, for every fixed s € (t,—1, ], t € (-1, 7], and ¢ € (0,¢&,), one gets
|E fst I(xs)a.dr — E fst [(X;)atdz| < n + e. By the sequential weak compactness
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of Si(P(p,co F(-, X)) (X)) C L*([0, T] x Q, X, R"), for every sequence (£,),2,
of positive numbers with ¢, — 0, we can select a subsequence, say (sk)]fo:l, such
that (@ )2, converges weakly to an & € Si(®(¢,co F(-, X)))(X)) as k — oo.
Therefore, |E [ I(x,)a-dt — E [! (%)@ dt| <  for every n > 0, which implies
thatEft 1(xg)adt = Eff I(%)@.dr for0 < s <t < T.Taking&(/.¢) = @, we
obtain condition (i). In a similar way, we can establish the existence of ,3(1 v) =
B € Se(¥ (¥, D(G(-, %)))(%) such that E [ I(x,)B.dt = E [! 1(%,)B.dr for every
0 <s <t < T.Thus (ii) is satisfied. By the definition of IL* g(qo ¥) and conditions
(i) and (ii), it follows that (iii) is also satisfied. ]

Lemma 4.5. Suppose the assumptions of Lemma 4.4 are satisfied and let 1, =
inf{t € [0,T] : xt ¢ Ki} AT and T, = inf{t € [0,T] : ¥ ¢ Ki} AT, where

={zeR!: |z <klfork = 1,2,.... For every f € Sgp(coF o x),
g € SF((G ox), [l € (C, (p e C, ¥ € C,X,, and k = 1,2,..., there are -
nonanticipative processes (& (I, ¢)o<i<r and (,3, (I, ¥)o<i<r such that for every
k > 1, one has

(i) @ (1, ¢) € ®(p,co F(t,%rz))(Finz)), ae on [0,T]xQ;
(i) BE(1, ) € W(y, D(G(t, Xz D (FXinz))  ae. on [0.T] xQ;

(i) E ['5 1(xonq Iy (0, Y)dT = E [115 16y p )@ (1, @)+ LB (1 9)]de for
everyO <s <~t < T
(iv) ak(l,p) and ,Bt (I, %) are continuous with respect to (I, ¢) and (I, ) on Ck x

Ck and Ck x C¥, | respectively, a.s. for fixed t € [0, T].
Proof. Let us observe that C¥,C¥ and CX, are separable metric spaces for k =
1,2,.... Denote countable dense subsets each by Dk, Dk and D’,‘Xr, respectively,
and assume that DX = {I1,15,...}, DX = {¢1,¢,...} and DX, = {y1,¥,...}.
Slmllarly as in Lemma 4.4, we can show that for every fixed k = 1,2,... and
i =1,2,..., there are IF- -nonanticipative processes (&' )o<;<7 and (,Bt)ostsT such
that

i) 55‘ € O(¢gi,co F(1, Xp7,)) (Xinz,)s ae. on [0,T]xQ;
(i) B € W(y;, D(G(t, Xiag ) (Xiaz,) ae. on [0,7]xQ;
(iii") Eff,i\;k li (X5 nq )y (@i Yi)rdT = Ef:,f;k li(Xopz) @t + 2,3 ldz;

fork > 1 andevery 0 < s < t < T. Define on D} x D and Df x Dk,
multifunctions ®! (/, ¢) and Wi (I, yr) by setting

i(lg) = (@, co F(t, Xip3)) (Xiaz) for (Le) # (i, i),

{al}y for (I,¢) = (li,pi).
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and

W (Y, D(G(1. X a7 ) (Kenz,) for (L) # (i, ¥i),

vy =1
1B} for (1,¢) = (i, ¢i),
fori = 1,2,.... Itis easy to see that ® (/, ¢) and W! (I, v) are closed and convex-
valued. Furthermore, similarly as in Remark 2.1 of Chap. 2, it can be verified that
the set-valued mappings @ : Ckak 5(,¢) > ®i(l,9) C Rand ¥ : CkafX,
(I,y) — Vi(l,¢) C Rare Ls.c., P-a.s. for every fixed ¢ € [0, T]. Tt is clear that
stochastic processes (®! (1, ))o<<r and (V! (I, ¥))o< <7 are IF- -nonanticipative for
every fixed [, ¢ and . Therefore, by Theorem 2.7 of Chap. 2, there are mappings
. [0, T]fokaka 5 (1,0,1,9) — vi(l,9)(@) € Rand X' : [0,T] x

Q X Ck xCk, > (t,@,1,¢) — A, ¥)(@) € R, Y g-measurable on [O T] x Q
and continuous with respect to (/, (p) and (1, v), respectlvely, such that y/ (I, ¢) €
®i(l,9) and Ai(l,y) € Wi(l,¥) ae. on [0,T] x Q for (I,¢) € Ck x Ck and
(v e Ck x Ck_., respectively.

Let (U,-k)?il and (Vik)?il be countable open coverings for Ck xCk and Ck xCk..,

respectively, such that (/;,¢;) € U; and (l,,lp,) E Vk forz = 1,2,.... Select
continuous locally finite partitions of unity (p il and (‘L 24 subordlnate to

(UK2 | and (V})% |, respectively, and define &} (l ¢) and ,3, (Z @) by setting

(1, 9) (@) = pr(l,m Y (.@.1,9)

i=1

and

BEUv)@) =D qf(y) - A (1,8, 9)

i=1

forl e C]f, (NS C Vv eCk  and (t,®) € [0, T] x Q. It is clear that

rXr
ar(l,p) € ®(p,co F(t,%inz))(Finz,) on  [0,T]x

and
BEU W) € U(Y, D(G(t, Finz))(Finz) on  [0,T]xQ

fort € [0, T'], because ( pk)oo1 and (q, ){2, are locally finite, and the multifunctions
®(p,co F(t,2))(z) and ¥(y, D(G(¢, z)))(z) are convex-valued. Immediately from
the above definitions, it follows that &* (-, -)(®) and ,Bt (¢, -)(w) are continuous on
Ck x C¥ and CF x C,kx, , respectively, for a.e. fixed @ €  and for fixed t € [0, T].
Thus (iv) has been proved. ~
Finally, by the properties of the above-defined functions &*(, ¢) and B (I, ¥),

one gets
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tATk [N
o) = E [ 1o igde=E [ G0 e)

SATE SAT

1~ o0 o0 tATE
FB =303 pill o) 0. 9) [E [ 1B e

i=1j=1 SAT

AT,
- E / B l(-sét/\?k)[y’ (Tv ) lv 90) + %Aj (ts ‘y ls W)]df:|
SATE
fork>1,0<s<t<T,l ¢ Ck NS Ck and ¢ € Crxr Hence, by the properties
of " and A’ and (iii)’ it follows that for every k > 1, one has H¥, (I;, ¢;, ;) = 0
foreveryi = 1,2,...and 0 < s < ¢ < T. But %, is continuous on C¥ x C* x Ck,,
and is equal to zero on Dk X Dk X Dk , forevery k > 1. Hence by the densuy of the
set DX x Dk x Dfxr in Ck X Ck X Cfxr, we obtain HX, (I, ¢, ¥) = 0 forevery k > 1,

| e C]f, Q€ C and ¥ € Crxr andevery 0 < s <t < T.Thus (iii) is satisfied. O

Lemma 4.6. Assume that the assumptions and notation of Lemma 4.4 are satisfied.
For every f € Sp(coF ox), g € Sp(G ox), andk = 1,2,..., there are f* €
Si(co F o (X 0Ty)) and ¢ € S3(G o (X oTy)) such that fork = 1,2,..., we have

AT,

IATE _
E/ l(-xs/\tk)mjlg(ﬁl), W)Tdf = E/

SAT SAT

[Fonz) L (9. ¥)edt - (A1)

forevery0 <s <t < T,ZEC{‘,(,OEC and ¥ € CX, where (X o T}); —xtmk

rXr’

Proof. Let (@¥(I,¢))o<i<r and (B¥(I.¥))o<i<r be, for every k > 1, as in
Lemma 4.5, and let us define multifunctions X* and Q* by setting

Kf (@) =co F(t.%,3)

N{ueR : sup dist@ (/,9)(@), D(¢, u)(F1r7 (@) = 0}
(Lg)ectxck

and

Qf (@) =D(G(t.%,3,))

N{weR™ :  supdist(Bf (1. )(@). ¥ (. v) (%15 (@)))=0}
(L.y)eck xck.,

fort € [0,T] and @ € Q. It is clear that Kk@) € CI(R") and Q% (@) € CI(R"™*")
for0<t<T and @ € 2. By the separability of the metric spaces C x CF and

Ck x C,]‘X, , we have
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Ki@) =co Fe.X, ) N{ueR : sup  dist@ (. 9)(@). D(¢. ) (Frn7 (@) = 0}
(l.p)eDFxDF

and

0/(@) = D(G,X, ) N{weR™ :  supdist(Bf (1, )(@), ¥, v)(Fin (@))) = 0}

(.¥)EDf xDf,

for (t,&) € [0,T] x Q. By continuity of the functions dist(@* (-, ) (@), @(-, u),
(X177, (@))), and dist(BE (-, ) (@), U(-, v) (%, 7, (@))), for fixed (1, &) € [0, T] x 2,
u € R’, and v € R, it follows that the mappings

[0.T]xQ >3 (1.&) — dist(@F (1, ¢) (@), (g, u)(%a7, (@) € R

and
[0, 7] x Q> (t,@) — dist(BX (1, ¥)(@), ¥(¥, v)(F1n7, (@))) € R
are Yj-measurable, i.e., ]ﬁ‘-nonanticipative for fixed [ € Dk, (NS D’,‘ , ¥ € Dlr‘Xr,

u € R”, and v € R™. Then, by the countability of D¥ x D¥ and Df x D, , the
functions

0.T]xQ> (.d)— sup dist(@ (I, 9)(@), P(p, u)(Fiaz (@) € R
(l.p)eDFxDk

and

0.T]xQ > (1.6) — sup  dist(BF (1, ) (@), W(Y. v)(Frpz, (@) € R
(1.y)eD¥xDk,.,

are also Zp-measurable for fixed u € R? and v € R"". Hence it follows that
processes (ICf)OS,ST and (Qf)oszsr are I~F-n0nanticipative. Therefore, by virtue
of the Kuratowski and Ryll —Nardzewski measurable selection theorem, for every
k > 1, there are E‘-nonanticipative selectors fk = (f,k)05z5T and 6% = (Cﬁk)osth
of (Kf)ostsr and (Qf)ostsTa respectively. By the definitions of ICf (w) and Qi‘ (),
it follows that f* € Si(co F o (X 0T)) and 6% € SE(D(G o (X 0Ty))) are such
that
sup  dist(& (1, )(@), D(@, [(@))(Firz, (@) =0
(lp)eCk xck

and

sup  dist(BF (L, ¥) (@), ¥ (¥, 65 (D)) (Finz (@) = 0

(y)eckxcly,

a.e.on [0, T']x Q. By virtue of Lemma 4.1, for every k > 1, there exists gk € S5(Go
(X 0T¢)) such that 5 = g - (g¥)*. Hence, by the properties of (o?f‘ (I, 9))o<i<r and
(,BfC (I, ¥))o<t<r and the definition of ]L")‘pg (¢, ¥);, it follows that (4.1) is satisfied.

‘ |



4 Selection Properties of Set-Valued Integrals Depending on Random Parameters 143

Theorem 4.1. Let F : [0,T] x R" — CI(R") and G : [0,T] x R" — CI(R"™™)
be measurable and uniformly square integrably bounded, and let G be diagonally
convex. Assume that F(t,-) and G(t,-) are continuous for fixed t € [0,T]
and let (x;)o<i<r and X = (X;)o<i<T be continuous r-dimensional F- and -
adapted processes on filtered probability spaces (2, F,F, P) and (Q,F,F,P),
respectively, such that Px7!' = Px7!. For every f € Sp(coF ox) and g €
Sw(G o x), there are f € Sg(co F oX) and'g € S(G oX) such that

E [ 1L e = £ [ 16U enar @)

forevery0<s <t <T,l€Cy,p€lC,and ¥ € Crx,.

Proof. Let (tx)g2, and (7x);2, be asin Lemma4.5. Wehave 0 < 11 < 13,... < T,
0 <7 <T... <T,limgooty = T, and limg_,o T = T with (P.1) and
(P.1), respectively. Denote by ;, ¢x and v the restrictions of / € C;, ¢ € C,, and
Y € Crxr totheset K = {x € R" : |x|] <k} fork = 1,2,..., respectively. For
every k > 1, we have lk(-strk) = l(-strk), lk(isA?k) = l(isA?k)y

ATk AT
/S L)}g((pks wk)tdt = / )}g((pv W)Tdts

AT SATk

and

AT AT
[ ]L:xfkgk((pk’l//k)fdf :[ ]L:xfkgk((p’l//)l'dt

Y/\‘I?k Y/\‘I?k

with (P.1) and (P.1), respectively, where Sg(co F o (XoTy)) and Si(G o (X 0Ty))
are such that the conditions of Lemma 4.6 are satisfied fork = 1,2, .... Put

f=NLwfo +10z f +1Gn 2+ and § = 11380+ 1078 +1G 08+

Let us observe that for every k > 1 and ¢ € (Ty—1, 7], one has 7, = 7f €

co F(t,X,,) and g, = e GG, i<3)- Then f € Sp(coF oX) and g €
S#(G oX). Furthermore, for every k > 1, one has

tATE L [LIAT .
E [l Lo e = £ [ 1B (g p)ie
SAT SATE

for0 <s<t<T,l €Cy,¢e€C,,and { € C,x,. Passing to the limit k — oo, we
obtain

E [ 16080 e = £ [ 1G] @0

forO<s<t<T,l €C,pe€l,and ¥ € Crx,. O
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Theorem 4.2. Assume that the assumptions of Theorem 4.1 are satisfied. For every
f € Sp(co Fox)and g € Sp(Gox), there are f € Sg(co FoX) andg € Si(GoX)
such that

t t
E / 1(x) (L5, h)odt = E / l(fcs)(]L’}gh)rdt (4.3)

forevery0 <s <t <T,leC,andh e Cbz(]R").

Proof. The proof follows immediately from Theorem 4.1. Indeed, for every f €
Sk(co Fox)andg € (Gox),thereare f € Si(co F oX) and g € Si(G oX) such
that (4.1) is satisfied forevery 0 < s <t < T,l € C;, ¢ € C,, and ¥ € C,x,. In
particular, (4.1) is also satisfied for0 < s <t < T, ¢(h) € C,, and ¥ (h) € C,x, for
everyl € Ciand h € Cbz(]R"). But for every & € Cbz(]R"), we have

o (@(h), ¥ (h)), = Ly, h), and L’}gﬁp(h),w(h)), — (]Lffgh)f

fort € [0, T]. Thus (4.2) is satisfied for every h € Cbz(]R"). O

5 Notes and Remarks

The results dealing with stochastic integrals are based on Kisielewicz [55] and [62].
In particular, the first definitions and properties of set-valued stochastic integrals,
called in this book set-valued functional stochastic integrals, were introduced by
Hiai [38] and Kisielewicz [51]. Later, they were extended in [55] to a more
general case by considering set-valued stochastic functional integrals with respect
to Poisson measures. Some further generalizations of the results contained in [51]
and [55] are given by Michta [76,77] and Motyl [81, 84]. The first results dealing
with set-valued stochastic integrals, defined as certain set-valued random variables,
are due to Bocgan [22]. Unfortunately, such set-valued stochastic integrals are not
applicable to stochastic inclusions. The set-valued stochastic integrals introduced
by Hiai [38] and Kisielewicz [51, 55] are understood as certain subsets of square
integrable random variables. This is a natural approach, because the original 1t6
integral is defined as a square integrable random variable. But the multivalued
analytic methods require that one define set-valued stochastic integrals to be certain
set-valued random variables. Therefore, the question of the existence of set-valued
random variables having subtrajectory integrals equal to given set-valued stochastic
integrals has been considered by many authors. Unfortunately, there is no simple
solution of this problem, because the set-valued stochastic functional integrals
defined in [38] and [51] are not decomposable subsets of the space L>(Q2, F, R").
The first results dealing with this problem were given by Kim and Kim [48]. The
paper [48] is written by two authors: B.K. Kim and J.H. Kim. Unfortunately, the
definition given in [48] is not correct, because the authors assumed that the set-
valued integrals defined in [51] are decomposable subsets of I.2(R2, F, R"). Later,
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Jung and Kim [46] corrected their definition of set-valued stochastic integrals by
considering in the above procedure a set-valued random variable defined by the
closed decomposable hull of the set-valued stochastic integrals defined in [51].
Unfortunately, the proofs of the properties such set-valued integrals presented in
[46] are not quite correct. Some remarks on the proofs presented in [46] are given
in the author’s paper [62], where proofs of some of the properties of set-valued
integrals defined in [46] are also given. Probably, a correct theory of set-valued
stochastic integrals needs a new idea. Perhaps it has to begin with the definition
of set-valued stochastic integrals for some simple set-valued stochastic processes
and then extend the results obtained to a more general case. The definition of
set-valued stochastic integrals presented in Sect. 2 is taken from Jung and Kim
in [46]. Extensions of the above definition of set-valued stochastic integrals to
the case of multiprocesses with values in Banach spaces are given in Zhang and
in Li et al. [98]. The main problem with applications of such integrals in the
theory of stochastic differential inclusions is a lack of conditions for their square
integrable boundedness. Results of this chapter come from the author’s papers
[55,56] and [59]. In particular, the selection theorems contained in Sect. 1 and
Sect. 3 were proved in [55] and [59], respectively. The results contained in Sect. 4
come from [56].



Chapter 4
Stochastic Differential Inclusions

This chapter is devoted to the theory of stochastic differential inclusions. The main
results deal with stochastic functional inclusions defined by set-valued functional
stochastic integrals. Subsequent sections discuss properties of stochastic and back-
ward stochastic differential inclusions.

1 Stochastic Functional Inclusions

Throughout this section, by Prp = (2, F, IF, P) we shall denote a complete filtered
probability space and assume that F : [0, T]xR¢ — CI(RY) and G : [0, T]xR¢ —
CI(R4*™) satisfy the following conditions ():

(i) F and G are measurable,
(i) F and G are uniformly square integrably bounded.

For set-valued mappings F and G as given above, by stochastic functional
inclusions SFI(F,G), SFI(F,G),and SFI(F, G) we mean relations of the form

X — X5 € Jt[Se(F o x)] + T5t[Sr(G o x)],

X; — X5 € clp{Jy [Sr(F o x)]} + J5 [Sr(G o x)]},

and
X — X5 € clp{Jy[Sw(F o x)] + T [Sw(G o x)]},

respectively, which have to be satisfied for every 0 < s < t < T by a system
(Pr, X, B) consisting of a complete filtered probability space Pr with a filtration
F = (F)o<<r satistying the usual conditions, an d-dimensional IF-adapted
continuous stochastic process X = (X;)o</<r, and an m-dimensional IF-Brownian
motion B = (B;)o</<r defined on Pr. Such systems (Pr, X, B) are said to
be weak solutions of SFI(F,G), SFI(F,G), and SFI(F,G), respectively. If

M. Kisielewicz, Stochastic Differential Inclusions and Applications, 147
Springer Optimization and Its Applications 80, DOI 10.1007/978-1-4614-6756-4_4,
© Springer Science+Business Media New York 2013
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W is a given probability measure on B(RY), then a system (Pp, X, B) is said to
be a weak solution of the initial value problems SFI(F,G, p), SFI (7, G, ),
or W(F , G, ), respectively, if it satisfies condition (1)—(1), respectively, and
PXO_1 = . The set of all weak solutions of SFI(F,G, ), SFI(F,G, ),
and SFI(F,G, ) (equivalence classes [(Pr, X, B)] consisting of all systems
(Pg, X', B,) satisfying (1)—(1), respectively and such that PX;! = P(X))™' = p
and PX~!' = P(X’)7") are denoted by X, (F,G), X,(F,G), and X, (F,G),,
respectively. By XS(F, G) we denote the set of all [(Pr, X, B)] € X,(F,G) witha
separable filtered probability space Pr.

Remark 1.1. We can also consider initial value problems for SFI(F,G), SFI
(F,G), and SFI(F, G) with an initial condition x; = x a.s. forafixed0 <s < T
and x € R?. The sets of all weak solutions for such initial value problems are
denoted by X; «(F, G), X;.» (7, G), and ?S,X (F, G), respectively. O

Remark 1.2. The following inclusions follow immediately from Lemma 1.6 of
Chap. 3: A, (F,G) C Xu(f, G) C ?M(F, G) C X, (co F,co G) for all measurable
set-valued functions F : [0, T] x RY — CI(R?) and G : [0, T] x RY — CI(R4*™)
and probability measure 1 on B(RRY). |

Remark 1.3. In what follows, we shall identify weak solutions (equivalence classes
[(Pr, X,B)])of SFI(F,G), SFI(F,G), and SFI(F,G), respectively, with pairs
(X, B) of stochastic processes X and B defined on Py or with a process X . (|

If apart from the set-valued mappings F and G, we are also given a
filtered probability space Pr and an m-dimensional I'-Brownian motion on Py,
then a continuous [F-adapted process X such that (Pr, X, B) satisfies (1)—(1), re-
spectively, is called a strong solution for SFI(F, G), SFI(f, G),and SFI(F,G),
respectively. For a given Fy-measurable random variable £ : Q — R, the sets of
all strong solutions of the above stochastic functional inclusions corresponding
to a filtered probability space Pr and an m-dimensional IF-Brownian motion B
satisfying an initial condition Xo = £ a.s. will be denoted by S¢(F, G, B, Pr),
St (F,G, B, Pr), and gg(F , G, B, Pr), respectively. Inmediately from Lemma 1.6
of Chap.3, it follows that S¢(F,G,B,Pr) C Sg(f, G,B,Pr) C SS(F, G,
B,Pr) C Si(coF,c0G,B,Pr) C SEF,R?), where S(F,R?) denotes the
Banach space of all d-dimensional IF-semimartingales (X;)o<;<r on Pr such that
E[supy<, <7 | X; ] < oo. If Py is separable, then by virtue of Lemma 1.7 of Chap. 3,
one has S¢(F, G, B, Pr) = S¢(co F, G, B, Pr).

In what follows, norms of R", L2(Q2, F,R’), and IL*([0, T] x Q, =, R") with
r =d and r = d xm will be denoted by | - |. It will be clear from the context which
of the above normed space is considered.

Theorem 1.1. Let B = (B;)o<i<r be an m-dimensional I-Brownian motion on
Pr, and £ : Q@ — RY an Fy-measurable random variable. If F and G satisfy
conditions (H) and are such that F(t,-) and G(t,-) are Lipschitz continuous with
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a Lipschitz function k € 12([0, T],R") such that K(NT + 1) < 1, where K =
(s k2(£)dt)'/2, then S¢(F, G, B, Pr) # 0.

Proof Let X = 12([0,T] x Q,Zp,RY) x L2([0,T] x €, g, R¥™) and put
X/® =&+ fo fedt + [5 g.dB; as.for0 <t < T and (f,g) € X.Itis clear
that X/¢ = (X/*)o<i<r € S(F,RY). Define on X a set-valued mapping Q by
setting Q(f. g) = Sp(F o X/%) x Sp(G o X/¢) for every (f.g) € X. Itis clear
that for every (f, g) € X, we have Q(f, g) € CI(X).

Let A(A x C, B x D) = max{H(A, B), H(C, D)}, for A, B € CI(L2([0, T] x
Q.2p,RY and C,D € CIILA([0,T] x Q, Zp, R¥*™), where for simplicity, H
denotes the Hausdorff metric on CI(IL2([0, T] x €, X, R?) and CI(IL?([0, T] x
Q,Zp, RY¥™). Tt is clear that A is a metric on CI(X). By virtue of Lemma 3.7
of Chap.2, we have H(Sp(F o X/2), Sp(F o X/'¢')) < K||X/¢ — X/'¢|, and
H(Sp(GoX /%), Sp(GoX/'¢")) < K| X/8—XT"¢||. forevery (f.g).(f'.g) € X,
where || - || denotes the norm of S(FF, R?) defined by ||x||> = E[supy<, <7 |x;|*] for
X = (X )o<i<T € S(]F,Rd). But

2)1/2

t t
Ix7¢ - x/'¢)|, /0 (fe — fHdr + /0 (8 — &,)dB;

2) 1/2
2) 1/2

) 12
< ﬁ(E sup /0 Ifz—fr/lzdt)

E sup
0<t<T

E sup
0<t<T

+ (E sup

0<t<T

IA

/ - fde

t
/0 (g — &,)dB;

0<t<T

, 12
+(E sup / 1ge — . Pde?
0<t<T JO

=VTIf = fl+lg-gI=NT+D(fg)—(f.&)l.

where || - || denotes the norm on X. Therefore,

MO(£.9).0(f.¢) < KWNT+DI(f.e)—(f.g)l

for every (f,g),(f’,g’) € X, which by th Covitz—Nadler fixed-point theorem,
implies the existence of (f,g) € X such that (f,g) € Q(f, g). Hence it follows
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that [ fodt + [/ g.dB, € Jyu[Sp(F o X/)] + J[Se(G o X/#)] for every
0 < s <t < T.This, by the definition of X /¢, implies that X /¢ € S¢(F, G, B, Pr).

|

Remark 1.4. By an appropriate changing the norm (see Remark 1.1 of Chap.7)
of the space X, the result of Theorem 1.1 can be obtained for every T > 0 and
k € 12([0, T], R*) without the constraint K(+/T + 1) < 1. O

Let us denote by A¢(F, G, B, Pr) the set of all fixed points of the set-valued
mapping Q defined in the proof of Theorem 1.1.

Theorem 1.2. [f the assumptions of Theorem 1.1 are satisfied, then

(i) Ae(F,G, B, Pr) is a closed subset of X;
(ii) Sg(co F,coG, B, Pr) # 0 if and only if A¢(co F,co G, B, Pr) # 0,
(iii) Sg(co F,coG, B, Pg) is a closed subset of S(IF, Rd);
(iv) for every x € gg(F, G,B,Pr) and & > 0, there exists x° € S(F,R?) such
that sup0<,<,(E|x—x‘€|2)1/2 < e and dist(x; —x;, J5; [Sp(F ox)]| 4+ J5: [Sp(G o
) <&
(v) X, (F,G) # @ for every probability measure i on (RY).

Proof. (i) The closedness of A¢(F,G, B, Pr) follows immediately from the
properties of the set-valued mappings X > (f.g) — Sp(F o X/%) C
L2([0,T] x Q,Zp,RY) and X > (f.g) — Sp(G o X/¢) c L2([0,T] x
Q, Zp, R4*™), Indeed, if {(f", g")}°, is a sequence of A¢(F,G, B, Pr)
converging to ( £, g), then dist( f, Sp(F o X/¢)) = 0, because

dist(f, Sp(F o X7$)) < | f — f"| + dist(f", Sy (F o X/"¢"))
+H(Sp(F o X/%), Sp(F o X/"¢")),

and by virtue of Lemma 3.7 of Chap. 2, for every n > 1 one has
H(Sp(F o X7¢), Sp(F o X'y < K(VT + DII(f.8) = (/" 8"

In a similar way, we also get dist(g, Sp(G o x/¢)) = 0. Hence, by the
closedness of Sp(F o x/¢) and Sp(G o x/%), it follows that (£, g) € O(f. g).
Then (f, g) € Ae(F, G, B, Pr).

(ii) The implication A¢(co F,coG, B, Pr) # @ = Si(coF,coG, B, Pr) # 0
follows immediately from the proof of Theorem 1.1. The converse implication
follows immediately from Theorem 1.5 of Chap. 3.

(iii) Let (u");2, be a sequence of Sg(co F,coG, B, Pr) converging to u €
S(IF,R?). By Theorem 1.5 of Chap. 3, there exists a sequence {( /", g")1o,
of Sp(co F o u") x Sp(coG o u”) such that u] = & + Jo:(f") + Jo:(g")
forn > 1 and ¢t € [0, T]. By Remark 3.1 of Chap. 2, there is a subsequence
L, g™ ), of {1(f", g") )2, weakly converging to ( f, g), which implies
that Jo, (™) + Jo:(g™) — Jo:(f) + Jo:(g) for every t € [0,T] in the
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weak topology of L2 (R, F, ]Rd) as k — oo. But for every t € [0,T], a
sequence (u;*)?° | also converges weakly in L?(Q2, F, R?) to u,. Therefore,
uy = &+Jo (f)+Joi (g) foreveryt € [0, T]. Thenu € Sg(co F,co G, B, Pr).

(iv) For every x € gg(F, G, B, Pr) and ¢ > 0, there exists x° € S¢(F, G, B, Pr)
such that supy<,<,(E|x — x*|>)"/? < ¢/[2 + L(JT + 1)], where L =
(fOT k2(t)dt)'/2. Similarly as in the proof of Lemma 3.7 of Chap.2 (see
Lemma 1.3 of Chap. 5), it follows that set-valued mappings S(F, RY) > x —
Ju[Sp(F o x)] € L2(Q,F.RY) and S(F,R?Y) 5 x — Ju[Sk(G o x)] C
LX(Q, F, Rd) are Lipschitz continuous with Lipschitz constants VTL and L,
respectively. Therefore,

dist(x; — xg, Jo: [Sp(F 0 x)] + T5:[Sw(G o x)])
< (o — x0) = (xf = x0)]
Fdist(xf — xf, Jy [Sg(F 0 x°)] + T [Sk(G 0 x°)])
+H(Ju[SE(F 0 x°)]. Ju[Se(F o x)])
+H (T [SE(G 0 x°)], T[Sk (G o x)))
<R+ LT +Dlx — x| <e.

(v) If p is a given probability measure on B(IR¢), then taking an JFo-measurable

random variable £ such that PE€~! = p, we obtain the existence of a
strong solution X for SFD(F, G) such that PX; ! = 1, which implies that
X, (F,G) # 0, because (Pr, X, B) € X, (F,G). |

We associate now with SFI(F, G) and its weak solution (P, x, B) a set-valued
partial differential operator ILy,; defined on the space Cbz(]Rd ) of all real-valued
continuous bounded functions 4 : R?Y — R having continuous bounded partial
derivatives /). and hgix/_ fori,j =1,2,....Assumethat F : [0, T]xR¢ — CI(R?)
and G : [0, T] x R? — CI(RY*™) are measurable and uniformly square integrably
bounded such that F(t,-) and G(¢,-) are continuous for fixed t € [0,T]. Let G
be diagonally convex and x = (x;)o<;<r a d-dimensional continuous process on a
filtered probability space Pr = (2, F, I, P). For every (f. g) € Sp(co F o x) x
Sr(G o x), we define a linear operator L%, - Cbz(]Rd) — L2([0,T] x Q,R%) by
setting

W), = YR G S+ 5 0 (o
i=1 i=1j=1
as.for0 <t <Tandh e Cbz(IRd),wheref, =(f...,f",ando = g-g* =
(0" )uxm. For a process x as given above and sets A C ]LZ([O, TIxQ,Zp, Rd) and
B C 12([0, T]1x Q, g, R¥™), by LY ; we denote a family {]L")i.g 2 (f,g) € AxB}.



152 4 Stochastic Differential Inclusions

We say that I, € I}, generates on C 2(]Rd ) a continuous local IF-martingale if
the process [((pfgh) lo<:t<7 defined by

(@) = h(x) = h(xo) _/0 (LY h).dr  with  (P.1) (1.1)

fort € [0,T] is for every h € C; 2(R%) a continuous local F-martingale on Pp.
The family of all I, € I}, generatlng on C; 2(R¢) a family of continuous local
IF -martingales is denoted by M’ g. In what follows for the set-valued mappings

[0, T] x R — CI(RY) and G [0, 7] x R — Cl(RdX’") as given above, the
famlhes 54 (co Fox)sp(Gox) 1A Mg o FOX)SF(GOX)(C ) will be denoted by IL7.; and
M, respectively.

Lemma 1.1. Assume that F : [0,T] x RY — CI(RY) and G : [0,T] x RY —
CI(RY*™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex,
and let x = (x;)o<i<r and X = (X;)o<i<r be d-dimensional continuous - and
F-adapted processes on Py = (2, F,F, P) and (R, F. I, P), respectively, such
that Px~' = PX~'. Then M%.; # @ if and only if M., # 0.

Proof. Let M} # 0. There exist f € Sy(co F o x) and g € Sy(G o x) such that
for every h € Cbz(le), the process [(¢;)/Jo<:<r defined by (1.1) is a continuous
local Ir-martingale on Pp. Therefore, there exists a sequence (rx )72, of IF-stopping
times on P such that rp,_; < ri fork = 1,2,... with ro = 0, limg_s00 't = +00
with (P.1) and such that for every k = 1,2,..., the process [(¢})iarJo<i<T is a
continuous square integrable IF-martingale on Pr. In particular, it follows that for
every 0 < s <t < T, one has E[(¢;)iar|Fs] = (@5)snrn With (P.1). Thus for
every0 <s <t < T and h € C}(R?), we have E{[(¢})inr,) — (¢} )sar ]| Fs} = 0
with (P.1). Let [ € C;. By the continuity of / € C; and the F;-measurability of x;,
the random variable /(x;) is also Fs-measurable. Therefore, E{(/(xs)[(¢})inr) —
(@)san ]l Fsy = 0 with (P.1) for every 0 < s < ¢t < T, which, in particular,
implies that E(I(x;)[(¢};)iar) — (©3)sar]) = 0. Thus in the limit k — oo, we
obtain E{(/(x,)[(¢}): — (¢7),]) = 0. Then

E ) [(h(x) — h(x)]) = E (z(xs) / (L5, ), dr)

forevery0 <s <t <T,l € Cj,and h € Cbz(le). By virtue of Theorem 4.2 of
Chap. 3, there exist f* € Sp(coF o X) and § € Sz(G o X) such that

/l(xs)(]L h).dtr = E /l(xs)(]L _h).dt

forevery0 <s <t <T,l €Cj,and h € Cbz(IR’). But
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E / tl(xs)(]L“}gh)rdt =E |:l(x5) / I(Ejpgh)rdr},

E / tl(xs)(mffgh)tdf =F [l(xs) / t(]L“j;gh)td‘L':| and

E{l(x)[h(x:) = h(x,)]} = EU(E)AE) = h(%)]}

forevery 0 < s <t < T, because ! € C; and h € CbZ(IRd) are continuous and
Px~' = Px~!. Therefore,

E UG - hE)] = E {lm) / <1L§~,§h)fdr}

for0 <s <t <T, 1 €Candh € CA(RY). Then E{I(%,)[(¢}): — (¢f)s]} = 0,
which, in particular, implies that E[/(%,) - E {[(qo,’f ) — (¢f)5]|f5}] =0for0<s <
t <T |l eCy,and h € Cbz(]Rd ). By the monotone class theorem, it follows that
the above equality is also true for every measurable bounded function / : RY — R.
Taking in particular / such that [(X;) = E{[(¢}): — (¢})s]|Fs} with (P.1), we get
E~|E{[(<p;f)t — ((p;f)s]|ﬁg}|2 =0for0<s<t<Tandh € Cbz(le). Therefore,
E{l(¢): — (¢})s]|1F} = 0 with (P.1) forevery 0 < s <t < T and h € CZ(RY).
Then ]Lf?'g € M%;(C2). In a similar way, we can verify that M}, # @ implies
that M7, # 0. O

Lemma 1.2. Assume that F : [0,T] x RY — CI(RY) and G : [0,T] x R —
CI(RY™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex
and let (X;)o<i<T and (x,k Jo<t<T be d-dimensional continuous stochastic processes
on (2, F, I, P) foreveryk = 1,2,... such that limg oo P({Supo<, <7 |X: —xk| >

e}) = 0 for every ¢ > OandM“‘FkG # 0 foreveryk =1,2,.... Then My, # 0.

Proof. Let f* € Sp(coF o x¥) and g& € Sp(G o x¥) be such that ]L“}ng € M}kc
for every k = 1,2,.... Let (x*")%, be a subsequence of (xk),‘:‘;1 such that
lim; - 00 SUPy<, <7 |X: — xf’l = 0 with (P.1). By the uniform square integrably
boundedness of F o x*, it follows that the sequence ( f k’)fil is weakly compact.
Then there exist a d -dimensional F-nonanticipative process f and a subsequence,
still denoted by (f*r)% |, of (f*r)%2, weakly converging to f. For every A € Xy

r=1-

andk = 1,2,...,one has
dist (/ f,(a))dth,/ coF(t,x,(a)))dth)
A A

=

/Af,(w)dzdP—/Af,"fdzdP'

+h ( / CoF (1, xk (w))ded P, / coF(t,x,(a)))dth)).
A A
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Then [, fi(w)dtdP € [, coF(t,x;(w))dtdP for every A € X, which implies
that f € S(co F o x). Hence, by the properties of the set-valued mapping ® (¢, -)
defined in Sect. 4 of Chap. 3, it follows that

tim £ (16 [ @i, pioedar) = £ (16 [ ot £

forevery0 <s <t <T,l € Cland h € C}?(Rd). In a similar way, we can verify
the existence of g € Sy (G o x) such that

tim £ (164 [ weon.ofear ) = £ (16 [ woptin. oo o)

forevery0 <s <t <T,l e C',and h € Cbz(le), where W (¥, -) is defined in
Sect. 4 of Chap. 3, o = gk . (¢")*, and 0 = g - g*. By the definitions of L%, and
mappings (¢, ) and W(1, -), it follows that '

tim £ (16 [ @5 mae) = B (1) [, )

forevery 0 < s <t < T,1 € C!, andhEC(Rd) But]ka GMFG for
k=1,2,.... Then

(z<x et ek ) = (10 [ mea)

forevery0 < s <t <T,k =1,2,...,1 € Ci,and h € Cbz(IRd). Passing to
the limit as r — oo, we obtain E{/(x,)[(¢;): — (¢;)s]} = 0for0 <s <t < T,
l €eCi,and h € C ,f(]Rd ). Similarly as in the proof of Lemma 1.1, it follows that
L%, € Mg Then My # 0. O

Remark 1.5. In a similar way, it can be verified that by the assumptions of
Lemma 1.2, without the continuity of F(¢,-) and G(t,-) for fixed t € [0, T] the,
nonemptiness of J\/l forevery k = 1,2,... implies that M7}, # 0. O
Lemma 1.3. Assume that F : [0,T] x R — CI(RY) and G : [0,T] x R¢ —

CI(RY>*™) are measurable and uniformly square integrably bounded such that
F(t,-) and G(t,-) are continuous for fixed t € [0, T]. Let G be diagonally convex

and let (x¥)o<,<1 be for every k = 1,2,..., ad-dimensional continuous F*-
adapted stochastic process on (QF, F*, Tk, P*) such that Mg o % 0 for every
k=1,2,....Let (xt Jo<i<r and X = (X;)o<i<1 befork =1,2,..., con-

tinuous d dtmenstonal IF- -adapted processes on (Q, F.I, P) such that P(xk) =
P(xX*) fork =1,2,...and lim;_ o P({SUPosrsT |% — %5| > &}) = 0 for every
e > 0. Then M’E:G # 0.
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Proof. By virtue of Lemma 1.1~, one has M’;‘ch # @ foreveryk = 1,2,..., which
by Lemma 1.2, implies that M%.; # 0. O

Lemma 1.4. Let F : [0, T] x RY — CI(RY) and G : [0, T] x R — CI(R¥*") be
measurable and uniformly square integrably bounded. If (x;, B;)o<:<1 is a weak
solution of SFI(co F,G) on a complete probability space Py = (2, F,IF, P)
with a filtration F = (F;)o<i<T, then there is a sequence (xk),‘:o=l of Ité processes
xk = (xF)o<i<r of the form x¥ = x, —}—fot fkdr —}—fot g*dB; as. fort € [0, T) with
f* € Sp(coFox)) and g¢ € Sp(Gox)) such that limg_eo P({supg, <7 |X;—xF| >
e}) = 0 foreverye > 0. o

Proof. By virtue of Theorem 1.4 of Chap.3, there are sequences (f k),fozl and
(gk),‘:"=l of Sg(co F o x) and Sy(G o x), respectively, such that sup,, . E|x; —
xF|2 — 0as k — oo, where x¥ = xo + fot fkdr + fot g¥dB, with (P.1) for
t € [0,T] and k = 1,2,.... By Theorem 3.4 of Chap.1, we can assume that
(x1)o<t<r and (X,k)05r5T are continuous for k > 1 because fora = 2r,and 8 = r
with r > 1, there is a positive number M such that E|x; — x,|* < M|t —s|'*# and
E|xkF —xF|* < M|t —s|'*P forevery0 <s <t < T andk = 1,2,.... For every
e>0,0<s<t<T,andk =1,2,..., wehave

1 1
Pl = x| > e}) < ZElv —x{|" Py — x| > e}) < — Elx —x,|”

and
1
P({Jxf = xf| > e}) < — Elxf —x{|"
Then for every m = 1,2, ..., there is a positive integer k,, such that

max [P({[xijn — xf/m| > 1/27}),

P({|x(+1y/2m — Xijom| > 1/2™9}),

mao
om(1+p)

fork >k, and0 <i <2"T — 1, where a > O is such thata < /a.
Hence in particular, it follows that

P({Ixi p1y/2n = ¥lyan] > 1/27D] < M

k - 1 Ama
max | P max Xi/om — X4 >1i/2 ,
[ ({051‘52an—1| 2 il >4/ })

[ m — k 7 ma
P(% 051'2122}")(7"_1 Ix(l+1)/2 xl/2m| > 1/2 })’

k k . 1Ama
F (%Osgzavxr—l [XG1y/2m = Xigom| > /2 }):|

< M T2 mB—aa)
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fork > k,, andm = 1,2,....Fore > 0 and § > 0 select v = v(g, §) such that

(1+2/(24—1))/2"* < gand Y o0 27mFa0) < % For every m > v and

k > k,, one gets
P (
m

(@

0<i<2m"T—1

% max  |x;/om —xf/zm| > 1/2’"”})

v

o0
< P m — Xj/om ma <
<ofe. P (U], mms b =5 > 17270 )< e
m=v
o0
k k ma
naf (UgosirsnzamXT—l |x(i+l)/2"l —x,-/2m| > 172 })S %
m=v
Let
o0
Lk _ Lk ma
"= U {OSiISnZE'l"XT—l g2 = Xijon| > 1/2 } ’
m=vy

o0
N — ma
U max i+ m i/om| >

' — { 0<i<2mT—1 |X(, /2 Xi/2 | >1/2 }

m=v

o0
3k _ k k
and QU —_ L_J %05[212%}7"—1 |X(l'+1)/2m - xi/2m| > 1/27"0}
for k > k,. Taking QF = Q¥ U Q2 U Q3*, one obtains P(QX) < § for every
k > k,. By the definition of Q¥, for every w & Q% k > k,,and 0 <i <2'T — 1,
we get

k 1 1 k k 1
|)Ci/2u —xi/zul < 27, |X(,‘+1)/2u —xi/2u| < 27 and |X(i+l)/2u _Xi/2v| < 27
Let D7 be the set of dyadic numbers of [0, T']. Forevery t € DrN[i/2", (i +1)/2"],
onehast =i/2" + > /_ /2" with ey € {0,1} for/ = 1,2,..., j. For every
k>k,,0¢d Q’V‘ and i fixed above, we get
= xf | < 10 = Xijov | 4 i = xfo] + |xf — xf]

j
k
= Z X245 a2t = Xijr 4352t oyt | X2 = X
r=1

J J
1
+ Z |xi/2v+21’=1 oy /2vH — xi/zv +Z[’=l o /2vH | < 2 Z 1/2(V+r)a + ﬁ

r=1 r=1



1 Stochastic Functional Inclusions 157

<2 G 1 2(v+r)u 1 _ 2 1
<2y 1/ Y T @ e T e

r=1

= (142/Q2°=1)2") <=

But Dr is dense in [0, 7], and (x;)o</<r and (xf)ostsT are continuous. Then for
every k > k, and @ ¢ QF, one obtains |x,(w) — x¥(w)| < & fort € [0, T], which
implies that

P({ max |x, —x/| > ¢}) < P(2}) <§
0<t<T

for every k > k,. Thus for every ¢ > 0 and § > 0, there is k, = k, () such that

g

fork > ky, ie., limg—oo P({SUpg<, <7 | X1 — x| > &}) = 0 forevery & > 0. |

sup |x,—x,k| >s}) <$§

0<t<T

Theorem 1.3. Let F : [0, 7] x RY — CI(R?) and G : [0, T] x R¢ — CI(R¥>*™)
be measurable and uniformly square integrably bounded and let G be diagonally
convex. For every probability measure 1 on B(R?), the problem SFI(co F, G, )
possesses at least one weak solution with an initial distribution @ if and only
if there exist a filtered probability space Pr = (2,F,F,P) with a filtration
F = (F)o<i<r and a d-dimensional continuous ¥-adaptive stochastic process
X = (x:)o<i<1 on Py such that Px;' = p and M # 0.

Proof. (=) Let (Pr,x, B) be a weak solution of SFI(coF,G, ) with x =
(x1)o<t<r. By virtue of Lemma 1.4, there exist sequences (fk),‘:‘;1 and (gk)}:":l
of Sp(co F o x)) and Sy(G o x), respectively, such that the sequence (xk)}:":l of
continuous FF-adapted processes x* = (X,k)osth defined by x,f‘ = xo + fot ftk +
[y g¥dB; as.for0 < ¢ < T is such that lim o P({Supy<,<7 |X: —x¥| > £}) =0
for every ¢ > 0. By Itd’s formula, for every i € Cbz(]Rd) and k = 1,2... one
obtains

t non t
ot =) - [ =% [ b ahiehas]
i=1j=1

with (P.1) for 1 € [0, T], where B, = (B!,...,B™)* and g* = [(g%)?4xm for
0 <t < T. By the definition of [qoﬁgkh],, the above equality can be written in
the form

n n ¢
LD 3 Y ARt

i=1j=1
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with (P.1) for ¢ € [0, T]. Hence, by the properties of Itd integrals, it follows that
[(¢j.kgkh),]05,§T is a continuous local IF-martingale on Py forevery k = 1,2,...

and h € Cbz(IRd). Therefore, ./\/l“}kG # @ fork = 1,2,..., which by Remark 1.5
implies that M}, # 0.

(&) Let Pr = (2, F,F, P) be a filtered probability space with a filtration
F = (F)o<i<r and (x;)o</<r a d-dimensional continuous [F-adapted process on
Pr such that x;! = p and M}, # 0. Then there exist f € Sp(coF o x) and
g € Sr(G o x) such that L%, € M. Let (1), be a sequence of stopping times
7 =inf{t € [0,T] : x; & K}, where Ky = {x e R? : |x| < k}fork =1,2,.
Select now, in particular, ; € Cbz(]Rd ) such that 4; (x) = x; for x € Ky, where
x = (x',...,x"). For such h; € C}(R?), we have

tATE ATk INTE

/0 (L hi)rdr = X f!dr and hence (¢} )ing, = X/p —Xo— i flde
as. fork > landi = 1,2,...,d and ¢ € [0,T]. But I}, € M5;(C;). Then
[(‘P/fi)tArz]Osz‘sT is foreveryi = 1,...,d and k = 1,2,... a continuous local
F-martingale on Pp. Let M = (gp)r fori = 1,....d and ¢ € [0, T]. Taking,
in particular, h;; € C2(R?) such that /;;(x) = x'x/ for x € K and i,j =
1,2,...,d, we obtain a family (M,ij)OS,ST fori,j = 1,...,d of continuous local
IF-martingales on Py such that

t
MY = xix] —xixd - [ W f7 4 xd fixg) + oV]de
0

as. fori,j = 1,2,...,nandt € [0,T], where 0 = g-g*. Let o = (0" )yxqa.
Similarly as in the proof of Theorem 9.1 of Chap. 1, it follows that

t
(M, M), =/ o' dr
0

as. fori,j = 1,2,...,d and ¢ € [0,T], which similarly as in the proof of
Theorem 9.1 of Chap 1 implies that there exist a standard extension 73 =

(Q F. I, P) of (2, F.F, P) and an m-dimensional IF-Brownian motion B =
(By)o<i<r on (Q, F. T, P) such that

m t
=3 [ ava
j=1"0

P-as. fori = 1,2....d and ¢ € [0,T], with 8,(®) = g/ (n(®)) for & € K,
where 7 : Q@ — Q is the (]:" , F)-measurable mapping described in the definition
of the extension of Pr = (2, F,F, P) because a standard extension 751@ of Pr is
also an extension of it. Let X;(®) = x;(w(®)) for & € Q. For every A € fr, we
get (PR;)(4) = PR7N(A)] = Pl(x o m) ' (A)] = (P oz H[(x"(A)] =
Plx; ' (A)] = (Pxo_l)(A) = w(A), which implies that PX;' = p. By the
definition of M/, it follows that
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. . t AL mn t . A .
=34 / fldr + Z/ 8Y(z, %,)dB/
0 . 0
Jj=1

P-as.fori = 1,2,...,d and ¢ € [0, T], where ﬁ(@) = fi(n(®)) for & € Q.
Then

t t
2, =xo+/ ftdr—i-/ 2.8,
0 0

P-as. for 0 < ¢t < T. Therefore, £, — £, € Jy [Si(co F o X)] + Tu[Si(G o X)]
forevery0 < s <t < T and P%;' = . Thus (75]@,)?, é) is a weak solution of
SFI(coF,G, ). |

Theorem 1.4. Let F : [0,T] x RY — CI(RY) and G : [0,T] x R? — CI(R4*™)
be measurable and uniformly square integrably bounded, and let G be diagonally
convex. For every probability measure |1 on B(R"), the problem SFI(co F, G, |1)
possesses a weak solution (Pr, x, B) with a separable filtered probability space Pr
if and only if there exist a separable filtered probability space Pr = (2, F,F,P)
with a filtration ' = (F)o<i<r and a d-dimensional continuous F-adaptive
stochastic process x = (X;)o<i<r on Py such that Pxy' = p and M’ # 0.

Proof. Similarly as of the proof of Theorem 1.3, we can verify that if (Pp, x, B) is
a weak solution of SFI(co F, G, ) with a separable filtered probability space Py,
then M}, # 0. Let Pr = (2, F,F, P) be a separable filtered probability space
with a filtration ' = (F;)o<i<7, and (X;)o<;<7 a d-dimensional continuous IF-
adapted process on Py such that M., # 9. Then there exist f € Sy (coF ox) and
g € Sr(G ox) such that L%, € M. Similarly as in the proof of Theorem 1.3, we

can define a local F-martingale (M, )o<;<7, on P such that (M', M /), = fot o dr
with (P.1) fori, j = 1,...,d andt € [0, T]. Therefore, by virtue of Theorem §.2 of
Chap. 1 and Remark 8.2 of Chap. 1, there exist a standard separable extension Py, =
(fz, f" ﬁ‘ 13) of (2, F,IF, P) and an I"-Brownian motion B = (étl, R étm)ofth
on (fz, f', IAF, 13) such that

m t R
M = Z/ g/dBJ,
j=170

P-as. for i =1,2,..., d and t € [0,T], where X and ¢ denote extensions of x

and g on (Q, F.I P ) defined in the usual way. It is clear that PX; ! = u. Hence it
follows that

t m t
& :xg+/0 f;‘dr+2/0 gUdB;
j=1
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A

-a.S. onriA =1,2,...,d and t € [0, T], where f denotes an extension of f on
(R, F,IF, P). Then

t t
B= o+ / fdr+ / 4.dB,
0 0

P-as.for0 <t < T with P)%O_l = . Therefore, (75]@, X, é) is a weak solution of
SFI(co F, G, u) with a separable filtered probability space 731@. |

It follows immediately from Theorem 1.2 that if ' and G satisfy the assumptions
of Theorem 1.1, then X, (F, G) # @ for every probability measure . on B(RY). We
shall show that if F and G are convex-valued and G is diagonally convex, then
for nonemptiness of X, (F, G), it is enough to assume that F(z,-) and G(z,-) are
continuous instead of Lipschitz continuous.

Theorem 1.5. Let F : [0,T] x RY — CI(RY) and G : [0,T] x RY — CI(R¥*™)
be measurable, uniformly square integrably bounded, and convex-valued such that
F(t,-) and G(t,-) are continuous for a.e. fixed t € [0, T]. If G is diagonally convex,
then X,,(F, G) # @ for every probability measure . on B(R?).

Proof. Let Pr = (Q,F,F, P) be a complete filtered probability space with a
filtration ' = (F;)o<s<r such that there exists an m-dimensional IF-Brownian
motion (B;)o<;<r on Pr. Assume that x¢ is an Fp-measurable random variable
such that Px; ! = p. By virtue of Lemma 3.8 of Chap. 2, there exist 7 ® S(R)-
measurable selectors f and g of F and G, respectively, such that f(; f(z,-)dt and
fot g(z - )dr are continuous on R forevery ¢ € [0, T]. Define forevery k = 1,2, ...
a continuous process (xX)o<,<7 by setting

Xo a.s. for —%ftfo,
k 1 1
X, =3 Xo +/ f(r,xk r)dt +/ g(z, xk 7)dB; (1.2)
0 Tk 0 T
a.s. for t €[0,T].
It is clear that x* is continuous and [F-adapted for every k = 1,2,...,. it follows
immediately from (1.2) that P({|x§| > N}) = P({|xo| > N}) forevery k > 1 and

N > 1. Then limy oo sup;s; P({|x5| > N}) = limy—oo P({|xo| > N}) = 0.
For every A and k > 1, we get
> A})

P({Ixf=xk|>a)) <P ({ [ f(r,x]r‘_kl)dt
> /\})

+r |

t
/ g(t.x* ,)dB,
S t_k
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el

where K € I2([0, T], RT) is such that max(|| F (¢, x)||, ||G(z, x)|) < K(¢) for a.e.
t € [0, T] and every x € R?. Similarly, we obtain
4:|

(1 st ] ) <

By the definition of f; g(z,x* )dB., one has
Tk

By Chebyshev’s inequality, it follows that

(i )

IA

[ et [ e

IA
|’ﬂ
35}
N
=
[3%)
=
N
o
~
v
NS

t t
/ g(t,xk )dB; / gt x* 1)dB;
s K S R

t
/ g(z, xk 1)dB;
s t_k

m t
= max E g7 (z, x* 1 )dB/
1<i<d |4 s T
=

m

IA

max
1<i<d 4
J

t
/ g (r,x* )dB/
s T

m

E max
“Li<i<d.lj<m

j=

IA

t
/ g (r,x* )dB/
\) t_z

)

=m- max
Isi=d.l<j=m

t
gij (, x¥ l)dBj
s Tk ‘

Then

4 4
< 4
<m"- max

I<i<d.1<j=<m
4:|

/ gij (ts xk L)dBrj
s Tk

t t
/g(t,xk 1)dB; / gij(t,xf 1)dB/
s Tk s ok

By It6’s formula, we obtain

E

INTN .. .
[ et s
s k

:6E[[Am(
fﬁE[[’(

2

. gij(f,xf_é)‘z) dt:|
2

. Kz(t)) d‘C:|

T
/ g (r,x* )dB/
\) I_E
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t 2 t 2
= 6/ [K%) ) :|dt <6 (/ Kz(t)dt) ,

forevery 1 <i <dand1 < j < m, where

rN:inf%t>0: sup /g(t,xk 1)dB;
s t_k

s<t<t
tATN 4 t
E / g(t,x* )dB.| | <6m* ( / Kz(z)dt)
N t_k N

for every N > 1, which implies that

d

Hence it follows that

[ st s,
s k

zN}/\T.

Then
2

47

t 2

<6m* (/ Kz(t)dt) .
T2 t 2 6m4 t 2
= (/ Kz(t)dt) + =7 (/ Kz(t)dt)

1
7700 =T

t
/ g(r.x* )dB,
S t_k

P ({|xf —x¥| > 1})

IA

IA

fors,t € [0, T], where

t
I'(t) = VT2 +6m4/ K*(r)dr for 0<t<T.
0

This, by virtue of Theorem 3.6 of Chap. 1, Theorem 2.2 of Chap. 1, and Theorem 2.3
of Chap. 1, implies that there exist an increasing sequence (k,)?2, of positive
integers, a probablhty space (Q F. P), and d-dimensional continuous stochastic
processes X and X% on (£, ]—' P)forr =1,2,...,suchthat P(x*)~! = P(&kr)~!
for 1,2,... and supy., <7 |x, — X;| — 0 with (P.l) as r — oo. By Corollary 3.3
of Chap. l, it follows that PX;' = p, because P(xg’)_l =pforr =1,2,...
and P(xloc’)_l = Pi;'asr — oo. Let IF be a filtration defined by a process ¥.
Similarly as in the proof of Theorem 1.3, immediately from (1.2), it follows that
]L_’}‘,;' generates on CZ(R”’) a family of continuous local F-martingales for every

r=1,2,...,1.e., that M ~ # @ forevery r = 1,2,..., which by Lemma 1.3,
implies that /\/l ;é @. Thus there exist a filtered probablhty space (Q, F. T, P)
and a contmuous IF- adapted process X such that PxO = o and M3 Yo 7= 9.

Therefore, by virtue of Theorem 1.3, for every probablhty measure i on B(RY),
one has X, (F,G) # 0. |
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Remark 1.6. If the assumptions of Theorem 1.5 are satisfied without the convexity
of values of F, then X(F, G) # 9.

Proof. By Lemma 1.7 of Chap. 3, one has Xg(f, G) = X)(co F, G). Similarly as
in the proof of Theorem 1.5, by virtue of Theorem 1.4, one gets XI? (coF,G) # 0.
Then XJ(F.G) # 0. O

2 Stochastic Differential Inclusions

Assume that F : [0, T] x R — CI(R?) and G : [0, T] x R? — CI(R?*™) satisfy
conditions (7). By stochastic differential inclusions SDI(F, G) and SDI(F, G),
we mean relations of the form

t t
X — X5 € / F(z,x;)dt +/ G(t,x;)dB;, as. 2.1
and
t t
X; — x5 €cl (/ F(r,x;)dt + / G(r,xr)dBr) , as., 2.2)
s s

which have to be satisfied for every 0 < s < ¢t < T by a system (Pp, x, B)
consisting of a complete filtered probability space Pr with a filtration F' =
(F)o<i<r satisfying the usual conditions, a d-dimensional IF-adapted continuous
stochastic process x = (X;)o<:<r, and an m-dimensional F-Brownian motion
B = (B;)o<i<r on P, where f; F(t,x;)dr and fst G(t,x;)dB; denote Aumann
and It6 set-valued integrals of set-valued processes F o x = (F(t,x;))o<:<r and
G o x = (G(t,x:))o<t<r, respectively. Similarly as above, systems (Pr, x, P)
are said to be weak solutions of SDI(F,G) and SDI(F,G), respectively. If
is a given probability measure on B(IRY), then a system (Pp, x, B) is said to be
a weak solution of the initial value problems SDI(F, G, 1) or SDI(F, G, ), if
it satisfies conditions (2.1) or (2.2) and Px; 1 = w. If apart from the set-valued
mappings F and G, we are also given a filtered probability space Pr and an m-
dimensional IF-Brownian motion B on Py, then a continuous IF-adapted process X
such that the system (Pr, X, B) satisfies (2.1) or (2.2) is said to be a strong solution
of SDI(F,G) or SDI(F, G), respectively.

Corollary 2.1. For every measurable set-valued mappings F : [0,T] x RY —
CI(RY) and G : [0,T] x R? — CIRY™) every weak (strong) solution of
SFI(F,G) is a weak (strong) solution of SDI (F, G).

Proof. If (Pp, x, B) is a weak solution of SFI(F,G), then Sp(F o x) # @ and
SF(G o x) # 0. A set clp{Jy[Sr(F o x)] + Ju[Sr(G o x)]} is a subset of
cly,{dec{Js;[Sr(F ox)]} +dec{ s [Sr(G ox)]}} forevery 0 < s <t < T and every
continuous IF-adapted d -dimensional stochastic process x = (X;)o<;<7. From this
and Theorem 2.1 of Chap. 3, it follows that every weak solution of SFI(F,G) is a
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weak solution of SDI (F, G). In a similar way, the above result for strong solutions
can be obtained. a

Corollary 2.2. For set-valued mappings F : [0,T] x R? — CI(R?) and G :
[0, T] x RY — CI(RY*™) satisfying conditions (H), every weak (strong) solution of
SFI(F,G) is a weak (strong) solution of SDI(F, G).

Proof. By (iv) of Theorem 2.1 of Chap. 3, a system (Pr, x, B) is a weak solution
of SDI(F, G) if and only if x; — x, € dec{J;[Sr(F o x)]} + dec{ T[Sk (G o x)]}
forevery 0 < s <t < T.But Jy[Sp(F o x)] + J5:[Sr(G o x)] C dec{J;[Sr(F o
X)]} 4 dec{J:[Sr(G o x)]} forevery 0 < s <t < T. Then every weak solution of
SFI(F,G) is a weak solution of SDI(F,G). But for every F and G satisfying
conditions (), a stochastic differential inclusion SDI(F,G) is reduced to the
form SDI(F, G), because in this case, f; F(r,x;)dt + f; G(t,x,)dB; is a closed
subset of R?. Therefore, every weak solution of SFI(F,G) is a weak solution of
SDI(F,G). In a similar way, the above result for strong solutions of the above
inclusions can be obtained. O

It is natural to expect that for every strong solution (P, x, B) of SDI(F, G)
and every ¢ > 0, there exist a partition (Ak),’(v=1 e II(2,Fr) and a fam-
ily (PF,xk,B),i\;l of strong solutions of SFI(F,G) such that |(x, — x;5) —
S 14, (xF = xF)| < eforevery0 < s <t < T, where | - || is the norm
of ]LZ(Q LT, Rd). It seems that the proof of such a result depends in an essential
way on the IL>-continuity of the mapping [0,T] > t — x, € L*(Q,F,RY).
By the definition of solutions of SDI(F, G), it follows that the mapping [0, 7] >
t — x;(w) € RY is continuous for a.e. € Q. Therefore, a family (xt)o<t<r Of
random variables x; : @ — R? has to be uniformly square integrably bounded. But
this depends, among other things, on the uniform square integrable boundedness of
(f(; G(t, x;)dB;)o</<7. From the properties of set-valued integrals fot G(z, x;)dB;,
it follows that such a property of the family ( f(; G(7,x;)dB;)o< <7 is difficult to
obtain. Therefore, the desired above property is difficult to obtain. We can prove the
following theorem.

Theorem 2.1. Let B = (B;);>0 be an m-dimensional F-Brownian motion on a
filtered probability space Pr = (2, F, T, P) with a filtration I satisfying the usual
conditions and Holder continuous with exponential « = 3. Assume that F : [0, T] x
RY — CI(RY) and G : [0, T]xR? — CI(R?*™) are measurable, uniformly square
integrably bounded, and Lipschitz continuous with respect to the second variable for
every fixed t € [0, T| with a Lipschitz function k € 1>([0, T], R). Then for every
e > 0 and every strong solution x of SDI (F, G), there exist a number A, > 0 and
a strong eAg-approximating solution x° of SFI(F, G) such that supy<, 7 || x; —
X;|| < €A, i.e., there exists a continuous F¥-adapted stochastic process x¢ such that
x{ = x5 e {Ju[Sr(F o x°)] + T [Sw(G o x°)]} + eA B forevery0 <s <t <T,
where B denotes the closed unit ball of L>(2, F,RY).
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Proof. Let x = (x;)o<:<r be a strong solution of SDI(F, G) and ¢ > 0. By virtue
of Remark 2.3 of Chap. 3, for £ = ¢/L(1 4+ +/T) there exist a number A, = 1 +

mgp [3\/6d(T +28,)+T + 83\/8_5] and processes f¢ € Sp(F o x) and g° €

Sp(G o x) such that supy, <7 [|lx; — x{|| < Ase/L(1 + v/T), where L> = [ k2dr
and xf = xo + fot fidT + fot g°dB; as. for 0 < ¢ < T. Hence in particular, it

follows that x¥ — x¢ € Jy [Sp(F o x)] + Ju[Sr(G o x)] forevery0 <s <t < T.
Similarly as in the proof of Remark 4.1 of Chap. 2, we obtain

H (clp{ T [Se(F 0 )]+ T [SE(G o x)]}, clp{J5 [Sr (F o x*)]+ T [SE(G o x¥)]})
= H (Ju[Sr(F 0 x)] + Tt [SE (G 0 x)], Jy [SE(F 0 x*)] + T5t[Sr(G 0 x)])
< LA+ VT) sup |x — x|

0=t=T

=<t<
forevery 0 <s <t < T. Therefore, forevery 0 <s <t < T, we get

dist (x7 — x{, Jo[Se(F 0 x)] + T[S (G 0 x%)])
< H (Jy[Se(F 0 x] + Ty [S¥(G 0 )], JulSe(F 0 x)] + T [Se(G 0 )]
< LA+ ~T) sup [lx, —x¢|.
0 T

<t<

Then x; — x¢ € {Jo[Sw(F o x°)] + T [Sr(G o x°)]} + eA B forevery 0 <s <
t < T, where B denotes the closed unit ball of L?(2, F, Rd). O

Remark 2.1. Tt is difficult to obtain better properties of SDI(F, G), because up to
now, we have not been able to prove that the uniform integrable boundedness of G
and continuity of G (¢, -) imply the integrable boundedness and continuity of the It6

integral fOT G(t,-)dB;. O

3 Backward Stochastic Differential Inclusions

We shall consider now a special case of stochastic differential inclusions. They
are written as relations of the form x; € E[x; + f; F(z, x;)dt|F;] a.s., where
F : [0,7] x RY — CI(RY) is a given measurable set-valued mapping and
Elx, + fst F(z, x;)dz|F;] denotes the set-valued conditional expectation of x, +
f; F(z,x;)dt. Such relations are considered together with a terminal condition
xr € H(xr) as. for a given set-valued mapping H : RY — CI(R?). In what
follows, the terminal problem presented above will be denoted by BSDI(F, H)
and called a backward stochastic differential inclusion. By a weak solution of
BSDI(F,H), we mean a system (Pp,x) consisting of a complete filtered
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probability space Pr = (2, F,F, P) with a filtration ' = (F;)o</<r satisfying
the usual conditions and a cadlag d-dimensional stochastic process X = (x;)o<t<7
such that the following conditions are satisfied:

x5 € E[x; + f; F(r,x)dt|F] as. for 0<s<t<T,
(3.1)
XT € H(XT) a.s.

Similarly as in the theory of stochastic differential inclusions, we can consider the
terminal problem BSDI(F, H) if apart from F and H, a filtered probability space
Pr is also given. In such a case, a d-dimensional cadlég process x on Py such that
a system (Pr, x) satisfies (3.1) is said of be a strong solution of BSDI(F, H) on
Pr. It is clear that if x is a strong solution of BSDI(F, H) on Py, then the pair
(Pr, x) is a weak solution. The set of all weak solutions of BSDI(F, H) is denoted
by B(F, H), and a subset containing all (Pr,x) € B(F, H) with a continuous
process x is denoted by CB(F, H). We obtain the following result immediately
from Theorem 3.1 of Chap. 3.

Corollary 3.1. If F : [0,T] x RY — CI(RY) and H : RY — CI(RY) are
measurable and uniformly integrably bounded, then (Pr, x) € B(F, H) if and only
if xr € H(xr) a.s. and there exists f € S(co F o x), a measurable selector of
co F o x, such that x, = E[x7 + ftT frdt|F] a.s. foreveryO <t <T. |

Backward stochastic differential inclusions can be regarded as generalizations of
backward stochastic differential equations:

T
X, = E|:h(x) +/ f(z, xf,zt)dt|}',:| a.s., (3.2)

where the triplet (4, f;z) is called the data set of such an equation. Usually, if we
consider strong solutions of (3.2) apart from (, f,z), a probability space P =
(2, F, P) is also given, and the filtration IF* is defined to be the smallest filtration
satisfying the usual conditions and such that the process z is I'*~adapted. The process
zis called the driving process. In practical applications, the driving process z is taken
as a d-dimensional Brownian motion or a strong solution of a forward stochastic
differential equation. In the case of weak solutions of (3.2) apart from / and f, a
probability measure  on the space Dr(R?) of d-dimensional cadlag functions
on [0, 7] is also given, a weak solution of which with an initial distribution
is defined as a system (P, x,z) satisfying (3.2) and Pz~! = pu, and such that
every I*-martingale is also an IF-martingale. Let us observe that in a particular
case, for a given weak solution (Pr, x) of BSDI(F, H) with H(x) = {h(x)} and
F(t,x) = {f(t,x,z) : z € Z} for (t,x) € [0,T] x R™, where f and h are given
measurable functions and Z is a nonempty compact subset of the space Dr(RY),
there exists a measurable IF-adapted stochastic process (z;)o<s<r With values in Z
such that

T
x =F |:h(x) +/ f(r,xr,zr)dt|]:,:| a.s. (3.3)
t
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For given probability measures f1o and ;7 on R¢, we can look for a weak solution
(Pr, x) for BSDI(F, H) such that Px;' = poand Px7' = pr. If F and H are
as above, then there exists a measurable and IF-adapted stochastic process (z;)o<i<7
such that (3.3) is satisfied and such that E[h(x) + fOT f(t, x¢,20)dt] = [pa udpio.
If f(t,x,2) = f(t,x) + g(z) with g € C(Dr(R?),RY), then

T T
[ swaiar = [ wdpo- [ hdur—£ [ fexoae
0 JDr(RY) R4 R4 0

where A, = Pz, ! forz € [0, T].

In some special cases, weak solutions of BSDI(F, H) describe a class of
recursive utilities under uncertainty. To verify this, suppose (Pr,x) is a weak
solution of BSDI(F, H) with H(x) = {h(x)} and F(t,x) = {f(t,x,¢,2) :
(c,z) € C x Z}, where h and f are measurable functions and C, Z are nonempty
compact subsets of C([0, T],R*) and D7 (R?), respectively. Similarly as above,
we can find a pair of measurable IF-adapted stochastic processes (c;)o<:<r and
(zt)o<t<r With values in C and Z, respectively, such that

T
x =F [h(x) +/ f(z, x,,c,,z,)drl]—",f:| a.s. (3.4)
t

for 0 < ¢t < T. In such a case, (3.4) describes a certain class of recursive
utilities under uncertainty, where (c;(s, -))o<s<7 denotes for fixed t € [0, 7] the
future consumption. Let us observe that in some special cases, a strong solution x
of BSDI(F, H) on a filtered probability space Pr with the “constant” filtration
F = (F)o<i<r, i-e., such that /; = F for 0 < ¢t < T, is a solution of a
backward random differential inclusion —x, € o F(z, x;) with a terminal condition
x7r € H(xr) that has to be satisfied a.s. for a.e. t € [0, T'].

Throughout this section, we assume that Pp = (Q,F,F, P) is a complete
filtered probability space with a filtration ' = (F;)o<;<r satisfying the usual
hypotheses, and by ]D(]F,Rd) and C(]F,Rd), we denote the spaces of all d-
dimensional F-adapted cadlag and continuous, respectively, processes X on P
such that | X||*> = E[supsep 7| Xs|*] < oc. Similarly as above, we denote by
S(F,RY) the set of all d-dimensional F-semimartingales X on Pp such that
X1 = E[supsep 7| Xs|*] < 00. We have C(F, R?) C D(F, R?) and S(F, R?) C
D(IF, R¥). It can be proved that (S(IF, R?), || - ||) is a Banach space. In what follows,
we shall assume that F : [0, T] x R¢ — CI(RY) and H : R — CI(R?) satisfy the
following conditions (A):

(i) F is measurable and uniformly square integrably bounded;
(i1) H is measurable and bounded;
(iii) F(¢,-) is Lipschitz continuous for a.e. fixed ¢ € [0, T'];
(iv) there is a random variable £ € I.2(Q, Fr, R?) such that £ € H(§) a.s.

We shall prove that conditions (.A4) are sufficient for the existence of strong solutions
for BSDI(F, H), which implies that B(F, H) is nonempty. It is natural to look for
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weaker conditions implying the nonemptiness of B(F, H). The problem is quite
complicated. It needs new sufficient conditions for tightness of sets of probability
measures. We do not consider it in this book.

Lemma3.l. Let F : [0,T] x RY — CI(RY) and H : RY — CI(RY) satisfy
conditions (A). For every filtered probability space Pr = (2, F,F, P) and a
random variable £ : Q — RY, there exists a sequence (x" 2 oof S(IF, RY) defined
byx! = E[§ + j;T fr=Vde|Flas. and 0 <t < T with x° € S(F,R?) satisfying

T

x) =Eas. and f"' € Sp(coF o x"Y) forn = 1,2, ... such that

u
t<u<T t T<s<T

2
T
E[ sup |x"T! —x,:’|2] < 4E |: K(z) sup |x! —xﬁ_lldr:|

forn = 1,2...and 0 <t < T, with K(t) = Ky -k(t) for0O <t < T, where
k € 12([0, T), R™) is a Lipschitz function of F(t,-) and K, is the number defined
in Remark 2.6 of Chap. 2.

Proof. Let Py be a filtered probability space and let x* = (x*)o<,<r € S(IF, RY)
be such that x). = & as. Put f,° = s(© F(t,x")) a.s. for 0 < ¢t < T, where s
is the Steiner point mapping defined by formula (2.1) of Chap.2. It is clear that
f° € Sp(co F o x°), because by virtue of Corollary 2.2 of Chap. 2, the function
s(co F(t,-)) is Lipschitz continuous for a.e. fixed 0 < ¢ < T, and x° is IF-adapted.
We now define a sequence (x”)S2, by the successive approximation procedure, i.e.,

by taking x] = E[§ + ftT frde|Flas forn = 1,2,...and 0 <t < T,
where f"~! = s(co F(t,x" ")) as. for 0 < ¢ < T. Similarly as above, we have
f"7! € Sp(co F o x"~"). By Corollary 3.2 of Chap. 3, we have x" € S(F,RR%).
Immediately from the above definitions and Corollary 2.2 of Chap. 2, it follows that
| £ — £ < K(t)sup, <y |x" —x""| as. forae.0 <t < Tandn =1,2,....
Hence it follows that o

T T
] < E[ / Iff”—ff"_lldflﬁ} SE[ () sup |x:—x:?—‘|dr|ft}
t

t T<s<T
a.s. for 0 <t < T. Therefore,

T
sup [x"T'—x"| < sup E[ K(z) sup |x§1—x;’_1|dr|]-"u:|

u
t<u<T t<u<T t<s<T

T
< sup E[ K(t) sup |xf—x§’_1|dr|]-"u:|
t

t<u<T t<s<T

as.forO0 <t <Tandn = 1,2,.... By Doob’s inequality, we obtain

T 2 T 2
E( sup E|: K(t)sup |x"—x""" |dr|]—'ui|) < 4E( K(t)sup |x"—x""" |dr)
t t

t<u<T T<s<T T<s<T
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for0 <t < T. Therefore, foreveryn = 1,2,...and 0 <t < T, we have

T 2
E|: sup |x"t! —xZ|2:| < 4E( K(t) sup |x} —x;’_lldr) . O
t

t<u<T r<t<T
We obtain the following result immediately from the properties of multivalued
conditional expectations.

Lemma 3.2. If F satisfies conditions (A), then for every x,y € S(F,R?), one has

E |:h (E [/t F (t,x;) dr|]—'{|, E [/t F(z, yr)dr|]:si|)i| < /t k(t)E|x;—y.|dt

forevery0 <s <t < T, where h is the Hausdorff metric on CI(R?).
We can now prove the following existence theorem.

Theorem 3.1. If F : [0,7] x RY — CI(RY) and H : R" — CI(R") satisfy
conditions (A), then for every complete filtered probability space Pr and fixed point
& of H, there exists a strong solution of (3.1).

Proof. Let Pr be given and assume that £ € L.2(, Fr, R?) is such that § € H(£).
By virtue of Lemma 3.1, there exists a sequence (x");2, of S(IF, R?) such that
xp =& x! € E[x] + fst F(r,x"'dt|F]as. for0<s <t <T and

2
T
E|: sup |x"T! —x;1|2:| < 4E< K(zr) sup |x! —xf_l|dt)
t

t<u<T t<s<T

forn = 1,2,... and 0 < ¢t < T. By properties of F and H, one has
E[sup, < <7 |x} — x0] < L, where L = 4[E|§[* + fOT m?*(t)dr] 4+ 2E[supy<, <7
|x02] with m e L2([0, T], R*) such that || F(z, x)|| < m(t) for every x € R and
a.e.0 <t < T. Therefore,

T
E|: sup |x5 —x;|2:| < 4TL/ K?(1)dr.
t<u<T t

Hence it follows that
T T
E| sup |x}—x2| < 4T)°L / (Kz(t) / Kz(s)ds) dr
t<u<T t T

2
= (4T2)2L (/T Kz(‘l,')d‘l,’) .
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By the inductive procedure, foreveryn = 1,2,...and 0 <t < T, we get

AT nLn—l T n
E |: sup |x"t! —xZI{| < # (/ Kz(‘l,')d‘l,’) .
t<u<T n: t

Then (x")72, is a Cauchy sequence of S(IF, RY). Therefore, there exists a process
(x)o<i=r € S(F,RY) such that E[supy<,<r |x — x;[*] = 0 asn — oc. By
Lemma 3.2, it follows that

t
E dist (xS,E [x,f +/ F(z, x,)drl]—"s:D

t
<Elx;—x!||+ E |:dist (xj?,E |:xt” +/ F(r,xg_l)dr|fs:|)i|

+E [h (E [xf +/t F(wﬁ“MrIE} E [x, +/r F(r,xr)dtIFsD}

t
< E|x} — x|+ E|x] — x| +/ K(@)E|x"" - x,|dt
s

1

T 2
sz||x"—x||+(/ Kz(r)dr) et — ]
0

forevery 0 < s <t < T and n = 1,2,.... Therefore, dist(x, E[x; +
f; F(t,x.)dt|Fs]) = 0 as. forevery 0 < s < ¢t < T, which implies that

x, € E [x,f + f; F(z, xt)dt|}'s] a.s forevery 0 < s <t < T. By the definition of

(x)o<i<r, wehave x7. = £ € H(§) as. foreveryn = 1,2, . ... Therefore, we also
have xy = £ a.s. Thus x7 € H(xr) a.s. Then x satisfies (3.1). O

4 Weak Compactness of Solution Sets

For given measurable multifunctions F : [0,7] x RY — CI(R?), G : [0,T] x
R? — CI(R¥*™) and a probability measure i on S(IR?), by X, (F,G) we denote,
similarly as above, the set of all weak solutions (equivalence classes defined in
Sect. 1) of SFI(F,G, ). Elements [(Pr, X, B)] of X,(F,G) will be identified
with equivalence classes [X] of all d-dimensional continuous processes Z such
that PX~! = PZ~'. In what follows, [X] will be denoted simply by X. It is
clear that we can associate with every [(Pr, X, B)] € A, (F,G) a probability
measure PX !, a distribution of X, defined on a Borel o-algebra 8(Cr) of the space
Cr =: C(([0, T],R?). The family of all such probability measures, corresponding
to all classes belonging to &), (F, G), is denoted by le (F, G). Itis a subset of the
space M (Cr) of probability measures on Cr. The set X, (F, G) is said to be weakly
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compact, or weakly compact in distribution, if le (F,G) is a weakly compact
subset of M(Cr). We now present sufficient conditions for the weak compactness
of X, (F,G).

Theorem 4.1. Let F : [0,T] x RY — CI(R?) and G : [0, T] x R¢ — CI(R¥>*™)
be measurable, uniformly square integrably bounded, and convex-valued such that
F(t,-) and G(t,-) are continuous for fixed t € [0,T). If G is diagonally convex,
then for every probability measure i on B(RY), the set X, (F, G) is nonempty and
weakly compact.

Proof. The nonemptiness of X, (F,G) follows from Theorem 1.5. To show that
X, (F, G) is relatively weakly compact in the sense of distributions, let us note that
by virtue of Theorem 1.5 of Chap. 3, for every (Pr, x, B) € X, (F, G) there are
f € Sp(F ox)and g € Sp(G o x) such that Pxo_1 = pand x; = xo + fot frdr +
fof g:dB; for every ¢t € [0, T]. Similarly as in the proof of Theorem 1.5, we can
verify that every sequence (Pp., x", B")°2 | of X, (F, G) satisfies the conditions of
Theorem 3.6 of Chap. 1. Therefore, for every sequence (Py., x", B") of X, (F, G),
there exists an increasing subsequence (n;)72, of (n)72, such that the sequence
{P(x"*)~13%  is weakly convergent in distribution. Then the sequence (x"
possesses a subsequence converging in distribution.

Let (x")%2, be a sequence of X, (F, G) convergent in distribution. Then there
exists a probablhty measure P on ,B(CT) such that P(x")™!' = P asr — oc.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space (2, F, P) and
random variables ¥ : Q — Cr and X : Q - Cr forr = 1,2,... such that
P(x")~' = P@E) forr = 1,2,..., P(X)"! = P and lim, 0 SUpy<, <1 |5 —
%| = 0 with (P.1). Immediately from Corollary 3.3 of Chap. 1, it follows that
X, = Xo asr — oo, because P(x")~! = P(%¥)"'asr — co.But P(x))"! =
for every r > 1. Then PX,' = p. By Theorem 1.3, we have M7}, # 0
for every r > 1, which by Lemma 1.3, implies that ./\/l # (. Therefore, by
virtue of Theorem 1.3, there exist a standard extension P (Q F. I, P) of
(fz, F , ﬁ‘ 13) and an m-dimensional Brownian motion B such that (P]F, X, B), with
(@) = X(n(®)) for every & € $, is a weak solution of SFI(F, G, 1), where
7:Q—> Qisan (}' ]-") measurable mapping as described in the definition of the
extension of (£, F.IF, P), because its standard extension P]F is also its extension.
Let (@) = X' (nA(a))) for ® € €. For every A € B(C), one has P(2")~ '(4) =
PIE)™H(A)] = P[(F om)~H(A)] = (P ox H(EF")(A)] = PIE)TH(A)] =
P(x")"'(A). Therefore, P(£")~! = P(F")~' = P(x")7! for every r > 1. By
the properties of the sequence (¥")°2,, it follows that X (&) — X;(®) with (P.1)
as r — oo uniformly with respect to 0 < ¢ < T. Hence in particular, it follows
that X} (w(®)) — X:/(7(d)) with (P.1) as r — oo uniformly with respect to
0 <t < T. Therefore, for every f € C,(C), one has f(x"(®)) — f(x(®))
with (13.1) as r — o00. By the boundedness of f € C,(C), this implies that
E{f(X")} — E{f(%)}as r — oo, which by Corollary 2.1 of Chap. 1, is equivalent

n= l
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to P(")~' = P£7'. But P(&")™' = P(x")~! for every r > 1. Then x" = X,
which implies that X}, (F, G) is weakly closed. a

In a similar way, we can prove the following theorem.

Theorem 4.2. Let F : RT x RY — CI(RY) and G : RT x RY — CI(RY*?) be
measurable and uniformly square integrably bounded such that F(t,-) and G(t,-)
are continuous for fixed t € [0, T). If G is convex-valued and diagonally convex,
then for every probability measure w on B(R?), the set XS(T, G) is nonempty and
weakly compact.

Proof. The nonemptiness of XS (F, G) follows from Remark 1.6. In a similar way
as above, we can verify that the set X 3 (co F, G) of all weak solutions (Pr, x, B) of
SFI(co F, G) with a separable filtered probability space Py is weakly compact in
distribution. By virtue of Lemma 1.7 of Chap. 3, one has & 3 (F.G)=4X 3 (co F, G).

Then X 3 (F, G) is nonempty and weakly compact. |

5 Some Properties of Exit Times of Continuous Processes

Let D be a domain in R and (s,x) € R™ x D. Assume that X = (X(-,1));>0
and X" = (X"(-,1))/>0 are continuous stochastic processes on a stochastic base
Pr = (2, F,F, P) such that X(-,s) = X"(,s) = x as.forn = 1,2,... and
sup,so | X"(,t) — X(-,t)] > Oas.asn — oo.Lett = inf{r > s : X(-,7) & D}
and 7, = inf{r > s : X"(-.,r) ¢ D} forn = 1,2,.... We shall show that if 7, < oo
a.s. for every n > 1, then 7, — t a.s. as n — oco. We begin with the following
lemmas.

Lemma 5.1. Let D be a domain in RY, (s,x) € RT x D, and X = (X(-,1)):>0
a continuous d-dimensional stochastic process on Py = (2, F,F, P) such that
X(,s)=xas andt =inf{r > s : X(,r) € D} <ocoas. If T : @ — R is such
thatT > t a.s., thent = inf{r € (s,T) : X(-,r) & D} a.s.

Proof. For simplicity, assume that the above relations are satisfied for every w € Q
and let us observe that t(w) = inf X "' (w,-)(D ™), where D~ = R? \ D. We have
X0, )(DY) = X o, )(DY) N (s, T(@)) U X (w,)(D™) N [T(w),00).
Therefore, inf X '(w,)(D~) < inf(X (w,)(D~) N (s, T(w))). For every
w € , there exists t(w) € X '(w,)(D~) such that s < t(w) < T(w),
because 7(w) < T(w) for w € Q. Therefore, X ' (w, )(D~) N (s, T(w)) # 0
and inf(X Y(w,)(D~) N (s,T(w))) < T(w) for ae. ® € Q. Suppose T =
inf X Y(w,)(D~) < t7(w) =: inf(X Nw,)(D~) N (s, T(w))) onaset Ly € F
such that P(£2y) > 0. Then for every w € Q, there exists f(w) € X (w,)(D™)
such that s < f(w) < r(w) < T(w), which is a contradiction, because for
every w € Qandt € X Yw,)(D™) N (s, T(w)), we have t7(w) < t. Then
(w) = inf{X (w,)(D~) N (s, T(w))} forae. v € Q. O
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Lemma 5.2. Let D be a domain in R and (s,x) € Rt x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F,F, P) suchthat X(-,s) = X"(-,5) = x
forn = 1,2,... and sup,~ | X"(-,t) — X(-,t)] — 0 as. asn — oo. Then
LiX ' (@,)(D~) = XY@, ) (D) = Ls X; (w0, )(D™) fora.e. v € Q.

Proof. For simplicity, assume that X(w,-) and X,(w,-) forn = 1,2,... are
continuous and lim,,— o0 SUP,~¢ | X" (@, 1)—X(w, t)| = O forevery w € 2. For every
w € Qand e > 0, there exists N,(w) > 1 such that X, (w.7) € X(w.t) + ¢B
and X(w,t) € X,(w,t) + eB fort > s and n > N.(w), where B is a
closed unit ball of RY. Then X, '(w,)({X,(®,0)}) C X, (w,)({X(w,t) +
eB}) and X N, )({X(,1)}) C X Yo, )({X,(w,t) + eB}) as. for n >
N.(w). Let us observe that for every A ¢ RT and C C R?, one has 4 C
X N0, ) (Xp(@,A4), A C X Yo, )(X(@, A)), X,(0, X (o,)(C)) C C +¢B,
and X(w, X '(w,)(C)) € C forn = 1,2,.... Taking in particular A =
X Yw,-)(D~) and C = D™ in the above inclusions, we obtain X ~!(w, -)(D™) C
X, N0, ) (Xp(@, X Yw,) (D) C X, Hw,)(D~ + &B) as. forn > N(w).
Similarly, taking 4 = X, '(w,-)(D~) and C = D™, we obtain X, ' (w,-)(D~) C
X0, )(X (@, X, (@,)(D7) € X N, )(Xy(@, X, (@,) (D)) + ¢B) C
X Yw, ) (D~ + eB) as. for n > N,(w). Hence it follows that

X' (@,)(DY) C () Xify, (@, ) (D~ +&B)
k=0
N.—1 oo
c | NXili@. (D~ +eB)
n=1 k=0

oo

U () Xy, @.)(D™ +¢B)
k=0

o U

38

;in(w,-)(DN +¢&B)
k

I
||C8

+
ﬂ Xl (@.)(D™ +&B)

= Limiann_l(w, (D™~ +¢B)

a.s. for every ¢ > 0, which by virtue of Corollary 1.1 of Chap.2, implies
X Yo, )(D~) C N,ooLiminf X' (w,-)(D~ 4+ ¢B) = Liminf X, ' (w,)(D™)
a.s. Hence, by virtue of (ii) of Lemma 1.2 of Chap. 2, we obtain X ' (w,-)(D~) C
Li X, (w,)(D~). In a similar way, we get | J72, Xk__iN&_(a),-)(D“ +eB) C
X Yw,)(D~ + &B). Then
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N:—1 oo o0 00 o)
N U X, @20 u Xy @aom)u () X, @.(D)
n=1 k=0 k=0 n=Ng+1k=0

C X (o,)(D~ + ¢B)

for every ¢ > 0. Hence, by virtue of (v) of Lemma 1.2 of Chap. 2, it follows that

oo o0

Ls X, (0.)(D™) = () Xilu(@.)(D~) € X' (@.)(D~ + ¢B)
n=1k=0

for every ¢ > 0. Thus Ls X, '(®,")(D~) C (Voo X Y@, )(D~ + €B)
XYw,-)(D~) as. From the above inclusions, we obtain X ~'(w,-)(D")
Li X, '(w,)(D~) CLs X, Y(w,)(D~) C X Y, )(D~) a.s. Then

N

Ls X, (0, )(D™) € X Yw,)(D™) CLi X, (»,)(D™),

which by (i) of Corollary 1.2 of Chap.2, implies that Li X, !(w,-) (D~) =
Ls X, Y(w,)(D™) = X Yw, (D). |

Lemma 5.3. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1)is0 and X" = (X"(,t))r>0 are continuous d -dimensional stochastic
processes on a stochastic base Prp = (2, F,F, P) suchthat X(-,5) = X"(-,5) = x
forn = 1,2,... and sup,-o | X"(-,t) — X(-,t)| — 0 as. asn — oo. If there
exists a mapping T + Q — RY such that max(t,7,) < T a.s. forn = 1,2,...,
where T = inf{r > s : X(,r) € D}and v, = inf{r > s : X,(-,r) &
D}, then (X~ '(0,)(D™) N [s,T(@)) = Li(X, " (@,)(D™) N (5,T(w)) =
Ls (X, Y(w,)(D™) N (s, T(w))) for a.e. v € Q.

Proof. Assume that X(w,-) and X,(w,-) for n=1,2,... are continuous,
max(t(w), i, (w)) < T(w) forn = 1,2,..., and lim,_o sup,~, | X" (w, 1) —
X(w,1)| = 0 for every w € Q. By virtue of (iv) and (vi) of Lemma 1.2 of Chap. 2
and Lemma 5.2, we get

Ls (X, (@,)(D7) N (5. T(@))) € Ls X,/ (@,)(D™) N [s. T ()
= X" @.) (D7) N 5. T(@)).
Similarly, by virtue of (iii) and (vi) of Lemma 1.2 of Chap. 2, we also have
Li(X, ' (@.)(D7) N (5, T(@))) C Li (X, (@.)(D7) N [s. T ().

By virtue of (ii) of Corollary 1.2 of Chap. 2, for every ¢ € (Li (X, '(w,-)(D™)) N
[s, T (w)), there exists 7 > 1 such that for every n > 7, there is f, €
X, Yw,)(D~) N [s, T(w)) such that t, — t as n — oo. Then dist(z, X, ! (w, )
(D~)) — 0 asn — oo. Therefore, for every ¢ > 0, there exists N, > 7 such
that t € X, "(w,)(D~) + ¢B for n > N.. Hence, similarly as in the proof of
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Lemma 5.2, it follows that for every 7 € Li (X, '(w,-)(D~))N[s, T (»)) and & > 0,
one has

t e ({(Xiiy(@.)(D™) +eB) N [s. T(w))}
k=0

c |J X @ )(D™) +eB) N [s. T(w))}

n=1k=0

= Liminf{(X " (w,)(D~) + eB) N[5, T (»))}.
Then
Li(X, (o, )(D™)) N[5, T(w)) C Liminf{X, (@, ) (D) N[5, T (»))}

CLi(X, (0. (D7) N [s.T(®))) C Li(X, (. )(D™) N[5, T (w)).
Thus

X @, )(D™) N s, T()) = LiX, (@, ) (D) N[5, T (@)
= Li (X, (@, (DY) N s, T())).

Therefore, by (iv) and (vi) of Lemma 1.2 of Chap. 2 and Lemma 5.2, one has

Ls (X, (0. )(D™) N[5, T(»)))
C X N, ) (D™) N[5, T(w))
=Li(X, (@, (D7) N s, T())). O

Lemma 5.4. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))r>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F, ¥, P) such that X(-,s) = X"(-,5) = x
for n = 1,2,... and sup,~, | X"(-,t) — X(-,t)] > O as. asn — oo. If
inf X' (w,)(D™) < cofora.e.w € Qforn = 1,2,..., theninf X' (w,)(D™) <
oo fora.e. w € Q2.

Proof. Let t,(w) = iann_l(a),-)(D”) < o0 and 7(w) = inf X '(w,-)(D™) for
we QPutA ={weQ:t(w) =oc}and A, = {w € Q : 1,(w) = oo} for
n=1,2,....Foreveryw € A, onehas X(w,t) € D fort > s. By the properties of
the sequence (X,)52, for a.e. fixed w € A, there exists a positive integer N (w) > 1
such that X, (w,t) € D fort > s and every n > N(w). Then for a.e. w € A and
every n > N(w), we have 1, (w) = oo. For simplicity, assume that 7, (w) = oo for
every n > N(w) and w € A. By the assumption that 7, < oo a.s. and the definition
of A,, we have P(A,) = 0 for every n > 1. Then P(U:‘;l A,) = 0. But for every
w € A andn > N(w), we have 1,(w) = oo. Therefore, A C U:‘J:I A,. Then
P(A) =0. |
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Lemma 5.5. Let D be a domain in R and (s,x) € Rt x D. Assume that
X = (X(,1)is0 and X" = (X"(:,1))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F,F, P) suchthat X(-,s) = X"(-,5) = x

forn = 1,2,... and sup,5o |X"(-,1) — X(-,1)] — 0 as. asn — oo and
let t,(w) = inf XY (w,)(D~) and t(w) = inf X Yw, ") (D) for o € Q.
Ifmax(z,,7) <ocoa.s forn =1,2,..., then there is a mapping T : Q@ — R such

that max(t,,7) < T a.s. forn > 1.

Proof. By virtue of Lemma 5.2, we have t(w) = inf(Li X, '(w,-)(D™)) for a.e.
o € 2. By virtue of (ii) of Corollary 1.2 of Chap. 2, for a.e. € Q2 thereisin > 1
such that for every n > 7, there exists 7, € X, '(w,-)(D™) such that 1, — 7
a.s. as n — oo. For every n > n, we have 7, < t, because X Yw,)(D~) C
X, Y(w,)(D~ + ¢B), tf < tand tt — 1, as. as ¢ — 0, where 7f(w) =
iann_l(a), )(D~ + eB) for n > n. Then limsup t, < t a.s., which implies that
for a.e. w € Q, there exists a positive integer N(w) > 1 such that 7,(w) < t(w) for
n > N(w). Taking T (w) = max{t;(w) + 1, 2(w) +1,..., tn@w (@) + 1, t(w) + 1}
fora.e. w € Q, we have defined a mapping T : Q@ — R such that max(z,,7) < T
a.s. forn > 1. O

Now we can prove the following convergence theorem.

Theorem 5.1. Let D be a domain in R? and (s,x) € R x D. Assume that
X = (X(,1))is0 and X" = (X"(,t))i>0 are continuous d -dimensional stochastic
processes on a stochastic base Py = (2, F, ¥, P) such that X(-,s) = X"(-,5) = x
forn =1,2,...andsup,-y | X"(-,t)— X(-,t)] = Oa.s.asn — oo. If 1, = inf{r >
s X,(,r) € D} < 00 a.s. forn = 1,2,..., then lim,, 7, = T a.s., where
r=inf{r > s: X(,r) & D}.

Proof. By virtue of Lemma 5.4, we have max(t,,7) < oo a.s.forn = 1,2,....
Therefore, by virtue of Lemma 5.5, there is a mapping T : 2 — R™ such
that max(z,,7) < T as. forn = 1,2,.... Then by virtue of Lemma 5.1, we
have 7, (w) = inf(X, ' (w,)(D~) N (s, T(»))) and t(w) = inf(X " (w,)(D~) N
(5, T(w))) forw € Qandn = 1,2,.... By virtue of Lemma 5.3, Remark 1.2 of
Chap. 2, and Theorem 1.1 of Chap. 2, we get

lim B((X, (@.)(D7) N (5. T(@))). X~ (. )(D7) N (5. T(@))))

= lim A((X; (@, ) (D7) N (5, T(@))), X~ (@, ) (D7) N (s, T())))
=0

for a.e. w € 2, where & is the Hausdorff metric on CI([s, T'(w)]) for every fixed
w € Q Lete > 0and t,(w) € X Yw,)(D~) N (s,T(w))) be such that
t:(w) < t(w) + ¢ for fixed @ € Q. By the above property of the sequence
(X, "(w,)(D™) N (s, T(w)))%2, and the definition of the Hausdorff metric h, we
have dist(z: (@), X, '(w,)(D~) N (s, T(w))) — 0 for fixed v € Q and every & > 0
as n — oo. Therefore, for every fixed w € 2, there exists a sequence (¢ (w))>2,
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such that 7 (w) € X, Y(w,)(D~) N (s, T(w)) forn > 1 and |1 (w) — t:(w)| — 0
as n — oo. Hence it follows that

(@) < 1 (@) < [ (0) — ()] + (@) < [(0) — (@) + T(0) + ¢

fore > 0and n > 1. Then lim sup,_, o, T () < T(w).

Similarly, for fixed w € Q and every ¢ > 0 and n > 1, we can select 1/ (w) €
X, Yo, )(D7)N[s, T(w)) and " € X~ '(w,)(D~) N [s, T (w)) such that " (w) <
7,(w) + € and |1 () — 1! (w)| — 0 as n — co. Hence it follows that

(@) = 1] (@) <17 (@) — 1] (@)] + 1] (@) <] () =1 (@) + () + &

for every ¢ > 0 and n 1. Therefore, t(w) < liminf,_ 7,(w). Then
limsup, o T(w) < (W) liminf, o0 T (w) for a.e. @ € 2, which implies
that lim,, 00 7, = T a.s. O

Let D be a domain in R? and (s, x) € R* x D. Assume that X = (X(¢));>0 and
X = (X (#))r>0 are continuous d-dimensional stochastic processes on (Q F,P)
and (Q, F, P), respectlvely, such that X(s) = x a.s.and PX~! = PX~!. We shall
show that P(rD) P(rD) LU P(Xotp)™' = P(Xo%p)~!,and P(zp,X o
™)~ '= P(ip. X oTp)~", where 1p = inf{t > s : X, ¢ D} and 7p = inf{t > s :
X, ¢ D}.

The next results will follow from the following fundamental lemma, similar to
Lemma 2.1 of Chap. 1.

z
=

Lemma 5.6. Let X and X be as above, (Y,G) a measurable space, and C =:
CRYRY).If®:C - Y is (B, G)-measurable, where B is a Borel o-algebra on
C, then P(® o X)™! = P(®o X)~!

Proof. Let Z = ®o X and Z = ® o X. For every A € G,one has P({Z € A}) =
P({®oX € A}) = P(X~1(®71(4))) = P(X(®71(4)) = P({do X € A}) =
P({Z € A}). Then P(® o X)™' = P(®o X)L O

The following theorem can be derived immediately from the above result.

Theorem 5.2. Let D be a domain in R¢ and (s, x) € RT x D. Assume that X =
(X(@))i>0 and X = (X (#)):>0 are continuous d-dimensional stochastic processes
on (2, F, P) and (Q.F, P), respectlvely, such that X(s) = x a.s. and PX~ I =
PX~\. Then P(zp)~ I = P(‘L’D) ,P(Xotp) ' = P(X 0o%p)~", and P(xp, X o
)~ = P(ip. X oTp)~!, where tp = inf{t > s : X, & D} and Tp = inf{t > s :
X, ¢ D).

Proof. Let n : C — R™* be defined by n(x) = inf{t > s : x(t) ¢ D} for
x € C. It is clear that n is (B, B+)-measurable, where 8+ denotes the Borel o-
algebra on R™. Taking Y = R*, G = B4, and ® = 1, we get 1p = ® o X and
7p = ® o X. Therefore, by virtue of Lemma 5.6, we obtain P(tp)~' = P(%p)~".
Let ¥ (¢t,x) = x(¢) forx € C andt € R™ and put ®(x) = ¥ (n(x), x)) forx € C.
It is clear that the mapping ® satisfies the conditions of Lemma 5.6 with ¥ = R?
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and G = f, where 8 denotes the Borel o-algebra on RR?. Furthermore, we have
PoX =Xorpand Po X=Xo Tp. Therefore, by virtue of Lemma 5.6, we
obtain P(X o 7p)~' = P(X o %p)~'. Finally, let ®(x) = (n(x), ¥ (5(x), x)) for
x € C.Immediately from the properties of the mappings ¥ and n, it follows that ®
satisfies the conditions of Lemma 5.6 with Y = RT x R? and G = B4 x B, where
B+ denotes the Borel o-algebra of R*. Furthermore, ® o X = (zp. X o 7p) and
doX = (Tp, Xo Tp), which by virtue of Lemma 5.6, implies P(tp, X o )~ =
P(ip, X o%p)~ L. O

Corollary 5.1. If the assumptions of Theorem 5.2 are satisfied, then for every
continuous bounded function f : Rt x RY — R, one has E[f(tp, X o 1p)] =
E[f(Zp, X o%p)], where E and E denote the mean value operators with respect to
probability measures P and P, respectively. O

6 Notes and Remarks

The first papers concerning stochastic functional inclusions written in the set-valued
integral form are due to Hiai [38] and Kisielewicz [51, 55], where stochastic
functional inclusions containing set-valued stochastic integrals were independently
investigated. In the above papers, only strong solutions were considered. An ex-
tension of the Fillipov theorem for stochastic differential inclusions was given by
Da Prato and Frankowska [23]. Existence and stability of solutions of stochastic
differential inclusions were considered by Motyl in [82] and [83], resp. Weak
solutions of stochastic functional inclusions have been considered by Aubin and
Da Prato [9], Kisielewicz [53] and Levakov [71]. Weak compactness with respect
to convergence in distribution of solution sets of weak solutions of stochastic
differential inclusions was considered in Kisielewicz [56, 58, 60]. Also, Levakov
in [71] considered weak compactness of all distributions of weak solutions of some
special type of stochastic differential inclusions. Compactness of solutions of second
order dynamical systems was considered by Michta and Motyl in [78]. The results
of the last three sections of this chapter are based on Kisielewicz [56, 58], where
stochastic functional inclusions in the finite intervals [0, T'] are considered. The
results dealing with backward stochastic differential inclusions were first considered
in the author’s paper [59]. The results contained in Sect. 5 are taken entirely from
Kisielewicz [55]. The properties of stochastic differential inclusions presented in
Sect.2 are the first dealing with such inclusions. By Theorem 2.1 of Chap.3,
stochastic differential inclusions SDI(F, G) are equivalent to stochastic functional
inclusions of the form x, — x;, € dec{J(F o x)} + dec{7(G o x)}. Therefore,
for multifunctions F and G satisfying the assumptions of Theorem 1.5, the set
Sw(F,G, ) of all weak solutions of SDI(F,G) with an initial distribution u
contains a set considered in optimal control problems described by SDI(F, G).
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For the existence of solutions of such optimal control problems, it is necessary
to have some sufficient conditions implying weak compactness of a solution set
Sw(F, G, ). Such results are difficult to obtain by the methods used in the
proof of Theorem 4.1, because boundedness or square integrable boundedness of
dec{J(F o x)} and dec{7 (G o x)} is necessary in such a proof.



Chapter 5
Viability Theory

The results of this chapter deal with the existence of viable solutions for stochastic
functional and backward inclusions. Weak compactness of sets of all viable weak
solutions of stochastic functional inclusions is also considered.

1 Some Properties of Set-Valued Stochastic Functional
Integrals Depending on Parameters

Let F : [0,T] x RY — CI(RY) and G : [0, T] x R? — CI(R?*") be measurable
and square integrably bounded set-valued mappings. Given a set-valued stochastic
process (K(t))o<;<r with values in CI(R?), we denote by SFI(F,G,K) the
following viability problem:

% X — x5 € clp{Js [SE(F 0 X)] + T [Sp(G o x)]} for 0 <s<t<T, (1.1)

x; € K(t) as. for t €]0,T],

associated with SFI(F, G). Similarly, we denote by BSDI(F, K) the backward
viability problem:

{ X, € Elx, + [/ F(r,x,)dt|F,] as. for 0<s<t<T,

1.2
x; € K(t) as. for tel0,7T], (12)

associated with BSDI(F, K(T)).

We precede the existence theorems for such problems by some properties of
set-valued stochastic functional integrals depending on parameters. Given a Banach
space (X, | - ||), by CI(X) we denote the space of all nonempty closed subsets
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of X. In particular, we shall consider X to be equal to R4, L*(Q,F,R"), and
L>(0,T] x Q,%p,R" withr = d andr = d x m, respectively. The Hausdorff
metrics on these spaces will be denoted by 4, D, and H, respectively.

Let Pr = (Q,F,F,P) be a filtered probability space with a filtration F =
(Fi)o<i<r satistying the usual conditions. Similarly as above, for set-valued map-
pings F and G as given above and an IF-nonanticipative d -dimensional stochastic
process x = (xX;)o<<7, We shall denote by Sp(F o x) and Sp(G o x) the sets
of all F-nonanticipative stochastic processes f = (f/)o<i<r and g = (g/)o<i<7>
respectively, such that f; € F(t,x,) and g, € G(¢,x;) as. forae. t € [0,T].
It is clear that Sp(F o x) and Sp(G o x) are decomposable closed subsets of
L2([0,T] x €, 2, R?) and L2([0, T] x , =g, R¥*™), respectively, where Tp
denotes the o-algebra of all IF-nonanticipative subsets of [0, T'] x €. Therefore,
by virtue of Theorem 3.2 of Chap. 2, there exist Xp-measurable mappings ® and
W such that Sp(F o x) = Sp(P) and Sp(G o x) = Sp(¥), which by virtue of
Corollary 3.1 of Chap. 2, implies that ® = Fox and ¥ = G o x.

In what follows, we shall denote by | - | the norm of the Banach space X" =
L2([0,T] x 2, Zp,R") with r = d or r = d x m. Similarly as above, C(IF, R¢)
denotes the space of all d-dimensional continuous [F-adapted stochastic processes
x = (X)o<r<r with norm ||x|| = (E[supy<, <7 |x;*])"/?. Given a measurable and
uniformly square integrably bounded set-valued mapping K : [0, T|xQ — CI(R),
we shall assume that the set K(f) = {u € L2(Q,F.R?) : u € K(t,-) a.s.}
is nonempty for every 0 < ¢ < T. It is clear that this requirement is satisfied
for a square integrably bounded multifunction K : [0, 7] — CI(R?). Recall that
K : [0,T] x @ — CI(RY) is said to be uniformly square integrably bounded
if there exists A € L2([0, T],R") such that [|K(z,w)|| < A(¢) for ae. (t,w) €
[0, T] x 2, where ||K(t,w)|| = h(K(t,w),{0}). Let us observe that for the above
multifunctions F and G and a d-dimensional F;-measurable random variable X,
the set-valued processes F o X and G o X are 87 ® F;-measurable.

Assume that the above set-valued mappings F and G satisfy the following
conditions (H;):

() F:[0,T]xR?Y - CI(RY) and G : [0, T] x RY — CI(RY*™) are measurable
and uniformly square integrably bounded, i.e., there exists m € L2([0, T], R™")
such that max(|| F(¢, x) ||, |G(t, x)||) < m(¢t) forae.t € [0,T] and x € R,
where || F(z,x)|| = sup{|z| : z € F(¢,x)} and |G(¢, x)|| = sup{|z| : z €
G(t, x)};

(ii) F(t,-) and G(¢,-) are Lipschitz continuous for a.e. fixed ¢ € [0, T], i.e., there
exists k € IL2([0, T],R™) such that H(F(t,x), F(t,z)) < k(t)|x — z| and
H(G(t,x),G(t,2)) < k(t)|x —z| forae.t € [0,T] and x,z € R¢.

Lemma 1.1. If F and G satisfy conditions (H,), then the set-valued mappings
C(F.,RY) 3 x — Sp(F ox) € CI(X?) and CF,RY) 5 x — Sp(G ox) €
CI(X?¥*™Y are Lipschitz continuous with Lipschitz constant L = [ fOT k2 (t)de]'/2.
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Proof. The proof is quite similar to the proof of Lemma 3.7 of Chap. 2. Let x,z €
C(F,R9) and f* € Sg(F o x). By virtue of Theorem 3.1 of Chap. 2 applied to the
Y p-measurable set-valued mapping F o z, we get

T
dist?(f*, Sp(F 0z)) = inf{E/ | = fePPde: f € Sp(F oz)
0
T
=E / dis?®(f*, F(t,2,))dt
0
T
< E/ K2 (t)|x; — z[*dt < L?||x —2||*.
0

Then H(Sp(F o x),Sp(F 0z2)) < L|x —z||. In a similar way, we also get
H (Sp(F o2z),Sp(F ox)) < L||x — z||. Therefore, H(Sp(F o x), Sp(F o0z)) <
L||x —z]|. In a similar way, we obtain H(Sp(G o x), Sp(Goz)) < L||x—z|. O

Lemma 1.2. Let K : [0,T] x Q — CI(R?) be F-adapted and square integrably
bounded uniformly with respect tot € [0, T). If K(-, ) is continuous for a.e. w €
Q, then the set-valued mapping KC : [0, T] — CW(IL2(2, Fr, R%)) is continuous.

Proof. Lettg € [0, T] be fixed and let (# )72, be a sequence of [0, T'] converging to
to. By virtue of Theorem 3.1 of Chap. 2, for every u € IC(fy) and k > 1, one has

dist’(u, K(tx)) = inf {E|u—v|* : v € K(t)}
< E [dist (u, K(tx.-)]
< E [hz(K(Zkv ')7 K(t()v ))] .

Then D (K(t), K(tr)) < E [h*(K(tx.). K(f0.-))] . In a similar way, we also
get ﬁZ(IC(tk),IC(to)) < FE [hz(K(tk,-), K(to,-))]. Therefore, for every k > 1,
one has D*(K(#),.K(to)) < E [hz(K(tk,-),K(to,-))]. Hence, by the continu-
ity of K(-,w) and its uniformly square integrable boundedness, it follows that
limg o0 D(K(t), K(tp)) = 0. |

Lemma 1.3. If F and G satisfy conditions (H,), then the set-valued mappings
C(IF,RY) 3 x — clp{Ju[Sr(F o x)|} € LX(Q, Fr,RY) and C(F,RY) 3 x —
clp{ Ty [SE(G o x)]} C LX(R, Fr,R?) are Lipschitz continuous uniformly with
respect to 0 < s < t < T with Lipschitz constants equal to /T L and L,
respectively, where L is as in Lemma 1.1.

Proof. Let x,z € C(IF,RY) and f* € Sp(F ox). Forfixed0 <s <t < T, we
have dist® (Jo (/). Ju[Se(F o)) = inf{ E|Jy(f* — [P+ f* € Sp(F 02)}.
But forevery 0 <s <t < T, one has

T
E\Ju(f* = fOP < TE [/0 - f1|2dz} .
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Therefore, by Lemma 3.6 of Chap. 2, it follows that

T
dis® (o (), Iy [Se(F 0 2)]) < Tinf{ E /0 5= fdr s 7 e Sp(F o)

= Tdist? (f*, Sp(F 02))
TH(Sp(F o x), Sp(F 0z)) < TL*||x —z||*.

IA

Then for every 0 < s <t < T, one obtains
—
D" (Ju[Se(F o x)], Ju[Sk(F 02)]) < TL*||x —z|*.

Similarly, for every fixed 0 < s <t < T, we also get
D (Jy[Se(F 0 9], Ju[Sk(F 0 x)]) < TL?|x —|/*.
Therefore, forevery 0 < s <t < T, one has
D (Ju[Se(F o X)), Ju[Sk(F 0 9)])) < VTL|x —z|.
In a similar way, for fixed 0 < s <t < T, we obtain
D (T5:[Sr(G 0 x)]. Ts: [Sk(G 02)]) < L|x —z]|.
Hence it follows that

sup D (clpdJu[Su(F o )]}, cled Ju[Sw(F 0 9)]}) < VTL|x —2|

0<s<t<T
and

sup D (clp{T[Sr(G o x)]}, clp{ T [Sr(G 0 2)]}) < L|x —z]|.

0<s<t<T
O

Lemma 1.4. Assume that F and G satisfy (i) of (H1) and let x,,x € C(F,R?)
forn = 1,2,... be such that supy., .7 |x,(t) — x(¢)] — 0 as. asn — oo.
If F(t,-) and G(t,-) are continuous for a.e. fixed 0 < t < T, and (0,)22, is
a sequence of functions 6, : [0,T] — [0,T] such that 6,(t) — t asn — o0
foreveryt € [0, T, then cly {Js [Sp(F o (x, 0 0,)] + Tt [Sr(G o (x, 0 0,))]} —
clp {J [SE(F o x)] + Ty [Sr(G o x)]} in the D-metric topology of CI(IL?
(2, F.RY) asn — oo forevery0 <s <t <T.

Proof. Let0 <s <t < T be fixed and set y" = x, o 0, foreveryn = 1,2,....
One has
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Iyt (t) = x (D) = [x2(6x (7)) — x (D)
1% (0 (7)) = x (60 ()] + [x (6, (7)) — x(7)]
sup X, (u) = x ()| + [x (6, (1)) — x (@]

0<u<T

IA

IA

forn =1,2,...and 0 < v < T.Then y/(r) = x(r) as.forevery0 <7 < T
as n — oo. Similarly as in the proof of Lemma 1.3, we can verify that the set-
valued mappings C(IF, RY) > x — clp{Jy[Sr(F o x)]} € CI(IL2*(22,F,R))
and C(F,RY) > x — clp{Jx[Sr(G o x)]} € CIIL*(2,F,RY)) are con-
tinuous. Therefore, cly, {Js; [SE(F o (x, © 0,))] + Ts:[Sk(G o (x, 0 6,))]} — clL
{Js:[SF(F o x)] + J5:[Sr(G o x)]} in the D-metric topology as n — o0o. O

2 Viable Approximation Theorems

The existence of solutions of viability problems (1.1) and (1.2) will follow from
some viable approximation theorems by applying the standard methods presented
in the proofs of the existence of strong and weak solutions for stochastic functional
inclusions. We shall now present such approximation theorems. In what follows,
it will be convenient to denote by d(x, A) the distance dist(x, A) of x € X
to a nonempty set A C X. We shall also denote the set-valued functional
integrals Jy; [Sp®)] and J;,[Sr¥)] of IF-nonanticipative set-valued processes ® €
L3(T, 2, RY) and W € L2(T, Q, R by [! ®.dr and ] W.dB,, respectively.
We shall prove the following approximation theorems.

Theorem 2.1. Assume that F and G satisfy condition (i) of (H) and let Pr =
(2, F,F, P) be a complete filtered probability space with a filtration F =
(Fi)o<i<t Such that there exists an m-dimensional F-Brownian motion
B = (B))o<i<r defined on Pg. Let K : [0, T] — CI(R?) be such that a set-valued
process (IC(t))o<: <7 is continuous. If

1_ t+h t+h
lim ianD x +clg (/ F(r,x)dt + / G(z, x)dB,) JKE+h)| =0
t t

h—0+
2.1)

for every (t,x) € Graph(K?) and every ¢ € (0,1), where K°(t) = {u €
L2(2, F.RY) : d(u, K(1)) < &} forevery0 <t < T, then for every ¢ € (0, 1) and
Xxo € K(0), there exist a step function 0, : [0, T] — [0, T]| and F-nonanticipative
stochastic processes f° = (f,*)o<i<r and g§° = (8°)o<i<T such that

(i) ¢ € Sp(F o (xf080,)) and g° € Sp(G o (x* o 6,)), where x°(t) = xo +

[y fede + [ g°dB, for0 <1 < T;
(i) E[dist(x®(0:(2)), K(0:(t))] < efor0 <t <T;
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(iii) E [l(xS(s)) (h(xS(z)) — h(xe(s)) — fvt(Efngh)rdt)] — 0forevery0 <s <
t <T, 1 €CyRR)and h € C}(R, R).
Proof. Let ¢ € (0,1) and xo € K(0) be fixed. Select § € (0,&) such that

f;“ m?(t)dr < &2/2% and D(K(t + 8),K(t)) < ¢/2% fort € [0,T]. By virtue
of (2.1), there exists /¢ € (0, §) such that

_ /’lo /’lo Sh()
D | xo +cly, / F(z, xo)dt + / G(t,x0)dB; | ,K(hy) | < —.
0 0

Then for every uy € xo + clp, (foho F(z, xo)dz + Oho G(Tyx())dBr)’ one has

d(ug, K(ho)) < eho/2% Letty = 0 and t; = hy. Select arbitrarily B ® Fo-
measurable selectors £ and g° of F o x¢ and G o x, respectively. It is clear that
f% € Sp(F o xp)) and g° € Sp(G o xp)). Let x°(t) = xo + fot £t + fot gdB,
forO0 <t <t,.Putf,(t) =0for0 <t <t and 0.(t;) = t;. We have

ho

ho
x®(ho) € xo + cly2 (/ F(z, xp)dt + / G(z, xo)dBT) .
0 0

Therefore, d(x*(ho), K(ho)) < eho/2? < &/22. Together with the properties of the
number § > 0, it follows that

d(x*(1), K@) < [|x*(@) — x*(ho) || + d(x* (ho), K(ho))
<e&/2+ eho/2* + D(K(ho).K(t)) < ¢
for0 <t < 1t;, because

[l (@) = x*(ho) |

A 1/2 A 1/2
0 0
<Vho [E / |fr°|2dc] + [E / |g8|2dr} <2¢/2 =¢/2
0 0

for0 <t < t;. Let x; € K(#;) be such that ||x®(ho) — x1|| < d(x?(hg), K(hg)) +
e/ 22, Hence, by Theorem 3.1 of Chap. 2, it follows that

E[dist(x* (ho), K(ho))] = inf{ E|x*(ho) —ul : u € K(ho)} <
E[|x*(ho) — x1]] < (E[|x*(ho) — x1’D"/* = [|x*(ho) — x1|| < &/2> + &/2* < &.

By Itd’s formula, for every /i € Cbz(]Rd, R)and 0 <s <t < T, we have

B 0) = hx o) = [ @ghiede = 323 [ (ol 0!,

i=1j =179
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a.s., where B = (Bl, ..., B™)and g? = (g?j (7))axm- But x°(s) is Fs-measurable.
Thenfor0 <s <t <f,i =1,2,...,n,and j = 1,2,...,m, we have

E 1 [t ey oan! | = E | [C160 00 oy s | = o

Therefore, for every [ € C,(R?,R), h € CZ(R?,R),and 0 < s < < 11, we get

100 (o) = b = [ @) | <o

Suppose hg < T. We have (hg, x(ho)) € Graph(K?) because d(x°(ho), K(ho))
< ¢. Therefore, we can repeat the above procedure and select 7, € (0, §) such that

_ 11+ t1+h ch
D | x¥(ho) + clr / Fr.x* (ho))dr+ / Ge.x“(ho))dBe) Kty | = 0.
t n

Similarly as above, we can select ! € Sp(F ox®(ho)) and g' € Sp(G ox®(hy)),
and define x*(t) = xg(tl)—i-ftt1 ftldr+ftt1 gldB, fort; <t <1y, wheret, = t;+h;.
We can also extend the function 8 on [0, £,] by taking (z) = ¢, for#; <t < t, and
0:(t2) = t,. We have

X(6) € x*(11) + cl, (/t2 F(r,x%(t)))dr + /tz G(r, xf(zl))dBt) .

5] 1

Therefore, for every t; <t < t,, one has
d(xf(1), K(1)) < [|x°(t) — x*()|| + d(x°(12), K(12)) + H(K(12), K(1)) < &,

because similarly as above, we get | x°(¢) — x°(f)|| < ¢/2 forevery t; <t < 1.
Similarly as above, for every I € C,(R?,R), h € CZ(R*,R), and 1} <s <1 < 5,
we also get

E [l(xs(s)) (h(xg(t)) — h(x%(s)) — / (]L_"igsh)rdt)} =0.

Let x, € K(t,) be such that [[x*(12) — x2|| < d(x°(t2),K(t2)) + &/2% Hence it
follows that E[dist(x®(#2), K(¢2))] < e. Let us observe that the above relations
can be written in the form presented in (i)—(iii) above with T = t,, where f* =
]l[OJfl)fo"‘]l(tlsl‘z]f17g‘9 = 11[(l,tl)go"‘]l(tlsl‘z]gl and x*(7) = x0+f0t fradt"_fot 8:dB:
forO <t <t,.

Continuing the above procedure, we can extend the function 6, and processes
f¢, g°, and x® on the whole interval [0, 7] such that the above conditions (i)-
(iii) are satisfied. To see this, let us denote by A, the set of all extensions of the
vector function &, = (6, 1, g%, x%) on [0, ] x Q2 with o € (0, T] and 6| o] nOt
depending on w € 2. We have A, # 0. Let us introduce in A, the partial order
relation < by setting ¢ < ®F if and only if @ < § and ®* = ®f| ), where ®*
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and CIJf denote extensions of &, to [0, «] and [0, B], respectively. Let P be a set
containing an extension ®¢ and all its restrictions ®%||p 4 for every a € (0, «]. Itis
clear that each completely ordered subset of A, is of the form P determined by
some extension ®Y. Itis also clear that every set P¥ has ®2 as its upper bound. Then
by the Kuratowski—Zorn lemma, there exists a maximal element W, of A, defined
on [0,b] x Q with b < T.Ithas tobe b = T. Indeed, if it were b < T, then we
could repeat the above procedure and extend W, to the vector function I, defined
on [0, y] x Q with b < y. It would be ¥, < I',, in contradiction to the assumption
that W, is a maximal element of A,. Then ®, can be extended on [0, 7] x € in such
a way that conditions (i)—(iii) are satisfied. O

Remark 2.1. Theorem 2.1 is also true if instead of (2.1), we assume that

1_ t+h t+h
lim infED X +cly, (/ F(r,x)dt) + / G(t,x)dB.,K(t+h)| =0
t t

h—0+

2.2)

for every (¢, x) € Graph (K?). |

Theorem 2.2. Assume that F and G satisfy conditions (H1). Suppose Pp =
(2, F,F, P) is a complete filtered probability space with a filtration I =
(Ft)o<i<t such that there exists an m-dimensional I-Brownian motion B =
(B))o<i<r defined on Py. Let K : [0,T] x Q — CI(R?) be F-nonanticipative
such that IC(t) # O for every 0 <t < T and (K(t))o<:<r is continuous. If (2.1)
is satisfied for every (t,x) € Graph(K), then for every ¢ € (0,1), a € (0,T),
xo € K(0), and F-nonanticipative processes ¢ = (¢;) o<i<r and ¥ = (Y1)o<i<T
with ¢, € L2(Q, Fr,R?), v, € LX2(Q, Fr.R>™) for 0 <t < T and (¢o, Vo) €

F(0, x0) x G(0,x0) a.s., there exist a partition 0 = ty < t; < --- < t, =a of
the interval [0, a], a step function 6, : [0,a] — [0, a], IF-nonanticipative stochastic
processes f° = (f)o<i<a and g° = (g7)o<i<a, and a step stochastic process

= (Zg(t))()sffa such that

(i) tj+1—t; <6, where§ € (0, ¢) is such that max (ftt+8 k*(r)dr, ftH_5 mz(t)dr)

< &2/2% and D(K(t + 8), K (1)) < &/2 fort € [0,T];

(ii) 0:(t) =t fort; <t <tjy1forj =0,1,...p—2and 0:(t) = t, for
tpt1 <t <a

(iti) f° € Sp(F o (x* 0 6)), g € Sp(G o (x* 0 0,)), |¢(w) — ff(w)| <
dist(¢y, F(z, (x* 0 0,)(1))) and [ () — g/ (w)| < dist(Yr, G(z, (x* 0 6:)(2)))
for (t,w) € [0,a] x Q, where x*(t) = xo + [y (£ +2°(x))dt + [, g¢dB; a.s.
for0 <t <a;

(iv) (0] < &/2% for 0 <1 < a, where ||Z*(1)||> = Elz(1)[*;

(v) d(x*(0:(1)), K(6:(1)) = 0 for0 <t < a;

i) d (xS(t) — x%(s),cly (ff F(z,(x* 0 0)(x))dr + [' G(r. (x* o @)(r))dBt))

<eforevery) <s <t <a.
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Proof. Letxy € K(0),e € (0,1)and a € (0, T) be fixed. Without loss of generality,
we can assume that 7 = 1. By virtue of (2.1), there exists iy € (0, §) such that

— ho ho 8]1()
D | xo +cly, / F(z, xo)dt + / G(t,x0)dB; | ,K(hy) | < 2
0 0

where § > 0 is such that condition (i) is satisfied. By virtue of Corollary 2.3 of
Chap. 2 applied to Xp-measurable multifunctions F o xo and G o xo, and given the
above processes ¢ and v, there exist ° € Sp(F o xo) and g° € Sp(G o xo) such
that |, (0) — f,*(@)| = dist(¢r, F (2, x0)) and |y (@) — g ()| = dist(y:, G(t, x0))
for (¢, w) € [0,a] x Q. Similarly as in the proof of Theorem 2.1, we define now the
function 6, by taking 6.(t) = 0 for 0 < t < t; and 6.(t;) = t;, where t; = hy.
Hence it follows that f° € F(z,0.(t)) and g° € G(z, 0:(1)) a.s. for 0 <t < 1,. Let
yo = xo+ fo' f0dt + [;' g’dB; a.s. We have

h() h()
Yo € X0 + cl, (/ F(z, x0)dt + / G(z, xo)dBt) .
0 0

Then d(yo, K(ho)) < eho/2%, which by Theorem 3.1 of Chap. 2, implies that
d?(yo.K(ho)) = E[dist(yo, K(ho,-)]*. Therefore, by Corollary 2.3 of Chap. 2,
there exists an JF;,-measurable random variable x; such that x; € K(hy, ) forw € Q
and

o — x1]| = (E [dist*(yo. K(ho.-)]) "= d(yo. K(ho)) < sho/22.

Define z2 = (1/ho)(x1 — yo) a.s. for 0 <t < #;. We get ||z°(¢)]| < (1/ ho)||x1 —
yol| < (1/ ho)(eho/2%) = e/4for 0 <t < t;. We define now a process x* on [0, ;)
by setting

t t
x5(t) = xo + / (f° 4+ (v))dr + / g%dB, as. for 0<t<t.
0 0

We have x°(0) = xo € K(0) and x*(11) = yo + ho(1/ho)(x1 — yo) = x1 € K(ho),
which is equivalent to d(x°(6.(t), K(6.(¢))) = 0 for ¢ € [0,#,]. Similarly, for 0 <
s <t < t;, one obtains

d |:x£(t) —x%(s), clg, (/t F(z, (x* 0 0,)(1))dr + /t G(t,(x*o 98)(t))dBr)i|

N s

t t t t
<d [/ £t + / gYdB,,cly, (/ F(z,x%)dr + / G(r,xo)dBr)i|

e
+(t —s) sup ||Z%(D)]] < 1 <e.

0=<t=n
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If hy < a, we can repeat the above procedure. Applying (2.1) to (¢1,x1) €
Graph(K), we can select 1, € (0, §) such that

o t1+hy t1+hy 8]’11
D | x +clg, / F(‘L’,Xl)d‘lf—i-/ G(t,x))dB, |, K(t; + hy) | < .

- 2
5] n 2

Similarly as above, we can select x, € K(t; + hy), f' € Sp(F o x1), and g' €
Sp(G o x1) such that |¢; (w) — f;'(@)| = dist(¢;, F(z,x")) and |, (0) — g/ (®)| =
dist(yy, G(¢, x")) for (t,w) € [0,a] x Q and ||y1 — x2|| < eh1/2%, where y, =
X1+ fttll+hl Sflde —i—ft?ﬂl gldB, a.s. We can extend the function 6, and the process
z° on the interval [0, 2] by setting 6.(t) = ¢; fort; <t < 1, 8(t;) = 1, and
() = (1/hy)(x, — yy) fort; <t < tp, where t, = t; + h,. Define on the interval
[0, ;] the process x° by setting

t t
x4(t) = xo +/ (ff +2°(x))dr +/ gidB; as. for 0 <t <1,
0 0

where ¢ = ll[oﬁtl)fo + ]l[,lmfl and g°¢ = ]l[o.tl)go + ]l[,lmgl. Similarly as
above, we obtain d(x®(6.(¢),C(6:(¢))) = 0 for 0 < ¢t < £, and d(x°(6:(12),
K(6:(t2))) = 0, because x°(t2) = x2. Then d(x°(6.(¢),K(6.(z))) = O for
0 <t < t. Itis clear that ||zf|] < &/4 < e forevery 0 < t < . Then for
every 0 <s <t <1, we get

d |:x£(t) —x°(s), ¢l (/t F(z, (x% 0 6:)(t))dr + /t G(z,(xfo 95)(t))dBT):|
<d [/f fede + /t g°dB..cly (/t F(t, (x° 0 8,)(1))dt

+[Co o caaonuan )|+ -0 s < <o

0=<r=n

Suppose that for some i > 1, the inductive procedure is realized on [0,#;) C
[0, a] and the above step function 6, and stochastic processes z° f¢, g°, and x° are
extended to [0, #;] and [0, ¢;), respectively, with the above properties on this interval.
Denote by S; the set of all positive numbers % such that 2 € (0, min(8,a — ¢;)) and

o ti+h ti+h eh
D | x; + cl, / F(zr,x;)dt + / G(t,x;)dB; |, K@t + h) | < 55
ti t

where x; = x°(t;). We have S; # 0 and supS; > 0. Choose h; € S; such that
supS; — (1/2)supS; < h;. Putt;y | =t; + h; and let f' € Sp(F ox;)and g’ €
Sr(G ox;) be such that |¢; (w) — f, (w)| = dist(¢;, F(¢, x;)) and |y, (w)— g} ()| =
dist(y,, G(¢, x;)). We can now extend 6., f*, and g° to the interval [0, 1] by
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taking 0,(t) = t; fort; <t < tix1 and O:(ti41) = tiy1, £ = f!, g° = g for
ti <t < tiy1. Then |¢(w) — ff(®)| < dist(r, F (2, (x* 0 6:)(1))) and | (w) —
gi ()| = dist(Y, G(t, (x* 0 6:)(1))) for (1, w) € [0, 1;41) x 2, where

t t
x(t) = xo + / (ff+ 2 (x))dr + / g:dB;
0 0
a.s. for0 <t <t with
lit1 fit1
@)= /h;) ()C,'.H —X; — frsd‘lf —/ gidBT)
ti

asfort; <t <tj4, where x;4+| € K(t;+1) is such that

ti

<eh;/4.

fit1 fit1
X + fldr +/ gidB; — Xi41
ti

t

Similarly as above, we obtain ||z°(¢)|| < e/4 fort; < t < t;4,. Hence it follows
that

d |:x€(t) — x°(s),cly, (/[ F(t,(x® 0 6;)(1))dr + /t G(t,(xf o @)(r))dBf)]

<d [/t fidr + /t gidB, cly, (/f F(z,(x® 0 6,)(r))dr + /t G(t,(x%0 05)(1))dBT)]

&
+(@—s) sup [[Z°(z]| < - <e
0<t=<n 4

forO0 <s <t <ty and d(x°(0:(¢), K(6,(¢t))) =0for0 <t < t,.

We can continue the above procedure up to n > 1 such that ¢, € [a, 1]. Suppose
to the contrary that such n > 1 does not exist, i.e., that for every n > 1, one has
0 < t, < a. Then we obtain a sequence (#;)72, converging to t* < a such that for

every0 < j <k <i+ 1landi > 0, we have
179 179
/ g:dB, / ZF(r)dr
ti ti

173
/ Sfidr
lj J J
<2/
Py

J

[1x* (1) = x* @Il < + +

tk 1/2
mz(r)dt) +e-(tx—1t;)/4.

Let x; = x°(t;) and x; = x®(#) for0 < j <k < oo.Forevery0 < j <k < oo,

one gets
k
e — x| <2 /
i

, 1/2
mz(t)dr) +e-(t —1t))/4.
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Then (x;)%2, is a Cauchy sequence of L*(2, Fr, R¢). Therefore, there exists x* €
L2(Q, Fr,R?) such that ||x; — x*|| — 0 as i — oo. By the continuity of the
set-valued mapping C, we get (t*,x*) € Graph(K). Then by (2.1), there exists
h* € (0, min(8, 1 — a)) such that

o t*4n* t*4-h* ch*
D | x* +cly, / F(r,x")dr + / G(t,x")dB, | .Kt* +h*)| < >
t t*

*

Let N > 1 be such that for every i > N, one has 0 < t* —¢; < min(h*,a, 1),
lx;i — x*|| < eh*/(2°A4), and D(K(;),K(t*)) < eh*/2° where A = 1 +

1/2 1/2
2 ( s kz(z)dz) and 7. € (0,1 — a) is such that ( Jrtn mz(r)dt) < eh*/27
for every 0 < t < a. For every i > N and arbitrarily taken ¢ € Sp(F o x;) and
¥ € Sp(G o x;), we can select f* € Sp(F ox*)and g* € Sp(G o x*) such that
p; () — f;" (@) = dist(¢", F(z,x¥)) and |y} (@) — g/ ()| = dist(y*, G(z, x™))

for (t,w) € [t;,t* + h*] x Q. In particular, this implies
. t*+h* t*+h*
I — f*2 < E / h(F(t. x). F(t, x*)Pdt < / K2(0)x — x*|dr
ti ti
and
) t*+h* t*+h*
W — f*I2<E / (Gt x). Gt x*)Pdr < / K2(0)lx — x*|Pdr
ti ti

fori > 1. Therefore, for every i > N, we get

ti+h* ti+h*
d | x; +/ ¢;dr+/ YidB,, K(t; + h™)
11 1

i+h* i+n* t*4n* t*4+h*
Xi +/ ¢;dr+/ YidB, | — | x* +/ fr*dr—i-/ grdB, ‘
ti ti t* t*

*4n* *4n*
+d |:x* +/ fr*dr +/ g:‘dB,,IC(l* + h*)i| + DK™ + 1™, Kt + 1™))
r* t*
[t
| wi-gnan.
4

t* t*
/ fr*d.[ + / g;kdBT
ti ti

t*+h* t*4n*
+d |:x* +/ frde +/ grdB,, K(1t* + h*)} + DK™ + 1™, K(t; +1™))
t* t*

.

t*+hn* )
<l — ")l + H/ @ — f)dr) +
1

[ N n*
/ ¢le‘[ / I//;dBf
ti+h* ti+h*

+ +

t*+hn* 172
<l —x™ [+ 2/ @* — 1) + 2* [y — x| (/ kz(r)dr)
tn
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t*+n*

i +h*

1/2 o 1/2
+ (l + M) (/t mz(r)dr) + (1 + M) (/, mz(f)df)

sh*  eh* n 1z
+25 + S s 12/ + / K (2)de I — x|
1i

i

* 1 1/2
+ SZL() < {1 +2 (/0 kz(r)dr) } lxi —x*|
4t 1/2 r* 1/2
+ (1 + /" = z,-)) max {[/ mz(r)dri| , [/ m2(r)dr] }
ti+h* ti

i

¥ +h* 1/2 * 172 *
+ (1 +V(@* —t,-)) max {|:/t+h* mz(f)dfi| |:/r: mz(f)df] } +282h_6

£+£<_€h* .A+2._€h* +2.£ £
26 26 — 26. 4 2.26 26 26
eh* 5 eh* eh*
26 Ty T

+2
=5.

Then for every i > N, we have

ti+h* ti+h* eh*
D | x; + clg, / F(z,x;)dt +/ G(t,x;)dB, | . K@ +h*) | < >
ti t

and 1* € (0,min(8,1 —a)). Butt; < a foreveryi > 1. Thenl —a < 1 —¢; for
every i > 1. Therefore, for every i > N, we have h* € (0, min(8, 1 — ¢;)). Hence
it follows that 4* € S; for every i > N. Then for every i > N, one has (1/2)h* <
(1/2)sup S; < h; = ti+1 — t;, which contradicts the convergence of the sequence
(#:)72,. Therefore, there exists p > 1suchthat0 =# <t <:-- <, = a. O

Remark 2.2. Theorem 2.2 is also true if instead of (2.1), we assume that (2.2) is
satisfied for every (¢, x) € Graph(K). |

Theorem 2.3. Assume that F satisfies conditions (H,), and let Pp = (2, F, I, P)
be a complete filtered probability space with a continuous filtration I = (F;)o<i<T
such that Fr = F. Suppose K : [0, T] x @ — CI(R?) is an F-adapted set-valued
process such that K(t) # @ for every 0 < t < T and such that the set-valued
mapping K : [0, T] — CI(IL(2, Fr, RY) is continuous. If

t
liminf - D [S (E |:x + / F(z, x)drm_hD K@ — h)} -0 (23)
h—0+ I’Z t—h

is satisfied for every (t,x) € Graph(K), where S(E[x + ftt_h F(r,x)dt|F=p]) =
{E[x +f:_h frdt|Fi—n] o f € S(coF ox)}, then for every € € (0, 1), xr € K(x7),
a € (0, T) and measurable process ¢ = (¢p)o<i<r such that ¢, € L(Q, Fr,R?)
for0 <t < T and ¢v € F(T, x7) a.s., there exist a partitiona = t, < t,| <
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.o <ty <ty =T of the interval [a, T], a step function 0, : [a,T] — [a,T], a step
stochastic process 2° = (Z)a<i<t, and a measurable process f* = (f)a<i<T On
Pr such that

(i) t; —tj41 <8, where § € (0, ¢) is such that max{ft’H k(t)dr, ftt+8m(r)dt}
< &?/2%and D(K(t + 8),K(t)) < e/2fort € [0,T];

(ii) |z2|| < e/2foreverya <t < T, where ||Z}|| = E|Z¢|;

(iii) 6.(t) =tj_1fort; <t <tj_jandO:(t;) =t;jwithj =1,...,p—1and
O:(t) =tp_1 fora <t <t,_y;

(iv) f¢ € S(coF o(xf0by)), |¢:(w)— ff(w)| = dist(¢;, co F(z, (x* 0 6,)(t))) for
(t,w) € [a,T] x Q, where x(t) = E[xr + ftT Srdo|F] + ftT Zdr a.s. for
a<t<TandS(coFo(x*08,))={f eL(a,T]xQ,pr ® Fr.RY): f, €
co F(t,x%(0:(t))) as. for a.e. a <t <T};

(v) E[dist(x*(s), E[x*(t)+ [ F(z,(x* 0 0.)(r)dt|F])] <efora<s <t <T,

(vi) d(x*(0:(1)), K(O:(1))) =0fora <t <T.

Proof. Lete € (0,1),a € (0,T), xr € K(T), and a measurable process ¢ =
(¢)o<:<T be given. By virtue of (2.3), there exists /g € (0, min(8, 7)) such that

T
D [S (E [xr + / F(z, xT)dz|fT_h0D (T - ho)} < ¢eho/2.
T—ho

Lett; = T — hy. By virtue of Corollary 2.3 of Chap. 2, there exists f° € S(co F o
x7) such that ¢, (w)— £,°(w)| = dist(¢; (w), co F(t, xr(w)) for (t,w) € [t;, T]x Q.
Let yo = E[xr + ftlT fodz|F,] as. We have yo € E[xr + ftlT F(t,x7)dt|F,]
a.s., i.e., yo € S(E[xr + f,lT F(t,x7)dt|F;,]). Therefore, d(yo, K(t1)) < eho/2.
Similarly as above, we can see that there exists x; € K(¢;) such that E|yy — x;| =
E[dist(yo, K(t1-))] = d(yo,K(t1)) < eho/2. Then [yo — x1|| < eho/2. Let
7, = 1/ho(x1 — yo) as. fort; <t < T.Wehave ||zf|| < (1/ho)llyo—x1]| <&/2.
Furthermore, by the definition of z¢, it follows that ftT Ztdt is JF; -measurable.
Define 0.(t) = T fort; < ¢t < T and 6(f;) = t;. One has f° € coF(t, xr)
as.forty <t <T.Let

T T
x(t) = E [xr +/ frodt|]-',:| +/ Fdr
1 t

fort)y <t <T.Wehave x°(T) = xr and x°(¢1) = yo + ho(1/ho)(x1 — yo) = x1.
Therefore, d(x*(0(1)), K(0(t))) = Ofort; <t < T and |¢(w) — f2w)| =
dist(¢; (w), co F (¢, x*(6:(t)(w))) for (¢, ) € [t1, T] x 2. By the definition of x*, it
follows that it is IF-adapted. By properties of £ and x¢, it follows that

E [dist (xg(s), Elxr + /t F(r,xs(é’(r)))dt|]-}])i| <eg/2 for 1 <s<t<T.

s
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If t; > a, we can repeat the above procedure starting with (¢1, x;) € Graph(K).
Immediately from (2.3), it follows that there exists an &; € (0, §) such that

5[S(E[x1 + /l F(z, x)dt|F—n ), Kt —hl):| <eh/2.
t—hy

Similarly as above, we can select /! € S(coF o x;) and x, € K(¢; — h;) such that
|p: (@) — f;}(w))| = dist(¢; (@), co(F o x1)(t, w) for (t,w) € [ty — hy, 1] x Q2 and
ly1 — x2|| < ehy/2%, where y; = E[x; + fttll—hl frldf|}',l_hl] and t, = t; — hy.
We can now extend the step function 6, and step process z° on the interval [t5, T
by taking 0,(f2) = £, 0:(t) = ti fort, <t <ty and ¥ = (1/h1)(x2 — y1) for
t, <t < t;. We have ft1 € coF(t,0.(t)) as. fort, <t < t;. We can also extend
the process x° to the interval [t,, T'] by taking

1 1
xf(t)=FE [xl +/ frldr|]-',i| +/ Zdr
t t

as. for t, < t < t;. We have d(x°(6,(¢)),K(0()) = Ofort, <t < T,
because x°() = xp. Let f¢ = L f' + Lo /0 We have x°(r) =
Elxr + ftT frdt|F] + ftT Zfdr as. for t, < t < T. Similarly as above, we
can verify that f,° € coF(t,x°(0,(¢))) as. fort < ¢t < T and |9, — f°)| <
dist(¢;, co F(z,x%(6(t))) a.s.fort, <t < T.Furthermore, d(x%(0:(1)), K(0:(1))) =
0 and E[dist(xg(s),E[f; F(z,x*(0(0)))dt|Fs] < ¢/2forty <t < T and
1 <s <t < T,respectively.

Suppose that for some i > 1, the inductive procedure is realized. Then there
exist ;1 € [a,T) and x;—; € K(t;—1) such that we can extend the step function
0, step process z°, and process f° to the whole interval [t;_;, T'] such that f* €
co F(t,x°(0:(¢)) and |¢; — f°| = dist(¢;,co F(t,x°(0,(2))) for t;—y <t < T.

Define ’ ’
xf(t)=E |:xT +/ ftadr|]-',i| +/ Zdr
t t

as.fort;_ <t <T.Wehave x°(t;_1) = xi_1, d(x°(0:(t)), K(6:(¢))) = 0, and

1
E |:dist (xs(s), E[x°(t) + / F(r,(x{_; 0 95)(r))dr|]:s])i| <eg/2
s
fort;i_ <s<t<T.
Denote by S; the set of all positive numbers 4 € (0, min(§, #;—;)) such that

o li—1

D |:S(E[x€(t,-_1) + / F(t,xi—)dz|Fi,_—n)), K:(Zi_l)i| <eh/2.
ti—1—h

By the properties of x¢, we have x®(t;—;) = x;— and (¢;—1, x°(¢;—1)) € Graph(K).

Therefore, by virtue of (2.3), we have S; # @ and sup S; > 0. Choose h;—; € S;

such that (1/2)sup S; < h;—;. Putt; = t;_; — h;—;. We can extend again the step

function 6., step process z°, and processes f* and x° to the interval [¢;, T] such
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that d(x®(0.(¢)), K(0(¢)))) = Ofort; <t < T, and f*° € coF(¢t,x°(8,(¢)) and
|p: — f,°| = dist(¢;, coF (¢, x*(0,(¢)) a.s. for t; <t < T. Furthermore,

Edist(e* (s). E[x* (1) + / P (x5, 0 6) ()t D] < £/2

s

fort; < s <t < T. We can continue the above procedure up to n > 1 such that
0 <1, <a < t,—. Suppose to the contrary that there does not exist such n > 1,
i.e., that for everyn > 1, one hasa < t, < T. Then we can extend the step function
0., the step process z°, and the stochastic processes f*¢ and x° to the interval [z,, T']
for every n > 1 such that x°(¢,) € K(t,) a.s. for every n > 1 and so that the
above properties are satisfied on [t,, T'] for every n > 1. By the boundedness of
the sequence (¢,)°2 |, we can select a decreasing subsequence (f;){2, converging to
t* € [a, T]. Let (x;){2, be a sequence defined by x; = x°(f;) a.s. for every i > 0.
In particular, we have x; € K(¢;) a.s. for every i > 1. For every j > k > 0, we
obtain

t

i j
Bl — x| < E|ELer 7] - Bl 7 + [ m@ar + [ moar
t* t

*

T T
+(tk—tj)E|zf|+E‘E [/ ﬁdt|]-',k:|—E|:/ ffdt|]—",f*:|
t* t*

T T
—I—E‘E[/ ﬁdﬂﬁ,}—E[/ ffdrlff*]
t* r*

By the continuity of the filtration IF, it follows that lim; x>0 E|xx — x;| = 0.
Then (x;){2, is a Cauchy sequence of L(2, Fr, RY). Therefore, there is x* €
L(Q, Fr,R? such that |x; — x*|| — 0asi — oo. But x; € K(t;)) for every
i > 1 and K is continuous. Then (t*,x*) € Graph(K), which by virtue of (3),
implies that we can select 2* € (0, min(8, *)) such that

f*

D |:S(E[x* + / F(t,x*)dt|Fpe—p+]), K@* — h*)] <eh*/2°.
PR

Similarly as above, for every i > 1 and ¢; € S(coF o x;), we can select f* €
S(coFox*) suchthat |¢/ — £,*)| = dist(¢!, F(t,x*)) as. forevery t*—h* <t < t*.
By the continuity of the filtration IF, we obtain || E [x™*|F;,—p* ]| — E [x* | F=—p*]|| = O
and

r* r*
E |:/ f:dtlﬁi_h*] ) |:/ ft*df|]:t*—h*:|
R PR A

asi — oo. Let N > 1 be such that for every i > N, we have 0 < 1 —
t* < min(h*,$), ||x;i — x*|| < eh*/(2° - A), D(K(t; — h*),K(@* — h*)) <

E

-0
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eh* 25, | E[x* | Fypr] — Elx*| Foempe |l < eh*/25, E [0 |gilde < eh* /25,
E [\ |g1de < eh*/2%,and E|E[[\_ju f2dt|Fyopr]=ELf5_je f3dT|Forpl] <

eh*/2°, where A = 1 + fOT k(t)dt. By the properties of the multifunction F(¢,-)
and selector f* of F o x*, it follows that

t*

i sy (@ — )] = E/

61— f*|de
R
t*
<E / B((F (s x1), F(t,x*))di
t*—h*
t*

< |lxi —x*| k(t)dt.

t*—h*

For everyi > N, one gets

t X
d (E[xi +/t ¢l dt|Fy ). Kt —h*))

,'—h*

t*

ti X
Elx + [ idr|F, ] — Elx* + [ F5dt| Foe ]
1,

L —h* 1% —h*

<E

l‘*
+d (E[x*+/
t*—h

But for every i > N, we have

. ft*drm*_h*],/ca*—h*)) FDK(* — h*), K(t: — h*)).

t*

ti .
E [xi +/ ¢idf|}—n—h*i| -E [X* +/ fz*df|}—r*—h*:|
ti—h* t*—h*

< E|E[(xi = x*) [ Fynsll + EIE[X7|Fype] — E[x"| Frx ]|

t*—nh*
E |:/* (¢lr - fr*)df|-7:ti—h*:|

t*—h*
E [ / f:drm-_h*} —E [ / fr*drm*_h*}
t* PR

Therefore, for every i > N, one gets

E

t*—nh* t )
+ E +E/ |¢;|dr+E/ |@: |dt
f t*

i—h*

4+ E < 6eh*/2°.

ti .
d [E [x,- + [ ¢>;dr|ff,-_h*} ,/C(zi)} < 8eh*/25 = eh*/ 2,
ti—h*



198 5 Viability Theory

which implies that

DS(E + / P el Fyne) K1) < eh* )22

ti—h*

But t* < ¢ for i > 1. Therefore, for every i > N, one has h* € S;;; and
(1/2)h* < sup S;+1 < h; = t; — t;+1, which contradicts the convergence of the

sequence (¢;){2,. Then thereisa p > 1 suchthata =¢, <t,,....ti <to =T.
Taking f* = 1j4s, 1 /7 + Z?=p—2 11(,fl.+1,,,.]f", we obtain the desired selector of
coF o (xf 0 0,). |

Remark 2.3. The above results are also true if instead of continuity of the set-valued
mapping K, we assume that it is uniformly upper semicontinuous on [0,T1],i.e., that
limg—q supy<, <7 D(K(t + ), K(2)) = 0. O

Conditions (2.1) and (2.3) can be expressed by certain types of stochastic tangent
sets. To see this, let (z, x) € Graph(K) and denote by Tk (¢, x) the set of all pairs
(f.g) € L2([t, T] x Q, L, RY) x L2([t, T] x Q, Xk, RY*™) such that

t+h t+h
liminf(1/h)d | x +/ fodr +/ g dB. Kt +h) | =0,
- t t

where X, denotes the o-algebra of all IF-nonanticipative subsets of [¢, 7] x Q. In
a similar way, for (¢,x) € Graph(K®) and ¢ € (0, 1), we can define a backward
stochastic tangent set 'TKb (t, x) with respect to a filtration ' = (F;)o<s<r as the set
of all measurable processes f € IL([0, T] x Q, Fr, R¢) such that

I}ilrgérif(l/h)d (E [x + [_h ffdrlﬁ_h} Kt — h)) =0.

Lemma 2.1. Let Py be a complete filtered probability space. Assume that F and
G satisfy condition (i) of (H,) and let K : [0,T] x @ — CI(R?) be F-adapted
and such that K(t) # @ for every 0 < t < T. The condition (2.1) is satisfied for
every (t,x) € Graph(K) if and only if S.(F o x) x Si(G o x) C Tx(t,x) for
every (t,x) € Graph(K), where Si,(F o x) and Si(G o x) denote the sets of all
restrictions of all elements of Sy(F o x) and Sp(G o x), respectively, to the set
[t, T] x Q.

Proof. 1t is clear that if (2.1) is satisfied for every (t,x) € Graph(K), then S
(F ox) x Si(G ox) C Tk(t,x) for every (t,x) € Graph(K). Let S.(F o x) x
Sip(Gox) C Tk(t, x) for fixed (¢, x) € Graph(K). Then for every (f. g) € SL(F o
x) X SE(G o x), one has

t+h t+h
liminf(1/ )d |:x + / fudr + / . dB. K( + h)} —o.
h—> t t
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Thus for every (¢, x) € Graph(K) and (f, g) € SL(F o x) x Si.(G o x) and every
e € (0, 1), there exists h;;f’g (t) € (0, &) such that

t+h t+h .
d |:x T / fudr + / ¢edB, Kt + h)} < hfe(@) &
t t

Let h, = sup{hi®(t): (f.g) € Sp(F ox) x Sp(G ox)), 0 <t < T}. We have

t+h t+h
d [x + / frdt + / g.dB,, K(t + h)} <hg-¢
t t

for every (¢, x) € Graph(K) and (f, g) € Sp(F o x) X Sp(G o x). Then

. t+h t+h
D|x+ / F(r,x)dt + / G(t,x)dB;,K(t + h) | < h.e,
t t

which implies that

t+h t+h
lim inf(1 /h)D (x + / F(t.x)dt + / G(t,x)dB,, K(t + h)) =0
n—> t t

for every (¢, x) € Graph(K). |

Remark 2.4. The results of Theorems 2.1 and 2.2 also hold if instead of condi-
tion (2.1), we assume that [SL(F o x) x SL(G o x)] N Tk(t,x) # @ for every
€€ (0,1)and (¢, x) € Graph(K®). |

There are another types of stochastic tangent sets. For a given IF-adapted set-
valued stochastic process K : [0,T] x @ — CI(R?) and (t,x) € Graph(K),
by Sk (¢, x) we denote the stochastic “tangent set” to K at (¢, x) with respect to
the filtration I defined as the set of all pairs (f,g) € L*([t,T] x 2, 26, RY) x
L2([t, T] x Q, 24, RP™) such that for every (f,g) € Sk(t,x), there exist a
sequence (h,)°2, of positive numbers converging to 0 and sequences (a")7,
and (b")72, of d- and d x m-dimensional [F-adapted stochastic processes a” =
(a)o<t<r and b" = (b))o<: <1, respectively, such that

n>1

t+hy, t+hy
supd x—i—/ (ft—i—af)dr—i-/ (8 +b)dB. . K(t +h,) | =0
t t

and
) 1/2

lim (1/hy)E 0.
n—o0

t+h, t+h,
/ a'dr + / b"dB,
t t
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We shall show that such stochastic tangent sets are smaller then Tk (¢, x), i.e.,
that Sk (¢, x) C Tk(¢, x) for every (¢, x) € Graph(K).

Lemma 2.2. Let K : [0,T] x @ — CI(R?) be an F-adapted set-valued process
such that KC(t) # @ for every 0 <t < T. For every (t,x) € Graph(K), one has
Sk (t,x) C Tk(t, x).

Proof. Let (t,x) € Graph(K) be fixed and (f,g) € Sk(t,x). There exist a
sequence (h,)52, of positive numbers converging to 0 and sequences (a")72,
and (b")72, of d- and d x m-dimensional IF-adapted stochastic processes a” =
(a)o<i<t and b" = (b]")o<:<r, respectively, such that the above conditions are

satisfied. For every n > 1, one has
2:|

t+hy t+h,
d? | x+ Sedr + [ g:dB. . K(t + h) | <2E
t

t

t+h, t+h,
/ atar + [ baB,
t

t

Hence, by the properties of sequences (a");2, and (b");2,, it follows that

t+h, t+hy
lim (1/h,)d |:x + / Sfedr + / g.dB., K(t + h)} =0,
n—>oo t t

which implies

t+h t+h
1}11m012f(1/h)d (x + / fedr + / g:dB., K(1 — h)) =0.
- t t

Then (f, g) € Tx(t, x) forevery (f, g) € Sk(t, x). |

Denote by 7k (¢, x) that stochastic “contingent set” to K at (¢, x) with respect
to IF, defined as the set of all pairs (f, g) € L*([t, T] x , 24, RY) x L2([r, T] x
Q, X4, R4>*™) such that for every such pair ( f, g), there exist a sequence (hn)52,
of positive numbers converging to 0 and sequences (a,)>, and (b,)°2, of d- and
d x m-dimensional F;-measurable random variables a, and b,, respectively, such
that x + ftt+h” feds + ftH_h” gsdB; + hya, + /h,b, € K(t + h,) foreveryn > 1
and max {E|a,,|2, (l/hn)E|b,,|2} — 0 as n — oo. Similarly as above, we obtain
the following result.

Lemma 2.3. Let K : [0,T] x @ — CI(RY) be an F-adapted set-valued process
such that KC(t) # @ for every 0 <t < T. For every (t,x) € Graph(K), one has
tx(t,x) C SK(I, x).

Proof. Let (t,x) € Graph(K) be fixed and ( f, g) € tk(t, x). There are a sequence
(hp)52, of positive numbers converging to zero and sequences (a,)52, , (b,)72, of
F,-measurable random variables a,, : @ — R< and b, : Q@ — RY*™ such that the
above conditions are satisfied. For every n > 1, one gets

n>1

t+h, t+hy
sup d [x + / (fy +ay)ds + / (gs + bn)dBy, K(t + h)] =0
t t
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and

5172

E < hy[Elas?]"? + Vi [Eba?]".

t+hy, t+hy
/ a,ds + / b,dB;
t t

Hence, for n > 1 sufficiently large, it follows that

t+h, t+h,
/ a,ds + / b,dB;
t t

which implies that

)12
1/2

(/h) | E < [Ela,2]"* +[1/haE|ba?]"*

,11/2

—0 as n— o0.

(1/ ) | E

t+h, t+h,
/ a,ds + / b,d By
t t

Then (f, g) € Sk(t, x). |

Remark 2.5. The results of Theorems 2.1 and 2.2 are also true if instead of
condition (2.1), we assume that [SL(F o x) x SL(G o x)] N tx (¢, x) # @ for every
e € (0,1)and (¢, x) € Graph(K?). |

3 Existence of Viable Solutions

We shall prove now that if F and G satisfy conditions (#), then for every continu-
ous set-valued IF-adapted process K : [0, T] x @ — CI(R¥), the viability problems
SFI(F,G,K) and BSDI(F, K) possess viable strong solutions. Furthermore,
the existence of viable weak solutions of SFI(F,G, K) is considered. Similarly
as above, we define KC(¢) and K®(¢) by setting K(t) = {u € L*(Q,F, RY) :
d(u,K(t)) = 0} and K°(¢) = {u € L2(Q, F;,RY) : d(u, K(t)) < &}.

Theorem 3.1. Let Pp = (2, F, I, P) be a complete filtered probability space and
B = (B/)o<t<r an m-dimensional IF-Brownian motion on Py. Assume that F and
G satisfy conditions (H,) and let K : [0, T] x Q — CI(R?) be an F-adapted set-
valued process such that K(t) # 0 for every 0 <t < T and such that the mapping
K:[0,T] 3t — K(t) € CLA(X, Fr.RY)) is continuous. If Py, B, F, G, and
K are such that (2.1) is satisfied for every (t,x) € Graph(K), then the problem
SFI(F,G, K) possesses on Py a strong viable solution.

Proof. Let a € (0,T) and select arbitrarily xo € K(0). Let uy € L*(Q2, Fo, RY)
and vy € L2(Q, Fo, R¥*™) be such that uy € F(0,x0) and vy € G(0, xo) a.s. By
virtue of Theorem 2.2, for &; = 1/2%? and stochastic processes ¢! = (¢!)a</<r
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and ¥! = (Y)a<i<r defined by ¢! = ug and ! = vy a.s. foreverya <t < T,
there exist a partition 0 = 7} <} <--- < tpll_l < t;l = a, a step function 6;, and
stochastic processes f!, g!, and z! such that conditions (i)~(v) of Theorem 2.2 are
satisfied with

t t
x'(1) = xo +/ (f} +zhyde +/ gldB,
0 0

as. fora <t < T. Similarly, for &, = 1/2 and ¢> = f! and ¥?> = g!, we can
select a partition 0 = 1§ < 1} < --+ < tiz_l < tﬁl = a, a step function 6,, and
stochastic processes f 2 gz, and 72 such that conditions (i)—(v) of Theorem 2.2 are
satisfied with

t t
X(0) = xo + / (f2 + 2)de + / ¢2dB,
0 0

a.s. fora <t < T. Continuing this procedure for gy = 1/2%/2 and ¢* = f+~!
k — k=1 : " _ ik k k ko _

and Y* = ¢g"7", we obtain a partition 0 = 15 <1 <--- <1, | <1, =a,astep

function 6, and stochastic processes f k gk, and z* such that conditions (i)—(v) of

Theorem 2.2 are satisfied for every k > 1 with
t t
x¥(t) = xo +/ (fF +)dr +/ gkdB,
0 0

as. fora <t < T such that d(x*(6;(t)), K(6x(¢)) = 0. For every k > 1, one
has f* € Sp(F o (x*"1 0 6;-1)), g € Sp(G o (x* ' 0 6py)), [fF — f*7!] <
dist( £, F(r, (1 (Oe1(1)), 18F = 7' < dist(gf ™", G, (XF 1 (G- (1)),
(@)1 < ex, and

d (xk(t) — xK(s), cly, ( / t F(t, (x* 0 0p)(x))dr + f t G(r,(x* o Gk)(r))dBT)> <&

for 0 < s <t < a. Furthermore, one has |6; (t) — 0x_1(t)| < 8x_1,

8e® k—112 2 4 5@ k—112 2 4
[9 S5 1Pdr < ,/20 and /9 185 Pde < €2, /2

k—1(1) e—1(7)

for 0 <t < a, because by (i) of Theorem 2.2, §; € (0, &) is such that

1468k 1+68k
max | sup / k*(t)dr, sup / m?(7)dt 58%/24.
t t

0<s<t<T 0<s<t<T

We shall now evaluate E[sup,, <, [xkF1(r) — x¥(¢)|?] for k = 1,2,...and 0 <
t < a. Let us observe first that E[supy, <, |x* (6x+1(7)) — x* (6 ())[)] — 0 as
k — oo, because |0+1(t) — Ok (¢)| < 8 and

Ok+1(1)
Elsup |50 (0) — X @) <3G+ 1) [ m(@)de + &2

0<r<t Ok (1)
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fork =2,3,...and 0 <t < a. Hence it follows that

E[sup [x*T'(0) —x*(0)"] < ae} + B / t K2(T)E[ sup |x*(u) — x* " (w)*]dr
0

0<t<t 0<u<rt

forevery k = 1,2,...and 0 < t < a, where xto = xp, @ = (4T)*> and B =
22(T + 1).

Now, by the definition of the processes x! and x°, one gets E [Supp<, < |x!(7) —
X)) < y with y = 22[(T + 1) J; m2(t)dt + T?]. Therefore,

E[sup |1¥(0) — ¥ (0] < ae? + By / K(0)de

o<t<t

for 0 < ¢ < a. From this and (3), it follows that

E[ sup |x3(r) — x2(1))?] <ot82+0l,381/ k2(t)dr + g (/ kz(r)dt) .

0<r=<t
Similarly, we get

E[sup |x*(t) = x*(0)[]

o<t<t

2.2 2 3 : 3
< ozs% + O{,BSZ/ k2(t)dt + 05'328 (/ kz(‘f)dt) + y% (/0 kz(‘f)dt)

for 0 < ¢ < a. By the inductive procedure, we obtain

E[ sup [x"T!(x)—x"(0)|*]

0<t<t

< Olé‘” + aﬂan 1 / kz(r)dr + aan_z T (/ kz(r)dr) + 4 y (/ kz(r)dr)
2 t n t n
[14—8,3/ K (v)dt + —— ®p) ’3) (/0 kz(r)dr) ++%(/0 kz(r)dr) }
< Me2exp [85 /t kz(r)dr]
0

forn > 1 with M = max(«, y). By Chebyshev’s inequality, we obtain

P |: sup [x"t (1) = x"(v)| > 2_"]

0<t<a

t
<2"E[ sup |x"T(z) — x"(v)|?] < 2*"e>Mexp [8,8/ kz(t)dri|
0

0<t<T

=2"Mexp [8,3 /t kz(r)dti| .
0
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Therefore, by the Borel-Cantelli lemma, one gets

P |: sup |x"t1(7) — x"(r)| > 27" for infinitely many n:| = 0.
0<t=<a
Thus for ae. @ € Q, there exists ng = ng(w) such that supy.,, [x"T1(r) —
x"(t)] < 27" for n > ng(w). Therefore, the sequence {x”" (')_(65)}311 is uni-
formly convergent on [0,a] for a.a. € R, because x"(¢)(w) = x'(t)(w) +
',;11 [xk 1 (1) (w) — x*(t)(w)] for every 0 < ¢t < T and a.a. ® € . Denote
the limit of the above sequence by x;(w) for 0 < ¢ < a and a.a. w € Q. By virtue
of (3), it follows that E[sup,. , |x"*!(t) —x"(7)|?] = 0 as n — oo. On the other
hand, by the properties of sequences ( f k),fozl and (f* )iz, we get

/O E[f5H — f4Pldr < fo E[(F(r. ( 0 8)(0). F(r. (™ 0 6o (0)]dr

< /akz(f)E[ sup |x*(u) — x* 7! (w)*Jde
0

o<u<rt

and
[O E[lgt+! — g Pldr < [0 E[H(G(x. (+* 0 6)(1))). G(z. (¢~ 0 6_) (0))]dr

< f a KX(D)E[ sup [x* () — x* 7 (w)|P)de
0

o<u<rt

for every k = 0,1,.... Hence it follows that (fk)]f‘;l and (gk)]f"=1 are Cauchy
sequences of Banach spaces (L?([0,a] x Q,Xp,R9),| - |) and (I%([0,a] x
Q, g, RY™), | - |), respectively. Then there exist f € L2([0,a] x , Zp, RY)
and g € I2([0,a] x Q, Zp, R*") such that | /" — f| — O and |g" — g| — 0 as
n — oo.Let y, = xo + fot fedt + fot g.dB; for0 <t < a.Foreveryn > 1, one
gets

E[sup |x"(1) = y:|’]

0<t<a
2
[ sup

0<t<a

<3T|f"— fI* +3|g" —glI* + 3T %,.

/ (S~ fode + / (8" - g)dB, + /0 I (0)de

Therefore, we have E[supy, ., |x"(1) — y:|*] — 0 and E[supy.,, |x" (1) —
x(t)]*] = 0asn — oo, which implies that x(t) = y, a.s. forevery 0 < ¢ < a.
Then x(t) = xo + f; f;dt + [, g:dB; a:s.for0 < ¢ < a. Now, by Lemma 1.3 and
Theorem 2.2, we obtain
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0<d (x(t) —x(s),cly, (/t F(r,x(t))dt + /t G(z, x(r))dBT))

N S

< Ge@) = x(s)) — (X" (1) —x" ()]
+d (x" (t) — x"(s),cly, (/t F(r,(x" 0 6,)(7))dr + /t G(r,(x" o Gn)(r))dBr))

t t
+ H (cl]L (/ F(z, (x" 0 6,)(z))dr + / G(t,(x" o Gn)(r))dBr) ,

N s

cly, (/t F(r,x(t))dr + /t G(‘E,X(‘[))dBl—))

T 1/2
<2/x" = x| +en + (1 +VT) (/ kz(t)dt) [[x" 0 6y — x|
0

forevery0 <s <t <a.But

Ix" 0 6, — x|I> = E[|Ix" (6,(1)) — x(1)]]
< E[sup [x"(w) —x()|’] + E[Oiltl<p X (6 (1)) = x()]].

0<u<a

Then lim,, o ||x" © 6, — x|| = 0. Therefore, forevery 0 < s <t < a, we get

d (x(t) —x(s),clp, (/t F(r,x(r))dt + /t G(r,x(t))dBr)) =0.

Thus . .
x(t) —x(s) €cly (/ F(z,x(7))dt +/ G(r,x(t))dBr)

N N
forevery 0 < s <t < a. In a similar way, we get d(x(¢), (t)) < ||x" — x| +
d(x"(),K()) < ||x" — x| + &, foreveryn > 1 and 0 < s <t < a. Therefore,
d(x(t),K(t)) = 0 forevery 0 <t < a, which by Theorem 3.1 of Chap. 2, implies
that x(¢) € K(¢,-) a.s.for0 <t < a.

We can now extend our solution to the whole interval [0, T']. Let us denote by
A the set of all extensions of the viable solution x of W(F , G, K) obtained
above. We have A, # @, because we can repeat the above procedure for every
interval [a, @] with & € (a, T). Let us introduce in A, the partial order relation <
by setting x < zif and only if a, < a, and x = z|[,], Wwhere a, € (0,T) is such
that z is a strong viable solution for SF1(F, G, K) on [0,a,], and z|j,] denotes
the restriction of the solution z to the interval [0, a,]. Let ¥ : [0,a] — R? be an
extension of x to [0, «] with @ € (a, T') and denote by PY C A, the set containing
¥ and all its restrictions ¥|[o g) for every B € [a, o). It is clear that each completely
ordered subset of A is of the form P;// , determined by some extension ¥ of x. It is
also clear that every P! has Y as its upper bound. Then by the Kuratowski—Zorn
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lemma, there exists a maximal element y of A . Ithas to be a, = T'. Indeed, if we
had a, < T, then we could repeat the above procedure and extend y as a viable
strong solution § € A, of SFI(F,G, K) to the interval [0, b] with a,, < b, which
would imply that y < &, a contradiction to the assumption that y is a maximal
element of A,. Then x can be extended to the whole interval [0, T']. |

In a similar way, by virtue of Remark 2.2, we can prove the following existence
theorem for SFI(F, G).

Theorem 3.2. Let Pp = (2, F, I, P) be a complete filtered separable probability
space and B = (B;)o<i<r an m-dimensional I'-Brownian motion on Pg. Assume
that F and G satisfy conditions (M) and that K : [0,T] x @ — CI(RY) is IF-
adapted such that K(t) # 0 for every 0 < t < T and such that the mapping
K :[0,T] - CIIL2(Q, Fr.RY)) is continuous. If Py, B, F, G, and K are such
that (2.2) is satisfied for every (t, x) € Graph(K), then the problem

X, —xg €clp{ ! F(r,x.)dt} + [/ G(r.x;)dB, for 0<s <t <T,
x; € K(t) as. for t €[0,T],

possesses on P a strong viable solution. O

We shall now prove the existence of weak viable solutions for stochastic
functional inclusions. The proof of such an existence theorem is based on the first
viable approximation theorem presented above.

Theorem 3.3. Assume that F : [0,T] x R — CI(R?) and G : [0,T] x R —
CI(RY>*™) are measurable, bounded, convex-valued and are such that F(t,-) and
G(t,-) are continuous for a.e. fixed t € [0,T]. Let G be diagonally convex
and let K : [0,T] — CI(R?) be continuous. If there exist a complete filtered
probability space Pr = (2, F,F,P) and a d-dimensional IF-Brownian motion
on Pr such that (2.1) is satisfied for every ¢ € (0, 1) and (t, x) € Graph(K?), then
SFI(F,G, K) possesses a weak viable solution.

Proof. Let xo € K(0) be fixed and let &, = 1/2". By virtue of Theorem 2.1, we can
define on [0, T'] a step function 6, = 6., and IF-nonanticipative stochastic processes
fr=fo,g" =g, and x!' = xo + [y f'dt + [y g"dB, for 0 < ¢ < T such
that conditions (i)—(iii) of Theorem 2.1 are satisfied. In particular, for every m > 1,

n>1,and0 <s <t < T, we obtain
2m t 2m
] + CZE [ / g"dB, }

t
/ft”dr
t 2m
/g?dBr .
s

t m
<C!T"E |f"?dr ) + C2E
m T m
s

E[x"(1) = x"(s)]" < C;E[
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where Cnl1 and C,ﬁ are positive integers depending on m > 1. Let us observe that
} < M*Q2m—-1)N|t—s|™.

t m t 2m
E(/ |f:|2dr) < M?"|t—s|™ and ED/ g"dB

Therefore,

Elx"(t) —x"(s)]"" < [CAT™ + CE2m — D] M*" |t — 5™

forevery 0 < s <t < T and n,m > 1. In a similar way, we can verify that
there exist positive numbers K and y such that E|x{j|* < K. Then the sequence
(x™)22, of continuous processes x" = (x})o<;<7 satisfies on the probability space
(2, F, P) the assumptions of Theorem 3.5 of Chap. 1. Furthermore, immediately
from Theorem 2.1, it follows that E[dist(x" (6,(¢)), K(6,(?)))] < &, and

E [z(x"(s)) (h(x”(t)) — h(x"(5)) — / (]L_X’;gnh)rdt):| =0

forevery0 <s <t <T,l € C;(RY,R),and h € C}(RY,R).

By virtue of Theorems 3.5 and 2.4 of Chap. 1, there exist an increasing
subsequence ()52, of (17)72,, a probability space (Q.,F, P), and d-dimensional
continuous stochastic processes X"+ and X on (fl,f", IS) for k = 1,2,... such
that P(x")~' = P(x")~! for k = 1,2,... and supy, 7 [¥" — %] — 0 as
k — oo. Let F'* = (),op0 (X% :u < t—i—s)forO <t =<TandletF, =
(]—' o<i<r. For every k > 1, x"¥ and X¥"* are continuous IF- and F, -adapted.
Furthermore, immediately from (3), it follows that ML # 0 for every k > 1,
which by Lemma 1.3 of Chap. 4, implies that M ;é @ This, by Theorem 1.3
of Chap. 4, implies the existence of an IF- Brownlan motion B on the standard
extension 73 = (Q, F. I, P) of the filtered probability space (2, F,IF, P), with
[ (}1:)0<z<r defined by F, = (), 0 (¥ () : u < t+¢), such that (75 £, B)isa
Weak solution of SFI(F, G) with % (&) = X (7 (@)) satisfying the initial condition
Pyl = Px;", where 7 : Q — Qs the (]—" F)-measurable mapping described in
the definition of the extension of (Q, F , IF, P), because the standard extension PF
is also an extension. Similarly as in the proof of Corollary 3.2 of Chap. 1, we obtain
P(es 0 x")™1 = P(e; 0 X")~! with s = 6, (t) for 0 < ¢ < T. This, together with
the inequality E[dist(x"*(6,,(¢)), K(6,, (¢)))] < 1/2" for k > 1 and properties
of the sequence (X"*)p2,, implies that E[dist(X,, K(¢))] = 0. Similarly as in the
proof of Theorem 1.3 of Chap. 4, by the definition of the process X, it follows that
Px~!' = Px7!, which implies that P(e; 0%)™! = P(e;0%) ! forevery0 <t < T.
Therefore, E[dist(X;, K(¢))] = O forevery 0 < ¢ < T. Thus &, € K(t), P-as. for
0<t=<T. O
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Remark 3.1. The results of Theorem 3.3 again hold if instead of (2.1), we assume
that (2.2) is satisfied. It is also true if instead of (2.1), we assume that [Sf.(F o x) x
Si(G o x)] N Tk(t,x) # @ forevery (t,x) € Graph(K?) and ¢ € (0, 1). O

In a similar way as above, we obtain immediately from Theorem 2.3 the
following existence theorem.

Theorem 3.4. Let Py = (2, F,F,P) be a complete filtered probability space with
a continuous filtration F = (F;)o<i<t sSuch that Fr = F. Assume that F satisfies
conditions (M) and let K : [0,T] x @ — CI(R?) be an F-adapted set-valued
process such that KC(t) # 0 for every 0 <t < T and that the mapping K : [0, T] >
t — K(t) € CI(IL(Q, Fr.RY)) is continuous. If P, F, and K are such that (2.3) is
satisfied for every (t, x) € Graph(K), then BSDI(F, K) possesses a strong viable
solution.

Proof. Let xy € K(T) and a € (0,T) be fixed. Put x* = E[x7|F] as. fora <
t < T andlet O = ( f,o)asth be a measurable process on Pr such that f[O €
coF(t, (x0 0 6p)(t)) a.s. forae.a <t < T,where Oy(t) =T fora <t < T. Let
¢ = f[O a.s. fora.e.a <t < T. By virtue of Theorem 2.3, for &; = 1/2%/? and
the above process ¢ = (¢ )q,</<7, there exist a partition a = tzln < t1171—l <<
1t} <1t} =T, astep function 6, : [a, T] — [a, T], a step process z! = (z})a<i<7,
and a measurable process f! = ( f,l)as,fr on P such that conditions (i)—(vi) of
Theorem 2.3 are satisfied. In particular, f;' € coF(z, (x! 0 6))(1)), | f,' = f°] =
dist(f,°, coF (t, (x' 0 6;)(1))) as. forae.a <t < T and d(x'(1),K(t)) < & for
a<t<T,because d(x'(t), K@) < |x'(t) =x"(0@))| +d(x"(0(r)), K(O(1))) +
D(K(B(1)),K(t)) < &1, where x} = El[xr + [ f°dt|F] + [| z'dr as. for
a <t < T.In a similar way, for ¢ = (f,l)asth and &, = 1/23, we can define
a partition a = tﬁz < tlzjz_l <<t} <1 =T,astep function 6, : [a,T] —
[a,T], a step process 2> = (z?)a<:i<7, and a measurable process f2 = (f;})a<i<r
such that f;> € coF (1, (x2 0 01)(2)), | /> — ;1] = dist(f;!, coF (¢, (x? 0 62)(1))) a.s.
forae.a <t < T andd(x*(t),K(t)) < & fora <t < T, where x> = E[xr +
ftT flde|F] + ftT z2dr as. fora <t < T. Furthermore, fori = 1,2, we have

E [dist (x’(s), E [xi(t) + /t F(r,(x' o 9,<)(t))df|]~]j|):| <e

as. fora < s <t < T. By the inductive procedure, for ¢y = 1/23](/2 and
oF = (ftk)ustsT, we can select for every k > 1, a partition ¢ = t’p‘k <
th_y < - <tf <1 = T,astep function 64 : [a,T] — [a,T], a step
process F = (Zf)ugzsr, and a measurable process fk = (ﬂk)asth such that
£k e coF(t, (x* 0 6)(1)), | £F — £F71 = dist(fF, coF(t, (x* o 6;)(1))) as. for
ae.a <t <Tandd(x*(t),K(t)) < e fora <t <T,where

T T
xF = Elxr +/ flde| 7] +/ Fde
t t
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a.s. fora <t < T. Furthermore,

E [dist (o [xka) A 9k><r>)drmm <o

s

fora < s <t < T.Of course, x* € S(F,R™) for k > 1. By Corollary 3.2 of
Chap. 3 and the continuity of the filtration I, the process x is continuous for every
k > 1. Furthermore, by the properties of the sequence ( f* i<, one gets

T T
|xk+‘(r)—xk(z>|sE[/ |ff—ff—‘|2dc|ﬁ}+ / B+ — dr
t t

T
<E [ / dis?(fF"'¢o F(z, (x* o Qk)(f)))dt|]:,i| + 8T%¢;

t

T
<ag +E [ k(z) sup |x*(s) —xk_l(S)IdrIff} .
t 1<s<T
a.s.fora <t < T, where « = 8T2. Therefore,

T
sup |x* () — x¥(u)| < aer + sup E|: k(z) sup |x*(s) —xk_l(s)|dr|}'u:|

t<u<T t<u<T T<s<T

T
<owaegr+ sup E |: k() sup |xK(s) —xk_l(s)|dr|}'u:|
t

t<u<T T<s<T

as.fora <t <Tandk = 1,2,.... By Doob’s inequality, we get

t<u<T t T<s<T

r 2
E|: sup E[| k(z) sup |x*(s)— k_l(s)|dt|]-'u]:|

<s<T

T 2
< 4E [/ k(t) sup |xk(s)—xk_l(s)|dr]:|

fora <t < T. Therefore, foreverya <t < T andk = 1,2,..., we have
E[ sup |x**'(w) —x*W)|] < o’ +/3/ K*()E[ sup |x"(s) = x*"(s)]]dx,
t<u<T T<s<T

where f = 8T. By the definitions of x' and x°, we obtain E[sup, <7 |x'(u) —
W) )< L,where L=T fOT m?(t)dt. Therefore,

t<u<T

T
E[ sup |x*(u) —x"(w)|*] < 20%e] + LB / k2(t)dt
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fora <t < T. Hence it follows that

T T T
E[ sup |x*(u) —x*(w)|*] < 2ae3 + aﬂe%/ k2(t)dr + Lﬂz/ k(1) (/ kz(u)du) dr

t<u<T
52 T
< 202 sz + o ﬂsl / 2(r)dr + L— (/ k2(f)dr)

fora <t < T. By the inductive procedure, forevery k = 1,2,...anda <t < T,
we obtain

2

E[ sup |x" ') —x" )]

t<u<T

2 n n
< M52|:1 + (Sﬂ)/kz( r)dr + ( ’3)2 (/Zz(r)dr) . (8ﬂ) (/kz( )dr ) }
< Mé&lexp |:8ﬂ/ k2(t)dri| ,

where M = max{2a?, L}. Hence, by Chebyshev’s inequality and the Borel-
Cantelli lemma, it follows that the sequence (xk),‘:o=1 of stochastic processes
(xk(#))a<i<7 is for ae. @ € Q uniformly convergent in [a, 7] to a continuous
process (x(¢))a</<7. We can verify that the sequence (f* )52, is a Cauchy sequence
of L([a, T] x 2, Br ® Fr,R™). Indeed, for every k = 0,1, 2, ..., one has

[ CEfA - fHde
0
< /0 " ELH(F (. (¢ 0 6)(0). F(r. (" 0 i) (0)lde
/ k(x)E[ sup |x*(u) — x*7'(u)|]dz,
0<u<rt

which by the properties of the sequence (x* )72 . implies that ( f k )72, is a Cauchy
sequence. Then thereisan f € I([a, T]x2, Br ® Fr, R™) such that | f¥— f| — 0
ask — oo.Lety, = E[xr + ftT frdz|F]as. fora <t < T.Foreveryk > 1, we
have

E[ sup |x(®) =yl < E[ sup_|x(&) = x| + E[ sup_|x*(t) — y]
a<t<T a<t<T a<t<T

IA

a<t<T a<t<T

T
E[ sup |x(r) —xF |]+E|: sup E[ Ifk frldrl]-",]:| +/ E|Z|dr

IA

,
E[ sup |x(t) —xF||+ E |:E[/ | fF— j;ldrl]-',]] + Tel
0

a<t<T

IA

ELswp |v(0) = xf |1+E/ | £} = filde + Té,
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which implies that E{sup, ., <7 [x(t) — y/[] = 0. Then x(¢) = E[xr + ftT Jfrdt|Fr]
as.fora <t <T.Now,foreverya <s <t <T, we get

E [dist (x(s), E [x(t) + [ F(‘E,x(‘[))dr|]—'{|)i|
< E[lx = ol + 8 fas (0.5 [0 + [ Fed @z )]
+E [H (E Ul F(r,x’f(@k(r)))dzm} E Ur F(z, xk(r))dzm]ﬂ
+E [H (E [/l F(r,xk(z))drm] JE [/l F(r,x(r))dzm])]

T T
<|lx* = x| + e + E/ k@)|x* (6 (1)) — x*(0)|dr + E/ k@)|x* @) — x(1)|dr.

But

E[Ix*(0c (1)) — x* ()] < |Ix* —x|] + E[ sup X0k (1)) — x* ()]

a=

foreveryk > landa <t < T.Then

E [dist (x(s), E |:x(t) + /t F(t,x(r))drlst}
T
< ( / k(z)dt)
0

T
+x* = x| + e < [|x* = x|| (1 +/ k(t)dz) + &
0

E[ sup |x(8(t)) = x* ()] + E[ sup IX(t)—XfI]§

a<t<T a<t<T

foreveryk > landa <s <t < T. Thus

E [dist (x(s),E |:x(t) + /f F(r,x(t))dt|]-}:|):| =0

foreverya < s <t < T.In a similar way, we also get that d(x(¢), /C(¢)) = 0 for
everya <t < T.Then x is a strong solution of BSDI(F, K) on the interval [a, T]
foreverya € (0,T).

We can now extend the above solution to the whole interval [0, T]. Let us
denote by A, the set of all extensions of the above-obtained viable solution x of
BSDI(F,K). We have A, # 0, because we can repeat the above procedure for
every interval [, T] with @ € (0, a] and get a solution x* of BSDI(F, K) on the
interval [or, T']. The process z = L[y 4)x* + 14 7)x is an extension of x to the interval
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[, T']. Let us introduce in A, the partial order relation < by setting x < zif and only
ifa, < a, and x = z|j,, 17, where a,,a; € (0,a) are such that x and z are strong
viable solutions for BSDI(F, K) on [a.,T] and [a,, T], respectively, and z|(,, 1]
denotes the restriction of the solution z to the interval [a,, T]. Let ¥ : [o, T] — R?
be an extension of x to [o, 7] with @ € (0,a] and denote by P! C A, the set
containing v and all its restrictions ¥ |(g,7] for every 8 € («, a). It is clear that each

completely ordered subset of Ay is of the form P} determined by some extension
Y of x and contains its upper bound 1. Then by the Kuratowski—Zorn lemma, there
exists a maximal element y of A. It has to be a, = 0, where a,, € [0, T) is such
that y is a strong viable solution of BSDI(F, K) on the interval [a,, T']. Indeed, if
we had a,, > 0, then we could repeat the above procedure and extend y as a viable
strong solution § € Ay of BSFI(F, K) to the interval [b, T] with0 < b < a,.
This would imply that y < &, a contradiction to the assumption that y is a maximal
element of A,. Then x can be extended to the whole interval [0, T']. |

Remark 3.2. Theorem 3.4 is also true if K(t) = {u € IL(Q,F RY) tu €
K(t)}. In such a case, instead of (2.3), we can assume that liminf,—o+ D(x +
[, F(z.x)dt,K(t)) = 0 for every (¢, x) € Graph(K).

Proof. Forevery (t,x) € Graph(K), f € S(coF o x), and u € K(t), we have

t
E (‘E[x + / Fidt| Fi] —
t—h

) _E (’E[x + / :h Fidt|Fi] = ElulFis]

<E (E [ E_hD

t
X +/ Sfrdt —u
t—h

t
X +/ Sfrdt —u
t—h

=F

Therefore, d(E[x + [, fidt|Fiop]. K(t)) < d(x + [, frdt, K(t)) for every
f € S(coF o x). Then

D [S(E[x + /l ) F(z, x)dt| F_p)), K(t — h)] <D [x + /l F@x0de K = h)]

for every (t,x) € Graph(K). Thus, liminfy—or D(x + [, F(r,x)dr,
IKC(t — h)) = 0 implies that (2.3) is satisfied. |

Remark 3.3. The results of the above existence theorems are also true if instead
of continuity of the set-valued mapping K, we assume that it is uniformly upper
semicontinuous on [0, T'], i.e., that lims—¢ supy, <7 D(K(t +6),K(z)) =0. O

It can be verified that the requirement X; € K(¢) a.s. for 0 < ¢t < T in the
above viability problems is too strong to be satisfied for some stochastic differential
equations. For example, the stochastic differential equation dX;, = f(X;) + dB;
with Lipschitz continuous and bounded function f : R — R does not have any
solution X = (X;)o<s<r With X; belonging to a compact set K C R a.s. for every
0 <t < T. This is a consequences of the following theorem.
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Theorem 3.5. Let Pr = (,F,F, P) be a filtered probability space and B =
(B:)i>0 a real-valued T-Brownian motion on Pg. Assume that § = (&)o<i<71 is
an Ité diffusion such that d& = o (§)dt + dB;, & = 0 for 0 <t < T. Then
P[] a2(§)dr < oo}) = 1 and P({f] a>(B)dt < oo}) = 1 if and only if &
and B have the same distributions as Cr-random variables on Pg, where Ct =

C([0,T],R).

Example 3.1. Let f : R — R be bounded and Lipschitz continuous. Let Py and B
be as in Theorem 3.5. Put o, (x) = f(e;(x)) for x € Cr, where Cr = C([0,T],R)
and e, is the evaluation mapping on Cr, i.e., ¢,(x) = x(¢) forx € Crand 0 <t <
T. Assume that K is a nonempty compact subset of R such that 0 € K and consider
the viable problem

dX; = f(X))dt +dB, a.s. for 0<t<T,
X; € K a.s. for t €[0,T].

Suppose there is a solution X, an It6 diffusion, of the above viability problem
such that Xy = 0. By the properties of f, we have fOT f2(X;)dt < oo and

fOT f2(B;)dt < oo a.s. Therefore, by virtue of Theorem 3.4, for every 4 € B(Cr)
with PX~1(4) = 1, one has PX~!'(4) = PB~'(A). By the properties of the
process X, one has P({X; € K}) = 1. But P{X; € K}) = P({e/(X) €
K}) = PX!(e;!(K)), where ¢, is the evolution mapping. Hence it follows that
1 = PX e Y (K)) = PB™!(e;'(K)) = P({B: € K}) < 1, a contradiction.
Then the problem (3) does not have any K-viable strong solution.

Remark 3.4. We can consider viability problems with weaker viable requirements
of the form P({X; € K(¢)}) € (e,1) for0 <t < T and ¢ € (0, 1) sufficiently
large. Solutions to such problems can be regarded as a type of approximations to
viable solutions. a

4 Weak Compactness of Viable Solution Sets

Let us denote by X (F, G, K) the set of (equivalence classes of) all weak viable
solutions of SFI(F, G, K). We shall show that for every F, G, and K satisfying
the assumptions of Theorem 3.3, the set X'(F, G, K) is weakly compact, i.e., the
set X° (F, G, K) of distributions of all weak solutions of SFI(F, G, K) is weakly
compact subsets of the space M (Cr) of all probability measures on the Borel o-
algebra B(Cr), where Cr =: C([0, T], RY).

Theorem 4.1. Assume that F and G are measurable, bounded, and convex-valued
such that F(t,-) and G(t,-) are continuous for a.e. fixed t € [0,T]. Let G be
diagonally convex and K : [0, T] — CI(R?) continuous. If there exist a complete
filtered probability space Py = (2, F, I, P) with a filtration ¥ satisfying the usual
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conditions and an m-dimensional T-Brownian motion on Pr such that (2.1) is
satisfied for every ¢ € (0,1) and (t,x) € Graph(K?), then the set X(F, G, K)
of all weak viable solutions (Py, x, B) of SFI(F, G, K) is weakly compact.

Proof. By virtue of Theorem 3.3, the set X (F, G, K) is nonempty. Similarly as in
the proof of Theorem 4.1 of Chap. 4, we can verify that X (F, G, K) is relatively
weakly compact. We shall prove that it is a weakly closed subset of the space
M(Cr). Let (x")22, be a sequence of X'(F, G, K) convergent in distribution. Then
there exists a probablhty measure P on B(Cr) such that P(x")™! = P asr — oo.
By virtue of Theorem 2.3 of Chap. 1, there are a probability space (Q.F.P)and
random variables ¥ : Q — Cr and X : Q — Cr forr = 1,2,... such that
P(x")™' = P forr = 1,2,..., P(¥)™' = P and lim, o0 Supy, 7 | X —
%] = 0 with (P.1). By Theorem 1.3 of Chap. 4, we have Yo # 0 for every
r > 1, which by Theorem 1.5 of Chap. 4, implies that M’}G # 0. Therefore, by
Theorem 1.3 of Chap. 4, there exist a standard extension 75@ = (fz, F , ﬁ‘ 13) of
(§2, F.F, }3) and an m-dimensional Brownian motion 75]@ such that (73@, X, 1§) isa
weak solution of SF I (F, G, i) with an initial distribution 1 equal to the probability
distribution PX;'. Similarly as in the proof of Theorem 3.3, this solution is defined
by X(®) = X(w(x)) ford € Q. Similarly as in the proof of Theorem 4.1 of Chap. 4,
we obtain P(x")~' = P(X)~! as r — oo, which by the properties of the sequence
(&), implies that P(¥")"! = P(X)~! as r — oo. By the properties of the
sequence (x")72,, we have E"[dist(x" (1), K(¢))] = 0 for every r > 1, which
implies that E[dist(x"(¢), K(t))] = O for every r > 1. Hence, by the continuity
of the mapping dist( -, K(¢)) and propertles of the sequence (X");2,, it follows that
E[dlst(x,, K(t))] = 0. Thus (P]F, X, B) is a weak solution of SFI(F G, i), with
an appropriately chosen initial distribution p, such that x” = X and X, € K()
with (P.1) for every ¢t € [0, T]. Then (PF,x B) e X(F,G,K),and X(F,G,K) is
weakly closed. |

Remark 4.1. The results of Theorem 4.1 continue to hold if instead of (2.1), we
assume that [SL(F o x) x SL(G o x)] N Tx(t, x) # @ for every (¢,x) € K° and
e€ (0,1). |

5 Notes and Remarks

The viability approach to optimal control problems is especially useful for problems
with state constraints. There is a great number of papers dealing with viability
problems for differential inclusions. The first results dealing with viability problems
for differential inclusions were given by Aubin and Cellina in [5]. The first result
extending to the stochastic case of Nagumo’s viability theorem due to Aubin and Da
Prato [7]. Most of the results concerning this topic have now been collected in the
excellent book by Aubin [6]. Interesting generalizations of viability and invariance
problems were given by Plaskacz [88]. A new approach to viability problems for
stochastic differential equations was initiated by Aubin and Da Prato in [8] and [9]
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and by Millian in [79]. Later on, these results were extended by Aubin, Da Prato, and
Frankowska [10, 12] in the case of stochastic inclusions written in differential form.
Independently, viability problems for stochastic inclusions were also considered
by Kisielewicz in [54] and Motyl in [85]. Viability theory provides geometric
conditions that are equivalent to viability or invariance properties. [llustrations of
viability approach to some issues in control theory and dynamical games with
the problem of dynamic valuation and management of a portfolio, can be found
in Aubin et al. [13]. The stochastic viability condition presented in Example 3.1
was constructed by M. Michta. The results contained in the present chapter are
mainly based on methods applied in Aitalioubrahim and Sajid [3], Van Benoit and
Ha [18], and Aubin and Da Prato [9]. The main results of this chapter dealing
with the existence of viable strong and weak solutions of stochastic and backward
stochastic inclusions and weak compactness with respect to convergence in the sense
of distributions of viable weak solution sets are due to the author of this book.



Chapter 6
Partial Differential Inclusions

The present chapter is devoted to partial differential inclusions described by the
semielliptic set-valued partial differential operators ILrg generated by given set-
valued mappings F and G. Such inclusions will be investigated by stochastic
methods. As in the theory of ordinary differential inclusions, the existence of
solutions of such inclusions follows from continuous selections theorems and
existence theorems for partial differential equations. Therefore, Sects.2 and 3 are
devoted to existence and representation theorems for elliptic and parabolic partial
differential equations. Some selection theorems and existence and representation
theorems for such partial differential inclusions follow. It will be proved that
solutions of initial and boundary value problems for partial differential inclusions
can be described by weak solutions of stochastic functional inclusions SFI(F, G),
as considered in Chap. 4.

1 Set-Valued Diffusion Generators

In the theory of Kolmogorov—Feller diffusion processes, diffusions are represented
by their infinitesimal generators defined for continuous functions f : RRT xRY —
R and g : RT x RY — R¥*™ by setting

d 1 d
(Ageh)(s.2) = Iy (s.0) + 3 1. 0h (5.3) + 5 3 0% (5,30 (5.%)

i=1 ij=1

for every i € Cy2(R?*!) and (s5,x) € R* x R? with (0V)4xs = g - g*. Here
C,*(R*1) denotes the space of all continuous functions & : RT x RY — R
with compact support in R?*! having continuous derivatives h;, h;c,- and h;;_ X for
i,j = 1,2,...,d. We extend this notion to the set-valued case and speak of set-
valued diffusion generators.
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Let F: Rt xRY — CI(R?) and G : RT xR¢ — CI(RY*") be given set-valued
mappings and denote by IL,, a semielliptic partial differential operator defined on
the space CZ(RY 1) by

d d
’ 1 14
(Lyh) (s, x) = E uih, (s,x)+ 3 E Uijhx,-x,- (s, x)

i=1 i,j=1

for (s,x) € R* xR, u = (uy,...,uq), and v = (vij)axa. We define now on
CZ(R?™") a set-valued partial differential operator IL s corresponding to F and G
by setting

(LFGh)(Ssx) = {(]Luvh)(ssx) ue€ F(S,)C), S D(G)(S,)C)}

for h € C}RI*T!) and (s,x) € RT x RY, where D(G)(s,x) = {g-g* : g €
G(s,x)}.

Let C(F) and C(G) denote the sets of all continuous selectors of F and G,
respectively. Immediately f~rom the above definitions, it follows that for every
(f.2) € C(F) x C(G) and & € Drg 1= D (R") 1 (f.g) € C(F) x C(G)},
one has (Ays.h)(s,x) — h;(s,x) € (Lrgh)(s,x) for (s,x) € [0,T] x RY, where
Dy, (RY*+1) denotes the domain of the infinitesimal generator Ag, of a (d + 1)-
dimensional It6 diffusion Y, Y{‘xg defined for (f, g) as given above by Theorem 11.1
of Chap. 1. Let us observe that Drg # @, because by virtue of Theorem 10.1
of Chap. 1, one has Coz(]R‘H'l) C Drg. The set-valued operator Lgg is called a
semielliptic set-valued diffusion operator.

Corollary 1.1. For every h € COZ(]R‘H'I) and all selectors f and g of F and G,
respectively, the function L,,h : RY x RY — R withu = f(t,x) and v =
(g - g")(t,x) is a selector of a set-valued mapping Lpgh : R* x R? 5 (s, x) —
(Lrgh)(s,x) € P(R). It is a measurable, continuous Carathéodory selector of
Lrgh if f and g are measurable, continuous Carathéodory selectors of F and G,
respectively. a

Apart from the above-defined semielliptic set-valued operator L r, we shall also
consider the family A r¢ of parabolic diffusion generators A s, defined by

(Argh)(s.x) = {(Aseh)(s.x) : f € C(F). g € C(G)}

for i € Drg and (s,x) € RT x RY. Immediately from the relation (Afgﬁ) (s,x) —
h (s, x) € (Lrgh)(s, x), it follows that (Argh)(s, x) — hi(s,x) C (Lrpgh)(s,x)
for every h € D¢ and (s, x) € [0, T] x R?. In a similar way, we define a family
LFg of characteristic operators L 7, of the form

(Lrh)(s.x) ={(Lsgh)(s,x) 1 f € C(F),g € C(G)}
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for (s,x) € [0,T] x R? and h € Crg := J{Cre(RITY) : f € C(F), g € C(G)},
where C s, (R?™!) denotes the domain of the characteristic operator of the diffusion
YS{ § defined above. In what follows, we shall need the following properties of the
set-valued mapping D(G) defined by D(G)(¢,x) = {g-g* : g € G(¢,x)} for
(t,x) e RT x RY.

Lemma 1.1. For every set-valued mapping G : RT x RY — CI(R?*™), one has
the following:

(1) If G is measurable, then D(G) possesses a measurable selector.
(ii) If G is convex-valued and l.s.c., then D(G) possesses a continuous selector.
(iii) If G is bounded, diagonally convex, and ls.c., then D(G) possesses a
continuous selector.
(iv) If G is convex-valued, bounded, and Lipschitz continuous, then D(G) pos-
sesses a Lipschitz continuous selector.
) If G is a convex-valued Carathéodory set-valued mapping, then D(G)
possesses a Carathéodory selector.
(vi) If G is a diagonally convex bounded Carathéodory set-valued mapping, then
D(G) possesses a Carathéodory selector.
(vii) If G is measurable and bounded, and o is a measurable selector for D(G),
then there exists a measurable selector g of G such thato = g - g*.

Proof. Let[ : R — R9*? be defined by /(1) = u - u* for u € R It is easy
to see that / is continuous. Indeed, let uy € RY*" and let (14)52 | be a sequence of
R?*™ converging in the norm topology of R?*” to ug. There is M > 0 such that
lluo|| < M and ||u,|| < M forn > 1. Forevery n > 1, one has

17 Gan) = L) | = N -y — o - ugll = [1un — uo) - uy || + llao - (uyy — ug) |

< M(|lun — uoll + lluy — ug ) = 2M ||un — uoll.

Then ||l (u,) — [(uo)|| — 0 as n — oc.

(i) By the Kuratowski and Ryll-Nardzewski measurable selection theorem, there
is a measurable selector g of G. Then 0 = [(g) is a measurable selector of
D(G) because D(G) = [(G).

(i) Similarly, if G is convex-valued, then by Michael’s continuous selection
theorem, there exists a continuous selector g of G, which by the continuity
of [ implies that 0 = I(g) is a continuous selector of D(G).

(iii) By properties of G and the relation D(G) = [(G), the multifunction D(G)
satisfies the conditions of Michael’s theorem. Therefore, it has a continuous
selector.

(iv) By virtue of Theorem 2.3 of Chap. 2, a multifunction G possesses a Lipschitz
continuous selector g. Similarly as above, we obtain

lo(t.x) —o@. X)|| = [1(g(t. x)) = (T, X)) = 2M ||g(r. x) — g(7. D)
<2ML(t — 1] + |x — X|)
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for (¢, x), (i, X) € Rt x R?, where 0 = I(g), L > 0, is a Lipschitz constant
of G and M > 0 is such that |G (¢, x)|| < M for every (t,x) € R* x R?.
Then o is a Lipschitz continuous selector for D(G).

Conditions (v) and (vi) follow immediately from Theorem 2.7 of Chap. 2. Finally,
if G and o satisfy (vii), then o' (¢, x) € I[(G(t, x)) for (¢, x) € R* x R?. Therefore,
the existence of a measurable selector g of G such that 0 = g - g* follows
immediately from Theorem 2.5 of Chap. 2. |

Similarly as above, for a given set-valued mapping G : RT x R¢ — CI(R4*™),
by C(D(G)) we denote the set of all continuous selectors of D(G). In what follows,
we shall consider set-valued mappings G satisfying the following condition (P):

(P) For every o = (0ij)axa € C(D(G)) there are a nonempty set Q C R+ x R?
and a positive number o such that Zij 0ij (1, X)&&; > a|§|? for (t,x) € Q and
£ e RY.

We say that a pair (F,G) of set-valued mappings generates a uniformly
semielliptic diffusion operator Ly on @ C Rt x R¢ if C(F) and C(G) are
nonempty and G satisfies condition (P). If Q = R* x R?, we simply say that
a pair (F, G) generates a uniformly semielliptic diffusion operator. It is clear that if
(F, G) generates a uniformly semielliptic diffusion operator, then (Argh)(s, x) is
nonempty for every h € Dr¢ and (s, x) € [0, T] x RY.

Corollary 1.2. If a pair (F,G) of set-valued mappings generates a uniformly
semielliptic diffusion operator Lrg on Q C Rt x RY, then for every g <
C(G), the symmetric matrix 1(g) is continuous and uniformly positive definite, i.e.,
SUp(; vyep infi<i<a Ai(g)(t, x) > 0, where A1(g)(t,x), ..., Aqa(g)(t, x) denote the
eigenvalues of 1(g(t, x)) for fixed (t, x) € Q. |

Corollary 1.3. If a pair (F,G) of bounded set-valued mappings generates a
uniformly semielliptic diffusion operator Lrg, then for every (s, x) € Rt x RY,
there exists a (d + 1)-dimensional Ité diffusion Y = (Y;);>0 defined by Y, =
(s + t, Xy4¢) on the filtered probability space Pr = (2, F,F, P) such that its
infinitesimal generator Ay satisfies (Ayh)(t,x) — h,(t,x) € (Lrgh)(t,x) for
h e Col’z(RdH) and (t,x) € [s,00) x RY, where X = (X,);>s is a weak solution
of SFI(F,G) on Py such that X; = x a.s.

Proof. By the properties of the set-valued mappings F and G, we have C(F) # 0
and C(G) # @, and for every g € C(G), the matrix-value function o = g - g* is
continuous and uniformly positive definite. Then every pair (f, g) € C(F) x C(G)
satisfies the assumptions of Theorem 11.1 of Chap. 1. Therefore, by virtue of this
theorem, there is a (d + 1)-dimensional Itd diffusion ¥ = (¥;),>0 on the filtered
probability space Pr defined by Y; = (s + ¢, X;4+;), where X = (X;),>, is a weak
solution of the stochastic differential equation SDE( f, g) on Py such that X; = x
a.s. It is clear that X = (X;);>s is a weak solution of the stochastic functional
inclusion SFI(F, G) on Py such that X; = x a.s. Furthermore, we have
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d
(Ayh)(t.x) = hy(t.x) + > f1(t. ), (1. x)

i=1

d
1 l 4
i E ' j
+ 3 o (t,x)hxl,xj(t,x)

ij=1

for every h € Cy*(R?*!) and (¢, x) € [s,00) x R? . Together with the definition
of Lz, it follows that (Ayh)(t, x) — I, (t, x) € (Lrch)(t, x) for h € Cy2(R4*")
and (¢, x) € [s, 00) x R?. O

Remark 1.1. 1f a pair (F, G) of bounded set-valued mappings generates a uniformly
semielliptic diffusion operator LLrg, then for every (f,g) € C(F) x C(G), the
infinitesimal generator Ay of the diffusion Y, defined in Corollary 1.3 will be
still denoted by A 1. It satisfies the equality

Eh(Ys«(1)] — h(s, x)
t

(Ajeh)(s.1) = lim

for every (s,x) € R* x R? and h € D f¢>» where E°* denotes the mean value
operator taken with respect to the probability law Q** of Y . O

Recall that intuitively, the probability law Q** of Y, gives the distribution of
(Y5.x(t))o<t<r- To express this mathematically, we let M , be the o-algebra on 2
generated by the random variables Q > w — Y, (t)(w) € R+ with ¢ € [s, T]
and define on M , a probability measure Q°* such that

QS’X[YS,X([I) € Alv ey Ys,x(tk) € Ak] = P[Ys,x([l) € Als s Ys,x(tk) € Ak]

for0 <t < o0, A; € BRI, and 1 <i <k withk > 1.

Remark 1.2. 1f a pair (F, G) of bounded set-valued mappings generates a uniformly
semielliptic diffusion operator IL g, then for all ( f, g) € C(F) xC(G), the (d + 1)-
dimensional It6 diffusions ¥ = (Yo« (¢));>0 and ¥ = (¥, (?)):>0 defined above for
(0,x) € Rt*xR? and (s, x) € Rt xR, respectively, have the same distributions. (]

In what follows, we shall consider set-valued mappings’ F : Rt xR¢ — CI(RY)
and G : Rt x RY — CI(R?*™) that satisfy some of the following conditions (A):

(i) F and G are bounded and convex-valued.
(ii) F and G are l.s.c.
(iii) G is diagonally convex.
(iv) G satisfies (P) and C(D(G)) = I(C(G)), i.e., for every o € C(D(G)), there
isg € C(G) suchthato = g - g*.
(v) F and G are continuous.
(iv’) G satisfies (P) and is such that C(D(G)) = clc[/(C(G))], where cl¢
denotes the closure in the topology of the uniform convergence of continuous
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d x d-matrix-valued functions on Rt xIR¢, i.e., for every o € C(D(G)), there
is a sequence (g")52, of € C(G) such that the sequence {/(g")}.2, converges
uniformly to 0.

2 Continuous Selections of Set-Valued Diffusion Operators

Let F : Rt x RY — CI(RY), G : RT x RY — CI(R™™), h € CAHR™!) and
a continuous function # : Rt x R?Y — R be such that u(t, x) € (Lpgh)(t, x) for
(t,x) € R* x R?. We are interested in the existence for every & > 0 of continuous
selectors f; € C(F) and g, € C(G) such that |u(t,x) — (L4 h)(t, x)| < ¢ for
(t,x) € R x R?, where

(L g, x) = Zf (., ), (. x) + 5 Z(ga )i (L, ) (¢, x).

i=1 l]l

Immediately from Theorem 2.2 of Chap.2, it follows that if F and G satisfy
conditions (i)—(iii) of (A), then for every ¢ > 0 and h € CZ(RYT!), there are
fe € C(F) and 0, € C(D(G)) such that

d

d
u(t.x) — [ Y fl@. )k, (. x) +% Y ol h, (LX) || <e

i=1 i,j=1

for (¢, x) € Rt x RY. To get the desired result, we have to show that for a given
o € C(D), there exist a continuous selector g € C(G) or a sequence (g,)7>, of
continuous selectors of G such that o(¢t,x) = (g - g*)(¢,x) or (g, - g;)(t. x) —
o(t, x) uniformly with respect to (#,x) € R* x R? as n — oo. Such problems
concerning measurable selectors have been affirmatively solved in Lemma 1.1. For
continuous selectors, the above problem is much more complicated, although in the
case of single-valued mappings D(G) = {0} with a positive definite and continuous
matrix function o : R x RY — R?¥*¢, there exists a continuous mapping g : R* x
RY — R such that o = g - g*. If o belongs to the space C"2(RT x RY, R4*?),
then one can also prove the existence of g € C'?(R* x R, RY*") such that
o = g-g*. To consider the general problem concerning continuous selectors, let us
introduce in RY*" an equivalence relation R by setting xRy if and only if I(y) =
[(x), where similarly as above, we put /(u) = u - u* foru € R Let X = RV
and let ¥ = X/R be the R- -quotient space. Let g : X — X be the quotient
mapping defined in the usual way by setting X 3 x — ¢(x) = [x] € X, where
[x] = {z € X : zRx}. Denote by Tx the norm topology in X, and let 7/ be the
natural topology in X defined by T ={VCX:q (V) e T} Itis clear that g is
(Tx. T;)-continuous. Let us introduce in X the topology 7; = {¢~'(V) : V € T;}.
We have 7, C Tx.
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Lemma 2.1. Given the set-valued mapping G : Rt x R — CI(RY*™), let
f i RY xRY — R be continuous and such that [(f(t,x)) € 1(G(t,x)) for
(t,x) € R* x R, There exists a (Tgu+1, Ti)-continuous selector g of G such that
I(f(t,x)) = l(g(t,x)) for (t,x) € RT x R, where Tgra+1 denotes the norm
topology in R4T1,

Proof. For every (t,x) € Rt x R?, we can select u', € G(t,x) such that
I(f(t,x)) = I('). Put g(t,x) = u’ fort € [0,T] and x € R?. We have
q(g(t,x)) = q(f(t,x)). By the (Tga+1, 7~7)-continuity of go f forevery V € T,
we have (g o f)"1(V) € Tga+1. Then g7 (¢~ (V) = f~ (g7 (V)) € Tga+: for
every V € 7. Therefore, for every U € T;, we have g~ (U) = f~' (¢~ (V)) €
Tra+1, because by the definition of 7;, for every U € 7Tj, thereis V € 7, such that
U=q'(V). O

In what follows, we shall deal with right triangular matrices. Recall that a
matrix v € R*? with elements v;; is said to be right triangular if v;; # 0 for
i =1,2,...,n and all elements of v lying below its main diagonal are equal to zero.
It can be proved (see [80], pp. 81-82) that for every symmetric matrix o € R?*? of
the rank r such that its minors dj are nonzero for k = 1,2,...,r, there is a right
triangular matrix v = (vjj)axa such that c = v - v* and elements v;; of such a
matrix v are defined by

12, j—1i
1 ] . . .o
L j=12, =+ 1....d
vy = «/djdj—10(12...j—1j) / nE=Lit
0 cj=r+1,r+2,...,d,
@.1)

i1ip...10 . ..

where cr( l 2 k, ) denotes the kth-order minor consisting of elements of o
Jij2 - Jk

lying in the intersection of the k rows with indices iy, ..., i and the k columns

12...p
12...p) forp=1,2,....,d.

We shall now show that if G : RT x R? — CI(R?*?) is such that det(u’ ) # 0
for every (t,x,u’) € Graph(G) and the set-valued mapping D(G) : RT x RY —
CI(R?*?), defined by D(G)(t,x) = I(G(t,x)) fort € RT and x € R? has a
continuous selector o, then there is a (Ts+1, 77)-continuous selector g of G such
that o (¢, x) = I(g(t,x)) fort € R and x € R?. The result will follow from the
properties of positive definite symmetric matrices (see [80], pp. 81, 153).

Lemma 2.2. Let G : RT x R — CI(R?™™) be such that det(u'.) # 0 for every
(t,x,u’) € Graph(G) and such that a set-valued mapping D(G) = I(G) has a
continuous selector o. There exists a (Tga+1, Tr)-continuous selector g of G such
that o (t,x) = [(g(t, x)) fort € R and x € R?.

with indices ji,..., jr and d, = 0(

Proof. Forevery t € R and x € RY, there is u'. € G(t,x) such that o (¢, x) =
u' - (uf)* and det(u’) # 0. Then (see [80], p. 153) o (¢, x) is symmetric and positive
definite for every t € R™ and x € R?. Therefore, for every t € R* and x € R,
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there is a right triangular matrix v(f,x) = (v;;(¢,x))axa such that o(t,x) =
v(t, x) - v*(¢, x) and such that all its elements v;; (¢, x) are defined by (2.1). By the
continuity of o, all its minors are continuous, too. Therefore, by (2.1), all elements
v;; of v are continuous on RT x R?. Then v : Rt x RY — R4*4 is a continuous
matrix such that o(t,x) = [(v(t,x)) fort € R* and x € R?. By the definitions
of D(G) and o, we get [(v(t,x)) € I(G(t,x)) for every t € R and x € R?.
Therefore, by virtue of Lemma 2.1, there is a (7ga+1, 77)-continuous selector g for
G such that o (¢, x) = I(g(t, x)) fort € R* and x € R?. a

Lemma2.3. Let G : RT x RY — CI(R?") be Ls.c., diagonally convex, and
such that for every (t,x,u’) € Graph(G), ', is a right triangular matrix. Then
C(D(G)) # @ and for every o € C(D(G)), there is g € C(G) such that o = 1(g).

Proof. By (iii) of Lemma 1.1, there is 0 € C(D(G)). Hence, similarly as in the
proof of Lemma 2.2, the existence of a continuous right triangular matrix function
v : RY x R — R4 such that o = [(v) follows. By the properties of G, for
every (t,x) € RT x R, there is a right triangular matrix u’. € G(t,x) such that
o(t,x) = [(u'). Hence it follows that for every (¢,x) € Rt x R4, all elements of
matrices v(f, x) and . are defined by the same formulas (2.1) by the elements of
the matrix o (¢, x). Therefore, for every (¢, x) € Rt x R?, one has v(t,x) = ul e
G(t, x). Taking now g = v, we get a continuous selector of G satisfying o = /(g).
Let us observe that we also have 0 = /(—g), but —g does not have to be a selector
of G. a

In further applications, we are interested in the existence of continuous selectors
g € C(G) such that the matrix function /(g) is uniformly positive definite. Such
selectors can be obtained immediately from Lemma 2.3. Let I(x) denote the
quadratic form on R? with matrix /(u") for every (¢, x, u'.) € Graph(G).

Lemma 2.4. Let G : RY x RY — CI(RY*™) be Ls.c., diagonally convex, and such
that W' is a right triangular matrix for every (t, x,u’.) € Graph(G). If furthermore,
there is L > 0 such that I(u" ) (u,u) > L|u||?* for every (t,x,u’) € Graph(G) and
u € R? with ||u|| # O, then there exists g € C(G) such that 1(g) is uniformly
positive definite.

Proof. By (iii) of Lemma 1.1, there is a continuous selector o of D(G). For every
(t,x,u’) € Graph(G), we have

A=sup sup min [I(u)(u, u)/||ul|’] = sup sup 1mln Ai(1(uh)),

>0 yeRd ER? u7#0 >0 yeRd

where A;(/(u')) denotes for i = 1,2,...,d the eigenvalues of the symmetric
matrix /(). Immediately from the inequality (u)(u,u) > L|u|?, it follows that
A > L > 0. Then the matrix function R* x R > (¢,x) — (i) € R is
uniformly positive definite. Similarly as in the proof of Lemma 2.3, we can verify
that there exists a continuous right triangular matrix v : RT x R¢ — R9*¢ such
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that v(t,x) € G(t,x) and [(v(t, x)) = [(u.) for every (¢, x) € RT x R?. Taking
g = v, we obtain a selector g € C(G) such that /(g) is uniformly positive definite.
O

Corollary 2.1. Suppose G : Rt x RY — CI(RY*") is Ls.c., diagonally convex,
and such that for every (t,x,u’,) € Graph(G), v’ is a right triangular matrix.
Assume that there is L > 0 such that I(u')(u,u) > Ll|u|® for every (t,x,u’) €
Graph(G) and u € R? with ||u|| # 0. For every convex-valued Ls.c. set-valued
mapping F : Rt x RY — CI(RY), the pair (F,G) generates a uniformly
semielliptic set-valued diffusion operator L gg.

Proof. By (iii) of Lemma 1.1 and Michael’s continuous selection theorem, we have
C(F) # 0,C(G) # @ and C(D(G)) # @. By virtue of Lemma 2.3, for every
o € C(D(G)), there is g € C(G) such that 0 = I(g). Finally, similarly as in the
proof of Lemma 2.4, we obtain that for every g € C(G), the matrix function /(g)
is uniformly positive definite. Then every 0 € C(D(G)) = [(C(G)) is uniformly
positive definite. Thus a pair (F, G) generates a uniformly semielliptic set-valued
diffusion operator Lr . O

Corollary 2.2. For every symmetric uniformly positive definite matrix function g :
R* x RY — R4, the matrix function o = 1(g) is uniformly positive definite.

Proof. Let A = sup,5Sup,ere Minj<;<q A; (g)(7, x) for (£,x) € R* x RY,
where 1;(g)(, x) denote for every i = 1,2,...,d and (t,x) € Rt x RY, the
eigenvalues of the symmetric matrix g(z, x). For every (t,x) € R x R?, one

has det (g(z, x) — A;(g)(t,x)E) = 0, where E is the d x d unit matrix. Hence it
follows that

det (o(t, x) — A2(2)(t, x) E) = det[l(g)(t, x) — A2(g)(t, X) E]
= det[(g(t,x) — Ai(g)(t, x)E) - (g(z, x) + A (8)(t, X) E)]
= det[g(t,x) — A;(g)(z, x) E] - det[g(z, x) + A;(g)(#, x) E] = 0.

Therefore, y; (¢, x) =: )Liz(t,x) is for every i = 1,...,d an eigenvalue of the
symmetric matrix o(¢,x) fori = 1,2,...,d and (t,x) € R*T x R? such that
0 < A% = sup, s SUP,cge MiN|<i<q ¥i (7, X). O

Now we can prove some continuous selection theorems dealing with the problem
presented above.

Theorem 2.1. Let F : Rt x RY — CI(R?) and G : Rt x R — CI(R?*9)
be Ls.c., bounded, convex-valued, and diagonally convex, respectively set-valued,
mappings. Assume that det(u')) # O for every (t,x,u’) € Graph(G) and let
v € C(RT x R R) be such that v/(t,x) € (Lpgu(t,-)(t,x) for every
(t,x) € RY x R?. Foreveryk = 1,2, ..., there are continuous and (Tga+1,T7)-
continuous selectors fi and g of F and G, respectively, such that |v/(t,x) —
(L g v(t, ), x)| < 1/k fort € Rt and x € R.
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Proof. Let us observe that F x D(G) : Rt x RY — CI(R? x R¥*) is ls.c.,
bounded, and convex-valued. Put X = RT™ x R? and Y = R? x R?*4, Define on
X x Y afunction A[(¢, x), (u,0)] = y[v(t,x),u,c] for (¢,x) € X and (u,0) € Y,
where y[u(t, x), u, 0] = (Viv(t, x),u) +(1/2)tr[0, v(¢, x)-0], with V v (t,x) =
[y, (. %), ... vy (£.X)] and Dy v(t,x) = [vng(z,x)]dxd. It is clear that A is
continuous on X x Y such that A[(z, x), - ] is affine. By the properties of the function
v, we have v;(t, x) € Al(t, x), (FxD(G))(t, x)] forevery (¢, x) € X. Therefore, by
virtue of Theorem 2.2 of Chap. 2, for every k = 1,2, ..., there exists a continuous
selector ( fx,o0x) of F x D(G) such that |Ut/(t, x) = Al(t, x), (fx.00)(,x)]| < 1/k
for (t,x) € X. We have f; € C(F) and o}, € C(D(G)) fork = 1,2,.... By virtue

of Lemma 2.2, forevery k = 1,2, .. ., there exists a (Tga-+1, 77)-continuous selector
gr of G such that oy = [(gx), which together with the above properties of the pair
(fk,ox) proves the theorem. |

Theorem 2.2. Let F : RT x RY — CI(RY) and G : Rt x RY — CI(R?*?)
be l.s.c., bounded, convex-valued, and diagonally convex, respectively set-valued,
mappings. Assume that G is such that for every (t,x,u’) € Graph(G), u', is a
right triangular matrix and let v € C'?(R* x R?,R) be such that v](t,x) €
(Lrgu(t,)(t,x) fort € RT and x € RY. For every k = 1,2,..., there are
continuous selectors fi and gr of F and G, respectively, such that |v/(t,x) —
(L g, ), x)| < 1/kfort € R and x € R4,

Proof. Similarly as in the proof of Theorem 2.1, the result follows immediately
from Theorem 2.2 of Chap. 2 and Lemma 2.3. |

Immediately from Theorem 2.2 of Chap.2 and Lemma 2.4, we obtain the
following selection theorems.

Theorem 2.3. Let F : RY x RY — CI(R?) and G : Rt x R — CI(R?*¢)
be l.s.c., bounded, convex-valued, and diagonally convex, respectively set-valued,
mappings. Assume that G is such that for every (t, x,u’.) € Graph(G), i, is a down
triangular matrix and there is L > 0 such that1(u'.)(u, u) > L||u||* and u € RY with
lul| # 0. Let v e CY*(RT x RY, R) be such that v/(t,x) € (Lrpgu(t,-))(t, x) for
(t,x) e RYxR?. Foreveryk = 1,2,..., there are f; € C(F) and gx € C(G) such
that 1(gy) is uniformly positive definite and |v](t,x) — (L p g v(t,")(t. x)| < 1/k
fork =1,2,...and (t,x) € Rt x R%. |

Theorem 2.4. Let F : Rt x RY — CI(R?) and G : Rt x R — CI(R?*9)
be Ls.c., bounded, convex-valued, and diagonally convex, respectively set-valued,
mappings. Assume that G is such that for every (t,x,u’) € Graph(G), u!, is a
right triangular matrix such that for every continuous selector ¢ of G, there is a
number L, > 0 such that l(u')(u,u) > Ly ||u|? for every (t,x,u’) € Graph(G)
and u € R with ||lu|| # 0. Let v € C'2(R* x R, R) be such that v](t,x) €
(Lrgu(t,))(t,x) for everyt € RT and x € R?. For every k = 1,2, ..., there
are fr € C(F) and gr € C(G) such that [(gy) is uniformly positive definite and
[v/(t,x) = (L g ut, ), x)| < 1/k fork =1,2,...and (t,x) e Rt x RY. O
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Theorem 2.5. Let F : RT x RY — CI(RY) and G : Rt x R — CI(R?*9)
be l.s.c., bounded, convex-valued, and diagonally convex, respectively set-valued,
mappings satisfying (iv) of conditions (A). If v € C'2(R* x RY,R) is such that
v/(t,x) € (Lrgu(t,-)(t,x) for every t € RY and x € RY, then for every k =

1,2,..., there are continuous selectors fy and gy of F and G, respectively, such
that 1(gx) is uniformly positive definite and |v;(t, x) — (L s 4, v(2,))(t, x)| < %for
k=1,2,...and (t,x) € R* x R4. O

In some optimal control problems, we have to deal with condition (iv’) of (A)
instead of (iv). This follows from the following example.

Example 2.1. Let g : R x R? x Y — R4*? be continuous and bounded, and
put G(t,x) = {g(t.x,u) : u € U} for every (t,x) € Rt x R?, where U is
a nonempty compact convex subset of R"”. Assume that g is such that for every
(t,x) € Rt x R, the mapping A(¢,x,-) : U — R?*? defined by A(t,x,u) =
g(t,x,u) - g*(¢t,x,u) for u € U is affine. Then G does not satisfy all conditions of
(iv) mentioned above. It is l.s.c. and diagonally convex, and for every continuous
selector o : RT x RY — RY*¢ of D(G), we have o(t,x) € A(t, x,U) for every
(t,x) € R x R?. In the general case, no selector y : Rt x R? — U of U exists
such that 0 = A(¢, x, ). Therefore, to such a function A we can apply Theorem 2.2
of Chap. 2 and get for every k > 1 a continuous selector iz : Rt x RY — U of U
such that sup, er+xre [10(t, X) = A(t, %, ux (¢, x))|| < 1/k for (z,x) € R x RY,
Taking yx(f,x) = g(t,x,ux(t,x)) for k > 1, we obtain a sequence (yx)5>, of
selectors of G such that sup, ) eg+xge |0, x) — I(y) (@, x)|| — 0 as k — oo,
because [(yx)(t, x) = g(t, x,ur(t,x)) - g*(t, x, u (¢, x)) = A(t, x, ui (¢, x)).

We now extend Theorem 2.5 to G satisfying (iv") of conditions (A).
Theorem 2.6. Let F : Rt x RY — CI(RY) and G : RT x R — CI(RY*?) be

L.s.c., bounded, convex-valued, and diagonally convex, respectively set-valued, map-
pings and suppose G is such that condition (iv') of (A) is satisfied. If v € COI’Z(IR"' X
R?, R) is such that v/(t,x) € (Lrpgu(t,-))(t,x) for everyt € RT and x € RY,
then for every k = 1,2,...and m = 1,2, ..., there are continuous selectors f
and g of F and G, respectively, such that [(g]') is uniformly positive definite for
k,m =1,2,...and limy o0 SUP( vyer+xrd [V/ (¢, X) = (L s grv(t, ) (1, x)| < 1/k
fork =1,2,....

Proof. Similarly as above, by virtue of Theorem 2.2 of Chap.2, for every k =
1,2,... thereare f; € C(F)andoy € C(D(G)) suchthatsup y)er+xre V] (f, X)—
Alt, x), (fk,or(t,x))]| < 1/k, where A is as in the proof of Theorem 2.1.
By (i), for every k > 1 there is a sequence (g}')5, of C(G) such that
SUp(, vyer+xrd |1(gf (t,x)) — oy (t,x)] — 0 as m — oo. For every k > 1 and
m > 1, one has

sup A, x), (fi ou) (2, X)) = A[(2, %), (fie, 07" ) (2, %)]|
(t,x)eERT R4

<M-d*> sup llow (2, x) — o) (¢, x)]|.
(t.x)ERT xR
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7

where 07" (¢, x) = [(g]’(t,x)) and M > 0 is such that M > sup, ;)eg+xRrd |le-x,~

(t,x)|fori,j =1,2,...,d. Let us observe that such M > 0 exists, because v has
compact support. Therefore, for every k > 1 and m > 1, we get

sup |Ul{(t’x)_(]LfkgkmU(ta'))(t’x)f sup |U;([,)C)—A[(t,x),(fk,()'k)(l,x)”
(t,x)€ER+ xR4 (t,x)ERT xR4

+ sup [ALCz, %), (i, 01) (2, )] = AL, %), (fie, o) (@, X)]]
(t.x)€R+ xRI

< 1 +M-d*> sup  og(t,x) —of" (t,x)].
k (t,x)€ERTxR4
Then {
lim su [u/ (1, x) — (L g gmu(t, ), x)| < —
m=—00 (z,x)emE xRd ' ek k
foreveryk =1,2,.... O

3 Initial and Boundary Value Problems for Semielliptic
Partial Differential Equations

Let F: RT x RY — CI(RY) and G : Rt x RY — CI(R?*™) generate a uniformly
semielliptic set-valued operator Ly on Q C RT x R andlet f € C(F)and g €
C(G). Assume that Q is a bounded domain in R™ x R¢ lying in the strip (0, T') x R?
foragivenT > 0.Put B = O N[{t =0} x R and By = O N[{t = T} x RY]
and assume that B and By are nonempty. Let B = Int(Br) and B = Int(B).
Denote by Sy the boundary of Q lying in the strip (0, T) x R¢ and let S = Sy \ Br.
The set 30 = B U S is a parabolic boundary of Q. Let ¢ : RT x R — R,
¢:RTxRY - R,y :RY - R,and y : RT x RY — R be given.

Given functions f, g, ¢, ¢, ¥, y as above and a bounded domain Q C (0, T) x
RY, by the first initial-boundary value problem generated by IL f¢» We mean the
problem consisting in finding a functionu € C(R* xRR?, R) such that the following
conditions are satisfied:

u(t,x) = (Lyeu(t,-)) (t,x) + c(t, x)u(t, x) — ¢(t. x),
for (¢,x) € Q U Br,

u(0,x) = ¥ (x) for x € B,

u(t,s) = y(t,x) for (t,x) € S.

3.1

Remark 3.1. The last two conditions in (3.1) are called initial and boundary
conditions, respectively. |
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A function wr (P) € COZ(Q) with R € BU S is called a barrier at the point
R corresponding to (f, g,¢) if wg(P) > Ofor P € O \ {R}, wr(R) = 0 and
(Lygwr(t,7) (t.x) + c(t. x)wr(t,x) + 1 < L[wr(t,x)] for (1,x) € Q U Br.

The following existence theorem can be proved.

Theorem 3.1. Assume that a pair (F, G) of multifunctions generates a uniformly
semielliptic set-valued operator Lpg on a bounded domain Q C (0,T) x R? and
let f € C(F) and g € C(G). Assume that f,g,c and ¢ are uniformly Holder
continuous in Q and let W and y be continuous on B and S, respectively. If
furthermore, there exists a barrier corresponding to (f, g, c) at every point of S,
then there exists a unique solution of the first initial-boundary problem (3.1). O

Remark 3.2. 1t can be verified that if 9 = (0,7) x B with a bounded domain
B in RY is such that there exists a closed ball K C R“ with center X such that
KN B =@and KN B = {xo}, then there exists a barrier corresponding to ( f, g, ¢)
at each point (7, xo) of S (0 < 79 < T), namely wg (¢, x) = ke*' (1/R5 — 1/RP),
where @ > c(t,x), Ro = |xo — X|, R = [|]x — X|* + |t — 10]*]"/?, and k, p are
suitable positive numbers. |

Corollary 3.1. If Q = (0,T) x B is as in Remark 3.2, then for every f, g,c, ¢,
and y satisfying the assumptions of Theorem 3.1, there exists a unique solution
of (3.1). ]

Given functions f, g, ¢, ¢, ¥, y, and T > 0 as above, by the Cauchy problem
generated by IL 7, we mean the problem consisting in finding a functionu € C(R* x
R, R) such that the following conditions are satisfied:

u(t,x) = (]Lfgu(t, )) (t,x) 4+ c(t, x)u(t, x) — ¢(t, x),
for (t,x) € (0,T] x RY, (3.2)
u(0,x) = ¥(x) for x € R%.

The following existence theorem can be proved.

Theorem 3.2. Assume that a pair (F,G) of multifunctions generates a uniformly
semielliptic set-valued operator Lpg on [0, T] x R and let f € C(F) and g €
C(G) be bounded. Furthermore, assume that f and g are Hélder continuous in x
uniformly with respect to (t,x) € [0,T] x RY. Let ¢ be continuous and Holder
continuous in x uniformly with respect to (t, x) on a compact subset of [0, T] x R?
and let r be continuous on RY. If furthermore, there are positive numbers a and A
such that max (|o(t, x)|, |[¥(x)]) < A-exp (a|x|2) for (t,x) € [0,T] x RY, then
there is ¢ > 0 such that the Cauchy problem (3.2) possesses a solution in the strip
[0, T*] x RY, where T* = min{T,¢/a}. O
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4 Stochastic Representation of Solutions of Partial
Differential Equations

If the assumptions of Theorems 3.1 and 3.2 are satisfied, then solutions of
problems (3.1) and (3.2) can in some special cases be represented by solutions of
stochastic differential equations SDE( f, g). We shall consider the above problem
in the case that f and g satisfy only assumptions that guarantee the existence and
uniqueness in law of weak solutions of SDE( f, g) with a given initial distribution.
We shall still assume that a pair (£, G) of multifunctions generates a uniformly
semielliptic set-valued operator Iz on [0, T] x R? and ( f. g) € C(F) x C(G).

By virtue of Corollary 1.3, for every (s,x) € Rt x R, there is a (d + 1)-
dimensional Tt diffusion Y;'8 = (Y, (¢)),0 defined by Y,/$ (1) = (s +1. X{%(s +
1)) on a filtered probability space Pr = (2, F,F, P). Its infinitesimal generator
Ay, satisfies (Ash)(t,x) — h(t,x) € (Lrgh)(t,x) for h € C;*(RY*") and
(t,x) € [s,00) x R?, where ngf = (X§{f(t))tzs is a weak solution of a stochastic
differential equation SDE( f, g) with initial condition X {‘ $(s) = x as.

Immediately from results presented in Sect. 12 of Chap. 1, we obtain the follow-
ing existence and representation theorems.

Theorem 4.1. Assume that conditions (1)—(iv) of (A) are satisfied, T > 0, and let
c € C([0,T] x RY,R) be bounded. For every (f.g) € C(F) x C(G) and (s, x) €
[0, T) x RY, there is a unique in law weak solution X{f of SDE(f, g) satisfying
X Sjj $(s) = x a.s. such that the function v defined by

ott.s.0) = 5 [exp (= [ eorronar ) v |
0

for}; € C'2(RI*Y), (s,x) € [0,T) x R?, and t € [0, T — s] satisfies

vi(t,5,x) = (Apu(t. ) (s, x) — (s, x)v(t, 5, x)

for (s,x) € [0,7) xR and ¢ € [0,T — 5],

v(0,s,x) = h(s,x) for (s,x) € [0,T) xR, 0
Theorem 4.2. Assume that conditions (1)—(iv) of (A) are satisfied, T > 0, and
c € C([0,T] x R, R) is bounded. For every (f.g) € C(F) x C(G) and x € RY,

there is a unique in law weak solution Xofj of SDE(f, g) satisfying Xofj 0) =x
a.s., such that the function v defined by

v(t,x) = E* [exp (_ / r c(Yy® (r))dr) (hom)(Yy'® (r))}
0

forh € COZ(]Rd) and (t,x) € [0, T] x R? satisfies
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vi(t,x) = (Afgv(t, )) (t,x) —c(t,x)v(t, x)
for (t,x) € (0,T] x R?,
v(0,x) = h(x) for x € R?. 0

Theorem 4.3. Assume that conditions (i)-(iv) of (A) are satisfied, T > 0, ¢ €
C([0,T] x R? and v € C"12([0, T] x [0, T] x RY, R) is bounded and such that

vi(t,5,x) = (Agu(t,-)) (s,x) — (s, x)v(t, 5, x)
for (s,x) €[0,T)xR? and ¢t € [0, T — 5]
(0,5, x) = h(s,x) for (s,x) €[0,T) x RY.

for (f,g) € C(F) x C(G) and h € Col’z(RdH). For every (s,x) € [0,T) x R?,
there is a unique in law weak solution Xs{f of SDE( f, g) satisfying initial condition
X&{% (s) = x such that

s+t
v(t,s,x) = E>" [exp (—/ c(r, X{f(t))dt) ﬁ(s +f, Xsfj(s + t)):|

for (s,x) €[0,T) xR? andt € [0, T —s]. |

Remark 4.1. 1f the assumptions of Theorem 4.1 are satisfied, w € C'*([0, T] x
RY,R)and u € C([0, T] x R¢, R) are bounded and such that the function v defined
by v(s,x) = w(T — s, x) for 0 < s < T satisfies

vi(s, X) + (Arv) (s, x) = —u(s, x)
for (s,x) € [0,T) x R?
v(0,x) = h(T,x) for x € RY,

then for every (s, x) € [0, T) x RY, there exists a unique in law weak solution Xf g
of SDE( f, g) with an initial condition X S"f ¢(s) = x a.s. such that

~ " T "
w(T —s,x) = E* [h(T, XS{f;’(T))] 4 ES [ / u(z, Xs{g(r))dr} . O

We shall consider now some generalized Dirichlet—Poisson problems with partial
differential operators generated by (f, g) € C(F) x C(G) with F and G satisfying
conditions (i)—(iv) of (A). Similarly as in Chap. 1, we obtain the following results.

Theorem 4.4. Assume that conditions (1)—(iv) of (A) are satisfied, T > 0, and D
is a bounded domain in R¢. Letu € C([0, T] x R?,R), ® € C((0,T) x aD, R) be
bounded and (f,g) € C(F) xC(G). Ifv € Col’z(RdH) is bounded such that
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u(t,x) = (Afgv) (t,x) for (t,x) €[0,T)x D,

4.1
limpssry 0(t, X) = B, y) for (1,y) € (0,T)x oD, D

then for every (s, x) € [0, T) x D, there exists a unique in law weak solution X{f
of SDE( f, g) with initial condition Xs‘ff(s) = X such that

v(s,x) = EY [®(rp. X/%(1p))] — E™* [ / ? u(t, X‘{f(z))dz}

for (s, x) € [0,T) x D, where tp = inf{r € (s, T]: X{%(r) & D}.
Proof. By virtue of Remark 11.1 of Chap. 1, for every (s, x) € [0, T) x D, there is a
unique in law weak solution va ¢ of SDE(f, g) with initial condition X Yf $(s) =x

a.s. such that the process Y{f = (s +1¢ Xg’jf(s + 1))o<i<7—s is an Itd diffusion
with the infinitesimal generator Ay, defined above. Let Uy = (0,T) x Dy and

7y, = inf{r € (0,7 —s]: Ygf;g(t) & Uy}, where (Dy)72, is an increasing sequence
of open sets Dy such that Dy C D and D = U,foz 1 Di. It can be verified that
Ty = T — 8, where i = inf{r € (s,7] : Xff(r) ¢ Dy }. By Dynkin’s formula,
forevery k = 1,2,... we get

E* [0V (@ )] = v(s, x) + E* [/% (Afgv)(Ys,f)f,(t))dt]
0

for every (s,x) € [0,T) x D. By (4.1), we have u(s + ¢, X{5(s + 1)) =
(Afgv)(Ys,f;’T(t)) for (s,x) € [0,T] x D and t € [0, T — s]. Hence, by the definition
of Y{f and the equality rzjk = 1} — s, for every k=1,2,..., we obtain

T ,
vis,x) = E (@], X4 (@))] - B [ / u(t, X{f(l))dt} .
S
On the other hand, by (4.1) and the boundedness of the functions ® and u, we get

klim E*u(e), X/4()] = ES*[®(tp, X/ (tp))]
—00 ’

and

K

lim [ / . Xg:f;’(t))dt] = Eo [ / v u(z,ngg(z))dz}
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for (s,x) € [0, T) x D. Then

v(s,x) = EY [®(p. X% (tp))] — E™* [ / v ult, Xsfj(t))dt:|

for (s,x) € [0,T) x D. |

Theorem 4.5. Assume that conditions (1)-(iv) of (A) are satisfied, T > 0, and D is
a bounded domainin R¢. Let c,u € C([0, T] x R, R) and ® € C((0,T) xdD,R)
be bounded and (f, g) € C(F) xC(G). Ifv € COI’Z(IR"H'I) is bounded such that

% u(t, x) = (Agv) (8. x) — c(t,x)v(t,x) for (¢,x) € (0,T], xD
limpsy—, v(t,x) = ®(¢,y) for (¢,y) € (0,T) x D,

then for every (s,x) € [0,T) x D, there exists a unique in law weak solution Xs{f
of SDE( f, g) with initial condition X&{f (s) = x a.s such that

v(s, x) = ES* |:q>(‘L'D, nyg(TD)) exp (— /tD c(t, ny‘s(l))dl)i|

_ S {/w [u(r’ X“,{f(r)) oxp (_ /Hrc(r’ X&{‘f(t))dt)} dr}

for (s, x) € [0,T) x D, where tp = inf{r € (s, T]: X{%(r) & D}.

Proof. Similarly as in the proof of Theorem 4.4, we can verify that for every
(f,g) € C(F)xC(G)and (s, x) € [0, T)x D, there is a unique in law weak solution
X Yf £ of the stochastic differential equation SDE ( f, g) satisfying the initial condition

X/%(s) = x a.s. such that the process Y8 = ((s +1, X/ (s + 1)))o<i<T—s is an Itd
diffusion with the infinitesimal generator A7, defined above. LetYf = (0,7) x D
and 7, = inf{r € (0,T —s] : Ys,ff(t) & U}. It can be verified that 7, = 7p — .
Fix (s5,x,2) € [0,T] x R x R and define Z = z + [ c(¥,/¥(r))dr and
H = (Ygf;g (t), Z7}). It can be verified that (H;)o<;<7—s is an Itd diffusion with
the infinitesimal generator (Ax¥)(s,x,2) = (A ¥)(s,x,2) + ¥.(s,x,2)c(s, x)
for ¥ € Cy*([0, T] x R"*"). Hence by Dynkin’s formula, it follows that

I&/\IR
ES< [w(H;aMR)] =Y(s,x,2) + E>*F [ / Luay)(H; )dr] :
0
where 7g = inf{t € (0, T —s] : |H| > R}. Taking ¥ (s, x,z) = e"*v(s, x), we get

N Y (HY )| = B [exp (— [0 c(n{fm)dr) v (Y A m))]
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and

(A ) (H?) = exp (— /O c(YS{f(r))dr) [0 (VE () — (XSS oY E ()]
From this and (4.5), it follows that

e (s, x) = EM°F |:exp (_ /IQAIR C(Y‘ff(r))dr) U(Y‘ff(‘qf{ A TR))]
0

_ s [ /0 S (— /0 e (t))dt) (Y, (r))dr:| .

Taking z = 0 and passing to the limit R — 0o, one obtains

s

v(s,x) = E5 |:eXp (— /TM C(Ys{;g(f))df) q’(Ys'{;g(fi{))]
0

— ES¥ |:/Om exp (— /Or C(Yv‘,).:f(f))df) “(Yv{f(r))dr] :

because limp_ o v(stf (tj, A R)) = DY, S‘f:f (7). From this and the equality
YS8(t) = (s + 1. X/%(s + 1)), it follows that

s+,
v(s,x) = E* |:exp (—/ c(, T, X{f(r))dr) (s + 1, Xsff;’(s + r‘b",)):|
s

s+t s+r
— 5 [ / exp (— / c(t. X% (f))df) u(r, X/ (’))d’] :

Therefore,

b5, x) = B [cb(m, X/2(2)) exp (— / Y et x /s (r))dr)}

. %/w [u(r, X{ff(’)) exp (— /Hr c(r, X&Cf(l))dt)} dr}

for (s,x) € [0,T) x D, because s + 7, = 7p. |

Corollary 4.1. Ifthe assumptions of Theorem 4.5 are satisfied and v € COI’Z(IRd'H)
is bounded such that
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—v)(t,x) = (Agv) (¢, x) — c(t, x)v(t,x) for (,x) €[0,T) x D,
limpsy—, v(t,x) = ®(¢,y) for (¢,y) € (0,T) x D,

then for every (s,x) € [0,T) x D, there is a unique in law weak solution X{f of
SDE(f, g) with initial condition Xs{f (s) = x a.s. such that

v(s,x) = ES* |:CI>(‘ED,X‘]§(‘CD)) exp (_/TD c(t, nyf(l‘))dl):|

for (s,x) €[0,T) x D. |

5 Existence of Solutions of the Stochastic Dirichlet—Poisson
Problem

The question of the existence of a solution to the Dirichlet and Poisson problems
is much more complicated then the boundary values problems presented above. For
example, a natural candidate for a solution to the simple Dirichlet problem

(Asev) (1,x) =0 for (t,x) € (0.T) x D,

5.1
limps.—sy 01, X) = B(t, y) for (1) € (0,T] x D, oD

seems to be the function defined by w(s,x) = E*~* [@(rD,X‘{ff(tD))], where
similarly as above, Xf ¢ is a weak solution of SDE(f, g) with initial condition

X S"f f (s) = x a.s. Unfortunately, in the general case, such a function w need not
be in C'2((0, T) x D, R). In fact, it need not even be continuous.

Example 5.1. Let X(t) = (X1(¢), X2(¢)) be a solution of the equation dX(t) =
(1,0)dz, so that X(t) = X(0) + (1,0)t € R?fort > 0.Let D = [(0,1) x (0, 1)] U
[(0,2) x (0,1/2)] and let ® be a continuous function on dD such that & = 1 on
{1} x [1/2,1] and ® = 0 on ({2} x [0, 1/2]) U ({0} x [0, 1]) (see Fig.6.1). Then
w(s, x) = ES*[®(X,,)] = 1ifx € (1/2,1) and w(s,x) = 0ifx € (0,1/2). Sow
is not continuous. Moreover, lim;_o+ w(t, x) = 1 # ®(0,x) if 1/2 < x < 1. Then
the second condition of (5.1) does not hold.

However, the function w defined above will solve the Dirichlet problem in a
weaker stochastic sense:

(Lpev) (t,x) =0 for (t,x) €[0,T) x D,

limy ., v(Y,'$(t)) = ®(Y8 (zp)) for (s.x) € (0,T) x D, (5-2)
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Fig. 6.1 Domain of the A
function ®
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where L, is the characteristic operator of the diffusion Y, S‘f‘ ¢ defined above. We
shall consider now the problem of the existence of solutions of the stochastic
Dirichlet-Poisson problem of the form (5.2). It will be convenient to divide it
into two problems: stochastic Dirichlet and stochastic Poisson problems. Assume
(f,g) € C(F) x C(G) with F and G such that the pair (F, G) generates the
uniformly parabolic diffusion set-valued operator L p¢.

Let ¢ be a locally bounded measurable function on (0, 7)) x D with T > 0 and
a bounded domain D C R?. A function @ is said to be Y. V{f -harmonic in A =
(0,7) x D if (s, x) = ES’X[(p(YSﬁ}g(tu))] for all (s, x) € A and all open sets U
such that cl{i/} C A, where 14 is the first exit time of YS{‘ £ from the set 2. We get
the following basic results.

Lemma 5.1. If ¢ is Y% -harmonic in A = (0,T) x D, then L9 = 0 in A.

Conversely, if ¢ € CY2(A) is such that Lo = 0in A, then ¢ is Y‘,{f-harmonic
in A.

Proof. By the definition of the characteristic operator L 7 of YS{‘ f , we have

E* Ys};g — ,
(Lrep)(s.x) = lim Lo ( E(b[[f):]] o(s, %)

for (s,x) € A. If p is Ys‘f‘f-harmonic in A, then L7, = 0in A. Conversely, if
@ € C'2(A) is such that (L s4¢)(s, x) = 0 for (s,x) € A, then by Theorem 10.2
of Chap.1 and Remark 11.1 of Chap.1, we have (L/0)(s,x) = ¢/(s,x) +
(L fe0(t,-)) (5, x) = (Ase)(s, x), where Ay, is an infinitesimal generator of the
1t6 diffusion ¥, Y,fxg . By Dynkin’s formula, it follows that

Ty Nk
EVfp(Y ¥ (o)) = lim E** (V¥ (g Ak)] = o(s,x) + E* { /0 (A7g@)(s, x)ds}

for (s,x) € A. Hence, by the equalities (L 7,¢)(s,x) = 0 and (Le0)(s,x) =
(Afep) (s, x), for (s,x) € A, we obtain E** [(p(YY{f(ru))] = @(s, x) for (s, x) € A.
Then ¢ is Y{f -harmonic. O
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Lemma 5.2. Let ® be a bounded measurable function on (0,T) x 0D and
u(s, x) = E”[CIJ(Y E(tp))] for (s,x) € (0,T) x D. Then u is Y‘ff-harmonic
inA=(0,T)xD.

Proof. By the mean value property of the diffusion Ys,ff , we get
o) = [ a0 AV € dyh = BV )

for every open set V' C D such that cl{V'} C D. Then uis Y, Yf ¥ -harmonic. O

Given a bounded domain D C R and a function ® on (0, T') x D, the problem
consisting in finding a function u : (0, 7) x D — R such that it is Yf £ -harmonic in
A =(0,T)x D and hm,_,m u(YS):f(t)) = @(YSX (tp)), O%*-a.s. for (s,x) € A,
where Q%" is a law of Y/ f , is called the stochastic Dirichlet problem generated by
the diffusion process Yy’ f

Theorem 5.1. Let T > 0 and let D C RY be a bounded domain. Assume
(f.g) € C(F)xC(G) with F and G such that the pair (F, G) generates a uniformly
semielliptic set-valued diffusion operator Lrg. Let ® be a bounded measurable
function on (0, T) x dD. For every (s,x) € A = (0,T) x D, there is a unique
in law weak solution Xsf,ﬁ of SDE(f, g) with initial condition X{f(s) = X a.s.
such that the function u(s,x) = E**[®(tp, X{f(tD))] defined for (s,x) € A is a
solution of the stochastic Dirichlet problem

(Lfev) (t.x) =0 for (t,x) €[0,T) x D,

5.3
lim; ., v(t,x) = dD(tD,Xsff(rD)) for (s,x) € (0,T) x aD, >-3)

where tp = inf{r € (s, T) : Xs{f(") ¢ D}.

Proof. By virtue of Remark 11.1 of Chap.1 and Theorem 11.1 of Chap. 1, for
every (s,x) € A = (0,T7) x D, there is a unique in law weak solution X Sf ¢ of
SDE(, g) with initial condition X $(s) = x a.s. such that the process Y‘ff =
(s +1, (X $(s + 1)))o<i<r—s is an Ito diffusion with characteristic operator £ 4.
By virtue of Lemma 5.2, the function u(s, x) = E** [@(Y‘,f;g (zp — $))] defined for
(s,x) e Ais Yfg harmonic in A. Then by Lemma 5.1, one has (£ s, u)(s, x) = 0 for
(s,x) € A.Fix (s,x) € A andletUy = (0, T)x Dy, where (Dy)72, is an increasing
sequence of open sets Dy C R? such that Dy ¢ D and D = Uk 1 Dy Put
1wy, =inf{r € (0,7 —s] : YS’;"’(r) & U} and 7 = inf{r € (s, T] : X S(r) &€ Dy}
It can be verified that 7, = ©x — s fork = 1,2,....Lett = mf{r € (s,7] :
X{f (r) € D}. By virtue of Theorem 9.6 of Chap. 1, we get

u(Y,E () = E%X5 (2)[0(r, X/2(0))]
= E* [0, (9(z, X/8(0))) | Fy ] = EX¥[@(x, X2 (2))|Fy, .
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Let us note that the process (My)i>1 defined by My = E**[P(z, X ()| Fy] s
a bounded discrete-time martingale with respect to the discrete filtration (Fo)k=1-
By virtue of Remark 4.1 of Chap. 1, we get

Jim u(Yw(fuk))— tim ES[0(c, X{5 (1) | Fy J=E[@(t. X{¥ (1) Fool=0(r. X{¥ (1))

a.s. and in the L?(Q2, Foo. 0%, R)-topology, where Foo = o({}}l,}}z, ..
Moreover, a sequence (N k)k , of stochastic processes N, k= u(YS Sy, V(A
TUyyr)) — u(YS %(mw,)) is a martingale with respect to a filtration Gy = (GF),>0

of the form g,k F.

W V(AT ) for ¢t > 0. Therefore, by Doob’s martingale
inequality, we get

o ({ sup  |u(YE (rgy,)) — w8 (mg))| > 8})

U STy

1
< SE Y () = u(VE (@) = 0

for every e > 0 as k — oo. From this and the equality limj_ o u(YS{‘ f () =
D(z, X $(1))) a.s., it follows that

hrn u(s + ‘Cz,{k,X S +y)) = hrn u(t, X $(1y)) = P(x, X £(1))).

which is equivalent to lim,_,,, u(, X $(t)) = P(tp, X (rD)). O

Theorem 5.2. Let T > 0 and let D C R? be a bounded domain. Assume (f. g) €
C(F) x C(G) with F and G such that the pair (F,G) generates the uniformly
semielliptic set-valued diffusion operator Lrg. Let ® be a bounded measurable
function on (0,T) x aD. If ¢ : (0 T) x D — R is bounded, st‘f-harmonic in
(0, TYx D such thathm,_m, o(t, X (1) = D(tp, X ff(rD)), Q**-a.s. for (s, x) €
(0,7)x D, where Xv % is the unique in law weak solution of SDE(f, g) with initial
condmonX $(s) = x a.s. such thatYfg(t) = (s+t, X S(s+1)) fort €0, T —s],
then ¢(s,x) = E**[®(1p, M(rD))]|f0r (s, x) € (0, T) x D.

Proof. Let 1y, %, and 7t be as in the proof of Theorem 5.1. Since ¢ is Y‘ff

harmonic in (0, T') x D, it follows immediately from the definition that (s, x) =
E”[dD(Yf ¢ (ty,))] for every k = 1,2,.... Hence, similarly as in the proof of
Theorem 5.1, by the properties of ¢, it follows that ¢(s, x) = hmk_,oo ES*o(s +
W, , ”(s + )] = limgoo E5* [@(tk, X ()] = P(x, X $(1))] for every
(s,x) €(0,T)x D. |

Let 7 > 0 and let D C R? be a bounded domain. Given a continuous function
¥ :(0,T)x D — Rand (f,g) € C(F) xC(G) with F and G such that the pair



5 Existence of Solutions of the Stochastic Dirichlet-Poisson Problem 239

(F, G) generates the uniformly semielliptic set-valued diffusion operator L ¢, the
problem consisting in finding a function v : (0, 7)) x D — R such that

(Lpev) (t,x) = =Y (s,x) for (t,x) €[0,T)x D

5.4
lim, ., v(1, X{%(1)) =0, 0" —a.s. for (s.x) € (0,T) x D, (5-4)

where Ly, is the characteristic operator of the Itd diffusion Ys,ff defined by the
unique in law solution X¢ of SDE( £, g) with initial condition X% (s) = x a.s., is
said to be the stochastic Poisson problem generated by Ys'f;g .

Theorem 5.3. Let T > 0 and let D C R? be a bounded domain. Assume that
(f.g) € C(F) x C(G) with F and G such that the pair (F,G) generates the

uniformly semielliptic set-valued diffusion operator Lr¢. Let X&ff be the unique in
law weak solution of SDE( f, g) with initial condition X{g(s) = x a.s. and let ¢ :
(0,T) x D — R be a continuous function such that E** [fom lo(t, Xs{f(t))|dt:| <
oo for every (s,x) € (0,T) x D. Then the functionv : (0,T) x D — R defined
by v(s,x) = E”‘[ OID @(Z,Xsff(t))dt] is a solution of the stochastic Poisson
problem (5.4), where Tp = inf{r € (s, T) : X{4(r) # D}.

Proof. Fix (s,x) € (0,T) x D and choose an open set i/ C (0,7) x D such that
(s,x) eUU.Putty =inf{r € (s, T —s) : Ys,fxg(r) ZUYand n = OTD o(t, Xsff(t))dt,
where (YS{ £(1))o<i<7—s is the Itd diffusion defined in Theorem 11.1 of Chap. 1. By
virtue of Theorem 9.6 of Chap. 1, we get

EXEO) —v6.x) _ 1 (gt
Es,x[.[u] - Es'x[‘fz,{] (E [E [U]]—E ['7])
1 S.XTIS.X s — 1 $.X _
= i (BB ) = B0 = o (B2 un =),

Let (nx)72, be a sequence of Riemann approximating sums for 7 of the form n; =
Y o(ty, XIS U)) gy <opy Al fork = 1,2, Since 7 = Y1 o(t; +1, X5 (1 +
Oy, 41<pyAti fork = 1,2,... and gy — nas k — oo, it follows that 6, n =
[P, X J¢(t))dt. Therefore,

E™* stf - , 1 ) 7
[v( Es(?ft)b),]] v(s,x) _ _ES’X[‘EZ/[]E“’X |:/0 o(t. Xéf(t))dz} )

By the continuity of ¢, it follows that

E (Y ()] = v(s,x)

lim = —(s, X).
U—>(s.x) Esx [‘Cz,{] (p( )
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Then (L r,v)(s, x) = —¢(s, x) for (s,x) € (0,T) x D. Let Dy and 1} be as in the
proof of Theorem 5.1 and put

a0 = 2| [ ot x o]
0

Similarly as above, we get

ES*[H(w At X8 (1 A 1)) = EX [E [ / v lp(u, Xs{;f;’(u))ldulfwﬂ

K N\t

— E5X |:/TD |qp(u,XSf§(u))|dM:| .

T N

Passing to the limit in the above equality with k — oo and ¢ — 7p, we
obtain limy—;, k—o0o E**[H(tk A t,XS"ff(tk A t))] = 0, which implies that
lim, sz, v(t, X (1)) = 0 0**-as. for (s, x) € (0, T) x D. O
Immediately from Theorems 5.1 and 5.3 we obtain the following existence and
representation theorems for the stochastic Dirichlet-Poisson problem generated by
an Itd diffusion Y,’¥.
Theorem 5.4. Let (f,g) € C(F) x C(G) with F and G such that the pair (F, G)
generates a uniformly semielliptic set-valued diffusion operator Lrg. Assume
T >0 and that D C RY is a bounded domain, and let Xs{f be the unique

in law weak solution of SDE(f, g) with initial condition X{g(s) = X a.s. for
(s,x) € (0,T) x D. Assume that ® is continuous and  is continuous and bounded

on (0, T)xdD and (0, T)x D, respectively, such that E** [ OTD | (t, Xs{f(t))|dt:| <

oo for every (s, x) € (0,T) x D, where tp = inf{r € (s.T] : X/$(r) & D}. The
Sfunction v : (0,T) x D — R defined by

v(s,x) = E**[®(tp, X/4(tp))] + E* [ / Y, x/s (r)dz}
0

for (s,x) € (0,T) x D is a solution of the stochastic Dirichlet—Poisson problem
(Efgv) (t,x) = =y (s,x) for (t,x) €[0,T) x D,
limy sz, v(t, X{2(0)) = ®(1p. X{%(tp)). O —a.s. for (s,x) € (0,T) x D.
(5.5
O

Theorem 5.5. Let (f,g) € C(F) x C(G) with F and G such that the pair (F, G)
generates a uniformly semielliptic set-valued operator diffusion Lrg. Assume
T >0 and that D C RY is a bounded domain; let X{E be the unique in law
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weak solution of SDE(f, g) with initial condition ijff(s) = x a.s. for (s,x) €
(0, T) x D, and let ® be continuous and ¥ continuous and bounded on (0, T') x 0D

and (0, T) x D, respectively, such that E** [ OID [y (¢, Xs'{rf(t))|dt] < 00 for every
(s.x) € (0,T) x D, where tp = inf{r € (s.T] : X/%(r) & D}. Ifv €
C'2((0.T) x D, R) is such that [v(s, )| = € (14 E* [ [ [y (e, X/$(0)1dr ])
for (s,x) € (0,T) x D and v satisfies (5.5), then

b(s5.x) = EM[D(cp, X2 (ep))] + E* [ / Yy x (r))dr}
0

for(s,x) € (0,T) x D. O

6 Existence Theorems for Partial Differential Inclusions

Let F: RT x RY — CI(RY) and G : Rt x RY — CI(R?*™) generate a uniformly
semielliptic set-valued operator Lrg on COZ(]Rd 1y and let Apg be a family of
uniformly parabolic diffusion generators on Drg defined by (1). Similarly as in
Sect. 3, assume that Q is a bounded domain in R™ xIR? lying in the strip (0, T') x R¢
foragivenT > 0.Put B = O N[{t =0} x R and By = O N[{t = T} x RY]
and assume that B and By are nonempty. Let B = Int(Br) and B = Int(B).
Denote by Sy the boundary of Q lying in the strip (0, T) x R¢ and let S = Sy \ Br.
The set 30 = B U S is a parabolic boundary of Q. Let ¢ : RT x RY — R,
¢ Rt xR - R, ¢ : RY” - R,and y : Rt x R — R be given. The
following results for partial differential inclusions follow immediately from the
above existence and representation theorems for partial differential equations.

Theorem 6.1. Assume that F and G are convex-valued and uniformly Hélder
continuous such that the pair (F, G) generates a uniformly semielliptic set-valued
operator Lpg on a bounded domain Q C (0,T) x R?. Let ¢ and ¢ be uniformly
Hélder continuous in Q and assume that \ and y are continuous on B and S,
respectively. If furthermore, there exists a barrier corresponding to (f, g,c) for
every pair (f,g) € C(F) x C(G) at every point of S, then the initial-boundary
value problem

up(t,x) € (Lpgu(t,-)) (¢, x) + c(t, x)u(t, x) — @(t, x)
for (t,x) € QU Br,

u(0,x) = Y (x) for x € B,

u(t,s) = y(t,x) for (t,x) € S,

6.1)

possesses at least one solution.
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Proof. By virtue of Corollary 2.2 of Chap. 2, it follows that the functions f : R x
RY - RY and g : Rt x RY — R? defined by f(t,x) = s(F(t,x)) and
g(t, x) = s(G(t,x)) for (t,x) € R x R?, where s is a Steiner point map defined
by (2.1) of Chap. 1 are continuous selectors of F and G that satisfy the conditions
of Theorem 3.1. Therefore, by virtue of this theorem, there exists a unique solution
v of the first initial-boundary problem (3.1) that, by the properties of the selectors
J and g and the definition of Lr¢, satisfies (IL rov(z,-))(f, x) € (Lrgv(?,-))(t, x)
for (¢, x) € Q U Br. Therefore, v is a solution of (6.1). a

Remark 6.1. Immediately from Corollary 3.1, it follows thatif Q = (0, T)x D is as
in Remark 3.2, then for F, G, ¢, ¢, and y satisfying the conditions of Theorem 6.1,
the initial-boundary valued problem (6.1) possesses at least one solution. a

Similarly as above, we also obtain the following existence theorem for Cauchy
problems for partial differential inclusions.

Theorem 6.2. Assume that F and G are bounded, convex-valued, Holder contin-
uous in x uniformly with respect to (t,x) € [0,T] x R¢, and such that (F,G)
generates a uniformly semielliptic diffusion set-valued operator Lrg on Dpg.
Furthermore, let ¢ be continuous and Holder continuous in x uniformly with respect
to (t,x) on compact subsets of [0, T] x R? and let  be continuous on RY. If there
are positive numbers o and A such that max (|¢(t, x)|, |¥ (x)]) < A - exp («|x|?)

for (t,x) € [0,T] x RY, then there is ¢ > 0 such that the Cauchy problem

u/(t,x) € (Lrgu(t,-)) (¢, x) + c(t, x)u(t,x) — o(t,x) for (t,x) € (0,T] x R4, ]
u(0,x) = ¥(x) for x € R,

possesses a solution in the strip [0, T*] x R?, where T* = min{T,¢/a}.

Proof. The result follows immediately from Theorem 3.2 for f and g defined
similarly as in the proof of Theorem 6.1 by setting f(z,x) = s(F(¢,x)) and
g(t,x) = s(G(t,x)) for (1, x) € Rt x R?. O

Theorem 6.3. Assume that conditions (i)—(iv) of (A) are satisfied, T > 0, h e
Col'z(Rd'H), and let c € C([0, T] x R, R) be bounded. For every (s, x) € [0, T) x
RY, there is a weak solution (Pr, X{f, B) of SFI(F, G) with initial condition x; =
X a.s. such that the function

v(t,s,x) = E>" [exp (— /Ht c(z, qux(t))dt) h(s +1, Xsx(s + t))i|

satisfies

v/(t,s,x) € (Argu(t,-)) (s,x) — c(s, x)v(t, s, x)
for (s,x) €[0,7) x R* and 7 € [0,T — 5] (6.2)
v(0,s,x) = h(s,x) for (s,x) €[0,T) xR,

where A is the set-valued parabolic diffusion generator defined above.
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Proof. By virtue of Michael’s continuous selection theorem, there are f € C(F)
and g € C(G). By Theorems 9.3, 9.4, and 11.1 of Chap. 1, there is a unique in
law weak solution (Pp, XS{ 3. B) of SDE(f.g) with initial condition x; = x a.s.
such that the process Ys‘fjf = (s + ¢, Xs‘ff(s ~+ 1))o<t<T—s is an Ito diffusion with
infinitesimal generator As, € Arg. By virtue of Theorem 12.1 of Chap. 1, the
function

ott.s.0) = £ [exp (= [ erzonar ) vz |
0

defined for i € C;*(R¥*1), (s, x) € [0, T)xR? and ¢ € [0, T —s] satisfies equation
12.1 of Chap. 1. But (Ao v(¢,-)) (s, x) € (Argv(t,-))(s, x) for (s, x) € [0,T) x R¢
and ¢ € [0, T — s]. Therefore, conditions (6.2) are satisfied. It is easy to see that

v(t,s,x) = E>" [exp (— /H—t c(z, qux(t))dt) ﬁ(s +1, Xsx(s + t))i|

for (s,x) € [0,7T) x R?. |

Theorem 6.4. Assume that conditions (i), (iii), (iv'), and (v) of (A) are satisfied,
T > 0, and let b € C,*(RY*Y). Suppose ¢ € C([0,T] x R, R) and v €
Cl12([0, T] x [0, T] x RY, R) are bounded such that

vy (t,s,x) —vi(t,s,x) € (Lpgu(t,-)) (s, x) —c(s,x)v(t, s, x)
for (s,x) €[0,T)xR? and ¢t €[0,T —s], (6.3)
v(0,5,x) = h(s,x) for (s,x) €[0,T)x RY.

For every (s,x) € [0,T) x R4, there exists )2” € X;x(F,G) defined on the
probability space (Q, F, 13) such that

v(t,s,x) = E [exp (— / " c(t, Xs,x(z))dc) h(s + 1, Xsx(s + z))}

for (s,x) €[0,T) xR? andt € [0, T —s].
Proof. By virtue of Theorem 2.6, for every k,m > 1, there are f; € C(F) and

gl € C(G) such that 07" = g’ - (g')* is uniformly positive definite and

lim [v;(t,s,x) = vi(t,5,x) = [(L s gnv(t,))(s,x) — c(s, )v(t, 5, )] < 1/k
m—>0Q
(6.4)
uniformly with respect to (s,x) € [0,T) x R? and t € [0,T — 5], where
L gn is defined by Ly, foru = fi(z,x) and v = g (z,x) - (g (¢, x))*. But
(Agegrv(,))(s,x) = vg(t, s, x) + (Ljenv(t,-))(s, x). Then inequality (6.4) can
be written in the form

mli_)moo [v/(t,s,x) — [(Afkgzzv(t, N, x) —cls, x)v(t,s,x)]| <1/k (6.5)
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for k > 1 uniformly with respect to (s,x) € [0,T) x R and ¢t € [0,T — s].
By virtue of Theorems 9.3, 9.4, and 11.1 of Chap. 1, for every (s,x) € [0,T) x
R and k,m = 1,2,..., there is a unique in law weak solution (P}, X;", B}") of
the stochastic differential equation x; = fi (¢, x,)dt + g/’ (¢, x,)dB, with P}’ =
(2, F Iy, P") and initial condition x; = x a.s. such that the process Y =
(s +1, X" (s + 1))o<i<7— is an Itd diffusion with infinitesimal generator A 4 ,n €
Arg. We have X' € X, (F,G) for k,m > 1, where X; (F, G) denotes the set
of all weak solutions (equivalence classes of) of SFI(F,G) with initial condition
Xxs = x a.s. By the weak compactness of the set &; . (F, G), for every fixed k > 1
there are an increasing subsequence (m, )72, of (m)m > a probability space P =
(Qk Fi, Pk) and continuous processes Xk , Xr on Py such that P(X’"’) -
P(X]")™" fork,r = 1,2,... and such that supy_, . | X" (t) — Xi ()| = 0 Pi-
a.s. for k > 1 as r — oo. By Theorem 9.4 of Chap. 1, it follows that )?,’("’ is a weak
solution of the stochastic differential equation dx, = fi (¢, x,)dt + g (¢, x;)d B,
with initial condition x; = x a.s. Then )Zk € X;x(F,G) for every k > 1. Let us
observe that by virtue of Lemma 10.1 of Chap. 1 and Remark 10.4 of Chap. 1, for
fixed k > 1, every r > 1, and every bounded domain D; = {z € R : |z] < A}
with A > 0, one has E,’("’[ "] < oo, where 7, = inf{t > 5 : X" (t) ¢ D}
and F; " denotes the mean value operator with respect to the probability measure
P By virtue of Theorem 5.2 of Chap. 4, we have P(z;"")~! = P(5"")~", where
T =inf{t > 5 : X;"" (t) & D;}. Hence, by Chebyshev’s inequality, it follows that

Pz > 2 = P (g > 2')) < 27 EP (]

for every I = 1,2,.... Therefore ) ;2 lPk({~m’ > 2'}) < oo, which by the
Borel-Cantelli lemma, 1mp11es PN IU‘ AF' > 2'}) = 0. Then there is a
subsequence ()2, of (l)[ | such that Py (7" > 251y = 0 for every k, r,s > 1.
Therefore, 7, < 2% Py-as. for fixed k, s > 1 and every r > 1. Hence, by virtue
of Theorem 5.1 of Chap.4, it follows that lim, e |rk — %| = 0 as., where
Tt = inf{t > s : Xx(t) & D}. In a similar way, we can verify that there exist
a subsequence (kr)P2, ofa sequence (k)22 L and continuous stochastic processes

Xk and X on the probability space P = (Q, F. P) such that PXk, = PXkrl,
SUPg<; <7 |Xkr(t) — X(@t)| = 0, and limy oo |f]fr — %] =0 P-as.as r — oo,
where %,ﬁr and 7, denote the first exit times of X k, and X from D, , respectively.
Put Y (1) = (s + 1LX" (s + 1))o<i<T—s Y () =@+ X" (s 4 1))oi<T—ss
Yi(t) = (s + 1, Xa(s + 1))oze<r—s, Y (1) = (s + 1, X (s + 1))o<i<r—s fork,r > 1,
Yi,t) = (s + 1, Xi, (s + 1))o<t<r—s. and Y (t) = (s + 1, X (s + 1))o<sr<7—s- Let
K, = (0,T) x Dy and cr]i"’, 6,:"’, Ok, C}/?r, and 0, denote the first exit times from
K; of Y, Ykm’, Ye, ¥ k,» and Y, respectively. Similarly, by 7" and 7;, we denote

the first exit times from D; of X ]:"’ and X, respectively. We have o} = " — s,

Oy = Tp — S, 0,? = r]? —s,and 6, = T) — s. By virtue of Theorem 5.2 of Chap. 4

and Corollary 5.1 of Chap. 4, we have
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mr

N0y,
E'" | exp —/
0
. 1N
= E | exp —/
0

for fixed o € (0, T —s],0 <t < ty,and s € [0, T). By 1t6’s formula, we obtain

C(Ykm’(r))dr) v(tg—t Ao Y (A a,:”f)):|

" (@) )df) vlto =1 NG V" (1 A a;”’))]

mr

N
E'" | exp —/
0

my

= E" /0 k exp(— /0 c(Y{"*(c))dc) (A, gr v(t0 — 7D (1)

—v(to — . Y (1)) — c (Y (0)v(to — 7, Y"" ())]dt.

ey (t))dt) v(to —t Ao Y (A a,:”r)):| —v(to, 5, x)

Similarly as above, we also get

my
k

E;Lnr /0 exp (_ /Ot c(Ykmr(‘C))d‘C) [Afnkg}:" v(to — 7, Ys’f{ (1)
—v;(to — T, Y (7)) — (¥ (D))v(to — 7, ¥} (0))]dT
= Ek/o k exp (—/0 c(?,g"r(r))dr) [Ay, g0 =T, 7 (2))
=t =T V(@) = e (R (@)l — v T (0)lde.

Therefore,
. N .
E; | exp —/ c(Y"(v))dt Jv(to —t A 6,1.‘, Y, (t A 6,’.‘)) —v(ty, 5, X)
0

tAG"T K T
= Ek/o exp (—/0 c(fkmr(r))dr) [Afkgkmrv(to -1, Ykm’ (1))
— vty — T, ¥ () — (¥ (0))v(to — 7, Y (v))]dT

forfixedk =1,2,..., s €[0,T),0 <t < ty, and every r > 1. From this together
with (6.5), it follows that

lim
r—>00

. N .
E; |:exp (—/ ey (t))dt) v(to—t NG YT (A 6]2"’)):|
0

—v(f, s, X)
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~my

_ N0 T
< lim sup]RdEk/O exp (—/0 c(s+r, x)dt) |(Afngzrv(to—t, (s + ¢, x)

r—>o00 xe

—vj(to— 1,5 +1,x) —c(s + 1, x)v(to — T, 5 + 1,x)|dT

1 T s+t M
< — sup exp | — c(u,x)du )dr < —
k x€R4 J0 s k

fork=1,2,...and s € [0, T), where M > sup,cpa fOT exp (— fs+r c(u, x)du) dr.

s
Similarly, we obtain lim, Ex |6,’{"’ — 0x| = 0 for every k > 1. From this and the

properties of the sequence (17,;" )22, one gets

<
~k

Ey |:exp (— /OMGk c(};k (r))dr) v(ty —t A Oy, Yi (2 6k)):| —v(ty—1,5,X)

for every k > 1. Similarly as above, by the properties of processes ?k, and f’kr, it
follows that

R t/\&,?r R R
E [exp (—/ c(Yy, (r))dr) v(to—t A 6,?‘ Y @ A 6]? )):| —v(th— 1,8, x)
0 r r

M
< —
"

for every r > 1, which implies

A

E |:exp (— /MUA c(?(r))dt) v(tg —t A Gy, f’(t A 6A))i| =v(ty—r1,85,X)
0

for (s, x) € [0,T] x R%, ¢ € [0, 1)), and A > 0. Let us observe that

lim v(t — 63, Y (6,))dP =0
A—00 J(g, <1}
and
0, . R R
vtosx = [ Jew (= [T et @nar) v 6.7 @) | 0
{02t} 0
t
+ / |:exp (—/ C(Y(t))dr) v(ty — t, Y(t))i| dpP.
{&/1>l‘} 0
Therefore,

E [exp (— /[ c(?(r))dr) v(to —t, f’(r))} = v(to, 5, X)
0
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for (s, x) € [0, T]xR%, ¢ € [0, 1,). Passing to the limit in the last equality as ty — f,
we get

v(t,s,x) = [exp( / tc(f(t)dr) (0, f’(z))]

which by virtue of (6.3), can be written in the form

v(t,s,x) = [exp( / " c(t, Xs,x(z))dc) h(s + 1, Xsx(s + z))}

for (s,x) € [0,T) x R? and ¢ € [0, T — s]. O

Theorem 6.5. Assume that conditions (i), (iii), (iV'), and (v) of (A) are satisfied.
Let T > 0, let D be a bounded domain in RY, and let ® € C((0,T) x 0D, R).
Assume thatu € C((0,T) x D, R) is bounded. If v € COI’Z(IR”H'I) is bounded such
that
u(t,x) —v,(t,x) € Lrgv) (t,x) for (r,x) € (0,T) x D,
limpsy—, v(t,x) = ®(z,y) for(t,y) € (0,T] x aD,

then for every (s, x) € [O T) x D, there exists X‘ x € Xsx(F,G) defined on the
probability space (Q F, P) such that

(6.6)

U(S,X) = E[q)(fDa X?V(fD))] - E |:/TD “(L X&x(t))dt:|

for (s,x) € [0,T) x D, where tp = inf{r € (s, T]: X;.(r) & D}.

Proof. By virtue of Theorem 2.6, for every k,m > 1, there are f; € C(F) and
gy € C(G) such that 0" = g" - (¢}")™ is uniformly positive definite and

mli_r)noo lu(t, x) — v/ (£, x) — (L grv(@, N, x)| < 1/k 6.7)

uniformly with respect to (¢,x) € (0,7) x D. Similarly as in the proof of
Theorem 6.4, we can verify that for every (s,x) € [0,7) x D and k,m > 1,
there is a unique in law weak solution (P}, X", B;") of the stochastic differential
equation dx, = fi(z,x,)dr + g'(¢t,x,)dB, with initial condition x; = x a.s.
such that the process Yk = (s + ¢, Xg‘Y (s + 1))o<r<T—s 18 an Itd diffusion with
infinitesimal generator Afk gy satistying (A g grv) (¢, x) = vi(t, X) + (L4 grv) (¢, x)
for (#,x) € [0,T] x D and v € Col’z(IRdH). Then (6.7) can be written as the
inequality

mli_l)noo|u(t,x) (Aggrv), x)| < 1/k, (6.8)

which has to be satisfied uniformly with respect to (¢,x) € (0,7) x D. By
the weak compactness of the set X, (F,G) of (equivalence classes of) weak
solutions of SFI(F,G) with initial condition x; = x a.s., we can select an
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increasing subsequence (m,)°2, of the sequence (m),,_,, a probability space P =

(Qx. Fi. Py), and continuous processes X;'", X on Py such that PX!")™ =
P(X;")~" for k,r > 1 and such that lim, o0 sup,—, < | X" (t) — Xx(t)| = 0. By
virtue of Theorem 5.1 of Chap.4, it follows that lim, s |%,:” T—T| =0 Pi-as.,
where f]'(" " and T; denote the first exit times of X ;{" " and X} from the domain D,
respectively. ~

Similarly as above, we can verify that X;"" is a weak solution of SDE( fi. g,"),
because P/"({X"(s) = x}) = P({X"(s) = x}) for k,m = 1,2,...,
where P = (Qp",F" F, P,") is a filtered probability space such that
(P, X", B;'") is a weak solution of SDE( fi, g;'") with initial condition x; = x
a.s. Then X L € X, (F, G), which by the weak compactness of X; «(F, G) implies
that also X; € X,.(F,G) for every k > 1. Similarly as above, by the weak
compactness of the set X , (F, G), there are an increasing subsequence (k)72 of
the sequence (k)72 ,, a probability space P = (Q, F , P ), and continuous stochastic
processes X;, and X on P such that P(X; )" = P(X;,) ' forr = 1,2,...,
lim; 00 SUP; <, <7 |)2kr (1) — X(1)] = 0 P-as., and lim,_ o0 E|%k, — 7| = 0, where
T, and 7 denote the first exit times of X, k, and X from the domain D, respectively.

Denote by Ykm’, fkmr, f’k, fk, and Y the Itd diffusions processes defined, similarly
as in the proof of Theorem 6.4, by X", )Z,:”r, X, and X, respectively, and let 0,"",
6;(" ", 6%, and & be their first exit times, respectively, from the domain (0, T') x D.
Wehave 0, = 1) —s5 6, =1 —s6x = it —sand & = ¢ —s fork > 1, where
7", T, Tk, and T denote the first exit times of X", )Z,:”r, X, and X, respectively
from the domain D. By Dynkin’s formula, for every k = 1,2, ..., we obtain

EJ [v(¥" (07" )] = v(s, x) + E |:/0 (Afkg;(n,v)(Ykmr(t))dt:| )

By the definition of ¥,"" and the equality o, = 7" — s, the last relation can be
written in the form

my

v(s,x) = E" [v(m". X" (5]")] — E;" |:/ (A o)t X,'("’(t))dt] .

Hence, by virtue of Theorem 5.2 of Chap. 4 and Corollary 5.1 of Chap.4, it follows
that

v(s,x) = Ex [v@", X&) - E [ / ‘ (A, o)1, )?,:”f(t))dt:| .

Let u," (f,x) = (A gmrv)(t.x) for (t,x) € (0.T) x D and k,m = 1,2,....
By virtue of (6.8), we get lim, oo |u(t, X' (1)) — u?’(t,)?é"’(t))\ < 1/n; as.
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uniformly with respectto 0 <t < T'. Therefore,

~mp
T

v(s,x) — Ex o, X (EF)] + Ex [ /

lim
r—>00

u(t, X" (z))dz:|

~my
. nd Tk
< lim Ej |:/
r—>00 s

for k > 1 uniformly with respect to ¢ € [0, T'). Hence it follows that

- - T
g (2, X" (1)) — ult, X,L”’(t))ldt} =

=

il

o5, x) — Ex[o(Ee, X (B0)] + B [ / ", ik(t))dt}

By Theorem 5.2 of Chap.4, Corollary 5.1 of Chap.4, and the properties of
sequences (X;)72, and (k)72 , one obtains

T
< FEEE)
k,

v(s, x) — E[(&,. Xi, (5,)] + E [ / Ve X, (z))dz}

forevery r > 1 and ¢ € [0, T'). Therefore,

~ A A i, ~
1_i>m v(s,x) — E[v(tk,, Xk, (Tk,)] + E [/ u(t, X, (t))dti| =0,
r—>0o0 s
which implies that
A ~ A ~ A %D A
v(s,x) = E[®(Tp, Xsx(Tp))] — E / u(t, X (t))dt
N
for (s, x) € [0, T) x D, where 7 = inf{r € (s, T]: X,x(r) & D}. O

Quite similarly, we obtain the following result.

Theorem 6.6. Assume that conditions (i), (iii), (iV'), and (v) of (A) are satisfied. Let
T > 0 and let D be a bounded domain in R?. Assume that ® € C((0, T) x 0D, R),
ce€ C(0,T] x D,R), andu € C((0,T) x D,R) are bounded. A bounded function
v E Col’z(RdH) is a solution of the boundary problem

u(t,x) —vj(t,x) € (Lrgv)(t, x) —c(t, x)v(t,x) for (t,x) € (0,T) x D,
limpsy—y v(t,x) = ®(¢, y) for (s,y) € (0,T] x D,

if and only if for every (s, x) € [0,T) x D, there exists X € X, (F,G) defined on
the probability space (2, F, P) such that
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v(s,x) = E [CD(%D, X (ip)) exp (— /TD c(t,)?(z))dz)]

D » s+t B
/ [u(r,xa))exp(— / c(aX(z))dz)}dt}

for (s,x) € [0,T) x D, where Tp = inf{r € (s,T] : X(r) & D}. O

-E

The following results follow immediately from Theorems 5.1 and 5.3.

Theorem 6.7. Assume that conditions (i), (iii), (iV'), and (v) of (A) are satisfied.
Let T > 0, let D be a bounded domain in R, and let ® : (0,T) x D — R be
measurable and bounded. For every (s, x) € (0, T) x D, there exists a weak solution
(Pr, X5x, B) of SFI(F, G) satisfying the initial condition X;,(s) = x a.s. such
that the function u(s,x) = E**[®(tp, Xsx(tp))] is a solution of the set-valued
stochastic Dirichlet problem

0€ (Lrgu)(t,x) for (t,x) €[0,T) x D,
lim; ., u(t, X;x(t) = ®(tp, Xsx(zp)) for (s,x) € (0,T) x D,

where tp = inf{r € (s,T) : X;.(r) € D}.

Proof. By the properties of F and G, we can select f € C(F) and g € C(G)
such that for every (s,x) € (0,T) x D, there is a unique in law weak solution of
SDE(f, g) satisfying initial condition X, ,(s) = x a.s. By virtue of Theorem 5.1,
the function u(s, x) = E**[®(tp, X, (Tp))] is a solution of the stochastic Dirichlet
problem (5.3), where L, is the characteristic operator of the It6 diffusion Y, =
(Ys.x(?))i>0 defined by Y (1) = (s + ¢, Xsx(s + 1)) for fixed 0 < s < T and
t € [0, T —s]. By the definition of L g, it follows that (L rou)(s, x) € (Lrgu)(s, x)
for every (s,x) € (0,T) x D, which proves that u is a solution of the above set-
valued stochastic Dirichlet problem. |

Theorem 6.8. Assume that conditions (i), (iii), (iv'), and (v) of (A) are satisfied.
Let T > 0, let D be a bounded domain in R?, and let ¢ : (0,T) x 0D — R
be continuous and bounded. For every (s,x) € (0,T) x D, there exist a weak
solution (Pg, Xs.x, B) of SFI(F, G) satisfying the initial condition X;.(s) = x
a.s. such that the function v(s, x) = E** [ OID o(tp, Xsx (‘L’D))] is a solution of the
set-valued stochastic Poisson problem

—@(s,x) € (Lpgv) (t,x) for (t,x) € [0,T) x D,
lim; ., v(t, Xs(t)) =0 for (s,x) € (0,T) x aD,

where tp = inf{r € (s,T) : X;x(r) &€ D}.
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Proof. The proof follows immediately from Theorem 5.3, similarly as in the proof
of Theorem 6.7, because by the properties of the function ¢ and the boundedness
of the domain D, we have E* [ [” ¢(t, X, «(t))dt] < M - E**[tp] < oo, where
M > 0is such that |¢(z, x)| < M for (¢,x) € (0,T) x D. O

Theorem 6.9. Assume that conditions (i), (iii), (iV'), and (v) of (A) are satisfied. Let
T > 0 and let D be a bounded domain in RY. Assume that ® : (0,T) x 0D — R is
measurable and bounded and that ¢ : (0, T) xdD — R is continuous and bounded.
For every (s, x) € (0, T) x D, there is a weak solution (Pg, X;sx, B) of SFI(F, G)
satisfying the initial condition X x(s) = x a.s. such that the function

w(s,x) = E*[®(tp, Xsx(tp))] + E* [/0 0 o(t, Xs,x(t))dt:|

is a solution of the set-valued stochastic Dirichlet—Poisson problem

—@(s,x) € (Lpgw) (t,x) for (t,x) €[0,T) x D,
limy ., w(t, Xsx(¢)) = ©(tp, Xsx(tp)) for (s,x) € (0,T) x 3D, a.s.,

where tp = inf{r € (s,T) : X;x(r) &€ D}.

Proof. Similarly as in the proof of Theorem 6.7, we can select f € C(F) and
g € C(G) such that for every (s,x) € (0,T) x D, there is a unique in law
weak solution of SDE(f, g) satisfying initial condition X; . (s) = x a.s. Let u
and v be defined as above, i.e., let u(s, x) = E**[®(tp, X5 (tp)] and v(s,x) =
ES* [ [oP @(t, X;.«(t))dt] for (s,x) € (0,T) x D. By virtue of Theorems 5.1 and
5.3, one has

(Efgu) (t,x) =0 for (t,x) € [0,T)x D,
lim; ., u(t,x) = ®(zp. Xy ¥ (zp)) for (s.x) € (0.T)x D a.s.,

and

(Lsev) (t.x) = —¢(5.x) for (t.x) € [0.T) x D,
limy ., v(t, X/5(1)) =0 a.s. for (s,x) € (0,T) x D,

where Tp = inf{r € (5,T) : X,,(r) ¢ D}. By the definition of L /g, it follows
that (Efg(u + v)) (8,x) = (L reu)(s,x) + (L rv)(s, x) forevery (s, x) € (0,7) x
D. Then the function w = u + v satisfies (L ow)(s,x) = —o(s,x) for (s,x) €
(0, T) x D. Quite similarly, we obtain that lim, ., w(t, x) = ®(tp, Xstjﬁ(tD)) for
(s,x) € (0,T) x D a.s. Hence, similarly as in the proof of Theorem 5.4, it follows
that the function w is a solution of the Dirichlet—Poisson problem. O
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7 Notes and Remarks

The results of this chapter dealing with partial differential equations are based on
A. Friedman [31] and B. @ksendal [86]. In particular, Theorem 3.1, Remark 3.2,
and Theorem 3.2 are taken from A. Friedman [31]. Their proofs can be found in
A. Friedman’s book dealing with partial differential equations. All extensions of
the above results to the case of partial differential inclusions are due to Kisielewicz
[60,61]. The extensions of Feynman—Kac formulas to the set-valued case have been
published in Kisielewicz [60]. Some results dealing with the Cauchy and Dirichlet
set-valued problems are contained in Kisielewicz [61]. The stochastic characteristics
of solutions of partial differential inclusions given above are good enough for
solving some optimal control problems for systems described by some partial
differential equations. This is a consequence of the weak compactness of the set
X;.x(F, G) of (equivalence classes of) all weak solutions of the stochastic functional
inclusion SFI(F, G) satisfying initial condition x; = x a.s. This property of the set
X;.x(F, G) is the basic one for solving some optimal control problems for systems
described by stochastic functional and partial differential inclusions. Such optimal
control problems are considered in the next chapter of the book. Example 5.1 and
Fig. 6.1 are taken from B. @ksendal [86].



Chapter 7
Stochastic Optimal Control Problems

This chapter contains some optimal control problems for systems described by
stochastic functional and partial differential inclusions. The existence of optimal
controls and optimal solutions for such systems is a consequence of the weak
compactness of the set X, (F, G) of all weak solutions of (equivalence classes of)
SFI(F,G) satisfying an initial condition x;, = x, measurable selection theorems,
and stochastic representation theorems for solutions of partial differential inclusions
presented in Chap.6. We begin with introductory remarks dealing with optimal
control problems of systems described by stochastic differential equations.

1 Optimal Control Problems for Systems Described
by Stochastic Differential Equations

Assume that the state of a dynamical system starting from a point (s, x) € R* x R¢
is described at time ¢ > s by a weak solution of the stochastic differential equation

dx, = f(t, x¢,u;)dt + g(t, x;,u,)dB; as. for t > s,
Xy = X a.s.,

(1.1)

depending on a control process u = (u;);>0, where f : R* x RY x U — R? and
g : RT xRY x U — R?™ are given functions with U C R¥. Given a domain
D c R4 and an initial point (s, x) € Rt xD,a system (Pg, u, X; x, B) consisting
of a filtered probability space Pr = (2, F, I, P), F-nonanticipative processes u
and X, and an m-dimensional IF-Brownian motion B = (B,);>0 defined on Pr
satisfying (1.1) and such that Tj < oo a.s. is called an admissible system for the
stochastic control system described by (1.1). As usual, T/ denotes the first exit time
of X, from the set D. For every (s, x) € R™ x D, we are also given a performance
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functional J g’X (s,x) defined for given functions ® : RT x RY x U — R and
K : Rt x RY — R and an admissible system (Pp, u, X;.x, B) by the formula

T (s, x) = E* [ / 00 X, 0t + K (5 Xeo (2 ))] . (12

where E** denotes the mean value operator with respect to the law Q** of Xj . For
every admissible system (P, u, X x, B), a pair (u, X ) is said to be an admissible
pair for (1.1). The set of all admissible pairs for the control system (1.1) is denoted
by A r4(s, x). Forevery (u, Xy x) € A r¢(s, x), aprocess X; . is called an admissible
trajectory corresponding to an admissible control u. The performance functional
Jg'X (s, x) can be regarded as a functional defined on the set A 7¢(s, x).

An admissible pair (i, X;,) € A 7 (s, x) is said to be optimal for an optimal
control problem (1.1) and (1.2) if J5¥(s,x) = sup{J5¥(s,x) : (u, X,,) €
A f¢(s,x)} for every (s,x) € RT x D. If (it, X, is the optimal pair for (1.1)
and (1.2), then @ is called the optimal control, and X,  the optimal trajectory for the
optimal control problem described by (1.1) and (1.2). The functionv : R*xD — R
defined by v(s,x) = sup{Jg’X(s,x) D (u, Xsx) € Agg(s,x)} for every (s,x) €
R™T x D is said to be the value function associated to the optimal control problem
(1.1) and (1.2). An admissible pair (i, X, ) is optimal if v(s, x) = JLL;’X (s, x) for
every initial condition (s, x) € R™ x D. The problem consisting in finding for each
(s,x) € RT x D the number v(s, x) for the optimal control problem (1.1) and (1.2)
will be denoted by

dx; = f(t, x¢,u;)dt + g(t, x;,u,)dB; as. for t > s,
X; = X a.s., (1.3)

At
Jg’X(s,x) — max.

Let us observe that if the optimal pair (i, X;,) € A rg(s, x) exists and
(f(- - 2),8(+, -,2))issuch that SDF(f(-, -, 2), g(+, -, 2)) possesses for every fixed
z € U a unique in law weak solution X satisfying initial condition X7 (s) = x
a.s. for (s, x) € Rt x R, then the standard approach to determine an optimal pair
is to solve the Hamilton—Jacobi—Bellman (HJB) equation

sup,ey {P(s. X, 2) + (A% v)(s. x)} =0 for (s,x) € R x D,
v(s,x) = K(s,x) for (s,x) € Rt xaD,

where .Azf. is the infinitesimal generator of a (d + 1)-dimensional Itd diffusion
defined, similarly as in Sect. 11 of Chap. 1, by X s for every fixed z € U. If the
above supremum is attained, i.e., if there exists an optimal control u(s, x), then
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(s, x,u(s,x)) + (A7z0)(s,x) =0 for (s,x) € Rt x D,
U('I_TD,XS’X) = K(‘ED, Xs,x) for (S, X) € R+ X 8D,

where f(s,x) = f(s,x,i(s,x)), g(s, x) = g(s,x,u(s, x)) for (s,x) € RT x D,
A 7z 1s an infinitesimal generator defined by a unique in law weak solution X,
of SDE(f,3) satisfying an initial condition X,x(s) = x as. for (s,x) € RT x
R, and 7 denotes the first exit time of Xy from the set D. Immedi_ately from
Theorem 5.5 of Chap. 6, it follows that if v € Col’z([O, T] x D,R) and X is such

that E**[ OED (1, X, (t))dt] < oo and there exists a number C > 0 such that
lo(t, x)| < C(1 4+ E[f,” ®(t, X, «(1))dt]) for every (s, x) € (0, T) x RY, then

o(s.x) = BV K (Ep. Kya)] + B [ / Yo, Xs,x(r»dr] ,
0

where E°* is a mean value operator taken with respect to a distribution of X ..

We shall consider now the optimal control problem (1.3) with continuous
deterministic control parameters with values in a closed set U C RF and a
strong solution X , of (1.1) defined for a given m-dimensional IF'-Brownian motion
B = (B;):>0 on a given complete filtered probability space Pr = (2, F,F, P)
with a filtration F' = (F;),>0 satisfying the usual conditions. We consider a
control system (1.1) with measurable functions f : RT x RY x U — R? and
g : Rt xRY x U — R satisfying the following conditions (H ).

(H): There exist k, m € L(RT, R™T) such that

(i) max(| f(t,x,2)|. gt x.2)||) < m(¢) forevery (¢, x,z) € Rt x RY x U.
(i) max(|f(r,x,2) = f(t.X.2)% ||g(r. x,2) —g(t. X. D) |*) < k(t)(]x —X]* + |z —
z|?) foreveryt > 0,x, X € R%, andz,z € U.
(iii) g(t,x,2) - g(t,x,2)* is positive definite on RT x R¢ for every fixedz € U.

In what follows, by Ur we denote a nonempty compact subset of the Banach
space (C ([0, T],R¥), || - |7) with the supremum norm || - || such that u, € U for
every u € Ur andt € [0, T].

Remark 1.1. Similarly as in the proof of Theorem 1.1 of Chap. 4, by an appropriate
changing of the norm of the space X" defined in the proof of Theorem 1.1 of Chap. 4,
we can verify that if conditions (i) and (ii) of (H) are satisfied, then for every
(s,x) € Rt x RY, T > s, a filtered probability space Pr = (2, F,F, P), an
m-dimensional IF-Brownian motion B = (B;),>0, and u € Ur, there exists a unique
strong solution X of (1.1) defined on [s, T'] x €2.

Proof. Let (s,x) € RT x RY, T > s, a filtered probability space Prp =
(2, F,F, P), and an m-dimensional IF-Brownian motion B = (B;);>0 be given.
Define, for fixed u € Ur, set-valued mappings F and G by taking F(f,x) =
{f(t.x,u)} and G(t,x) = {g(t,x,u;)} for (t,x) € [0,T] x R?. Let Xffg(t) be
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defined by X% (1) = x + [* a.dv + [ B.dB, foreveryt € [s, T] and (a, f) € X.
Similarly as in the proof of Theorem 1.1 of Chap.4, we define on X an operator
Q, which in the case of the above-defined multifunctions F' and G, has the form

Q(@.B) = {(f(-. X5%. u). g(-. X5’k u))} for every (a. p) € X.
Let us define on L2([0, 7] x 2, =g, R?) a family {|| - || }1>0 of norms | - ||»

equivalent to the norm | - | of this space by setting [|w||; = fOT exp[—IK (¢)] E |w, |>dt
for w € L2([0,T] x @, Zp,RY), where [ = 1/A% and K(t) = [, k(t)dr with
k € L(RT,R") satisfying conditions (H ). For every (a, B), (&, B) € X, one gets

1FC, X u) — £ X2 w3

T ~
= / exp[—IK(OIE|f(t, X% (0), ur) — (2, X2 (@), ur) Pde
0

< /T k() exp[—IK (0] E| X2 (1) — XZ (1) Pdr.
0

Similarly as in the proof of Theorem 1.1 of Chap. 4, we get

~ 2
ENX%@0) - X% )1 =E

/S (@ + / (B — o)dBe

1 1
< 2T/ E|o; —a.|*dt + 2/ E|B. — B.|*dr.
0 0
Therefore,
”f( s X:Xés Lt) - f( s X?ev M)”i
T pt
< ZT/ / k(t) exp[—IK(t)]E|ot; — @, |*drdt
0 Jo
T pt .
+2 / / k(t) exp[-IK(t)]E|B; — B-|*ddt.
0 JO

By interchanging the order of integration, we obtain
T ot TrT

/ / k(t) exp[—IK (1)) E |, —a- |*drdt = / / E|a;—@.|*k(t) exp[—I K (¢)]dtdr
0Jo 0Je

T T
= —A2 1K) / Ela; —a.*dt + /\2/ k(t) exp[—IK(0)]E|a; — @ |*dt
0 0
<22 |l —all.

In a similar way, we obtain

T pt 5 5
/ / k() expl—I K()]E|Bs — fe Pdzdi < A2 B — Bl
0J0
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Therefore,

£ X w) — £ X w3 <2221+ T) (@ B) — @ — Bl

where (o, B) — (@, 3)||A = max(|lo — &1, |8 — ,3||A). In a similar way, for every
A > 0, we can define on the space L2([0, T'] x £, =g, R¥*) an equivalent norm,
denoted again by || - |5, and get

lgC-. X ) — g(-. XE )y <22°(1 +7) |[(@. B) — @. P)lls.
Therefore, for every A > 0 and (e, B), (@, ,3) € X, one has

d(Q(a, B), 0@, B)) < Av2(1+T) (@, B) — @ Pl

where

d(Q(., B). 0(@. B))

= max{]| £(-, X u) = £ X w)li, g X8, u)— (-, X8 w1}

Taking in particular A € (0,1/4/2(1 + T)), we obtain a contraction mapping Q
defined on the complete metric space (X, d)). Then there exists a unique fixed point

(o, B) € X of Q, which generates exactly one strong solution X of (1.1) defined
on[s, T] x Q. O

Let X/ be the unique strong solution of (1.1) defined for given (s,x) €
Rt x RY, T > s, and u € Ur on the interval [s, T]. We can extend such a
solution to the whole interval [0, T'] by taking X" (1) = x as.for0 < ¢ < s
and define on Uy an operator A, with values in C r by setting A . (u) = X s

where XS’X = Tjo.5)x + Ij5 7 X' and (C]FT , |l - |I) denotes the space of all IF-adapted
d-dimensional continuous square integrable stochastic processes X = (X;)o<i<7
with norm || X || = { Efsupy<,<r | X, 1}'/2.

Lemma 1.1. Let B = (B:);>0 be an m-dimensional F-Brownian motion on a
filtered probability space Pr, (s,x) € RY xR?, and T > s. If f and g are
measurable and satisfy (i) and (ii) of conditions (H), then A is a continuous
mapping on Uy depending continuously on (s, x) € RT x R,

Proof. By virtue of Remark 1.1, for every u € Ur, there exists a unique strong
solution of (1.1) defined on [s, T'] x Q. Let u € Ur, and let (u,)°2, be a sequence
of Ur such that ||un —u|lr — 0 as n — oo. By the definition of the mapping A, .,
we have A, (1) = X, and A (u,) = X” forn = 1,2,.... By Corollary 4.4 of
Chap. 1, foreveryn > lands <t < T, we get
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E [ sup | X! (z) — Xyx (z)lz] =E [ sup | X! (2) — Xsx (z)lz}

0=<z=t S<z=t

z 2
<2E ( sup / [f(z, X7 (0), u}) — f(T, Xs.x(7), ur)]dT )
z 2
+ 2E (VSUP / [g(ts Xf,x(f)s u}:) - g(l’, Xs,x(r)s ur)]dBt )

t
<27E / (@ X (D)) — f(z, Xon (D). up) Pl
‘ t
4 8E / 18(. X! (D). tl)) — gt Xox (1), ) e
‘ T
<2(T +4) ||u" — u||2T/ k(r)dr
0

+2(T + 4) /t k(zr)dt E [ sup | X7, (2) — Xs,x(z)lz} dr,
0

S<z=<t

which by Gronwall’s inequality (see [49], p. 22) implies that
IX5 = Xoxl* = E [ sup | X{, (1) - )?s,x(mz}
' 0<t<T

T T
<2T +4) (/O k(t)dt) exp [Z(T + 4)/0 k(t)dt} " — ul|%.

Therefore, lim,— o0 || As.x (n) — Asx (w)||7 = O for every u € Uy and every sequence
(un)52, of Uy converging to u € Ur. Finally, immediately from the definition of
As.x, forevery (s, x), (5,X) € R x R? with s < §, one gets

sup{[As () — Az ()| s u € Ur} <2 | |x —X| + (VT + 1),//5m2(t)dz ,

which implies that the mapping R* x R? 3 (s,x) — A, («) € R? is uniformly
continuous with respect to u € Ur. Similarly, this is true for the case 5 < s. O

Now we can prove the following existence theorem.

Theorem 1.1. Let [ and g be measurable and satisfy conditions (H). If K :
Rt xR?Y! > Rand ® : Rt x RY x U — R are continuous and bounded,
then for every bounded domain D, filtered probability space Pr, m-dimensional
F-Brownian motion B = (B;);>0 defined on Py, and (s,x) € RT x RY, there
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exists u € Ur such that IS% (u, )Zf_‘x) = sup{]fV (u, X{,) : u € Ur}, where
]S%(M, X)) = Jg’x(s,x) and X{ is the unique strong solution of (1.1) on the
filtered probability space Py corresponding to the Brownian motion B and u € Ur.

Proof. Similarly as above, by virtue of Remark 1.1, for every u € Ur, there exists a
unique strong solution of (1.1) defined on [s, 7] x 2. Observe that sup{/ fx (u, X'
u € Ur} = sup{I P (u, Asx(u)) 1 u € Ur}. Let o = sup{I . (u, A () : u € Ur},
and let (u,);2, be a sequence of U7 such that ¢ = lim, Ifx (up, Asx(uy)). By
the compactness of U7, there exist an increasing subsequence (1), of ()72, and
u € Ur such that ||u,, —iut||7 — 0ask — oco. By virtue of Lemma 1.1, it follows that
|Asx(un,) — Asx(@)||7 — 0 as k — oo. By the definitions of the operator A, and
the norm ||-|, it follows that there exists a subsequence, still denoted by (X{'4)?2 ,, of
the sequence (X{'%)22, such that supy., <7 |X{”§C —X;.«| = 0as.ask — oo, where
X, = Ay (it). By virtue of Lemma 10.1 of Chap. 1 and Theorem 5.1 of Chap. 4, we
have 7} — Tp a.s. as k — oo, where 7} and 7 denote the first exit times of X"
and X ., respectively, from the domain D. Hence, by the continuity of ® and K,
it follows that & = limg—co 12 (. Ag s (un,)) = I (it Ay 1 (i) = 1P, (t, X.).
Thus (i, X, |is,77) is an optimal pair for (1.3).0

We can consider the above optimal control problem with a special type of
controls u = (u;);>0 of the form u; = ¢(t, X;) a.s. for t > 0 and a measurable
function ¢ : R* x R? — U < RF. Such controls are called Markov controls,
because with such u, the corresponding process X = (X;);>o becomes an Itd
diffusion, in particular a Markov process. In what follows, the above Markov control
will be identified with a measurable function ¢, and this function will be simply
called a Markov control. The set of all such Markov controls will be denoted by
M(U). The set of all restrictions of all ¢ € M(U) to the set [0, 7] x R? is denoted
by Mr(U). Immediately from Theorem 1.1, it follows that for all measurable
functions f and g satisfying conditions (H ), there exists an optimal control for
(1.3) in the set Sy consisting of all bounded and uniformly Lipschitz continuous
Markov controls ¢ € M7 (U), i.e., with the property that there exists a number
L > 0 such that |¢(t,z) — ¢(s,v)| < L(|t — s| + |z — v|) for every ¢ € Sr,
t,s €[0,T],and z,v € R?. Indeed, for functions f, g, and ¢, ¥ € S C M7 (U)
as given above, we have

|f(x 0@t x) = f(t. 2.9 (.2 <2 f(t.x, 0. %) — f(t.2.0(,2)
+ 2| f(t. 2.0t 2)— f(t. 2.9 (1. 2))* < 2k(t) [(1+ L) |x—z|+2L*lo—v | 7]
and

g, x,0(t,x) = g(t, 2, ¥t DI < 2k(@) [(1 + L) |x — 2| + 2L |l¢ — y||7]

forevery t € [0, 7] and x,z € RY, where || - ||z denotes the supremum norm of the
space C([0, T] x R¢, R¥) of all continuous bounded functions v : [0, T] x R —R¥.
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Hence, similarly as in the proof of Lemma 1.1, it follows that the mapping A; . :
Srou— X € C{ with X?, and C/l" as above is continuous. Here X! is
a strong solution of (1.1) corresponding to the Markov control ¢ € Sr. Therefore,
immediately from Theorem 1.1, we obtain the existence in Sy of the optimal control

for (1.3).

2 Optimal Control Problems for Systems Described
by Stochastic Functional Inclusions

We shall now extend the above optimal control problem (1.3) on the case in which
the dynamics of a control system is described by stochastic functional inclusions
SFI(F,G) of the form

X; — X, € [l F(r, X,)dr + [! G(z, X,)dB; for t>s,

2.1
X;=x a.s. 21

with the performance functional depending only on the weak solution (Pr, X, B)
of SFI(F,G), i.e., with the performance functional J g (s, x) of the form

JX(s.x) = ES [ [ "Wt Xdt + Koo, Xw)} , 2.2)

where D is a bounded subset of RY, and ¥ : RT x RY — R and K : RT x
R? — R are given continuous functions. By a solution of such a stochastic optimal
control problem we mean a weak solution (75]§, X, B) of (2.1) such that J g (s,x) =
sup{J g (s,x) : X € Xf;}, where Xf; denotes the set of all weak solutions of
(equivalence classes of) the stochastic functional inclusion SFI(F, G) satisfying
an initial condition X(s) = x and such that tp = inf{t > s : X;,(¢) &€ D} < oc.
Such an optimal control problem will be denoted by

X; — X, € [ F(tr, X;)dt + [/ G(v, X,)dB,t for t > 5,
Xs=x a.s., (2.3)

XA?Y
JX (s,x) — max,

and called an optimal control problem for the control system described by the
stochastic functional inclusion SFI(F, G). In this case, the set X,”. is said to be an

admissible set for the optimal control problem (2.3). If there is (75]§, X , 13) € Xf;
such that J5(s,x) = sup{JX(s,x) : X € XP}, then (Pz, X, P) is called

WX
the optimal solution of the optimal control problem (2.3). Similarly as above, it

will be simply denoted by X. We shall consider the optimal control problems
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of the form (2.3) with set-valued mappings F : Rt x RY — CI(RY) and
G : Rt x RY — CI(R?™) such that the set X, (F,G) of all weak solutions
of SFD(F,G) satisfying the initial condition X(s) = x is weakly compact in
distribution and such that X2 (F, G) # @. Hence, immediately from Theorem 5.1
of Chap.4, it will follow that XS% is also weakly compact. We apply the result
obtained to the case of F and G defined by F(t,x) = {f(t,x,z) : z € U} and
G(t,x) = {g(t,x,z) : z € U}. Hence in particular, the existence of optimal pairs
for the optimal control problems of the system described by (1.1) and performance
functionals of the form

™
JX(s,x) = ESF [ / sup ®(¢, X;, u))dt + K(tp, X, )} (2.4)
s uelU

and

19))
Jg(ssx) = ES’X [/ Suqu(vafs (pn(tth))dt + K(‘L—Dv XID):| (25)

n>1

will follow, where ("), is a dense sequence of a bounded set i/ C C(RFT xR, U).
In what follows, we shall still denote by (P) and (A) the assumptions defined in
Sect. 1 of Chap. 6.

Theorem 2.1. Let F : RY x RY — CI(RY) and G : Rt x RY — CI(R¥>*™)
be convex-valued, continuous, and bounded, and let ¥ : RT x R? — R be a
uniformly integrally bounded Carathéodory function. Assume that G is diagonally
convex and satisfies item (iv') of conditions (A). Let D be a bounded domain in R.
IfK : RY x R? — R is continuous and bounded, then for every (s, x) € Rt x D,
the optimal control problem (2.3) possesses an optimal solution.

Proof. Let us observe that Xf; is nonempty and weakly compact in distribution.
Indeed, similarly as in the proof of Theorem 4.1 of Chap.4, we can verify that

X, .(F,G) is weakly compact in distribution for every (s,x) € Rt x R<. By
property (P) of G for every (f,g) € C(F) x C(G), there exists a unique in
law solution (Ps, %, B) of SDE(f,g) with initial condition ¥, = x a.s., which
by the properties of functions f and g, implies that (’P]F,x, B) € XM(F ,G).
By Remark 10.4 of Chap. 1, we have Tp < oo a.s., where Tp is the first exit
time of ¥ from the set D. Then (Pg, %, B) € X”. To verify that X, is weakly
compact, let us observe that by the weak compactness of X; . (F, G) and the relation
XP C X, «(F,G),itis enough to verify that X°, is weakly closed.

Let (x")?2, be a sequence of X D convergent in distributions. Then there exists a
probability measure P on S(C (R+, R?)) such that P(x")™' = Pasr — oo.
By virtue of Theorem 2.3 of Chap. 1, there exist a probability space (Q.F.P)
and random variables ¥ : @ — CRT,RY) and ¥ : @ — C@R*,RY) for
r =1,2,...such that P(x")"' = P(GE") ! forr = 1,2,...,P(X)"! = P and
lim, 00 (X", X) = 0 with (P.1), where p is the metric defined in C(R*, R?) as
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in Theorem 2.4 of Chap. 1. For every r > 1, one has 1j, < 0o a.s., where tJ, is the
first exit time of x” from the set D, which by Theorem 5.2 of Chap. 4, implies that
7}, < oo a.s., where 7], denotes the first exit time of X" from the set D. Hence, by
the properties of the sequence (x")S2,, it follows that Tp < oo a.s., where 7p,
is the first exit time of X from D. Similarly as in the proof of Theorem 4.1 of
Chap. 4, we can verify now that by virtue of Theorem 1.3 of Chap.4, there exist
a standard extension Pp = (Q, F. I, 13) of (§2, F , ]ﬁ‘, }3) and an m-dimensional
Brownian motion B such that (75]@, X, é) is a weak solution of SFI(F, G, i), with
w = P%;! and such that x” = X. Furthermore, we have P£~! = PX~!, which by
Theorem 5.2 of Chap. 4, implies that Pt,' = P fgl. Hence in particular, it follows
that Tp < oco. Thus XMD is weakly closed with respect to weak convergence in the
sense of distributions.

By (2.2) and the properties of the functions W and K, one has o := sup{J g (s,x) :
X € XP} < oo, because

/TD W(r, X())dt < /tD (2, X(1)|de < /OTD m(t)de < /Ooom(t)dt < oo,

where m € L(R™,R™) is such that |¥(z, x)| < m(z) and there is M > 0 such that
|K(t,x)| < M forx € R? and ¢ > 0. Let (Pp,. X", B") € Xfx beforn =1,2,...
such that o = lim,, 00 J[} (s, x), with

JB(s,x) = ES [ / P X" ()t + K2, X”(rg)),]

where E;* denotes the mean value operator with respect to the probability law
Oy of X" and 7}, = inf{r > s : X"(r) ¢ D} forn = 1,2,.... By the
weak compactness of X’ D and Theorem 2.3 of Chap. 1, there are an increasing
subsequence (nx)72, of the sequence (n)n @ probability space (2, F.,P), and
continuous processes X" and X on (2, F, P) such that P(X"%)~! = P(X")~!
fork =1,2,...and p(X", X) — 0, P-a.s. as k — oo, which by Corollary 3.3 of
Chap. 1, 1mphes that P(X"™)™' = PX ' ask — oco. Let F, = ﬂ£>00'({X(M)

s <u<t+eg}) fort > s and put F = (]—',),>S It is clear that X is IF-adapted.

By virtue of Lemma 1.3 of Chap. 4, we have ./\/l # @, and therefore, there exist
f € SF(F oX)and g € Sz(G o X) such that for every h € CZ(R”’) a stochastic
process ¢¥ = ((fph )i )= With ((p,f), = h(X,)—h(X;)—[! (]LX h).dtfort > sisa

continuous local FF- martingale on the filtered probability space PF = (Q, F.T, P).
Hence, by Theorem 1.3 of Chap. 4, it follows that there exists a standard extension
of 75F, still denoted by 75F, and an m-dimensional F-Brownian motion B = (B,),>0
such that (P]F, X, B) is a weak solution of SFI(F, G, jt) with an initial distribution
n = PX ! . Immediately from the properties of the stochastic processes X" and
X, it follows that X”" = x, P-a.s., and P(X”") = P(X )~ as k — oo, which
implies that X, = x, Pas. Therefore (P .X.B) € X,.(F.G). Similarly as
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above, we can verify that (75]F, X , l;’) € Xsﬂ. On the other hand, By (2.2) and
the properties of processes X" and X" and Theorem 5.2 of Chap.4, it follows
that P(cf)™! = P(zf)~! fork = 1,2,.... Then J}} (s, x) = J}¥ (s, x) for every
k=1,2,..., where

ThE(s, x) = ES* [ / v (s, X" (t))dt + K (75, X"k(%;;))}

fork = 1,2,... with %é‘) and ‘Cé{) defined as above with }:lk =X" (¢). Hence, by
Theorem 5.1 of Chap. 4, it follows that

Jim JpE(s, x) = E* [ / ? W(r, X (1))dt + K(3p, X(%D))] ,

where Tp = inf{r > s : X ¢ D}.Buta = limg— o0 Jf (5, %) = limg—s oo fgk (s, x).
Therefore,

o = 5% |:/TD U(t, X(1))dt + K(%p, X(%D)):|.

O

Remark 2.1. Similarly as above, we can consider the following viable optimal
control problem:

X; — X, € [l F(r, X,)dt + [/ G(v, X,)dB,z, for t > 5,
X, €eT'(¢) as. for t > s,

Xp
J(X) — max,

where I is a given target set mapping and X 5 denotes the set of all weak I"-viable
solutions (P, X, B) of the stochastic functional inclusion SFI(F,G) such that
Th =inf{t > 5: X(t) ¢ D} < oo. O

We shall consider now the existence of the optimal control problem (1.3) with a
performance functional J g (s, x) defined by (2.4) and (2.5) above. Let us recall that
for a given nonempty set U C R¥, a bounded domain D, an initial point (s, x) €
R* x D, and functions f : R4+ xR? xU — R%, g : R + xR? x U — R¥>™,
U:RY*xR? — R,and K : R x RY — R, we are interested in the existence
of an admissible pair (i, X*) € A (s, x) such that J3 (s,x) = sup{J}(s.x) :
(1, X") € A f¢(s,x)}. We shall show that such an optimal pair (iz, X) € A f,(s, x)
exists if £ : R xR xU — R and g : R* x RY x U — R satisfy the
following conditions (C):

(1) f and g are continuous and bounded such that f(¢,x,-), g(¢, x,-), and (g -

g%)(t, x,-) are affine for every fixed (z, x) € RT x R? on the compact convex
set U C R¥.
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(ii) g is such that g - g* is uniformly positive definite.
(iii) ® : RT x RY x U — R is a uniformly integrally bounded Carathéodory
function and K : Rt x R? — R is continuous and bounded.

Lemma 2.1. If f and g satisfy conditions (C), then for every nonempty compact
convex set U C R, the set-valued mappings F and G defined by F(t,x) =
{f(t,x,2) :z€ U} and G(t,x) = {g(t,x,z) : z € U} satisfy (P) and conditions
(i), (iii), (V'), and (v) of (A).

Proof. Immediately from (ii) of conditions (C), it follows that G satisfies the
condition (P). Let Ty be the induced topology in U. Then (U, Ty) is a compact
topological space. Let (7, ¥) € R*xRR¢ andz € U be fixed and V an open setin R¢.
Suppose (7, X, ) is such that f(z, X,z) € V. By the continuity of f(-,-,Z) at (¢, X),
there is a neighborhood A of (7, X) such that f(¢,x,z) € V for every (¢,x) € N.
Therefore, for every (¢,x) € N, one has F(t,x) NV # (. Then F is l.s.c. In a
similar way, we can also verify that G is l.s.c. By the compactness of the set U and
continuity of f(¢,x,-)and g(¢, x, -), it follows that F (¢, x) and G(¢, x) are compact
subsets of R? and R?*™, respectively, for every (¢, x) € Rt x R¢. Similarly, by
the convexity of U and affineness of f(z,x,-), g(¢t,x,-), and (g - g*)(¢,x,-), it
follows that F" and G are convex-valued and G is diagonally convex. We shall verify
that F and G are also u.s.c. Indeed, similarly as above, let (f,%¥) € RT x R?
be arbitrarily fixed and suppose V is an open neighborhood of F(Z, ). By the
continuity of f, for every fixed z € U there exist neighborhoods W* and O¢ of
(f,X) € R* x R? and Z € U, respectively, such that f(W?* x O¢) C V. By the
compactness of the topological space (U, Ty ), there are z1,...,z, € U such that
U/, 0% =U.Foreveryi = 1,2,...,n, wehave f(W% x O%) C V. Therefore,
UiZ, f(W% x O%) C V. But

Ur([0 )= ([0 -[ue)

:f([ﬁW“]xU)COf(WZ"xOZ")CV.

i=1 i=1

Therefore, F((;—, W%) = f([('2; W%] x U) C V. Then F is u.s.c. at (7, X) €
R* x R?. In a similar way, we can verify that also G is u.s.c.

Let o € C(I(G)) be a continuous selector of D(G) = [(G), where [(u) = u - u*
for every u € R, and let A(t,x,z) = [(g(t,x,z)) = g(t,x.,z) - g*(t.x,z) for
(t,x,2) € RT x RY x U. We have o(t,x) € A(t,x,U) for (t,x) € Rt x R?.
Therefore, by virtue of Theorem 2.2 of Chap. 2, there exists a sequence (z,)5—, of
continuous functions z, : R* xR¢ — U such that sup vy lo(t, x) —1(gn (2, x))| —
0 asn — oo, where g,(¢t,x) = g(t,x,z,(¢t,x)) € G(t,x) forn = 1,2,... and
(t,x) € Rt x R?. Then there exists a sequence (g, o2, of continuous selectors of
G such that [(g,) — o uniformly in (z,x) € Rt x R? as n — oo. Thus (iv’) of
conditions (A) is also satisfied. O
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We can now prove the existence of an optimal pair for the optimal control
problem (1.3) with the performance functionals defined by (2.4) and (2.5).

Theorem 2.2. Let D be a bounded domain in R¢ and assume that conditions (C)
are satisfied. There exists an optimal pair of the optimal control problem (1.3) with
a performance functional defined by (2.4).

Proof. Let F and G be defined as above. By virtue of Lemma 2.1, the multi-
functions F and G satisfy the conditions of Theorem 2.1. Therefore, for every
(s,x) € RT xIRY, there exists a weak solution (PF, X,B)of SFI (F G) satisfying
the initial condition X(s) = x, P-as., with 73~ = (Q,F,F,P) such that

Jg(s,x) = sup{JX (s,x) : X € X}, where

TX(s.x) = E** [/m W(t, X (1))dt + K(%DvX(%D))]

with W(z,x) = sup{®(t,x,u) : u € U} and Tp = inf{r > s : X(r) € D).
By virtue of Theorem 1.5 of Chap.3, there are f € Sp(F o X) and § €
Si(G o X) such that X (1) = x + [/ fedr + [ g.dB,, P-as. fort > s. Let
L(t,x) = {(f(t,x,2),g(t,x,2)) : z € U} for (t,x) € R x RY. Similarly
as in the proof of Lemma 2.1, we can verify that I" is a continuous and bounded
set-valued mapping with compact values in R? x R¥*™ Therefore, the set-valued
process r = (FI)IN defined by T, = I'(¢, X(¢)) is F-nonanticipative and such
that (f;, ;) € I, P-as. fort > 5. By virtue of Theorem 2.5 of Chap. 2, there
exists an IF- nonant1c1pat1ve process u = (u,)l‘>Y with values in the set U such
that (f,,g,) = (f(t.X(t).0;), g(t, X (¢).71;)), P-as. for t > 5. Then an optimal
solution X of the optimal control problem (1.3) with the performance functional
(2.4) can be expressed by the formula

X(t)=x+ tf(r,)?(r),ﬁt)dt + /t g(t. X (1), ii;)d B,

P-a.s. for t > s. Therefore, (i, X ) € A sg(s,x). In a similar way, we deduce that
for every weak solution (Py, X, B) of SFI(F, G) satisfying the initial condition
X(s) = x a.s. with the above-defined set-valued mappings F' and G, there exists
an F-nonanticipative stochastic process u = (u;);>s with values in U such that
(u, X) € A sq(s,x). By the properties of the performance functional JX (s, x)
defined by (2.4), one has

Jg(s,x) = sup{Jg(s,x) X e Cfx} = sup{Jg(s,x) C(u, X) € Asg(s,x)}
with Cfx = m(Asg(s,x)), where m(u, X) = X for (u, X) € Ayg(s,x). Then

(i1, X) is the optimal pair for the optimal control problem (1.3) with the performance
functional defined by (2.4). O



266 7 Stochastic Optimal Control Problems

In a similar way, we can prove the following existence theorem.

Theorem 2.3. Let D be a bounded domain in R?, U a bounded subset of C(RT x
R4, U), and (p" )o2, a dense sequence of U. Assume that conditions (C) are
satisfied and that f and g are such that f(t,x,-) and g(t,x,-) are linear. There
exists an optimal pair (i, X) for the optimal control problem (1.3) with the perfor-
mance functional JX (s, x) defined by (2.5) and it = lim’_, o Sl Cj (p”k' i, X)),
where lim" denotes the weak limit of sequences in the space ]L(]R+ X Q S, R )
{C],.. C,ﬁj} is a finite Sp-partition of RT x Q, and {¢" f O } C {¢"

n > 1} for every j > 1.

Proof. Let F and G be defined by F(t,x) = {f(t,x,0(t,x)) : ¢ € U}
and G(t,x) = {g(t.x,p(t.x)) : ¢ € U} for (t,x) € R x RY. By virtue
of Lemma 2.1, F and G satisfy the conditions of Thegrem~ 2. } Therefore, for
every (s,x) € RT x RY, there exists a weak solution (Ps, X, B) of SFI(F,G)
satisfying the initial condition X (s) = x, P-a.s., with 751~F = (Q, F, T, P) such that
Jg (s xX) = sup{JD (s,x) : X € X,,}. By virtue of Theorem 1.5 of Chap. 3, there
aref € Sg(F o X) and § € Si(G o X) such that X, = x+f fede + [! g.dB,,
P-as. fort > . By the properties of the sequence (¢")°2,, it follows that
F(t,x) =cl{f(t,x,¢"(t,x)) :n>1}and G(t,x) = cl{g(t, x,¢"(t,x)) :n > 1}
for (t,x) € RT x ]E{d. Theﬂore, bx virtue ~of Lemma 4.1 of Chap.2, it
follows that SF(F o X) = dec{f(,X,¢"(--X)) : n > 1} and Si(G o
X) = dec{g( X. Q" (s X)) : n > 1}. Hence it follows that (f,§) €
dec{(f.2)(-.X.,¢"(-~ X)) : n > 1}. Thus there exists a sequence (aj)FZ, of
dec{f.g)(.X.,¢"(-X)) : n > 1} converging to (f g) in the metric topology
of L2 (Rt x Q,Zp, R x R4*™). But dec{(f, g)(~ X ¢"(~ X)) : n > 1} =
(f.g)(-. X..dec{e"(-,X.) : n > 1}). Therefore, for every j > 1, there exist a
finite Tp-partition {C{, ..., G} of RY x Q and a family of {¢"/,...,¢"/ } C
{¢" :n > 1} suchthata; = (f,g)(, X., 3,2, C,-<p"§(-,)2.)) for j > 1. By the
k
boundedness of the set I/, it follows that the sequence (Z?;l I.j (p”lf' ¢, )2.))?‘;1 is
k
relatively sequentially weakly compact. Then there exist it € L(RT x Q, Zp, RY)
and a subsequence, still denoted by (Z 1Hc i@t ( X)) 72, weakly converging

to u. Hence, by the properties of the functions f and g, it follows that ( f ,8) =
(fC. X..0), g(. X..it)). Similarly as in the proof of Theorem 2.3, it follows that
(i1, X), with the optimal control i described above, is the optimal pair for the optimal
control problem (1.3) with the performance functional J g (s, x) defined by (2.5). O
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3 Optimal Problems for Systems Described by Partial
Differential Inclusions

Let F : R* x RY — CI(R?) and G : Rt x RY — CI(R?*™) be such that the
following conditions (D) are satisfied:

(i) F and G are bounded, continuous, and convex-valued, and for every g € C(G),
the matrix-valued mapping /(g) = g - g¢* is uniformly positive definite.
(ii) G is diagonally convex, i.e., for every (z,x) € RT x R?, the set D(G)(t,x) =
{v-v*:v e G(t,x)} is convex.
(iii) For every 0 € C(D(G)), there exists a sequence (g")7>, of C(G) such that
SUP(; v)eR+ xR |on(t,x)—a(t, x)| > 0asn — oo, where o, = [(g,) forn>1.

For a bounded domain D € R4, T > 0, (s,x) € Rt x R?, hoe CHRTY),
u e C([0,T] x D,R), and a continuous function ® : (0,7) x dD — R, we shall
consider the initial and boundary values problems (6.3) and (6.4) of Chap. 6 of the
form:

vy (t,s,x) —vi(t,s,x) € (Lpgu(t,-)) (s,x) —c(s,x)v(t, s, x)
for (s,x) € [0,T) xR andt € [0,T —s],
v(0,s5,x) = fz(s,x) for (s,x) € [0, T) x R4,

and

u(t,x) —v)(t,x) € (Lrgv) (¢,x) —c(t, x)v(t, x) for (¢,x) € (0,T) x D,
limpsy—s, v(t,x) = (¢, y) for (¢,y) € (0, T] x 9D.

Let H : [0, T] x R¢ — R be measurable and uniformly integrably bounded and let
Arg(c,h) and T'rg(c, u, @) denote the sets of all solutions of the above initial and
boundary value problems, respectively. For every (s, x) € [0, T) x RY, let H,. and
Z, denote the mappings defined on A pg(c, h) and Tpg(c, u, ®), respectively, by
setting

T
HS,X(U):/ H(t,v(t,s, x))dt for v € Arg(c.h)
0

and

T
Zx(w)=/ H(t,w(t,x))dt for we 'rg(c,u, D).
0

For every fixed (s,x) € [0,T) x R?, we shall look for 7 € A%G (c, };) and ¥ €
IS (c,u, ®) such that Hy,(§) = inf{H,(v) : v € ASs(c.h)} and Z,(7) =
inf{ Z, (1) : u € T (c,u, ®)}, where AG;(c,h) = Apg(c,h) N C(RIF2) and
TS, (c,u, ®) = Trglc,u, ®) N CH2RIH.
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Theorem 3.1. Assume that conditions (D) are satisfied. Let ¢ € C([0, T] x R4, R)
be bounded, h € C'“2(RI*Y), and let H : [0,T] x R — R be measurable
and uniformly integrally bounded such that H(t,-) is continuous. If F and G are
furthermore such that for h and ¢ as given above, the set AS Fa (c h) is nonempty,
then there is X € X, +(F, G) such that the function v € A% (c, h) defined by

s+t
u(t,s,x) = [exp ( / c(z, )f(r))dt) ﬁ(s +1,X(s+ t)):|

for every (s, x) € [0,T) x RY andt € [0, T — s] satisfies Hy (D) = inf{H, (v) :
veASq(c,h)}.

Proof. Let (s,x) € [0,T) x R be fixed. The set {H,,(v) : v € AS,(c,h)} is
nonempty and bounded, because there is k € IL([0, T'], R+) such that [H,(v)| <
fo k(t)dt for every v € A¢ Falc, h) Therefore, there exists a sequence (v")52, of
A%G(c h) such that ¢ =: inf{H,,(v) : v € A%G(c h)} = limy o0 Hsx(V"). By
virtue of Theorem 6.4 of Chap. 6, forevery n = 1,2,...and (s, x) € [0,T) x R,
there is X', € X (F, G) such that

s+t
vi(t,s,x) = E® |:exp (—/ c(z, ng(r))dr) h(s +1t, Xg (s + t)):|

for (1, x) € [0, T—s]xR¢. By the weak compactness of X; . (F, G) and Theorem 2.3
of Chap. 1, there are an increasing subsequence (ni)pe - of (n)n |, A probability

space (Q.,F, P), and stochastic processes X" and X on (Q F, P) such that
P(X")™" = P(X")7! for k = 1,2,... and supy_, 7 | X" (t) — X ()| — 0
a.s. Hence in particular, it follows that

v (t,s,x) = E*F [exp (— /H—t c(z, Xﬁ’;(t))dt) f;(s +1, X (s + Z))i|
B s+t » " B
=E [exp (—/ c(t, X" (t))dt) h(s 4+, X" (s + t))i| ,

where E is the mean value operator taken with respect to the probability measure P.
By the properties of processes X", X and functions ¢ and £, it follows that

Jim V' (L, 5, Xx) = [exp( / " c(r,)?(r))dr) h(s +1, X (s + z))]

By virtue of Theorem 6.3 of Chap.6, it follows that the function v(t,s,x) =
limg 00 V"% (¢, 5, x) belongs to AC(F,G,h,c), because (Argv(t-))(s,x) C
vi(t,s,x) + (Lrgu(t-))(s, x) for (s,x) € [0,T] x RY and ¢ € [0, T — s]. Hence,
by the properties of the function H, we get @ = limy_ o0 H; x (V") = H,x(0). O
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Theorem 3.2. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domainin R?. Let ¢ € C([0, T]xR?,R), u € C((0,T)xD,R), and ® € C([0, T]x
dD, R) be bounded. Assume that H : [0, T] x R — R is measurable and uniformly
integrally bounded such that H(t,-) is continuous. If F and G are furthermore such
that for ®, u, and ¢ given above, the set FFG (c,u, @) belongsto [0, T)xRY for every
(s, X), then there is X x € Xsx(F,G) such that the function v € FFG (c,u,,®d)
defined by

B(s,x) = E*F |:CI)(1’D, )Zs,x(rD)) exp (— /TD c(t,)zs,x(t))dt)i|

. s+t
— E {/ |:u(t,)?x(t)) exp (—/ c(z, ”(z))dz)i| }

with tp = inf{r € (5,T] : X;.(r) & D} satisfies Zc(¥) = inf{Z,(v) : v €
ISo(c,u, @)}

Proof. Similarly as above, we can select a sequence (v,),2, of FEG (c,u,,®) such
that o = sup{Z,(v) : v € I'$;(c,u,, )} = limy,—00 Z(v,) for fixed x € RY.
By virtue of Theorem 6.6 of Chap. 6, for every (s, x) € [0,T) X R?, there exists a
sequence (X{',);2, of X; . (F, G) such that

va(s,x) = E;* [¢(T§3’Xﬁx(m)) exp (—/ID C(f’Xf,x(f))dt)]

‘1,';1) s+t
/ [M(Z,ng(t)) exp (—/ c(z, Xﬁx(z))dz)i| dt§

forn > 1, where 7}, = inf{r € (s,T] : X! (r) & D}. By virtue of Theorem 4.1
of Chap. 4 and Theorem 2.3 of Chap. l there are an increasing subsequence
(nk)g2, of (n)n 1@ probability space (2, F, P), and stochastic processes X”"
and X, on (Q,F, P) such that P(X")™' = P(X")~! fork = 1,2,... and
SUPs</<T |X§§(I) — XS,X ()| — 0 a.s. Hence by Theorem 5.2 of Chap. 4, it follows
that

_En

Un (5,%) = E;* |i<I>(r§‘,X”" (1)) exp (—/ID c(t, X (t))dt):|

19 s+t
/ |:u(t, X{kx(t)) exp (—/ c(z, X« (z))dz):| dt}
—F {@(fg,xgg(%gk)) exp (- / Ve X (t))dt)}

ok B s+t B
|:u(t, Xk (1)) exp (—/ ez, X% (z))dz)] dt} = Up, (8, X)

[
s

— ES¥

ni

- F
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for (s,x) € [0,T) x D and k > 1, where 7;f = inf{r € (s,7T] : )Zs’ff;(r) € Dj}.
Therefore, by Lemma 10.1 of Chap. I, Theorem 5.1 of Chap. 4, and the properties
of the sequence (X[%)22 |, one obtains

Jim 3, (s, x) = E [cp(%D, X,+(Ip)) exp (- / ? e, )?x(t))dt)]

) » s+t ~
[ [M(Z, X;.x(2)) exp (—/ c(z, XS,X(Z))dZ)i| dt} ,

where 7p = inf{r € (s,T] : X,.(r) & D}. Immediately from Theorem 6.6 of
Chap. 6, it follows that the function v defined by

-E

3(s,x) = E |:d>(%D, X,+(Ip)) exp (— / v el(t, )?x(t))dt)]

i . s+i .
/ |:M(Z, X x(1)) exp (— / c(z, Xgx (Z))dz)i| dt§

belongs to Fgc (c, u, @). Finally, similarly as above, we get o = limy o0 Z¢ (U, ) =
Z. (V). |

~E

In a similar way, we can also prove similar theorems for control systems de-
scribed by set-valued stochastic Dirichlet, Poisson, and Dirichlet—Poisson problems.
To formulate them, let us recall the basic notation dealing with such problems.
Let T > 0 and let D C R? be a nonempty bounded domain. Assume that
F : Rt xR?! - CI(RY) and G : Rt x RY — CI(RY*") are measurable
and bounded, and let ® : (0,7) x dD — R, ¢ : (0,T) x D — R and
¥ : (0,T) x D — R be continuous and bounded. Let Dpg(P), Prg(¢) and
Rrc(®, ¥) be defined by

DFG(q)) = {M(S’x) =E™ [q)(TDa Xs,x(fD))] : Xs,x € )(s,x(F7 G)},
Prc(p) = {v(s,X) = E™ [/O ’ ﬁo(TD’Xs,x(TD)):| D Xx € Xox(F, G)},
and

Rec(®, ) = {w (5, %) = B [0(ep, Xox (20))]

+ ES* I:/OID (p(tDs Xs,x(TD))i| . Xs,x S XS,X(F’ G)}
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Immediately from Theorem 6.7, Theorem 6.8, and Theorem 6.9 of Chap.6,
it follows that Dpg(P), Pre(¢), and Rrg (P, ) are subsets of the sets of all
solutions of the following stochastic set-valued boundary value problems:

0 € (Lrgu)(t,x) for (¢,x) € [0,T) x D,
limy s, u(t, Xsx(t) = ®(zp, Xsx(tp)) for (s,x) € (0,T) x D a.s.,

{ —¢(s,x) € (Lrgv) (¢,x) for (t,x) €[0,T) x D,
lim; ., v(t, X5 x(¢)) = 0)) for (s,x) € (0,T) xD a.s.,

and

{ —p(s,x) € (Lrgw) (¢, x) for (t,x) € [0,T) x D,
lim; ., w(t, X5 (2)) = ®(tp, X5 x(tp)) for (s,x) € (0,T) x D a.s.,

respectively. Similarly as above, we obtain the following results.

Theorem 3.3. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ® € C([0, T] x dD, R) be continuous and bounded. Assume that
H :[0,T] x R — R is measurable and uniformly integrally bounded such that
H(t,-) is continuous. For every (s, x) € (0,T) x D, there is )2” € X;x(F,G) such
that the function ii(s,x) = ES*[®(Zp, X,.(Ip))] satisfies Z,(ii) = sup{Z,(u) :
u € Dpg(®)}, where Tp = inf{r € (0,T] : X, (r) & D}.

Proof. Similarly as above, we can select a sequence (u,)7>, of Drg(®P) such
that « = sup{Z,(u) : u € Dpg(®)} = lim, o0 Zy(u,). By the definition of
Drg(P), there exists a sequence (X)°2, of X, (F,G) such that u,(s,x) =
E* (), X7 (t}))], where t}, = inf{r € (0,T] : X!(r) & D}. By virtue
of Theorem 4.1 of Chap.4 and Theorem 2.3 of Chap. 1, there are an increasing
subsequence (n;)pe, of (n);2,, a probability space (Qﬁ , P), and stochastic
processes X"* and X on (2, F, P) such that P(XS””;()_1 = P(X")7! fork =
1,2,... and supy<, <t | X" (t) — X (1)] — 0 a.s. Hence, similarly as in the proof
of Theorem 3.2, it follows that @ = lim,_, oo Z(up,) = Z, (), where (s, x) =

E*X[®(3p, X, (7p))].0

Theorem 3.4. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ¢ : (0,T) x D — R be continuous and bounded, and let
H :[0,T] x R — R be measurable and uniformly integrally bounded such that
H(t,-) is continuous. For every (s, x) € (0, T)x D, there is sz e X, x(F,G) such
that the function ii(s,x) = ES*[®(Zp, X,.(Ip))] satisfies Z,(ii) = sup{Z,(u) :
u € Prg(p)}, where Tp = inf{r € (0,T]: X,.(r) & D}. O

Theorem 3.5. Assume that conditions (D) are satisfied, T > 0, and D is a bounded
domain in R¢. Let ® € C((0, T) x 3D, R) and  : (0, T) x D — R be continuous
and bounded, and let H : [0, T] x R — R be measurable and uniformly integrally
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bounded such that H(t,-) is continuous. For every (s,x)€(0,T) x D, there
exists sz € X;x(F,G) such that the function u(s,x) = E**[D(Tp, )Zs’x(:fp))]
satisfies Z, (1) = sup{Zy(u) : u € Rre(P,¥)}, where Tp = inf{r € (0,7T] :
X, .(r) € D}. O

4 Notes and Remarks

The results of this chapter are consequences of the properties of the set X; (F, G)
of all (equivalence classes of) weak solutions for SFI(F, G) and the representation
theorems presented in Chap. 6. It is possible to consider problems with weaker
assumptions. It is important to observe that such an approach reduces the opti-
mal control problems described by stochastic functional and partial differential
inclusions to the existence of optimal problems of functionals defined on weakly
compact subsets of the space M(X) of probability measures defined on a Borel o-
algebra B(X) of a complete metric space X. Furthermore, this approach, together
with representation theorems, leads to the representation of optimal solutions of the
above type of optimal control problems by weak solutions of stochastic functional
inclusions. This allows us in some special cases to determine explicit solutions of
such optimal control problems. Some applications of weak solutions of multivalued
stochastic equations to optimal control problems are given by A. Zilinescu in
[97]. Some optimal control problems described by stochastic differential equations
depending on control parameters can be solved explicitly by solving appropriate
HIB equations. As pointed out (see B. @ksendal [86]) at the beginning of this
chapter, some solutions of these equations can also be represented by weak solutions
of stochastic differential equations. More information dealing with such problems
can be found in B. @ksendal [86] and J. Yong and X.Y. Zhou [96].

Let us observe (see [45]) that there are three major approaches to stochastic
optimal control: dynamic programming, duality, and the maximum principle.
Dynamic programming obtains, by means of the optimality principle of Bellman,
the Hamilton—Jacobi—Bellman equation, which characterizes the value function (see
[28, 29, 37, 64, 98]). Under some smoothness and regularity assumptions on the
solution, it is possible to obtain, at least implicitly, the optimal control. This is the
content of the so-called verification theorem, which appears in W.H. Fleming and
R.M. Rishel [28] or W.H. Fleming and H.M. Soner [29]. However, the problem of
recovering the optimal control from the gradient of the value function by means
of solving a static optimization remains, and this can be difficult to do. Duality
methods, also known in stochastic control theory as the martingale approach, have
become very popular in recent years, because they provide powerful tools for
studying some classes of stochastic control problems, usually connected with some
approximative procedures (see [73]). Martingale methods are particularly useful for
problems appearing in finance (see [26]), such as the model of R.C. Merton [74].
Duality reduces the original problem to one of finite dimension. The approach is
based on the martingale representation theorem and the Girsanov transformation.
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The stochastic maximum principle has been developed completely in recent years
in S. Peng [87]. It is a counterpart of the maximum principle for deterministic
problems. The distinctive feature is the use of the concept of forward—backward
stochastic differential equations, which arise naturally, governing the evolution of
the state variables. See H.J. Kushner [67], J.M. Bismut [19,20], or U.G. Haussmann
[36].

Control problems and optimal control problems for systems described by
stochastic and partial differential equations have been considered by many authors.
The classical optimal control problems for systems described by stochastic differ-
ential equations and inclusions were considered by, among others, N.A. Ahmed [1],
A. Friedman [30], W.H. Fleming and M. Nisio [27], and M. Michta [75]. Optimal
control problems for partial differential equations were considered by, for example,
W. Huckbusch in [34]
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