
Chapter 2
A General Framework for Handling
Inconsistency

This chapter proposes a general framework for handling inconsistency under any
monotonic logic. Basically, our approach to reason with an inconsistent knowledge
base (KB) is a process which follows three steps:

1. Determining consistent “subbases”;
2. Selecting among all the subbases the ones that are preferred;
3. Applying entailment on the preferred subbases.

Throughout the rest of this chapter, we assume that we have an arbitrary, but fixed
monotonic logic (L ,CN).

The basic idea behind our framework is to construct what we call options, and
then to define a preference relation on these options. The preferred options are in-
tended to support the conclusions to be drawn from the inconsistent knowledge
base. Intuitively, an option is a set of formulas that is both consistent and closed
w.r.t. consequence in logic (L ,CN).

Definition 2.1 (Options). An option is any set O of elements of L such that:

• O is consistent.
• O is closed, i.e., O = CN(O).

We use Opt(L ) to denote the set of all options that can be built from (L ,CN).

Note that the empty set is not necessarily an option. This depends on the value of
CN( /0) in the considered logic (L ,CN). For instance, in propositional logic, it is
clear that /0 is not an option since all the tautologies will be inferred from it. Indeed,
it is easy to see that /0 is an option iff CN( /0) = /0.

Clearly, for each consistent subset X of L , it holds that CN(X) is an option
(as CN(X) is consistent and Idempotence axiom entails that CN(X) is closed). Since
we are considering generic logic, we can show that options do not always exist.

Proposition 2.1. The set Opt(L ) = /0 iff

1. ∀ψ ∈L , CN({ψ}) is inconsistent, and
2. CN( /0) �= /0.
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Proof. (⇒) Let us assume that Opt(L ) = /0. Let us also assume by contradiction
that ∃ψ ∈ L such that CN({ψ}) is consistent. Since CN({ψ}) is closed by the
Idempotence axiom, CN({ψ}) is an option, which is a contradiction.
Assume now that CN( /0) = /0. This means that /0 is an option since it is closed and
consistent (CN( /0) �= L ), which is a contradiction.

(⇐) Let us assume that (i) ∀ψ ∈L , CN({ψ}) is inconsistent, and (ii) CN( /0) �=
/0. Assume also by contradiction that Opt(L ) �= /0 and let O ∈ Opt(L ). There are
two cases:

Case 1: O = /0. Consequently, CN( /0) = /0, which contradicts assumption (ii).
Case 2: O �= /0. Since O is consistent, ∃ψ ∈ O s.t. {ψ} is consistent and thus

CN({ψ}) is consistent. This contradicts assumption (i). �

So far, we have defined the concept of option for any logic (L ,CN) in a way that
is independent of a knowledge base. We now show how to associate a set of options
with an inconsistent knowledge base.

In most approaches for handling inconsistency, the maximal consistent subsets
of a given inconsistent knowledge base have an important role. This may induce
one to think of determining the options of a knowledge base as the closure of its
maximal consistent subsets. However, this approach has the side effect of dropping
entire formulas, whereas more fine-grained approaches could be adopted in order
to preserve more information of the original knowledge base. This is shown in the
following example.

Example 2.1. Consider the propositional knowledge base K = {(a∧ b);¬b}. There
are two maximal consistent subsets, namely MCS1 = {a ∧ b} and MCS2 = {¬b}.
However, one could argue that MCS2 is too weak, since we could have included a
by “weakening” the formula (a ∧ b) instead of dropping it altogether.

The “maximal consistent subset” approach, as well as the one suggested in the
previous example, can be seen as a particular case of a more general approach,
where one considers consistent “relaxations” (or weakenings) of a given inconsis-
tent knowledge base. The ways in which such weakenings are determined might be
different, as the following examples show.

Example 2.2. Consider again the temporal knowledge base of Example 1.2. An in-
tuitive way to “weaken” the knowledge base might consist of replacing the© (next
moment in time) connective with the ♦ (sometime in the future) connective. So, for
instance, ©processed ← received might be replaced by ♦processed ← received,
thus saying that if received is true at time t, then processed is true at some sub-
sequent time t ′ ≥ t (not necessarily at time t + 1). This would lead to a consistent
knowledge base, whose closure is clearly an option. Likewise, we might weaken
only (1.6), obtaining another consistent knowledge base whose closure is an option.

Example 2.3. Consider the probabilistic knowledge base of Example 1.3. A reason-
able way to make a probabilistic formula φ : [�,u] weaker, might be to replace it
with another formula φ : [�′,u′] where [�,u]⊆ [�′,u′].
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The preceding examples suggest that a flexible way to determine the options of
a given knowledge base should be provided, since what is considered reasonable to
be an option might depend on the logic and the application domain at hand, and,
more importantly, it should depend on the user’s preferences. The basic idea is to
consider weakenings of a given knowledge base K whose closures yield options.
For instance, as said before, weakenings might be subsets of the knowledge base.
Although such a weakening mechanism is general enough to be applicable to many
logics, more tailored mechanisms could be defined for specific logics. For instance,
the two reasonable approaches illustrated in Examples 2.2 and 2.3 above cannot be
captured by considering subsets of the original knowledge bases; as another exam-
ple, let us reconsider Example 2.1: by looking at subsets of the knowledge base, it
is not possible to get an option containing both a and ¬b. We formally introduce the
notion of weakening as follows.

Definition 2.2. Given an element ψ of L ,

weakening(ψ) =

{
CN({ψ}) i f ψ is consistent
/0 otherwise

Definition 2.3. Given a knowledge base K ,

weakening(K ) = {K ′ ⊆L | ∀ψ ′ ∈K ′ (∃ψ ∈K . ψ ′ ∈ weakening(ψ))}

According to the preceding definitions, to weaken a knowledge base intuitively
means to weaken formulas in it; to weaken a formula ψ means to take some formulas
in CN({ψ}) if ψ is consistent, or to otherwise drop ψ altogether (note that a
consistent formula could also be dropped). The set weakening(K ) can be computed
by first finding weakening(ψ) for all ψ ∈ K and then returning the subsets of⋃

ψ∈K weakening(ψ). It is easy to see that if K ′ ∈weakening(K ), thenCN(K ′)⊆
CN(K ).

Observe that although a knowledge base in weakening(K ) does not contain any
inconsistent formulas, it could be inconsistent.

Definition 2.4. A weakening mechanism is a function W : 2L → 22L
such that

W (K )⊆ weakening(K ) for any K ∈ 2L .

The preceding definition says that a weakening mechanism is a function that
maps a knowledge base into knowledge bases that are weaker in some sense. For
instance, an example of a weakening mechanism is W (K ) = weakening(K ). This
returns all the weaker knowledge bases associated with K . We use Wall to denote
this weakening mechanism.

We now define the set of options for a given knowledge base (w.r.t. a selected
weakening mechanism).

Definition 2.5. Let K be a knowledge base in logic (L ,CN) and W a weakening
mechanism. We say that an option O ∈ Opt(L ) is an option for K (w.r.t. W ) iff
there exists K ′ in W (K ) such that O = CN(K ′).
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Thus, an option for K is the closure of some weakening K ′ of K . Clearly, K ′
must be consistent because O is consistent (by virtue of being an option) and be-
cause O = CN(K ′). In other words, the options for K are the closure of consistent
weakenings of K . We use Opt(K ,W ) to denote the set of options for K under
the weakening mechanism W . Whenever W is clear from the context, we simply
write Opt(K ) instead of Opt(K ,W ).

Note that if we restrict W (K ) to be {K ′ | K ′ ⊆ K }, Definition 2.5 corre-
sponds to that presented in Subrahmanian and Amgoud (2007) (we will refer to
such a weakening mechanism as W⊆). Moreover, observe that every option for a
knowledge base w.r.t. this weakening mechanism is also an option for the knowl-
edge base when Wall is adopted, that is, the options obtained in the former case are
a subset of those obtained in the latter case.

Example 2.4. Consider again the knowledge base of Example 2.1 and let Wall be the
adopted weakening mechanism. Our framework is flexible enough to allow the set
CN({a,¬b}) to be an option for K . This weakening mechanism preserves more in-
formation from the original knowledge base than the classical “maximal consistent
subsets” approach.

In Chap. 4 we will consider specific monotonic logics and show more tailored
weakening mechanisms.

The framework for reasoning about inconsistency has three components: the set
of all options for a given knowledge base, a preference relation between options,
and an inference mechanism.

Definition 2.6 (General framework). A general framework for reasoning about
inconsistency in a knowledge base K is a triple 〈Opt(K ,W ),�, |∼〉 such that:

• Opt(K ,W ) is the set of options for K w.r.t. the weakening mechanism W .
• � ⊆ Opt(K ,W )× Opt(K ,W ). � is a partial (or total) preorder (i.e., it is

reflexive and transitive).
• |∼ : 2Opt(K ,W ) → Opt(L ).

The second important concept of the general framework above is the preference re-
lation � among options. Indeed, O1 � O2 means that the option O1 is at least as
preferred as O2. This relation captures the idea that some options are better than
others because, for instance, the user has decided that this is the case, or because
those preferred options satisfy the requirements imposed by the developer of a con-
flict management system. For instance, in Example 1.1, the user chooses certain
options (e.g., the options where the salary is minimal or where the salary is maxi-
mal based on his needs). From the partial preorder � we can derive the strict par-
tial order � (i.e., it is irreflexive and transitive) over Opt(K ,W ) as follows: for
any O1,O2 ∈ Opt(K ,W ) we say O1 � O2 iff O1 � O2 and O2 �� O1. Intuitively,
O1 � O2 means that O1 is strictly preferable to O2. The set of preferred options in
Opt(K ,W ) determined by � is Opt�(K ,W ) = {O | O ∈ Opt(K ,W )∧�O ′ ∈
Opt(K ,W ) with O ′ � O}. Whenever W is clear from the context, we simply
write Opt�(K ) instead of Opt�(K ,W ).
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In the following three examples, we come back to the example theories of Chap. 1
to show how our framework can handle them.

Example 2.5. Let us consider again the knowledge base S of Example 1.1. Consider
the options O1 = CN({(1.1),(1.3)}), O2 = CN({(1.1),(1.2)}), O3 = CN({(1.2),
(1.3)}), and let us say that these three options are strictly preferable to all other
options for S; then, we have to determine the preferred options among these three.
Different criteria might be used to determine the preferred options:

• Suppose the score sc(Oi) of option Oi is the sum of the elements in the multiset
{S | salary(John,S)∈Oi}. In this case, the score of O1 is 50K, that of O2 is 110K,
and that of O3 is 60K. We could now say that Oi �O j iff sc(Oi)≤ sc(O j). In this
case, the only preferred option is O1, which corresponds to the bank manager’s
viewpoint.

• On the other hand, suppose we say that Oi �O j iff sc(Oi)≥ sc(O j). In this case,
the only preferred option is O2; this corresponds to the view that the rule saying
everyone has only one salary is wrong (perhaps the database has John being paid
out of two projects simultaneously and 50K of his salary is charged to one project
and 60K to another).

• Now consider the case where we change our scoring method and say that
sc(Oi) = min{S | salary(John,S) ∈ Oi}. In this case, sc(O1) = 50K, sc(O2) =
50K,sc(O3) = 60K. Let us suppose that the preference relation says that Oi �O j

iff sc(Oi)≥ sc(O j). Then, the only preferred option is O3, which corresponds ex-
actly to the tax agency’s viewpoint.

Example 2.6. Let us consider the temporal logic theory T of Example 1.2. We
may choose to consider just three options for determining the preferred ones:
O1 = CN({(1.4),(1.5)}), O2 = CN({(1.4),(1.6)}), O3 = CN({(1.5),(1.6)}). Sup-
pose now that we can associate a numeric score with each formula in T , describing
the reliability of the source that provided the formula. Let us say these scores are 3,
1, and 2 for formulas (1.4), (1.5) and (1.6), respectively, and the weight of an option
Oi is the sum of the scores of the formulas in T ∩ Oi. We might say Oi � O j iff the
score of Oi is greater than or equal to the score of O j. In this case, the only preferred
option is O2.

Example 2.7. Consider the probabilistic logic theory P of Example 1.3. Suppose that
in order to determine the preferred options, we consider only options that assign a
single non-empty probability interval to p, namely options of the form CN({p :
[�,u]}). For two atoms A1 = p : [�1,u1] and A2 = p : [�2,u2], let diff(A1,A2) =
abs(�1− �2)+ abs(u1− u2). Let us say that the score of an option O = CN({A}),
denoted by score(O), is given by ∑A′∈P diff(A,A′). Suppose we say that Oi � O j

iff score(Oi) ≤ score(O j). Intuitively, this means that we are preferring options
that change the lower and upper bounds in P as little as possible. In this case,
CN({p : [0.41,0.43]}) is a preferred option.

Thus, we see that our general framework for managing inconsistency is very
powerful – it can be used to handle inconsistencies in different ways based upon
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how the preference relation between options is defined. In Chap. 4, we will consider
more logics and illustrate more examples showing how the proposed framework is
suitable for handling inconsistency in a flexible way.

The following definition introduces a preference criterion where an option is
preferable to another if and only if the latter is a weakening of the former.

Definition 2.7. Consider a knowledge base K and a weakening mechanism W . Let
O1,O2 ∈ Opt(K ,W ). We say O1�W O2 iff O2 ∈ weakening(O1).

Proposition 2.2. Consider a knowledge base K and a weakening mechanism W .
Let O1,O2 ∈ Opt(K ,W ). O1�W O2 iff O1 ⊇ O2.

Proof. (⇒) Let ψ2 ∈ O2. By definition of �W , there exists ψ1 ∈ O1 s.t. ψ2 ∈
weakening(ψ1); that is ψ2 ∈CN({ψ1}). Since {ψ1}⊆O1, it follows that CN({ψ1})
⊆ O1 (by Monotonicity and the fact that O1 is closed). Hence, ψ2 ∈ O1.

(⇐) Let ψ2 ∈ O2. Clearly, ψ2 ∈ weakening(ψ2), since ψ2 is consistent and
ψ2 ∈ CN({ψ2}) (Expansion axiom). As ψ2 ∈ O1, the condition expressed in
Definition 2.3 trivially holds and O1�W O2. �

The following corollary states that�W is indeed a preorder (in particular, a partial
order).

Corollary 2.1. Consider a knowledge base K and a weakening mechanism W .�W

is a partial order over Opt(K ,W ).

Proof. Straightforward from Proposition 2.2. �

If the user’s preferences are expressed according to �W , then the preferred op-
tions are the least weak or, in other words, in view of Proposition 2.2, they are the
maximal ones under set inclusion.

The third component of the framework is a mechanism for selecting the infer-
ences to be drawn from the knowledge base. In our framework, the set of inferences
is itself an option. Thus, it should be consistent. This requirement is of great im-
portance, since it ensures that the framework delivers safe conclusions. Note that
this inference mechanism returns an option of the language from the set of options
for a given knowledge base. The set of inferences is generally computed from the
preferred options. Different mechanisms can be defined for selecting the inferences
to be drawn. Here is an example of such a mechanism.

Definition 2.8 (Universal Consequences). Let 〈Opt(K ,W ),�, |∼〉 be a frame-
work. A formula ψ ∈L is a universal consequence of K iff (∀O ∈ Opt� (K ,W ))
ψ ∈ O .

We can show that the set of inferences made using the universal criterion is itself
an option of K , and thus the universal criterion is a valid mechanism of inference.
Moreover, it is included in every preferred option.
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Proposition 2.3. Let 〈Opt(K ,W ),�, |∼〉 be a framework. The set {ψ | ψ is a
universal consequence of K } is an option in Opt(L ).

Proof. Let C = {ψ | ψ is a universal consequence of K }. As each Oi ∈ Opt�
(K ,W ) is an option, Oi is consistent. Thus, C (which is a subset of every Oi) is
also consistent. Moreover, since C ⊆ Oi, thus CN(C ) ⊆ Oi (by Monotonicity and
Idempotence axioms), ∀Oi ∈ Opt�(K ,W ). Consequently, CN(C )⊆ C (according
to the above definition of universal consequences). In particular, CN(C ) = C be-
cause of the expansion axiom. Thus, C is closed and consistent, and is therefore an
option in Opt(L ). �

However, the following criterion

K |∼ψ iff ∃O ∈ Opt�(K ,W ) such that ψ ∈ O

is not a valid inference mechanism since the set of consequences returned by it may
be inconsistent, thus, it is not an option.
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