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Abstract Modal identification from response data only is studied for structural

systems under nonstationary ambient vibration. By assuming the ambient excitation

to be nonstationary white noise in the form of a product model and introducing a

technique of curve fitting, the practical problem of insufficient data samples avail-

able for evaluating nonstationary correlation functions or randomdec signatures can

be approximately resolved by first extracting the amplitude-modulating function

from the response and then transforming the nonstationary responses into stationary

ones. Modal-parameter identification can then be performed using the Ibrahim

time-domain method in conjunction with the correlation technique and random

decrement algorithm, respectively. A comparison of correlation technique and

random decrement algorithm is demonstrated through numerical simulations,

which also confirm the validity of the proposed method for identification of

modal parameters from nonstationary ambient response data.
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1 Introduction

A variety of methods have been developed for extracting modal parameters from

structures undergoing ambient vibration. Ibrahim [1] applied the random decrement

technique coupled with a time-domain parameter identification method [2] to

process ambient vibration data. James et al. [3] developed the so-called natural

excitation technique using the correlation technique coupled with time-domain

parameter extraction. In the previous studies of modal-parameter identification

from ambient vibration data, the assumption usually made is that the input excitation

is a broadband stochastic process modeled by stationary white or filtered white

noise. In this chapter, it is shown that if the input signals can be modeled as

nonstationary white noise, which is a product of white noise and a deterministic

time-varying function, the practical problem of insufficient data samples available

for evaluating nonstationary correlation can be approximately resolved by first

extracting the amplitude-modulating function from the response and then

transforming the nonstationary responses into stationary ones. The correlation

functions and randomdec signatures of the stationary response are treated as free-

vibration response, and so the Ibrahim time-domain method can then be applied to

identify modal parameters of the system. Numerical simulations will be performed

to demonstrate a comparison of correlation technique and random decrement algo-

rithm for modal identification and to confirm the validity of the proposed method for

identification of modal parameters from nonstationary ambient vibration data.

2 Correlation Technique

James et al. [3] developed the so-called natural excitation technique (NExT) using

the correlation technique. It was shown that the cross-correlation between two

response signals of a linear system with classical normal modes and subjected to

white-noise inputs is of the same form as free-vibration decay or impulse response.

In combination with a time-domain parameter extraction scheme, such as the ITD

method, this concept becomes a powerful tool for the identification analysis of

structures under stationary ambient vibration. When a system is excited by station-

ary white noise, the cross-correlation function RijðτÞ between two stationary

response signals xiðtÞ and xjðtÞ can be shown to be [3]

RijðτÞ ¼
Xn
r¼1

ϕirAjr

mrωdr
expð�ζrωrτÞ sin ðωdrτ þ θrÞ (1)

whereϕir denotes the ith component of the rth mode shape,Ajr a constant, andmr the

rth modal mass. The result above shows that RijðτÞ in Eq. (1) is a sum of complex

exponential functions (modal responses), which is of the samemathematical form as
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the free-vibration decay or the impulse response of the original system. Thus, the

cross-correlation functions evaluated of responses data can be used as free-vibration

decay or as impulse response in time-domain modal extraction schemes so that

measurement of white-noise inputs can be avoided.

3 Random Decrement Algorithm

The random decrement technique is a method that has been studied extensively for

signature analysis of vibrating systems. Vandiver et al. [4] and Bedewi [5] showed

that when excitation force is zero-mean, stationary, Gaussian white noise, the

random decrement signature δijðτÞ of response, could be denoted as follows:

δijðτÞ ¼ RijðτÞ
Rijð0Þ xs; (2)

where Rijð0Þ ¼ Rijðτ ¼ 0Þ. Note that xs is the threshold level for the acquisition of

sample time history and generally defined as the root-mean-square value of system’s

stationary displacement response. Equation (2) signifies that the random decrement

signature is in proportion to the cross-correlation function RijðτÞ. Since the correla-
tion function has the same mathematical form as that of free-vibration response [3],

the random decrement signature can also be treated as a free-vibration signal for

modal-parameter identification.

4 Practical Treatment of Nonstationary Data

It has been shown in the previous studies [3–5] that by assuming the ambient excitation

to be stationary white noise, the cross-correlation functions or randomdec signatures

evaluated at a fixed time instant of responses can be used as free-vibration decay or as

impulse response in time-domain modal extraction schemes. However, the practical

problem for evaluating nonstationary randomdec signatures is that usually very limited

data samples are available in engineering practice. The problem can be resolved by first

extracting the modulating function from the response if the nonstationary excitation

can be modeled approximately as the product model [6]. It has been shown in a

previous paper of the authors [6] that the temporal root-mean-square functions of the

response histories describe the same time variation as given by the envelope function.

If the original nonstationary data could be represented by the product model with a

slow varying envelope function, the temporal root-mean-square functions of the data

also have the same nonstationary trends as that of the original data. The temporal

root-mean-square function, and so the envelop function, can thus be determined by

using the interval average and then applying curve fitting. This gives us the
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deterministic envelope function which describes the slow variation in the amplitude of

the ambient excitations. The approximate stationary responses can thus be acquired by

dividing the nonstationary responses of each DOF with the associated modulating

functions obtained through curve fitting. Then the randomdec signatures of the station-

ary response data can be obtained, which are in turn treated as the free decay responses

corresponding to each DOF. The modal parameters of a system can then be obtained

via a time-domain modal identification method, such as the ITD method [4].

5 Numerical Simulation

To demonstrate the effectiveness of the proposed method, we consider a linear

6-DOF chain model with viscous damping. A schematic representation of this

model is shown in Fig. 1. The mass matrix M, stiffness matrix K, and the damping

matrix C of the system are given as follows:

M ¼

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 3 0

0 0 0 0 0 4

2
666666664

3
777777775
N � s2=m;

K ¼ 600 �

1 �1 0 0 0 0

�1 2 �1 0 0 0

0 �1 2 �1 0 0

0 0 �1 2 �1 0

0 0 0 �1 3 �2

0 0 0 0 �2 5

2
666666664

3
777777775
N=m;

C ¼ 0:05M þ 0:001K þ 0:2

1 . . . 1

..

. . .
. ..

.

1 . . . 1

2
64

3
75
6�6

N � s=m:

Note that the system has nonproportional damping (and so complex modes in

general), since the damping matrix C cannot be expressed as a linear combination

of M and K. Consider that the ambient vibration input can be modeled as nonsta-

tionary white noise as represented by the product model. The stationary white noise
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is generated using the spectrum approximation method [7] as a zero-mean band-

pass noise, whose standard deviation is 0:02 N2 � s=radwith a frequency range from
0 to 50 Hz. The sampling interval is chosen asΔt ¼ 0:01 s, and the sampling period

is T ¼ Nt � Δt ¼ 1; 310:72 s . The stationary white noise simulated is then

multiplied by an amplitude-modulating function ΓðtÞ ¼ 4 � e�0:002t � e�0:004tð Þ, as
shown in Fig. 2, to obtain the nonstationary white noise, which serves as the

excitation input acting on the 6th mass point of the system. The time signal of a

simulated sample of the nonstationary white noise and the power spectrum of the

corresponding stationary part are shown in Figs. 3 and 4, respectively.

The simulated displacement responses of the system were obtained using

Newmark’s method [8]. By examining the Fourier spectra associated with each of

Fig. 1 Schematic plot of the 6-DOF chain system
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the response channel, we chose the response of the 6th channel, X6ðtÞ, which
contains rich overall frequency information, as the reference channel to compute

the correlation functions and randomdec signatures, respectively, of the system.

According to the theory presented in the previous sections, the nonstationary

Fig. 2 A typical plot of the amplitude-modulating function

Fig. 3 A sample function of nonstationary white noise in time domain
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problem may reduce to a stationary problem if we extract the amplitude-modulating

function from the original nonstationary data. Therefore, we can follow the same

procedures as those for stationary problems and the correlation functions and

randomdec signatures, respectively, thus obtained are treated as free-vibration

data. The Ibrahim time-domain method could then be applied to identify modal

parameters of the system.

The results of modal-parameter identification are summarized in Tables 1 and 2,

which shows that the errors in natural frequencies are less than 2 % and the

maximum error in damping ratios is less than 40 %. Note that the “exact” modal

damping ratios listed in Table 1 are actually the equivalent modal damping ratios

Fig. 4 Power spectrum associated with the stationary part of the simulated nonstationary

white noise

Table 1 Results of modal-parameter identification of a 6-DOF system subjected to nonstationary

white-noise input in the form of a product model through the correlation technique in conjunction

with a technique of curve fitting

Mode

Natural frequency (rad/s) Damping ratio (%)

MACExact ITD Error (%) Exact ITD Error (%)

1 5.03 5.03 0.06 5.24 5.12 2.29 1.00

2 13.45 13.43 0.16 1.07 1.06 0.93 1.00

3 19.80 19.74 0.28 1.13 1.09 3.54 1.00

4 26.69 26.53 0.60 1.43 1.41 1.40 0.98

5 31.66 31.41 0.80 1.66 1.65 0.60 0.94

6 33.73 33.38 1.03 1.74 1.70 2.30 0.95
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obtained by utilizing ITD from the simulated free-vibration data of the nonpropor-

tionally damped structure. It is remarkable that the modes identified by the ITD

generally include the vibrating modes of the structural system and some fictitious

modes due to numerical computation. To keep track of the target modes, we utilize

the Modal Assurance Criterion (MAC) [9] that has been extensively used in the

experimental modal analysis. The value of MAC varies between 0 and 1. When the

MAC value is equal to 1, the two mode-shape vectors represent exactly the same

mode shape. In addition, we can distinguish the fictitious modes from the vibrating

modes of the structural system if the mass matrix or the stiffness matrix of the

structural system is available according to the orthogonality conditions, which show

that vibrating shapes are orthogonal with respect to the stiffness matrix as well as to

the mass matrix.

The identified mode shapes are also compared with the exact values in Fig. 5,

where good agreement is observed. The errors of identified damping ratios andmode

shapes are somewhat higher due to the fact that the system response generally has

lower sensitivity to these modal parameters than to the modal frequencies. It should

be mentioned that the choice of the reference channel for computing the correlation

functions and randomdec signatures is important to the identification results. The

reference channel is chosen as a response channel for which the Fourier spectrum has

rich frequency content around the structure modes of interest. The richer the

frequency content of the reference channel, the better the modal-parameter identifi-

cation that can be achieved. It is remarkable that for the random decrement algorithm

to be effective, we need generally more than 500 samples of time history for each

response channel. We can then perform averaging over the samples to obtain good

quasi free-vibration data for further modal-parameter identification. For this pur-

pose, the random decrement algorithm generally requires response data to be much

longer in time and therefore is practically less efficient when compared with the

correlation technique.

Table 2 Results of modal-parameter identification of a 6-DOF system subjected to nonstationary

white-noise input in the form of a product model through the random decrement algorithm in

conjunction with a technique of curve fitting

Mode

Natural frequency (rad/s) Damping ratio (%)

MACExact ITD Error (%) Exact ITD Error (%)

1 5.03 5.04 0.11 5.24 4.99 4.77 1.00

2 13.45 13.41 0.30 1.07 0.94 12.15 1.00

3 19.80 19.74 0.30 1.13 1.25 10.62 1.00

4 26.69 26.59 0.37 1.43 1.11 22.38 1.00

5 31.66 31.42 0.74 1.66 1.02 38.55 0.99

6 33.73 33.21 1.53 1.74 1.48 14.94 1.00
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Fig. 5 Comparison between the identified mode shapes and the exact mode shapes of the 1st, 3rd,

and 5th modes of the 6-DOF system subjected to nonstationary white-noise input. (a) Correlation

technique. (b) Random decrement algorithm
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6 Conclusions

Identification of modal parameters is considered from response data of structural

systems under nonstationary ambient vibration. It is shown that if the original

nonstationary data could be represented by the product model with a slowly varying

envelope function, the temporal root-mean-square functions of the data also have the

same nonstationary trend as that of the original data. The temporal root-mean-square

function, and so the envelope function, can thus be determined by using interval

average and then applying curve fitting. The practical problem of insufficient data

samples available for evaluating nonstationary correlation functions and randomdec

signatures, respectively, can be approximately resolved by first extracting the ampli-

tude-modulating function from the response and then transforming the nonstationary

responses into stationary ones. The correlation functions and the randomdec

signatures of the stationary response are treated as free-vibration response, and so

the Ibrahim time-domainmethod can then be applied to identifymodal parameters of

the system. The selection of reference channel for computing correlation functions

and randomdec signatures is also important to the identification results. The richer

frequency content the reference channel has, the better results of modal-parameter

identification can be achieved. In addition, the random decrement algorithm gener-

ally requires response data to be much longer in time and therefore is practically less

efficient when compared with the correlation technique.
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