
Reorder Adapting TCP

Yi-Cheng Chan, Chien-Yu Chen, and Yu-Shuo Lee

Abstract Transmission Control Protocol (TCP) is the main transport protocol that

provides reliable transmission in the current Internet. However, TCP still has

problems that may affect its performance on various network environments. Packet

reordering, which is one of the problems on TCP, refers to the out-of-order event of

packets. There are many reasons that can cause packet reordering. In this chapter,

we propose RA-TCP, a novel TCP variant which modifies the retransmission

occasion and the congestion response of the traditional TCP mechanism, to improve

the performance on packet reordering. In particular, we replace the three duplicate

ACKs with a retransmission detection timer (RDT) for the trigger of fast retransmit.

Our simulation studies reveal that RA-TCP performs consistently better than

existing mechanisms that try to make TCP more robust to packet reordering.

Keywords TCP • Congestion control • Packet reordering • Out-of-order

1 Introduction

The congestion control of TCP adjusts the rate of data entering the network,

keeping the data flow below a rate that would trigger collapse. It infers the network

conditions between the sender and receiver depending on acknowledgments (ACK)

and the timer. If a TCP sender detects a congestion event, it will limit the transmis-

sion rate of data entering the network by regulating the size of the congestion

window (cwnd) and the number of unacknowledged packets allowed to be sent.

Y.-C. Chan (*) • C.-Y. Chen • Y.-S. Lee

Department of Computer Science and Information Engineering, National Changhua

University of Education, Changhua 50074, Taiwan

e-mail: ycchan@cc.ncue.edu.tw

J. Juang and Y.-C. Huang (eds.), Intelligent Technologies and Engineering Systems,
Lecture Notes in Electrical Engineering 234, DOI 10.1007/978-1-4614-6747-2_6,
Springer Science+Business Media New York 2013

41

mailto:ycchan@cc.ncue.edu.tw

Several congestion control algorithms, including slow-start, congestion avoidance,

fast retransmit, and fast recovery, have been implemented in TCP. A new TCP

connection starts from slow-start phase. In slow-start, the value of cwnd is

incremented by one whenever the sender receives an ACK, until it reaches the slow-

start threshold (ssthresh). After cwnd reaches ssthresh, the phase of TCP sender turns

into congestion avoidance.

As long as non-duplicate ACKs are received, the cwnd is additively increased by
one every round-trip time (RTT). In the other side, the TCP sender will resend the

lost packet and decrease transmission rate by setting cwnd to half after the arrival of
three duplicate ACKs. The response of retransmission, triggering by received three

duplicate ACKs, is called fast retransmit. In addition to fast retransmit, there is

another method for detecting network congestion. TCP uses a retransmission timer

to ensure data delivery in the absence of any feedback from the remote data

receiver. The duration of this timer is referred to as RTO. When the retransmission

timer expires, the TCP sender will set the cwnd to one and restart from slow-start

phase.

A packet loss event can be detected through a TCP sender that receives three

duplicate ACKs. However, packet reordering can easily trigger the three duplicate

ACKs. Packet reordering refers to the network behavior where the relative order of

some packets transmitted in the network in the same flow is altered when these

packets are relayed in the network [1]. When packet reordering occurs, the TCP

sender may mistake the out-of-order event and transmit the redundant data packets

unnecessarily. Worse is that the spurious packet retransmissions keep the cwnd
small and lead a poor TCP performance.

There are many situations that may cause packet reordering, like packet-level

multipath routing, route fluttering, inherent parallelism in modern high-speed

routers, router forwarding lulls, and IP fast reroute. In view of this, we propose

the scheme called reorder adapting TCP (RA-TCP) to improve the TCP perfor-

mance for packet reordering. RA-TCP changes the conditions which trigger the fast

retransmit. Besides, according to the network situation, we use the cost function to

dynamically adjust the parameters of RA-TCP.

In the following sections, we describe the design of RA-TCP and compare it with

the other recent TCP versions like TCP-PR [2] and TCP-NCL [3] for packet

reordering via the simulation of ns-2.

2 The Proposed Method

When the out-of-order event arises on a connection, the TCP receiver sends the

duplicate ACKs. In tradition, the three consecutive duplicate ACKs are regarded as

the signal of packet loss, and the TCP sender triggers the fast retransmit. Neverthe-

less, packet reordering may lead to the false fast retransmit. Thus the basic idea of

RA-TCP is to cancel the transmission effect about duplicate ACKs.

42 Y.-C. Chan et al.

In RA-TCP, the retransmission detection timer (RDT) is used to replace three

duplicate ACKs for the trigger of fast retransmit. We use the parameter mxrtt,
which refers to the possible maximum round-trip time, to set RDT. If the TCP

sender waits for a corresponding ACK for the period longer than the mxrtt, it
performs the process of fast retransmit, and we suppose the packet loss event has

occurred. Each time the TCP sender receives an ACK, the mxrtt is updated. The
equation of mxrtt is presented as follows:

mxrtt ¼ α� srtt; (1)

where α is a positive constant larger than 1 and srtt is the smoothed round-trip time

estimated by sender. In traditional TCP, the srtt is one of the variables for comput-

ing TCP’s retransmission timer [4]. When a subsequent RTT measurement R0 is
made, the srtt can be computed as follows:

srtt ¼ 1� βð Þ � srttþ β � R0; (2)

where β is set to one eighth in our experiments, just the same as the description in

[4]. The retransmission detection timer decides the timing of retransmission.

Therefore, it is significant to set RDT’s countdown period appropriately.

The parameter α denotes the proportion between mxrtt and srtt. In fact, it is

impossible to choose a proper fixed value of α that is suitable for all networks.

According to this, we design the mechanism that allows a TCP sender to

dynamically adjust the α value in a connection. The adjustment depends on the

cost estimations of transmission. We use the concept of opportunity cost to design

the cost function.

To ease the cost estimation, we choose to compute the most probable cost in all

cases. There are two cases for the cost estimation. First, we consider the cost of a

false fast retransmit. The false fast retransmit means the retransmit is triggered for

an undropped packet. In other words, the RDT’s countdown period is shorter than it

should be. The TCP sender will receive the corresponding ACK later. A false fast

retransmit causes an unnecessary retransmission and a window reduction by half.

For detecting false fast retransmit, we add the DSACK [5] function into RA-

TCP. In a connection, the TCP sender detects false fast retransmit when it received

the DSACK acknowledgement which contains the information about the duplicate

data packets. The TCP sender always stores the cwnd value before fast retransmit.

When false fast retransmit is detected by DSACK, the TCP sender restores the cwnd
to original value that was just before the occurrence of false fast retransmit.

As illustrated in Fig. 1, we suppose that a TCP connection has a current

congestion window size w and a smoothed RTT that refers to R. We maintain

two exponentially weighted moving average parameters, including the fast retrans-

mit recover duration D and the maximum window sizeW. The former indicates the

period from the inception of retransmission to the next time of retransmission. The

latter represents the top value of cwnd in general cases. For acquiring the most

Reorder Adapting TCP 43

probable estimate, we set the exponential moving average duration between the

occasions of fast retransmit as D. In other words, D is the duration between two

consecutive fast retransmits. Whenever a fast retransmit is triggered, we get the

durationD0 from the moment of last fast retransmit to current time, and the equation

of D can be presented as follows:

D ¼ 1� βð Þ � Dþ β � D0: (3)

TheW is the common max value of cwnd; the fast retransmit is usually triggered

whenever cwnd is greater than or equal to W. Because the packets which the TCP

sender may transmit are not more thanW per RTT, we chooseW to estimate the cost

as large as possible. We set the length of cwnd asW0when the retransmission arises,

and the equation of W is as follows:

W ¼ 1� βð Þ �W þ β �W0: (4)

With these parameters, we can discuss the cost estimation. For example, if D equals

to R, the window was halved unnecessarily for only one RTT. Based on the

assumption that there is no false fast retransmit during the period of D and the

congestion window size is linearly increased per RTT until the cwnd gets up to W,
theW is the maximum value of cwnd commonly. Therefore, Cffr, the cost of a false

fast retransmit, is W � w

2
. When D is longer than R, the cost is greater because the

reduced window is in effect for a longer period. Note that the cost in each

subsequent RTT becomes less and less as the linear increase of congestion window

is progressing. The original congestion window value may be restored after

W � w
2

� �
RTTs. Thus, for k ¼ dD=Re, the cost of a false fast retransmit is bounded

by W � w
2

� �þ W � w
2
� 1

� �þ � � � þ W � w
2
� ðk � 1Þ� �

; or

cw
nd

time

fast retransmit

D′ i+2D′ i+1D′ i

W′ i+1 W′ i+2W′ i

false fast retransmit

w

Fig. 1 A simple diagram for

the variation of cwnd to

indicate the false fast

retransmit

44 Y.-C. Chan et al.

Cffr �
Xk�1

i¼1

W � ið2W � w� iþ 1Þ
2

(5)

packets. Note that we limit k to W � w
2

regardless of D for disposing the cost

appropriately. Because D and R are estimated as exponentially weighted moving

averages, their values are not instantaneously accurate. The cost of a false fast

retransmit may lie between the cost estimation for k ¼ dD=Re and k ¼ dD=Re.
We also consider the cost of the delay after packet loss, Cdpl. The opportunity

cost is introduced in idle time when the RDT’s countdown period is great. In this

case, the TCP sender keeps idle and does not execute the fast retransmit even

though the corresponding packets are indeed dropped.

Suppose that a TCP connection has a current congestion window size w, a
smoothed RTT that refers to R. Before w is halved, the TCP sender is idle because

the RDT is not expired after packet loss. Compared with the normal case, the TCP

sender could send less packets. In the following, we try to estimate the cost for this

situation.

We maintain another parameter I to indicate the supposed idle period for this

connection. Theoretically, the I is less than mxrtt. To compute the most probable

cost, we set I to maxrtt in our experiments. Whenever the TCP sender receives an

ACK after the non-spurious retransmission, we could estimate the cost that the TCP

sender may lack for delivering during the waiting time. In addition, we also need to

consider the influence of limited transmit [6].

In modern TCP, limited transmit is the mechanism which lets the sender to

transmit a new packet when it received a dup-ACK before fast retransmission and

time-out. To take account of limited transmit, we count the number of further

duplicate ACKs that return per idle period, d, before the occurrence of the next

fast retransmit. These duplicate ACKs are not part of the opportunity cost in the idle

period. Hence, the cost of this idle period is

Cdpl � I

R
W � d (6)

packets. Here W is the exponentially weighted moving average of the maximum

window size, and R is the smoothed RTT.

After the calculations ofCffr andCdpl, the adjustment of α can be performed. Above

all, the S is the fundamental parameter; through it we adapt the value of α. In the results
presented herein, we set S to 0.01which is chosen to acquire appropriate adjustment of

α from the numerous simulation experiments. The rule for adapting α is described as

follows. As false fast retransmit occurs, RA-TCP increases α by S. This leads a longer
mxrtt. However, the cost of delay after packet loss cannot be ignored because it also

grows when the value of mxrtt is large. Consequently, we should consider the two

opposite sides of the α adjustment. In view of this, we decrease α after an idle period

that leadsCdpl > Cffr. Thus, when every idle period is over and the result corresponds

to the condition that Cdpl is large than Cffr, RA-TCP decreases α by

Reorder Adapting TCP 45

Cdpl

Cffr

� S: (7)

These rules dynamically adapt α in a way that maximizes throughput for a

connection experiencing reordering. False fast retransmits cause a gradual increase

in the α. If the α oversteps its suitable bounds, RA-TCP also decreases α depending

on S and the ratio of the two cost estimations.

3 Performance Evaluation

Due to the page limitation, in this section, we only present the ns-2 simulation

results on a simple wired network as shown in Fig. 2. It involves two end-systems

(S1 and S2) and two routers (R1 and R2). The path between R1 and R2 models the

underlying network path connecting R1 and R2. A single, long-lived TCP flow

from S1 to S2 runs for 300 s. A total of ten runs are done to compute an average

value of the performance metric. We take the throughput of a flow to make

comparisons between four TCP variants; those are TCP SACK, TCP-PR [2],

TCP-NCL [3], and the proposed RA-TCP.

To simulate packet reordering, we repeatedly change the path delay which is

between R1 and R2 according to a uniform distribution. The minimum delay value

between R1 and R2 is 20 ms, and the maximum value is configured from 20 to

500 ms depending on the simulation experiments. A larger maximum value will

induce more variation in the path delay, thereby increasing the degree of packet

reordering.

The Fig. 3 shows the throughputs of the four TCP variants when the maximum

path delay varies between 20 and 500 ms. The throughput of SACK drops obviously

as the maximum path delay is increased. The other three schemes have a relative

good performance because they use the timers to trigger fast retransmission instead

of three duplicate ACKs. However, RA-TCP’s throughput outperforms that of

TCP-PR and TCP-NCL when the maximum path delay is larger than 300 ms.

4 Conclusions

In this chapter, we propose a novel TCP variant, RA-TCP, as an efficient solution for

packet reordering. Just like TCP-PR and TCP-NCL, we replace the three duplicate

ACKs with the retransmission detection timer for the trigger of fast retransmit.

S1 R1 S2R2
5ms ?ms 5ms

100Mb/s 100Mb/s1Mb/s

Fig. 2 A single three-hop wired network

46 Y.-C. Chan et al.

For adapting the fluctuant network environment, we propose an adjustment algo-

rithm, which refers to the cost functions of false fast retransmit and delay after

packet loss, to adjust the timer fittingly. Our simulations show that RA-TCP has a

significant performance improvement compared with that of SACK, TCP-PR, and

TCP-NCL.

References

1. Leung K et al (2007) An overview of packet reordering in transmission control protocol (TCP):

problems, solutions, and challenges. IEEE Trans Parallel Distrib Syst 18(4):522–535

2. Bohacek S, Hespanha JP, Lee J, Lim C, Obraczka K (2006) A new TCP for persistent packet

reordering. IEEE/ACM Trans Netw 14(2):369–382

3. Lai C, Leung K-C, Li VOK (2010) Enhancing wireless TCP: a serialized-timer approach. IEEE

INFOCOM 2010, pp 1–5

4. Paxson V, ACIRI, Allman M (2000) Computing TCP’s retransmission timer, STD 7, IETF RFC

2988

5. Floyd S, Mahdavi J, Mathis M, Podolsky M (2000) An extension to the selective acknowledge-

ment (SACK) option for TCP. IETF RFC 2883

6. Allman M, Balakrishnan H, Floyd S (2001) Enhancing TCP’s loss recovery using limited

transmit. IETF RFC 3042

Fig. 3 Throughputs of the four TCP variants which are in different maximum path delays

Reorder Adapting TCP 47

	Reorder Adapting TCP
	1 Introduction
	2 The Proposed Method
	3 Performance Evaluation
	4 Conclusions
	References

