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1 Introduction

A complex network models multiple interactions between components in a complex
system. A complex network can be represented by a graph. A diverse range of
networks have been studied, for example, the Internet [34], World Wide Web,
citation networks [35], coauthorship networks [50], metabolic networks [43], and
social networks whose nodes are connected by one or more specific types of
relations, like friendship, workplace, and common interest [5, 9]. In the study of
these networks, the topic of community structure has attracted much attention in
several fields.

A network has an underlying community structure if its nodes can be “naturally”
grouped into sets such that each set of nodes is densely connected internally, and
these groups of nodes are called communities. While other definitions of community
exist, not related to the topology but, for instance, to common interests, we refer here
to community structure as a network structural property. For instance, in protein–
protein interaction networks, communities correspond to specific functions [15]; in
the World Wide Web, communities may be related to topics [22]; and in food webs,
communities correspond to compartments [51]. Studies in community structure
should lead to a better understanding of complex systems.
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In the past, communities in networks have been widely studied. Uncovering
community methods proposed usually deal with static graphs. Indeed, even if the
data observed span a time interval, and not only a specific snapshot, a static graph
is extracted from the dataset by aggregating interaction behaviors on the whole time
interval yielding a static graph, possibly weighted. However, an important property
has been largely ignored: networks tend to evolve over time. The interaction
between components in a complex system is not stable but changes over time. For
example, Facebook and Myspace social network sites have grown dramatically in
recent years, and many people join or post over time. There are also many other
dynamic networks with millions of nodes [80, 87]. To learn about how a network
evolves over time, it is important to develop methods that allow to study the dynamic
aspects of the intrinsic network structure, namely, its community dynamics. In
a seminal paper published in 2007, Palla et al. [70] have proposed six possible
scenarios that may occur during the evolution of communities: birth (a new com-
munity appears), growth (a growing community), merging (merging communities),
contracting (a shrunken community), splitting (a split into communities), and death
(a community vanishes). In [13], the definition of change point is given to represent
a significant time point when the system evolves, that is, a major change (or critical
event) occurs in the graph structure during a short period.

Several problems and challenges remain while studying community evolution.
A first one is that there is no well-established standard definition of the notion
itself when dealing with dynamic networks. Some authors are in favor to define
a community as a structure that is observable over time. Such communities can be
detected by matching observable communities at different time steps. Some authors
propose to define a community as a structure that evolves over time. Therefore,
communities can be detected by incremental updating. Authors also propose to
transform the problem of community detection in dynamic networks into a problem
of community detection in static networks. Different approaches are proposed to
detect communities and analyze community evolution in dynamic networks.

In this survey, we try to detail current work on community detection in dynamic
networks. We review these methods and discuss their performance in analyzing
networks. This survey is organized as follows: we first describe the definition of
community in static networks (see Sect. 2). In Sect. 3, we present different dynamic
models such as network evolution models and community evolution models. These
models are the principles of algorithms designed for tracking community evolution.
In Sect. 4, we describe different methods for community detection in dynamic
networks, discuss how to test them, and visualize their results. Section 5 contains
the summary of this survey, along with a discussion about issues raised in tracking
community evolution.
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2 Communities in Networks

It appears natural to model the topology structure of a complex system by a graph
(one can equally use the term network). Many real-world problems (biological,
social, web) can be effectively modeled by graphs where nodes represent entities
of interest and edges mimic the interactions or relationships among them.

In the study of networks, such as computer networks, information networks,
social networks, or biological networks, uncovering the underlying community
structure is essential. Social networks often include community groups based on
common location, interests, hobbies, etc. Metabolic networks have communities
based on modular functions [76]. Citation networks form communities by research
topics. In each context, communities in a network can be described by dense groups
of nodes, with more edges inside groups than edges linking the rest of the network.

In the following, we introduce the definition of community which depends on the
context. Social network analysts have devised many definitions of communities with
various degrees of internal cohesion among nodes [46, 80]. Many other definitions
have been introduced by computer scientists and physicists. We distinguish three
main classes of definitions: local, global, and based on vertex similarity. We review
the notion of community structure. We also discuss the definition of the modularity
function, derived to measure the quality of a graph partition into communities.

2.1 Preliminaries, Notations, and Definitions

A graph G D .V; E/ consists of two sets V and E , where V D fv1; v2; : : : ; vng are
the nodes (or vertices, or points) of the graph G and E � V � V are its links (or
edges, or lines). The number of elements in V and E are denoted by n D jV j and
m D jEj, respectively.

In the context of graph theory, an adjacency (or connectivity) matrix A is often
used to describe a graph G. Specifically, the adjacency matrix of a finite graph G on
n vertices is the n� n matrix A D ŒAij �n�n, where an entry Aij of A is equal to 1 if
the link eij D .vi ; vj / 2 E exists, and zero otherwise.

A partition is a division of a graph into disjoint communities, such that each node
belongs to a unique community. A division of a graph into overlapping (or fuzzy)
communities is called a cover. We use P D fC1; : : : ; Cnc g to denote a partition,
which is composed of nc communities. In P , the community to which the node v
belongs to is denoted by �v. By definition we have V D [nc

1 Ci and 8i 6D j; Ci \
Cj D ;. We denote by S D fS1; : : : ; Snc g a cover composed of nc communities. In
S, we may find a pair of community Si and Sj with i 6D j such that Si \ Sj ¤ ;.

Given a community C � V of a graph G D .V; E/, we define the internal
degree kint

v D jfe D .v; u/ j u 2 Cgj (respectively the external degree kext
v D jfe D

.v; u/ j u 62 Cgj) of a node v 2 C, as the number of edges connecting v to other
nodes u belonging to C (respectively to the rest of the graph). If kext

v D 0, the only
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neighbors of node v are within C: assigning v to the current community C is likely
to be a good choice. If kint

v D 0 instead, the node is disjoint from C and it should be
better to assign it to a different community. Classically, we note kv D kint

v C kext
v the

degree of node v. The internal degree kint of C is the sum of the internal degrees of
its nodes: kint DP

v2C kint
v . Likewise, the external degree kext of C is the sum of the

external degrees of its nodes. The total degree kC is the sum of the degrees of the
nodes of C. By definition, kC D kint

C C kext
C .

2.2 Definitions of a Community

When studying community structure, authors often analyze structural properties of
communities in the networks. The notion of communities can be formalized based
on statistical properties. Furthermore, we can distinguish three types of community
definition: local definition, global definition, and the definition based on node
similarity. There, definitions are used to automatically detect community structure
in networks.

Local Definitions

Communities are parts of the graph (group of nodes), within which the connections
are dense and between which the connections are sparse. In some specific systems or
applications, they can be considered as separate entities with their own autonomy,
which do not depend on the whole graph. For instance, in [59], communities are
defined in a very strict sense and require that all pairs of nodes are connected. In
other words, this corresponds to a clique, that is, a subset of nodes such that every
two vertices in the subset are connected by an edge. However, such criteria are too
strict. A relaxable extended definition is k-clique community, which is the basis of
CPM (Clique Percolation Method) [71]. A k-clique community is a sequence of
adjacent cliques, where two k-cliques are adjacent if they share k-1 nodes.

Another criterion for community cohesion is the difference between the internal
and external cohesion of the community. This idea is also used to define communi-
ties. For instance, Radicchi et al. [75] proposed the definitions of strong communities
and weak communities. A set of nodes is a community in a strong sense if the internal
degree of each node is greater than its external degree. This definition seems too
strict. Its relaxable definition is the community in a weak sense: the internal degree
of the community (sum of all its node internal degree) should exceed its external
degree. Note that a community in a strong sense is also a weak community, while
the converse is not generally true.
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Global Definitions

Communities can be defined with respect to the graph as a whole. This seems to
be reasonable when the community structure is exactly the division of the graph
into several groups of nodes. In such a context, many global criteria are used to
identify communities, which are all based on the intrinsic idea that a graph offers a
community structure if its structure is far from a random graph. Random networks
such as Erdös–Renyi’s graphs do not display community structure. Indeed, as any
pair of nodes are independently linked with the same probability, there should
be no preferential wiring involving special groups of nodes. Therefore, one may
define a null model, that is, a random graph that shares some structural properties
of the original graph such as its degree distribution. The null model is the basic
element in the conception of the notion of quality function named modularity. The
modularity evaluates the quality of a graph partition into disjoint communities. The
most popular modularity is proposed by Newman and Girvan [65], which compares
the number of edges inside the community to the expected number of internal
edges in the null model. A series of algorithms using modularity maximization
heuristics [28, 66] for finding communities are proposed and developed.

Definitions Based on Node Similarity

It seems also natural to assume that communities are groups of nodes similar to each
other. One can compute the similarity between each pair of nodes with respect to
some reference properties. An important class of node similarity measures is based
on properties of random walks on graphs, such as commute time. The commute time
between a pair of nodes is the average number of steps needed for a random walker,
starting at either node, to reach the other node for the first time and to come back to
the starting node. Saerens et al. [79] have studied and used the commute time as a
similarity measure: the larger the commute time is, the less similar the nodes are.

2.3 Modularity

One may want to measure the quality of a partition through a quality function, which
assigns a score to each partition of a graph. In this way, partitions can be ranked
based on their score given by the quality function. Partitions with high scores are
“good”, so the one with the highest score is by definition the best.

The widest accepted quality function is the modularity introduced by Newman
and Girvan [65, 68]. Let eij be the fraction of edges in the network that connect
nodes in community i to those in community j , and ai D P

j eij . The modularity
measure is defined as

Q D
X

i

�
ei i � a2

i

�
: (1)
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This quantity measures the fraction of the within-community edges in the network
minus the expected value in a network with the same community division but when
connections between nodes are random. If the number of within-community edges
is less than the expected number of edges in a random graph, we will get Q D 0.
Values approaching Q D 1, which is the maximum, indicate networks with strong
community structure. In practice, values for real networks typically fall in the range
from 0:3 to 0:7. Higher values are rare.

Suppose we have a division of a network into communities. Let �i be the
community to which node i is assigned. The fraction of the edges in the graph
that fall within communities, that is, that connect nodes that both lie in the same
community, is

P
ij Aij ı.�i ; �j /

P
ij Aij

D 1

2m

X

ij

Aij ı.�i ; �j /

where the function ı.�i ; �j / is 1 if �i D �j and 0 otherwise. At the same time, the
expected number of edges between nodes i and j , if edges are drawn at random, is
ki kj =2m, where ki and kj are the degrees of the nodes and m is the total number
of edges in the network. Thus, the modularity [64], as defined above, is given by

Q D 1

2m

X

i¤j

�

Aij � ki kj

2m

�

ı.�i ; �j / (2)

Note that the modularity is always smaller than one but can be negative as well.
For instance, the partition where each node represents a single community is always
negative. When considering the whole graph as a single community, the modularity
is zero as the two terms are equal and cancels each other out. There are also other
types of modularity, some of which are motivated by specific classes of clustering
problems or graphs. The goal here is not to list exhaustively all algorithms which
were built upon the modularity. The interested reader should turn to Fortunato’s
extensive review of the field [32], which does not only cover the modularity but
community detection as a whole.

Modularity has been employed as quality function in many algorithms, like some
division algorithms [66] which give a trade-off between high accuracy and low
complexity. In addition, modularity optimization is the most popular method for
community detection. Heuristic proposed in [11] runs fast and handles very large-
scale networks. Modularity also allows to assess the stability of partitions [60].

However, the applicability and reliability of modularity for the problem of graph
clustering may be limited. An important issue concerning the limits of modularity is
raised by Fortunato and Barthelemy [33]. The study shows that a large value for the
maximum modularity does not necessarily mean that a graph has a clear community
structure. In a random graph, such as the Erdös–Rényi model, the distribution of
edges among the nodes is highly homogeneous. For instance, the distribution of the
number of neighbors of a node, or degree, is binomial, so most nodes have equal
or similar degree. The random graph is supposed to have no community structure,
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as the link probability between nodes is either constant or a function of the node
degrees, so there is no bias a priori towards special groups of nodes. Still, random
graphs may have partitions with large modularity values [42, 77]. This is due to
fluctuations in the distribution of edges in the graph, which determine concentrations
of links in some subsets of the graph, which then appear as communities.

Moreover, Fortunato and Barthelemy [33] have found that modularity optimiza-
tion has a resolution limit. It may prevent from detecting communities which are
comparatively small with respect to the graph as a whole. Given two communities
A andB, with a total degree kA and kB , respectively, and where the number of edges
connecting A and B is lAB , the difference of modularity determining the merger of
two communities with respect to the whole graph partition is

�Q D
"

kint
A C kint

B C 2lAB
2m

�
�

kA C kB
2m

�2
#

�
"

kint
A C kint

B
2m

�
�

kA
2m

�2

�
�

kB
2m

�2
#

If lAB D 1, that is, there is a single edge joining A to B, we expect that the two
communities should be separated. If kAkB=2m2 < 1

m
, we have �QAB > 0. For

simplicity, let us suppose that kA Ï kB D k, that is, that the two subgraphs
have roughly the same number of edges. We conclude that when k <

p
2m and

the two communities A and B are connected, then the modularity is higher if
they are in the same cluster [33]. So, if the partition with maximum modularity
includes clusters with total degree of the order of O.

p
m/ (or smaller), one cannot

know a priori whether the clusters are composed of single communities or are in
fact a combination of smaller weakly interconnected communities. This resolution
problem may have important impacts in practical applications.

3 Community Evolution in Dynamic Networks

In complex networks, the interactions between entities dynamically evolve over
time [7]. Let us take Facebook1 as an example: users add or delete “friends” [26].
Similarly, new forms of social contacts can be observed in phone calls, e-mail
exchanges [58], or other communications on the Internet.

As mentioned previously, traditional analysis treats networks as static graphs,
which is derived either from an aggregation of data over the whole network life
(experiment measure) or from a snapshot of data at a particular time step. Although

1http://www.facebook.com/

http://www.facebook.com/
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this study provides meaningful results, the dynamic features are neglected. Dynamic
features are however crucial in order to better understand complex networks.

During the last decade, the avalanche of data footprint provided by the trace-
ability of many social activities represents a major scientific, economic, and social
revolution. The availability of large dataset (thanks to Open Data initiative), the
optimized rating of computing facilities, and the development of powerful and
reliable data analysis tools have constituted a better and better machinery to explore
the topological properties of several networked systems from the real world. This
has allowed to study the topology of the dynamic interactions in a large variety of
Big Data [19] as diverse as communication [72, 73], social [24, 67], and biological
systems [12, 48].

In the following, we discuss network evolution models in Sect. 3.1. Next, we
introduce the definitions and notations of community evolution in dynamic networks
in Sects. 3.2 and 3.3. Moreover, we discuss how to evaluate community evolution.
Evaluating community evolution depends on the definition about community evolu-
tion and the chosen similarity measures. There is a similarity measure proposed for
measuring the quality of the found community structure at each time step. It is called
˛-cost. There are also many other similarity measures such as matching metrics.
Matching metrics are used for matching communities at different time steps. We
introduce the quality function: ˛-cost (see Sect. 3.4) and discuss matching metrics
(see Sect. 3.5). In addition, we discuss the definition of community dynamics, which
are based on matching metrics (see Sect. 3.6).

3.1 Network Evolution Models

When networks tend to gradually evolve over time, a first class of models con-
sidering networks as dynamical systems can be derived. A first common class
of evolving network models is based on two ingredients: growth and preferential
attachment. The growth hypothesis suggests that networks continuously expand
through the arrival of new nodes and new links between existing nodes, while the
preferential attachment hypothesis states that strongly connected nodes increase
their connectivity faster than less connected nodes. In [49], the authors have
measured different networks. Results show different attachment rate functions: the
attachment rate in some systems depends linearly on the node degree, while the
dependence of other systems follows a sublinear power law.

In order to mine dynamic properties of networks, Leskovec et al. [57] have
studied a wide range of real networks from several domains. Empirical observations
revealed that most networks are becoming denser over time with the increasing
average degree and decreasing effective diameters.

As one may expect, the evolution of real networks is complicated. It is possibly
related to community structure. For instance, Backstrom et al. [5] investigated an



Communities in Evolving Networks: Definitions, Detection, and Analysis Techniques 167

online network 2. They computed the probability of joining a community as a
function of internal friends (who are already in the community). The empirical
studies showed that the probability of joining a community increases with the
number of internal friends but is very noisy. Moreover, their studies also compare the
effects between different friends in attracting new community members: the number
of friends who know each other provides a stronger effect than the friends who do
not know each other.

Asur et al. [3] have measured sociability index in testing the DBLP coauthor
dataset. The sociability index gives high scores to nodes that are involved in
interactions with different groups. Their analysis showed that the sociability index
could be used to predict future co-occurrences of nodes in clusters.

Therefore, current statistical models based on growth and preferential attachment
only capture one part of dynamic behaviors of real networks and fail to capture many
other dynamic structural properties such as the evolution of community structure.
Community evolution is important for analyzing dynamic structural properties of
real networks.

3.2 Community Evolution Models

There is no accepted standard definition of community in dynamic networks.
A community can be defined as a structure that is observable over time. Such
communities can be detected by matching observable communities at different time
steps. In [44], Hopcroft et al. have detected the partition for each snapshot graph by
hierarchical clustering [45] and then matched communities at different time steps
through the notion of natural communities. They define natural communities as
groups of nodes having high stability against perturbations of their interactions.
When analyzing citation networks, natural communities can be used to denote topics
of communities. Tracking natural community evolution allows them to understand
the history of topics, such as the emergence of new topics. The idea of detecting
time-independent communities at different time steps and then matching them
becomes the basis for several algorithms. They are called two-stage approaches (see
Sect. 4.1). Each time-independent community is detected independent of the results
at other time steps.

Another definition of community in dynamic networks is a structure that evolves
over time. For instance, a community is defined as the neighborhood of a chosen
node in [27]. Therefore, each community is detected by incrementally updating
the neighborhood of the chosen node corresponding to the evolution of the graph
structure over time. Such methods that propose to detect time-dependent temporal
clusters are called evolutionary clustering (see Sect. 4.2). The principle of evolution-
ary clustering [13] is to simultaneously optimize two potentially conflicting criteria:

2LiveJournal (LJ)http://www.livejournal.com/

http://www.livejournal.com/
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Fig. 1 An example of a coupling graph, where graphs at different time steps are connected
through couplings. The real interactions between nodes are shown in solid lines, while the coupling
interactions are denoted by dotted lines. The figure is gained from [47]

(i) first, the clustering at any time step should remain faithful to the current data as
much as possible (ii) and second, the clustering should not shift dramatically from
one time step to the next time step.

There are also many other models for capturing community structure in dynamic
networks. The coupling graph clustering is a framework which detects community
structure of a coupling graph (see Sect. 4.3). A coupling graph is a graph linking a
sequence of graphs over several time steps by adding coupling edges between the
same nodes at different time steps (see Fig. 1). Given a coupling graph, a subgraph
which describes all interactions at a specific time step is called a slice.

3.3 Notations of Community Evolution

A dynamic graph G.V; E/ on a finite time sequence 1 : : : � is a sequence of graph
snapshots fG.1/; : : : ; G.�/g. There is a set V D fv1; : : : ; vng of nodes. Each node
vi 2 V appears at least one during the dynamic graph lifetime, that is, 9t s:t: vi 2
G.t/.

At each time step t where 1 � t � �, the corresponding snapshot G.t/ describes
interactions between active nodes at time t , where the edges of a snapshot graph are
a set of active dynamic links. G.t/ is partitioned into a set of temporal clusters
P.t/ D fC1.t/; : : : ; Cnt

c
.t/g, where nt

c denotes the number of temporal clusters in
G.t/. In some definitions of communities in dynamic networks [30,31], the number
of temporal clusters may be not equal to the number of communities at the same
time step t . One community Ci at time step t is possibly represented by a set of
temporal clusters such that Ci .t/ D fC1.t/; : : : g.

The problem of tracking community evolution can be resolved by the identifi-
cation of a set of community evolution paths (or community evolution traces [92],
dynamic communities [39]).

Definition 1 (Community evolution path). For a given time window Œı0; ı0C��,
an evolution path Evol.Ci / is a time series of temporal clusters: Evol.Ci / WD
fCi.ı0/; : : : ; Ci .ı0 C�/g where each temporal cluster Ci .t/ 2 Evol.Ci /; t 2
Œı0; ı0 C�� is the observation of the community Ci .
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In the definition of Wang et al. [92], the observation of the community Ci at time t

can be the union of several temporal clusters. When a community appears for the
first time, it should be a unique temporal cluster.

3.4 Quality Function: ˛-Cost

Reliable algorithms are supposed to provide results having a high-quality value. In
the case of community detection in dynamic networks, a famous function named
˛-cost has been used by several algorithms [52, 83, 89] for measuring the quality
of the found dynamic communities. This ˛-cost is motivated by the principle of
clustering evolution: the community structure at each time step is the evolution
of the community structure at the previous time step. Therefore, one can see the
evolution as a combination of a snapshot cost and a past history cost. The parameter
˛ controls the relative weight of recent and past history:

cost D ˛ CS C .1 � ˛/ CT (3)

where the snapshot cost CS measures how a community structure fits the graph
interactions at time t and the past history cost CT qualifies how consistent the
community structure is with the past history community structure at time t � 1.

Let X represent the current community structure, Y represent the community
structure at the previous time step, W denote current graph interaction, � be a
nonnegative diagonal matrix, and D.�/ be the function for measuring the cost
such that D.�/ computes the similarity between the network structure and the
community structure and the similarity between the current community structure
and the previous community structure.

In [89], authors defined D.�/ as a KL-divergence between two objects such that
CS D D.W k X�XT / and CT D D.Y k X�/. Given two objects A and B , D.A k
B/ DP

ij

�
aij log aij

bij
� aij C bij

�
. Through this cost definition, the snapshot cost

is high when the approximate community structure fails to fit the graph interactions
at time t , while the past history cost is high when there is a dramatic change of
community structure from time t � 1 to t .

There exist also other definitions of D.�/. In [52], two definitions of the cost
are introduced: one is the distance between all pairs of objects in an agglomerative
hierarchical clustering, and the other is associated with the centroid of the commu-
nity in k-means clustering [10]. In k-means clustering, community memberships
are measured by the membership degrees of nodes, that is, the distance between the
node to the centroid of its community. Then, in the cost of the community structure
of a dynamic graph, the snapshot cost is associated with the distance between the
node and the centroid of its community, and the past history cost is computed by the
difference between the current community centroid and the community centroid at
the previous time step.
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In the case of multimode networks, Tang et al. [84] have suggested the resolution
by transforming the problem in multimode networks into the problem of two
mode. Most of existing work concentrates on one-mode network. That is, there
is only one type of social actors (nodes) involved in the network and the ties
(interactions) between actors are all of the same type. This is common in a
broad sense such as friendship network, the Internet, and phone call network.
However, some applications such as web mining, collaborative filtering, and online-
targeted marketing involve more than one type of actors and multiple heterogeneous
interactions between different types of actors. Such a network is called multimode
network [93].

Given an m-mode network, for each mode i , let Xi denote this mode of nodes,
such as Xi D fxi

1; : : : ; xi
ni
g, where ni is the number of nodes for Xi . Then, for

each pair of modes, we use Rt
ij � Xi � Xj to represent interactions between two

modes of nodes Xi ;Xj at time t . Ideally, the interaction between nodes can be
approximated by

Rt
ij � Ct

i A
t
ij .Ct

j /T

where Ct
i is the cluster membership for Xi at time t and At

ij represents the group
interaction. The group interaction is computed by At

ij D .Ct
i /

T Rt
ij Ct

j : Therefore,
for each temporal m-mode graph at time t , its snapshot cost CS can be formulated as

CS D
X

16i<j 6m

w.i;j /
a D

�
Rt

ij k Ct
i A

t
ij .Ct

j /T
�

and its history cost CT is expressed as

CT D
X

16i6m

wi
bD

�
Ct

i k Ct�1
i

�

where wij
a is an importance factor for every pair of modes i and j , and wi

b is a
relative importance factor for each mode i .

3.5 Matching Metrics

A matching metric is a similarity function, which measures how similar two
communities are. It is often used in two-stage approaches (see Sect. 4.1) to connect
similar communities. One can measure the similarity between two temporal clusters
at different time steps and naturally obtain how one community evolves from one
time step to the following time steps.

Hopcroft et al. [44] defined a match function. Let C and C 0 be two clusters; their
match value is written as follows:
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1,2,3,4,5,6

1,2,3,4,5,7 6,8,9

7,8,9 1,2,3,4,5,6

More complex evolution
and one apparition

Split of one community

partition at time t

partition at time t+1

Simple evolution

7,8,9 1,2,3,4,5,6

1,2,3

7,8,9

1,2,3,4 5,7,8 6,9 4,5,6,7 8,9

Fig. 2 Examples of community evolution in a time period Œt; t C 1�. We match clusters at time t

to the clusters at time t C 1. Given a cluster at time t , it remains stable if it is matched to a unique
cluster at time t C 1; it splits if it is matched to more than one cluster at time t C 1. In addition,
one new cluster appears at time t C 1, if no cluster at time t is matched to it. The figure is obtained
from [4]

match.C; C 0/ D min

� jC \ C 0j
jC j ;

jC \ C 0j
jC 0j

�

(4)

The definition ensures that a high matching value (close to 1) occurs when two
clusters have many common nodes and are roughly of the same size. The best match
value for C at time t is the highest match.C; C 0/ value for any cluster C 0 at time t

(Fig. 2).
Palla et al. [70] defined relative overlap, which is a Jaccard index. The relative

overlap value between two communities X and Y is written as follows:

J.X; Y / D jX \ Y j
jX [ Y j (5)

By definition, the cluster C.tC1/ at time tC1 is matched to the cluster C.t/ which
has the largest overlap at time t .

Another bipartite mapping metric is dynamic Jaccard’s index, whose definition is

JacD0.X; Y / D J.X; Y /

jt � t 0j (6)

where jt � t 0j represents the time interval duration between communities X and Y .
It allows a temporal cluster to be matched to an older one (jt � t 0j > 1) which may
have disappeared during several time steps.

Two communities are matched if they share the highest matching value. The
matching metric is a natural resolution to connect temporal clusters over time. So, it
is often used in two-stage methods [44,70,86]. Its other advantage is to characterize
community dynamics. However, there is no standard definition of matching metric.
In Hopcroft et al. [44]’s match function (4), the minimum size of communities
is important for the comparison. Instead, the size of the union of communities
is essential in the relative overlap (5). Furthermore, a minimum intersection size
threshold needs to be set, that is, the minimum number of common nodes shared by
the matching communities.
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Fig. 3 Possible scenarios in the evolution of communities. The figure is gained from [70]

3.6 Definition of Community Dynamics

When we track community evolution, one problem is to characterize community
dynamics. How a community changes over time? Chakrabarti et al. [13] proposed
the definition of change point to describe a significant change in community
structure. In the following, we describe them in details. Moreover, Palla et al. have
introduced the main phenomena occurring during the lifetime of a community (see
Fig. 3): birth, growth, contraction, merging, splitting, and death.

Change Point

Chakrabarti et al. [13] have detected change points, which represent the signif-
icant time points when the system evolves, that is, a major change (or critical
event) occurs in the graph structure during a short period. The approach called
GraphScope [13] applied the MDL (Minimum Description Length) principle [40]
to compute the encoding cost of assigning nodes into communities. A segment
presents a sequence of graphs without any change in its community structure. So
the graphs of each segment are characterized by the same partition with the lowest
encoding cost. If the cost for encoding a graph into the existing segment is higher
than the cost for encoding the graph into a new segment, a significant change
of community structure occurs. The change point offers one important benefit of
detecting community evolution using information theory.
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Community Changes

We show six community changes in Fig. 3, which are used to describe the main
events occurring in dynamic graphs. In order to identify them, matching metrics are
often used such as the definition given in [3].

Definition 2. Let G.t/ and G.tC1/ be two snapshots of G at two consecutive time
steps. Let the cluster Ci.t/ and Ci .t C 1/ denote the observations of the community
Ci at time step t and t C 1, respectively.

Continue: Ci .t C 1/ is the continuation of Ci.t/ if Ci .t C 1/ is the same as Ci.t/:

Ci.t/ D Ci .t C 1/

��Merge: Two clusters Ci.t/ and Cj .t/ merge into Ci.tC1/ if Ci .tC1/ contains
at least �% of nodes belonging to the union of Ci.t/ and Cj .t/ and the renewal
of Ci .t/ and Cj .t/ is at least 50%:

j.Ci.t/ [ Cj .t// \ Ci .t C 1/j
max.jCi.t/ \ Cj .t/j; jCi.t C 1/j/ > �

jCi.t/ \ Ci.t C 1/j > jCi .t/j=2

jCj .t/ \ Ci.t C 1/j > jCj .t/j=2

��Split: Ci .t/ is split into Ci.t C 1/ and Cj .t C 1/ if �% of nodes belonging to
Ci .t/ are in two different clusters at time t C 1, such as

j.Ci .t C 1/[ Cj .t C 1//\ Ci .t/j
jmax.jCi.t C 1/\ Cj .t C 1/j; jCi.t/j/ > �

jCi.t/ \ Ci .t C 1/j > jCi.t C 1/j=2

jCi.t/ \ Cj .t C 1/j > jCj .t C 1/j=2

Emerge: A new cluster Ci.t C 1/ emerges at time t C 1 if none of the nodes in
the cluster Ci .t C 1/ are grouped together at time t , that is, À Ci.t/; such that
jCi .t/ \ Ci .t C 1/j > 1 .

Disappear: Ci .t/ disappears if none of the nodes in the cluster Ci .t/ are grouped
at time t C 1, that is,À Ci.t C 1/; such that jCi.t/ \ Ci .t C 1/j > 1 .

This definition has several limits. First, the definition of one continuation is so
strict that almost all communities do not have any continuation at the next time step.
Second, the value of � needs to be set to determine when a community is merged
or when a community is splited. Varying � may lead to different results. Finally,
the definition of emerging community or disappearing community has weakness.
Some clusters may be generated only by the fluctuation of degree distribution. These
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artificial clusters will not share a strong common interest. For the disappearance, the
process may be too slow: a community may lose its core nodes but still have node
attached to it. In this case, the observed community does not share a strong common
interest anymore. It is difficult to determine whether a community exists.

Another definition of community dynamics is based on community predeces-
sor/successor relationship [91].

Definition 3 (Community predecessor and successor). Given a temporal cluster
Ci.t/ at time t , if the temporal cluster Cj .t � 1/ has the maximum overlap size
among all temporal clusters at time t �1, we define that Cj .t �1/ is the predecessor
of Ci.t/. If the temporal cluster Ck.t C 1/ has the maximum overlap size among all
temporal clusters at time t C 1, we define that Ck.t C 1/ is the successor of Ci .t/.

In the following, given a pair of temporal clusters .X; Y /, X ! Y is used to
denote that Y is Xs successor and X  Y represents that X is Y s predecessor.

The relationship between one community and its successor (or its predecessor)
may be asymmetrical. That is, for one community and its successor, this community
may not be the predecessor of its successor. Similarly, for one community and its
predecessor, it is possible that the community is not the successor of its predecessor.
This asymmetrical property is used to characterize community dynamics.

Definition 4. Let G.t/ and G.tC1/ be snapshots of G at two consecutive time steps
with the temporal partition P.t/ and P.t C 1/ denoting the community structure of
G at time step t and t C 1, respectively.

Survive. Cj .t C 1/ is the continuation of Ci.t/, if and only if Ci.t/ is the
predecessor of Cj .t C 1/ and Cj .t C 1/ is the successor of Ci.t/, such that

Ci .t/ Cj .t C 1/^ Ci .t/! Cj .t C 1/

This relationship is denoted by Ci.t/ � Cj .t C1/. When a community survives
from t to t C 1, it is a growing community if it has an increasing number of
community members; otherwise, it is a shrinking community.

Emerge. Cj .t C 1/ is a creation if and only if Cj .t C 1/ has no predecessor such
that

ÀCi .t/ 2 P.t/j �Ci.t/! Cj .t C 1/
�

Merge. Cj .t C 1/ is a fusion if and only if Cj .t C 1/ is the successors of several
clusters at time step t such that

9fCi.t/; Ck.t/g � P.t/j �Ci .t/! Cj .t C 1/ ^ Ck.t/! Cj .t C 1/
�

where i ¤ k.
Split. Cj .t C 1/ is a split if and only if Cj .t C 1/ is not the successor of its

predecessor such that
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t = 1 t = 2 t = 3 t = 4

C1 : C1(1) C1(2) C1(3) C1(4)

C2 : C2(2) C2(3)

C3 : C3(1) C3(2) C3(3)

C4 : C4(3) C4(4)

Fig. 4 Diagrams of four communities observed during four time steps, featuring continuation,
creation, disappearance, fusion, and split

Ci .t/ Cj .t C 1/^ Ci .t/ ¹ Cj .t C 1/

Disappear. A community disappears at time t C 1 if and only if its observation
Ci .t/ at time step t has no successor such that

ÀCj .t C 1/ 2 P.t C 1/j �Ci.t/ ¹ Cj .t C 1/
�

Diagrams in Fig. 4 show several cases illustrating community dynamics which
can be featured by continuation, creation, disappearance, fusion, and split. For better
understanding of community evolution, their evolution paths (Def. 1) will be shown.
For each community C, its evolution path is Evol.C/ WD fC.1/; : : : ; C.�/g, where
each element C.i/ (1 � i � �) represents its observation at time step t D i .

In the example illustrated by the Fig. 4, four communities have the evolution
paths:

• Evol.C1/ WD fC1.1/; C1.2/; C1.3/; C1.4/g
• Evol.C2/ WD fC2.2/; C2.3/g
• Evol.C3/ WD fC3.1/; C3.2/; C3.3/g
• Evol.C4/ WD fC4.3/; C4.4/g
Nearly all types of community changes are observed:

• Community C2 is created at t D 2 as it has no predecessor at t D 1.
• Community C3 disappears at t D 4 as it has no successor at t D 4.
• Community C2 is merged into C1 at t D 4 since its successor at t D 4 is C1.4/

whose predecessor is not C2.3/.
• Community C4 is split from C2 since t D 2 as its predecessor at t D 2 is C3.2/

whose successor is not C4.3/.
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t = 1 t = 2 t = 3 t = 4

C1 : C1(3) C1(4)

C2 : C2(2)C2(1)

C3 : C3(1) C3(2) C3(3) C3(4)

Fig. 5 Diagram of four clusters observed over 4 time steps, featuring fusion and split community
events

Fig. 6 Examples of community evolution over three snapshot graphs by matching temporal
clusters to dynamic communities. We observe 4 dynamic communities, indicated by colors: C1

in dark blue, C2 in red, C3 in green, and C4 in light blue. During their evolution, we observe the
community C1 is split into C1 and C2 between t and t C 1

Community C1 is observable during all the observation window (only four time
steps on this toy example). At time step t D 4, community C2 joins it. This
community fusion event seems to be more an event related to C2 rather than to C1.

A more complex diagram is displayed in Fig. 5. We observe the changes of
communities from time step t D 2 to t D 3. At time step t D 3, community C2

partially merges with C3, while its split C1.3/ starts a new community C1.

There are also other types of definitions [16,37,39]. For example, Chen et al. [16]
characterize community dynamics by tracking community core evolution. Greene et
al. [39] use the definition of dynamic communities described above but require that
if several dynamic communities share the same temporal cluster at time t , then these
dynamic communities should merge.
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In Fig. 6, we have shown examples of community evolution. There are four
dynamic communities over the total three time steps, whose evolution paths are
expressed as following:

Evol.C1/ fC1.t/; C1.t C 1/; C1.t C 2/g
Evol.C2/ fC2.t C 1/; C2.t C 2/g
Evol.C3/ fC3.t/; C3.t C 1/; C3.t C 2/g
Evol.C4/ fC4.t C 2/g

Through these evolution paths, we observe two new communities appearing during
network evolution: the community C2 is the branch of C1 and the community C2

emerges at time t D 2.
This is an example to illustrate the relationship between community dynamics

and community evolution paths. We conclude that the problem of identifying and
characterizing community dynamics can be revealed by community evolution paths,
whereas the problem of tracking community evolution in dynamic networks can be
reformulated as a problem of constructing community evolution paths across one or
more time steps.

4 Tracking Community Evolution

Tracking community evolution is a key problem for which many algorithms have
been proposed and developed. In the following, we will review them in details.
Being able to benchmark proposed heuristics appears to be an important challenge
too. Indeed, once an algorithm is designed, it is mandatory to test its performance.
A natural solution is to design benchmark graphs (see Sect. 4.4). Benchmark graphs
should offer an a priori known community structure. When an algorithm is reliable
and efficient, it has to perform well when applied to benchmark graphs. Another
important challenge is to design adapted tools for visualizing and representing how
community structure evolves over time (see Sect. 4.5).

4.1 Two-Stage Approaches

The basic idea of two-stage approaches is to detect temporal clusters at each
time step and then establish relationships between clusters for tracking community
evolution over time. Figure 6 illustrates the result of applying a two-stage approach
to a dynamic network across three time steps. In a first phase, clusters at each time
step are detected: at time t , there are two clusters, then there are three clusters at
time t C 1 and four clusters at time t C 2. In a second phase, the relationship
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between clusters at different time steps is established, which is shown by colors.
Through the above results, we learn how the community structure of this graph
evolves from the time step t to the time step t C 2. For the first phase, we apply a
graph clustering algorithm [36]. For the second phase, we can use a matching metric
(see Sect. 3.5). However, it may lead to noisy results where some nodes often change
their community memberships. Therefore, many advanced resolutions are proposed
to resolve this general matching problem.

Core-Based Methods

If a partition is significant, it will be recovered even if the structure of the graph is
modified, as long as the modification is not too extensive. Instead, if a partition is
not significant, we may observe that a minimal perturbation of the graph is enough
to disrupt its group memberships. Since most stochastic community detection are
searching for local optima due to computational costs, the detection results can be
different simply if the ordering of the nodes is modified, without any modification
of the topology. This is often referred as the consistency problem [53, 54, 81].
A significant cluster, that is, a significant group of nodes, is often defined as a
community core. We can reduce noisy results by matching community cores. This
is the main principle of core-based methods. The matching metric (see Sect. 3.5) is
often applied. Two temporal clusters are matched if their community cores share the
highest similarity value.

Hopcroft et al. have proposed the concept of natural communities, which are
significant clusters that have high stability against modification of graph structure.
Given a temporal graph, by applying 5% of perturbations, a set of modified graphs
are produced, each of which has 95% of core nodes. Each natural community is
identified by the partitions corresponding to these modified graphs, which has the
best match value with clusters in those partitions.

Rosvall et al. [78] used a bootstrap method [25] to detect significance of clusters.
The bootstrap method assesses the accuracy of an estimate by resampling from the
empirical distribution of observations. Each graph can be resampled by assigning
to each edge a weight taken from a Poisson distribution with mean equal to the
original edge weight. A graph clustering method is applied to the original graph and
the samples. For each community in the original graph’s partition, they define its
largest subset of nodes that are classified in the same community in at least 95% of
all bootstrap samples, as the significant cluster.

In some methods, core nodes are identified through their roles within their
communities. Given a community, there are core nodes and peripheral nodes.
Guimerá and Amaral [41] have classified community members into different roles
according to intra- and inter-module connection patterns. With respect to core node
identification, Wang et al. [92] defined core nodes, where each core node v satisfiesP

u2neighbours .kv � ku/ > 0. In [8], k-cores nodes [1] are detected with a threshold
k where k-core decomposition is used for filtering out peripheral nodes.
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Graph at time t

Graph at time t+1

Union graph

Community on the union graph
which contains the circle community
and the gray community

the circles become the gray community
and the squares become the white

Fig. 7 An example of a union graph which is constructed by jointing two graphs at time t and
t C 1. The figure is obtained from [70]

Although core-based approach can smooth variances caused by peripheral nodes,
its results still suffer from some limits such as the parameters used in matching
metrics. In additional, if we only track evolution of community cores, there is a risk
of missing important structural changes which are related to peripheral nodes.

Union-Graph-Based Methods

Another important early work [70] for detecting community evolution is related to
the union graph. Each union graph merges two graphs (union of their links) present
at contiguous time steps. Let G.t; t C 1/ denote the union graph resulting from the
union of two graphs at time t and tC1. We have Et;tC1 D Et[EtC1. Figure 7 gives
an example of a union graph. Any community present at t or t C 1 is contained in
exactly one community in the union graph. Thus, communities in the union graph
provide a natural connection between communities at t and tC1. If a community in
the joined graph contains a single community from t and a single community from
tC1, then they are matched. If the joined group contains more than one community
from both time steps, the communities are matched in decreasing order of their
relative node overlap (5). The technique is validated by applying it to two social
systems: a graph of phone calls between customers of a mobile phone company
over one year and a collaboration network between scientists spanning a period of
142 months.

The union graph smooths the changes between every pair of consecutive time
steps. This property can reduce fluctuations caused by noisy data. In addition, the
union graph allows us to directly determine the links between temporal clusters at
consecutive time steps. It simplifies the problem of tracking community evolution.

The main disadvantage of this technique is that the CPM algorithm used only
detects communities in certain contexts, that is, CPM algorithm fails to detect
community structure of networks with few cliques. In addition, some parameters
are used to determine how community changes due to the application of similarity
metric.



180 T. Aynaud et al.

Fig. 8 An example of dynamic networks with community instances (nodes) and final communities
(in grey). At each time step, we may match several community instances to the same temporal
community

Algorithm 4 Hierarchical edge betweenness clustering
Input: G D .V; E/

Output: A dendrogram
repeat

Compute edge betweenness for all edges
Remove edge with highest betweenness

until no more edges in graph
Return a dendrogram // The dendrogram is produced from a top down approach:
the network is split into different communities with successive removals of links.
The leaves of the dendrogram are individual nodes.

Survival-Graph-Based Methods

Given a dynamic graph, its community survival graph is constructed by representing
community instances as nodes which are linked via edges based on their similarity.
One can divide this community survival graph into final communities. Each final
community groups a set of temporal clusters and spans several time steps as shown
in Fig. 8.

The first approach associated with survival graph is proposed by Falkowski
et al. [30, 31]: first cluster each temporal graph to find community instances at
each time step, then construct a community survival graph, and finally cluster the
community survival graph to find final communities by using a hierarchical edge
betweenness clustering [36].

To construct a community survival graph, a time window is set to compare
the similarity between community instances and connect the similar community
instances with edges. In another words, this time window size is the largest time
distance between every pair of connected community instances in a community sur-
vival graph. The applied hierarchical edge betweenness clustering (see Algorithm 4)
contains an iteration, which eliminates edges to separate subgraphs. In Falkowski
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et al.’s method, a parameter k is applied to determine the number of iterations. The
connected subgraphs retained after k iterations correspond to the final communities.
A connected subgraph consists of similar community instances.

Chi et al. [17] have detected final communities through a soft clustering [2],
after detecting community instances [66, 82, 94] at each time step. At a time step
i , the graph interaction is denoted by Ai � V � V with li basis subgraphs Bi D
ŒBi

1; : : : ; Bi
li
�. Each basis subgraph describes interactions between nodes within a

community instance. Across a time window Œ1; : : : ; ��, graph interactions can be
denoted by a three-dimensional tensor: A D ŒA1; : : : ; A�� 2 Rn�n��. For the total
Nc D P�

iD1 li basis subgraphs, another three-dimensional tensor is defined: B D
ŒB1

1; : : : ; B�
l�

� 2 Rn�n�Nc .
Then, the final communities are obtained by minimizing the objective function:

D.A k BUVT /. The matrices U D Œukj �Nc �nc and V D Œvij ���nc are the solution
of the optimization problem. For each dynamic community j , ukj is a vector of
weights on kth basis subgraph. At each time step i , vij is a community intensity for
the j th final community.

In this method, the size of time windows and basis subgraphs are an issue. A
good size value of time windows allows us to group small community instances into
a final community, if these small community instances have high frequency grouped
together. The size of basis subgraphs is related to insignificant subgraphs (e.g., a
subgraph with only a couple of nodes), as insignificant subgraphs are removed for
the computation. The larger size threshold of basis subgraphs is, the less iterations
are used for computing U as less number of Nc. Therefore, the computation time
can be optimized by increasing the size threshold of basis subgraphs.

For the number of communities nc , they try different values to compare the
reconstruction error and then choose one that is reasonably small and, at the same
time, explains data reasonably well.

In [86], authors use a similar approach which tracks community evolution by
connecting community instances, but they use another notion of final community.
A quality function called node cost is defined to determine the community mem-
bership for each node over time. This function is the sum of two costs: the cost of
one node to keep its community membership and the cost of one node to change its
community membership. Therefore, final community detection is transformed into
the problem of optimizing this function. Optimizing this function is shown to be
an NP-complete problem. Another solution with an approximate factor is proposed
in [85]. In their proposed node cost function, the importance of different costs is
predefined. Giving a high importance to cost of a node, to keep its community
membership, makes node membership stable for a long time duration. Giving a
high importance to the cost of a node, to change its community member, makes
node membership to fit to current snapshot structure.

Survival-graph-based method gives results about how dynamic communities
evolve over time directly. It simplifies the problem of tracking community evolution.
Compared to other two-stage approaches, which track community evolution by
identifying observations at each time step, this technique is more practical. However,
some issues arise: How to choose the time window size? How to choose the number
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of clustering iterations in [31]? How to choose the size threshold of basis subgraphs
and the number of final communities in [17]? And how to choose the importance
value in [86]?

Conclusion

Methods presented above are two-stage-like approaches:

1. Clusters are detected at each time step independently of the results at any other
time step.

2. Relationships between clusters at different time steps are inferred successively.

Such natural process often produces significant variations between partitions that
are close in time, especially when the datasets are noisy. Since the first phase is
independent of the past history, smooth transitions are impossible. Such approach
may produce artifacts if the data are noisy and variations between partitions may
also be generated by the community detection algorithm itself. Such artifacts
yield to artificial community dynamics rather than the real graph evolution. For
each graph, let O.P / denote the partition detection time and O.M / represent the
computation time for the matching problem. The total time complexity of a two-
stage approach on a time window of length T is in O..P CM / T /.

4.2 Evolutionary Clustering

An evolutionary clustering approach follows a principle of detecting community
structure based on the current graph topology information at a given time t and
on the community structure at previous time steps. The quality function used for
dynamic community structure is ˛-cost (see Eq. (3)). By assuming that a good
community structure has a high ˛-cost value, many optimization methods are
proposed and are applied to real dynamic networks. For instance, Lin et al. [88, 89]
used a probabilistic model to capture community evolution by maximizing ˛-cost.
On one hand, proposed frameworks called community model usually search the
optimal community structure for modeling the sequence of graphs by encompassing
interactions of the whole graphs. On the other hand, incremental/online algorithms
only consider interaction changes such as link insertion or link deletion which also
make sense in detecting structural changes. In the following, we will review these
evolutionary clustering methods.

Community Model

Community evolution can be modeled by a sequence of graphs based on a
probabilistic model, which assumes that:
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1. The interactions of the graph at each time step follow a certain distribution.
2. The community structure follows a certain distribution that is determined by the

community structure at the previous time step.

The first attempt has been done by Lin et al. [88, 89] through ˛-cost function
optimization. Let Wt denote a graph structure at time t and Xt ƒt represent its
community structure. By defining Zt D Xtƒt .Xt /T , the authors have devised an
˛-cost (3):

cost D ˛ D.W t k Zt /C .1 � ˛/ D.Zt�1 k Zt / :

Consequently, they estimate Xt and ƒt for optimizing the cost. The problem of
community detection at each time step becomes a problem in terms of maximum
a posteriori (MAP) estimation. An EM algorithm for solving the MAP problem is
given in [88, 89] with a low complexity when the graph structure is sparse.

This technique enables to detect overlapping community structure and track
community evolution directly. So it is a good resolution for the problem of
community detection in dynamic graphs. However, determining a priori the value
of ˛ is a drawback.

Yang et al. [95] also used a dynamic stochastic block model (DSBM) for finding
communities and their evolutions in a dynamic social network. In their study,
they have applied a Bayesian treatment for parameter estimation that computes the
posterior distributions for all the unknown parameters.

Let Wt 2 R
n�n denote a graph structure at time t and Zt 2 R

n�nc is its
community structure. For each node i , it is assigned into community k with a
probability �k , such as ˘ D Œ�1; : : : ; �nc � 2 R

nc . For a pair of nodes i and
j whose community memberships are k and l , respectively, the link connecting
them is assumed to follow a Bernoulli distribution with parameter Pkl , such as
wt

ij � Beronulli.� j Pkl/, that is, Wt � Pr.Wt j P; Zt /, where P D ŒPkl �nc�nc .
For a community matrix Zt�1, a transition matrix B 2 R

n�n is assumed to model
Zt , such as Zt � Pr.Zt j Zt�1; B/. So we write the likelihood for the DSBM model
as follows:

Pr.Wt ; Zt j ˘; P; B/ :

With the Bayesian Model, a posteriori probability Pr.Zt jWt / is computed with an
inference algorithm.

There is no parameter in this technique. However, the authors only provide
performances of the applications to networks with nearly ten time steps and a few
hundred nodes. For large networks such as millions nodes and hundreds of time
steps, the performance of this technique is not clear.

The community model captures community evolution by modeling the sequence
of graphs. It performs well when applied to stable evolving graphs. However, it
suffers from scalability problems due to an expensive matrix computation and
storage cost.
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Incremental/Online Algorithms

The incremental spectral clustering [69] is one of the early incremental algorithms
that update matrices like the degree matrix or the Laplacian matrix according to
changes of graph interactions [90]. In traditional spectral clustering, community
detection is transformed into the eigenvalue problem of Lq D �Dq, where L is the
Laplacian matrix, q is the cluster indicator, � is the eigenvalues, and D is the degree
matrix. Using incremental computation yields to a lower computational cost than
the standard spectral clustering. Incremental computation only takes into account
changes; thus, the computation matrix is sparse. In addition, a tunable threshold 	

is used to balance the computational cost and the accuracy. One drawback is that
errors are accumulated after several steps, and when the dataset grows or changes
frequently, the associated cost becomes expensive.

Modularity optimization is the most popular method for community detection.
It is extended to detect community evolution, for example, the modularity-driven
clustering proposed by Gorke et al. [38]. Their basic idea is to detect community
structure by starting from a pre-clustering obtained from a standard modularity
optimization heuristic. Then, they proposed and discussed heuristics based on global
greedy algorithms or on local greedy algorithms. They pass a pre-clustering to the
global version to adapt it to the dynamic case (dGlobal). Similarly, the local version
remembers its old results: roughly speaking, the dynamic local version (dLocal)
starts by letting all free (elementary) nodes reconsider their cluster. Then it lets
all those (super-)nodes on higher levels reconsider their cluster, whose content has
changed due to lower-level revisions. Similarly, Dinh et al. [21] proposed another
method extended from community optimization.

The community detection based on node similarity such as DBSCAN [28] is also
extended for detecting dynamic community evolution [27]. DBSCAN considers a
community as a core node and a neighborhood. For each core node, its community
must consist of at least 
 nodes within a radius distance ". In IncrementalDB-
SCAN [27], each community updates its neighborhood if its community members
have changed their neighbors. Similarly, DENGRAPH [29] detects community
evolution according to the core nodes and their neighborhoods. Instead of a distance
radius ", a different distance function is proposed to compute core nodes and their
neighborhoods.

Incremental or online method can detect dynamic communities and save time by
avoiding computations on subgraphs where there is no change. However, all above
approaches need predefined parameters.

Conclusion

There exist many other evolutionary clustering approaches. For instance, informa-
tion theory has been used to detect community evolution in dynamic graphs. Sun
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et al. applied the MDL to find the minimum encoding cost to describe a time
sequence of graphs and their partitions into communities. The basic principle of
this method is to encode the graph topology into a compression information with
the minimum cost of the description. This method enables to provide meaningful
information on community evolutions. However, one drawback is the problem called
relevant variable, which is the variance between real data and data compression.
To what extent is information theory able to capture community structures? To our
knowledge, we are still far from a precise definition of community, while modularity
(defined by Eq. (2)) is the widest accepted quality function.

As opposed to two-stage approaches, evolutionary clustering does not encounter
the matching problem. However, most methods are using parameters. Furthermore,
we stress that evolutionary clustering results are generally too strongly correlated
with community history which may occult structural changes.

4.3 Coupling Graph Clustering

Coupling graph clustering approach is based on a coupling graph as shown in
Fig. 1. The underlying idea is once the coupling graph built (encompassing the
time dimension as edges) to use an efficient standard static community detection
heuristic. The first attempt is [47] where authors built a temporal graph and then
used the classical community detection algorithm Walktrap [74]. The community
evolution can be traced through group memberships over time.

Another method is proposed by Mucha et al. [63]. They detected dynamic
communities by optimizing a modified modularity, which is motivated by ˛-cost (3).
The modified modularity balances the contribution of community memberships to
each slice and the cost for changing community memberships. The major advantage
of this algorithm is to smooth community evolution. However, its results rely on the
parameter ˛ and the relative weight of coupling.

This idea of coupling graph clustering simplifies the problem of detecting
community evolution. However, it introduces the problem about how to construct
coupling graphs: how to add the weight on coupling edges? what is the length
of coupling windows (i.e., the longest time interval between nodes connected by
coupling edges)? For the length of coupling windows, we illustrate examples in
Fig. 9. This figure is taken from [63], where each snapshot graph is called a
slice. Two different lengths of coupling windows are given: (a) couplings between
neighboring slices such that the length is two time steps and (b) all-to-all inter-slice
couplings such that the length is the total time steps.
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Fig. 9 Schematic of a multislice (couplings) network. Four slices s D f1; 2; 3; 4g represented
by adjacencies Aijs encode intra-slice connections (solid). Inter-slice connections (dashed) are
encoded by Cjrs , specifying coupling of node j to itself between slices r and s. For clarity,
inter-slice couplings are shown for only two nodes and depict two different types of couplings: (a)
coupling between neighboring slices, appropriate for ordered slices, and (b) all-to-all inter-slice
coupling, appropriate for categorical slices. The figure is gained from [63]

4.4 Benchmarks

When designing a new algorithm, it is necessary to stress it through series of
simple benchmark graphs, artificial or from the real world, for which the community
structure is known. If the algorithm provides results agreeing with the ground truth,
we may consider that the algorithm is reliable and can be used in applications. In
this section, we firstly describe current benchmarks for testing dynamic community
detection algorithms and secondly review measures for comparing the similarity
between computed modular structure and a ground truth.

Computer-Generated Graphs

Computer-generated graphs try to build random graphs that have natural partitions.
The simplest model of this form is for the graph bisection problem. This is the
problem of partitioning the vertices of a graph into two equal-sized sets while
minimizing the number of edges bridging the sets. To create an instance of the
planted bisection problem, we first choose a partition of the vertices into equal-sized
sets V1 and V2. We then choose probabilities pin > pout and place edges between
vertices with the following probabilities: the expected number of edges crossing
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between V1 and V2 will be poutjV1j jV2j. If pin is sufficiently larger than pout, then
every other bisection will have more crossing edges. There have been many analyses
of the generalization of planted partition models to more than 2 partitions [18, 61].
The number of subgraphs is equal to the number of predefined communities, and
nodes within the same community are connected with a probability of pin and
connect to the rest with a probability of pout. In addition, each subgraph is modeled
by an Erdös–Rényi’s model, which assigns equal probability to all graph edges. The
model is motivated by the idea that vertices (or general items) belong to certain
categories and that vertices in the same categories are more likely to be connected.
Such models also arise in the analysis of clustering algorithms. However, it is not
clear that these models represent practice very well.

Lin et al. [88] have proposed a computer-generated benchmarks for testing
their evolutionary clustering framework called FacetNet. They use the model of
Newman [68] similar to the previous model as a basis (4 clusters of 32 nodes).
They generate different graphs for each time steps. In each time step, dynamic is
introduced as follows: from each community, they randomly select 3 members to
leave their original community and to join randomly the other three communities.
Edges are added randomly with a higher probability pin for within-community
edges and a lower probability pout for between-community edges. The average
degree for nodes is set to 16.

Another similar benchmark is proposed in [23]. To introduce change points, a
sequence of graphs are separated into segments. Each segment is a sequence of
graphs sharing the same community structure. The average degree of nodes and
the internal and external connection probability are fixed. The edge weights are
integers randomly chosen from 1 to 10 for intra-community edges and from 1 to 6
for inter-community edges.

All benchmarks for dynamic community detection extended from the planted
partition model, used by Newman et al. have two main drawbacks: (a) all nodes
have the same expected degree and (b) all communities have equal size. These
features are unrealistic, as complex networks are known to be characterized by
heterogeneous distributions of degree and community sizes.

Greene and Doyle [39] proposed a set of benchmarks based on Lancichinetti
and Fortunato’s technique [56]. Lancichinetti and Fortunato assumed that the
distributions of degree and community size are power laws, with exponents 	1 and
	2, respectively. Each node shares a fraction 1� � of its edges with the other nodes
of its community and a fraction � with the rest of the graph; � is a mixing parameter
in range of Œ0; 1�. Greene and Doyle contracted four different synthetic networks for
four different event types, covering 15; 000 nodes over 5 time steps. In each of the
four synthetic datasets, 20% of node memberships were randomly permuted at each
step to simulate the natural movement of users between communities over time.
Subsequently, community dynamic events were added as follows:

Intermittent communities: At each time step, 10% of communities are unobserved
from time t D 2 onwards.
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Fig. 10 The R-MAT model. The figure is gained from [14]

Expansion and contraction: At each time step, 40 randomly selected communities
expand or contract by 25% of their previous size.

Birth and death: At each time step, 40 additional communities are created by
removing nodes from other existing communities and randomly removing 40

existing communities.
Merging and splitting: At each time step, 40 temporal clusters of communities

split, together with 40 cases where two existing communities were merged.

Chen et al. [16] constructed benchmark graphs using GTgraph [6] based on
a recursive matrix graph model (R-MAT) [14]. The R-MAT model follows the
preferential attachment idea (growing model where new nodes prefer to connect
to existing nodes with higher degrees). In order to build a graph, the R-MAT
recursively subdivides the adjacency matrix into four equal-sized partitions and
assigns edges within these partitions with unequal probabilities:

1. Starting with an empty adjacency matrix, which represents a subgraph for edge
assignment.

2. Assign edges into the matrix with probabilities a; b; c; d , respectively (see
Fig. 10).

The chosen partition is again subdivided into four smaller partitions, and the above
procedure is repeated until the chosen partition is composed of a simple cell such as
a single node. In Chen et al.’s method, they define some nodes as graph-dependent
nodes. These graph-dependent nodes play the role of core nodes and are used to
identify communities. The community dynamics can be revealed by the community
member changes, where these communities are mapped through graph-dependent
nodes.
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The main drawback of above computation-generated benchmarks is that the
evolution of a dynamic network corresponds to a fixed probability. We may
expect that in real networks, communities may experience heterogeneous changes
such as bursty node insertion probability, node deletion probability, link insertion
probability, or link deletion probability.

Real Networks

Real networks are also used to show performances of algorithms, such as Karate,
Football, Dolphins, and Neural. When dealing with real data, the main issue is
generally the ground truth or a fine and precise expertise on the datasets. Real
networks are released by Newman and can be downloaded from http://www-
personal.umich.edu/�mejn/netdata/.

Mucha et al. [63] performed simultaneous community detection across multiple
resolutions (scales) in the well-known Zachary Karate Club network, which encoded
the friendships between 34 members of a 1970s university karate club [96]. Keeping
the same unweighted adjacency matrix across slices (each slice represents a graph
at a time step), the resolution associated to each slice is dictated by a specified
sequence of �� parameters, such as �� D f0:25; 0:5; 0:75; : : : ; 4g. In other words,
given a sequence of slices Aij� D fAij .1/; : : : ; Aij .�/g, these slices share the
same unweighted adjacency matrix such as 8 tr ; ts ; Aij .tr / D Aij .ts/. Figure 11
depicts the community assignments obtained for coupling strengths ! D f0; 0:1; 1g
between each neighboring pair of the 16 ordered slices. These results simultaneously
probe all scales, including the partition of the Karate Club into four communities
at the default resolution of modularity. Additionally, nodes that have an especially
strong tendency to break off from larger communities are identified.

The previous definition for building benchmark graphs does not change in-
teractions between nodes. Community structure changes observed are caused by
tuning the resolution (scale) of the networks. Therefore, we cannot use it to test the
reliability of community dynamic detecting algorithms. Its other drawback is that
the algorithm should use the same resolution parameter; otherwise, it fails to test
the performance of the algorithm in smoothing community evolution.

Comparing Partitions

To measure the similarity between the built-in modular structure of a benchmark and
the one delivered by an algorithm, several similarity measurements are possible. The
most used similarity measurement is the normalized mutual information, which is
based on information theory [20]. The idea is that, if two community structures are
similar to each other, only little information is used to infer one community structure
by given the other one.

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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Fig. 11 Multislice community detection of the Zachary Karate Club network [96] across multiple
resolutions. Colors depict community assignments of the 34 nodes in each of the 16 slices (with
resolution parameters �� D f0:25; 0:5; : : : ; 4g), for ! D 0 (top), ! D 0:1 (middle), and ! D 1

(bottom). Dashed lines bound the communities obtained using Newman–Girvan modularity [68].
The figure is gained from [63]
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The normalized mutual information is based on the mutual information. The
mutual information for two random variables X; Y is denoted by I.X; Y / and is
defined as

I.X; Y / D
X

x

X

y

P.x; y/ log
P.x; y/

P.x/P.y/

where P.x/ indicates the probability that X D x (similarly for P.y/) and P.x; y/

is the joint probability of X and Y , that is, P.x; y/ D P.X D x; Y D y/. Actually,
I.X; Y / D H.X/�H.X jY /, where H.X/ is the Shannon entropy of X and H.X jY /

is the entropy of X conditional on Y .
Danon et al. [20] defined the normalized mutual information (NMI) for com-

paring the similarity between two partitions: Px and Py . Let nx and ny denote the
number of communities in the partition Px and Py , respectively. The normalized
mutual information is defined as

NMI D 2I.Px;Py/

H.Px/C H.Py/
: (7)

Let

I.Px;Py/ D
nxX

iD1

nyX

j D1

P.Ci ; C 0
j / log

P.Ci ; C 0
j /

P.Ci /P.C 0
j /

H.Px/ D �
nxX

iD1

P.Ci / log P.Ci /

where nx and ny denote the number of communities in two partitions Px and Py ,

respectively, P.Ci / D jCi j
n

and P.Ci ; C 0
j / D jCi \C0

j j
n

.
Danon et al.’s normalized mutual information can be directly written in

NMI D
�2

P P
Nij log Nij N

Ni�N�j

Pnx

iD1 Ni� log Ni�

N
CPny

j D1 N�j log N�j

N

; (8)

where Nij represents the size of overlaps in communities i and community j , Ni� is
the sum of i th row in matrix Nij , and N�j is the sum of j th column. The normalized
mutual information is equal to 1 if the partitions are identical, whereas it has an
expected value of 0 if the partitions are independent.

This normalized mutual information is extended for comparing covers in [55].
The normalized mutual information for covers Sx and Sy is denoted by N.Sx jSy/

and is defined as

N.Sx jSy/ D 1 � 1

2

�
H.Sx jSy/norm C H.Sy jSx/norm

	
(9)
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where the normalized conditional entropy of H.SxjSy/norm (similarly to H.SyjSx/norm)
of the cover Sx with respect to Sy is defined as

H.Sx jSy/norm D 1

nx

nxX

iD1

H.Si jSy/

H.Si /
; where Si 2 Sx ; nx D jSx j

The conditional entropy of Si with respect to all the components of Sy is defined by

H.Si jSy/ D min
S 0

j 2Sy

H.Si jS 0
j / (10)

where H.Si jS 0
j / denotes the conditional entropy of a community Si by given a

community S 0
j .

As Eq. (10) only counts the minimum H.Si jS 0
j /, this extended normalized mutual

information suffers from the following problem: some communities sharing few
common nodes may not be taken into account. Moreover, this normalized mutual
information is not ideal: given two covers Sx;Sy , if only one community of Sx is
divided into several small ones in Sy , while all the other communities stay identical,
the normalized mutual information is low because some communities have very low
conditional entropy.

The main drawback of the above similarity measurements is that they are
proposed for static graphs, and they do not consider the community dynamics.
Therefore, we propose to measure the similarity between the found community
structure and the ground truth of dynamic graphs by counting the similarity between
every pair of communities’ evolution paths. We can write NMI (7) by setting

P.Ci / D
P�

tD1 jCi.t/j
P�

tD1 n.t/

P.Ci ; Cj / D
P�

tD1 jCi.t/ \ Cj .t/j
P�

tD1 n.t/

where n.t/ represents the nodes assigned to the partition in time t and Ci.t/

represents the observation of community Ci at time t (similarly for Cj .t/).

4.5 Visualizing Dynamics in Communities

In early work, several tools such as SoNIA [62] and TeCFlow visualize dynamic
networks by creating graph movies, where nodes move as a function of changes in
relations. However, these tools fail to indicate a changing behavior of community
memberships and community dynamics. In [63], matrix is used (Similar as Fig. 11),
whose element represents the community membership of a node at a time step. Each
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Fig. 12 Example of mapping between communities. In the bottom networks, the darker colors
represent nodes that are clustered together in at least 95% of the 1; 000 bootstrap networks. The
alluvial diagram highlights and summarizes the structural changes between the time 1 and time 2
significance clusters. The height of each block represents the volume of flow through the cluster.
The clusters are ordered from bottom to top by their size, with mutually nonsignificant clusters
placed together and separated by a third of the standard spacing. The orange module merges with
the red module, but the nodes are not clustered together in 95% of the bootstrap networks. The
blue module splits, but the significant nodes in the blue and purple modules are clustered together
in more than 5% of the bootstrap networks. The figure is obtained from [78]

node occupies a column. Colors are used to depict communities. We can observe
how a node changes its community membership through the color change in the
corresponding column. The drawback is that we do not directly observe how one
community emerges, merges, splits, or disappears.

An example of a graph with dynamic communities is depicted in Fig. 12. The
evolution path of a dynamic community is depicted by a diagram occupying a
column. Each diagram represents a community as a block and shows relationships
between preceding and succeeding clusters through horizontally connected stream
fields. This result is obtained by the algorithm of bootstrap [25] in [78]. It enables
to show community dynamics. For example, we observe the orange module merges
with the red module in Fig. 12. In addition, in this case, we are also able to observe
the significance of clusters, which is shown by dark color.

Another visualization tool illustrates community evolution through lineage
diagrams [91]. Each lineage represents a separate evolutionary path and occupies
a column. Each cluster is shown by a circle whose size is proportional to its number
of nodes. A lineage tie is added between two clusters if they share a successor
or predecessor relationship. Therefore, if a circle has a link to another column, it
indicates a community change. For example, in Fig. 13, we observe a violet cluster
having a link with blue color which connects it and a blue cluster. The link color
is given by the predecessor if there exists a predecessor relationship; otherwise, the
color is given by the successor. Therefore, we easily identify community dynamics.
In this case, we say that the blue cluster is a split of the violet community. Moreover,
the blue cluster has a link with green color which links it to a green cluster. We say
that the green community merges into the blue community.

Although the layout displaying the community evolution in a movie seems
suitable to analyze the dynamic activities of networks and communities, it is less
suitable to analyze community dynamics. Displaying the community dynamics is
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Fig. 13 Example of lineage diagrams. Between t D 2 and t D 3, an orange cluster is split from
the violet community. At t D 3, a new green cluster is emerged. Between t D 3 and t D 4, the
orange cluster is merged into the violet community. Between t D 4 and t D 5, a blue cluster is
split from the violet cluster and it is merged with the green community simultaneously

very meaningful to understand the “history” of community structure in networks.
There are several visualization tools which provide an overview of community
dynamics. Their main drawback is that the roles and dynamic behaviors of nodes
are unobservable for analysis. For example, how overlapping nodes evolve is still a
problem in the visualization. Therefore, many effects need to make particularly in
visualizing roles and behaviors of nodes in dynamic aspect.

5 Conclusion

In this chapter, we have reviewed current research about community detection in
dynamic networks. From our exposition, we have seen a great number of clustering
techniques. Two-stage algorithms are nature and simple, but the matching problem
is hard to resolve. The results also suffer from temporal variance and/or algorithm-
generated influence. Techniques based on the principle of evolutionary clustering
also have many limits such as the tunable parameter value for community model.
However, a method without faults will never be found. Thus, it is better to find a
general method that gives good results for network analysis. Moreover, a number of
important open issues are left in current research, such as benchmark graphs, quality
function, and overlapping community evolution.

Various algorithms have been proposed and developed. Which algorithm has
the best performance? To resolve this problem, we need reliable benchmarks to
test algorithms. We have reviewed benchmarks [16, 23, 39]. The existing computer-
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generated benchmarks correspond to a fixed probability. Oppositely, communities in
real networks may evolve with heterogeneous changes such as bursty node insertion
probability, node deletion probability, link insertion probability, or link deletion
probability. Moreover, to oppose the current real network benchmarks which are
static networks, we lack real network benchmarks whose interactions change over
time. The benchmark graph is a crucial issue in the area of community detection in
dynamic networks.

After applying algorithms to benchmarks, we need to compare their perfor-
mances to find the best one. At this moment, we cannot determine since no quality
function is accepted to measure the goodness of the found dynamic communities.
The ˛-cost function (3) depends on a tunable parameter with no a priori knowledge.
There is a quality function without any parameter. It is proposed in [13] by
transforming the problem of community detection into a problem of message
decoding within information theory. The problem is whether information theory
can be used to define communities. To our knowledge, we are still far from a precise
definition of communities, while modularity (2) is the widely accepted quality
function. Nonetheless, information theory study represents an important research
line for the future of the field: (a) respect community history to better understand
communities and (b) capture significant changes which represent crucial changes in
community structure of networks.

Most algorithms in the literature deal with communities without overlapping
nodes. We know that real networks may be overlapped like interdisciplinary which
combines two or more academic fields in science, multiple citizenship which allows
a person to be a citizen of more than one state, and proteins playing the intermediate
role between several functions in biology networks. The frameworks [16] are
proposed to trace overlapping community evolution. However, it is under one
assumption that communities are clique-like objects, which is only suitable to
detect communities in some specific networks. To detect overlapping communities
in different types of networks, we need another resolution which can capture the
general characteristics of overlapping nodes.

Finally, the main motivation encouraging us for community detection is to mine
the relationship between the algorithmic communities with the reality. Why do
communities split, or merge, or disappear? What are the effects of overlapping
nodes? To answer these questions, we study features behind graph evolution and
hope to learn more information.
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