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1 Introduction

A broad range of systems are made of elements in interaction and can be represented
as networks. Important examples include social networks, the Internet, airline
routes, and a wide range of biological networks. The study of networks has emerged
in the last decade as one of the fundamental building blocks in the wider study
of complex systems [8, 15, 39]. Complex network theory emphasizes that the
interactions between the individual components of the system are primordial to
understand global emergent behavior and give the possibility to analyze systems
of a very different nature within a single framework. Despite the fact that nodes
and links have a different nature and are driven by different mechanisms for,
e.g., the Web and food webs, the identification of similar structures in various
complex systems suggests the existence of generic organization principles. A good
example is the omnipresent multi-scale modular organization of complex networks,
namely, the fact that they are made of modules, also called communities [62].
The precise mathematical definition of what communities are is still the subject
of active research, but most definitions agree on the fact that modules, also called
communities, are defined as subnetworks that are locally dense even though the
network as a whole is sparse [20, 49]. In many complex systems it seems that
modularity does not exist only at a single organizational scale but rather that each
module can be further partitioned into a set of sub-modules and within each sub-
module there may be sub-sub-modules, etc. In other words, many systems have
the fractal property of multi-scale modularity. The detection of such community
structure can be of importance for the understanding of the interplay between the
structural, dynamical, and functional features of the network. This identification
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also has the advantage of providing a coarse-grained representation of the system,
thereby allowing to sketch its organization and to identify sets of nodes that are
likely to have hidden functions or properties in common. The main purpose of this
chapter is to present methods uncovering the multi-scale organization of complex
networks. In particular, we will emphasize methods finding modules based on the
exploration of the network by a random walker at different time scales. The diffusive
process allows for multistep transitions exploring further afield the structure of the
graph, which results in the detection of community structure across scales, from
finer to coarser. Time thus acts as a resolution parameter, allowing to zoom in
and out to uncover the multi-scale structure of the system. As we will argue, this
dynamic approach has the further advantages of taking into account the constraints
imposed by the network structure on flows and of providing a unifying framework
for a broad range of community detection methods.

2 Communities: Why Communities?

For many years, researchers, intrigued by the apparent modularity of many social,
technological, and biological systems, have searched for mechanisms driving the
evolution of systems towards a modular architecture [38]. One of the earliest and
most influential ideas was formulated by Simon [62, 63] who argued that a nearly
decomposable system, namely, a system of sparsely interconnected modules, allows
faster adaptation of the system in response to changing external conditions. Modular
systems can evolve by evolution in one module at a time or by duplication and
mutation of modules. Well-adapted modules thus represent stable intermediate
states whose stability is not jeopardized by evolution in other modules. This
robustness represents a major advantage for any system evolving under fluctuating
selection criteria, and this may explain the general prevalence of modular architec-
tures across a very wide range of systems. This idea that a hierarchically modular
design will be more rapidly and robustly assembled is illustrated by Simon [62] in
a parable about two watchmakers, called Hora and Tempus:

The watches the men made consisted of about 1,000 parts each. Tempus had so constructed
his that if he had one partly assembled and had to put it down to answer the phone say
it immediately fell to pieces and had to be reassembled from the elements. The better the
customers liked his watches, the more they phoned him, the more difficult it became for
him to find enough uninterrupted time to finish a watch.

The watches that Hora made were no less complex than those of Tempus. But he had
designed them so that he could put together subassemblies of about ten elements each. Ten
of these subassemblies, again, could be put together into a larger subassembly; and a system
of ten of the latter subassemblies constituted the whole watch. Hence, when Hora had to put
down a partly assembled watch in order to answer the phone, he lost only a small part of his
work, and he assembled his watches in only a fraction of the man-hours it took Tempus.

This idea has since been explored further. For instance, in [25], it has been argued
that modular networks are optimal for performing tasks in a changing environment.
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In situations where different tasks share basic sub-functions, evolutionary pressure
produces networks where modules specialize in these sub-functions and where each
of the tasks is obtained by a rapid recombination of these building functions. Other
types of argument have also been put forward, including:

• Modular network topology is associated with a rich nonlinear dynamical behavior.
Modular networks tend to produce time-scale separation, i.e., fast intra-modular
processes and slow inter-modular processes [3, 45, 46], which helps at
preserving coexistence and diversity in the system [27] and at finding a bal-
ance between segregated and integrated activity [47, 59]. The high dynamical
complexity [64] leads to complex dynamical states such as transient chimera
states [1, 60] where synchronization and desynchronization coexist across the
network. Hierarchical modularity also enhances dynamical reconnectability [51],
as marginally stable networks can be combined or divided while preserving
stability.

• Another plausible mechanism for the formation of modules is coevolution, as
the network structure and function coevolve [22]. A broad range of models
with adaptive rewiring typically incorporate a reinforcement of links between
synchronized units and a pruning of links between asynchronized ones. This
feedback between structure and dynamics, similar to synaptic plasticity in
neuronal dynamics, naturally drives the emergence of inhomogeneities and
modules in networks [31].

• Modular networks have the property of small-worldness which is advantageous
in a broad range of systems by combining high clustering and global con-
nectivity [70]. For instance, in social systems, small-worldness balances the
relative benefits of social cohesion and brokerage [30]. In neuroscience, the high
clustering of connections favors locally segregated processing (with low wiring
cost) of specialized functions, while the short path length supports globally
integrated processing of more generic functions [65].

3 Combinatorial Approaches to Community Detection

3.1 Community Detection

Community detection aims at uncovering the modular organization of large-scale
networks in an automatic fashion [20, 35, 49]. Most community detection methods
find a partition of the nodes into communities, where most of the links are
concentrated within the communities. Each node is assigned to one and only one
community, i.e., partitions are not compatible with overlapping communities [2,16,
44]. At the heart of a partitioning method, there is a mathematical definition for the
quality of any partition. Once a quality function has been defined, different types
of heuristics can be used in order to find, approximatively, its optimal partition, i.e.,
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to find the partition having the highest value of the quality function. In a majority
of cases, this quality function is based on the number of links within and/or across
the communities, i.e., this is a combinatorial approach where quality is measured by
counting certain motifs in the graph.

Modularity and Its Limitations

The most popular quality function for community detection is Newman–Girvan
modularity, which we will describe in detail in this section. In the following, we
focus on unweighted networks for the sake of clarity, but the results are directly
applicable to weighted networks. Let A be the adjacency matrix of the network,
where Aij determines the presence of a link going from j to i . The in-degree and
out-degree of node i are defined as kin

i � P
j Aij and kout

i � P
j Aj i , respectively;

L � P
i;j Aij is the total number of links in the network. If the network is

undirected, the adjacency matrix is symmetric Aij D Aj i , kin
i D kout

i D ki , and
the number of undirected links m D L=2.

Modularity is a function of the adjacency matrix A and of the partition P of the
nodes into communities. It measures if links are more abundant within communities
than would be expected on the basis of chance

Q D (fraction of links within communities) � (expected fraction of such links)
(1)

and reads

Q D 1

L

X

C 2P

X

i;j 2C

�

Aij � Pij

�

(2)

where i; j 2 C is a summation over pairs of nodes i and j belonging to the
same community C of P and therefore counts intra-community links. The null
hypothesis is an extra ingredient in the definition and is incorporated in the matrix
Pij . Pij is the expected number of links between nodes i and j over an ensemble of
random networks with certain constraints. These constraints correspond to known
information about the network organization, i.e., its total number of links and nodes,
which has to be taken into account when assessing the relevance of an observed
topological feature.

Let us first consider undirected networks. Two standard choices of null model are

Pij D hki2=2m; then Q � Qunif (3)

where hki D 2m=N is the average degree and the only constraint is thus the total
number of links in the network, and

Pij D ki kj =2m; then Q � Qconf. (4)
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where randomized networks now preserve the degree of each node. The latter null
model is usually preferred because it takes into account the degree heterogeneity of
the network [42]. More complicated null models can in principle be constructed in
order to preserve other properties of the network under consideration [5, 43]. For
instance, in the case of directed networks, it is common to use the null model

Pij D kin
i kout

j =L; then Q � Qdir. (5)

preserving the in- and out-degrees of each node.
In the case of undirected networks, again, it is interesting to note that Qunif and

Qconf are naturally related to the combinatorial Laplacian L
.C /
ij D Aij � ki ıij and

the (normalized) Laplacian Lij D Aij =kj � ıij , respectively,1 and, more generally,
to the dynamics induced by these operators, as we will discuss more in detail in
Sect. 4. For Qconf, this relation is particularly clear after expressing modularity in
terms of the (right) eigenvectors v˛ of Lij , i.e., v˛ satisfy

P
j Lij v˛;j D �˛v˛;i .

Without loss of generality, we assume that �1 > �2 � : : : � �˛ � : : : � �N . The
dominant eigenvector v1 of eigenvalue �1 D 0 is given by v1Ii D ki =2m and is
unique if the network is connected. By using a spectral decomposition of Lij , one
finds [13]

Qconf D
NX

˛D2

�˛ C 1

2m

X

C

X

i;j 2C

v˛Ii v˛Ij (6)

where the contribution of the dominant eigenvector v1 and the null model have
cancelled each other out.

Modularity has become an essential element of a large number of clustering
methods for large-scale networks. These methods aim at optimizing the modularity
of a graph, i.e., finding the partition having the maximal value of Q. An exhaustive
optimization of Q is impossible because of the explosion in the number of ways to
partition a graph, when its size increases. It has been shown that the optimization of
modularity is an NP-complete problem [9]. For this reason, several heuristics have
been proposed to find high-quality partitions [7, 11, 20, 42, 48]. The optimization
of modularity has the advantage of being performed without a priori specifying
the number of modules nor their size. This procedure has been shown to produce
useful and relevant partitions in a number of systems [41]. Unfortunately, it has also
been shown that modularity suffers from several limitations [19,23], partly because
modularity optimization produces one single partition, which is not satisfactory
when dealing with multi-scale systems. Related to this issue, there is the so-called
resolution limit of modularity [19], namely, the fact that modularity is blind to mod-
ules smaller than a certain scale. This point originates from the bias of modularity

1Strictly speaking, the normalized Laplacian of a network is L
0

ij D Aij =.k
1=2
i k

1=2
j / � ıij , but L

and L
0

are equivalent by similarity as L
0

ij D k
�1=2
i Lij k

1=2
j .
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towards modules having a certain scale which might not be compatible with the
system architecture [66]. This incompatibility also makes modularity inefficient
in practical contexts as it may lead to a high degeneracy of its landscape [21],
i.e., the existence of several distinct partitions having a modularity close to the
optimum, which implies that approximate solutions of the optimization problem
are very dissimilar and that a partition derived from modularity optimization has to
be considered with caution.

Multi-scale Methods

Different methods have been proposed to go beyond modularity optimization. A first
set of methods looks for local maxima of the modularity landscape in order to
uncover partitions at different scales [56]. A good example is the so-called Louvain
method, which is a greedy method taking advantage of the hierarchical organization
of complex networks in order to facilitate the optimization of modularity [7].
This heuristic performs the optimization in a multi-scale way: by comparing the
communities first of adjacent nodes, then of adjacent groups of nodes found in the
first round, etc. It has been shown in several examples that modularity estimated
by this method is close to the optimal value obtained with slower methods but
also that intermediate partitions are meaningful and correspond to communities at
intermediate resolutions [37]. This approach has the advantage of being fast, but it
lacks theoretical foundations and is not able to uncover coarser partitions than those
obtained by modularity optimization. Moreover, it may produce hierarchies even
when the system is single scale or, worse, completely random [23] (see [37] for a
discussion of how to deal with this issue).

Another class of methods is based on multi-scale quality functions. These quality
functions incorporate a resolution parameter allowing to tune the characteristic
size of the modules in the optimal partition and aim at uncovering modules
at the true scale of organization of a network, i.e., not at a scale imposed by
modularity optimization. The two most popular multi-scale quality functions are
ad hoc, parametric generalizations of modularity. A first quantity is the parametric
modularity introduced by Reichardt and Bornholdt [50]:

Q� D 1

2m

X

C 2P

X

i;j 2C

�

Aij � �Pij

�

; (7)

which is usually defined for the configuration null model Pij D ki kj =2m and
mainly consists in changing the effective size of the system meff D m=� . The
optimization of Q� leads to larger and larger communities in the optimal partition
when � is decreased. This approach makes use of the size dependence of modularity:
because of the factor 1=2m in the null model, modularity depends on the total size
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of the network and not only on its local properties.2 Decreasing meff (increasing � )
increases the expected number of links �Pij between i and j , which makes it
less advantageous to assign i and j to the same community (because Aij � �Pij

decreases).
An alternative approach proposed by Arenas et al. [4] keeps modularity un-

changed but modifies the network by adding self-loops to the original network. This
approach therefore consists in optimizing

Qr D Q.Aij C rIij /: (8)

As expected, increasing r has a tendency to decrease the size of the communities
and the optimal partition of Q1 is made of single nodes. Even if increasing � and r

has, qualitatively, the same effect on the characteristic size of the communities, one
should keep in mind that Q� and Qr are in general optimized by different partitions,
except if the network is regular and the resolution parameters verify � D 1 C r=hki.
It is also interesting to note that the quality function Eq. (8) was first proposed
in order to preserve the eigenvectors of the adjacency matrix, as the eigenvectors
of Aij C rIij and Aij are obviously the same. From a partitioning viewpoint,
however, the eigenvectors of Aij do not matter as much as the eigenvectors of

the combinatorial Laplacian L
.C /
ij [18] and the normalized Laplacian Lij [61].

Moreover, modularity is related to the eigenvectors of the Laplacian and not of
the adjacency matrix; see Eq. (6). These observations suggest to adapt the unfitting
quality function Eq. (8) and to optimize the modularity of a modified adjacency
matrix preserving the eigenvectors of Lij . This can readily be done by adding
degree-dependent self-loops to the nodes

A
0

ij D Aij C r
ki

hkiıij ; (9)

and by optimizing the quality function

Q
0

r � Q.Aij C r
ki

hkiıij /: (10)

This quality function is equivalent, up to a linear transformation, to Q� for any
network, i.e., not only for regular networks, with � D 1 C r=hki, thereby providing
two alternative interpretations to resolution parameters.

Before closing this section, we should emphasize that many other types of
methods have also been proposed to detect the multi-scale modular organization

2In a nutshell, this size dependence originates from a choice of null model where each pair of nodes
i and j can be connected, given a certain number of available links m in the system, whatever the
distance between i and j in the network. Local null models where pairs of nodes are randomly
connected only within a finite radius of interaction are expected to hinder this effect.
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of networks, e.g., the hierarchical extension of the Map formalism [55] whose
single-scale version is described below, local algorithms [34], or the modeling of
the system by hierarchical random graphs [10].

4 Communities: Dynamics and Function

4.1 Linear Dynamics

The behavior of complex systems is determined not only by the topological
organization of their interconnections but also by the dynamical processes taking
place among their constituents [6]. A faithful modeling of the dynamics is essential
because different dynamical processes may be affected very differently by network
topology. A full characterization of such systems thus requires a formalization
that encompasses both aspects simultaneously, rather than relying only on the
topological adjacency matrix [32]. In the simple case of linear dynamics alone,
a broad range of qualitatively different processes can be defined on the same
graph, e.g., with the same adjacency matrix Aij . Let us consider the class of linear
processes defined by the equation

xi ItC� D
X

j

Bij xj It (11)

where the evolution of a quantity xi , associated to node i , is driven by Bij , a matrix
somehow related to the adjacency matrix Aij .

In the subclass of random walk processes alone, modeling the diffusion of some
quantity or information between nodes, Eq. (11) takes the form

pi ItC� D
X

j

Tij pj It (12)

where pj It is the probability to observe a walker on node i at time t and where T is
the transition matrix whose entry Tij represents the probability to jump from j to i

in a time interval of duration � . Tij is a nonnegative matrix verifying the conditionP
i Tij D 1 to ensure the conservation of probability. Except for those constraints,

it is arbitrarily defined on a given graph. Important cases include:

• Discrete-time, unbiased random walk, where

Tij D Aij =kout
j (13)

• Biased random walks, where

T
.˛/
ij D ˛i Aij

P
k ˛kAkj

; (14)
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and where ˛ is an attribute biasing the motion of random walkers towards
certain nodes.

• Continuous-time random walks, where walkers perform their jumps asyn-
chronously. In the case of exponentially distributed waiting times between jumps,
the transition matrix is

Tij D �
e��L

�
ij

(15)

and relation (12) can be seen as the formal solution of the rate equation

Ppi D
X

j

 
Aij

kout
j

� ıij

!

pj � �
X

j

Lij pj : (16)

A Taylor expansion of (15) in terms of � clearly shows that the transition
matrix accounts for paths of any length on the graph, i.e., each path of length
k contributes proportionally to the probability for a walker to perform k jumps
in a time interval � .

It is interesting to note that to each random walk process corresponds a consensus
process, in which nodes imitate their neighbors such as to reach a coordinated
behavior. In its simplest form, consensus is implemented by the so-called agreement
algorithm [67]. Each node i is endowed with a scalar value xi which evolves as

xi ItC� D 1

kin
i

X

j

Aij xj It : (17)

The matrix driving the dynamics now verifies the constraint 1

kin
i

P
j Aij D 1, i.e.,

the value on a node is updated by computing a weighted average of the values
on its neighbors. Similarly to the case of random walks, the process (17) can be
generalized either by introducing a bias in the weighted average or by introducing a
rate at which nodes update their state.

4.2 Flow-Based Approaches

The multi-resolution quality functions defined in Sect. 3 have been successfully
tested on multi-scale benchmark and empirical networks [17,50,52]. They have the
further advantage of being mathematically very similar to modularity and of being
optimized by modularity optimization algorithms with minimum code development.
Unfortunately, the introduction of a resolution parameter, � or r , feels like a trick
and lacks theoretical ground. In order to define a resolution parameter in a more
satisfying way and, as we will see, to provide a more solid foundation to Q� and
Q

0

r , we look at communities from a different angle; instead from a combinatorial
point of view, where intra-community links are counted as in (2), we investigate
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from a dynamical point of view accounting for the interplay between structure and
dynamics. In the following, we describe two such quality functions and emphasize
how their dynamical nature helps at clarifying the concept of resolution parameter
and at solving some of the issues of the aforementioned combinatorial quality
functions. In each case, the starting point is the following: a flow taking place on
a network is expected to be trapped for long times in good communities before
being able to escape [13, 53, 68]. This argument suggests to measure the quality of
a partition in terms of the persistence of flows of random walkers on the network.

From now on, we consider a random walk process at equilibrium. By doing so,
we assume that the process is ergodic, i.e., any initial configuration asymptotically
reaches the unique stationary solution. If this is not the case, standard tricks, e.g.,
teleportation, can be introduced to make the dynamics ergodic [33].

Stability

A first quality function, called stability [13], consists in estimating the probability
that a random walker stays in a community during a certain time interval

R.�/ D (probability for a random walker to be in the

same community initially and at time �)

� (probability for two independent random

walkers to be in the same community) (18)

when the system is at equilibrium. To clarify this concept, let us focus on the
continuous-time random walk Eq. (15) on an undirected network.3 By definition,
the corresponding stability of a partition is

R.�/ D
X

C

X

i;j 2C

�
�
e��L

�
ij

�j � �i �j

�

; (19)

where the probability to find a walker on node i at equilibrium is �i D ki =2m

because of the undirectedness of the links. This expression clearly shows that
stability depends on time. The quality of a partition is thus measured differently
at different time scales and is, in general, maximized by different partitions when
time is tuned, thereby leading to a sequence of optimal partitions.

By looking at limiting values of � , one can show that time acts as a resolution
parameter [13,28]. As time grows, the characteristic size of the communities is thus
adjusted to reveal the possible multi-scale organization of the system. In the limit
� ! 0, keeping linear terms in t in the expansion of R.�/ leads to

R.�/ � .1 � �/ R.0/ C � Qconf � Q.t/; (20)

3Ergodicity is ensured if the underlying network is non-bipartite and connected.
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which is equivalent up to a linear transformation to Q� and Q
0

r when Pij D
ki kj =2m (with � D 1=� , � D hki=.r C hki/). The latter multi-resolution quality
functions can therefore be seen as a simple linear approximation of R.�/, which
provides a physical interpretation to the resolution parameter r and � , i.e., the
inverse of the time used to explore the network. It is also interesting to note that
the configuration null model naturally emerges from the definition of stability and
from the dynamics (15). Interestingly, other null models, including the uniform null
model, are associated to other random walk processes [28]. We should also stress
that this connection with modularity only exists for undirected networks and that
stability is radically different from modularity when the network is directed. This
difference stems from the fact that detailed balance is not verified at equilibrium for
directed networks. In the limit � ! 1, making use of the spectral decomposition
of L, stability simplifies as

R.�/ � 1

2m
e��2

X

C

X

i;j 2C

v2Iiv2Ij (21)

where it is assumed that the second dominant eigenvalue �2 of L is not degenerate
and v2 is its corresponding (right) eigenvector. R.�/ is therefore maximized
by a partition into two communities in accordance with the normalized Fiedler
eigenvector [61].

The Map Equation

An alternative way to measure the trapping of walkers in communities is to adopt
a coding perspective and to search for a compact description of trajectories on a
network in terms of its communities. To do so, the Map equation method [53, 54]
relies on a compression of the description length of a random walk inside and
between communities. The underlying principle is that for a strongly modular
network, the code for the transitions of the random walker can be efficiently
compressed by capitalizing on the presence of the community structure. In this
formalism, the movement of the walker is described in terms of two features: first,
within each community the movement is encoded assigning a unique code word for
each node and a particular exit code word for the community. These are stored in an
index codebook that is specific to that community. Second, there is intercommunity
codebook with unique code words that describe the movements between different
communities. The argument is that a walker will rarely leave a good community
and a strong community structure leads to a reduction of the code length since short
code words can be reused within each community codebook.

Let us focus again on a random walk process in equilibrium, and consider a
partition of the network into communities. The probability of leaving a particular
community C at equilibrium is denoted by qC Õ D P

i2C

P
j …C Tj i�i , with �i D

ki =2m if the graph is undirected. The Map equation for this partition is
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L.M/ D qÕH.Q/ C
X

C

pC
˚H.CC /; (22)

where H is the Shannon entropy. The first term of this equation is the weighted
entropy associated with the intercommunity movement of the random walker,
where the weighting factor qÕ D P

C qC Õ is the overall probability of leaving
a community. For the Map coding scheme H.Q/ is the minimal average per-step
code length to describe the transition of the walker between different communities

H.Q/ D �
X

C

qC Õ
qÕ

log2

�
qC Õ
qÕ

�

: (23)

In the second term, each term pC
˚H.CC / is the weighted average per-step code

length needed to describe the movement of the random walker within (and leaving)
community C . The entropy H.CC / is given analogously by

H.CC / D �qC Õ

pC
˚

log2

 
qC Õ

pC
˚

!

�
X

i2C

�i

pC
˚

log2

 
�i

pC
˚

!

; (24)

where pC
˚ D qC Õ C P

j 2C �j is the associated weighting factor, describing the
probability to use a code word from the codebook of community C . The optimal
partition of a network is found by minimizing the Map equation, e.g., by finding
the partition minimizing the description length of a random walk on the graph. The
Map equation is usually defined for the discrete-time unbiased random walk (13)
and is thus based on one-step transitions on the graph. However, it has been shown
that the corresponding quality function suffers from some limitations, such as the
fact that it is not able to uncover communities in multi-scale networks and that it
exhibits a field-of-view limit that can result in undesirable over-partitioning when
communities are highly structured [57]. This issue can be addressed by adopting a
similar approach as in the previous section, namely, in introducing time explicitly by
letting the random walker explore the network over a tunable amount of time [58].
The resulting Markov time sweeping induces a dynamical zooming across scales
that can reveal community structure at different scales and circumvent field-of-
view limit. In practice, defining the Map equation for the continuous-time random
walk (15) leads to time-dependent leaving probabilities qC Õ.�/ given as

qC Õ.�/ D
X

i2C

X

j …C

�
e��L

�
j i

�i : (25)

With increasing time, this leaving probability and the associated cost for encoding
communities increase. Looking at limiting values of � suggests again that time acts
as a resolution parameter [58]. In the limit of vanishing times, when the leaving
probabilities go to zero, the Map equation is minimized setting each node in its own
community. In the limit � ! 1, in contrast, the Map equation finds a partition
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made of one single module due to the mean-field nature of the dynamics. For
intermediate times, the partitions optimizing the Map equation are expected to be
made of modules of varying size, as confirmed by numerical simulations [58].

Discussion

As we have discussed in the previous subsections, flow-based approaches have the
interesting property to incorporate a natural resolution parameter, time, allowing to
explore the graph through paths of different length. However, flow-based approaches
offer other advantages that make them an interesting alternative to combinatorial
approaches. First, stability is based on flows of probability on the graph and
therefore captures how the global structure of the system constrain patterns of flows,
while quantities such as modularity focus on pairwise interactions and are blind to
such patterns, thereby neglecting important aspects of the network architecture [53].
This difference is particularly marked when the network is directed, when the
equilibrium solution of the process depends on the global organization of the
process [28]. Flow-based approaches also offer the flexibility to chose a random
process properly modeling how, e.g., information or energy flows on the graph and
thus to tailor the quality function according to the network nature. For instance,
this can be done by using the biased random walk process (14) in systems where
unbiased random walks are not realistic models. Important examples include the
Internet and traffic networks, where a bias is necessary to account for local search
strategies and navigation rules [69].

Partitions at different values of � are found independently by optimizing either
stability or the Map equation, thereby producing a sequence of partitions that
are optimal at different scales. However, one expects that only a small number
of these partitions are significant, which raises another question: how can one
select the most significant partitions, or equivalently the most significant scales
of description of the network? It is ironical to note that we are thus confronted
with a problem similar to the one that initially led to the definition of modularity.4

In order to address this problem, it has recently been proposed to look for robust
partitions [17, 24, 29, 37]. In practice, the problem is slightly modified, by changing
either the resolution parameter, the graph, or the optimization algorithm, and
variability among the uncovered partitions is considered. In each case, robustness is
related to the ruggedness of the quality function landscape [21]. Lack of robustness
corresponds to high degeneracy, namely, to the existence of incompatible partitions
that are local maxima of the quality function such that partitions are strongly altered
by a slight modification of the optimization problem. Significant partitions are
uncovered by identifying values of the resolution parameter where these measures
of robustness are significantly low. In the case of the Map equation, an alternative

4Modularity was first proposed to find the best partition in a nested hierarchy of possible
community divisions [40].
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approach is based on an information theoretic indicator for the reliability of the Map
equation [58], by measuring the gap between the optimal code compression and the
compression achieved by the Map coding strategy. Relevant values of the resolution
parameter are then signaled by a low compression gap.

Before concluding, let us mention recent works where the ideas developed in this
chapter have been successfully tested on empirical networks of different nature and
on benchmark networks [12–14,28,29,57,58]. We should also stress that the multi-
scale methods described here are expected to fail when the system does not exhibit
any scale of description, e.g., when the size of the communities is heterogeneously
distributed [35]. In that case, other types of methods might reveal more successful,
for instance, local methods in contrast with global ones [36].

5 Conclusion

In this chapter, we have focused on the detection of nonoverlapping modules in
multi-scale networks. These networks are made of different levels of organization
and are typically (but not necessarily) hierarchical, in the sense that the system
is made of modules, which themselves are made of sub-modules, etc. In order to
account for the presence of multiple levels of organization in the system, multi-
scale methods have been introduced that incorporate a resolution parameter allowing
to zoom in and out and to focus on the appropriate level of resolution. A class
of popular combinatorial quality functions incorporate a resolution parameter to
Newman–Girvan modularity in order to adjust the characteristic size of the modules
and to uncover the true modular organization of a network. Unfortunately, these
multi-resolution quality functions exhibit the same type of limitation as modularity
when the resolution parameter is fixed [26]. Moreover, the introduction of a
resolution parameter lacks a sound mathematical justification. Here, we argue for
the use of flow-based approaches instead of combinatorial ones for several reasons.
We have shown that using the trajectories of random walker on the graph defines
quality functions with a natural resolution parameter, time. As time increases, the
diffusive process involves longer trajectories and explores further afield the structure
of the graph, resulting in the detection of the modular structure across scales. As
we have shown, this general scheme can be used in a variety of methods, such as
stability and the Map equation. Flow-based approaches have the further advantage
of properly taking into account dynamical flows taking place on the graph. This
property reveals crucial to provide a faithful characterization of the system whenever
complex interdependences between network subunits are generated by patterns of
flow, e.g., information in social networks or passengers in airline networks.
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