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1 Introduction

After the Internet and the World Wide Web have become popular and widely
available, the electronically stored online interactions of individuals have fast
emerged as a challenge for researchers and, perhaps even faster, as a source of
valuable information for entrepreneurs. We now have detailed records of informal
friendship relations in social networks, purchases on e-commerce sites, various
sorts of information being sent from one user to another, online collections of web
bookmarks, and many other data sets that allow us to pose questions that are of
interest from both academical and commercial point of view. For example, which
other users of a social network you might want to be friend with? Which other
items you might be interested to purchase? Who are the most influential users in
a network? Which web page you might want to visit next? All these questions are
not only interesting per se, but the answers to them may help entrepreneurs provide
better service to their customers and, ultimately, increase their profits.

All the questions posed above have many different ways to be approached that
belong to the field of information filtering [1]. The goal of information filtering
is to eliminate the redundant or unsuitable information and thus overcome the
information overload. In our case, information filtering helps users to choose from
an abundant number of possibilities (available products, potential friends, etc.),
those that are most likely to be of interest or use for them. Common approaches
to this task are based on mathematical statistics, machine learning, and artificial
intelligence [2, 3]. They formulate a parametric mathematical model which is
calibrated using the readily available data and then use to predict unknown user
opinions.
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In this chapter we discuss a different class of algorithms that all make use of
a network representation of the data. The current classical example of such an
algorithm is PageRank which, while having a far-reaching history [4], has been
reinvented and popularized by the founders of Google where it serves up to now
as the key element of their Internet search engine [5]. As we shall see below, this
algorithm is closely related to random walks that play an important role in physics.
(In the case of PageRank, of course, we do not face a random walk in physical
space but a random walk on a network consisting of web pages and directed links
among them.) These network-based methods can be used alone or in combination
with other information filtering techniques, giving rise to hybrid methods [6].

We focus here on two important information filtering tasks—ranking and recom-
mendation. By ranking we mean producing a general list of available items (users
or objects) that captures some inherent quality of them. Finding influential users or
exceptional web pages belongs to this. By recommendation we mean preparing a
specific “recommendation list” for each individual user, each list containing items
that are likely to be appreciated by the given user. Finding potential friends or
items to purchase belongs here. In addition to traditional unipartite networks where
only nodes of one kind are present (such as the network of web sites connected
by hyperlinks or a network of users connected by friendship relations), we will
often make use of bipartite networks where nodes of two kinds are present. For
example, a network connecting users with the items that they have purchased is
bipartite because every link connects a user with an item while links between users
or between items are entirely absent. For a review of networks and network analysis
that do not directly contribute to ranking and recommendation yet they can help to
understand the structure of the data in hand, see the survey of complex networks
measurements in [7]. For a general overview of dynamical processes on complex
networks, see [8].

2 Ranking

When we want to rank nodes of a network, there are obviously many approaches,
each of them suiting a different purpose. The simplest possible ranking is by node
degree (or, in the case of a directed network, node in-degree) which is based on
the assumption that “important” nodes are those that are referred by many other
nodes. Many other measures of node importance exist, based either on local or
global properties of the given network [9]. In this section, we discuss the importance
rankings where score of a node is directly computed by random walk or where score
spreads among the nodes in a manner akin to random walk.
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2.1 PageRank

When given a directed unipartite network, PageRank [5] is arguably the most
famous method to produce a general ranking of the network’s nodes. The method is
based on the circular idea “A node is important if it is pointed by other important
nodes” which can be applied to many different situations, including ranking of web
sites (an important site is referred by important sites), scientific journals (articles
from an important journal are cited by articles from important journals), and people
(an important person is referred/trusted by important people). For a review of past
research in this direction and the use of this circular idea in various disciplines,
see [4].

We begin with a general exposition of the approach, denoting the impor-
tance/score of node i as hi and the nonnegative strength of the link pointing from
node i to node j as wij (i D 1; : : : ; N where N is the number of nodes in the
network). The above circular thesis can now be formalized as

hj D
X

i

wijP
k wik

hi (1)

where the division with
P

k wik ensures that the importance of node i is distributed
among the nodes pointed by it with each node receiving part proportional to wij . To
simplify our notation, we introduce normalized weights Pij WD wij =

P
j wij . Now

we can write hj D P
i Pij hi which can be further simplified by matrix notation to

get
h D PTh: (2)

This matrix form shows that the sought-for vector h is the right eigenvector of PT

associated with eigenvalue 1. Since PT is now a column-normalized matrix (also
called stochastic matrix), the Frobenius-Perron theorem applies and states that 1 is
its largest eigenvalue. A solution to Eq. (2) thus always exists, and when matrix P
is irreducible, this solution is unique. (A matrix is irreducible if and only if in the
directed graph that the matrix represents there exists a directed path between any
two vertices.) The uniqueness is of course up to multiplication of h by a constant
factor which allows us to impose the normalization condition

P
i hi D 1. Note

that Eq. (2) is similar to the eigenvector centrality measures that are common in the
analysis of social networks [10, 11]. In that case, however, one does not employ a
normalized matrix P but the network’s adjacency matrix itself and searches for a
vector x satisfying ATx D �x where � is a number.

In addition to the redistribution point of view described above, a random-
walk view can often provide useful insights. The normalized weights Pij can be
interpreted as probabilities of moving from node i to node j and, consequently,
hi as the probability of being at node i . An initial probability distribution h.0/

transforms gradually by h.nC1/ D PTh.n/ until a stationary probability distribution
corresponding to the largest eigenvalue of PT is established. If this eigenvalue
is degenerated, the stationary solution is not unique. The rate of convergence
of this iterative method is determined by the magnitude of the second-largest
eigenvalue of PT.
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Fig. 1 PageRank computation for a toy network. When ˛ D 1 (no random teleportation), scores
of nodes 1, 2, and 3 go with iterations to zero, but no stationary distribution exists because one
of the eigenvalues is �1 and causes ceaseless alternations of score of nodes 4 and 5. When
˛ D 0:85 (the usual value adopted for web site ranking), the resulting score vector is h D
.0:04; 0:06; 0:07; 0:43; 0:40/. When ˛ D 0 (no link-following), all nodes have the same score 1=5

Our treatment up to now was fully general and applies to any redistribution of hi

values over a weighted network given by weights wij . Depending on the nature
of the problem and the input data, one needs to choose the weights so that the
resulting importance vector h contains the information that we are interested in. In
the case of PageRank, which was designed to produce the importance score for web
sites, the input data consists of a directed network of web sites where a hyperlink
from site A to site B can be interpreted as a sign of approval of site B by site A.
Since no additional strength information is attached to hyperlinks, the network of
hyperlinks is represented by its adjacency matrix A where Aij D 1 if there is a
link pointing from node i to node j (the network is directed and hence this matrix
is not symmetric in general). Weights Pij thus should be the same for all sites j

referred by a given node i which, respecting the weight normalization condition,
leads to Pij D Aij =ko

i where ko
i is the out-degree of node i . Since this is ill defined

for nodes with no out-going links (“dangling nodes”), one usually assumes that if
ko

i D 0, Pij D 1=N for all j .
One can easily see that even when the problem of nodes with zero out-degree

is solved, the resulting solution can easily be pathological in some sense. If the
network contains a component without out-going links (so-called bucket; see nodes
4 and 5 in Fig. 1), this part of the network would act as a trap for the random-
walk process. Would concentrate there, and it would thus give us little useful
information. The inventors of PageRank overcame the problem by postulating that
links leading from a node are followed only with certain probability ˛ [5]. With
the complementary probability 1 � ˛, teleportation (jump) occurs, ending at a
randomly chosen node of the network. The corresponding transition matrix (also
called Google matrix) is

G D ˛PT C .1 � ˛/T (3)

where T is the teleportation matrix with all elements equal 1=N . The parameter
˛ (also called damping) and 1 � ˛ determines the weight given to link-following
and teleportation, respectively. Since ˛ is the probability of following an out-going
link, one can easily compute that the average number of links followed in a row isP1

kD0 k˛k.1 � ˛/ D ˛=.1 � ˛/. In the original PageRank paper, ˛ was proposed
to be set around 0:85 which corresponds to following five or six hyperlinks in a
row and then jumping to a random page [5]. The value of ˛ is closely related to the
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convergence rate of the iterative PageRank computation (the lower the value, the
faster the convergence; see [12] for more details). While PageRank was originally
devised for directed networks, one can apply it also to undirected networks [13,14].
The teleportation parameter then plays a crucial role—without it, PageRank score
on an undirected network reduces to node degree.

Alternatively, one can replace the uniform teleportation matrix with 1N vT where
1N is an N -dimensional vector of ones and v is a normalized N -dimensional vector
which allows us to give preference to some nodes. This provides an important
additional degree of freedom and allows one to, for example, devise a topic-specific
ranking as described in [15]. A complementary point of view is presented, for
example, in [16] where an inverse problem of finding matrix elements Gij from
some partial knowledge of node-pair preferences (“we want the score of node i to
be higher than that of node j ”) is studied.

Using the definition of G given in Eq. (3), the PageRank equation Gh D h can
be written as ˛PTh C .1 � ˛/1N =N D h, leading to

h D 1 � ˛

N
.IN � ˛PT/�11N D 1 � ˛

N

1X

kD0

.˛PT/k1N (4)

where IN is an N � N identity matrix and 1N is an N -dimensional vector of ones.
Here both the inverse and the series expansion exist as long as ˛ < 1. While
these formulas for computing h can be easily applied for small systems, a critical
advantage of PageRank lies in the fact that the above-mentioned iterative method
for finding h is in practice very effective even for very large systems. Thanks to
that, PageRank serves as an important input for the Google’s ranking of web sites
where scores are computed for several billions of pages (for more information on
the data mining for the WWW, see [17, 18]). Even for the enormous size of the
WWW, only a few tens of iterations are sufficient to compute PageRank to a required
precision [19]. The iterative method is also easy to parallelize and, in addition, one
can write h.nC1/ D ˛PTh.n/ C.1�˛/1N =N and thus benefit from the sparsity of P.
In comparison with that, directly multiplying Gh.n/ is computationally much more
expensive because G has no zero entries.

Another advantage of PageRank is that it is robust to spamming and malicious
behavior. This robustness is rooted in the inability of web site administrators to
create new hyperlinks pointing to their sites. If they simply create fake new web
sites pointing to the site whose status they want to enhance, the artificially created
web sites themselves have low scores (because no one points at them) and contribute
little to the score of the target site. Of course, various sophisticated methods of
manipulating the PageRank still exist [20]. The stability of node rankings obtained
with PageRank is the central point in [21] where the authors show that PageRank is
particularly prone to noisy data when the network is random (and thus the degree
distribution, which is crucial for the ranking’s stability, decays exponentially).
By contrast, a small number of super-stable nodes whose ranking is particularly
resistant to perturbations emerge in scale-free networks.
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2.2 Variants of PageRank

From the conceptual point of view, an interesting generalization of PageRank has
been proposed in [22] where spreading of the score was separated into branching
(due to out-degree) and damping (due to the damping parameter ˛). In the case
of PageRank, damping is exponential because with each propagation step, another
multiplication with ˛ is added. The authors show that a power-law damping of
the form 1=Œ.t C 1/.t C 2/� where t denotes the number of steps is equivalent
to a so-called TotalRank which is obtained simply by integrating the ˛-dependent
PageRank score over ˛. Importantly, a linear damping can produce results very close
to those obtained with PageRank while requiring fewer iterations to be computed.
An important variant of PageRank, EigenTrust, has been proposed to compute trust
values in distributed peer-to-peer systems [23]. EigenTrust, which replaces uniform
teleportation matrix with random jumps to a set of pre-trusted peers, can be easily
computed in a distributed way and is thus suitable for deployment in distributed P2P
systems. A very different perspective was adopted in [24] where a class of quantum
PageRank algorithms was proposed based on quantized Markov chains.

Almost at the same time as PageRank, another important algorithm based on
random walks and circular reasoning was developed independently. It is called
HITS (Hypertext-Induced Topic Search), and by contrast to PageRank, it assigns
two distinct scores to each node—authority score xi and hub score yi [25]. The
basic thesis is that a good hub is pointed to by good authorities and vice versa. In
mathematical terms, this can be written as

x.nC1/ D ATy .n/; y.nC1/ D Ax.nC1/ (5)

Consequently, one can write x.nC1/ D ATAx.n/ and y.nC1/ D AATy .n/, showing
that the stationary authority and hub vectors are the dominant eigenvectors of ATA
and AAT, respectively. Since these two matrices are not stochastic matrices as it
was the case for PageRank, when finding them by iterations, one has to implement
additional normalization of the score vectors. In [26], HITS has been generalized
to bipartite graphs with the goal to weaken the score reinforcement among the
connected nodes and which improve the algorithm’s robustness to noisy links. See
an extensive review of eigenvector methods for web information retrieval in [27].

In [28], PageRank has been applied to citations among scientific papers (which
naturally constitute a directed unweighted network) to assess the relative importance
of papers. The authors argued that readers of scientific papers typically follow paths
of length two, corresponding to the damping parameter ˛ D 0:5 much lower than
the original value of 0:85. Albeit the PageRank score of papers was found to be
highly correlated with the number of citations (similarly as the PageRank score of
web sites is correlated with the number of incoming hyperlinks), significant outliers
from this trend were found and identified as seminal publications. This is because
the PageRank score redistribution allows a paper with moderate citation count score
high thanks to high citation counts of the papers that cite it. As later argued in [29],
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time decay is of crucial importance in the analysis of citation networks because,
unlike hyperlinks in the WWW, citations basically cannot be updated after a paper
is published. There is also an increasing evidence that time plays an eminent role in
the growth of citation networks—see [30] for a recent account. See also [31] for a
general overview of our knowledge about citation networks.

The effect of aging of publications is included in the CiteRank algorithm
[32] where the uniform teleportation matrix is replaced with 1N %T where %i D
expŒ�ti =��, ti is the age of paper i , and � is a characteristic decay time. Interestingly,
when the correlation between the CiteRank score and the number of recently gained
citations is investigated, the optimal damping parameter ˛ is found to be close to
the value of 0.5 which was before only hypothesized on the basis of reading habits
of researchers. The authors consequently show that apart from selecting papers
that contribute most to the current research, CiteRank is particularly successful in
selecting papers of long-lasting interest.

Similarly, the network of scientific journals with links weighted by the number
of times an article from journal i cites an article from journal j is again suitable for
PageRank-like computation of journal status [33]. Albeit the number of citations
does not directly enter here, the resulting ranking of journals is similar to that
obtained with the so-called impact factor (which is essentially the average number
of citations of recent papers in a given journal). The observed differences in these
two measures allowed the authors to introduce the categories of popular journals
(which have high impact factors but their citations come from lesser journals, hence
the resulting PageRank score of the popular journals is comparatively small) and
prestigious journals (which have moderate impact factor but their citations come
from journals with high PageRank score, thus allowing the prestigious journals to
score high too). A publicly available web site SJR runs a slightly different algorithm
based on citations among journals to rank scientific value of journals and countries
(see www.scimagojr.com) [34].

What is perhaps of even a greater interest to researchers than rankings of papers
and journals are rankings of the researchers themselves. The simplest approach
to achieve that would be to create a directed networks of authors where links are
created according to who cites whom and weight these links according to the citation
frequency for a given pair of authors. To better represent the diffusion of scientific
credit in such a network, the authors in [35] propose additional weights reflecting
the number of authors of the citing and cited paper, respectively. If the citing paper A

was authored by nA authors and the cited paper B was authored by nB authors, nAnB

independent links pointing from an author of paper A to an author of paper B are
created, each with weight 1=.nAnB/. The credit of individuals is then redistributed
over the weighted author–author network in a usual twofold way: part 1 � q of i ’s
credit goes to the authors cited by i and part q of i ’s credit is distributed to all authors
according to their productivity. For authors with zero out-strength, it is their whole
credit what is distributed to all authors in the network. It is then observed how the
resulting ranking of authors changes in time and significant correlations are found
between highly ranked authors and important scientific prizes being given to them.
A very similar algorithm has been used to rank professional tennis players [36].

www.scimagojr.com
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Another possible approach to the ranking of researchers is by running a PageRank
variant on a so-called coauthorship network which is an undirected network where
researchers are connected if they have authored a paper together (it is again natural
to weight the connection by the number of papers authored together) [37]. Co-
citation networks where authors are connected if they were cited together by a
paper were also used as input for a PageRank-based algorithm to obtain a ranking
of authors [14].

PageRank has been used also to measure the importance of species in the network
of ecological relationships where the loss of a single species can trigger a cascade of
extinctions [38]. Upon a minor modification of the input network by introducing a
root node which is pointed to by each species and which points back to all “primary
producers” (species that do not rely on any other species and produce biomass from
inorganic compounds) and setting the damping parameter to one (because nutrients
cannot randomly jump among nodes in a food web), the authors were able to use
the standard PageRank formula. The obtained importance ranking of species was
shown to be very effective in choosing nodes leading to the fastest collapse of the
food web, outperforming rankings by betweenness and closeness centrality.

A root node pointed by and pointing to all nodes was used also later in [39]
where the PageRank algorithm was used to quantify user influence in a directed
social network. It is useful to realize that such a root node in fact serves as a
teleportation probability: it leads from a given node to the root node and then in
the next step to a randomly chosen normal node. This teleportation probability is
node dependent: jump to the ground node occurs with a 50% probability for a node
with only one original out-going link, but the probability is only 1% for a node with
99 original out-going links. In addition, this root node causes the transition matrix
to be irreducible and primitive which guarantees existence and uniqueness of a
stationary solution. Based on the tests on data obtained from the social bookmarking
service “Delicious.com,” the authors of [39] argue that their variant of PageRank is
particularly suitable for social networks as it better detects influential users and it is
more resistant to manipulations and noisy data.

2.3 Random Walks with Sources and Sinks

As we have seen above, PageRank is built on a process where the initial node
occupancy distribution h.0/ is gradually washed away by the random walk and an
equilibrium distribution h.1/ emerges. In some cases, there exist nodes that act as
sources or sinks—they constantly emit or absorb, respectively, “particles” that are
transported over the network [40]. To allow for termination of the random walk, it is
assumed that sources not only emit new particles but also absorb particles arriving in
them. Denoting the set of source/sink nodes as S and the set of remaining (transient)
nodes as T where jT j WD M and thus jS j D N � M , we can write the transition
matrix in the form
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P D
�

PSS PST

PTS PT T

�
(6)

where we have sorted the nodes so that the first N � M nodes are from S and the
next M nodes are from T . If S is the set of sinks, then PST D 0 and PSS D IN �M .
We can now ask what is the probability Fij .t/ that a particle originating at i 2 T

gets absorbed in j 2 S in t steps or less, avoiding all other sink nodes on its path.
This absorption can either occur in one step, with the probability Pij , or the particle
can first go to another transient node k and then be absorbed from there in t � 1

steps or less. Together we have

Fij .t/ D Pij C
X

k2T

PikFkj .t � 1/ (7)

where, of course, Fkj .0/ D 0 for all k and j . This formula can be written in a
matrix form as F.t/ D PTS C PT T F.t � 1/ where F.t/ is an M � .N � M / matrix
of absorption probabilities. The stationary solution F thus fulfills F D PTS CPT T F,
and one can express it as

F D .IM � PT T /�1PTS (8)

In the simplest case when PT T D 0 (all links from transient nodes lead directly
to sink nodes), we obtain F D PTS as expected. One can show that the inverse
.IN � PT T /�1 exists if for every i 2 T and j 2 S , there is a directed path from i to
j [40].

The dual problem of particle diffusion from sources can be solved analogously,
leading to the average number of times, Hij .t/, that a particle originating at a source
node i visits a transient node j in t steps or less, without being absorbed in a source
node. The final result reads

H D PST .IM � PT T /�1: (9)

Unlike F, a particle can visit a transient node j repeatedly and therefore Hij can be
greater than one. The described picture can be generalized to include the possibility
of particle dissipation also in transient nodes [40]. There is a close relation between
random walks with sinks/sources and currents in electric networks—for details,
see [41, 42].

PageRank augmented with sinks was shown to increase the diversity of top
ranked items [43]. After the top ranked object is found by ordinary PageRank
computation, it is turned into a sink and the second object is selected from the
remaining transient nodes as the one that has the longest time to absorption. The
selected node is then turned into a sink too, and the third object is again found by
the absorption time criterion. Since the expected number of visits of node j when
starting with node i is Vij D Œ.IM � PT T /�1�ij , the expected absorption time of
node i is ti D P

j Vij D .V1M /i . The absorption time maximization leads to the
preference for nodes that are far away in the given network from the nodes already
selected for the top of the ranking, which provides a stimulus to the diversity of
results.
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Fig. 2 In random walk, the occupancy probability of the central node in the next time step is
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(where x; y; z are the current occupancy probabilities of the neighboring nodes,

respectively). In heat diffusion, the temperature of the central node in the next time step is x
3
C y

3
C z

3

(where x; y; z are the current temperatures of the neighboring nodes, respectively)

We finally note a close connection between random walk and heat diffusion. In
random walk, the occupancy probability of a node in the next time step depends
on the current occupancy probabilities and degrees of its neighbors. By contrast,
in heat diffusion, the temperature of a node in the next time step depends on the
current temperatures of its neighbors and the degree of the given node (see Fig. 2 for
an illustration). In mathematical terms, while the transition matrix of random walk
reads Pij D Aij =ki and thus PT is column normalized, the matrix converting the
current vector of temperature values into a next time step vector reads Oij D Aij =kj

and thus OT is row normalized.
Further connections can be found by studying the emission and absorption

processes described above. If we fix a sink node j , the probabilities of absorption
in j for particles starting in node i , Fij , satisfy the discrete heat equation on the
network. This is easy to see on an unweighted undirected network—given a transient
node i and its set of neighbors Ni , we can write similarly as in Eq. (7)

Fij D 1

ki

X

k2Ni

Fkj

That is, the probability of being absorbed in node j when starting in node i is simply
the average over these absorption probabilities when starting in neighbors of node i .
The boundary condition is given by the sure absorption in j when starting in j and
impossible absorption in j when starting in another sink node (corresponding to the
boundary probability values 1 and 0, respectively). Generalization to a weighted or
undirected network is straightforward. This duality is illustrated on a toy network in
Fig. 3.

2.4 Other Algorithms

Node betweenness in a network is calculated as the fraction of the shortest paths
between node pairs that pass through a selected node. If the node lies on many
shortest paths, it is assumed to be important for information spreading over the
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Fig. 3 Random walk with absorption in sink nodes (shaded with gray): the probability of being
absorbed in the arrow-marked node is shown for each node. These probabilities solve the heat
equation with the boundary condition given by the temperature of sink nodes fixed at one (for the
arrow-marked node) and zero (for all other sink nodes), respectively. For example, the absorption
probability 5=8 for one of the transient nodes can be obtained by averaging the absorption
probabilities 1, 1=2, and 3=8 of the neighboring nodes

network (e.g., it connects extensive clusters). However, node betweenness considers
only the shortest paths and thus neglects a significant part of the network’s topology.
Random-walk betweenness improves this by considering paths of essentially all
lengths, albeit still giving more weight to short ones [42]. It is based on a simple
assumption—if random walk starts in node i and ends (gets absorbed) in node j , its
contribution to the betweenness of node k is given by the average “net” number of
visits of this node during the random walk, n

.ij /

k . The net number of visits means that
passing through a node and then passing through it again from an opposite direction
cancel out. Also, if various realizations of random walk are equally likely to pass
through a node in opposite directions, these two directions cancel. The resulting
betweenness of k is then obtained by averaging the number of visits over start-end
node pairs .i; j /

bk D
P

i<j n
.ij /

k

1
2
N.N � 1/

(10)

where N is the number of nodes in the network. Alternatively, one can obtain
the same result building on the electric current injected and removed in a node
pair with the contribution to betweenness of node k given by the current passing
through this node. The further development is similar to that presented in Sect. 2.3
and ultimately allows to find betweenness values for all nodes in time O..E C
N /N 2/. This betweenness measure is shown to outperform not only the shortest-
path betweenness but also the flow betweenness [42]. With a similar goal, several
network flows were typologized and studied by simulations in [44].

A very recent second-order centrality also makes use of random walks but with
three distinctions [45]. Firstly, it can be computed in a distributed manner with
nodes having only information of who are their neighbors. Secondly, it relies on
“unbiased” random walk where the stationary occupancy probability is equal for all
nodes regardless of their degree (this is achieved by a Metropolis-Hastings algorithm
where step from node i to a neighboring node j is accepted with the probability
ki =kj for kj > ki and always for kj � ki ). Finally, it is based on the standard
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Fig. 4 A toy network for the computation of node centrality (see results in Table 1)

deviation �i of the return times to a given node i . The basic idea is that a node with
a central position in the network is visited more regularly than peripheral nodes
(those are visited in “clusters” with closely grouped subsequent visits interrupted
by longer periods when the random walk is in a different part of the network). In
addition to numerical stochastic computation of this centrality, various analytical
results can be derived and used to better calibrate the numerical implementation.

The network of citations among scientific papers has the special property of being
directed and acyclic (the acyclicity is due to citations pointing from a newer paper
to older ones). This acyclicity allows one to use the probability of passing through
a given node instead of the more traditional occupancy probability. In [46], the
probability of passing through node i when the random walk starts in node j , Gij ,
was proposed to quantify the influence of node i on node j . By summing over j ,
one consequently obtains the aggregate impact of node i which may be in turn used
to rank the nodes. Since aggregate impact of node i correlates with the i ’s progeny
size (by i ’s progeny we mean the set of nodes from which i can be reached by
random walk respecting directions of links), one can better distinguish outstanding
nodes by comparing the two characteristics. This passing probability framework has
been also used to introduce a new node similarity which is based on the assumption
that two nodes are similar if they are both influenced by the same nodes.

To better illustrate performance of the presented methods, we use them to
compute node centrality in the network shown in Fig. 4. (Unlabeled nodes have
standing identical with that of node 4 or 5.) For the shortest path centrality (also
called betweenness centrality), we count also shortest paths where a node lies on
the path’s beginning or the path’s end. For the PageRank score, we use the usual
damping value ˛ D 0:85. For the random-walk centrality, we follow the prescription
given in [42]. For the second-order centrality, we convert the standard deviation of
return times �i into a centrality value 1=�i (recall that small �i is expected for
centrally placed nodes). The results summarized in Table 1 show that there are
considerable differences between respective centrality measures. While measures
agree on a high centrality value of node 1 and a low centrality value of node 5,
respectively, big differences exist in assessment of nodes 2, 3, and 4. In particular,
eigenvector centrality puts emphasis on the tightly connected part of the network
(represented by the complete 6-graph in our toy network) and values little node
with low-degree neighbors (in our case, node 2). Random-walk centrality awards
the central position of node 3 more than other tested measures which is a direct
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Table 1 Centrality values for the network shown in Fig. 4. Values are normalized so that the
average centrality is one in all cases

Node

Measure 1 2 3 4 5

Degree 1.98 1.98 0.57 1.41 0.28
Shortest path 2.59 3.14 0.66 0.66 0.66
Eigenvector 2.03 0.62 0.52 1.84 0.12

PageRank 1.71 2.65 0.68 1.12 0.47
Random walk 2.31 2.69 1.09 0.84 0.55
Second order 2.23 2.23 0.87 1.17 0.36

consequence of including not only the shortest paths in computation. One can note
that degree centrality and second-order centrality rank nodes identically—the value
difference between nodes 3 and 4 is however smaller in the case of second-order
centrality which is again due to its random-walk origin being able to appreciate the
central location of node 3.

3 Recommendation

The task of recommender systems is to utilize past evaluations of items by users
to select further items that could be appreciated by the users. We often speak about
personalized recommendations because a good recommender system should be able
to recognize preferences of individuals and select the object to be recommended
accordingly. Thanks to the availability of large-scale data on user behavior and the
ever-increasing power of computers at our disposal, the field of recommendation
grows rapidly. Nowadays, one can hardly imagine a successful e-commerce site
without a sophisticated recommender system (think of Amazon.com) and compa-
nies organize competitions aiming to improve their recommendation methods (as
it was prominently done by Netflix by their NetflixPrize) [47]. Approaches used to
produce recommendations range from variants of the simple thesis “recommend to
a user what was already appreciated by similar users” to complicated mathematical
models and machine learning techniques [48–50]. The problem of link prediction is
closely related to recommendation with the task being to identify possible missing
or future links in a given network [51].

In this section, we aim to discuss the use of random walks in recommendation.
First of all, similarity measures based on random walks can be used in similarity-
based (sometimes called memory-based) collaborative filtering algorithms. Denot-
ing the rating of object ˛ given by user i as ri˛ and the average rating of user i as
�i , the generic form of collaborative filtering using user similarity is

Qri˛ D �i C
P

j 2R˛
sij .rj˛ � �j /

P
j 2R˛

jsij j (11)
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where Qri˛ is the expected (predicted) rating of object ˛ by user i and R˛ is the set
of users who have already rated object ˛. User similarity sij (or object similarity
s˛ˇ for an item-based variant of collaborative filtering) is usually computed using
the standard Pearson similarity or cosine similarity. Our interest now is in random-
walk-based similarity measures that can be used instead of traditional ones.

Assuming that random walk starts in node i , one can introduce the average first
passage time for node j , T .j ji/. The symmetrized quantity C.i; j / WD T .j ji/ C
T .i jj /, the average commute time, was shown to act as a distance on the graph and
can be further transformed into

p
C.i; j /, a so-called Euclidean Commute Time

Distance [52]. In addition, both C.i; j / and
p

C.i; j / can serve as node similarity
measures and in turn effectively used for collaborative filtering. While one can
compute C.i; j / on a node-by-node basis using the sink-node machinery described
in Sect. 2.3, it is computationally more efficient to employ the formula

C.i; j / D 2E
�
lC
i i C lC

jj � 2lC
ij

�
(12)

where lC
ij is an element of the Moore-Penrose pseudoinverse LC of the network’s

Laplacian matrix L D D � A (here D is the degree matrix with elements dij D
ki ıij ) [52]. Pseudoinverse is applied because L cannot be inverted (zero is one of its
eigenvalues) and can be computed as LC D .L � 1N 1T

N =N /�1 C 1N 1T
N =N .

A simple node similarity measure based on local random walk was proposed
in [53]. Denoting the probability that a random walker starting at node i is located
at node j after t time steps as �ij .t/, the similarity of nodes i and j was proposed
in the form

sLRW
ij .t/ D 1

2E

�
ki �ij .t/ C kj �j i .t/

�
(13)

where E is the total number of edges in the graph. Multiplication with node
degree (ki and kj , respectively) gives more weight to nodes with high degree and
compensates for the increased dispersion of random walk at those nodes (if many
links lead from x, �xy can be low). The obtained quantity can be summed over
different t , leading to “superposed” similarity sSRW

ij .t/ D Pt
�D1 sRW

ij .�/. Numerical
evaluation on five distinct real networks showed that sLRW and sSRW in most cases
outperform traditional similarity metrics in accuracy and are less computationally
demanding than other well-performing methods [53]. A method for random-walk
computation of paper similarity was proposed specifically for scientific citation
data [54]. When computing similarity of papers i and j , two two-step random
walks are combined. One aims “downstream” to papers cited by both i and j , thus
reflecting the opinion of the authors of i and j . The other aims “upstream” to papers
citing both i and j , thus reflecting the opinion of the readers of i and j . It is then
shown that this novel similarity measure is able to identify the backbone of the
citation network, leading to accurate characterization of hierarchical structure of the
scientific development and its classification into fields and subfields.

Due to sparsity of the input data, traditional similarity measures based on
overlapping neighborhoods can fail to accurately assess node similarity. To alleviate
this problem, it was suggested to transform the similarity matrix into a PageRank-
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Fig. 5 Illustration of random-walk recommendation for user 2. Items collected by user 2 are
initially assigned unit resource which then spreads uniformly to users connected with these items
and finally back to the item side. Items with the highest resulting resource amount are then
recommended to the given user. In this case, items 1 and 2 score best (items 3 and 4 have higher
resulting values but are ignored as they have been already collected by user 2)

like form P by normalization and addition of random jumps and then use P.1 �
˛P/�1 as a new similarity matrix where similarity values are assigned also to
item pairs that have not been evaluated by any users [55]. Here ˛ 2 .0; 1� is the
probability of continuing the random walk, and thus 1=˛ is the characteristic number
of steps over which similarity is transferred.

Apart from using random walks to quantify node similarity, there are also
recommendation methods that are directly based on random walks. In [56], the
authors consider the bipartite user-item network where links connect users with the
items they collected or appreciated. Note that explicit ratings given by users to items
play no role here—the method only requires the knowledge of items that have been
collected/favored by individual users. Assuming that each item collected by a given
user i is assigned a unit initial resource, this resource is spread uniformly from the
collected items to the users connected with them and then in the second step back
to items connected with those users (see Fig. 5 for an illustration). The final amount
of resource on respective items is then interpreted as their recommendation score
and items with the highest score are then recommended to user i (already collected
items are of course excluded). The reasoning behind this spreading process is that
it selects items that have been collected by users who share some interests with the
given user i . At the same time, if user i has collected an extremely popular item
˛ or if a collected item has been co-collected by an extremely active user j , the
information signal is weak because the overlap between i and j as well as between
i and ˛ is rather small in those cases. The random-walk-based even spreading of the
resource is thus a reasonable approach to quantify the resulting recommendation
scores.

The transition matrices from objects to users and vice versa have the form Ui˛ D
Ai˛=k˛ and V˛i D Ai˛=ki , respectively, where k˛ is the degree of item ˛ (the
number of users who collected it) and ki is the degree of user i (the number of items
collected by this user). The vector with object recommendation scores for user i

then reads Qhi D VUhi where .hi /˛ D Ai˛ encodes which items have been actually
collected by user i . One can introduce WP WD VU and show that
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W P
˛ˇ D 1

kˇ

UX

iD1

Ai˛Aiˇ

ki

(14)

where indices ˛ and ˇ are used to enumerate items, i enumerates users, and U is the
total number of user nodes. One can also spread the initial resource over 2n steps
in the bipartite network by .WP/nhi , but the result converges fast to a vector whose
elements are proportional to object degree k˛ and hence conveys little information
for personalized recommendation.

This basic method has been subsequently generalized in multiple ways. For
example, it was proposed to assign the initial amount of resource to items not
uniformly but depending on the item degree as k�

˛ [57]. Best results were achieved
with � � �1 when the produced recommendations were both more accurate and
more personalized. To better answer the need for diversity in recommendations, a
hybrid algorithm was proposed which combines the random-walk algorithm with
heat spreading [58]. As we have already seen, heat diffusion differs from random
walk in normalization of their matrices and thus the matrix of heat diffusion reads
W H

˛ˇ D .1=k˛/
PU

iD1 Ai˛Aiˇ=ki . The best performing hybrid of the two has the
form

W P CH
˛ˇ D 1

k1��
˛ k�

ˇ

UX

iD1

Ai˛Aiˇ

ki

(15)

where the parameter � controls the balance between the contribution of random walk
and heat spreading. This method was shown to simultaneously increase accuracy
and diversity of recommendations.

A combination of random walk and heat diffusion for data with explicit ratings
was presented in [59] where recommendation scores obtained by each respective
process are multiplied to obtain the final recommendation score. In addition, the
employed random walk is self-avoiding, i.e., there is no possibility to return to the
initial item node after two steps. If user evaluations are given in an integer scale
(a very typical case nowadays), a multichannel spreading can be employed where
the states of the random walk are represented not only by the current item but also
by the rating given to this item [60]. If, for example, a five-level rating scale is
used, 5 � 5 connections are created between any two items. However, this approach
suffers from aggravating the data sparsity problem (the same amount of data is used
to construct many more connections between (item, rating) pairs) which limits its
performance.

Spreading over a bipartite network is considered also in [61] where the bipartite
user-item network is augmented with social links among users (this kind of data
is often produced in online gaming). The random walk starting at the user for
which recommendations are being made follows a social link to another user with
probability ˛ or a link to an item with probability 1 � ˛ where it is absorbed. Items
are then ranked according to the fraction of random walks absorbed in them. A
different mechanism of heat diffusion on an item–item network was used to produce
recommendations by representing items liked and disliked by a given user as nodes
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with fixed temperature 1 and 0, respectively [62]. From the remaining nodes, those
with the highest resulting temperature are then chosen to be recommended to the
given user. See [50, Chap. 6] for other related works and more detailed information.

4 Conclusion

We attempted here to give an overview of applications of random walks to
information filtering, focusing on the tasks of ranking and recommendation in
particular. Despite the amount of work done in these two directions, multiple
important research challenges still remain open. Due to the massive amounts of
available data, scalability of algorithms is of critical importance. Even when full
computation is possible, one can think of potential approaches to update the output
gradually when new data arrives. To achieve that, one can use or learn from
perturbation theory which is a well-known tool in physics. We have seen that results
based on random walks often correlate strongly with mere popularity (represented
by degree) of nodes in the network. Such bias toward popularity may be beneficial
for an algorithm’s accuracy, but it may also narrow our view of the given system and
perhaps create a self-reinforcing loop further boosting popularity of already popular
nodes. We thus need information filtering algorithms that converge less to the center
of the given network. Random walks biased by node centrality or time information
about nodes and links could provide a solution to this problem. As a beneficial side
effect, this line of research could yield algorithms pointing us to fresh and promising
content instead of highlighting old victors over and over again.
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