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1 Introduction

Online social systems have become very popular in today’s Web, where millions
of users form social relationships with one another and generate and share various
forms of contents. Among these websites, some are specifically designed for content
sharing which are known as social tagging systems or folksonomies. Here, users
share various types of contents or resources—such as URLs in Delicious (www.
delicious.com), images in Flickr (www.flickr.com), music files in LastFm (www.
last.fm) and movie reviews in MovieLens (www.movielens.org)—and collabora-
tively annotate resources with descriptive keywords (known as “tags”) in order to
facilitate search and retrieval of interesting resources.

With the growing popularity of folksonomies, a tremendous amount of resources
are being uploaded to these sites, and it has become practically impossible for users
to discover on their own interesting resources and people having common interests.
Hence it is important to develop algorithms for personalized search [36] as well as
resource and friend recommendation [20]. One approach to these tasks is to group
the entities (resources, tags, users) into communities or clusters which are typically
groups of entities having more or better interactions or similarity among themselves
than with entities outside the group.
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Folksonomies are modelled in the Complex Networks literature as tripartite
hypergraphs [7,36], which include user, resource and tag nodes, where a hyperedge
.u; t; r/ indicates that the user u has assigned the tag t to the resource r . Detecting
communities from such hypergraphs is a challenging problem. On the other hand,
this not only helps in efficient search and recommendation of resources or friends
to users but also in the organization of the vast amount of the resources present in
folksonomies into different semantic categories.

Several algorithms have been proposed for detecting communities in hyper-
graphs [4, 25, 27, 28, 34] (details in Sect. 2). However, most of the prior approaches
do not consider an important aspect of the problem—they assign a single community
to each node, whereas in reality, nodes in folksonomies frequently belong to multiple
overlapping communities. For instance, users have multiple topics of interest, and
thus they link to resources and tags of many different semantic categories. Similarly,
the same resource is frequently associated with semantically different tags by users
who appreciate different aspects of the resource. Considering multiple overlapping
communities enables more complete knowledge about the characteristics of the
users and the resources and hence can lead to better recommendations.

To the best of our knowledge, only two prior studies have addressed the problem
of identifying overlapping communities in folksonomies—(i) Wang et al. [35]
proposed an algorithm to detect overlapping communities considering only the
user-tag relationships (i.e. the user-tag bipartite projection of the hypergraph),
and (ii) Papadopoulos et al. [32] detected overlapping tag communities by taking
a projection of the hypergraph onto the set of tags. It can be noted that these
approaches work on bipartite and unipartite projections of the tripartite hypergraph,
respectively.

Taking projections result in loss of some of the information contained in the
original tripartite network, and it is known that qualities of the communities obtained
from projected networks are not as good as those obtained from the original
network [18]. Another important drawback of these algorithms is that none of
them consider the resource nodes. However, it is necessary to detect overlap-
ping communities of users, resources and tags simultaneously for personalized
recommendation of resources to users. The goal of the presented “Overlapping
Hypergraph Clustering” algorithm is to detect overlapping communities, utilizing
the complete tripartite structure of folksonomies. It achieves this goal by using the
concept of link clustering, which is explained next.

Though a node in a network can be associated to multiple semantic topics, a
link (or edge, the terms are used interchangeably) is usually associated with only
one semantics [1]. For instance, a user can have multiple topical interests, but each
link created by the user is likely to be associated with exactly one of his interests.
Link clustering algorithms utilize this notion to detect overlapping communities,
by clustering links instead of the more conventional approach of clustering nodes.
Although each link is placed in exactly one link cluster, this automatically associates
multiple overlapping communities with the nodes since a node inherits membership
of all the communities into which its links are placed.
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Link clustering algorithms have recently been proposed for unipartite [1, 11]
and bipartite networks [35]. However, to our knowledge, “Overlapping Hypergraph
Clustering” is the first link clustering algorithm for tripartite hypergraphs. Initial
versions of this algorithm were presented in [13] and [9]. In this chapter, we present
the “Overlapping Hypergraph Clustering” algorithm and its analysis in more detail.
We compare the performance of this algorithm with the existing algorithms by
Papadopoulos et al. [32] and Wang et al. [35]. Section 3 details the working of the
algorithm. Extensive experiments on synthetically generated hypergraphs (Sect. 4)
as well as on real data from three popular folksonomies—Delicious, MovieLens and
LastFm (Sect. 5)—show that the “Overlapping Hypergraph Clustering” algorithm
outperforms both these algorithms. Section 6 concludes the chapter by summarizing
the contributions and potential applications of the presented algorithm.

2 Related Work

As networks are increasingly being used to model complex systems [1, 3, 8, 14, 33],
several algorithms have been proposed for finding communities in networks. Girvan
and Newman proposed one of the initial algorithms for community detection [14],
which iteratively removes edges based on their betweenness centrality and, thus,
splits the network into disconnected communities. Later, they introduced the
notion of modularity as a measure of the quality of community structure in a
network [15]. Subsequently, several community detection algorithms based on
modularity maximization have been proposed, such as techniques based on ag-
glomerative hierarchical clustering [10]. The reader is referred to [12] for a detailed
survey of community detection algorithms for graphs.

A large majority of the proposed algorithms assign unique communities to
nodes. However, as stated earlier, nodes in social networks (including folksonomies)
typically belong to multiple overlapping communities; for example, a user is usually
a part of multiple communities of family members, colleagues, schoolmates, college
mates and so on. Next we discuss some of the algorithms which have been proposed
to identify overlapping communities.

Overlapping Community Detection in Graphs: One of the earliest methods to
find overlapping communities was by Baumes et al. [2], which find subsets of
nodes whose induced subgraph locally optimizes a given metric based on the edge
density of the subgraph. As different overlapping subsets may all be locally optimal,
nodes may belong to multiple communities. Clique Percolation Method (CPM) by
Palla et al. [31] is possibly the most well-known overlapping community detection
technique. CPM finds all k-cliques with a fixed constant k, and each community
is formed by merging a maximum set of such k-cliques if they share k � 1 nodes.
One node may belong to multiple disconnected k-cliques and hence to multiple
communities. Among other methods, Lancichinetti et al. [21] proposed a local clus-
tering algorithm which optimizes a fitness function defined using the internal and
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external degrees of the computed clusters. By varying the parameters in the fitness
function, both overlapping and hierarchical community structures can be obtained
using the algorithm. Gregory [16] proposed an algorithm which works in multiple
stages. First, the nodes with highest split betweenness centrality are identified (these
are the nodes which may potentially belong to multiple communities) and are split
into multiple nodes connected by edges. The original graph is thus transformed into
a larger graph including these node sets, on which any nonoverlapping clustering
technique can be applied. Finally, the communities are mapped back into the original
graph. The well-known modularity metric has also been extended to the overlapping
community scenario [30], using which any modularity maximization algorithms can
be applied to detect overlapping communities.

Some of the recent algorithms [1, 11] adopt the methodology of link clustering
for detecting overlapping communities: that is, they group “similar” links (edges)
unlike conventional attempts to group similar nodes. Link clustering strategies
build upon the idea that even though actors can belong to multiple groups, a
link is mostly associated with a single category. Evans et al. [11] considered a
modified random walk on the line graph of a given graph along with other diffusion
processes. Ahn et al. [1] proposed to cluster links with an agglomerative hierarchical
clustering technique and, thus, identify overlapping communities for nodes. The
advantage of these algorithms is that while overlapping communities of nodes are
indeed discovered (since a given node inherits membership of all communities
that contain the edges associated with the node), these algorithms are much
simpler and more efficient than the ones which directly find overlapping groups
of nodes. Hence in the present study, we adopt the link clustering methodology to
propose an algorithm for overlapping community detection in tripartite hypergraphs.
In the next section, we discuss existing community detection algorithms for
hypergraphs.

Community Detection in Hypergraphs: Several algorithms have been proposed
for detecting communities in hypergraphs. Vazquez [34] proposed a Bayesian
formulation of the problem of finding hypergraph communities—starting from a
statistical model on hypergraphs, they use a mean field approximation to identify
communities. Bulo et al. [5] proposed a game-theoretic approach to hypergraph
clustering. They show that the hypergraph clustering problem can be converted
into a non-cooperative multiplayer clustering game, where the notion of a cluster
is equivalent to a classical game-theoretic equilibrium concept. Zhou et al. [37]
generalized spectral clustering techniques to hypergraphs.

Approaches based on tensor decomposition [19] have also been proposed—for
instance, Lin et al. [25] proposed an efficient multi-tensor factorization method for
detecting hypergraph communities. Neubauer et al. [28] proposed a modularity
maximization technique to extract communities from hypergraphs. The original
k-partite hypergraph is decomposed into k.k C 1/=2 bipartite projections. The
algorithm tries to optimize a joint modularity measure, which is based on the
average bipartite modularity in the individual bipartite graphs, in a brute-force,
greedy bottom-up fashion. Later, Murata defined a tripartite modularity metric
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and proposed an algorithm to detect communities from hypergraphs using tripar-
tite modularity maximization principle [27]. Other possible approaches include
mapping each hyperedge into a multidimensional space and then applying standard
clustering algorithms (e.g. the ROCK algorithm [17]) to the point space.

Overlapping Community Detection in Folksonomies: All the hypergraph commu-
nity detection algorithms stated above assign a single community to each node.
To our knowledge, only two studies have addressed the problem of overlapping
community detection in folksonomies.

Wang et al. [35] proposed an edge clustering methodology to detect overlapping
communities that uses only user-tag subscription information. In effect, they
consider the projection of the given tripartite hypergraph onto a user-tag bipartite
graph. Their algorithm is a k-mean variant which maximizes intra-cluster similarity.
The network is considered in an edge-centric view where, for determining each
centroid, only a small set of edges are compared against each other. Though this is
a computationally fast algorithm, it requires the number of communities as an input
which is difficult to predict in case of real-world folksonomies.

Papadopoulos et al. [32] proposed an algorithm to detect overlapping commu-
nities of tags. This algorithm extracts a resource-tag association graph from the
tripartite hypergraph, transforms it to a tag co-occurrence network and then finds
overlapping tag communities. The proposed scheme initially searches for core sets
(densely connected groups) in the tag co-occurrence network and then successively
expands the identified cores by maximizing a local subgraph quality measure.

Both the above approaches actually work on unipartite or bipartite projections of
the given tripartite hypergraph. Although taking projections reduces the complexity
associated with hypergraphs, it loses a significant part of the information contained
in the original tripartite network. As an example, let us suppose that two users u1

and u2 annotate a common resource r with two different tags t1 and t2. In the user-
tag bipartite projection (as considered in [35]), u1 will be linked with t1 and u2

will be linked with t2. However, the information that both these annotations were
applied on the same resource will be lost. Since the tags applied on the same
resource are likely to be semantically related, this information could have been
useful for community discovery. Moreover, Guimera et al. [18] have shown that
the quality of communities obtained from projected networks is usually worse than
those obtained from the original network. “Overlapping Hypergraph Clustering”
algorithm, which is detailed in the next section, does not lose this information
as it detects overlapping communities in folksonomies considering the complete
tripartite hypergraph structure.

3 Overlapping Hypergraph Clustering Algorithm

This section details the “Overlapping Hypergraph Clustering” algorithm for detect-
ing overlapping communities in tripartite hypergraphs. “Overlapping Hypergraph



206 A. Chakraborty and S. Ghosh

Clustering” is abbreviated to “OHC”, and both these names are used interchange-
ably in the remaining part of the chapter.

As discussed earlier, a folksonomy is modelled as a tripartite hypergraph, more
specifically a 3-uniform tripartite hypergraph, denoted as G D .V; E/, where V is
the set of nodes and E is the set of hyperedges. V is composed of three partitions
(i.e. three types of vertices) V X , V Y and V Z , and each hyperedge in E connects
triples of nodes .a; b; c/ where a 2 V X , b 2 V Y , c 2 V Z .

3.1 Basic Idea of the Algorithm

For a given hypergraph G, the algorithm converts G to the weighted line graph G
0

which is a unipartite graph in which the hyperedges in G are the nodes. Two nodes
e1 and e2 in G

0

are connected by an edge if the hyperedges e1 and e2 are “similar”
in G, and the weight of the edge .e1; e2/ in G

0

is the similarity between the two
hyperedges. Section 3.2 details different ways to compute the similarity between
the hyperedges.

Once the weighted line graph G
0

is constructed from the given tripartite
hypergraph G, any conventional (nonoverlapping) community detection algorithm
for simple graphs can be used to cluster the nodes in G

0

(i.e. the hyperedges in G).2

Section 3.3 discusses about the various options and the selection of the community
detection algorithm for the line graph.

As we get the node communities in G
0

, each hyperedge in G gets placed
into a single link community. This automatically assigns multiple overlapping
communities to the nodes in G since a node inherits membership of all those
communities into which the hyperedges connected with this node are placed.

3.2 Calculating Similarity Between Hyperedges

Similarity between a pair of hyperedges can be computed in various ways. For
instance, hyperedges can be expressed as feature vectors, on which vector-based
similarity measures can be used. Another way of measuring similarity is by
considering the neighbourhood of the end vertices of hyperedges.

Expressing Hyperedges as Vectors: For a hypergraph having n nodes, one can
express each hyperedge as a vector of size n, where an element of the vector
represents the amount of participation of a particular node in that hyperedge. For

2Overlapping community detection algorithms can also be used for the line graph. But since a link
(hyperedge) is usually associated with one particular semantics, we consider only nonoverlapping
community detection algorithms.
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example, the i -th entry in the vector representation for a particular hyperedge e

will be 0 if there is no path from node i to any of the end nodes of e; otherwise,
the i -th entry will be the inverse of the product of degrees of the intermediate
vertices in the shortest path from node i to any of the end nodes of e. Different
entries in the vector can be easily generated by formulating this as a random walk
problem which will take care of the situations like presence of multiple shortest
paths. These vectors express the closeness as well as the importance of a particular
node to a particular hyperedge. With such representation, standard vector-similarity
metrics such as cosine similarity or Pearson correlation can be used to find similarity
between hyperedges.

Considering Vertex Neighbourhoods: Similarity between the hyperedges can be
measured by utilizing the neighbour set of their end vertices. We measure the
similarity between only those hyperedges which are adjacent in the hypergraph
G (i.e. which have at least one node in common). Nonadjacent hyperedges are
considered to have zero similarity.

It can be noted that the adjacency of two hyperedges can be defined in two ways:
(i) they have at least one node in common and (ii) they have exactly two nodes in
common. Although the second definition is a special case of the first definition, the
choice will have some impact on the overall performance of the algorithm. The line
graph G

0

will be sparser in case (ii) than in case (i). So, G
0

in case (ii) will contain
more disconnected components. Detecting communities from this sparser G

0

will
be more difficult. Also, in case of real folksonomies, the condition of having two
nodes common is too rigid. Therefore, we have considered only the first definition
of adjacency.

Two popular metrics are considered for measuring the similarity among the
hyperedges: (i) matching similarity, which is the size of the overlap between the
neighbour sets of the end points, and (ii) Jaccard similarity which is the size of
overlap normalized by the size of the union of the neighbour sets of the end points.
Jaccard similarity value can range from 0 to 1.

Choice of a Similarity Metric: Vector-based similarity metrics are global metrics
whose computation requires the knowledge of the entire hypergraph; hence, they are
inefficient for use on the large real folksonomies. On the other hand, neighbourhood-
based metrics can be efficiently computed locally for a pair of hyperedges. Also,
experiments on synthetically generated hypergraphs (details in Sect. 4.3) show that
Jaccard similarity gives the best performance compared to other similarity metrics.
Further, a metric similar to it was found to perform well in detecting overlapping
communities in unipartite graphs [1]. Hence, we selected Jaccard similarity as the
similarity metric for OHC algorithm.

The Jaccard similarity between two hyperedges e1 D .a; b; c/ and e2 D .p; q; r/

(assuming the common node is a D p) is computed using Algorithm 5, where
N X .i/, N Y .i/ and N Z.i/ denote the set of neighbours of node i of type V X , V Y

and V Z , respectively. Note that if i 2 V X , then N X .i/ D � since the nodes in the
same partition are not linked.
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Algorithm 5 Compute similarity between two hyperedges

Input: hyperedges e1 D .a; b; c/ and e2 D .p; q; r/; a; p 2 V X ; b; q 2 V Y ;
c; r 2 V Z

Output: sim, Similarity between e1 and e2

if a ¤ p AND b ¤ q AND c ¤ r then
sim  0 /* Hyperedges are non-adjacent */

else
/* w.l.o.g., let a D p; Any of the other pairs may be common as well */

S1  N X .b/
S

N X .c/, S2  N Y .c/, S3  N Z.b/

S
0

1  N X .q/
S

N X.r/, S
0

2  N Y .r/, S
0

3  N Z.q/

sim  jS1
T

S
0
1j C jS2

T
S

0
2j C jS3

T
S

0
3j

jS1
S

S
0
1j C jS2

S
S

0
2j C jS3

S
S

0
3j

end if
return sim

3.3 Detecting Communities in Line Graph

With the similarity measure in Algorithm 5, OHC converts the hypergraph to its
corresponding line graph where any unipartite community detection algorithm can
be used. We experimented with different community detection algorithms to find
the best candidate.

Hierarchical Clustering: We can use single-linkage hierarchical clustering to
construct a dendrogram. We start with each node in the line graph as an individual
cluster, then, at each step, the two most similar clusters are merged. This procedure
continues until all nodes belong to a single cluster, and cutting this dendrogram at
some suitable level gives the final clusters of nodes. The optimal level for the cut
can be decided based on the partition density metric [1].

Fast Modularity Optimization: Clauset et al. [10] proposed a fast and greedy
approach to implement the modularity maximization technique proposed by New-
man [29]. Starting from a set of isolated nodes in the graph, the links (which are
present in the original graph) are iteratively added to produce the largest possible
increase in the modularity at each step. Time complexity of this algorithm is
O.n � log2 n/ where n is the number of nodes in the graph.

Louvain Method: Blondel et al. [3] proposed a multistep technique (named
“Louvain algorithm”) where communities are first detected by locally optimizing
modularity in each node’s neighbourhood; in the next step, a weighted graph is
formed where the communities detected are super-nodes. These two steps are
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iterated until modularity (which is always computed in the original graph) does not
increase any further. This algorithm is of complexity O.m/ where m is the number
of edges in the original graph.

Infomap: Rosvall et al. [33] showed that finding the best cluster structure of a graph
is equivalent to optimizing minimum description length of a random walk taking
place on the graph. This optimization can be carried out with greedy search and
simulated annealing. Time complexity of this algorithm (named as “Infomap” by
the authors) is also O.m/.

Choice of a Community Detection Algorithm: We compared the performances of
all the above community detection algorithms using synthetic hypergraphs (details
in Sect. 4.3). The Infomap algorithm is found to perform better than the other
algorithms. Lancichinetti et al. [22] also showed that for community detection in
large graphs, Infomap can identify communities more accurately as compared to
several other algorithms. Further, the relatively low computational complexity of
Infomap allows its use on line graphs of large real folksonomies. Therefore, Infomap
is used as the community detection algorithm.

3.4 Computational Complexity of OHC Algorithm

Now that the choice of the similarity metric for hyperedges and the unipartite
community detection algorithm has been made, we analyse the computational
complexity of OHC algorithm. Let the number of nodes in the hypergraph be n

and average node degree be d , which implies that the number of hyperedges will be
n�d
3

. Each hyperedge will, on average, be adjacent to 3 �.d�1/ other hyperedges. So,
the line graph will have n�d

3
nodes and n�d

3
�3 � .d �1/ D n �d � .d �1/ D O.n �d 2/

edges. Since complexity of Infomap algorithm is linear in the size of the graph
and similarity calculation in the hypergraph also takes O.n � d 2/ time, the time
complexity of OHC is O.n � d 2/.

It is to be noted that the real-world folksonomies are known to be sparse,
having small average degree d . So, essentially the complexity of OHC becomes
O.n/ which makes this algorithm scalable to large real-world folksonomies. The
performance of OHC is evaluated in the next section.

4 Experiments and Evaluation

In this section, we evaluate the performance of the presented OHC algorithm. We
first compare different choices of similarity metrics as well as community detection
algorithms for line graph to be used in OHC (as discussed in Sects. 3.2 and 3.3,
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respectively). Then, we compare the performance of OHC algorithm with the
algorithms by Wang et al. [35] and Papadopoulos et al. [32], which are henceforth
referred to as “CL” and “HGC”, respectively.3

Since evaluation of clustering is difficult without the knowledge of the ‘ground
truth’ regarding the community memberships of the nodes, we have used synthet-
ically generated hypergraphs with a known community structure for evaluation of
the algorithms. We now discuss the generation of synthetic hypergraphs and the
metric used to evaluate the algorithms, followed by the results of experiments on
synthetic hypergraphs.

4.1 Generation of Synthetic Hypergraphs

Synthetic hypergraphs are generated using a modified version of the method used
in [35]. The generator algorithm takes the following as input—(i) number of nodes
in a partition (all three partitions are assumed to contain equal number of nodes),
(ii) number of communities C , (iii) fraction � of all nodes which belong to multiple
communities and (iv) hyperedge density ˇ (i.e. the fraction of total number of
possible hyperedges that actually exist in the hypergraph).

Initially, the nodes in each partition are evenly distributed among each commu-
nity under consideration (e.g. jV X j=C nodes in the partite set V X are assigned
to each of the C communities). Subsequently, � fraction of nodes is selected at
random from each of V X , V Y and V Z , and each selected node is assigned to some
randomly chosen communities apart from the one it has already been assigned to.
Nodes assigned to the same community are then randomly selected, one from each
partition, and interconnected with hyperedges. The number of hyperedges is decided
based on the specified density ˇ.

Users in the real-world folksonomies often tag a few resources related to the
topics that are different from their topics of primary interest, according to their
transient interests at different times. Though such tagging is typically much fewer
than those related to the primary interests of users, it can adversely affect the
performance of algorithms that assign a single community to nodes. To investigate
how the algorithms perform in presence of such links, a second set of synthetic
hypergraphs is generated, where 1% of the generated hyperedges interconnect
randomly selected nodes from different communities. We shall refer to these
hyperedges as “scattered” hyperedges.

The above assignment of communities to nodes constitutes the “ground truth”.
After hypergraphs are generated, information about the communities is hidden and
then communities are detected from the hypergraph by the three different commu-
nity detection algorithms. The community structure detected by each algorithm is
compared with the ground truth using the metric “normalized mutual information
(NMI)” which is explained below.

3We acknowledge the authors of [32, 35] for providing us with the implementations of their
algorithms.
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4.2 Normalized Mutual Information

Normalized mutual information (NMI) is an information-theoretic measure of
similarity between two partitionings of a set of elements, which can be used to
compare two community structures for the same graph (as identified by different
algorithms). The traditional definition of NMI does not consider the case of a node
being present in multiple communities. Hence, Lancichinetti et al. [23] proposed an
alternative definition of NMI considering overlapping communities. According to
[23], given two community structures/node partitions X and Y , NMI is defined as

NMI.X; Y / D 1 � 1

2

�
H.X jY /norm CH.Y jX/norm

�

where

H.X jY /norm D 1

NX

X

i

minj 2f1;2;:::;NX g H.Xi jYj /

H.Xi/

H.Y jX/norm D 1

NY

X

i

minj 2f1;2;:::;NY g H.Yi jXj /

H.Yi/

Here, H.X/ and H.Y / are entropies of X and Y . H.Y jX/ and H.X jY / are
conditional entropies and NX and NY are number of clusters in X and Y ,
respectively.

The NMI is computed in two steps. First, the pairs of clusters that are closest to
each other are found from two clusterings. Second, the mutual information between
those pairs of clusters is averaged. The NMI value is in the range Œ0; 1�; the higher
the NMI value, the more similar are the two community structures (refer to [23] for
details).

4.3 Design Choices for OHC

To decide a similarity metric and a community detection method (as required by
OHC), we generated synthetic hypergraphs having various hyperedge densities ˇ =
0.1, 0.2, : : :, 1.0. In each of these hypergraphs, 10% of the nodes in each partition
belonged to multiple communities (i.e. � = 0.1).

First, we compare the performances of the different similarity metrics. Infomap is
used as the community detection method in line graph for all cases. The NMI values
(considering the true and detected community structures) are shown in Fig. 1a. We
can see that the Jaccard similarity metric consistently gives the best result.

Once Jaccard similarity has been chosen as the desired similarity metric, we
compare different community detection methods which can be applied on line graph
(discussed in Sect. 3.3). Figure 1b shows the comparison of NMI values—across all
hyperedge densities, Infomap algorithm is found to perform better than the other
algorithms.
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Fig. 1 Comparison of the NMI values with varying hyperedge density for (a) different similarity
metrics and (b) different community detection algorithms

4.4 Comparing OHC with the Other Algorithms

The CL and HGC algorithms produce only the user and the tag communities,
respectively. Hence, while calculating the NMI value for these algorithms, we have
used the community memberships of only the user (respectively, the tag) nodes
according to the ground truth. On the other hand, the proposed OHC algorithm gives
composite communities containing all three types of nodes. Hence, to evaluate the
performance of OHC, we have considered the community memberships of all three
types of nodes.

For all the following experiments, jV X j D jV Y j D jV Z j D 200 and number
of communities C D 20. For each result, random hypergraphs were generated 50

times using the same set of parameter values, and the average performances over all
those 50 runs are reported.

Performance w.r.t. Number of Hyperedges: To study how the number of hyperedges
affects the performance of the clustering algorithms, we generated synthetic hyper-
graphs having various hyperedge densities ˇ = 0.1, 0.2, : : :, 1.0. In each of these
hypergraphs, 10% of nodes in each partition belonged to multiple communities (i.e.
� = 0.1). The NMI values for the three algorithms are shown in Fig. 2a. Across
all the hyperedge densities, OHC performs significantly better than HGC and CL
algorithms. A possible explanation for this is that the proposed OHC algorithm
utilizes the complete tripartite structure of the hypergraph, whereas both CL and
HGC algorithms work on unweighted projections which is known to result in loss of
a significant part of the information contained in the original tripartite network [18].

Note that even for very low hyperedge densities, when detecting community
structures is difficult, the proposed OHC algorithm performs very well, resulting
in NMI scores above 0:8. This makes OHC suitable for real-world folksonomies
where the density of hyperedges is typically low.



Discovering Overlapping Communities in Folksonomies 213

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Hyperedge Density (β)

N
M

I

OHC
HGC
CL

a

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Hyperedge Density (β)

N
M

I

OHC
HGC
CL

b

Fig. 2 Comparison among OHC, CL and HGC algorithms—variation of the NMI values with
varying hyperedge density (a) without scattered hyperedges (b) in presence of 1% scattered
hyperedges

Performance in Presence of Scattered Hyperedges: We have also experimented
with synthetic hypergraphs having 1% of total hyperedges as “scattered”.
Figure 2b shows the result—as the presence of scattered hyperedges disturbs the
community structure, the performance of all three algorithms degrades as expected.
However, the performance of OHC is still better than HGC and CL algorithms—the
NMI scores for OHC remain above 0:8 which signifies its effectiveness in detecting
community structure even in the presence of noisy or scattered hyperedges.

Performance w.r.t. Fraction of Nodes in Multiple Communities: A node, which
belongs to multiple communities, creates links to nodes in all those communities.
Hence, from the perspective of a particular community, the links created by this
member node to nodes in other communities reduce the exclusivity of this particular
community. Therefore, as the number of nodes in multiple communities increases,
the community structure becomes more difficult to identify. We now study how this
affects the performance of the algorithms.

We generated synthetic hypergraphs by varying the fraction of nodes in multiple
communities � = 0.1, 0.2, : : :, 1.0 while keeping hyperedge density ˇ constant at
0:2. This low value of hyperedge density was chosen to measure the effectiveness
of the algorithms in sparse environment (as in real folksonomies). Figure 3a shows
that OHC performs consistently better than HGC and CL algorithms. As the
community structure becomes more and more complex, information loss as a result
of projections becomes increasingly more crucial. Hence, the performance of HGC
and CL algorithms degrades sharply with the increase in � , while the performance
of OHC algorithm shows relatively much greater stability.

Performance w.r.t. Size of Real Community: We also observed how the perfor-
mances of different algorithms are affected by the size of each real community.
Hypergraphs having 200 nodes in each partition were generated while changing the
number of real communities. Here, hyperedge density is fixed at 0:2 and 10% of
total nodes belong to multiple communities. The results are shown in Fig. 3b. When
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Fig. 3 Another comparison among OHC (proposed), CL and HGC algorithms—variation of the
NMI values keeping hyperedge density constant at 0.2 and changing (a) fraction of nodes in
multiple communities and (b) number of “real” communities

number of nodes in one community is large, random assignment of hyperedges
during the generation of synthetic hypergraphs may create smaller communities
inside one large community. Community detection algorithms find these smaller
communities rather than the large encompassing community. For this reason, as
the number of real communities increases, the size of each community decreases,
enabling better NMI performance. Here also, the performance of OHC is superior
than CL and HGC algorithms.

The above experiments clearly validate the motivation that considering the complete
tripartite structure of hypergraphs can result in better identification of the commu-
nity structure, as compared to considering projections (as done in prior studies).
In the next section, we use OHC to study the community structure of real-world
folksonomies.

5 Experiments on Real Folksonomies

In this section, we apply OHC algorithm to gain insights into the community
structures prevalent in the real-world folksonomies. For this, we use publicly
available datasets [6] consisting of snapshots of the popular folksonomies Delicious,
LastFm and MovieLens. The statistics of these datasets are summarized in Table 1.

5.1 Using OHC to Detect Overlapping Communities

For all three datasets, OHC successfully groups semantically related resources as
well as the tags and the users tagging these resources. As an illustration, Table 2
shows the resources and the tags placed in some example communities for each of
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Table 1 Statistics of real folksonomy datasets

Dataset # users # resources # tags # hyperedges

Delicious 1,867 69,226 53,388 437,593
LastFm 1,892 17,632 11,946 186,479
MovieLens 2,113 10,197 13,222 47,957

Table 2 Examples of communities detected by proposed OHC algorithm. The algorithm success-
fully clusters nodes related to a common semantic theme (Column 2). Nodes related to multiple
themes (boldfaced and italicized) are placed in overlapping communities

Community Theme Example of member nodes

LastFm artists Hard rock Van Halen, Deep Purple, Aerosmith, Alice Cooper,
Guns N’ Roses, Scorpions, White Lion, Bad Com-
pany, Bon Jovi, Hardline

(resources) Heavy metal Van Halen, Deep Purple, Aerosmith, Iron Maiden,
Motorhead, Black Sabbath, Metallica, Twisted Sister,
Crazy Lixx

LastFm tags Metal Blues rock, psychedelic rock, rap metal, nu metal,
metal, progressive metal, speed metal, metalcore,
viking metal, power metal

Rock Blues rock, psychedelic rock, rap metal, nu metal,
progressive rock, soft rock, gothic rock, punk rock,
hard rock, pop rock

MovieLens
movies

Superhero The Incredibles, Shrek, Shrek 2, The Incredible
Hulk, Batman Begins, Batman Returns, Spider-Man,
Superman, X-Men

(resources) Animation The Incredibles, Shrek, Shrek 2, The Incredible
Hulk, Kung fu Panda, Beowulf, Ratatouille, Finding
Nemo, Toy Story

MovieLens tags Criticism Violent, brutal, too violent, waste of celluloid, dis-
turbing, junk, tragically stupid, lousy script, waste of
money, confusing plot

Violence Violent, brutal, violence, murder, fatality, civil war,
great villain, dark, Spanish civil war, serial killer,
Vietnam war, world war II

Delicious tags Web 2.0 Social networking, social web, php, drupal, xml, cms,
webdesign, css3, Twitter, Skype, Ruby, Facebook,
Snippets, Wikipedia, blog

the three datasets. It is evident that the resources and the tags that are placed in the
same community are often related to a common semantic theme.

A closer look at Table 2 reveals that the algorithm also correctly identifies nodes
that are related to multiple overlapping communities (themes). For instance, the
band Van Halen is placed in two different communities detected from LastFm. The
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Wikipedia article about Van Halen4 justifies this placement pointing their genre as
both “hard rock” and “heavy metal”.

A nonoverlapping community detection algorithm would have placed this node
in either of the two communities (assume “hard rock”). Thus, community-based
recommendation systems (which recommend resources to users based on common
memberships in communities) would have overlooked the fact that this resource is a
candidate for recommendation to users who are interested in “heavy metal” as well.
OHC algorithm places the resource in both communities, thus raising the chances
of this resource being recommended to users interested in “hard rock” as well as
“heavy metal”.

5.2 Evaluation of Communities Detected

The principal difficulty in evaluating the communities detected in case of real
folksonomies is the absence of the “ground truth” regarding the community
memberships of nodes in folksonomies, since their huge size makes it impossible
for human experts to evaluate the quality of identified communities. Hence, we use
the following two methods for evaluation:

(1) We use the graph-based metric conductance, which has been shown to correctly
conform with the intuitive notion of communities and is extensively used for
evaluating the quality of communities in online social networks [24].

(2) In case of the folksonomies which allow users to form a social network among
themselves, we can assume that users having similar interests are likely to be
linked in the social network or at least to have a common social neighbourhood
(a property known as homophily [26]). We utilize this notion to evaluate the user
communities detected by CL algorithm and the user nodes in the communities
identified by OHC algorithm.

Comparison of Conductance Value
As conductance is defined only for unipartite networks, we compare the tag
communities detected by HGC with the tag nodes in the communities identified by
OHC algorithm. Conductance values range from 0 to 1 where a lower value signifies
better community structure [24].

Figure 4 shows the cumulative distribution of the conductance values of the
detected tag communities by the two algorithms. Across all three datasets, OHC
produces more communities having lower conductance values, which implies that
OHC can find communities of better quality than obtained by HGC algorithm. The
reason for this superior performance is that OHC groups semantically related nodes

4http://en.wikipedia.org/wiki/Van Halen

http://en.wikipedia.org/wiki/Van_Halen
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into relatively smaller cohesive communities instead of creating a few number of
generalized large communities. For examples of semantically related communities
identified by OHC, refer to Table 2.

Comparing Detected User Communities with Social Network:
In case of the folksonomies, which allow users to form a social network,5 there are
two types of relationships among users—explicit social connections (in the social
network) and implicit connections through their tagging behaviour (e.g. tagging
the same resource). A community detection algorithm for hypergraphs utilizes
the implicit relationships to identify the community structure, and we propose to
evaluate the detected community structure using the explicit connections that the
users themselves create in the social network. For instance, if a large fraction of
the users who are socially linked (or share a common social neighbourhood in the
social network) are placed in the same community (by an algorithm), the detected
community structure can be said to group together users having common interests.

To compare the community structure identified by two algorithms, we consider
the user pairs who are within a certain distance from each other in the social network
(where distance 1 implies directly connected friends) and compute the fraction of
such user pairs who has been placed in a common community by each algorithm.
Figure 5a shows the result for the proposed OHC algorithm and the CL algorithm,
for the LastFm dataset. Across all distances, OHC places a larger number of user
pairs who share a common social neighbourhood, in a common community, as
compared to the CL algorithm. Also, as the distance between two users in the social
network increases, both algorithms put a smaller fraction of such user pairs in the
same community.

5LastFm has an undirected social network, while in Delicious, a user can be a “fan” of another
user, but this fan relationship may or may not be reciprocated. We assumed two users are linked
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Fig. 5 Comparing the community structures detected by OHC (proposed) and CL algorithms with
the social networks in (a) LastFm and (b) Delicious

We also investigate the reverse question—among the users who are placed in
a common community (by a community detection algorithm), what fraction of
these users is actually connected in the social network (or share a common social
neighbourhood)? While investigating this question, it is to be noted that “quality”
of large communities detected by community detection algorithms is known to
be lower than smaller communities [24]. Hence, it is meaningful to answer this
question for detected communities taking their size into consideration. Figure 5b
shows the fraction of user pairs that is placed in a common community by the OHC
and CL algorithms, which are within a certain distance in the social network, for
the Delicious dataset. For detected user communities of size lesser than 20, about
70% of the user pairs that are placed in a common community by OHC are actually
friends in the social network, whereas the corresponding value for the CL algorithm
is much lesser. However, for larger detected communities (having more than 20

users), the fraction of user pairs who share a common social neighbourhood is much
lower and almost identical for both algorithms.

The above results clearly show that the presented OHC algorithm can detect
much better community structure in real folksonomies, as compared to the existing
CL and HGC algorithms. The fact that a very large fraction of the user pairs that are
placed in a common community by OHC are actually friends shows that OHC can
be used to identify potential friends directly from the hypergraph structure.

6 Conclusion

In this chapter, we presented the “Overlapping Hypergraph Clustering” (OHC)
algorithm which detects overlapping communities considering the full tripartite
hypergraph structure of folksonomies. Through extensive experiments on synthetic

if they belong to a mutual fan relationship. In the LastFm and Delicious datasets, there are 12,717
and 7,668 bidirectional links, respectively, in the social network among users.
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as well as real folksonomy networks, we showed that OHC algorithm outperforms
existing algorithms that consider projections of hypergraphs.

In large folksonomies, it is difficult for an individual user to find other like-
minded users as well as resources of her interest. OHC algorithm successfully
groups nodes into multiple communities where each community represents a topic
of interest. Based on these interests, like-minded users as well as resources can be
identified. Thus, this algorithm can be effectively used in recommending interesting
resources and friends to users in folksonomies. Our future work will be to build such
a recommendation system taking advantage of the effectiveness of the algorithm.
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