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4.1 INTRODUCTION

Natural, surficial, cohesive1 (clay-bearing), aquatic sediments are subject to a variety of
phenomena in which physics, rather than say chemistry, plays an essential role; this includes,
but is not limited to, bioturbation, self-weight compaction and phase growth. Scientific mono-
graphs (e.g., Berner, 1971, 1980; Boudreau, 1997; DiToro, 2001; Burdige, 2006; Schultz and
Zabel, 2006) that focus on early diagenesis, i.e., those changes occurring in the top 1–10 meters
(m) of aqueous sediments, make only passing reference to the physics of early diagenetic
phenomena. In contrast, civil engineers, soil physicists and geophysicists have afforded great
attention to the physics/mechanics of compaction, particularly in soils, anthropogenic sedi-
ments and basin-scale studies (e.g., Yong and Warkentin, 1966; Giles, 1997; Wang, 2000; Craig,
2004; Mitchell and Soga, 2005; Das, 2008); yet, this knowledge has not been effectively
transferred to obtain a better understanding of early diagenesis.

To place this gap in context, consider the following two questions. Firstly, could one hope to
make sense of the flight of a bird without an understanding of the properties of the air it flies
in? Likewise, would one be able to predict currents in a stream or the sea without knowledge of
the properties and physics of water? Presumptions aside, we would say no in both cases. Yet,
most scientists, and even some engineers, who study early diagenetic phenomena have been
surprisingly content to ignore the physics of surficial, cohesive sediments.

This chapter addresses the physics of surficial, aqueous, cohesive (clay-bearing) sedi-
ments and how these physics play into a number of natural diagenetic phenomena. These
phenomena occur in both pristine and contaminated sediments. This chapter is neither
extensive nor comprehensive; it simply states a simple version of the three-dimensional,
mathematical theory of stresses and strains common to books on mechanics (fluid or
solid). Instead, its emphasis centers on some final results from theory and certain applica-
tions. As such, while this chapter may appear mathematically unsophisticated to those with a
background in mechanics, the aim is to illustrate the application of theory to early diagenesis
in natural, cohesive, surficial, soft sediments. Other more mathematical treatments of this
topic for surficial sediments are available in Verreet and Berlamont (1988) and Winterwerp
and van Kesteren (2004).

1 We use “cohesive” in the physics sense of “the sticking together of particles,” without the geological restriction that
these sediments be muds. Thus, we have found that clay-bearing sands are often cohesive, and are treated that way.
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The chapter begins with a review of the conceptual framework for describing the physical
behavior of materials subject to stress(es). This review introduces names for certain
end-member behaviors and the parameters found in their mathematical descriptions. Obtaining
values of these constants for soft clay-bearing sediments is not a trivial task and a subsequent
section reviews progress in that direction. Finally, these behavioral concepts are used to explain
self-weight compaction, animal motion and bioturbation, and bubble formation – all early
diagenetic phenomena that occur in pristine and contaminated sediments. Such phenomena are
relevant to the study and understanding of contaminated sediments because compaction can
concentrate pollutants, bioturbation can spread the contaminant to pristine zone and areas, and
bubbles can release volatiles chemicals to the overlying waters.

4.2 PHYSICAL MODELS (RHEOLOGY) OF MATERIALS

4.2.1 Conceptual Models

If a stress (force per unit area), s, is applied to a homogeneous material, a number of
outcomes are possible. The application of stress usually engenders strains (deformations),
e, in the material. Stress and strain are inherently three-dimensional quantities (i.e., tensors),
and they are defined mathematically in a subsequent Section 4.2.5. For the moment, howe-
ver, they can be treated as uni-dimensional, which can then be simply extended to three
dimensions.

Common classic responses to stress include (Long, 1961; Shames, 1964; Jaeger, 1969; Davis
and Selvadurai, 1996, 2002; Giles, 1997; Winterwerp and van Kesteren, 2004; Bird et al., 2007):

� Continuous deformation of the material with time ð _e= de=dt� 0Þ as long as the force
is applied (Figure 4.1a).2 This type of response characterizes what is known as a fluid;
hence the common adage thrown at generations of first year physics students that “a
fluid does not support a stress.” If the rate of strain (deformation) is constant with
time, the fluid is termed Newtonian. Non-Newtonian fluids include power-law fluids
and Bingham plastics.

� A material can adopt a new stable (time-independent) configuration upon application
of a stress. If this deformation is entirely reversible when the stress is removed, then
this material is said to be elastic (Figure 4.1b). If the new configuration is stable, but not
reversible, the stress has passed the Yield or Elastic Limit and has deformed plastically.
Plastic deformation can involve a flow. Strain hardening describes stable, increasing
deformation that is significantly irreversible.

� Some materials will exhibit fluid-like behavior in response to some stresses and stress
rates, while elastic or even plastic behavior for others. These are visco-elastic and visco-
elasto-plastic materials. Sediments fall within this category, but idealization to an end-
member is often possible.

The above classification is not exhaustive, and it is primarily based on tensional (pulling)
stresses on solids. Geological processes are often compressive and that is considered below.

2 Many papers in the literature plot strain, e, or strain rate (velocity), _e, on the x-axis, probably for historic reasons, i.e.,
you could see the strains or strain rates, but stresses were hard to measure. Figure 4.1 plots the stress, s, on the x-axis
to be consistent with the scientific tradition of placing the independent variable (cause) on the abscissa. There will be
an advantage to this when we consider compaction.
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4.2.2 Phenomenological Formulas and Constants

The behaviors described above can be encapsulated into simple behavioral formulas,
so-called constitutive equations, e.g., Jaeger (1969) and Davis and Selvadurai (1996, 2002). In
general, stress applied even in a single direction will create strains in all directions; nevertheless,
it is possible to discuss constitutive equations by considering only tensile/compressive stress
applied in a single direction, s, and the resulting deformation in that direction, e (see
Appendix 4A).

A fluid deforms continuously with applied stress (e.g., a pressure gradient), and a Newto-
nian fluid does so linearly; thus, the latter is characterized by the formula

s ¼ �_e (Eq. 4.1)

where Z is the dynamic viscosity. By equating _e to the spatial gradient of the velocity, one
obtains the more familiar form of Newton’s law of viscosity (Bird et al., 2007).

A linear elastic (Hookean) substance responds reversibly to stresses to attain a new
equilibrium configuration, i.e.,

s ¼ ke (Eq. 4.2)

where k is formally the “spring constant,” but it is identical to Young’s modulus, E, for the
purposes in this chapter, i.e., E ¼ k. The models advanced by Johnson et al. (2002), Gardiner
et al. (2003) and Algar and Boudreau (2009) to explain methane bubble formation in muddy
sediments are Hookean (see below).
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Figure 4.1. Figures illustrating classic behavior of fluids (a) and solids (b) to applied stress (s).
(a) True fluids do not support stresses and flow as a result of applied stress, i.e., their strain
changes continuously with time, _e. The flow responsemay be linear (Newtonian) or nonlinear (e.g.,
pseudoplastic). A Bingham fluid acts like a solid at low stresses, but as a Newtonian fluid above a
threshold. (b) Elastic solids will reach a new equilibrium configuration, characterized by the strain
«, under applied (tensile) stress. If the deformation is completely reversible and linear, then the
solid is Hookean. At some stress the material deformation will cease to be reversible (yield point),
and further deformation is termed plastic Note that a solid may deform linearly with applied stress,
but fail to be reversible; plasticity does not necessitate nonlinearity.
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There are a variety of idealized materials that exhibit elastic behavior at low strains and
fluid behavior above a strain threshold. When a solid behavior is Hookean below such a limit
and the subsequent fluid behavior is Newtonian, then the substance is termed a Bingham
plastic. Bingham models have been applied to many sediments (see the review by Verreet and
Berlamont (1988)).

A Kelvin or Voigt material, which is one form of a linear visco-elastic substance, is
approximated by assuming that viscous and elastic behaviors act in parallel, i.e.,

�_eþ Ee ¼ s (Eq. 4.3)

and this has been employed by Maa and Mehta (1988) and Jiang and Mehta (1995) to describe
the transport behavior of some muds, and by Algar (2009) to explain gas bubble rise in cohesive
sediments. Conversely, a Maxwell substance assumes that these responses act in series, i.e.,

_e ¼ _s
E

� �
þ s

�

� �
(Eq. 4.4)

and this has been employed inmodeling fluidized muds (Maa, 1986; Williams andWilliams, 1989).
Many other types of behavior can be captured by these types of simple constitutive equations.

As noted above, a solid may exhibit plastic behavior, during which the solid will deform
as in elastic deformation, but the deformation is not reversible; in other words, plastic
deformations permanently alter the shape and relative positions of all the “particles” that
make up the solid. Release of the stress can lead to some relaxation of the strain, but not to
the original undeformed positions. The simplest models of plasticity are unidirectional in
terms of the strain obtained for a stress level and can be simple algebraic equations, including
linear forms like Equation 4.2. Plasticity is sometimes used to describe compaction of
sediments, as discussed below.

4.2.3 Phenomenological Constants for Sediments

While the models described above were originally intended for relatively homogeneous
materials, soft, cohesive (clay bearing) sediments, as well as other geological media, have been
described using these equations (Jaeger, 1969). Aqueous sediments are patently heterogeneous
and composite, made of an immiscible mixture of pore fluid and solid grains. When subject to a
stress, sediments can and do behave in a more complex manner than homogeneous substances,
and this in turn complicates not only their classification, but the values and meanings of their
phenomenological constants.

Applying a stress can cause pore fluid to move relative to the solid grains, i.e., Darcy flow.
If flow does occur, the solids and fluids are usually displaced relative to each other; therefore,
this separation would characterize an irreversible deformation. As a consequence, scientists
and engineers who make measurements of the geo-mechanical properties of sediments and the
resulting phenomenological constants are careful to specify if the measurement permitted or
did not permit pore fluid flow, regardless of whether or not such a relative displacement/flow,
in fact, did occur. Thus, if the excess porewater pressure can be dissipated by flow, the
measurement is termed drained; conversely, if pore fluid flow is prevented, e.g., by confine-
ment in an encompassing, impermeable sample container, then the measurement is called
undrained. Sediments in nature are usually in a drained state with respect to natural processes,
so that drained-state elastic and plastic constants would normally be employed.

Values for the viscosity (Z) and the true/reversible Young’s modulus (E) have been
obtained experimentally for a number of sediment sites; these values, as well as some
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environmental information, are provided in Tables 4.1 and 4.2. It is not known if these values
are representative of all cohesive sediments, nor is the dependence of these values on sediment
properties, i.e., depth, grain size, porosity, temperature, organic matter content, etc., quantita-
tively established at this time. The few sediment viscosities in Table 4.1 are for non-fluidized
conditions. The values show that clay-bearing sediment is indeed “slower than molasses in
winter”3 and peanut butter on cold toast! This small viscosity explains why clays removed from
core barrels retain their shape under their own weight (load) for long periods of time;
nevertheless, under suitable stress conditions sediments can and do flow, to which turbidite
flows attest.

Reversible (elastic) Young’s moduli are reported in Table 4.2 and require one caveat. Finite-
strain E values from reversible compression/release tests, e.g., Figure 4.2, are on the order of
105 Newtons/square meter (Nm�2), or up to five orders of magnitude lower than what is
recorded by acoustical measurements. This apparent discrepancy is not a problem, but rather it
is related to the length and time scales of the applied stress and the measurements (Clayton and
Heymann, 2001; L’Esperance, 2009). The two methods measure different parameters; conse-
quently, one should use finite strain values for finite strain phenomena.

The reversible (elastic) E values in Table 4.2 are again from a limited data set from only a
few sites, and they can hardly be called representative. In addition, the dependence of the
reversible E on sediment properties and depth is not well known, but it does appear to increase
with depth (Barry, 2010). See as an example Figure 4.3, i.e., the sediment becomes increasingly
stiff with depth, undoubtedly due to the effects of compaction. More determinations from a
wide variety of cohesive sediment environments are needed.

Another mechanical parameter that will appear in subsequent formulas is Poisson’s Ratio,
n; this parameter is the ratio of the deformation in the direction of an applied uni-axial stress to
the resulting deformation in the other directions (assuming isotropy). For an incompressible
solid, n ¼ 0.5. Since both water and most solids that make up sediments are incompressible,
one would expect a n near 0.5, at least if the sediment is fully saturated. Table 4.3 contains
Poisson’s Ratios for various sediments (including some sands), and the expectation is generally
met. Even acoustically determined n values are near 0.5. However, the presence of significant

Table 4.1. Selected Experimentally Determined Viscosities of Some (Non-resuspended) Muds and
Other Reference Materials

Source Location Porosity Viscosity (Pa∙s) Source

Kerala, India 0.88 2.76 � 104 Jiang and Mehta, 1995

Okeechobee, USA 0.89 9.56 � 102 Ibid

Mobile Bay, USA 0.87–0.93 0.0215–2.24 � 102 Ibid

Synthetic mud 0.89–0.97 1.15 � 104 Ibid

Gulf of Mexico n/a 5.0 � 104 Hsiao and Shemdin,
1980

Pure water (20�C) – 1.0 � 10�3 http://en.wikipedia.org/
wiki/Viscosity

Molasses (25�C) – 5.0–10 Ibid

Peanut butter (25�C) – 250 Ibid

3 Old North American proverb, indicating very slow to the eye.
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Table 4.2. Young’s Modulus Values (Drained) for Various Sediments and for Selected Reference
Materials

Source Location Sediment Type E (Pa)a Method Source

Cole Habour, NS Silty sand 2.4–5.0 � 104 Uniaxial
compression

L’Esperance, 2009

Cole Harbour, NS Silty sand 1.4 � 105 Uniaxial
compression

Johnson et al., 2002

Windsor and
Canard, NS

Clay-bearing
silty sands

0–9 � 105 (0–
25 cm)

In situ dilatometer Barry, 2010

Continental shelf Fine sand to
silty sand

8.13–15.11 � 108 Acoustic
(calculated)

Hamilton, 1971

Windsor, NS Silt to clay 7.5 � 105 Uniaxial
compression

L’Esperance, 2009

Continental shelf Silt to clay 4 � 108 Acoustic
(calculated)

Hamilton, 1971

Deep sea Clays 1.45–4.3 � 108 Acoustic
(calculated)

Hamilton, 1971

London clay
(terrestrial)

Clay 1.1–1.2 � 108 Bender element-
triaxial

Gasparre et al., 2007

Margin sediment,
India

? 2.5–2.9 � 109 Acoustics Raju and
Ramana, 1986

Synthetic Gelatinb 0.6–1.3 � 103 Uniaxial
compression

Takada, 1990

Synthetic Gelatinb 2.5–50 � 103 Uniaxial
compression

Hall et al., 1997

Synthetic Gelatinb 1.5–10 � 103 Uniaxial
compression

Johnson et al., 2002

Synthetic Gelatinb 31–81 � 103 1-D tensile tester Sato et al., 2001

Synthetic Gelatinb 9.7–17 � 103 Uniaxial
compression

L’Esperance, 2009

Synthetic Polyethylene 0.8–2.7 � 109 Compression Johnson et al., 2002

Synthetic Nylon 2–4 � 109 Compression Johnson et al., 2002

Synthetic Rubber 0.01–0.1 � 109 Compression http://www.
engineeringtoolbox.

com/young-modulus-d_
417.html

Synthetic Aluminum 69 � 109 Compression http://www.
engineeringtoolbox.

com/young-modulus-d_
417.html

a1 N m�2 ¼ 1 Pa
bVaries considerably with mixture strength and temperature
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Figure 4.2. An example of a linear and reversible stress-strain diagram for a cohesive sediment
from Nova Scotia, Canada. This is true Hookean elasticity with a Young’s modulus of
1.9 � 105 Nm�2 (from Barry, 2010).
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Figure 4.3. Typical depth profile of (reversible) Young’s modulus, E, at a field site (Windsor) in
coastal sediment of the Bay of Fundy, Nova Scotia, Canada. There is an essentially linear increase
in modulus with depth from values near zero at the surface to values of 600 kPa at 22 cm depth.
Profiles were run in two adjacent locations only 30 cm apart (solid and dashed lines) and show
good homogeneity over short, lateral distances. One standard deviation error shown for average
of three measurements (from Barry, 2010, but also see similar plots in Barry et al., 2012).
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free gas can drive n down to smaller values, even negative values. Some geophysicists employ n
values between 0.2 and 0.3 for some acoustical calculations, but measurements tend to support
values near 0.5 when gas is not present.

Given Young’s modulus and Poisson’s Ratio, it is possible to calculate two other common
elastic constants, the shear modulus, G, (Davis and Selvadurai, 1996, 2002)

G ¼ E
2ð1 þ nÞ (Eq. 4.5)

and the Lamé constant, l,

l ¼ nE
ð1 þ nÞð1 � 2nÞ (Eq. 4.6)

If sediment is essentially incompressible, as indicated by the values in Table 4.3, then the
shear modulus is E/3 and the Lamé constant is infinite. Finite-strain bending plate measure-
ments (e.g., Lavoie et al., 1996) produce G values of 3–4 � 105 Nm�2 going from a depth of 20
centimeters (cm) to 200 cm in a muddy sediment of Ekernfjorde Bay (Germany). If Windsor-
Canard sediments (Table 4.3) are indicative of E values for similar sediments, then one would
indeed predict G values in this range, if these sediments are incompressible; therefore, the
existing database of non-acoustic shear moduli may represent a significant resource for
obtaining values of (reversible) Young’s moduli for aqueous sediments.

If sediment can act as a solid, at least under some stress conditions, then it can fail, i.e.,
fracture, rather than simply flow or plastically deform. For example, fracture of sediments
occurs when bubbles form as a result of gas injection (Johnson et al., 2002) or when various
organisms (worms, clams, etc.) move through soft cohesive sediments (Dorgan et al., 2005).

Table 4.3. Poisson’s Ratio (Drained) for Various Sediments

Source Location Sediment Type n (dimensionless) Source

Various Sand, fine sand, silty
sand

0.453–0.491 Hamilton, 1971

San Diego Medium sand 0.494 Hamilton et al., 1970 as
cited in Hamilton, 1979

Shallow to deep sea Silt clays, turbidites and
mudstones

0.420–0.497 Hamilton, 1979

North sea Sand 0.487–0.499 Hamilton, 1979

Cole Harbour, NS Fine sand 0.49956 � 0.003 L’Esperance, 2009

Deep sea to continental
terrace

Silty clay 0.478–0.487 Hamilton, 1971

– Clays 0.4982–0.4997 Davis and Schulteiss,
1980 as cited in Salem,

2000

Windsor, NS Silt/clay 0.4989 � 0.0008 L’Esperance, 2009

– “Typical” silt and clay 0.25 Breitzke, 2006

Various Soils (including
undersaturated)

�1.0 to 0.5 Pickering, 1970 as
quoted by Salem, 2000

Synthetic Gelatin 0.5 Markidou et al., 2005

88 B.P. Boudreau et al.



The simplest theory of solids, i.e., linear elastic fracture mechanics (LEFM), e.g., Broek (1982)
or Gross and Seelig (2006), characterizes the fracture strength of a solid by a parameter K1C,
known as the fracture toughness or the critical stress intensity factor – a real mouthful. K1C is a
material property and it has been measured in a few soft cohesive sediments, as well as in the
analogue material, gelatin (see Table 4.4). Fracture of real solids is related to K1C, rather than
tensile strength, because real solids contain flaws, and it is the opening of these flaws that
permits initiation of fracture. In an ordered solid, such as a perfect crystal that contains no
flaws, fracture must break the underlying bonds of the structure, and that takes far more
energy, characterized as the tensile strength.

That cohesive sediments have a fracture toughness should come as no surprise, as they have
long been credited with possessing shear strength (e.g., Mehta and Partheniades, 1982; Parthe-
niades, 1991), which is simply fracture by applied shear, rather than tensional, forces. (Note that
while such measurements are reported as shear strength, they are, in fact, measurements of
shear toughness.) Measurements of shear strength have long been made in cohesive sediments,
and the literature on that topic is so large that it cannot be even superficially reviewed here.
Shear strength is employed as a critical parameter in modelling the erosion of mud beds. The
relationship between shear strength and K1C has not been established for sediments.

The parameter K1C appears generally to increase with depth due to compaction (Johnson
et al., 2012), as does the shear strength (Partheniades, 1991), but K1C is also dependent on grain
size of the sediment, and probably on other sediment properties and may thus change with an
alteration in lithology (Figure 4.4). Sands have no, or little, cohesion, while clays do; thus,
sandier sediment layers show up as drops in K1C values in profiles that otherwise increase with
depth, again due to compaction.

4.2.4 The Origin of Sediment Mechanical Properties

The value of the mechanical constants for a cohesive sediment must be related to the way
this material is put and held together. Early views of cohesive sediment fabric (e.g., Englehardt
and Gaida, 1963; Rieke and Chilingarian, 1974) centered on the idea of the presence a “house of
cards” structure of fine clay platelets, held together by the attraction of positively charged
edges to negatively charged basal plates. TEM photomicrographs of real cohesive sediments
(see Bennett et al., 1991, 1996) show a more complicated fabric, with mixtures of particles of
different shape and sizes, clays both stacked and in house of cards and with admixed organic
matter. In fact, while electrostatics plays a role in aggregation of sediments, these sediments
seem to be primarily held together by long polymer organic molecules (e.g., Hunter, 2001;
Winterwerp and van Kestern, 2004). An indication of the truth of that hypothesis is contained in

Table 4.4. Fracture Toughness (K1C) of Some Cohesive Sediments

Source Location Sediment Type K1C (N m�3/2) Source

Cole Harbour, NS Clay-bearing silty sand 410–550 Johnson et al., 2002

Canard, NS Clayey silt 80–1,300 Johnson et al., 2012

Various Agricultural soils 1,503–6,036 Aluko and Chandler,
2006

Synthetic Gelatin 45–110a Menard and Tait, 2002

Synthetic Gelatin 28–60a Rivalta and Dahm, 2006

aDependent on concentration and temperature
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Table 4.2, which shows that gelatin, made of long chain polymeric proteins, has a Young’s
modulus similar to that of sediments. Similarly, the fracture strength of sediments and gelatin
are comparable (Table 4.4), which suggests the breaking of similar bonds.

4.2.5 The Mechanical Equations for a Deforming Body

Now that we have the mechanical models and constants relevant to sediments, how are they
employed? These constitutive equations and their associated constants form part of a system of
equations that govern the deformation of any material. An example set of such equations is
given below for an elastic Hookean substance, which is the most commonly assumed form. In
this example, we generalize to a three-dimensional Cartesian coordinate system.

The following equations govern the interplay between the applied stresses and the observed
deformations. There are nine possible stress components, but isotropic symmetry requirements
reduce this to six independent components, sx, sy, sz, tx, ty and tz, where s indicates a
normally directed stress and t represents a tangential (shear) stress. The subscripts on s
correspond to the direction in which the normal stress is applied and the subscripts on t indicate
the direction normal (perpendicular) to the plane on which the tangential stress is applied.

For a homogeneous solid, these stresses must satisfy the so-called static equilibrium
conditions (e.g., Timoshenko and Goodier, 1934; Biot, 1941; Davis and Selvadurai, 1996)

@sx
@x

þ @tz
@y

þ @ty
@z

� bx ¼ 0 (Eq. 4.7)

@tz
@x

þ @sz
@y

þ @tx
@z

� by ¼ 0 (Eq. 4.8)

D
ep

th
 (

cm
)

% Grain Size

0-2

2-4

4-6

6-8

8-10

10-12

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

0 20 40 60 80 100

0 0.5 1 1.5 2 2.5 3

40 45 50 55 60 65 70

Porosity (%)

OC (%)

Coarse sand
Medium-fine sand
Very fine sand
Silt
Mud
V. fine sand-mud

a

b

c

d

Porosity (%)
OC (%)

0 200 400 600 800 1000 1200

K1C (Pa m1/2)

Figure 4.4. The in situ fracture toughness (K1C) of a sediment from the Bay of Fundy, Nova Scotia,
Canada, as a function of depth and correlated to grain size of the sediment with depth. Generally,
K1C increases with depth due to compaction, but the appearance of sand below 22 cm causes a
drop in K1C (data in this figure are reported in Johnson et al., 2012).
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@ty
@x

þ @tx
@y

þ @sz
@z

� bz ¼ 0 (Eq. 4.9)

where the bi (i ¼ x,y,z) are the components of any relevant body force (e.g., gravity).
The other observable is the amount of displacement of any arbitrary point in the solid due

to the application of the stress(es), denoted u, v and w for the components in the x, y, and z
directions. The strains in the constitutive equations are defined from the displacements as
(e.g., Timoshenko and Goodier, 1934; Biot, 1941; Davis and Selvadurai, 1996)

ex ¼ @u

@x
(Eq. 4.10)

ey ¼ @v

@y
(Eq. 4.11)

ez ¼ @w

@z
(Eq. 4.12)

gx ¼
@w

@y
þ @v

@z
(Eq. 4.13)

gy ¼
@u

@z
þ @w

@x
(Eq. 4.14)

gz ¼
@v

@x
þ @u

@y
(Eq. 4.15)

where ei is the normal strain (compression or dilation) and gi is the tangential or shear strain
(for i ¼ x,y,z).

Finally, the stresses and strains are related through so-called compatibility equations, which
implement the constitutive equations. For a Hookean solid, these read (e.g., Timoshenko and
Goodier, 1934; Biot, 1941; Davis and Selvadurai, 1996; Wang, 2000)

ex ¼ sx
E
� n
E
ðsy þ szÞ (Eq. 4.16)

ey ¼ sy
E
� n
E
ðsx þ szÞ (Eq. 4.17)

ez ¼ sz
E
� n
E
ðsx þ syÞ (Eq. 4.18)

gx ¼
tx
G

(Eq. 4.19)

gy ¼
ty
G

(Eq. 4.20)

gz ¼
tz
G

(Eq. 4.21)

where E is Young’smodulus (Table 4.2), G is the shear modulus, and n is Poison’s ratio (Table 4.3),
as defined above. Equations 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20,
and 4.21 define a system of 15 equations in 15 unknowns; these equations have been solved
analytically for some cases, but are readily solved numerically, including by commercial packages,
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such as COMSOL. Plasticity may sometimes be described using a Hookean model, as long as one
does not attempt to unload the solid using the same constitutive equation(s).

Biot (1941, 1956) extended these equations to a composite porous medium, such as
sediment, in which the pore fluid may separate from the solid matrix of particles. Equa-
tions 4.16, 4.17, and 4.18 gain in that case a new term each that accounts for the “increment
of water pressure”; this term disappears in drained situations. In addition, as the porosity or
“variation in water content” becomes a variable in this case, another equation for changing
water content must then be added and its constitutive equation is Darcy’s law. Biot (1973), and
many authors thereafter, have extended these equations for porous solids with non-linear
constitutive equations and even plasticity (e.g., Small et al., 1976). A short historical review
of this topic is available in de Boer (1992).

4.3 MECHANICAL PROCESSES IN NATURAL AQUATIC
SEDIMENTS

We now summarize the results of applying mechanical theories to three common diagenetic
processes where physics are central to understanding the phenomenon: compaction, bubble
growth and bioturbation.

4.3.1 One-Dimensional Compaction with Sedimentation

The quintessential mechanical process during diagenesis is self-weight compaction, or
consolidation, with sedimentation of new materials. The accumulating weight of a sediment
will cause the porewater, held between sediment grains, to be expelled, creating a decrease in
porosity with depth and time.

Models of compaction have a long history in the soils and sediments literature (see the
summaries in Giles, 1997; Winterwerp and van Kesteren, 2004). In particular, Terzaghi (1943)
produced the first systematic model of compaction by introducing the concept of consolidation/
excess pressure that drives the compaction process; this was followed by classic papers from
Gibson (1958), McNabb (1960), Been and Sills (1981), Lee and Sills (1981), Koppula and
Morgenstern (1982), Znidarcic and Shiffman (1982) and Gibson et al. (1989). Oddly enough,
reference to such work is virtually absent in the early diagenetic literature. This absence is in
part the result of the unfortunate age-old problem of isolation of fields, but also due to the
different perspectives of scientists studying early diagenesis versus those considering soils, or
the entire sediment column, or man-produced lumps of sediment.

In this respect, engineers, geophysicists, geotechnical scientists and soil scientists use
reference frames that are either fixed to a datum, e.g., the surface of the underlying bedrock,
or a selected mass of sediment. The first is a fixed Eulerian frame, while the second is a moving
Lagrangian frame. One can, of course, mathematically convert from one to the other, but one
choice or the othermay be preferred for convenience. Diagenetic studies traditionally do neither;
because the focus is on the sediment-water interface, the reference frame is anchored instead at
the moving sediment-water interface, i.e., a moving Eulerian coordinate system (e.g., Berner
(1980); Boudreau (1997) and Burdige (2006)). This is technically a moving-boundary problem,
but by anchoring the coordinate system to the moving sediment-water interface, that problem is
transformed into a uni-dimensional problem with a fixed boundary and an apparent velocity
(component) of the solids and fluid away from the interface (Berner, 1980; Boudreau, 1997).

Toorman (1996) and Boudreau and Bennett (1999) have formulated the equations of
elastic–plastic compaction in this moving diagenetic Eulerian frame. That development will
not be presented here. Instead we present solely the distillation and end-result of those studies.
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If one considers the one-dimensional, steady state compaction of a muddy sediment, an
appropriate measure of strain in this case is the relative change in porosity, j(x):

ex ¼ φðxÞ � φo

φo
¼ φso � φsðxÞ

φo
(Eq. 4.22)

where x is the depth from the sediment-water interface (positive), φs(x) is the solid volume
fraction, i.e., 1 � φ(x), and the subscript o indicates an initial value at x ¼ 0.

Next, we need to consider the constitutive behavior of sediments. Compaction is an
essentially irreversible process by which porewater is “squeezed” out of sediments (perma-
nently) due to self weight. This means that the process is not truly elastic, and the stress-strain
relationship for compaction must reflect this irreversibility. This does not mean that there is not
a small truly elastic component to the process, but overall it is a permanent deformation, i.e.,
plastic. Figure 4.5a illustrates the strain (relative porosity change) as stress (weight) is applied
continuously to a sediment sample. There is a linear portion, which may or may not be truly
elastic, and a nonlinear portion, which indicates definite plastic behavior. In the non-linear
region, it takes progressively more and more weight to produce a constant increment of strain
(compaction). The literature does not seem to contain a term for this increasing difficulty to
compact (compactive hardening?).

If during non-linear plastic compaction the load is removed at some stress sp, then the
sample does not return to zero strain, but to a finite level of strain ep, which reflects the
permanent deformation of the porosity, caused by the removal of water (Figure 4.5b). Recom-
mencing the compaction essentially returns the stress-strain relation to the theoretical curve for
that material.

Figure 4.6 illustrates the stress-strain relation in sediments from a core taken on the
California Margin (Bennett et al., 1999); these data follow the trend indicated in Figure 4.5a.
Boudreau and Bennett (1999) offer a non-linear (irreversible/plastic) stress-strain relation for
sediment compaction that is consistent with the above principles, i.e.,

φs ¼ s½1 � e�rs� þ φso (Eq. 4.23)

e e

ep

a b

ss
sp

Compaction

Figure 4.5. (a) An idealized stress-strain curve for a solid under compactive stress. The smaller
and smaller effect of stress is due to the increasing difficulty of forcing water out of the sediment
structure, and is termed compactive hardening here. (b) This figure illustrates the type of irrever-
sibility expected during compaction, if the load is removed.
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where r and s are (empirical) parameters that account for the initial compressibility of the
sediment and the attenuation of stress, respectively; a fit of Equation 4.23 is illustrated in
Figure 4.6. For small stresses, one can expand the exponential in Equation 4.23 and ignore
nonlinear terms; then using Equation 4.22, one can obtain a linear stress-strain relation:

φso � φsðxÞ
φo

¼ �cs (Eq. 4.24)

where c ¼ r ∙ s, which is an apparent Young’s modulus for compaction; however, this compac-
tion is irreversible and c is not a true elastic constant.

The calculated value of c for this sediment is 0.83 kilopascal (kPa), which is one to two
orders of magnitude smaller than the measured reversible Young’s moduli for cohesive
sediments in Table 4.2. One should not be shocked by this result; again, time scale of
application of the force is the key to the separation of water and solids. Compaction c values
are smaller than elastic E values because the forces applied over decades to millennia during
in situ compaction cause the sediment to adjust (strain) more by expelling water, i.e., plastic
deformation.

Porosity and its change with depth affect the chemistry of sediments in at least two ways.
Compaction engenders a flow of porewater and that can move solutes; however, during early
diagenesis, this flow is often small compared to transport by molecular diffusion, and it is
this latter process that feels the effects of compaction. Specifically, diffusion is hindered by
the presence of the solids, both because the area for diffusion is reduced and because the path
the solutes must traverse is longer (see Berner, 1980; Boudreau, 1997). The longer path-length
effect is characterized by the tortuosity, y, which is the ratio of the length of the mean path
that is actually followed to the direct distance. Thus, De ¼ D/y2, where De is the effective
diffusion coefficient and D is the diffusion coefficient in the absence of the solid particles.
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Figure 4.6. A measured solid volume-stress profile from a sediment off the California coast
(data taken from Bennett et al., 1999).
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Amongst others, Boudreau (1996) and Boudreau and Meysman (2006) have analyzed
the existing data and presented models of cohesive sediment structure to argue that
y2 ¼ 1 � ln(j2). Therefore, as compaction reduces j, this feeds back strongly into the
effective solute diffusivity. This effect is part of all models of diagenetic processes for
solutes in sediments.

4.3.2 The Growth of Methane Bubbles

When a new phase, e.g., free gas or an authigenic mineral, grows in sediments, the phase
must make room for itself by displacing the sediment or incorporating the sediment. Gas
bubbles, usually methane, in muddy sediments present an archetypal example of a new phase
that does not incorporate the sediment and grows by displacing it. Investigations by Johnson
et al. (2002), Winterwerp and van Kesteren (2004) and Boudreau et al. (2005) have established
that the displacement of the sediment by the free gas is accomplished both by elastic expansion
and by fracture, and not by fluid flow of the sediment. The result is a bubble best described as a
“corn flake” (Bjorn Sundby, personal communication, McGill University, 2004), as illustrated
by the computerized tomography (CT) scans in Figure 4.7, as opposed to the familiar spherical
(or near-spherical) bubbles in fluids. Similar bubbles of eccentric shape can be obtained by
injecting gas with a needle into gelatin, another soft solid (see Figure 4.8).

The idea that the bubbles in Figures 4.7 and 4.8 result from elasticity and fracture is
supported by the application of linear elastic fracture mechanics (LEFM). Specifically, LEFM
first assumes a linear Hookean constitutive equation for sediments, i.e., Equations 4.7, 4.8, 4.9,
4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21, for which we have values of E
(Table 4.2) and n (Table 4.3). Next, LEFM treats a bubble as a “coin shaped” or oblate spheroidal

Figure 4.7. Two CT-scans (false color) of a bubble injected into natural sediment. The bubble (gas)
is gold, the injector needle is red, and a small mussel shell, in contact with the bubble, is in gray.
The sediment itself has been “removed” digitally. The left-hand diagram (a) shows a plane view
and the right-hand (b) a cross section. The bubble is a flat, somewhat irregular mass that is
reminiscent of a “corn flake”; for modeling purposes, it is adequately approximated as an eccen-
tric oblate spheroid (from Best et al., 2006, reproduced with the kind permission of the American
Geophysical Union).
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flaw in a thick (plane strain) medium. Given these reasonable assumptions, then the inverse of
the aspect ratio, b/a, of the bubble should be given by the formula (Barry et al., 2010).

b
a
¼ 4Pð1 � n2Þ

pE
(Eq. 4.25)

where b is half the length of the minor axis of the oblate spheroid, a is half the length of the
major axis, and P is the internal gas pressure in excess of the surrounding ambient pressure, i.e.,
the stress that creates the deformation. Equation 4.25 is a similarity relation in that the aspect
ratio is fixed for given combinations of n, E and P. Figure 4.9 compares the observed inverse
aspect ratio (IAR) of real bubbles in cohesive sediments and gelatin of various strengths with
the predicted ratios from Equation 4.25; the agreement between observation and theory is solid,
considering the errors in these measurements and the approximate nature of the theory.

Gardiner et al. (2003) and Algar and Boudreau (2009, 2010) have coupled the mechanical
model for a bubble given above with a reaction-transport model for methane in porewaters to
obtain predictions of the initial rate of growth of natural bubbles. Figure 4.10 illustrates the
predicted initial growth rates for the conditions at Cape Lookout Bight, South Carolina, USA (see
Martens and Klump, 1980; Martens and Albert, 1995). Bubbles at that site are about 100–200
cubic millimeters (mm3) in volume and Figure 4.10 predicts about 4 days to grow bubbles to this
initial size. Bubbles can grow much faster than this if they exploit pre-existing flaws/fractures
in sediments that have lower K1C values than the bulk sediment (Algar and Boudreau, 2010).

4.3.3 Methane Bubble Rise

If a bubble grows to a critical size in sediments, it will begin to rise due to a (pseudo-)
buoyant force (Weertman, 1971a, b) from the difference in overall pressure between the top
and the bottom of the bubble. While the formation and growth of a bubble in sediments can be
treated as entirely an elastic process, rise must take into account more of the full dynamics of
the sediment (Algar, 2009); in particular, the control of bubble rise should include a time

Figure 4.8. Photographs of a bubble injected into gelatin, left plane view (a) and right (b) cross
section. This bubble is a thin oblate spheroid (from Johnson et al., 2002, reproduced with the kind
permission of Elsevier B.V).
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Figure 4.10. The predicted initial growth rate of a bubble in sediments from Cape Lookout Bight,
North Carolina, USA. The curve labeled “FEM transient solution” is the best prediction for a
sediment without a previous bubble-created flaw (from Algar and Boudreau, 2009, reproduced
with the kind permission of Elsevier B.V).
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various strengths and in sediments. The black line is a 1:1 relationship (from Barry et al., 2010,
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dependency from the visco-elasticity of the sediment. Thus, the speed of rise may be
controlled by the rate at which sediment moves out of the way of the propagating crack,
i.e., the bubble. A model of bubble rise can be based on a Voigt material, Equation 4.3; in such
a material the elastic response is dampened by viscosity, such that the stress response is now
time dependent. This can be represented schematically by a spring and damper (dashpot)
connected in parallel (Figure 4.11). (Note that the viscous behavior of the sediment does not
enter the bubble growth model because the overall time scale for growth appears to be long
compared to the viscous response time. Thus, growth can be represented as an elastic
equilibrium process, but the time scale of the viscous response seems to be essential to the
much shorter rise process.)

Figure 4.12 illustrates time lapsed images of a simulation of a bubble rising in a cohesive
sediment, where the false colors indicates the strength of the stress field from a solution of
Equations 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, and 4.21,
including the lithostatic and hydrostatic components. The added concentration of stress at the
bubble top tip, which drives the upward fracture, is clearly evident. Depending on the assumed
sediment viscosity (Table 4.1), this bubble rises at a speed between 0.02 and 47 cm s�1 (Algar,
2009). These rapid rise speeds explain why bubble fluxes from sediments can be substantial.

Rising bubbles feedback into the chemistry of sediments by promoting the exchange of
porewaters and overlying waters (e.g., Haeckel et al., 2007) and facilitating the release of
volatile substances from porewaters (e.g., Yuan et al., 2007). Bubbles also can transport
sediment grains, and their associated contaminants from within sediments to the sediment-
water interface (Klein, 2006).

4.3.4 Animal Motion in Sediments

Infauna (i.e., the animals that live in sediments) profoundly affect the properties of
sediments and the distribution of sediment components by feeding, burrowing, tube building,
etc. The resulting mixing is known as bioturbation.
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Figure 4.11. Illustration of the time behavior of a Voigt-solid, a model used to explain the rise of
bubbles in sediments (Algar, 2009).
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As with bubbles, animal motion requires the displacement of the sediment. Dorgan et al.
(2005) have shown that some organismal motions are accomplished by fracture and elastic
displacement of the sediment. For example, the fracture created and propagated by a
burrowing polychaete is visualized in Figure 4.13. The animal in this figure has been placed
in a glass tank that contains gelatin, and the tank has been placed between a light source and a
receiver (i.e., a camera). A polarizing filter has been placed between the light source and the
tank and in front of the camera. The only way light reaches the camera is if the gelatin is

Figure 4.13. Photographs of a polycheate (Nereis sp.) burrowing in gelatin by propagating a
fracture. The lateral and front edges of the fracture are indicated by the black arrows (from Dorgan
et al., (2005), reproduced with the kind permission of the Nature Publishing Group/Macmillan
Publishing Ltd).

Figure 4.12. Time-lapsed illustrations of the rise of a bubble in sediments with characteristics
similar to those at Cape Lookout Bight, North Carolina, USA. The color indicates the stress field,
including the lithostatic load. Note the concentration of stress at the top tip of the bubble and the
relaxation at the tail. The top stress propagates the bubble fracture upward (from Algar et al., 2011,
reproduced with the kind permission of the American Geophysical Union).
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stressed (i.e., acts as a solid) and alters the path of the light. The amount of light deviation is
proportional to the degree of stress, and that is captured by the extent of the birefringence in
Figure 4.13.

The edge of the crack being propagated by the polychaete is indicated by the black arrows
in Figure 4.13. The cross section (Figure 4.13b) of the crack is identical to that of a bubble
(Figure 4.8). The crack is, however, not coin shaped, but elongate; as such, it is formally known
as an “edge” crack. Nevertheless, its shape is also consistent with LEFM.

The creation of tubes and feeding tracts in sediments leads to the transport of both solutes
and solids within sediments. The creation of a crack-based worm burrow may not initially
suggest significant animal-mediated transport of solids, but the animals create the burrows to
expose food particles on the burrow walls; the latter are removed, ingested and defecated
elsewhere in the sediment, creating bio-mediated mixing (e.g., Boudreau, 1997; Thibodeaux
et al., 2001). This mode of mixing is directly related to how animals deal with the mechanical
properties of sediments.

The fact that infaunal burrows and tubes also persist in sediments, at least for some periods
of time, can enhance the exchange of porewaters, as first discovered by Aller (1980, 1982). This
persistence is partly due to the mechanical properties of sediments. The persistence of tubes
and burrows is also attributable to organic lining, shells embedded in the wall of the tubes, etc.,
and the continual presence of animals. Persistent tubes invaginate the sediment-water interface,
and animal ventilation of the tubes means that tube water are exchanged, with some frequency,
with overlying water. This means that porewater solutes need not diffuse vertically to the
sediment surface to be released, but also may move laterally into tubes. Likewise, solutes in the
overlying water, e.g., oxygen, can penetrated far deeper into such sediments because of
irrigated tubes.

4.4 SUMMARY

The aim of this chapter has been to highlight the mechanics (stress-strain response) of
cohesive soft sediments. The apparent “softness” of such sediments, characterized by the
ease one can deform them with one’s fingers, has generated the mistaken notion that such
sediment are probably best considered to be a fluid. However, actual stress-strain studies
show that cohesive sediment behavior is complex and often better described as a Hookean
solid that is capable of fracture. Many phenomena in soft, cohesive sediments, e.g., compac-
tion, bubble formation and rise, and animal burrowing, can only be explained via an elastic or
visco-elastic model of sediment behavior, regardless of preconceptions or biases towards
fluid descriptions.
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study. Géotechnique 31:519–535.

Bennett RH, Bryant WR, Hulbert MH, eds. 1991. Microstructure of Fine-Grained Sediments –
from Shale to Mud. Springer-Verlag, New York, NY, USA. 582 p.

Bennett RH, Hulbert MH, Meyer MM, Lavoie DM, Briggs KB, Lavoie DL, Baerwald RJ,
Chiou WA. 1996. Fundamental response of pore-water pressure to microfabric and perme-
ability characteristics: Eckernförde Bay. Geo-Mar Lett 16:182–188.

Bennett RH, Kastner M, Baerwald RJ, Ransom B, Sawyer W, Lambert MW, Olsen H, Hulbert
MH. 1999. Early diagenesis: Impact of organic matter on mass physical properties and
processes, California continental margin. Mar Geol 159:7–34.

Berner RA. 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York, NY, USA.
240 p.

Berner RA. 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press,
Princeton, NJ, USA. 241 p.

Best AI, RichardsonMD, Boudreau BP, Judd AG, Leifer I, Lyons AP, Martens CS, Orange DL,
Wheeler SJ. 2006. Shallow seabed methane gas could pose coastal hazard. EOS: Trans
Amer Geophys Union 87:213–217.

Biot MA. 1941. General theory of three-dimensional consolidation. J Appl Phys 12:155–164.
Biot MA. 1956. General solutions of the equations of elasticity and consolidation for a porous

material. J Appl Mech 23:91–96.
Biot MA. 1973. Nonlinear and semilinear rheology of porous solids. J Geophys Res 78: 4924–4937.

The Mechanics of Soft Cohesive Sediments During Early Diagenesis 101

http://dx.doi.org/10.1029/2009JF001312
http://dx.doi.org/10.1029/2010JB008133
http://dx.doi.org/10.1029/2010JB008133
http://dx.doi.org/10.1029/2010JF001833
http://dx.doi.org/10.1007/s00367-012-0277-z
http://dx.doi.org/10.1007/s00367-012-0277-z


Bird RB, Stewart WE, Lightfoot EN. 2007. Transport Phenomena, 2nd ed. John Wiley & Sons,
New York, NY, USA. 920 p.

Boudreau BP. 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochimim
Cosmochim Acta 60:139–3142.

Boudreau BP. 1997. Diagenetic Models and their Implementation. Springer-Verlag, Berlin,
Germany. 414 p.

Boudreau BP, Algar C, Johnson BD, Croudace I, ReedA, FurukawaY, DorganKM, Jumars PA,
Grader AS, Gardiner BS. 2005. Bubble growth and rise in soft sediments. Geol 33:517–520.

Boudreau BP, Bennett RH. 1999. New rheological and porosity equations for steady-state
compaction. Am J Sci 299:517–528.

Boudreau BP, Meysman FJR. 2006. Predicted tortuosity of muds. Geol 34:693–696.
Breitzke M. 2006. Physical properties of marine sediments. In Schultz HD, Zabel M, eds,

Marine Geochemistry, 2nd ed. Springer, Berlin, Germany, pp 27–71.
Broek D. 1982. Elementary Engineering Fracture Mechanics. Narinus Nijhoff, Boston, MA,

USA. 469 p.
Burdige DJ. 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton,

NJ, USA. 609 p.
Clayton CRI, Heymann G. 2001. Stiffness of geomaterials at very small strains. Geotech

51:245–255.
Craig RF. 2004. Craig’s Soil Mechanics. Taylor and Francis, London, United Kingdom. 464 p.
Das BM. 2008. Advanced Soil Mechanics. Taylor and Francis, London, United Kingdom. 600 p.
Davis AM, Schultheiss PJ. 1980. Seismic signal processing in engineering-site investigation – a

case history. Ground Eng 13:44–48.
Davis RO, Selvadurai APS. 1996. Elasticity and Geomechanics. Cambridge University Press,

Cambridge, United Kingdom. 256 p.
Davis RO, Selvadurai APS. 2002. Plasticity and Geomechanics. Cambridge Univ. Press, Cam-

bridge, United Kingdom. 304 p.
de Boer R. 1992. Development of porous media theories - A brief historical review. Transp

Porous Media 9:155–164.
DiToro DM. 2001. Sediment Flux Modeling. Wiley-Interscience, New York, NY, USA. 624 p.
Dorgan KM, Jumars PA, Johnson BD, Boudreau BP, Landis E. 2005. Burrow elongation by

crack propagation. Nat 433:475.
Engelhardt WV, Gaida KH. 1963. Concentration changes of pore solutions during the compac-

tion of clay sediments. J Sed Pet 33:919–930.
Gardiner BS, Boudreau BP, Johnson BD. 2003. Growth of disk-shaped bubbles in sediments.

Geochim Cosmochim Acta 67:1485–1494.
Gasparre A, Nishimura S, Minh NA, Coop MR, Jardine RJ. 2007. The stiffness of natural

London clay. Géotech 57:33–47.
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APPENDIX 4A

If a material is mapped (each point given a coordinate), then deformed, and the same points
in the medium remapped, the resulting change in the position of an arbitrary point is called its
displacement vector, u. The spatial derivatives of the displacement define the strain tensor, e.
Formally,

e ¼ 1

2
ruþ ðruÞT
h i

(Eq. 4.A1)

where u is the displacement gradient matrix and the superscript T indicates the transpose. Thus,
the tensile/compressive strain that occurs in the x direction is given by

exx ¼ @ux
@x

(Eq. 4.A2)

and the subscripts can be dropped for a purely one-dimensional system, e.g., steady-state
sediment compaction.
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