
Chapter 9
Compensation of Rate-Dependent Hysteresis
in a Piezomicropositioning Actuator

Mohammad Al Janaideh

Abstract Piezomicropositioning actuators exhibit strong rate-dependent hysteresis
nonlinearities that affect the accuracy of these micropositioning systems in open-
loop system and may even lead to system instability of the closed-loop control
system. Compensation of rate-dependent hysteresis effects using inverse rate-
independent hysteresis models may yield high compensation error at high-excitation
frequencies since these hysteresis effects increase as the excitation frequency of
the input voltage increases. The inverse rate-dependent Prandtl–Ishlinskii model
is utilized for compensation of the rate-dependent hysteresis nonlinearities in a
piezomicropositioning stage. The exact inversion of the rate-dependent model is on
hold under the condition that the distances between the thresholds do not decrease
in time. The inverse of the rate-dependent model is applied as a feedforward
compensator to compensate for the rate-dependent hysteresis nonlinearities of a
piezomicropositioning actuator at different excitation frequencies between 0.1 and
50 Hz. The results show that the inverse compensator suppresses the hysteresis
percent and the maximum positioning error in the output displacement of the
piezomicropositioning actuator at different excitation frequencies, respectively.

9.1 Introduction

Piezomicropositioning actuators are increasingly used in micro and nano-
positioning applications because of their advantages which include nanometer
resolution, high stiffness, and fast response [1–9]. However, piezomicropositioning
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actuators show hysteresis nonlinearities between the applied input voltage and
output displacement. These nonlinearities have been associated with oscillations in
the open-loop system’s responses, and poor tracking performance and potential
instabilities of the closed-loop system [10]. Different piezomicropositioning
actuators show obvious increase in hysteresis nonlinearities when the excitation
frequency of the applied input voltage increases in a nonlinear manner [11–15]. The
inverse-based control methods generally employ a cascade of a rate-independent
hysteresis model and its inverse together with a controller to compensate for the
error of the compensation in piezomicropositioning actuators; see for example
[16]. These methods, however, necessitate the formulation of the hysteresis model
inverse, which is often a challenging task.

Different closed-loop control systems, however, have been proposed with inverse
rate-independent hysteresis models to compensate for hysteresis nonlinearities at
different excitation frequencies. Ge and Jouaneh [16] used inverse Preisach model,
which was obtained using a numerical algorithm, as a feedforward compensator
with PID feedback control system. Hu et al. [17] applied inverse Preisach model
formulated with a dynamic density function in a closed-loop control system. In
a similar manner, Song et al. [18] applied the inverse Preisach model with PD-
lag and PD-lead controllers in a closed-loop control system. Esbrook et al. [19]
applied a servocompensator with inverse Prandtl–Ishlinskii model in a closed-
loop control system. Shan and Leang[20] applied discrete-time repetitive controller
combined with an inverse hysteresis compensator based on the Prandtl–Ishlinskii
model. Feedback control techniques could compensate for the rate-dependent
hysteresis in peizomicropositioning actuators. However, the accurate and large
bandwidth sensors as well as the feedback control techniques inserted in the
closed-loop control systems may limit the use of the piezomicropositioning systems
in different industrial applications. Ang et al. [21] applied the inverse modified
Prandtl–Ishlinskii model as a feedforward compensator to compensate for hysteresis
nonlinearities under different excitation frequencies.

In this chapter, the open-loop control technique is applied to compensate
for the rate-dependent hysteresis nonlinearities over different excitation frequen-
cies. The rate-dependent hysteresis nonlinearities are characterized using the rate-
dependent Prandtl–Ishlinskii model. The analytical exact inverse of the rate-
dependent Prandtl–Ishlinskii model is formulated and applied as a feedforward
compensator to compensate for the rate-dependent hysteresis nonlinearities in a
piezomicropositioning actuator. The main advantage of the rate-dependent Prandtl–
Ishlinskii model over the other hysteresis models used in the literature is that its
inverse can be attained analytically, and it can be implemented as a feedforward
compensator to control the piezomicropositioning actuator over different excitation
frequencies without inserting feedback control techniques.

In [7, 22], the analytical inverse of the Prandtl–Ishlinskii model is constructed
with dynamic thresholds. The explicit inversion formula for the Prandtl–Ishlinskii
model presented in [23] remains applicable also for the case of time-dependent
thresholds, provided the distances between them do not decrease in time. This
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inverse is applied in this chapter as a feedforward controller in order to compensate
for the rate-dependent hysteresis nonlinearities. Such compensations are experimen-
tally illustrated by a piezomicropositioning actuator.

9.2 Background

The Prandtl–Ishlinskii model integrates play operators Γr with different thresholds
r and with positive weights in order to characterize hysteresis nonlinearities in
actuators and materials; see [23, 24]. For t ∈ [0,T ], when an input u(t) ∈ C[0,T ]
is applied, where C[0,T ] is the space of continuous functions on the time interval
[0,T ], the output of the Prandtl–Ishlinskii model for i = 1, . . . ,n, where n is an
integer represents the number of the play operators, is given, according to [23],
by the formula

Π [u](t) = a0u(t)+
n

∑
i=1

aiΓri [u,xi](t), (9.1)

where a0 and ai are positive weights.
The Prandtl–Ishlinskii model (9.1) is a rate-independent hysteresis model,

attributed to the time-independent play operator that the model employs. This model
has a unique advantage since it admits an exact inverse, which has been established
in [25]. In [23], the output of the inverse rate-independent independent Prandtl–
Ishlinskii model is written in the form

Π−1[u](t) = b0u(t)+
n

∑
i=1

biΓsi [u,yi](t). (9.2)

This inverse has been widely applied as a feedforward controller to compensate for
hysteresis nonlinearities in smart-material actuators at low-excitation frequencies
of the applied input. However, these actuators exhibit hysteresis nonlinearities that
are strongly rate-dependent. Consequently, the use of the inverse rate-independent
Prandtl–Ishlinskii model as a feedforward compensator may cause considerable
errors in the output displacement. It is therefore necessary to design a model and
a compensator capable of incorporating rate-dependent hysteresis effects. This can
be accomplished by adding a viscosity term in the constitutive relation [7].

9.3 Rate-Dependent Prandtl–Ishlinskii Model and Its Inverse

In this section the rate-dependent Prandtl–Ishlinskii model and its inverse are
presented. The rate-dependent Prandtl–Ishlinskii model is employed in this study to
characterize the rate-dependent hysteresis nonlinearities in a piezomicropositioning
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stage. This model is formulated in [22] using a play operator of time-dependent
(dynamic) threshold.

9.3.1 The Rate-Dependent Prandtl–Ishlinskii Model

Let AC(0,T ) the space of real absolutely continuous functions defined on the
interval [0,T ]. For an input u(t) ∈ AC(0,T ), the output of the rate-dependent
Prandtl–Ishlinskii model, constructed based on the rate of the applied input u̇(t),
is given by the formula

Ψ [u](t) = a0u(t)+
n

∑
i=1

aiΦri(u̇(t))[u,xi](t). (9.3)

The output of the rate-dependent play operator is denoted as

zi(t) = Φri(u̇(t))[u,xi](t). (9.4)

Let xi be given initial conditions for i = 1,2, . . . ,n such that for i = 1, . . . ,n−1

|x1| ≤ r1(u̇(0)),

|xi+1 − xi| ≤ ri+1(u̇(0))− ri(u̇(0)). (9.5)

The dynamic thresholds ri(t) are defined for t ∈ [0,T ] as

0 ≤ r1(u̇(t))≤ r2(u̇(t))≤ ·· · ≤ rn(u̇(t)). (9.6)

As shown in [11], the rate-dependent Prandtl–Ishlinskii model can characterize
the rate-dependent hysteresis nonlinearities in piezomicropositioning actuators over
different excitation frequencies. The inverse of the rate-dependent Prandtl–Ishlinskii
model is achievable and can be applied as a feedforward compensator to compensate
for the rate-dependent hysteresis nonlinearities in real-time systems.

9.3.2 Inverse Rate-Dependent Prandtl–Ishlinskii Model

The concept of the open-loop control system is used to obtain identity mapping
between the input u(t) and the output v(t) such that u(t) = v(t). When the output
of the exact inverse of the rate-dependent Prandtl–Ishlinskii model Ψ−1[u](t) is
applied as a feedforward controller to compensate for the rate-dependent hysteresis
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nonlinearities presented by the rate-dependent Prandtl–Ishlinskii model Ψ [u](t), the
output of the compensation is expressed as

v(t) =Ψ◦Ψ−1[u](t). (9.7)

The exact inversion is on hold under the condition that the distances between
the dynamic thresholds ri(u̇(t)) do not decrease in time [22]. Analytically for
∀i = 1, . . . ,n−1

d
dt

(
ri+1(u̇(t))− ri(u̇(t))

)≥ 0. (9.8)

The proof of the inversion formula is based in a substantial way on the so-called
Brokate formula for the superposition of play operators with different thresholds.
It was established for constant thresholds in [26], and the extension to moving
thresholds has been done in [22]. The inverse of the rate-dependent Prandtl–
Ishlinskii is also a rate-dependent Prandtl–Ishlinskii model. The output of the
inverse model is expressed as

Ψ−1[u](t) = b0,u(t)+
n

∑
i=1

biΦsi(u̇(t))[u,yi](t). (9.9)

Let the output of the rate-dependent play operator of the inverse model is

di(t) = Φsi(u̇(t))[u,yi](t). (9.10)

The thresholds of the inverse model are

s1(u̇(t)) = a0r1(u̇(t)),

si+1(u̇(t))− si(u̇(t)) =

(
i

∑
j=0

a j

)

(ri+1(u̇(t))− ri(u̇(t))). (9.11)

The weights of the inverse model b0,b1, . . . ,bn are

b0 =
1
a0

,

bi =
1

∑i
j=0 a j

− 1

∑i−1
j=0 a j

. (9.12)

The initial conditions of the inverse model y1,y2, . . . ,yn are

y1 = a1x1,

yi+1 − yi =

(
i

∑
j=0

a j

)

(xi+1 − xi). (9.13)
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9.3.3 The Dynamic Threshold

The following dynamic thresholds are used:

ri(u̇(t)) = αi +g(u̇(t)). (9.14)

This can be shown to be mathematically equivalent to modeling hysteresis and creep
by means of an analogical model with elastic, plastic, and viscous elements as in
[7, 27]. Then

αi −αi−1 ≥ σ , (9.15)

where σ is a positive constant. The constants αi in (9.14) represent the rate-
independent hysteresis effects, while the function g(u̇(t)) is proposed to characterize
the rate-dependent hysteresis effects. With this choice

ri+1(u̇(t))− ri(u̇(t))≥ 0 (9.16)

and
d
dt

(
ri+1(u̇(t))− ri(u̇(t))

)
= 0. (9.17)

From these equations it can be concluded that the exact inversion formula for
the rate-dependent Prandtl–Ishlinskii model holds. It should be mentioned that the
proposed formulation for the dynamic threshold reduces the rate-dependent Prandtl–
Ishlinskii model Ψ [u](t) into the rate-independent Prandtl–Ishlinskii model Π [u](t)
for g(u̇(t)) = 0.

9.3.4 Numerical Implementation

The numerical implementation of the rate-dependent Prandtl–Ishlinskii model and
its inverse is presented for an input u(t) with h sampling time. The rate of the applied
input u̇(t) can be estimated for k = 1,2,3, . . . ,K = T/h as

us(k) =
u(k)−u(k−1)

h
, (9.18)

where

h = t(k)− t(k−1). (9.19)

The discrete dynamic threshold is presented as

ri(us(k)) = αi +g(us(k)). (9.20)

The discrete output of the rate-dependent play operator is expressed as

zi(k) = max(u(k)− ri(us(k)),min(u(k)+ ri(us(k)),zi(k−1))). (9.21)
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The discrete output of rate-dependent Prandtl–Ishlinskii model can thus be de-
rived as

Ψ [u](k) = a0u(k)+
n

∑
i=1

aiΦri(us(k))[u](k). (9.22)

The discrete output of the inverse rate-dependent Prandtl–Ishlinskii model can thus
be expressed as

Ψ−1[u](k) = b0u(k)+
n

∑
i=1

biΦsi(us(k))[u](k). (9.23)

9.4 Experimental Results and Hysteresis Modeling

9.4.1 Experimental Results

The experiments were performed on a piezomicropositioning actuator (P-753.31C)
from Physik Instrumente Company. The actuator provided maximum displacement
of 100 μm from its static equilibrium position, and it integrates a capacitive sensor
(sensitivity = 1 μm/V; resolution 0.1 nm) for measurement of stage displacement
response. The excitation module compromises a voltage amplifier (LVPZT, E-505)
with a fixed gain of 10, which provides the excitation voltage to the actuator. The
actuator displacement response signal was acquired by a DSpace DS1104 controller
board. The measurements with the piezomicropositioning stage were performed
under a harmonic input of u(t) = 40 cos(2 f π t) at seven excitation frequencies
(1, 5, 10, 20, 30, 40, and 50 Hz). The input voltage and output displacement signals
were acquired at a sampling frequency of 10 KHz.

The measured data were further analyzed to quantify hysteresis and displacement
attenuation as a function of the applied excitation frequency. The resulting hysteresis
loops relating displacement responses to the input voltage are shown at excitation
frequencies in Fig. 9.1. The results show that hysteresis nonlinearities increase with
increasing the excitation frequency of the applied input voltage. It is evident that the
micropositioning stage exhibits highly rate-dependent hysteresis effects between the
input voltage and the output displacement.

9.4.2 Parameter Identification

Parameter identifications of the rate-dependent Prandtl–Ishlinskii model are pre-
sented in this section. Measured rate-dependent hysteresis loops between the applied
input voltage and the output displacement are used to identify the parameters of
the rate-dependent Prandtl–Ishlinskii model and its inverse. Let g(u̇(t)) = β (u̇(t))2.
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Fig. 9.1 Hysteresis loops
at different excitation
frequencies

The parameter vector X = {β ,ζ ,a0,a1,a2, . . . ,an} was identified through minimiza-
tion of the an error function over different excitation frequencies. This function is
given by

Q(X) =Θ(k). (9.24)

The model error function Θ is used to identify the parameters of the rate-dependent
Prandtl–Ishlinskii model Ψ [v](t). The error function Θ is expressed as

Θ(k) =
P

∑
p=1

K

∑
k=1

Ap(Ψ [v](k)− ym(k))
2, (9.25)

where Ψ [v](k) is the displacement response of the model corresponding to a
particular excitation frequency and ym(k) is the measured displacement under
the same excitation frequency. The model error function is constructed through
summation of squared errors over a range of input frequencies, denoted by p
(p = 1,2, . . . ,P). The index k (k = 1, . . . ,K) refers to the number of data points
considered to compute the error function Q for one complete hysteresis loop. Two
hundred data points (K = 200) were available for each measured hysteresis loop.
Seven excitation frequencies (P = 7) of 1, 5, 10, 20, 30, 40, and 50 Hz are used.
Owing to the higher error at excitation frequencies, a weighting constant Ap was
introduced to emphasize the error minimization at higher excitation frequencies.
The weights Ap for p = 1,2, . . . ,7 are selected based on the hysteresis percent as

Ap =
Hp

H1
, (9.26)

where Hp represents the hysteresis percent for the p excitation frequency. The
weights Ap are obtained as: 1, 1.18, 1.38, 1.57, 1.78, and 1.96 for 1, 5, 10, 20, 30, 40,
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Fig. 9.2 Comparison between the output of the rate-dependent Prandtl–Ishlinskii model (solid
line) and the measured hysteresis nonlinearities (dashed line) in the piezomicropositioning actuator
at: (a) 1 Hz and (b) 50 Hz

and 50 Hz, respectively. The error minimization is performed using the MATLAB
constrained optimization toolbox subject to the following constraints:

(β ,ζ ,a0,a1,a2)> 0,ζ � β . (9.27)

The rate-dependent Prandtl–Ishlinskii model is used to characterize the rate-
dependent hysteresis nonlinearities of the piezomicropositioning actuator between 1
and 50 Hz. The results propose two rate-dependent play hysteresis operators (n = 2)
to characterize the rate-dependent hysteresis nonlinearities.

9.4.3 Hysteresis Modeling

The validity of the model was examined by comparing the model displacement
responses to the measured data. The results suggest that the model can effectively
predict the hysteresis properties of the piezomicropositioning actuator at different
excitation frequencies between 1 and 50 Hz. Figure 9.2 shows the capability of the
model to characterize the rate-dependent hysteresis nonlinearities at 1 and 50 Hz.

9.5 Feedforward Compensation of Rate-Dependent
and Rate-Independent Hysteresis Nonlinearities

In this section the inverse rate-dependent Prandtl–Ishlinskii model is applied as a
feedforward compensator to compensate for hysteresis nonlinearities under different
excitation frequencies.
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inverse rate-dependent
Prandtl–Ishlinskii model
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9.5.1 The Inverse Compensator

The input–output characteristics of the inverse rate-dependent Prandtl–Ishlinskii
model at excitation frequencies of 1, 20, and 50 Hz are shown in Fig. 9.3. This figure
shows that hysteresis nonlinearities in the output of the inverse model increase as
the excitation frequency of the input voltage increases.

9.5.2 Compensation of Rate-Dependent Hysteresis

The inverse rate-dependent Prandtl–Ishlinskii model obtained in the previous sec-
tion is applied as a feedforward compensator to compensate for the rate-dependent
hysteresis nonlinearities between 1 and 50 Hz. The measured output–input charac-
teristics of the piezomicropositioning stage with inverse compensator are illustrated
in Fig. 9.4 at excitation frequencies of 1, 20, and 50 Hz. The results show that
the inverse rate-dependent model can effectively compensate the hysteresis effects
at different excitation frequencies. Figure 9.5 shows the time history of the input
voltage and the measured displacement with and without the inverse compensator
at excitation frequency of 50 Hz.

The positioning error is computed as the deviation between measured displace-
ment and the input voltage, which represents the desired displacement, at different
excitation frequencies (Fig. 9.6). Figure 9.7 illustrates comparison of the maximum
positioning errors with and without the inverse compensator. Without the inverse
compensator, the maximum positioning errors are between 6.5 and 13.8 μm, while
the measured responses with the inverse compensator show maximum positioning
errors between 2.3 and 3.7 μm across the entire 1–50 Hz band. In a similar manner,
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Fig. 9.5 The time history of the input voltage (solid line) and the measured displacement (dashed
line) at excitation frequency of 50 Hz: (a) without the inverse compensator and (b) with the inverse
compensator

Fig. 9.8 shows that the inverse compensator decreases the hysteresis percent to 3.5.
It is obvious that the inverse rate-dependent Prandtl–Ishlinskii model suppresses the
error due to rate-dependent hysteresis disregarding the excitation frequency of the
input voltage and the tracking accuracy remains consistent.

In Fig. 9.18, the compensation effectiveness of the inverse rate-dependent
Prandtl–Ishlinskii model is further evaluated by comparing the time history of
the measured displacement responses of the piezomicropositioning stage with and
without the inverse compensator at 20 and 50 Hz frequencies. The results show the
effectiveness of the inverse rate-dependent model under low- and high-excitation
frequencies.
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9.5.3 Compensation of Hysteresis Nonlinearities
at Low-Excitation Frequencies

At low-excitation frequencies, the rate-dependent Prandtl–Ishlinskii model (9.3) and
its inverse (9.9) constructed based on the dynamic threshold (9.20) are reduced to the
rate-independent Prandtl–Ishlinskii model and its inverse. Analytically, the dynamic
thresholds are reduced to

r(u̇(t))≈ ζ i. (9.28)

Then

Π [v](t)≈Ψ [v](t). (9.29)

Further investigation shows that the performance of the inverse rate-dependent
Prandtl–Ishlinskii model still remains at low-excitation frequencies. In other words,
the inverse rate-dependent Prandtl–Ishlinskii model can be applied to compensate
for rate-independent hysteresis nonlinearities. As shown in Fig. 9.9, the inverse rate-
dependent Prandtl–Ishlinskii model compensates for the hysteresis nonlinearities
at excitation frequencies of 0.1 and 0.5 Hz. The time history for the positioning
error is presented in Fig. 9.10. It can be concluded that the inverse rate-dependent
Prandtl–Ishlinskii can be used as a feedforward compensator also at low-excitation
frequencies.

9.5.4 Triangular Waveform

A triangular waveform of amplitude 40 at excitation frequencies of 10 and 20 Hz is
applied as an input voltage. The experimental results show that the percent of the
hysteresis nonlinearities are 13.54 and 15.62 for 10 Hz and 20 Hz, respectively. As
shown in Fig. 9.11, the inverse model compensates for the hysteresis nonlinearities
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Fig. 9.9 The input–output of the piezomicropositioning actuator with (red line) and without (blue
line) the inverse compensator at (a) f = 0.10 Hz and (b) f = 0.50 Hz
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Fig. 9.10 The time history of the positioning error of the piezomicropositioning actuator with (red
line) and without (blue line) the inverse compensator at (a) f = 0.10 Hz and (b) f = 0.5 Hz
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Fig. 9.11 The output of the piezomicropositioning stage with (red line) and without (blue line) the
inverse compensator when a triangular waveform is applied at: (a) f = 10 Hz and (b) f = 20 Hz
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Fig. 9.13 The positioning error of Fig. 9.11 with (red line) and without (blue line) the inverse
compensator: (a) f = 10 Hz and (b) f = 20 Hz

when a triangular input voltage is applied. Figure 9.12 shows the triangular input
voltage and the output displacement at the excitation frequency of 20 Hz with
and without the inverse compensator. Figure 9.13 shows the time history of the
positioning error with and without the inverse compensator. The results show the
effectiveness of the inverse compensator when a triangular input voltage is applied
at different excitation frequencies.

9.5.5 Major and Minor Hysteresis Loops

Major and minor hysteresis loops with the inverse rate-dependent Prandtl–Ishlinskii
model are tested in this section (Fig. 9.14). Harmonic input voltages of u(t) =
10cos(2π f t) + 30cos(4π f t) are applied to the piezomicropositioning actuator to
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Fig. 9.14 The output of the piezomicropositioning actuator with the input voltage u(t) =
10cos(2π f t)+30cos(4π f t), where (a) f = 5 Hz and (b) f = 10 Hz
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Fig. 9.15 The time history of the positioning error of Fig. 9.16 with the inverse compensator (red
line) and without the inverse compensator (blue line) at: (a) f = 5 Hz and (b) f = 10 Hz

show major and minor hysteresis loops at excitation frequencies of f = 5 Hz and f =
10 Hz. Figure 9.15 shows the output of the inverse compensation. Figure 9.16 shows
the time history of the positioning error with and without the inverse compensator.

9.6 Discussions

The above analysis shows that the inverse rate-dependent Prandtl–Ishlinskii model
is capable of suppressing the error due to hysteresis, regardless of the excitation
frequency of the input voltage, while maintaining consistency in the tracking
accuracy (Fig. 9.17). The results manifest the effectiveness of the inverse rate-
dependent model in compensating for hysteresis under low- and high-excitation
frequencies. However, the inverse compensator shows some deviation in the output,
which is attributed to prediction errors attained between the output of the rate-
dependent model and the measured displacement of the piezomicropositioning



9 Compensation of Rate-Dependent Hysteresis in a Piezomicropositioning Actuator 203

−40 −20 0 20 40
−40

−20

0

20

40

Input Voltage (V)

a
D

is
pl

ac
em

en
t (

μm
) 

−40 −20 0 20 40
−40

−20

0

20

40

Input Voltage (V)

b

D
is

pl
ac

em
en

t (
μm

)

Fig. 9.16 The output of the piezomicropositioning actuator when the inverse rate-dependent
Prandtl–Ishlinskii is applied as a feedforward compensator with the input voltage of u(t) =
10cos(2π f t)+30cos(4π f t), where (a) f = 5 Hz and (b) f = 10 Hz
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Fig. 9.17 Comparison between the measured displacement (solid line) and the output of the rate-
dependent Prandtl–Ishlinskii model (dashed line) at excitation frequencies of 1 and 50 Hz

actuator. Figure 9.18 shows a comparison between the characterization error
of the rate-dependent Prandtl–Ishlinskii model and the positioning error in the
displacement output of the piezomicropositioning actuator. The figure shows a
similarity between the error in both cases. It can be seen from the experimental
results that the characterization error of the rate-dependent Prandtl–Ishlinskii model
at the turning points is relatively larger than elsewhere. It should be mentioned that
piezomicropositioning actuators also show creep effects during slow-speed actua-
tion. These dynamic effects cause positioning errors in the output displacement.

As shown in the previous section, the inverse rate-dependent Prandtl–Ishlinskii
model shows perfect compensation for symmetric hysteresis nonlinearities. How-
ever, the inverse model may not show the same performance when applied to
compensate for asymmetric rate-dependent hysteresis nonlinearities. In future work,
the inverse rate-dependent Prandtl–Ishlinskii model will be developed to compen-
sate for asymmetric rate-dependent hysteresis nonlinearities of smart-material based
actuators.
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Fig. 9.18 Comparison between the error of the inverse compensation when the inverse rate-
dependent Prandtl–Ishlinskii model is applied as a feedforward compensator (circle) and the
characterization error between the measured displacement and the output of the rate-dependent
Prandtl–Ishlinskii model (square)

It should be mentioned that different piezomicropositioning actuators exhibit
asymmetric rate-dependent hysteresis nonlinearities that increase as the excitation
frequencies of the applied input voltage increase. These effects can be accurately
compensated for using the method proposed in this chapter. The results presented
in this chapter can also be extended to complex hysteresis nonlinearities studied by
Kuhnen [28] and Visone and Sjöström [29].

9.7 Conclusions

The inverse rate-dependent PrandtlIshlinskii model is analytical and exact. This
makes the inverse PrandtlIshlinskii model attractive for control piezomicroposi-
tioning actuators at different excitation frequencies. The proposed compensation
algorithm is easy to use and can be applied to compensate for rate-dependent
hysteresis nonlinearities in micro/nano-positioning applications where the use of
feedback sensors and feedback control techniques are not easy.
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29. C. Visone, M. Sjöström, Exact invertible hysteresis models based on play operators. Physica B
343(1–4), 148–152 (2004)


	9 Compensation of Rate-Dependent Hysteresisin a Piezomicropositioning Actuator
	9.1 Introduction
	9.2 Background
	9.3 Rate-Dependent Prandtl–Ishlinskii Model and Its Inverse
	9.3.1 The Rate-Dependent Prandtl–Ishlinskii Model
	9.3.2 Inverse Rate-Dependent Prandtl–Ishlinskii Model
	9.3.3 The Dynamic Threshold
	9.3.4 Numerical Implementation

	9.4 Experimental Results and Hysteresis Modeling
	9.4.1 Experimental Results
	9.4.2 Parameter Identification
	9.4.3 Hysteresis Modeling

	9.5 Feedforward Compensation of Rate-Dependent and Rate-Independent Hysteresis Nonlinearities
	9.5.1 The Inverse Compensator
	9.5.2 Compensation of Rate-Dependent Hysteresis
	9.5.3 Compensation of Hysteresis Nonlinearities at Low-Excitation Frequencies
	9.5.4 Triangular Waveform
	9.5.5 Major and Minor Hysteresis Loops

	9.6 Discussions
	9.7 Conclusions
	References


