
Chapter 6
Interval Modeling and Robust Feedback Control
of Piezoelectric-Based Microactuators

Sofiane Khadraoui, Micky Rakotondrabe, and Philippe Lutz

Abstract This chapter presents the modeling and the control of piezoelectric-based
microactuators. Typified by uncertainties of models, we propose to use intervals
to bound the uncertain parameters. These uncertainties are particularly due to the
difficulties to perform precise identification and to the high sensivity of the systems
at the micro/nanoscale. In order to account the models uncertainties, we propose
therefore to combine interval tools and classical control theory to derive robust
controllers. Experimental results confirm the predicted theory and demonstrate the
efficiency of the proposed method.

6.1 Introduction

This chapter presents the control of piezoelectric actuators used in microgrippers
generally dedicated to micromanipulation or to microassembly. Piezoelectric
actuators are well recognized for their high resolution (submicrometric), their high
bandwidth (up to several tens of kiloHertz), their high force density, and for their
ease of control (control signal is electrical). However, like other microactuators
(thermal, electrostatic, etc.), piezoelectric microactuators suffer from the high
sensivity face to the environment due to their small sizes. For instance, small
mechanical vibrations or small thermal noises surrounding the microactuators
would generate nonnegligible unwanted movement of them. All these make the
used models have uncertain or varying parameters and consequently may lead to
the loss of performances or even the loss of stability during the utilization of the
actuators.
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In order to achieve the required performances in micromanipulation and mi-
croassembly tasks, linear modeling with Δ -matrix uncertainties has been used
and classical robust control laws (H2, H∞, and μ-synthesis) were applied for
each piezocantilever [4, 14–16]. The efficiency of these advanced methods was
proved in several applications (SISO and MIMO microsystems). However their
major disadvantage is the derivation of high-order controllers which are time
consuming and which limit their embedding possibilities, as required for real
packaged microsystems.

An alternative possibility to classical robust control laws is the use of interval
analysis which is a way to model the parametric uncertainties. The principle of the
controller design is therefore based on the combination of the interval arithmetic
with a linear control theory. In addition to its principle simplicity to model the
uncertain parameters, the main advantage is the derivation of low-order controllers.

In this chapter, interval tools are used to design robust controllers for piezoelec-
tric microactuators and to check a posteriori their performances. Two methods are
proposed for the control design, a method based on the Performances Inclusion
Theorem [13] and a method based on the combination of the H∞ and interval tools.
Experimental results demonstrate the efficiency of the proposed approaches and
show their real interest for uncertain systems such as piezoelectric microactuators.

The chapter is organized as follows. We give first some preliminaries on interval
tools in Sect. 6.2. Section 6.3 is devoted to the design of robust controller using
the Performances Inclusion Theorem while the method based on the combination of
H∞ tool and interval tools is presented in Sect. 6.4. In Sect. 6.5, we present the a
posteriori performances analysis still by using H∞ tool and interval tools. Finally,
the experimental results are presented in Sect. 6.6.

6.2 Preliminaries on Intervals

6.2.1 Definitions

We remind here some basics on intervals that will be used in the rest of the chapter.
The readers who are interested to see more in details the techniques of intervals are
suggested to read the references [6, 12].

A real interval [x] is a closed interval such that

[x] = [x−,x+] (6.1)

where x− and x+ are called lower bound and upper bound, respectively. We have,
x− ≤ x+. Having x− = x+ means that the interval [x] is degenerate. By convention,
a degenerate interval [a] = [a,a] is identified by the real number a. The designation
point number is similar to the designation degenerate interval number. While the set
of real point numbers is R, the set of real intervals (or real interval numbers) is IR.
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Instead of using the notation in (6.1), one can also identify a real interval number
by its midpoint mid([x]) and its radius rad([x]) such that

⎧
⎨

⎩

mid([x]) =
(x++x−)

2

rad([x]) =
(x+−x−)

2 = w([x])
2

(6.2)

where w([x]) is the width of the interval.

6.2.2 Operations on Intervals

In the arithmetics of intervals, the basic operations are extended to interval numbers.
Consider two intervals [x] = [x−,x+] and [y = y−,y+]. So we have

[x]+ [y] = [x−+ y−,x++ y+] (6.3)

and
[x]− [y] = [x−− y+,x+− y−] (6.4)

Consequently, we have, [x]− [x] �= 0, except for x− = x+.
The multiplication and division are defined as follows

[x] . [y] = [min(x−y−,x−y+,x+y−,x+y+) ,
max(x−y−,x−y+,x+y−,x+y+)]

(6.5)

and
[x]/ [y] = [x] . [1/y+,1/y−] , 0 /∈ [y] (6.6)

We say that an interval [x] is included in an interval [y], i.e. [x]⊂ [y], if and if only
[x]∩ [y] = [x]. We have [x]> [y] if x− > y+. The real interval [x] is said to be positive
if x− > 0. The distributive law does not hold in general for interval. However,
the following relation, called subdistributivity, holds, [x] ([y]+ [z]) ⊆ [x] [y]+ [x] [z].
In addition, if [x] + [y] = [x] + [z], the cancellation law for addition holds, and
[y] = [z]. The same property holds for multiplication, if [x] [y] = [x] [z] and 0 /∈ [x],
thus [y] = [z].

If f is a function f : R→ R, then its interval counterpart [ f ] satisfies

[ f ] ([x]) = [{ f (x) : x ∈ [x]}] (6.7)

The interval function [ f ] is called inclusion function because f ([x]) ⊆ [ f ] ([x]),
for all [x] ∈ IR. An inclusion function [ f ] is thin if for any degenerate interval [x] =
x, [ f ] (x) = f (x). It is minimal if for any [x], [ f ] ([x]) is the smallest interval that
contains f ([x]). The minimal inclusion function for f is unique and is denoted by
[ f ]∗ ([x]).
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An easy way to compute an inclusion function for f is to replace each variable x
in the expression of f by [x] and all operations on points by their interval counterpart.
Thus, one obtains the natural inclusion function.

6.2.3 Interval Systems

An interval system is a transfer function representation, a state space representation
or a differential representation where the parameters are intervals. For an interval
transfer function, which is the interest of this chapter, the representation is as follows

[G] (s) =
[bm]sm + · · ·+[b1]s1 +[b0]

[an]sn + · · ·+[a1]s1 +[a0]
=

m
∑

l=0
[bl ]sl

n
∑

k=0
[ak]sk

(6.8)

where s is the Laplace variable and where m ≤ n, n being the order of the interval
system [G](s). The parameters [ak] and [bl ] are considered to be constant real
intervals in order to assume linear time invariant (LTI) systems. The notation
[G] (s) shall be used if the intervals [ak] and [bl ] are known. Instead, the notation
[G] ([ak] , [bl ] ,s) is used when they are unknown and to be sought for.

The notion of inclusion of systems should also be defined. Consider two interval
systems having the same polynomials degrees m and n, i.e. having the same structure

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(6.9)

[G1] (s)⊆ [G2] (s) is equivalent to saying that for any s∈ [0,∞), we have [G1]⊆ [G2].

Lemma 2.1. If [b1l ]⊆ [b2l ] and [a1k]⊆ [a2k], ∀k, l, then [G1] (s)⊆ [G2] (s).

Proof. See [13].

6.2.4 The Performances Inclusion Theorem [13]

Consider two interval systems having the same polynomials degrees m and n

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(6.10)
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The performances inclusion theorem (PIT) which will be used to further design
a controller is composed of two results.

Theorem 2.1. The performances inclusion in the frequency domain

if

⎧
⎨

⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and
[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒
⎧
⎨

⎩

[ρ ] ([G1] ( jω))⊆ ρ ([G2] ( jω))

and
[ϕ] ([G1] ( jω))⊆ ϕ ([G2] ( jω))

Theorem 2.2. The performances inclusion in the time domain

if

⎧
⎨

⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and
[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒ [g1] (t)⊆ [g2] (t)

where

• [ρ ] ([Gi]( jω)) is the modulus of the system [Gi].
• [ϕ] ([Gi]( jω)) is the argument.
• [gi](t) is the impulse response.

Proof. See [13].

6.3 PIT-Based Robust Control Design

Consider the feedback system shown in Fig. 6.1, where an uncertain system modeled
by an interval transfer function [G](s, [a], [b]) is controlled by a controller [C](s).
yc(t) is the reference input, y(t) is the output signal, and u(t) is the input control
signal.

Let us define the SISO interval system [G](s, [a], [b]) as follows

Fig. 6.1 A unity feedback
interval control system
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[G](s, [a], [b]) =
[N](s, [b])
[D](s, [a])

, (6.11)

where [N](s, [b]) and [D](s, [a]) are known polynomial with interval coefficients

[D](s, [a]) = [a0]+ [a1]s+[a2]s2 + · · ·+[an]sn

[N](s, [b]) = 1+[b1]s+[b2]s2 + · · ·+[bm]sm
(6.12)

with m ≤ n and the interval vectors [a] and [b] are defined by

[a] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[a0]

[a1]

[a2]
...
[an]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[b] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
[b1]

[b2]
...
[bm]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The natural question in control design approaches for interval systems is: How
can one derive a candidate controller for which the closed-loop system of Fig. 6.1
meets some performance requirements whatever the coefficients ai and b j ranging
in their intervals [ai] and [b j] (for i = 0, . . . ,n and j = 1, . . . ,m), respectively. This
point will be presented next.

Let us define a controller [C](s, [θ ]) with a prior knowledge on its order l ≤ k as
follows

[C](s, [θ ]) =
[Nc](s)
[Dc](s)

(6.13)

where the interval polynomials [Dc](s) and [Nc](s) are given as follows

[Dc](s) = [c0]+ [c1]s+[c2]s2 + · · ·+[ck]sk

[Nc](s) = [d0]+ [d1]s+[d2]s2 + · · ·+[dl ]sl
(6.14)

with the interval parameters vector of the controller [θ ]=([c0], . . ., [ck], [d0], . . ., [dl ])
T

is assumed to be unknown.
Let us denote the closed-loop model of Fig. 6.1 by [Hcl](s, [p], [q]). This latter

can be computed using the interval model (6.11) and the imposed controller (6.13)
as follows

[Hcl](s, [p], [q]) =
1

1
[C](s, [θ ])[G](s, [a], [b])

+1
(6.15)

where the interval vectors [q] and [p] are function of the intervals [a], [b], and [θ ].
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The closed-loop form given in (6.15) allows to avoid a multi-occurrence of the
interval terms [G](s, [a], [b]) and [C](s, [θ ]) which can produce an overestimation
during the closed-loop computation.

After replacing [G](s, [a], [b]) and [C](s, [θ ]) in (6.15), we get

[Hcl](s, [p], [q]) =
[N](s, [b])[Nc](s)

[N](s, [b])[Nc](s)+ [D](s, [a])[Dc](s)
(6.16)

which can be written after developing as follows

[Hcl](s, [p], [q]) =
[Ncl](s, [q])
[Dcl](s, [p])

(6.17)

with
[Dcl](s, [p]) = [p0]+ [p1]s+[p2]s2 + · · ·+[pr]sr

[Ncl](s, [q]) = 1+[q1]s+[q2]s2 + · · ·+[qe]se
(6.18)

where e = m+ l, r = n+ k, and

[p] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[p0]

[p1]

[p2]
...

[pr]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[q] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
[q1]

[q2]
...
[qe]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Consider a family of wanted closed-loop behaviors described by a known interval
transfer function, called interval reference model. If the controller defined in (6.13)
for a given θ ensures that the set of all possible closed-loop plants (6.17) is included
in the set of all feasible reference models, then robust performances are achieved.

Let’s denote by [H](s, [p], [q]) the interval reference model that describes the
required performance measures. Also, let Θ be the set of admissible values of the
controller parameters allowing to ensure required performances. Thus, the design
problem to be addressed can be viewed as finding the set Θ for which the following
inclusion holds [7, 8, 11], i.e., robust performances achieve.

Θ = {θ ∈ D |[Hcl](s, [p], [q])⊆ [H](s, [p], [q])} (6.19)

where D is the definition domain of θ .
Assume that an interval reference model is available and can be defined as

follows

[H](s, [p], [q]) =
[N](s, [q])
[D](s, [p])

(6.20)
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where
[D](s, [p]) = [p0]+ [p1]s+[p2]s

2 + · · ·+[pr]s
r

[N](s, [q]) = 1+[q1]s+[q2]s
2 + · · ·+[qe]s

e
(6.21)

such as e ≤ r and

[p] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[p0]

[p1]

[p2]
...

[pr]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[q] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
[q1]

[q2]
...
[qe]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

In order to check the inclusion [Hcl](s, [p], [q]) ⊆ [H](s, [p], [q]) by applying the
parameter by parameter inclusion as given in the PIT theorem in Sect. 6.2.4, the
interval reference model [H](s, [p], [q]) must have the same structure than the closed-
loop transfer [Hcl](s, [p], [q]) defined in (6.17). For that, let’s assume that the interval
polynomials [D](s, [p]) and [N](s, [q]) of the interval reference model have the same
order as in the polynomials [Dcl](s, [p]) and [Ncl](s, [q]), respectively, as follows

[D](s, [p]) = [p0]+ [p1]s+[p2]s
2 + · · ·+[pr]s

r

[N](s, [q]) = 1+[q1]s+[q2]s
2 + · · ·+[qe]s

e
(6.22)

According to the PIT theorem in Sect. 6.2.4, if the following set of inclusions

{
[q j]⊆ [q j], for j = 1, . . . ,e
[pi]⊆ [pi], for i = 0, . . . ,r

(6.23)

hold, then the set of all possible closed-loop plants [Hcl](s, [p], [q]) belong to the
set of all admissible plants [H](s, [p], [q]), and therefore the performances defined
by [Hcl](s, [p], [q]) are included in those of the wanted closed-loop [H](s, [p], [q]).
As a result, the controller [C](s, [θ ]) that guarantees the above inclusions will
effectively ensures the required performances for any system G(s) in the interval
model [G](s, [a], [b]).

Remark 1. The interval vectors [p] and [q] are known and they can be easily
computed from the required specifications, while the interval parameters [pi] and
[q j] (for i = 0, . . . ,r and j = 1, . . . ,e) depend on the controller parameters which are
unknown.

Finally, the design problem given in (6.19) can be reduced as finding the set-
solution Θ of the admissible values of the controller parameters that ensure the
following set of inclusions
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Table 6.1 SIVIA algorithm
for solving a set-inversion
problem [5, 6]

Step SIVIA(in: [p], [q], [p], [q], [θ ], ε; inout: Θ , Θ )

1 if [[p]([θ ]), [q]([θ ])]
⋂
[[p], [q]] = /0 return;

2 if [[p]([θ ]), [q]([θ ])]⊆ [[p], [q]] then
{Θ :=Θ

⋃
[θ ]; Θ :=Θ

⋃
[θ ]} return;

4 if width([θ ])< ε then {Θ :=Θ
⋃
[θ ]}; return;

5 bisect [θ ] into L([θ ]) and R([θ ]);
6 SIVIA([p], [q], [p], [q], L([θ ]), ε; Θ , Θ );

SIVIA([p], [q], [p], [q], R([θ ]), ε; Θ , Θ ).

Θ =

{

θ ∈ D

∣
∣
∣
∣

{
[q j]([θ ])⊆ [q j],∀ j = 1, . . . ,m+ l
[pi]([θ ])⊆ [pi],∀i = 0, . . . ,n+ k

}

(6.24)

where D is the definition domain of θ .
The above problem described in (6.24) is known as a set-inversion problem which

can be solved using interval techniques. The set inversion operation consists to
compute the reciprocal image of a compact set called subpaving. The set-inversion
algorithm SIVIA (more details are given in [5,6]) allows to solve the design problem
given in (6.24) and provides an approximation with subpavings of the set solution
Θ . This approximation is realized with an inner and outer subpavings, respectively,
Θ and Θ , such that Θ ⊆ Θ ⊆ Θ . The subpaving Θ corresponds to the controller
parameter vector for which the problem (6.24) holds. If Θ = /0, then it is guaranteed
that no solution exists for (6.24).

We give in Table 6.1 the recursive SIVIA algorithm allowing to solve the control
problem (6.24) with guaranteed solution. SIVIA algorithm requires a search box
[θ0] (possibly very large) also called initial box within which Θ is guaranteed to
belong. The inner and outer subpavings (Θ and Θ ) are initially empty. ε represents
the wanted accuracy of computation.

Quite often we are interested to compute an inner approximation Θ for which
we are sure that Θ is included in the set solution Θ , i.e., Θ ⊆Θ , but when no inner
approximation exists i.e., Θ = /0, it is possible to choose parameters inside the outer
subpaving, i.e., choose θ ∈Θ .

Remark 2. The number of unknown parameters in (6.24) is l + k + 2, while the
number of inclusions is r + e + 1. Since e = m + l and r = n + k, we can write
r+ e+1 ≥ l + k+2. Therefore, there are more inclusions than unknown variables.
So, the set solution Θ can be obtained by the intersection of the set solution of each
inclusion in (6.24) as follows

Θ =
r+e+1⋂

i=1

(set sol)i

such as, (set sol)i is the set solution of the ith inclusion.
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Remark 3. If the set-inversion problem is not feasible, i.e., Θ = /0, the initial box
of the parameters must be changed and/or one must modify the controller structure
and/or the required performance specifications.

6.4 Design of a Robust Controller by Combining Standard
H∞ and Interval Tools

In this part, another approach to design robust controllers for interval systems
is proposed. The method is based on the standard H∞ technique and interval
tools. While the specifications and wanted performances are transcribed in terms
of weighting transfers and the standard H∞ is used to formulate the objective or
problem, interval tools are used to compute the controllers.

Consider the closed-loop pictured in Fig. 6.1, where the controlled system
[G](s, [a], [b]) is a general nth-order interval system defined by the following transfer
function

[G](s, [a], [b]) =
[b0]+ [b1]s+[b2]s2 + · · ·+[bm]sm

[a0]+ [a1]s+[a2]s2 + · · ·+[an]sn (6.25)

where m ≤ n and

[a] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[a0]

[a1]

[a2]
...
[an]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[b] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

[b0]

[b1]

[b2]
...
[bm]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Similar to the design problem presented in the previous section, the main
objective is to design robust controller for which robust performances hold for
any system G(s) part of the family of systems defined by [G](s, [a], [b]). Also, in
addition to the desired performance specifications of the closed-loop system, it
is often desired to design low-order controllers for simplicity of implementation,
especially for embedded systems. For that, a fixed structure of the controller can be
a priori imposed as follows

[C](s, [θ ]) =
[d0]+ [d1]s+[d2]s2 + . . .+[dl ]sl

[c0]+ [c1]s+[c2]s2 + · · ·+[ck]sk (6.26)

where [θ ] = ([c0], · · · , [ck], [d0], . . . , [dl ])
T is an unknown vector of interval parame-

ters and l ≤ k to have the causality of the controller.
The issue is to find the set (or subset) of the suitable values of the controller

parameters so that the closed-loop system respects some given performances despite
the parametric uncertainties considered in the transfer function of the controlled
system. For that, the controller parameters can be adjusted using H∞-criterion. Such
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a

b

Fig. 6.2 Standard H∞ control
scheme (a): the weighted
closed-loop block-diagram.
(b): the corresponding
standard form

criterion is defined as the H∞-norm of some weighted transfer functions of the
closed-loop to be less than or equal to one.

Let’s remind the H∞-standard principle that considers the tracking performances
and the input control limitation [3, 18]. It is based on the standard block pictured
in Fig. 6.2b where P(s) is called the augmented system. This standard scheme is
derived from the weighted closed-loop in Fig. 6.2a. While the weighting W1(s)
is used to transcribe the tracking performances, the weighting W2(s) is used to
transcribe the input control limitation.

The H∞ problem is to find a controller stabilizing the closed-loop system and
achieving the following H∞-criterion

‖Fl(P(s),C(s))‖∞ ≤ γ (6.27)

where γ is a positive scalar. If γ ≤ 1, the nominal (specified) performances are
achieved.

The linear fractional transformation Fl(P(s),C(s)) is the transfer between the
weighted outputs and the exogenous inputs of Fig. 6.2b. It is defined as follows

Fl(P(s),C(s)) = z(s) y−1
c (s) (6.28)
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with z =

(
z1

z2

)

From Fig. 6.2a Fl(P(s),C(s)) is given by

Fl(P(s),C(s)) =

(
W1(s)S(s)

W2(s)C(s)S(s)

)

(6.29)

where S(s) = (1+C(s)G(s))−1 is the sensivity function.
Applying the H∞ standard problem in (6.27) to (6.28) and (6.29), we obtain the

following conditions to be satisfied

{ ‖W1(s)S(s)‖∞ ≤ γ
‖W2(s)C(s)S(s)‖∞ ≤ γ

(6.30)

Now we reapply the same H∞ principle presented above to design robust
controller for systems modeled by an interval transfer function [G](s, [a], [b]). Since
the system is interval, the augmented plant will also be interval, [P](s, [a], [b]).
Moreover, the H∞-criterion ‖Fl([P](s, [a], [b]), [C](s, [θ ]))‖∞ ≤ γ is given by

{‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

(6.31)

In this case, if γ ≤ 1, the robust performances are achieved.
Let’s denote by Θ the set of the suitable values corresponding to the controller

parameters that ensures the requirements. Based on the H∞ principle above, the
design problem can be formulated as follows [7, 9, 10].

Find the set Θ so that H∞ performance holds for any positive number γ ≤ 1, i.e.,

Θ =

{

θ ∈ D

∣
∣
∣
∣

{‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

}

(6.32)

where D is the definition domain of θ . The interval sensivity function [S](s) is
defined as follows

[S](s) =
1

1+[C](s, [θ ])[G](s, [a], [b])
(6.33)

However, the resolution of the problem (6.32) requires the computation of the
H∞-norm of certain interval transfers. This computation can be done by applying
the following theorems which are due to the results in [1, 2, 17].

Theorem 4.1. Consider an interval system [G](s, [a], [b]) defined as in (6.25). The
H∞-norm of [G] is the maximal among the H∞-norm of the sixteen transfers,

‖[G]‖∞ = max
i=1→16

∥
∥
∥G(i)

∥
∥
∥

∞
(6.34)
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where G(i), for i = 1,2, . . . ,16 are sixteen (point) systems based on the eight
Kharitonov vertex polynomials corresponding to the numerator and denominator
of the interval system, i.e., sixteen transfer functions formed by combining the
four Kharitonov vertex polynomials of the numerator of [G](s, [a], [b]) and the four
Kharitonov vertex polynomials of its denominator.

Proof. see [1, 2].

When the interval system [G] is weighted by a weighting function (not interval
transfer) W (s), it is not advised to compute the multiplication W [G] first and then
compute the H∞-norm of the resulting interval plant afterwards. Indeed, developing
the multiplication of the intervals polynomials produces a multi-occurrence of the
parameters and therefore a overestimation of the resulting intervals. Thus, the H∞-
norm of W [G] is defined as follows [1, 2]

‖W [G]‖∞ = max
i=1→16

∥
∥
∥WG(i)

∥
∥
∥

∞
(6.35)

Also, in this control approach, we need to compute the H∞-norm of the sensivity
function of an interval system [G](s, [a], [b]). This has been addressed in the
following theorem proposed by Long-Wang [17].

Theorem 4.2. Consider an interval system [G](s, [a], [b]) and its sensivity function

[S] = 1
1+[G] =

[D]
[N]+[D] , where [N] and [D] are the numerator and denominator

polynomials of [G]. The H∞-norm of the sensivity [S] is defined by the maximal
among the H∞-norm of twelve vertex systems out of sixteen vertex systems,

‖[S]‖∞ =

∥
∥
∥
∥

[D]

[N]+ [D]

∥
∥
∥
∥

∞
= max

i=1→12

∥
∥
∥S(i)

∥
∥
∥

∞
(6.36)

Proof. see [17].

The computation of ‖W1(s)[S](s)‖∞ and ‖W1(s)[C](s, [θ ])[S](s)‖∞ given in (6.32)
can be easily carried out by applying the above theorems.

‖W2[C][S]‖∞ = max
i=1→16

∥
∥
∥W2M(i)

∥
∥
∥

∞

‖W1[S]‖∞ = max
i=1→12

∥
∥
∥W1S(i)

∥
∥
∥

∞

(6.37)

where [M] = [C][S] and M(i) (i = 1,2, . . . ,16) are the sixteen vertex of [M].
The problem given in (6.32) is known as a set-inversion problem which can be

solved using set inversion algorithms. By using SIVIA algorithm [5,6], it is possible
to approximate the set solution Θ corresponding to the controller parameters for
which the problem (6.32) is fulfilled. In fact, testing the existing or not of a
solution (existing of a candidate controller) for the problem (6.32) requires to have
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a knowledge on the minimum and the maximum values of the H∞-norm of the
involved interval transfers. However, Theorems 4.1 and 4.2 allow only to evaluate
the maximum value of the H∞-norm of interval transfers. For that, we present in
Fig. 6.3, a flow chart describing the recursive SIVIA algorithm allowing to solve
the above design problem (6.32). The controller computation requires a search box
[θ0] also called initial box. The subpaving Θ is initially empty. ε represents the
wanted accuracy of computation. Note that, contrary to the standard H∞ problem
(for point systems) where the optimal value of γ is found by dichotomy, its value
here is directly set to one, γ = 1. The objective is to find directly the controller
parameters for which the specified performances are met.

Remark 4. The controller computation based on the algorithm shown in Fig. 6.3
takes more time due to the high number of bisections carried out on the domain of
the parameters θ .

6.5 A Posteriori Performances Analysis Using Standard H∞
and Interval Tools Combined

Contrary to the problem presented in the two last sections where the objective was
to design robust controller for interval systems, in this part, we deal with the inverse
problem. This latter is as follows.

Consider an uncertain system modeled by an interval transfer [G](s, [a], [b]) and
controlled by a controller C(s) (see Fig. 6.4) to ensure for the closed-loop system a
more desirable behavior.

Assume that a candidate controller C∗(s) is available (for example, computed
using the method presented in Sect. 6.3), then the natural question: How can one
check if a such controller C∗(s) achieves the required performance specifications
for the closed-loop system? This point can be carried out by means of H∞ approach
combined with interval analysis.

The principle of H∞ synthesis combined with interval analysis discussed in
Sect. 6.4 consists first in transcribing during the synthesis, the requirements into
weighting functions (see Fig. 6.5), then computing a controller for which a H∞
criterion holds,

‖Fl([P](s, [a], [b]),C(s)‖∞ ≤ 1 (6.38)

where Fl(P(s),C(s)) is the transfer of the interconnection between C(s) and the
augmented plant [P](s, [a], [b]).

In our case the controller C∗(s) is known, so we need to check the fulfillment of
the condition (6.38) for the controller C(s) =C∗(s). From Fig. 6.5, the H∞ criterion
becomes,

{‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)C(s)[S](s)‖∞ ≤ γ

(6.39)
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Fig. 6.3 Flow chart corresponding to the SIVIA algorithm used for solving the problem (6.32)

Fig. 6.4 Closed-loop control
system
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Fig. 6.5 H∞-standard
problem

then satisfying the conditions defined in (6.39) for C(s) = C∗(s), means that the
controller C∗(s) guarantees robust performances for any G(s) within the interval
system [G](s). The computation of the maximal H∞ norm of the interval transfers
given in (6.39) can be carried out by applying the Theorems 4.1 and 4.2.

Remark 5. The H∞ conditions given in (6.39) are only sufficient, so if these
constraints are not satisfied, then no conclusion on the achievement of the desired
performances can be done.

6.6 Application to Piezocantilevers and Experimental Results

The aim of this section is to apply the interval control methods previously presented
to control piezoelectric microactuators used in microgrippers. In fact, a piezoelectric
microgripper is composed of two piezoelectric cantilevers (microactuators) gener-
ally with rectangular section. Figure 6.6 pictures a microgripper made at the AS2M
department of FEMTO-ST Institute manipulating a small gear.

In general, one of the two actuators that compose the microgripper is used for
the precise positioning while the second actuator is used to measure or control
the manipulation force. In this application, we are interested by the modeling and
control of the positioning. The actuator used is a unimorph cantilever made up of
one piezoelectric layer (PZT material) and one passive layer (Copper material).
Figure 6.7 presents the setup used for the rest of the chapter which includes,

• The piezoelectric actuator itself.
• A computer and a dSPACE board for the data acquisition, for generating the

control signal or the reference signal and for the controller implementation. The
MATLAB-SIMULINK is used for the implementation and the sampling time is set
equal to Ts = 0.2 ms.
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Fig. 6.6 A piezoelectric
microgripper manipulating a
small gear

Fig. 6.7 Setup used for the
experiments
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• An optical sensor (Keyence LC-2420) which is set to have a resolution of 50 nm.
• A high-voltage (HV) amplifier (±200 V).

Modeling and identification of microsystems are very delicate because of their
small sizes, their fragility, and the lack of convenient (accurate and high bandwidth)
sensors to report precise measurements. These systems are also very sensitive to
environmental disturbances (temperature, vibrations, manipulated objects, etc.). As
a result, their behavior parameters may change during their functioning or during
the tasks and therefore the wanted performances or even the stability may be lost.
In this application, we bound the uncertain parameters of piezocantilever models
by intervals that are able to account the above complex characteristics. Afterwards,
control design approaches presented previously can be easily applied to improve the
performances of piezocantilevers.

6.6.1 Interval Model Derivation

The models of piezocantilevers are often subjected to variation due to the environ-
ment (small thermal variation, manipulated object, etc.). In fact, these characteristics
stem from the relatively small sizes of the piezoelectric actuators used in mi-
cromanipulation and micropositioning applications which finally make them very
sensitive to any minor variation. The model parameters can be considered as
uncertain and thus bounded by intervals within its range of variation in order to
further design a robust controller. However, for an ease of identification in this
application, we will not characterize the parameter variations of the piezoelectric
actuator during a micropositioning or a micromanipulation task. We will use two
unimorph piezocantilevers denoted by P1 and P2. The first piezocantilever P1 has
the dimensions length×width× thickness = 16mm× 1mm× 0.45mm, while the
second one P2 has dimensions of 14mm × 1mm × 0.45mm. The difference in
their length generate nonnegligible difference on their model parameters. The
interval model [G](s, [a], [b]) which represents a family of piezocantilever models
is derived using the two point models G1(s) and G2(s) corresponding to the used
piezocantilevers P1 and P2, respectively, where the models G1(s) and G2(s) are
identified without performing the above tasks. After a frequency identification for
each piezocantilever and performing some computation, we obtain the following
interval model [G](s, [a], [b]),

[G](s, [a], [b]) =
[b2]s2 +[b1]s+[b0]

[a2]s2 +[a1]s+[a0]
(6.40)
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where
[b2] = [7.042,8.0313]×10−8

[b1] = [1.808,1.809]×10−4

[b0] = 1
[a2] = [8.802,9.794]×10−8

[a1] = [5.24,5.364]×10−6

[a0] = [1.291,1.44]

In order to increase the stability margin and to ensure that the interval model
really contains the models of the two piezocantilevers, we propose to expand by
10% the interval width of each parameter of the model [G](s, [a], [b]). This choice
is a compromise. If the widths are too large, it is difficult to find a controller
that respects both the stability and performances for the closed-loop. Finally, the
extended interval model that will be used for the computation of a controller is as
follows

[G](s, [a], [b]) =
[6.992,8.08]×10−8s2 +[1.807,1.809]×10−4s+1

[8.753,9.844]×10−8s2 +[5.234,5.37]×10−6s+[1.283,1.448]

(6.41)

6.6.2 Specifications and Controller Structure

Piezocantilevers are very resonant (more than 60% of overshoot). Such overshoot
is not desirable in micromanipulation and microassembly tasks. The following
specifications are therefore considered for the closed-loop,

• Zero or very small overshoot.
• Settling time tr5% ≤ 8 ms.
• Static error |ε | ≤ 1%.

These specifications often correspond to the requirement in microposition-
ing tasks for microassembly and micromanipulation that use piezoelectric
microgrippers.

To ensure the above requirements, the control design approach does not require
any specified structure for the controller. So, any structure can be chosen for the
controller [C](s) as long as Remark 2 is satisfied. In this example, we consider a PI
(Proportional–Integral) structure because of its low-order (two parameters) and its
wide use in the industry

[C](s, [Kp], [Ki]) =
[Kp]s+[Ki]

s
(6.42)

where [Kp] and [Ki] are the proportional and integral gains, respectively.
Next, the both proposed control approaches will be applied to achieve these

requirements.
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6.6.3 PI Controller Computation Using PIT Approach

Based on the interval model in (6.41) and the interval controller in (6.42), the general
model of the closed-loop can be expressed as follows

[Hcl](s, [p], [q]) =
[q3]s3 +[q2]s2 +[q1]s+1

[p3]s3 +[p2]s2 +[p1]s+[p0]
(6.43)

where [q3] =
[Kp][b2]

[Ki]
, [q2] =

[Kp][b1]

[Ki]
+ [b2], [q1] =

[Kp]

[Ki]
+ [b1],

[p3] =
[a2]+ [Kp][b2]

[Ki]
, [p2] =

[a1]+ [Kp][b1]

[Ki]
+ [b2], [p1] =

[a0]+ [Kp]

[Ki]
+ [b1]

and [p0] = 1.

Concerning the reference model, its computation is carried out according to the
closed-loop (6.43) and to the required specifications. According to the specifications
(see Sect. 6.6.2), a first order model can be used for the reference model.

[H](s, [K], [τ ]) =
[K]

[τ ]s+1
(6.44)

where the parameters [K] and [τ ] define the static error and settling time,
respectively:

• [K] = 1+ ε = [0.99,1.01].

• [τ ] =
[tr5%]

3
= [0,2.66ms].

However, it is necessary that the interval reference model has the same structure
than that of the closed-loop in order to apply the parameter by parameter inclusion
as required in (6.24). Thus we add some poles and zeros far from the imaginary axis
to (6.44)

[H](s, [K], [τ ]) =
[K]

(
[τ ]
10

s+1

)3

([τ ]s+1).

(
[τ ]
10

s+1

)2 (6.45)

which can also be rewritten as follows:

[H](s, [p], [q]) =
[q3]s

3 +[q2]s
2 +[q1]s+1

[p3]s3 +[p2]s2 +[p1]s+[p0]
(6.46)

where [q3] = 0.001[τ ]3, [q2] = 0.03[τ ]2, [q1] = 0.3[τ ], [p3] = 0.01
[τ ]3

[K]
,

[p2] = 0.21
[τ ]2

[K]
, [p1] = 1.2

[τ ]
[K]

and [p0] =
1
[K]

.
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Fig. 6.8 Set solution of the
parameters [Kp] and [Ki]
ensuring the wanted
performances

According to the control method discussed in Sect. 6.3, the admissible values of
the PI controller parameters that guarantee the required specifications for the interval
model (6.41) can be obtained by solving the following system of inclusions.

[Kp][b2]

[Ki]
⊆ 0.001[τ ]3

[a1]+ [Kp][b1]

[Ki]
+ [b2]⊆ 0.21[τ ]2

[K]

[Kp][b1]

[Ki]
+ [b2]⊆ 0.03[τ ]2

[a0]+ [Kp]

[Ki]
+ [b1]⊆ 1.2[τ ]

[K]

[Kp]

[Ki]
+ [b1]⊆ 0.3[τ ] 1 ⊆ 1

[K]

[a2]+ [Kp][b2]

[Ki]
⊆ 0.01[τ ]3

[K]

(6.47)

The application of the SIVIA algorithm implemented in the Matlab-Software,
with an initial box [Kp0]× [Ki0] = [0,1]× [0.1,1000], provides the subpaving shown
in Fig. 6.8. The dark colored subpaving (Θ ) corresponds to the inner approximation,
i.e., the set parameters [Kp] and [Ki] of the controller (6.42) that ensures the above
inclusions and consequently that meets the performances for the interval model.

The controller [C](s, [Kp], [Ki]) is an interval and is not directly implementable.
Point parameters Kp and Ki within the set solution Θ must be chosen and the
corresponding point controller C(s,Kp,Ki) = C(s) has to be implemented. In this
example, we test the following PI controller

C(s) =
0.1s+900

s
(6.48)

This controller has been independently tested on the both piezocantilevers P1 and
P2. A step response analysis is performed on each closed-loop by applying a step
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Fig. 6.9 Experimental step
responses when testing the
implemented controller C(s)

reference of amplitude 40μm. The application of the implemented controller C(s)
to the both piezocantilevers leads to the experimental results shown in Fig. 6.9.

As shown in Fig. 6.9, the implemented controller has played its role and achieved
the wanted performances for the closed-loops. Indeed, the experimental settling
times are about tr1 = 4 ms and tr2 = 4.7 ms with the piezocantilever P1 and P2,
respectively. Moreover, the obtained behaviors are with very small overshoot and the
experimental static errors are neglected and belong to the required interval |ε | ≤ 1%.

6.6.4 PI Controller Computation by Combining the H∞
Technique with Interval Analysis

In this section, we apply the robust control approach proposed in Sect. 6.4 to control
the deflection (position) of piezocantilevers having model inside the interval model
[G](s, [a], [b]) defined in (6.41). The same requirements presented in Sect. 6.6.2 are
considered here. Moreover, it is necessary to limit the applied voltage in order to
avoid any damage of the actuators. For that, we add a condition on the amplitude of
the input voltage U applied to the piezocantilever. We particularly choose a maximal
voltage Umax = 2.5 V for each 1μm of reference. Also, without loss of generality, we
consider the design of the previous PI (Proportional–Integral) controller structure
(6.42).

Figure 6.10a presents the closed-loop scheme for the controller design, where
the weighting function W1(s) is added to transcribe the tracking performances and
W2(s) for the input control limitation.

The weighting functions W1(s) and W2(s) were chosen according to the required
performances. We choose
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a

b

Fig. 6.10 (a) The
closed-loop scheme with
the weighting functions.
(b) The H∞-standard scheme

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W1(s) =
0.002667s+1

0.002667s+0.01

W2(s) =
1

2.5

(6.49)

We aim to find the set-solution Θ of the PI controller parameters that ensures H∞
performance for γ = 1, i.e.,

Θ =

{

θ ∈ [θ ]
∣
∣
∣
∣

{ ‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

}

(6.50)

where [S](s) = (1+ [C](s, [θ ])[G](s, [a], [b]))−1 is the sensivity function defined as
follows:

[S](s) =

[a2]

[K]
s3+

[a1]

[K]
s2+

1
[K]

s

[a2]

[K]
s3+

[a1]

[K]
s2+

1
[K]

s+[Kp][b2]s3+([Ki][b2]+[Kp][b1])s2+([Kp]+[Ki][b1])s+[Ki]

(6.51)
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Fig. 6.11 Set-solution of the
parameters [Kp] and [Ki]
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Now, we solve the set-inversion problem in (6.50) using the recursive algorithm
presented in Fig. 6.3. We choose an initial box for the controller parameters [Kp0]×
[Ki0] = [0,1.2]× [0.1,1200]. The resulting subpaving is presented in Fig. 6.11. The
dark colored subpaving Θ corresponds to the set parameters [Kp] and [Ki] of the PI
controller (6.42) that ensures the performances defined by the H∞-criterion (6.50).

Note that any choice of the parameters [Kp] and [Ki] within the dark colored
subpaving Θ (see Fig. 6.11) satisfies the conditions (6.50) and consequently ensures
the required performances. In the case where the problem (6.50) is not feasible (with
the imposed controller), i.e., Θ = /0, the initial box of the parameters [Kp0]× [Ki0]
must be changed and/or the structure of the controller must be modified (increase
the order, for example) and/or the specifications must be modified (degrade the
specifications).

Similar to the previous case, the controller C(s) to be implemented is chosen by
taking any point parameters Kp and Ki within the set-solution Θ in Fig. 6.11. In this
example, we test the following controller:

C(s) =
s+1,000

s
(6.52)

In order to prove that the inequalities (6.50) are satisfied, the magnitudes of the

bounds
∣
∣
∣ 1

W1(s)

∣
∣
∣ and

∣
∣
∣
∣

1
W2(s)

∣
∣
∣
∣ are compared to the magnitudes of the sensivity function

|[S](s)| and of the transfer |C(s)[S](s)|, respectively, when using the implemented
controller (6.52). This comparison is given by Fig. 6.12.

The obtained results in Fig. 6.12 prove that the magnitudes of [S](s) and
C(s)[S](s) are effectively bounded by that of 1

W1(s)
and 1

W2(s)
, respectively, when us-

ing the computed controller C(s). This fact confirms that the specified performances
are effectively ensured.
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Fig. 6.13 Experimental
step responses of the
piezocantilevers when
using C(s)

Now, we implement the computed controller C(s) using the first piezocantilever
with length l = 16 mm then the second one with length l = 14 mm. Figure 6.13
shows the experimental results when a step reference of 40μm is applied. As
shown on the Fig. 6.13, the implemented controller (6.52) has played its role
since the closed-loop piezocantilevers satisfy the wanted specifications. Indeed,
experimental settling times obtained with the piezocantilevers P1 and P2 are about
tr1 = 5.2 ms and tr2 = 7 ms, respectively. The overshoots and static errors are
neglected (D1,2 ≈ 0, ε1,2 ≈ 0 < 1%). Furthermore, the maximal voltages U applied
to the both piezocantilevers are less than 40×2.5= 100 V, which should be the limit
for a displacement of 40μm. Indeed, the experiments show that the maximal input
voltage is Umax = 97 V.
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6.7 Conclusion

This chapter presents the modeling and robust control of piezoelectric microactua-
tors. These latters are characterized by models with uncertain parameters and need
convenient modeling and robust control laws. The challenge in micromanipulation,
microassembly, and micropositioning application is to ensure robust performances
despite the variation in model parameters. For that, interval analysis has been
introduced to describe uncertain parameters in the models of microactuators.
The main advantage of a such description by interval is the ease and natural way
to bound these uncertainties. Moreover, interval techniques can be used to solve
many engineering problems, such as control system problems. In the second part
of this chapter, two control design approaches for interval systems have been
proposed. The first control design method is based on the inclusion of interval
transfers and their time and frequency responses, while the second one combines the
H∞-standard method with interval techniques. The main advantage of the proposed
approaches is that they can provide low-order controllers that are able to ensure
robust performances for uncertain systems and that are convenient for real-time
embedded systems. It has been noted that these proposed control methods are based
on some sufficient conditions. This is one limitation of these proposed methods,
since sometimes the fulfillment of the constrained conditions does not hold for
a given controller, however the required performances measures can be met with
this latter. Also, based on the principle of the second control approach, it has been
shown that it is possible to perform a posteriori analysis of the performances of
interval closed-loop system when the controller is assumed to be known. At the
end of this chapter, the proposed control design methods have been applied to
control the deflection of piezocantilevers which are typically uncertain systems.
The derived controllers were with very low-order (first order) that are suitable for
embedded systems. The obtained experimental results confirmed the robustness
of the implemented controllers and also the efficiency of the proposed control
approaches. As a conclusion interval analysis can be viewed as a guaranteed
and powerful tool to represent uncertainties in real systems. Moreover, it can be
introduced also to formulate and solve many engineering problems.
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