
Chapter 5
A Hybrid Control Approach to Nanopositioning

Tomas Tuma, Abu Sebastian, John Lygeros, and Angeliki Pantazi

Abstract Precise position control on the nanometer and subnanometer scale,
referred to as nanopositioning, is a key enabler for nanoscale science and
engineering. In nanopositioning, feedback control is essential to meet the stringent
requirements on accuracy, stability, and repeatability in the presence of model
uncertainties and environmental disturbances. In this chapter, we review a new
hybrid control approach to nanopositioning which is based on the combination
of a continuous-time control law with impulsive modifications of the controller
states. By using impulsive control, the limitations of conventional linear
controllers can be overcome, such as the inherent trade-off between closed-loop
bandwidth and resolution. We review the related literature, present an in-depth
analysis of the stability and performance characteristics of impulsive control, and
verify the theoretical conclusions experimentally using a custom-built atomic force
microscope.

5.1 Introduction

The burgeoning field of nanoscale science and nanotechnology was arguably started
in the 1980s with the invention of the scanning tunneling microscope [1] and the
atomic force microscope (AFM) [2], two instruments which form the foundation
of scanning probe microscopy (SPM), allowing us to interact with matter on
scales down to the size of a single atom. Scanning probe techniques are currently
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Fig. 5.1 A schematic of a feedback control loop as often encountered in nanopositioning. The
controller forces the scanner to follow the desired reference trajectory by generating an actuation
signal according to a control law based on the reference trajectory and a feedback measurement
signal of the scanner position. The measurements are typically affected by sensing noise

used in the exploration of molecular structure [3], fabrication of nanometer-scale
objects [4], observation of biological phenomena in real time [5], high-density data
storage [6, 7], and characterization of semiconductor devices [8].

In SPM, precise control of motion with a subnanometer accuracy is of key
importance. Nanometer-scale objects and their properties, such as topographical,
electrical, and magnetic properties, are examined by means of a microfabricated
cantilever with an atomically sharp tip at its end. Typically, the tip of the cantilever
is positioned with subnanometer accuracy relative to the sample by means of a
nanopositioner, and the sample properties are inferred from the forces acting on
the tip. For example, to resolve the topography of a surface, the cantilever tip can
be moved in a raster-based pattern across a rectangular scan area, and a three-
dimensional estimate of the topography is obtained from analyzing the deflection
of the tip. The accuracy of the nanopositioner, or scanner, is vital for the overall
performance of the microscope.

In achieving the stringent accuracy requirements in nanopositioning, the concept
of feedback control plays a pivotal role. Feedback controllers are essential in
compensating for exogenous disturbances, such as building vibrations, temperature
fluctuations, and manufacturing imperfections. Moreover, actuation techniques with
ultra-high resolution, such as those using piezoelectric actuators, often exhibit
significant nonlinearities (e.g., hysteresis, creep, and drift) which need to be
compensated for by means of control. If high-speed operation is required, the
complex dynamical behavior of the scanner also needs to be taken into account
to prevent unwanted scanner-induced vibrations.

Figure 5.1 shows a schematic of a feedback loop as often encountered in
nanopositioning. Here, the scanner is controlled by means of a feedback and/or
feedforward controller whose inputs are the reference trajectory and the measure-
ment signal. Based on the reference and the measurement signals, the controller
executes a control law and makes the scanner follow the desired reference trajectory.
The measurement signal is affected by additive measurement noise.

This chapter reviews a novel hybrid control approach to nanopositioning in which
the controller combines a continuous-time control law with a discrete control law
based on impulsive changes of the controller state. By using this impulsive state
multiplication (ISM), some principal limitations of linear control can be overcome,
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such as the trade-off between the closed-loop bandwidth and the positioning
resolution. Moreover, impulsive control is an important theoretical concept which
links hybrid control with some of the recent nonlinear control techniques for
nanopositioning and enables new and elegant ways to analyze and improve them.
Despite its nonlinear character, impulsive control is easy to implement and can
significantly improve the performance of existing nanopositioning systems. The
exposition in this chapter is based on the theoretical and experimental results
published in [9–12].

First, we briefly review the landscape of feedback control for nanopositioning in
Sect. 5.2. Section 5.3 introduces the concept of impulsive control and its particular
type, ISM, and analyzes the stability of linear systems with impulses. Section 5.4
presents control architectures based on impulsive feedback control, including
feedback controllers for tracking piecewise constant and piecewise affine reference
signals, and analyzes their performance. Section 5.5 discusses an inherent connec-
tion between impulsive control and the recently published signal transformation
approach (STA) to nanopositioning, including techniques to significantly improve
the transient performance of STA. Section 5.6 contains extensive experimental
results, which demonstrate the properties of impulsive control and STA in a custom-
built high-speed AFM. Section 5.7 concludes the chapter.

5.2 Feedback Control for Nanopositioning

In the design of feedback controllers for nanopositioning, specific control challenges
must be taken into account, such as the high amount of measurement noise and the
complex dynamical behavior of nanopositioners. In what follows, we review some
of the recent linear and nonlinear control approaches in nanopositioning. The review
includes an extensive account on the existing linear and nonlinear feedback control
techniques in nanopositioning, which provides the necessary context for introducing
the concept of impulsive control in Sect. 5.3.

5.2.1 Linear Feedback Control

Linear feedback controllers have been widely used in nanopositioning because
of their conceptual and implementational simplicity [13–15]. Conventional linear
feedback controllers are often based on the proportional, integral, and derivative
(PID) control components. However, PID control often cannot meet the increasing
requirements on robustness, accuracy, and speed. For instance, PI controllers
inherently impose a trade-off between robustness and performance which becomes
prohibitive in complex high-speed nanopositioning devices, especially when high
bandwidth is of critical importance. Hence, a significant research effort has been
devoted to developing advanced linear feedback architectures for nanopositioning
and design methodologies.



92 T. Tuma et al.

Resonant control [16–18] is another technique which is used in nanopositioning
as an alternative to conventional PI controllers. In integral resonant control, the
controller consists of a constant feed-through term and a first-order integral feedback
controller. Resonant controllers are well suited for damping of vibrations in systems
with collocated actuators and sensors and are robust and simple to implement.

Advanced linear control techniques can improve the performance and design
trade-offs of feedback control for nanopositioning, but they are subject to inherent
constraints [19,20]. For example, there is a fixed mathematical relationship between
the closed-loop sensitivity and complementary sensitivity transfer functions which
dictates a trade-off between the tracking bandwidth and the positioning resolu-
tion [21]. At the same time, constraints such as Bode’s integral law limit the shape of
the closed-loop sensitivity transfer function. Consequently, bandwidth, positioning
resolution, and robustness requirements often pose a significant challenge in linear
feedback control.

In two-degree-of-freedom (2DOF) control [22], the control laws which act on the
reference and measurement signals are specified independently. This is in contrast
to the conventional single degree of freedom controller, which typically operates on
the difference between the reference and the measurement signal. By using 2DOF
controllers, the transfer functions among the reference signal, measurement noise,
and output can be designed independently, which allows better design trade-offs.

5.2.2 Feedback Control of Repetitive Reference Signals

In many nanopositioning control problems, the reference signals are determined by
the physics of the underlying application and can be exploited in the control design.
In particular, the reference signals in SPM are often repetitive. For example, in raster
scanning SPM, the tip is positioned relative to the sample along consecutive scan
lines, which typically requires repetitive reference signals such as triangular or saw
waveforms.

Repetitive reference signals can be tracked with tailored feedback controllers. In
adaptive control [23], the control law itself is adapted online to improve the tracking
performance. In repetitive control [24, 25], the feedback loop is augmented with
a signal generator which recreates the a priori known reference signal, typically
by means of a pure delay element. By doing so, the repetitive tracking error can
be reduced after a certain number of iterations at the price of increased settling
time, implementation complexity, and robustness issues. Iterative learning control
(ILC) [26] is a similar learning-based concept in which, in contrast to repetitive
control, the initial conditions are reset at every iteration and hence, discontinuous
operation is possible. ILC-based controllers can achieve nearly perfect tracking but
might result in a significant computation complexity which imposes requirements
on the digital signal-processing hardware.
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5.2.3 Feedforward Control and Reference Signal Shaping

Feedback control is often combined with feedforward control in which the dynamics
and nonlinear characteristics of the actuator, such as creep and hysteresis, are
anticipated, modeled, and inverted [27]. Feedforward control can significantly
improve the closed-loop performance. However, it depends on the availability of
accurate models and can be severely affected by changes in the plant dynamics.
In some cases, nonlinear characteristics can be suppressed or inverted by using
special hardware, such as in the case of charge-driven piezoelectric actuators. This
simplifies the control design but increases the complexity and cost of the hardware.

A special case of feedforward control is command pre-shaping, i.e. shaping or
modifying of the reference signal. For instance, vibrations induced by the reference
signal can be reduced by using impulse input sequences [28]. In raster scanning
SPM, shaping of the turnaround points of triangular waveforms has been extensively
used and matured into a useful technique [29]. Most recently, alternative SPM
scan trajectories which result in dramatically different reference signals have been
proposed, such as spiral [30–32], cycloid [33], and Lissajous [34] scan trajectories.
These trajectories can also be obtained by mathematical optimization [35].

5.2.4 Hybrid Feedback Control

Hybrid systems are dynamical systems that combine continuous and discrete
dynamics [36]. They arise naturally in sampled digital control architectures and
in applications where dynamical systems are combined with discrete logic. For
example, in the framework of switched systems [37], multiple linear feedback
controllers are switched depending on various algebraic and logical conditions,
such as the operating points of the plant. Hybrid control systems are a particularly
promising technique for advanced control of mechanical systems: on the one hand,
like nonlinear systems, they have the potential of overcoming the fundamental
limitations of linear feedback control; on the other hand, they allow the use of well-
established linear control techniques in combination with nonlinear control laws.

One of the earliest developments of this kind in the field of applied hybrid control
is the Clegg integrator [38]. Clegg observed that in a feedback loop with a single
integrator, the phase lag due to the integral component can be significantly decreased
if the state of the integrator is reset to zero whenever its input reaches zero. Denoting
the integrator state x(t) and its input e(t), the dynamics of a Clegg integrator in state-
space are

ẋ(t) = e(t) when e(t) �= 0 (5.1)

x(t) := 0 for e(t) = 0 (5.2)
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For instance, if e(t) is the tracking error, resetting the integrator state when the
tracking error is zero reduces the unnecessary overshoot caused by x(t) �= 0 when
the error is already removed. The effect of the reset control law is quite significant:
the magnitude response of the integral controller remains unchanged, the phase lag
decreases from 90◦ to only about 50◦.

More generally, the Clegg integrator belongs to the class of reset control
systems which have been further generalized and studied both theoretically and
experimentally [39–41]. The concept of reset control is conceptually close to that of
impulsive control, which will be studied in the remainder of this chapter.

5.3 Impulsive Control

Dynamical systems which evolve continuously but are subject to sudden impulses
or impacts arise naturally and are one of the basic hybrid phenomena. Examples
include colliding particles, bouncing balls, and systems with mechanical impacts.
In a general treatment, impulsive systems have been studied thoroughly [42]. This
chapter reviews a control concept recently introduced in nanopositioning and based
on impulsive changes of the states of a linear feedback controller. We shall introduce
a particular type of impulsive control namely, ISM, and analyze the stability and
performance of the resulting hybrid impulsive system.

5.3.1 Impulsive State Multiplication

In ISM, the state of a dynamical system is multiplied by given factors at discrete
time instants.

Let {ti}∞
i=1 denote a sequence of time instants such that 0 = t1 < t2 < · · · < ti <

· · · . Let {Qi}∞
i=1 be a sequence of real square multiplication matrices Qi ∈ R

n×n for
i = 1,2, . . . . The multiplication matrices will be referred to as state multiplication
matrices (SMM), and in what follows, they will be assumed to be diagonal

Qi =

⎡
⎢⎢⎣

qi1 0 . . . 0
0 qi2 . . . 0
. . .

0 . . . qin

⎤
⎥⎥⎦ (5.3)

for i = 1,2, . . . ; n is the number of states in the state vector.

Definition 1. Let K be a linear, time-invariant system with state space matrices
(A,B,C,D). K with ISM is a dynamical system that evolves according to the
following equations:
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ẋ(t) = Ax(t)+Bu(t) when t �= ti, i = 1,2,3, . . . (5.4)

x(ti) := Qix(t
−
i ) for i = 1,2,3, . . . (5.5)

y(t) =Cx(t)+Du(t) (5.6)

where t ∈ R+, xK(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n,
D ∈ R

1×m and will be denoted as

ISM(K,{ti}∞
i=1,{Qi}∞

i=1). (5.7)

The assumption on the diagonality of SMM is not critical; however, it simplifies the
analysis because it excludes any state coupling at the time of the multiplication.

5.3.2 Stability

Linear systems with ISM are subject to instantaneous state changes at predefined
time instants. Because a stable linear system can be destabilized with ISM, the
stability of the resulting hybrid system must be studied carefully with respect to
the impulse magnitudes and timing. In the following, we present a bounded-input-
bounded-output stability theorem for ISM-based systems.

Theorem 1. Consider a system with ISM

ISM(K,{ti}∞
i=1,{Qi}∞

i=1)

Assume that
0 < ti+1 − ti <Θ

and that the input signal is bounded, i.e.

‖u(t)‖∞ < ∞

If there exists q < 1 such that

∥∥eA(ti+1−ti)Qi

∥∥< q

for i = 1,2,3 . . . then

‖x(t)‖∞ < ∞

The proof of Theorem 1 is relatively straightforward and can be found in [9].
The theorem parallels the results known from the theory of impulsive systems as
elaborated, e.g., in [42]. While the theorem guarantees bounded-input-bounded-
state stability when only an upper bound on the time between impulses is assumed,
stronger results can be obtained, e.g., when the average time between the impulses is
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Fig. 5.2 Sufficient condition for stability of a second-order system under regular impulses. The
plots show the quantity ‖eAT Qi‖ as a function of the frequency of the impulses applied and the
natural frequency and the damping coefficient of the plant, respectively. White corresponds to
values smaller than one, black corresponds to values greater than or equal to one. The system
is guaranteed to be stable in the white parameter region. Figure c©IEEE 2012, reprinted from [9]
with permission

considered. This approach is well known in switched systems [37]. Theorem 1 sheds
light onto the relation between the frequency and the magnitude of the impulses and
the dynamics of the linear system required for stability. For example, if the time
between the impulses is fixed, T := ti+1 − ti for i ∈ N, and the magnitude of the
impulses is upper bounded by Q such that ‖Qi‖≤Q for i∈N, the stability condition
can be rewritten as

‖eAT‖< 1/Q. (5.8)

Hence, if the stability condition applies, the possible locations of the system poles
are limited. It can be shown that an upper bound on the real part of the system
poles is

ℜ(λ )≤ 1
T

log‖eAT‖<− logQ
T

. (5.9)

For Q> 1, i.e., when the impulses magnify some of the states, logQ > 0 and the real
parts of the poles are enforced to be less than a negative number i.e. proportional to
the frequency of the impulses. When Q ≤ 1, the upper bound shifts to nonnegative
numbers, suggesting that poles with a nonnegative real part may be present in
a stable impulsive system. Indeed, such systems can be found, for instance, by
constantly counteracting a state growth with an appropriate impulsive control law.

In the following, we demonstrate the stability condition for a second-order
system with natural frequency ωn and damping coefficient ξ = 0.3. Figure 5.2
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shows the stability criterion as a function of the impulse frequency 1/T and the

plant parameter ωn. The impulse magnitude is uniform and fixed as Qi =

[
2 0
0 2

]
.

The white region depicts the parameter space in which stability is guaranteed,
the dark region depicts the parameter space in which ‖eAT Qi‖ > 1 and stability
is not guaranteed. It is apparent that a high damping coefficient and/or a high
natural frequency are vital for stability; stability is not guaranteed if fast impulses
are applied to plants which are relatively “slow” or insufficiently damped. It also
becomes clear that the frequency of the impulses may interfere with the natural
frequency of the plant. For instance, the line-shaped stability regions in Fig. 5.2
arise when the impulses align with the natural frequency ωn, e.g., when T = c/ωn

for some c ∈ N. In such a case, the stability may be guaranteed even for very high
impulse frequencies.

5.4 Impulsive Control for Feedback Systems

In this section, the concept of ISM is applied to feedback control. A novel control
architecture is presented in which a linear feedback controller is extended into a
hybrid system with ISM.

The control architecture is based on a one degree of freedom, single-input-single-
output feedback loop which combines linear and impulsive control as shown in
Fig. 5.3. The aim of the controller, K, is to force the plant, P, to track the reference
signal, r. The controller consists of a linear feedback and a linear feedforward
component, KFB and KFF, respectively. The feedback component is subject to
impulsive state changes by the ISM block which can be driven either by the
reference or by the measurement signals. The control and measurement signals are
affected by the input disturbance signal, di, the output disturbance signal, do, and
the measurement noise, n.

Fig. 5.3 Control architecture combining linear and impulsive control. Plant P is controlled by
controller K comprising a feedforward component, KFF, and a feedback component, KFB. The ISM
block impulsively modifies the states of KFB based on the reference or measurement signals. Figure
c©IEEE 2012, reprinted from [9] with permission
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In what follows, we present a control design for tracking piecewise constant and
piecewise affine reference signals that is based on the control architecture shown in
Fig. 5.3. Piecewise constant and piecewise affine reference signals are widely used
in nanopositioning and specially in SPM. The control architectures we present can
significantly improve the tracking bandwidth for these reference signals without
increasing the sensitivity to measurement noise. Thereby, they overcome one of the
fundamental limitations of linear feedback systems. Finally, a general methodology
is presented for the design of more complex control architectures, such as those for
feedback control with multiple control objectives.

5.4.1 Tracking of Piecewise Constant Signals

In the following, a linear feedback control loop with a single integrator for tracking
of piecewise constant signal is extended with ISM-based control laws.

Definition 2. A piecewise constant signal r(t), t ≥ 0 is determined by a series of
time instants {ti}∞

i=1 and values {vi}∞
i=0 such that r(t) = vi when t ∈ [ti−1, ti) for

i ∈ N.

First, consider the control scheme of Fig. 5.3 with ISM = 0, KFF = 0, and P with
no poles at the origin and assume that the controller involves a single integrator. In
such a control scheme, a step signal can be tracked with a zero steady-state error.
Because a piecewise constant signal can be viewed as a series of steps, it can also
be tracked if the control loop has a sufficient bandwidth. The tracking will result
in a short transient effect at the points of step changes and near-zero tracking error
elsewhere.

By using impulsive control, the tracking performance of the single integral
controller KFB = k/s can be improved without increasing the controller bandwidth.
This can be done by using the state multiplication matrix (SMM).

Qi =

[
vi

vi−1

]
(5.10)

for i ∈ N, which multiplies the state of the feedback controller at time instants ti,
i ∈ N, by the ratio of the successive reference signal values. It can be shown that by
using this SMM, the tracking error decays exponentially for any piecewise constant
signal if the plant dynamics can be neglected:

Theorem 2. Consider the control scheme in Fig. 5.3 with KFF = 0, KFB = k
s . If

P(s) = 1, all disturbance signals are zero and r(t) = vi for t ∈ [ti−1, ti), i ∈ N, the
controller

K̂FB = ISM

(
k
s
,{ti}∞

i=1,{
[

vi

vi−1

]
}∞

i=0

)
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a b

Fig. 5.4 Tracking of a piecewise constant reference signal with and without impulsive control
(ISM). With impulsive control, the tracking error converges to zero despite the low bandwidth of
the controller. The controller bandwidth governs the error bounds (shown in (b)), which decay
exponentially to zero. (a) System output. (b) Tracking error. Figure c©IEEE 2012, reprinted from
[9] with permission

tracks the reference signal with error

e(t) = vie
−kt .

Theorem 2 bounds the tracking error of an impulsive system with a single integral
controller and a piecewise constant reference on an ideal plant. It says that the
reference is tracked with an error that decays exponentially to zero.

We illustrate the results of Theorem 2 through simulations. A piecewise constant
reference signal (shown in Fig. 5.4a as thin blue curve) was randomly generated
and tracked on an ideal plant, P(s) = 1, with a single integral feedback controller
K(s) = 5/s. The bandwidth of the controller is less than 1 Hz, which is very low
compared with the bandwidth of the reference signal. Consequently, the reference
signal is tracked poorly and with a large tracking error, as shown in Fig. 5.4a and
Fig. 5.4b by the thick green curve. When K is equipped with ISM, the resulting
feedback controller K̂ is the nonlinear system

K̂ = ISM

(
5
s
,{ti}∞

i=1 ,

{[
vi

vi−1

]}∞

i=0

)
. (5.11)

In controller K̂, the impulsive control law multiplies the state of the low bandwidth
integrator by the ratio of the successive values of the reference signal. By doing so, a
near-perfect tracking performance is achieved after a short transition period (shown
in Fig. 5.4a, b as dashed red curve). The duration of the transition period and the
magnitude of the tracking error can be derived from Theorem 2. The bounds on the
tracking error (up to the scaling by vi) are indicated in Fig. 5.4b by the solid black
curve.
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The assumption of P(s) = 1 is critical for the validity of Theorem 2 and translates
into the requirement of a sufficient bandwidth and damping of the plant in the
frequency region where impulses are applied. In many practical scenarios, this
requirement is fulfilled: nanopositioners are often designed specifically for high
bandwidth [43] and their dynamics may in addition be improved by active or
passive damping [44, 45]. Also, the linearity of the nanopositioner is important. For
nanopositioners based on intrinsically nonlinear actuators, such as piezoelectric tube
actuators or piezo-stack actuated flexure stages, a linearizing stage has to precede the
application of impulsive control. Alternatively, in the case of piezoelectric actuation,
using a charge amplifier instead of the conventional voltage amplifier to drive them
can bring about sufficient linearity [46].

5.4.2 Tracking of Piecewise Affine Signals

Similar to piecewise constant signals, piecewise affine signals can be tracked by
extending a linear feedback loop with an ISM-based control law.

Definition 3. A piecewise affine signal r(t), t ≥ 0, is determined by a series of time
instants {ti}∞

i=1, offsets {vi}∞
i=0 and slopes {wi}∞

i=0 such that

r(t) = vi +wi(t − ti−1) (5.12)

when t ∈ [ti−1, ti) for i ∈ N.

Definition 3 defines a piecewise affine signal as a sequence of ramp-like signals
with successive segments that do not necessarily share their endpoints. In addition,
we will assume that the ramp always has a nonzero slope, i.e., wi �= 0 for i ∈ N.
The class of piecewise affine signals includes some of the signals widely used in
nanopositioning, such as triangular waveforms with constant or varying speed and
amplitude.

In the control framework of Fig. 5.3, piecewise affine reference signals can be
tracked using a feedforward gain compensation and a single integral feedback
controller. If the plant, P, has a nonzero, finite DC gain kP which is known exactly,
feedforward compensation with a constant term is applicable, i.e. KFF = 1

kP
. With

this feedforward compensation, it can be shown that a single integral feedback
controller KFB(s) = k

s tracks a ramp reference signal with a zero steady-state error.
Consequently, given sufficient bandwidth of the system, also a piecewise affine
reference can be tracked.

By employing impulsive control, fast piecewise affine signals can be tracked even
with low bandwidth KFB. The ISM control law that can do this originates from
the control architecture for piecewise constant signals derived in Sect. 5.4.1; the
problems are linked because tracking piecewise affine signals inherently involves
tracking piecewise constant signals. This can be shown for various families of
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Fig. 5.5 Tracking of a piecewise affine signal on a second-order positioner (simulation). The
tracking error is approximately piecewise constant and is determined by the slope of the reference
signal. Figure c©IEEE 2012, reprinted from [9] with permission

plants, e.g., for linear, time-invariant plants with a nonzero, finite gain and proper
transfer function [9]. For these plants, the steady-state tracking error under a ramp
input is constant and proportional to the slope of the ramp. If the bandwidth of the
plant is sufficiently high, such that the transients can be neglected, the tracking error
can be approximated by a constant. Hence, because a piecewise affine signal is just
a sequence of ramp signals, the tracking error for a piecewise affine reference signal
is approximately a piecewise constant signal, provided the bandwidth of the plant
is sufficiently high. Therefore, the tracking error can be reduced by applying the
techniques presented in Sect. 5.4.1.

Figure 5.5 illustrates these observations in simulation for a second-order plant
with natural frequency 1 kHz and damping ratio 0.5. A random triangular waveform
with different amplitudes and slopes was applied to the plant and the output
was subtracted from the input to obtain the tracking error. The tracking error is
approximately piecewise constant, with short transients at the points where the
reference signal changes the slope. The character of the transients depends on the
bandwidth and damping of the plant.

Having realized that the tracking error can be approximated by a piecewise
constant signal whose values are proportional to the slope of the ramp, wi, and
applying the results presented in Sect. 5.4.1, the SMM for tracking piecewise affine
signals becomes

Qi =

[
wi

wi−1

]
(5.13)
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for i ∈ N. This SMM multiplies the state of the feedback controller by the ratio
of the successive slopes of the reference signal. By doing so, the tracking error
for piecewise affine signals can be reduced under the same conditions as discussed
in Sect. 5.4.1, namely, for sufficiently damped plants the tracking error diminishes
according to the exponential bounds of Theorem 2.

5.4.3 Feedback Control with Multiple Control Objectives

In the control architecture of Fig. 5.3, the ISM component is able to simultaneously
execute multiple impulsive control laws which are based on different input signals
and affect different states of the linear controller. Such a configuration is needed
when more complex or multiple control objectives have to be met. A general way to
design an ISM-based feedback control architecture in such a case is to partition the
states of the linear controller and apply different ISM control laws to different parts
of the controller.

Consider that the feedback controller, KFB, is decomposed as

KFB(s) =
N

∑
j=1

K j
FB(s), (5.14)

where K j
FB, j = 1, . . . ,N are the controller components. Assume that the realization

of the i-th transfer function is (Ai
FB,B

i
FB,C

i
FB) and consider the realization of the

sum of transfer functions with

AFB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1
FB 0 . . .

0 A2
FB 0 . . .

. . .

0 . . . 0 A j
FB 0 . . .

. . .

AN
FB

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the state partitioned as

xFB = ( x1
FB . . . xN

FB )

where x j
FB ∈ R

n( j), j = 1, . . . ,N, is the state of K j
FB with the dimension n( j) ∈ N.

Accordingly, the input matrix

BFB =
[

B1
FB B2

FB . . . BN
FB

]T
(5.15)
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where B j
FB ∈ R

n( j)×1 is the input matrix of K j
FB. The outputs of the controller

components are added,
CFB =

[
C1

FB C2
FB . . . CN

FB

]
, (5.16)

where C j
FB ∈ R

1×n( j) is the output matrix of K j
FB.

Assume that ISM is applied to the partitioned feedback controller,

K̂FB := ISM(KFB,{ti}∞
i=1,{Qi}∞

i=1). (5.17)

The resulting impulsive controller, K̂FB, has dynamics that evolve between the
impulses, t �= ti, according to

˙̂xK(t) = AFBx̂K(t)+BFBe(t)

y(t) =CFBx̂K(t),

where x̂K denotes the state of K and e(t), y(t) denote the system input and output,
respectively. At the time of impulses, t = ti, the state of K is multiplied

x̂K(ti) := Qix̂K(t
−
i ).

As the state x̂K is partitioned according to the decomposition of the feedback
controller, it is straightforward to partition the SMM:

Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1
i 0 . . .

0 Q2
i 0 . . .

. . .

0 . . . 0 Q j
i 0 . . .

. . .

QN
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In the partitioned SMM, Q j
i ∈R

n( j)×n( j) is the SMM corresponding to the controller
component K j

FB. The advantage of the partitioning is that distinct impulsive control
laws can be applied to the controller components. In the special case when Q j

i is an
identity matrix of appropriate dimensions, the corresponding states evolve linearly.
When Q j

i = 0, the corresponding states are reset to zero.
The method described above is general and can be applied to a wide variety of

problems. The control architectures for tracking piecewise constant and piecewise
affine signals presented above are one example thereof. In [9], an example in which
multiple control objectives must be met simultaneously is elaborated. Experimental
results using an ISM-based feedback loop to track a high-bandwidth reference signal
in presence of significant input disturbance are presented in Sect. 5.6.
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5.5 Relation Between Impulsive Control and Signal
Transformation Approach

Recently, a new nonlinear control scheme for nanopositioning has been reported
called STA [47]. STA is based on transformation of the reference, measurement,
and control signals in a feedback loop. For example, triangular reference signals
are tracked in STA by transforming the triangular waveforms into a ramp signal
and vice versa. Interestingly, there is an inherent connection between STA and
impulsive control which is analyzed in this section. The analysis has some important
implications in the theoretical understanding of STA and leads to significant
improvements in the implementation and performance of STA.

5.5.1 Signal Transformation Approach

STA is a control technique in which a linear feedback system is equipped with a pair
of possibly time-invariant, nonlinear transformation functions. Consider the control
scheme in Fig. 5.6. The transformation functions Φ ,Φ−1 are mutually inverse and
translate the signals between a low-bandwidth and high-bandwidth representation.
Before the high speed reference signal enters the feedback loop, it is transformed by
Φ into the low-bandwidth representation seen by the linear feedback controller K.
The control effort that K generates is translated by Φ−1 before it is applied to the
positioner to ensure that the desired reference signal is tracked. The measured output
of the positioner is transformed by Φ back into the low-bandwidth representation.

The key idea of STA is that if the low-bandwidth representation of r is tracked
accurately by K, the positioner follows the desired reference signal even if the
bandwidth of K is much lower than what would be needed to track r in a
conventional control architecture. The control framework of STA is general; specific
transformation functions can be designed for the reference signals of interest.

One particular case is a triangular reference signal, which can be transformed
into a ramp signal and vice versa by means of an affine, time-variant transfor-
mation [48, 49] as follows. Assume that the reference signal, r(t), has frequency
f = 1/T and range [0,A]. For t ≥ 0, divide the time into intervals corresponding
to the half periods of the triangular waveform, [(i− 1)T

2 , i
T
2 ) for i ∈ N. In the odd

Fig. 5.6 Signal transformation approach to nanopositioning. A pair of mutually inverse trans-
formation functions Φ , Φ−1 are used to transform the signals between a low-bandwidth and
high-bandwidth representation. Figure c©Elsevier 2012, reprinted from [11] with permission
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and even time intervals, r(t) is strictly increasing and decreasing, respectively, and
is governed by the equation

r(t) = (−1)(i−1) 2A
T

(
t −� i

2
	T

)
(5.18)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

Definition 4. The forward and the inverse signal transformation operator, for
conversion between a triangular waveform of frequency 1/T and range [0,A] and
a ramp signal with slope 2A/T are

Φ(x(t), t) = (−1)(i−1)x(t)+2A� i
2
	 (5.19)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

Φ−1(x(t), t) = (−1)(i−1)x(t)+(−1)i2A� i
2
	 (5.20)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

In the STA control scheme of Fig. 5.6, the above transformation functions
can be used to facilitate the tracking of fast triangular waveforms by means of
a low bandwidth double integral controller K. This is particularly beneficial in
nanopositioning, wherein a low bandwidth K can be used for a control design with
low sensitivity to the measurement noise, n.

5.5.2 ISM and Multiplicative Signal Transformation

The link between ISM and STA is based on the fact that multiplicative impulsive
changes to the state of a linear system are equivalent to multiplicative transformation
of the system input and output. This important fact is stated precisely in the
following.

Consider the control scheme in Fig. 5.7. The input and output of a linear, time-
invariant system K, are transformed by a pair of signal transformation operators J−1

and J, respectively. Assume that the time, t ≥ 0, is divided into intervals [ti−1, ti),
i ∈ N. The transformation operators are piecewise constant over the time intervals
and multiply the signals as

J(u(t), t) := jiu(t)

J−1(u(t), t) := j−1
i u(t)

(5.21)
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Fig. 5.7 Multiplicative signal transformation. The input and output of linear system K are
transformed by a pair of mutually inverse multiplicative transformation operators. This scheme
is equivalent to ISM applied to system K, thereby creating a link between ISM and STA. Figure
c©Elsevier 2012, reprinted from [11] with permission

for t ∈ [ti−1, ti), i ∈N. The multiplication factors ji, i ∈N, are nonzero real numbers.
At any given time point t ∈ [ti−1, ti), the input signal, u(t) is transformed into u′(t) :=
j−1
i u(t) and enters K. The output of K, y′(t), is transformed as y(t) = jiy′(t). Hence,

the input and output signals entering K are pre-multiplied and post-multiplied,
respectively, by mutually inverse scalar factors.

The multiplicative signal transformation shown in Fig. 5.7 is tightly related to
ISM. In fact, the following theorem holds:

Theorem 3. For a given input u(t), multiplication factors { ji}∞
i=1 and times {ti}∞

i=1,
the output y(t) of system K̄ is the same as the output, z(t), of the impulsive system

K̂ := ISM

(
K,{ti}∞

i=1,{
ji+1

ji
I}∞

i=1

)
(5.22)

for all times t ≥ 0.

In other words, multiplicative signal transformation by factors ji and 1/ ji is
equivalent to ISM with SMM Qi =

ji+1
ji

I. This fact can be shown by induction;
the proof can be found in [11].

5.5.3 Tracking of Triangular Waveforms

Based on the relation between multiplicative impulsive changes to the state of a lin-
ear system and multiplicative signal transformation of its input and output presented
in the preceding section, STA and ISM for tracking of triangular waveforms can be
rigorously linked.

To reveal the connection between ISM and STA, the STA control scheme for
tracking triangular waveforms (see Sect. 5.5.1) can be decomposed and simplified
in a series of steps. This provides useful insights into the inherent properties of
the scheme and reveals its relation to impulsive control. A detailed exposition is
presented in [11]; in what follows, only the basic results are presented.

First, define the signal transformation operator

J(x(t), t) := (−1)i−1x(t) (5.23)
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a

b

c

Fig. 5.8 Tracking of triangular waveforms: the relation between STA and ISM. (a) shows an
STA control scheme with signal transformation blocks Φ and Φ−1. (b) shows a control scheme
equivalent to that shown in (a) with the signal transformation blocks decomposed. (c) shows an
equivalent ISM-based control scheme

for t ∈ [(i− 1)T
2 , i

T
2 ), i ∈ N where 1/T is the frequency of the triangular reference

signal. The operator J inverts the sign of the input signal in the even half periods of
the reference signal, i.e., when the triangular waveform is decreasing. It preserves
the sign of the input signal in the odd half periods. Hence, J is the basic element of
the transformation between a triangular waveform and a ramp signal.

Using the transformation operator J and defining an auxiliary stair-like signal
f (t), we realize that the signal transformation operators defined in Definition 4 can
be expressed as

Φ(x(t), t) = J(x(t), t)+ f (t) (5.24)

Φ−1(x(t), t) = J(x(t)− f (t), t) (5.25)

Therefore, the control scheme of Fig. 5.8a is equivalent to the control scheme of
Fig. 5.8b, with the transformation blocks decomposed.

By applying basic algebraic rules for signal flow diagrams and Theorem 3, the
control scheme of Fig. 5.8b can be transformed into the control scheme shown in
Fig. 5.8c, where the disturbance signal

g′(t) = (−1)i−1 2A
k1T

e
− k2

k1
t

(5.26)
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for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N, and the feedback controller is an ISM-based impulsive

system

ISM(K,{i
T
2
}∞

i=1,{−I}∞
i=1) (5.27)

while yielding the same input–output relation.
The analysis reveals an important fact: the STA scheme for tracking triangular

waveforms is equivalent to a negative feedback control loop with a constant-term
feedforward connection and an impulsive feedback controller. The sign of the con-
troller state is reversed at each turnaround point of the triangular reference signal.
Furthermore, the analysis reveals the presence of a fixed bounded signal, g′(t),
which enters the feedback loop externally. The signal is implicit in the definition
of the transformation operators and decays exponentially to zero; however, it is
responsible for the large transient tracking error typically observed in the STA
control loop.

5.5.4 Transient Performance of STA

The analysis presented in the preceding sections shows that the transient tracking
error of STA for tracking triangular waveforms is strongly affected by the distur-
bance signal g′(t) entering the feedback loop, see Fig. 5.8c. The disturbance signal
is intrinsically generated by the signal transformation operators and depends on the
reference signal, r(t), and the double-integral feedback controller, K:

K(s) =
k1s+ k2

s2 (5.28)

Exact knowledge of the disturbance signal allows us to estimate the tracking
error of STA analytically. It can be shown [11] that the tracking error induced by
g′(t) corresponds to a natural response of a second-order system with “damping
coefficient” k1 and “spring coefficient” k2, with k1 and k2 being the integral gains of
the feedback controller K. For example, if k2 > k2

1/4, the equation of the tracking
error induced by the intrinsic disturbance signal is

|eg′(t)|=
2A/T√
k2 − k2

1
4

e−
k1
2 t sin t

√
k2 − k2

1

4
(5.29)

The equation says that the magnitude of the tracking error induced by g′(t) is
a sinusoidal waveform that exponentially decays to zero. It also shows that it is
possible to design the feedback controller so that the transient response is “critically

damped” by choosing gains k1, k2 that preserve the equation k2 − k2
1
4 = 0.
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Fig. 5.9 The transient tracking error of STA as a function of the feedback controller gains. By
choosing the controller gains carefully, a critically damped transient response can be achieved
(dashed blue line). Oscillations may occur, however, for certain combinations of controller gains
(bold red line). The transient tracking error can be quantified accurately (dotted green line). Figure
c©Elsevier 2012, reprinted from [11] with permission

In the following example, the effect of k1 and k2 on the transient tracking error
of STA is demonstrated. Assume that P is a second-order positioner with natural
frequency 3,000 Hz and damping coefficient 0.8, and the reference signal is a
triangular waveform of 100 Hz frequency and 5 μm amplitude. We will compare
the tracking performance of the STA control architecture of Fig. 5.8a if two different
feedback controllers are used. In the first controller, the integral gain coefficients are

k1 = 100 and k2 = 2,500, so that k2 − k2
1
4 = 0. In the second controller, k1 = 50 and

k2 = 2,500. Figure 5.9 shows the tracking error for the first and second controller
as dashed blue and solid red lines, respectively. As predicted by theory, the first
controller exhibits a transient tracking error that converges exponentially to zero
without oscillations. The tracking error of the second configuration also decays
exponentially to zero, but, with undesirable transient oscillations. For the second
configuration, the estimate of the transient tracking error based on (5.29) is shown
as dashed green line. Equation (5.29) captures the tracking error exactly if P(s) = 1;
for plants that are well damped and sufficiently fast, such as the one used in the
simulation, (5.29) can be used as an accurate estimate of the tracking error.

The transient response of STA can be improved in several ways. In the most
straightforward approach, STA can be simplified by removing the parasitic dis-
turbance signal g′(t) completely: as the preceding analysis shows, STA can be
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implemented by merely inverting the signs of the input and the output of the
feedback controller and using a constant feedforward term. Also, an equivalent
performance can be achieved with the ISM-based control scheme of Fig. 5.8c. Other
ways to improve the performance of STA are discussed in [11].

5.6 Experiments

In this section, the concept of impulsive control and its properties are demonstrated
in an experimental setup. The experimental results are obtained on a custom-built
AFM, a type of a scanning probe microscope.

A schematic of a common AFM setup is shown in Fig. 5.10. The sample under
investigation is mounted on a nanopositioner, or scanner, which can move the
sample in three degrees of freedom. To enable high-speed, high-resolution motion
in the presence of external disturbances and modeling uncertainties, the scanner
is typically equipped with highly sensitive noncontact sensors and operated in a
feedback loop. During operation, the sample is brought into contact with the tip of a
microfabricated cantilever and positioned relative to the tip along a two-dimensional
scan trajectory, e.g., along a raster-based, spiral or Lissajous pattern. Properties of
the sample, such as its topographical, electrical, or magnetic properties, are inferred
from the nanoscale forces acting on the cantilever tip as the tip is moved across

Fig. 5.10 Schematic of an atomic force microscope
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the sample. In the schematic shown in Fig. 5.10, the deflection of the cantilever is
estimated by means of an optical read-out system in which a laser beam is reflected
from the cantilever tip, passes through an optical system and detected by means of a
special-purpose optical sensor. The deflection of the cantilever provides an accurate
estimate of the topography of the sample.

The feedback loop which controls the scanner motion is of key importance for the
accuracy and speed of the AFM instrument. In the experiments described below, the
feedback loop is equipped with an ISM-based hybrid controller or a linear feedback
controller for comparison and used for high-speed AFM imaging. In the imaging
experiments, a raster-based scan trajectory is followed by actuating the scanner
in two orthogonal directions. In the fast, x-direction, a triangular reference signal
is applied to scan the sample in consecutive scan lines; in the slow, y-direction,
the position of the scanner is increased in discrete steps at the end of every scan
line. In the x-scan direction, the nanopositioner uses a voice-coil actuator which
is particularly suitable for this task because of its clean dynamics and linearity.
In the y- and z-scan directions, a piezo-electric actuator is used. In the imaging
experiments, thermomechanical cantilevers were used [50,51]. The sample consists
of nanolitograpically patterned nanostructures on silicon surface.

For the stability and performance of impulsive control and STA, the flat
frequency response of the nanopositioner is of key importance. To that end,
the mechanical resonances of the nanopositioner were damped by inverting its
dynamics. The resulting transfer function could be approximated as P(s)≈ 1 in the
frequency region below approx. 250 Hz. Owing to the voice-coil actuation principle,
the dynamics of the scanner are highly linear, which is important for impulsive
control. For positioners with significant nonlinearities, such as piezo-actuated
positioners, additional compensation techniques might have to be employed, such
as feedforward inversion [27] and charge amplifiers [46]. A magnetoresistive
sensor [52] with a bandwidth exceeding 10 kHz was used to sense the position of
the nanopositioner.

5.6.1 Impulsive Control for Tracking Piecewise Affine Signals

In this experiment, the performance of a linear feedback loop with and without ISM
is compared and its effect on the quality of AFM imaging is demonstrated.

The control architecture used was the one shown in Fig. 5.3, with P denoting the
shaped positioner dynamics along the fast scan axis. The feedback controller, KFB

was chosen as a simple integral controller such that the closed loop system had a
very low bandwidth below 1 Hz. A benefit of such a scheme is that it minimizes the
impact of measurement noise. The feedforward term KFF was unity as the DC gain
of the shaped positioner is 1.

The imaging was performed over an area of 3.5μm×1.5μm in a raster pattern. In
the first case, the controller was only the linear feedback system as described above.
In the second case, the linear feedback system was equipped with an ISM-based
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Fig. 5.11 Comparison of tracking error for closed loop without and with ISM. The upper panel
shows the settling period of ISM, the lower panel shows the steady-state performance. The
frequency of the reference signal was 100 Hz. Figure c©IOP Publishing 2011, reprinted from [10]
with permission

impulsive control law as described in Sect. 5.4.2. Because the reference signal is a
constant-amplitude, constant-frequency triangular waveform, the ISM control law
simply inverted the sign of the accumulator of K at every turnaround point of r.

The tracking performance of the closed loop system with and without ISM
is compared in Fig. 5.11. Using the ISM-based feedback controller, after a short
settling time (top panel) near-zero steady-state error (bottom panel) was achieved;
the convergence time corresponds to the rise time of the feedback loop K/(1+K)
under a step input which is consistent with the estimates presented in Sect. 5.5.
The reduction of the positioning error is truly remarkable as it is enabled by the
impulsive control law; the bandwidth of the linear control remains very low. This
has a significant effect on the noise sensitivity of the control loop, an important
aspect in nanopositioning as we shall see in the next section.

Figure 5.12 demonstrates how the tracking performance affects AFM imaging
by comparing the images obtained using open loop control (on the left), feedback
control without ISM (in the middle), and feedback control with ISM (on the right).
The closed-loop image without ISM is similar to the open-loop image because of the
very low bandwidth of the controller. The tracking lag resulted in an uncorrected,
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Fig. 5.12 The images of nanopatterns obtained with three different control schemes. The image
on the left was acquired in open loop, using only the shaping of the positioner dynamics. The
image in the middle was obtained using feedback control without ISM. The image on the right was
acquired using feedback control with ISM. The height is in nanometers. The images were obtained
in approx. 2 s. Figure c©IOP Publishing 2011, reprinted from [10] with permission

unknown shift in the image which was different for forward and backward scans. On
the other hand, ISM removed the tracking lag almost perfectly without increasing
the bandwidth of K. This not only resulted in detecting the real positions of the
nanopatterns but also yielded consistent data in both scan directions, speeding up
the imaging by a factor of two.

5.6.2 Sensitivity to Measurement Noise

In high-speed nanopositioning, measurement noise can significantly deteriorate the
positioning accuracy. For example, in the control architecture of Fig. 5.3, additive
measurement noise affects the measurement signal, enters the feedback loop, and is
projected into the motion of the nanopositioner. An estimate of the nanopositioner
motion induced by the measurement noise is an important figure in assessing the
feedback control scheme and its suitability for nanopositioning. In the following,
the nanopositioner motion induced by measurement noise is estimated for a high-
bandwidth linear controller and an ISM-based controller of equivalent tracking
performance.

The character and frequency spectrum of the measurement noise are determined
by the position sensor. In what follows, a relatively noisy magnetoresistive position
sensor is used to demonstrate the effect of ISM. The spectral characteristics of the
measurement noise are presented in Fig. 5.13 and are largely dominated by 1/f noise
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Fig. 5.13 Frequency spectra of the positioner motion induced by measurement noise. The mea-
surement noise (dashed green curve) significantly affects the positioner motion if a high-bandwidth
linear controller is used (solid blue curve). By using impulsive control, the positioning error
introduced is significantly smaller (red curve) without compromising the tracking performance.
Figure c©IEEE 2012, reprinted from [9] with permission

as is common for this type of sensor; spurious peaks occur at frequencies which
are multiples of 50 Hz and are due to the ambient electrical noise. The standard
deviation is approx. 9 nm over the frequency range from 0 Hz to 3 kHz.

For the purposes of a fair comparison, the ISM-based controller used in
Sect. 5.6.1 was compared with a linear high gain integrator KFB(s) = 1,530/s. By
increasing the gain of the integrator, the steady-state performance of both control
schemes was made equivalent. The ISM-based and the linear controller were used
to track a reference signal of frequency 130 Hz.

For the linear controller, the simulated spectral characteristics of the estimated
positioning error are shown in Fig. 5.13 in blue. Because of the high bandwidth of
the controller, the measurement noise at low frequencies significantly affects the
motion of the positioner and induces a positioning error with a standard deviation
of more than 8 nm over the frequency range examined.

For the ISM-based control scheme, the standard deviation of the positioning
error is less than 1 nm over the frequency range from 0 Hz to 3 kHz. The spectral
characteristics are shown in Fig. 5.13 in red. This improvement in resolution is
achieved even though the tracking performance is not compromised; in fact, the
transient tracking performance of the ISM-based controller is even better than
that of the linear controller. However, there are additional peaks in the frequency
spectrum which are induced by the impulsive changes of the controller state. In
particular, the spectral component at 130 Hz corresponds to the frequency of the
signal tracked. Further spectral components at frequencies which are multiples
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of 130 Hz occur because of the discontinuous evolution of the state. However,
these spectral components have only minimal influence on the overall tracking
performance. Moreover, they are not strongly affected by the closed-loop dynamics
because the impulsive control law is of feedforward type and is fully determined by
the reference signal.

5.6.3 Multiobjective Impulsive Control: Tracking
and Disturbance Rejection

Impulsive control can be applied to feedback controllers with a complex structure,
such as those designed for achieving multiple control objectives simultaneously.
To demonstrate this, a feedback controller for the control architecture of Fig. 5.3 is
presented which can track a fast triangular waveform in the presence of a sinusoidal
input disturbance.

The feedback controller consists of a tracking component, a disturbance rejec-
tion component and an ISM-based component. Using the notation introduced in
Sect. 5.4.3, the controller takes the form

KFB(s) = KR
FB(s)+KDi

FB(s), (5.30)

where KR
FB(s) = k/s is the tracking component, here a single integrator with gain k,

and KDi
FB rejects the sinusoidal input disturbance. For example, KDi

FB can be a peak
filter or a model-based controller. To track the fast triangular waveform with low
gain k, KR

FB is extended with an impulsive control law as in the previous experiments.
On the other hand, given the type of the disturbance, the states of KDi

FB are not
affected by the impulsive control law and evolve linearly.

This feedback controller was used for high-speed AFM imaging in the presence
of significant input disturbance that would cause scanner motion of more than
500 nm in the absence of control. Figure 5.14 compares the images taken in open-
loop mode and with the feedback controller. In open-loop mode, the image is heavily
distorted by the input disturbance, as is evident in Fig. 5.14a. By using the proposed
controller, the effect of the input disturbance is minimized and at the same time,
excellent tracking performance is achieved (Fig. 5.14b).

5.6.4 Transient Performance of STA and Impulsive Control

Section 5.5 provided a detailed analysis of the relation between impulsive control
and the recently published STA. It was shown that for triangular waveform tracking,
both schemes are inherently linked and essentially equivalent. Importantly, one
of the conclusions in the theoretical analysis was that impulsive control has
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Fig. 5.14 High-speed AFM images of approx. 1,000×250×100 nm titanium nitride nanopatterns
taken in the presence of a significant input disturbance. The image in (a) was acquired in open-
loop; the image in (b) was acquired using a feedback controller with combined control objectives
for tracking and disturbance rejection. It demonstrates the combination of impulsive and linear
control: the good tracking performance was obtained with only a low-gain integrator with ISM.
Moreover, at the same time, the effect of the input disturbance was minimized. Figure c©IEEE
2012, reprinted from [9] with permission

significantly less transient tracking error than STA while having the same steady-
state performance. In the following, experiments are presented which compare
impulsive control with STA.

The STA control architecture was implemented as shown in Fig. 5.8a. A double
integral controller

K(s) =
50
s
+

1,000
s2 (5.31)

was used together with the pair of signal transformation operators Φ ,Φ−1 as defined
in Sect. 5.5.1. By doing so, the triangular reference signal was transformed into a
ramp signal which was tracked by the feedback controller K.

In the control architecture based on impulsive control, the control scheme of
Fig. 5.3 was used with the feedforward term KFF(s) = 1 and the feedback controller

KFB(s) =
50
s

(5.32)

As the DC gain of the positioner was known exactly, a single integrator was
sufficient to provide a near-zero tracking error in the steady state. The state of the
feedback controller was multiplied by −1 at every turnaround point of the triangular
reference signal. The factor of −1 is the ratio of the successive slopes of the single
frequency triangular signal.

Figure 5.15 compares the tracking performance of STA and impulsive control. As
predicted by theory, the transient phase of STA is dominated by a large overshoot
which exponentially decays to zero. Because of the overshoot, the amplitude of
the reference signal had to be limited so that the scanner stroke was not exceeded
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Fig. 5.15 Tracking of a fixed frequency triangular waveform with a control architecture based on
impulsive control in blue and signal transformation approach in red. The frequency of the reference
signal was 75 Hz and the amplitude was 1 μm. (a) Tracking output (position). (b) Tracking error.
Figure c©Elsevier 2012, reprinted from [11] with permission

in the transient phase. The transient effects also induced unwanted mechanical
vibrations. The transient phase of the impulsive control scheme did not suffer from
the overshoot present in STA and quickly achieved the convergence as discussed in
Sect. 5.5.4. The steady state performance of both schemes was comparable.

5.7 Conclusion

We have reviewed a novel hybrid control approach to nanopositioning that is
based on the concept of impulsive control. In impulsive control, the states of
a feedback controller are changed abruptly at discrete instances in time. We
have analyzed the stability of impulsive control systems and introduced feedback
control architectures based on impulsive control, including control architectures
for tracking piecewise constant and piecewise affine signals and multiobjective
hybrid feedback control. We discussed the inherent connection between impulsive
control and the recently published STA to nanopositioning. The theoretical findings
are supported by experiments in which impulsive control was used in a high-
speed AFM. The experiments show that by using impulsive control, the tracking
error in AFM can be minimized without increasing the bandwidth of the linear
controller, thereby speeding up the AFM imaging process by a factor of two without
increasing the sensitivity of the feedback loop to measurement noise. We have
also demonstrated impulsive feedback control in the presence of a significant input
disturbance and experimentally compared the performance of impulsive control
and the signal transformation approach. The theoretical and experimental results
indicate that impulsive control for nanopositioning has a significant potential for
practical applications and at the same time fosters new research directions in the
theoretical understanding of hybrid feedback control.
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Applications (Birkhäuser, Boston, 2003)

38. J.C. Clegg, A nonlinear integrator for servomechanisms. Trans. AIEE, Part II. Appl. Ind. 77(2),
41–42 (1958)

39. I. Horowitz, P. Rosenbaum, Non-linear design for cost of feedback reduction in systems with
large parameter uncertainty. Int. J. Contr. 21, 977–1001 (1975)

40. D. Nesic, L. Zaccarian, A.R. Teel, Stability properties of reset systems. Automatica 44,
2019–2026 (2008)

41. D. Wu, G. Guo, Y. Wang, Reset integral-derivative control for HDD servo systems. IEEE Trans.
Contr. Syst. Technol. 15(1), 161–167 (2007)



120 T. Tuma et al.

42. D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications.
Ser. Ellis Horwood Series: Mathematics and Its Applications. Chichester, UK (Ellis Horwood,
1989)

43. G. Schitter, K.J. Astrom, B.E. DeMartini, P.J. Thurner, K.L. Turner, P.K. Hansma, Design and
modeling of a high-speed AFM-Scanner. IEEE Trans. Contr. Syst. Technol. 15(5), 906–915
(2007)

44. S.O.R. Moheimani, B.J.G. Vautier, Resonant control of structural vibration using charge-driven
piezoelectric actuators. IEEE Trans. Contr. Syst. Technol. 13(6), 1021–1035 (2005)

45. A.J. Fleming, S.O.R. Moheimani, Sensorless vibration suppression and scan compensation for
piezoelectric tube nanopositioners. IEEE Trans. Contr. Syst. Technol. 14(1), 33–44 (2006)

46. A. Fleming, S. Moheimani, A grounded-load charge amplifier for reducing hysteresis in
piezoelectric tube scanners. Rev. Sci. Instrum. 76(7), 073707 (2005)

47. A. Sebastian, S.O.R. Moheimani, Signal transformation approach to fast nanopositioning. Rev.
Sci. Instrum. 80(7), 076101-1–076101-3 (2009)

48. A. Bazaei, S.O.R. Moheimani, A. Sebastian, An analysis of signal transformation approach to
triangular waveform tracking. Automatica 47(4), 838–847 (2011)

49. A. Bazaei, Y. Yong, S. Moheimani, A. Sebastian, Tracking of triangular references using signal
transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol.
20(2), 453–464 (2012)

50. H. Rothuizen, M. Despont, U. Drechsler, C. Hagleitner, A. Sebastian, D. Wiesmann, Design
of power-optimized thermal cantilevers for scanning probe topography sensing, in Proceed-
ings of IEEE 22nd International Conference on Micro Electro Mechanical Systems, IEEE,
pp. 603–606 (2009)

51. A. Sebastian, D. Wiesmann, Modeling and experimental identification of silicon microheater
dynamics: a systems approach. IEEE/ASME J. Microelectromech. Syst. 17(4), 911–920 (2008)

52. V. Kartik, A. Sebastian, T. Tuma, A. Pantazi, H. Pozidis, D. Sahoo, High-bandwidth
nanopositioner with magnetoresistance based position sensing. Mechatronics 22, 295–301
(2012)


	5 A Hybrid Control Approach to Nanopositioning
	5.1 Introduction
	5.2 Feedback Control for Nanopositioning
	5.2.1 Linear Feedback Control
	5.2.2 Feedback Control of Repetitive Reference Signals
	5.2.3 Feedforward Control and Reference Signal Shaping
	5.2.4 Hybrid Feedback Control

	5.3 Impulsive Control
	5.3.1 Impulsive State Multiplication
	5.3.2 Stability

	5.4 Impulsive Control for Feedback Systems
	5.4.1 Tracking of Piecewise Constant Signals
	5.4.2 Tracking of Piecewise Affine Signals
	5.4.3 Feedback Control with Multiple Control Objectives

	5.5 Relation Between Impulsive Control and Signal Transformation Approach
	5.5.1 Signal Transformation Approach
	5.5.2 ISM and Multiplicative Signal Transformation
	5.5.3 Tracking of Triangular Waveforms
	5.5.4 Transient Performance of STA

	5.6 Experiments
	5.6.1 Impulsive Control for Tracking Piecewise Affine Signals
	5.6.2 Sensitivity to Measurement Noise
	5.6.3 Multiobjective Impulsive Control: Tracking and Disturbance Rejection
	5.6.4 Transient Performance of STA and Impulsive Control

	5.7 Conclusion
	References


