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Preface

Micro/nanorobots and microactuators find their applications in various domains:
microUAV in military, microrobots for in-body exploration in medicine, microac-
tuators for microassembly and micromanipulation and for surface characterization
with nanometric resolution, etc. In order to reach the severe performances required
for these “micro/nano” applications—such as very high resolution, micrometric or
submicrometric accuracy, and high bandwidth—convenient design of the actuators
and convenient control of them are necessary. Smart materials like piezoelectric
and electroactive polymers and flexible structures are among the best candidates
to design the actuators, but their characteristics (nonlinearities, badly damped
vibrations, etc.) require the use of efficient control techniques. In addition to
these characteristics, the particularity of working at the micro/nano-scale (lack of
embeddable sensors, high sensitivity to the environment, difficulty to directly sense,
general uncertainties on the model used) makes their control even more challenging.

Several researches have been carried out since many years with tremendous
success; however, limitations still exist in terms of precision, operating speed,
and reliability. Furthermore, emerging and new requirements in micro/nano-scale
positioning bring additional challenges for the design and the control of the systems.
These challenges include the high axiscoupling in multi-degrees of freedom precise
positioning systems, the limitations of the existing sensors to measure the signals in
them, the high environmental (thermal, vibration...) sensitivity and the high noise-
to-signal ratio as they are more and more small. During these last years, in order to
tackle these challenges, advanced design concepts, where some are jointly coupled
with control theory to include the performances at the design level, novel sensing
and actuation combined technologies, noise measurement and resolution estimation
techniques, and advanced control techniques with or without sensors have been
developed. Several projects have been launched at the international level for that.
Finally, many technical meetings such as workshops and tutorials dealing with the
design or with the control of actuators based on smart materials were organized in
different international conferences.

This book gives a state of the art of emerging techniques to the characterization
and control of actuators based on smart materials working at the micro/nano-scale.

v
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The case of piezoelectric and electroactive polymeric actuators is focused. The
book was initiated after a scientific tutorial held during the IEEE—International
Conference on Robotics and Automation (ICRA) in May 2011 at Shanghaı̈,
China and organized by the book editor. The tutorial has brought researchers and
engineers together to present, discuss, and exchange ideas on the challenging topic:
“Dynamics, characterization and control at the micro/nano scale.” The exciting
discussions and exchanges between the speakers of the workshop and the audience,
composed of engineers, researchers, and students, have resulted in the necessity to
make a perennial archive available for a large public of the interesting presentations
and discussions. This is the motivation of this book which contains a potential both
for industrial applications and for research. The writing of the book is also such that
novice academic level (undergrads, masters and Ph.D. students) can start with the
domain of the micro/nano-scale and related actuators without difficulty.

This book is composed of twelve chapters that organized into four main parts.
The first part, made of three chapters, concerns the introduction to piezoelectric

materials and polymeric materials and their use for the design of actuators working
at the micro/nano-scale:

• Chapter 1 deals with the main motivations of using smart materials as a
fundamental component in micro/nano-positioning applications. The authors
show that actuators based on smart materials are chosen as an alternative
to classical actuators, since the design of classical actuated systems is not
suitable for the design of very small ones. The chapter particularly gives an
emphasis to piezoelectric materials which are widely used in the microworld.
Over the chapter, the authors provided the favorable properties of piezoelectric
materials which make them very interesting for the design and development of
microsystems working at micro/nano-scale.

• Chapter 2 deals with the case of newer polymeric materials as base for actuators.
Synthesis of the new materials, modeling, and experimental characterization on
these are detailed in the chapter.

The second part of the book deals with the closed-loop (or feedback) control of
smart materials-based actuators. This part includes four chapters.

• Chapter 4 proposes a decoupling method to model the behavior of a nonlinear and
oscillating piezoelectric actuator that has 2-degrees of freedom (2-dof). A robust
H-inf technique is afterward employed to control the actuator. Experimental
results demonstrate the efficiency of the proposed technique.

• In Chapter 5, a model-based control system to enhance the performances of nano-
positioning systems is proposed. Different control methods are applied and they
can be classified into: (a) inverse-based control schemes and (b) model-based
control schemes.

• In Chapter 3, a new method to design actuators based on piezoelectric materials
is presented. The method uses interval techniques combined with the geometrical
and physical model of the actuator. The new technique has an advantage to
provide guaranteed performances, thanks to the properties of interval tools.
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• Chapter 6 combines interval tools and related techniques with the classical
control theory to model a piezoelectric actuator and to synthesize a robust
controller for this. The main advantages of the approach are the natural way to
characterize parametric uncertainties in the actuator’s model, these uncertainties
being due to the difficulties of identification and to the high sensitivity of systems
working at the micro/nano-scale. The approach also derives low-order controllers
which are well appreciated because of their ease of implementation. Finally, the
chapter proposes a new way to analyze the performance robustness a posteriori
by still using interval techniques but combined with the H-inf tool.

The third part of the book, made of three chapters, treats the feedforward
control of smart materials-based actuators. Feedforward control techniques are
very appreciated in systems where the use of sensors is impossible or difficult. In
particular, they are of great interest in systems working at the micro/nano-scale due
to the lack of embeddable and convenient sensors usable at this scale.

• Chapter 8 presents a hysteresis model based on least squares support vector
machine (LSSVM) and proposes feedforward compensators by neglecting the
inverse hysteresis. It presents a comparative experimental study to present the
advantage of LSSVM over Bouc–Wen Model.

• Chapter 10 treats the modeling and the simultaneous feedforward control of
the hysteresis, the creep nonlinearity, and the badly damped vibration found in
nonlinear and flexible piezoelectric actuators. The design of the three controllers
(compensators) for these three behaviors, put in cascade, is based on precise
models and on their inversion. The chapter includes experimental results which
demonstrate the efficiency of the approach.

The last part presents two of the most emerging topics and applications at the
micro/nano-scale: nanorobotics and biological cells micro/nano-manipulation. This
part is composed of two chapters.

• Chapter 11 presents the fabrication with nanorobotic techniques and the charac-
terization of piezoresistive force sensors based on helical nanobelts. The process

• In Chapter 7, a state-feedback control with integral action is introduced to
improve the performances of a nonlinear and noisy piezoelectric microsystem.
As the state-feedback control requires a linear system, a feedforward controller
to compensate the nonlinearity (hysteresis) is first utilized. Furthermore, in order
to make the state of the actuator available for the feedback, a Kalman filtering is
also proposed. This filtering permits at the same time to reduce the noises seen at
the sensor output. The experimental results demonstrated the efficiency of these
techniques combined and their interest for micro/nano-positioning.

• In Chapter 9, the rate-dependent Prandtl–Ishlinskii hysteresis modeling and
control are proposed. The techniques allow to reduce the hysteresis that depends
on the rate or the frequency of the input control and that is found in many
hysteretic dynamical systems.
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of fabrication and assembly of the sensors are well detailed and experimental
characterization provides their interesting performances.

• Chapter 12 describes computer vision-based sperm analyses and manipulation
methods. The chapter also introduces recent progress in automating sperm
manipulation procedures, including sperm immobilization, aspiration, and po-
sitioning inside a micropipette.

I would like to thank all the contributors of this book who describe new results
in a very didactic way in these chapters. Most of the contributors participated in the
above-mentioned tutorial. I am also very grateful to Merry Stuber from Springer
Verlag for her assistance and encouragement along the preparation of this book. It
was a great pleasure to work with her. Finally, I give my thanks to Alison Waldron
(from Springer Verlag) to whom I initially contacted for the idea of this book.

Besançon, France Micky Rakotondrabe
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Angeliki Pantazi Storage Technologies, IBM Research - Zurich, Rüschlikon,
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Chapter 1
Introduction: Smart Materials as Essential Base
for Actuators in Micro/Nanopositioning

Micky Rakotondrabe, Mohammad Al Janaideh, Alex Bienaimé,
and Qingsong Xu

Abstract The main motivations of using smart materials as fundamental in micro/
nanopositioning systems are presented in this chapter. It is shown that the design
of classical (or macro) actuated systems cannot directly be used to design small
ones, particularly those used for micro/nanopositioning. While in macro, many
components are assembled to form the actuated systems, in micro one attempts to
reduce the number of elements in order to ensure some resolution and accuracy of
positioning and in order to make easy their fabrication. Smart and active materials
are therefore seen as the principal and essential component in microsystems and
systems working at the micro/nano-scale. Their advantages are detailed in the
chapter and some of the behaviors (hysteresis and creep) that are often encountered
are explained. A particular attention is given to piezoelectric materials since nine
chapters of the book treat them.
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1.1 Introduction

This chapter is an introduction to the principal motivations of why using smart
materials in the design and development of systems working at the micro and nano-
scale, in particular for micro/nanopositioning applications. More focus will be given
to piezoelectric materials as nine chapters of the book use such materials. The
chapter is organized as follows. In Sect. 1.2, the principal difficulties encountered
when using classical design to develop systems for micro/nano-scale are presented.
Some smart materials are cited as possible alternative to the classical design
(DC motors and articulations) and among the well-recognized smart materials for
micro/nanopositioning, we find piezoelectric materials. Section 1.3 is therefore
devoted to present the basic principle of piezoelectricity and Sect. 1.4 deals with
their particular advantageous. In Sect. 1.5 we present some of characteristics
(hysteresis, creep) that may limit the utilization of smart materials in general such
that the readers could have an idea of the motivations of the modeling and control
presented in the different chapters of the book.

1.2 Why Using Smart Materials in Micro/Nanopositioning

In positioning systems with classical dimensions (robots, manipulators, etc.), we
often use several components to compose them. First, among the most used
actuators, we find: DC motors, pneumatic actuators, magnetic actuators, etc. These
actuators are themselves made up of several subcomponents such as stator, rotor,
and movable part. In addition to the actuators, other mechanical components are
utilized to transform the angular (resp. linear) motion into linear (resp. angular)
motion to amplify the displacement stroke or to reduce the speed. In general, these
mechanical amplifiers and transformers contain themselves several subcomponents
such as passive articulations. At the macro-scale, the assembly of the different
components is evident. Remind that many actuators and systems at this scale
can perform theoretically infinite stroke, for instance the angle obtained with an
electrical motor can be unlimited. Although the large stroke that can be obtained,
the methods and the technologies used to design systems working at the macro- are
not suitable for the design and the development of systems working at the micro-.
The principal reasons of such incompatibility are as follows:

• The sizes of systems used in macro are relatively bulky face to the available space
when working at the micro-nano. For instance, the available space in an atomic
force microscopy (AFM) is very reduced and could not welcome an actuator
based on DC motor to position the sample of material to be scanned.

• With “macro” systems, the consumed energy is huge and is not justified face
to the small objects to be positioned. As an example, using a “macro” robot
to precisely position a biological cell would require many electrical power and
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a bFig. 1.1 Replacement of a
classical system (articulation
with DC motors, see (a)) by
utilizing a smart material (see
(b))

it would be more convenient to position the same object with lower power
consumption systems such as smaller robot.

• The mechanical clearances found in the articulations yield a limited resolution of
positioning. This limited resolution is not often adapted to the resolution required
in nanopositioning.

• The fact that “macro” systems are based on the assembly of different compo-
nents, they have minimal sizes that are irreducible to be convenient with the
available space in micro. Remind that if we assumed the existence of similar but
smaller components, the assembly itself would be very difficult at small scale and
then still maintains the difficulty to fabricate assembled micro-components. In
addition to that, some components are mobile relative to themselves. This yields
some friction and therefore implies a loss of precision of the whole system.

The above reasons lead researchers and engineers to use new design of the
systems devoted to micro/nanopositioning. The main idea is that, instead of using
several assembled components (actuators and articulations), one employs smart
materials, i.e. materials that react and that can generate motion when excited
electrically, magnetically, thermally, etc. Indeed, it is possible to replace an actuator
and related articulations by utilizing the same bulk of smart material which
consequently removes many of the above cited limitations substantially. Figure 1.1a
depicts a 2-degrees of freedom (2dof) classical manipulator based on two motors
and bars, while Fig. 1.1b depicts its replacement with a cantilever structured smart
material. Both systems can provide a displacement at their extremities. As we can
see, the articulations are removed in the smart material-based actuator and the
use and assembly of several components are bypassed. The resolution is highly
increased as the friction and the mechanical clearances do not anymore exist. This
resolution is only dependent on the minimal deformation that can perform the smart
material, which should be theoretically infinite. Finally, the fabrication of smaller
systems are possible since we can use the same bulk material to integrate different
functions (actuation, mechanical amplification, etc.).

Among the smart materials that are commonly used to develop mi-
cro/nanopositioning systems, we find:
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• Shape memory alloys (SMA) and thermal shape memory alloys (TSMA) mate-
rials

• Electropolymeric and magnetopolymeric materials
• Magnetostrictive materials and fluid mechanics
• Piezoelectric materials

To resume, the main benefit from smart materials is their ability to deform
themselves under the electrical or magnetic excitation. However, there also exist
other principles to deform materials that are not necessarily smart. They include:

• The electrostatic principle which is based on the Coulomb force to deform the
material

• The magnetic principle, for instance by fixing a ferromagnetic small object
at the tip of the cantilever of Fig. 1.1b which, under a magnetic field, is
attracted/repulsed and then results a bending of this latter

• The thermal principle based on a bilayered cantilever where each layer has
different thermal coefficients

In these smart and active materials, piezoelectric one are among the well
recognized thanks to several advantages that they can offer. In this book, nine
chapters (Chaps. 2, 3, and 5–11) are devoted to piezoelectric materials used in
nanopositioning systems and related applications. In order to give some prelimi-
naries to the readers, the remaining sections will therefore be consecrated to these
materials.

1.3 Basics on Piezoelectric Materials

Piezoelectricity is the ability of certain materials to create electrical charges in
response to a mechanical stress. This phenomenon is called the direct piezoelectric
effect. The piezoelectric effect is a reversible process and piezoelectric materials are
able to generate internal mechanical strain when an electrical field is applied. A wide
range of applications uses these two phenomena especially for sensors (pressure),
actuators, energy harvesting or resonance applications (ultrasonic applications,
filters, high sensitive mass sensors). We present here the principle at the microscopic
and macroscopic scale before reminding the constitutive equations of a piezoelectric
material. We end the section by classifying the different kinds of piezoelectric
materials.

1.3.1 Microscopical Principle

Piezoelectric materials are composed of different kinds of atoms, having different
electrical charges. At equilibrium (Fig. 1.2a), the electric charges of each compound
are compensated, for example in quartz, oxygen atoms charged negatively sharing
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Fig. 1.2 Example of direct/converse piezoelectric effect on an elementary mesh of quartz. (a) The
mesh at its equilibrium state (no mechanical force or electrical voltage is applied). (b) The mesh
when a mechanical force or an electrical voltage is applied

electrons with silicon atoms charged positively. However, under a mechanical stress,
the material is deformed (Fig. 1.2b) and the electric equilibrium is broken. A polar
moment appears in the solid which creates charges in the material. On the other
hand, the separation of electrical charges, due to the application of electric potential
on the material, induces a displacement of atoms which causes deformations in the
solid.

1.3.2 Macroscopical Principle and Equations

At macroscopical scale, the direct or inverse piezoelectric effect is visible by
measuring, respectively, the electrical potential difference in function of the stress
applied or the deformation generated by the application of an electrical potential
difference. For an ideal piezoelectric material, these two relations are proportional
and can be written as: {

S = dE
D = dT

(1.1)

where D is the electric displacement, T the stress, S the strain, E the electric field,
and d the proportional coefficient, called the piezoelectric constant. If we add the
relations that link stress with strain (Hooke’s law) and the electric displacement with
the electric field which traduce, respectively, the mechanical and electrical behavior
of a material, we obtain the piezoelectric constitutive equations:
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{
S = sET +dE
D = dT + εT E

(1.2)

where s is the stiffness and ε the permittivity for constant electric field and constant
stress, respectively. These equations are generally combined with the equilibrium
equations to determine the behavior of a device. The direct effect is usually
used in sensor applications or energy harvesting and inverse effect for actuator
applications (quasi-static case: expansion/compression or shear motions). Some
devices combine both effects, especially for resonance applications using different
modes of vibration: compression/expansion, flexion, thickness shear, or face shear.

A piezoelectric material can be viewed as an energy converter and its ability to
convert electrical (resp. mechanical) energy into mechanical (resp. electrical) energy
is given by the piezoelectric coupling factor:

k2=
mechanical (or electrical) energy converted to electrical (or mechanical) energy

input mechanical (or electrical) energy
(1.3)

and can be expressed as:

k2 =
U2

C

UDUE
(1.4)

where UC is the coupling energy, UD the deformation energy, and UE the electrical
energy.

1.3.3 Piezoelectric Materials

Two materials are widely used in devices: the PZT (lead zirconate titanate,
Pb(ZxTi1−x)O3) which are generally used for actuators, and quartz crystals used for
resonators. But various materials could be adapted depending on the applications.

Crystals, such as quartz, present generally a high stability, especially face to
temperature variation, but they have a low piezoelectric module and high acoustic
impedance. Monocrystals based on langasite (langasite, langatate, langanite) or
lithium (lithium niobate or lithium tantalite) show higher piezoelectric coefficients
although they are still lower than those of ceramics. Then, their costs of production
and their fragility limit their applications. New monocrystals such as PMN-PT or
PZN-PT, with the same composition as ceramics, offer high coupling properties and
are under numerous research investigations nowadays, in the aim to substitute PZT
ceramics in sensors or actuators applications.

Ceramics, in opposition to crystals, have a lower stability but a higher piezoelec-
tric coefficient and a low cost of production. Ceramics are generally made of PZT
with various concentration of titanium and it is possible to add some dopants to
modify the material properties and make easier electrical exchanges. Two kinds of
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PZT are developed: soft and hard PZT. Hard PZT are doped with acceptor atoms
which reduce loss in material but decrease piezoelectric constant. Soft PZT are
doped with donator atoms which confer better piezoelectric constants but increase
losses in material due to internal friction. Finally other piezoelectric materials are
also found in small systems applications such as small sensors and small actuators.
They include GaAs, AlN, ZnO, and piezoelectric polymers such as PVDF.

1.4 Gains Obtained with Piezoelectric Materials

Piezoelectric materials are commercially available from a number of companies,
such as Noliac, Physik Instrumente (PI), and NEC/Tokin. Acting as an actuator,
the piezoelectric material converts the electrical energy into motion. They are
electromechanical devices for generating movements in the micrometer range.
Piezoelectric actuators possess some attractive properties, such as compact size,
high resolution, high bandwidth, ease of fabrication of small systems, avoidance
of mechanical plays/clearances, and no electromagnetic interference. They can be
operated over billions of cycles without wear or deterioration. Their bandwidth is
very high, which is only limited by the inertia of the object being moved and the
output capability of the electronic driver. In addition, virtually no power is consumed
to maintain a piezoelectric actuator in an energized state. Moreover, they enable the
capability of self-sensing [1]. Taking PI actuators as example, specific advantages
of the piezoelectric actuators are enumerated as follows [2]:

• Ultrahigh resolution: A piezoelectric actuator can produce extremely fine posi-
tion changes down to the subnanometer range. The smallest changes in operating
voltage are converted into smooth movements. Motion is not influenced by
friction effect.

• High bandwidth: Piezoelectric actuators offer the highest bandwidth available.
Microsecond time characteristics can be easily obtained.

• Large force generation: Piezoelectric actuators can generate a force of from
several kN to several tons within a typical range of tens micrometer.

• No magnetic fields: Piezoelectric actuators are especially well suited for applica-
tions where magnetic fields cannot be tolerated.

• Low power consumption: The piezoelectric material absorbs electrical energy
during movement only. Static operation, even holding heavy loads, does not
consume power.

• No wear and tear: A piezoelectric actuator has neither gears nor rotating shafts.
Its displacement is based on pure solid-state effects and exhibits no wear and tear.

• Vacuum and clean-room compatible: Piezoelectric actuators employ ceramic
elements that do not need any lubricants and exhibit no wear or abrasion. This
makes them clean-room compatible and ideally suited for ultra-high-vacuum
applications.
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• Operation at cryogenic temperatures: The piezoelectric effect is based on electric
fields, and it functions down to almost 0 K although at reduced specifications.

In view of the obtained gains mentioned above, piezoelectric actuators have
been applied extensively in engineering applications. The most popular types of
piezoelectric actuators are piezoelectric stacks, bending actuators, and shear actu-
ators. Piezoelectric stack actuators are constructed by stacking multiple layers of
piezoelectric materials together. They are usually adopted in micro-/nanopositioning
stages [3, 4], auto focusing of cell phone camera, vibration sources, vibration
controls, mirror/prism positioning, AFM [5], etc. Alternatively, piezoelectric bender
actuators consist of one to several layers of piezoelectric materials. With one
end fixed, the free-end of the bender delivers motion once powered. Such kind
of cantilever-based actuators have been widely used in the scenarios of smart
microgrippers [6], valves, active vibration damping, AFM [7], energy harvesting
[8], etc. Besides, piezoelectric shear actuators present electrodes on top and bottom
surfaces. They have been widely employed in the applications of active vibration
control [9], structural health monitoring [10], microscopy, switches, etc.

1.5 Some Problems Encountered When Using
Smart Materials

1.5.1 Background

Smart actuators invariably exhibit hysteresis, which is a path-dependent memory
effect where the output relies not only on the current state but also on the past output
history [11]. The presence of the hysteresis in smart actuators, such as piezoceramic,
magnetostrictive, and SMA actuators has been widely associated with various
performance limitations [12]. These include the oscillations in the responses of the
open-as well as closed-loop systems, and poor tracking performance and potential
instabilities in the closed-loop system [13]. Smart actuators have also shown strong
creep effects in the output displacement during slow and fast operations [14, 15]. A
number of studies are calling the creep effects at high excitation frequencies as rate-
dependent hysteresis [15, 16]. These creep effects yield significant loss in precision
when positioning is required over extended periods of time and high oscillations at
high excitation frequencies [17].

Considerable continuing efforts are thus being made to seek methods for effective
compensation of hysteresis and creep effects in order to enhance the tracking
performance of smart actuators, particularly for closed-loop micro-positioning
systems. The characterization and modeling of the hysteresis and creep properties of
smart actuators, however, is vital for designing efficient compensation algorithms.
Considering that the hysteresis properties of such actuators are strongly dependent
upon the type of materials, magnitude of input and the rate of input in a highly non-
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Fig. 1.3 (a) Measured displacement of a piezo micropositioning actuator under sinusoidal input
voltage, (b) measured displacement of a piezocantilever when a step input reference is applied,
(c) measured hysteresis loops of a piezo micropositioning actuator when a sinusoidal input
voltage is applied at different excitation frequencies, and (d) measured hysteresis loops of
a magnetostrictive actuator when a sinusoidal input current is applied at different excitation
frequencies

linear manner, the characterizations as well as modeling of the phenomenon pose
considerable challenges. For instance, piezoceramic actuators generally exhibits
symmetric convex minor and major hysteresis loops [18], while magnetostrictive
and SMA actuators yield highly asymmetric concave hysteresis loops [12, 19],
which further depend upon the rate of the applied input. Smart actuators also exhibit
output saturation, which further contributes to the modeling challenge. Figure 1.3
shows measured hysteresis and creep nonlinearities in smart actuators.

1.5.2 Hysteresis Models

A number of hysteresis models have been proposed in the literature for char-
acterizing the hysteresis properties of smart actuators [13]. These models could
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be broadly classified into phenomenological models and physics-based models
[11, 20]. Different dynamic models have been proposed to model the creep effects
in smart actuators. These models could be classified into linear creep models and
nonlinear creep models. Linear creep models characterize the creep effects using
series connection between springs and dampers, while nonlinear creep models apply
nonlinear equations.

The physics-based models are generally derived on the basis of a physical mea-
sure, such as energy, displacement, or stress–strain relationship. These hysteresis
models generally require comprehensive knowledge of the physical phenomenon
for the hysteretic system. Alternatively, the phenomenological models describe the
hysteresis properties without attention to the physical properties of the hysteretic
system [13]. Many of these models were initially proposed for specific physical
systems and were later generalized for applications to other systems. The primary
goal of these models is to accurately predict the hysteresis in order to study the
hysteresis effects and to facilitate the design of controllers for compensating the
hysteresis effects.

The most widely cited models based on the input and output behaviors include:
the operator-based hysteresis models such as Preisach model [11] and Prandtl–
Ishlinskii model [20] and differential equation-based hysteresis models such as
Duhem model and Bouc–Wen model [21]. These models generally constitute a
nonlinear differential equation relating the output to the magnitude and direction
of the input. Unlike the differential equation-based model, the operator-based
models are considered to be better suited for the design of control algorithms for
compensating hysteresis effects due to their invertibility. Such models have been
widely applied for modeling hysteresis nonlinearities in smart actuators, and are
briefly described below.

1.5.2.1 The Preisach Model

The Preisach model has been most widely applied for characterizing the hysteresis
properties of smart actuators, see, for example, [13, 18]. The Preisach model can be
presented analytically as [11]:

Γ [v](t) =
∫∫

α≥β

p(α,β )γαβ [v](t)dαdβ (1.5)

where γαβ [v](t) is the output of the relay operator, α and β are thresholds, and
p(α,β ) is a positive integrable density function identified from the measured data
for a particular smart actuator. The Preisach model is rate-independent hysteresis
model.

The Preisach model is completely characterized by two properties [11]: wiping-
out and congruent minor-loop properties. The wiping out property means that the
output is affected only by the current input and the history of the output, while
the effect of all other inputs is wiped out. The congruent minor-loop property
requires that all equivalent minor loops be similar. Two minor loops are said to
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be equivalent if they are generated under monotonically varying inputs of identical
amplitudes. Different forms of the classical Preisach model have thus evolved to
model hysteresis in various materials and smart actuators [11].

1.5.2.2 The Prandtl–Ishlinskii Model

The Prandtl–Ishlinskii model is constructed using the play hysteresis operator.
Unlike the relay operators in the Preisach model, the play operator is continuous
hysteresis operator characterized by the input v and the threshold r. A detailed
discussion about these operators can be found in [20]. The play operator has been
described by the motion of a piston within a cylinder of length 2r [20]. Analytically
the output of the Prandtl–Ishlinskii model is expressed as [20]:

Ψ [v](t) =

R∫
0

p(r)Fr[v](t)dr, (1.6)

where Fr[v](t) is the output of the play operator and p(r) a positive integrable
density function identified from the measured data for a particular smart actuator.
The Prandtl–Ishlinskii model is a rate-independent hysteresis model, attributed to
the time independent play operator that the model employs.

The Prandtl–Ishlinskii model has been applied to characterize hysteresis effects
of different smart actuators. The model, however, is limited to symmetric hysteresis
loops, such as those observed in many piezoceramic actuators, which is attributed
to the play operator. The model, thus, cannot be applied for predicting asymmetric
input–output hysteresis, which is invariably observed in SMA and magnetostrictive
actuators. Furthermore, unbounded nature of the play operator does not permit
the Prandtl–Ishlinskii model applications for saturation property, which is widely
observed in SMA actuators. Different developments have been carried out in a
number of studies to enhance the performance of the Prandtl–Ishlinskii model.
These studies include the generalized Prandtl–Ishlinskii model [13], the classical
Prandtl–Ishlinskii model [22], the modified Prandtl–Ishlinskii model [23], the rate-
dependent Prandtl–Ishlinskii model [16].

1.5.3 Hysteresis Compensation

The hysteresis in smart actuators has been associated with oscillations and poor
tracking performance of the closed-loop system [24]. Consequently, considerable
efforts have been made towards the design of controllers for compensation of
hysteresis. A vast number of controllers have been proposed to reduce the error
due to hysteresis effects. The proposed control algorithms could be classified into
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two broad categories, namely non-inverse-based control methods and inverse-based
control methods.

1.5.3.1 Model-Based Control Methods

Compensation of hysteresis nonlinearities have been carried out in many studies
without considering the inverse of the hysteresis models. Model-based hysteresis
compensation methods employ the phenomenological hysteresis models to con-
struct controllers to compensate for the actuator hysteresis. A number of control
methods have been proposed to compensate for smart actuators such as adaptive
control [25, 26], energy-based control methods [12], and sliding model control
systems [27], which employ the hysteresis model of the actuator for constructing
the controller.

1.5.3.2 Inverse-Based Control Methods

Control algorithms based on inverse compensators have been suggested to be more
effective in compensating the hysteresis and creep effects [28–30]. The inverse
model-based hysteresis compensation methods generally employ a cascade of a
hysteresis model and its inverse together with a controller to compensate for the
hysteresis effects. These methods, however, necessitate the formulation of the
hysteresis model inverse, which is often a challenging task.

Some reported hysteresis models have thus been employed for deriving the
inverse hysteresis models to serve as a compensator for the hysteresis effects,
particularly these based on the Preisach model and Prandtl–Ishlinskii models [13].
The Preisach model is not analytically invertible; numerical methods are thus
employed to obtain approximate inversions of the model. The effectiveness of
the approximate inversions in conjunction with different controllers in hysteresis
compensation has been demonstrated in a number of studies, see, for example, [31].

1.6 Conclusion

This chapter presented the main motivations of using smart materials as core
components in systems working at the micro/nanoscale, in particular systems for
micro/nanopositioning. Piezoelectric materials are considered as one of the well
recognized among the existing smart materials in these applications. Indeed nine
chapters of the book are devoted to the use of these materials. Hence, this chapter
provided a remind of the basics of piezoelectricity and of their main advantages.
Finally, the chapter presented some of the main behaviors (hysteresis and creep) that
limit the performances of smart materials and in particular of piezoelectric materials.
Most of the chapters in the book will treat these behaviors.
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Chapter 2
Characterization and Dynamics of Polymer
Microactuators

Beatriz Cristina López-Walle and Edgar Reyes-Melo

Abstract A magnetic hybrid material consisting of iron oxide nanoparticles (4 nm)
embedded in a polymer matrix of Na-CMC was synthesized. The synthesis was done
from a chemical treatment on a precursor hybrid material previously synthesized.
The structure, morphology, and magnetic properties for this magnetic hybrid
material were studied by X-ray diffraction, IR spectroscopy, transmission electron
microscopy, and magnetometry. Additionally, the dynamic response was analyzed
in order to probe the feasibility to use this magnetic hybrid material as a bending-
type actuator. The experimental results show that the responses of the deflection
have a linear trend over a reasonable range, suggesting that the magnetic hybrid
material can be used as bending-type actuators in small mechanical systems and
devices. First simulations have also been done considering the two components
of the magnetic hybrid material: the oxide iron nanoparticles and Na-CMC. The
displacement response takes in account the viscoelastic properties of the polymeric
matrix and the magnetization of the nanoparticles.

2.1 Introduction

Recent advances in polymer science have allowed a better utilization of the
properties of polymeric materials and their composite and/or hybrid materials
[3, 10, 11, 17, 25, 27–30, 33, 39]. Polymers offer an attractive basis for microsystems
[24]. Some of the characteristics of the polymer materials that benefit from both the
field of microsystems and the electroactive polymer actuation technologies are: (1)
elasticity, they can absorb impact energy and tolerate large degree of deformation;
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(2) cost, they are relatively inexpensive compared to silicon; and (3) manufacturing,
they can be formed into three-dimensional structures. In this chapter, a new hybrid
material with potential applications as an electroactive microactuator is presented.

The synthesis of new hybrid materials has acquired great importance due to the
development of experimental techniques allowing that two inherently incompatible
components (e.g., organic polymers and inorganic oxides) can be combined by a
pre-mix of both at the molecular level, before its conversion into a new hybrid
material. This has allowed the design and synthesis of hybrid advanced materials
with very specific physicochemical properties, including a multi-functional charac-
ter, essential in modern organic electronics and microsystems. From the point of
view of structure and morphology, a hybrid material is one phase or multi-phases
dispersed into a matrix, which is typically a polymeric material. Additionally, the
synthesis of hybrid materials with a polymeric matrix compatible to biological
systems, as carboxymethyl cellulose or Na-CMC, represents an area that has paid
a lot of attention of many research groups, due to the biological or surgical
applications that this kind of materials could offer [30, 39]. The hybrid material
described through the next sections is composed of a polymeric matrix of Na-CMC
and inorganic nanoparticles of iron oxide (Fe2O3). Polymeric matrices are also
suitable to encapsulate the metallic nanoparticles during their synthesis, avoiding
the formation of agglomerates [3,11,26,27,29]. For these reasons, the development
of hybrid magnetic materials using biocompatible polymeric matrices as Na-CMC
is of great scientific and technological interest.

This work deals with a magnetic hybrid material based on Na-CMC and Fe2O3

nanoparticles. Section 2.2 describes the synthesis of this innovative material;
Sect. 2.3 presents its structural, morphological, and magnetic characterization; and
Sect. 2.4 shows the experimental results and finite element simulation (FES) of this
material considering that it could work as a bending-type microactuator.

2.2 Synthesis of the Magnetic Hybrid Material

The synthesis of new hybrid materials by the scientific community has led to the
improvement of the process of combining two or more materials with the purpose of
obtaining multifunctional materials. In polymer technology, it is a common practice
to strengthen conventional polymeric materials with inorganic fibers or fillers to
improve their mechanical properties. This kind of materials have a great application
today mainly for the construction of light vehicles and utensils for sports [8, 16].
In this sense, the development of new microactuators for the electronic industry,
enabling it to extend their applications to biological systems, requires the synthesis
of new hybrid materials with polymer matrix that respond to the application of a
magnetic field [12, 18, 27, 29, 37], either, which can also carry electricity, without
losing their viscoelastic properties and biocompatibility. To achieve these objectives,
an important alternative is the development of nanostructured hybrid materials.
Na-CMC due its low cost and its functional groups, it is a polymer matrix which
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Fig. 2.1 Chemical structure
of a chain segment of
Na-CMC

can be used as a stabilizing agent of metallic nanoparticles. The aim of this section
is the synthesis of magnetic nanoparticles that can be dispersed and stabilized in a
polymeric matrix of Na-CMC, resulting in a hybrid magnetic material.

2.2.1 The Polymer Matrix or Na-CMC

Sodium carboxymethyl cellulose or Na-CMC is an ether derivative of cellulose with
the carboxymethyl groups bounded to the hydroxyl groups of the β-anhydroglucose
units (see Fig. 2.1) of cellulose macromolecules. The role of Na-CMC in the
industry is related to its hydrophilic character and its high viscosity, allowing it
to be used as base material to form thin films with good rheological properties. In
addition Na-CMC also can be used as a thickener or even as adhesive in many
industrial processes. In the process of Na-CMC synthesis, chemical groups of
“sodium carboxymethyl” (CH2COONa) are introduced in the repetitive units (β-
anhydroglucose) of cellulose. These CH2COONa groups give Na-CMC a certain
degree of solubility in water; this property does not have cellulose macromolecules.
Figure 2.1 shows a segment of Na-CMC chain, same hydroxyl groups have been re-
placed by sodium carboxymethyl groups into the repetitive unit: β-anhydroglucose.
Because of its chemical structure, Na-CMC can form coordinate bonds with divalent
ions without loss of its process ability [14, 15, 26, 28, 29, 36].

A very important aspect that defines the functional properties of Na-CMC is
its degree of substitution or DS. The value of DS is a function of the average
number of OH-groups replaced by CH2COONa groups into the β-anhydroglucose
units [26, 29]. Figure 2.1 shows that each β-anhydroglucose unit has 3 OH-groups
available for a maximum of 3 DS. For example, in a sample of Na-CMC with a
1.5 DS, it means that on average 50% of the hydroxyl groups were replaced by
CH2COONa groups, and the 50% of remaining OH-groups remain free. The ability
of the Na-CMC as a thickening agent for the control of flow of fluids (rheology
control) depends largely on its DS value. At the same time the magnitude of DS
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depends on reaction kinetics for the synthesis of Na-CMC. For samples with low
values of DS, for example DS = 0.2, most of the reaction was carried out in
amorphous cellulose regions or on the surface, and consequently Na-CMC sample is
relatively insoluble in water, but it absorbs significantly more liquid than the starting
(cellulose) material. For values of DS = 0.5, Na-CMC shows partial solubility, due
to little replaced regions that appear very swollen and opaque, as an opaque gel.
Samples with a DS = 0.7 or greater are the result of sufficient replacement of OH-
groups producing a higher solubility of Na-CMC in water and minimize the physical
interactions among chains that produce agglomerates, these interactions can be
interrupted by the inherent stress in the fluid and produce thixotropic rheology.
The chemical reactions necessary for the synthesis of Na-CMC, which reach a
value of DS = 1, produce polymeric chains that have a very low concentration of
OH-groups; these OH-groups have not been replaced by carboxymethyl groups.
Consequently this specimen has a little tendency to the formation of agglomerates.
These last aspects lead to a rheology behavior of Na-CMC which is known as
pseudoplastic (or non-Newtonian rheology). In pseudoplastic behavior viscosity
decreases as shear rate increases. It is important to remark here that when OH-
groups into chains of Na-CMC are uniformly replaced by CH2COONa groups,
these groups interact with water molecules producing a uniform flow of Na-CMC
solution. On the other hand, when OH-groups are replaced by CH2COONa groups
at a random way, the less substituted regions or hydrophobic chains, they tend
to swell, since these regions tend to be associated through hydrogen bonds and
form three-dimensional networks that give rise to a structure with thixotropic fluid
characteristics. Na-CMC compatibility is another important property that is also
affected by DS-magnitude; this is because the less soluble regions of Na-CMC tend
to precipitate easily. Na-CMC samples with high values of DS which correspond
to Na-CMC uniformly replaced are more stable to acid pH, because of that acid
hydrolysis takes place in the union ether between two β-anhydroglucoses units. An
important technological information of commercial Na-CMC is as follows, it is solid
white, odorless, tasteless, and without toxicity. Viscosity in aqueous solutions to 2%
ranges between 10 and 50,000 mPa s [26].

2.2.2 In Situ Synthesis of the Magnetic Hybrid Material

Today, a wide variety of methodologies that allow a combination at the molecular
level of different materials have been developed. Many of these methodologies are
based on some mechanism of precipitation, controlling the size of particle produced
in this way [3,26,28,29]. These methodologies for the synthesis of hybrid materials
are classified as in situ and ex situ methodologies. For methodologies classified
as in situ growth of nanoparticles is given into the polymer matrix, instead on
methodologies ex situ nanoparticles are synthesized independently and then they
are dispersed into polymer matrix. In this work, we used an in situ methodology to
obtain a magnetic hybrid material (Fe2O3/Na-CMC).



2 Characterization and Dynamics of Polymer Microactuators 19

For in situ methodologies, it is essential that, at a first stage must be mixed
inorganic precursors with the polymer matrix, and then inorganic precursors into
polymer matrix are transformed to a new phase. The pre-mix can be carried out in
several ways:

• Absorption of metal ions in ion-exchange resin or polymeric gels
• Dissolution of precursors in a polymer solution
• Deposition of precursors in a porous polymer, chemical, electrochemical meth-

ods or steam

A prerequisite for the development of the in situ methodology is that the polymer
matrix must have functional groups, which should be establishing chemical or phys-
ical interactions with the metallic ions of precursor salts, favoring a homogeneous
dispersion of the precursor salt into the matrix. Once the metallic ions interact with
the polymer matrix, a chemical or physical treatment is carried out with the purpose
of obtaining the desired structure of the dispersed phase. In a previous work, it
has been reported the synthesis of a material hybrid in which were dispersed in a
homogeneous way nanoparticles of Fe2O3 into a polymeric matrix of chitosan [27].

For the synthesis of Fe2O3/Na-CMC hybrid material, the process was carried out
in two stages. In the first stage, the main objective is that the precursor salt and Na-
CMC should be combined in a way such that the precursor salt ions are dispersed
evenly in the Na-CMC, to obtain a precursor hybrid material. In the second stage, the
precursor hybrid material is subjected to a certain chemical treatment for obtaining
Fe2O3/Na-CMC.

Figure 2.2 is a schema of the first stage; Na-CMC and FeCl2–4H2O were
dissolved in distilled water obtaining two solutions Na-CMC/H2O and FeCl2/H2O.
Both solutions were subjected to an agitation process for 5 h, and then mix both
solutions; the product obtained is subjected to another agitation process during 4 h.
After that, this last solution is poured in a Petri dish and is subjected to a process of
drying by natural convection in a hot plate at an average temperature of 40 ◦C for
24 h. The resulting product is the precursor hybrid material. This material is stored
in a desiccator where samples are taken for analysis and also to be subjected to
chemical treatment that constitutes the second stage.

In the second stage, the precursor hybrid material was subjected to a chemical
treatment with an aqueous solution of NaOH 6.7 M at 40 ◦C. Consequently the
precursor hybrid material undergoes a change of color, dark coffee to black. After
that, the “black” material is immersed in the alkaline solution and then 30 mL of
hydrogen peroxide (H2O2) was added, this produced a new change of color, black
to reddish brown. After 15 min the “reddish brown” material was removed from the
alkaline solution and it was subjected to a process of washing with distilled water
and ethyl alcohol, with the aim of eliminating waste substances. This new material is
the final product that presumably is a hybrid magnetic material composed of Fe2O3

nanoparticles dispersed in a polymer matrix of Na-CMC.
The magnetic hybrid material obtained has been characterized structurally,

morphologically, and magnetically. The techniques applied and the results obtained
are described in the next section.



20 B.C. López-Walle and E. Reyes-Melo

Fig. 2.2 First step of the
synthesis of the magnetic
hybrid material: the precursor
hybrid material

2.3 Characterization of the Magnetic Hybrid Material

In this section, the experimental results obtained from the structural, morphological,
and magnetic characterizations are presented and discussed. In the first part, we deal
with the structure and morphology for both the precursor hybrid material and the
magnetic hybrid material. In the second part, the magnetic properties of the last one
are analyzed.

2.3.1 Morphology and Structure of the Precursor Hybrid
Material and the Magnetic Hybrid Material

For the synthesis of the precursor hybrid material two aqueous solutions were
mixed, one of FeCl2 and another of Na-CMC, this with the purpose of obtaining
an aqueous solution containing FeCl2 and Na-CMC. After that, it has removed the
solvent by natural convection; it allowed us to obtain a thin film in which presumably
the Fe2+ ions are bound to carboxymethyl groups of the Na-CMC. Figure 2.3 shows
three images, the first one (Fig. 2.3a) is a thin film of Na-CMC, the second one
(Fig. 2.3b) corresponds to a film of the precursor hybrid material, and Fig. 2.3c is a
powder of the magnetic hybrid material obtained.



2 Characterization and Dynamics of Polymer Microactuators 21

Fig. 2.3 The magnetic hybrid material at different steps: (a) Na-CMC sample, (b) the precursor
hybrid material, and (c) powder of the magnetic hybrid material

In order to verify that the Fe2+ ions have some kind of chemical interaction
with carboxymethyl groups of Na-CMC, the precursor hybrid material (Fig. 2.3b)
was analyzed by X-ray spectroscopy and IR-spectroscopy. On the one hand, the X-
ray diffraction technique was used mainly to corroborate the complete dissolution
of precursor salt into the polymer matrix of Na-CMC. The device used was a
SIEMENS D5000 diffractometer with a radiation source of CuK. On the other hand,
by IR-spectroscopy, the different vibration modes of the chemical groups for both
the precursor hybrid material and Na-CMC samples were analyzed. Using these
results, it was possible to study the interactions between functional groups of the Na-
CMC and the ions of precursor salt. The device used to obtain these experimental
measurements was a Nicolet FTIR spectrometer.

Figure 2.4 shows the patterns of X-ray diffraction which were obtained for
the samples of Na-CMC (Fig. 2.4a), for the precursor hybrid material in question
(Fig. 2.4b), and for salt precursor FeCl2·4H2O (Fig. 2.4c). The diffractogram ob-
tained for Na-CMC sample (Fig. 2.4a) is a typical curve corresponding to materials
with amorphous structure. While the diffraction pattern that corresponds to the
precursor hybrid material is displayed in Fig. 2.4b. It is clear that the diffraction
peaks in Fig. 2.4b do not correspond to the precursor salt, FeCl2·4H2O, see Fig. 2.4c,
these diffraction peaks correspond to NaCl crystals embedded into Na-CMC matrix.
These results suggest that the precursor salt (FeCl2·4H2O) was completely dissolved
into the polymer matrix, probably forming chemical bonds between Fe2+ ions and
carboxymethyl groups of the Na-CMC. On the other hand, the presence of crystals
of NaCl into the precursor material is a consequence that in the first stage of the
synthesis process, there are conditions to carry out a process of crystallization, due
to the ionic interactions that occur between the Cl− of the precursor salt and the Na+

from the Na-CMC [26, 29]. In order to corroborate the chemical interaction of ions
of Fe2+ with the Na-CMC, the different modes of vibration which have functional
groups both the precursor hybrid material and Na-CMC samples were determined
by IR-spectroscopy. The comparison of the spectra obtained for these samples (see
Fig. 2.5) go allowed clarifying the way in which Fe2+ ions interact with the polymer
matrix for the formation of the precursor hybrid material.
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Fig. 2.4 X-ray diffraction patterns for samples: (a) Na-CMC, (b) the precursor hybrid material,
and (c) precursor salt (FeCl2·4H2O)

Fig. 2.5 Infrared spectra for: (a) NA-CMC and (b) the precursor hybrid material

Figure 2.5a corresponds to the infrared (IR) spectrum obtained for Na-CMC
sample. The characteristic vibration mode associated with chemical groups –OH
is observed at 3,500 cm−1. Another vibration mode is stretching of C–H, and its
corresponding band is observed at 2,925 cm−1. At 1,417, 1,600, and 1,058 cm−1

are identified another bands related to stretching of the asymmetric ether group
of the carboxymethyl groups. On the other hand, Fig. 2.5b corresponds to infrared
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Fig. 2.6 Diffraction patterns for: (a) the magnetic hybrid material, (b) standard maghemite phase,
and (c) standard magnetite phase

spectrum of the precursor hybrid material; in this figure the band associated with
the carboxymethyl groups has a shift towards high values of the wavenumber, about
1,633 cm−1. The shift of this band is related to chemical interactions that occur
between Fe2+ ions and carboxymethyl groups of Na-CMC. The results obtained
by X-ray diffraction and IR-spectroscopy allow us to ensure that Fe2+ ions are
distributed evenly in the polymer matrix of the precursor hybrid material. This
condition is necessary and indispensable for the precursor hybrid material to be
used as raw material base for the synthesis of Fe2O3 nanoparticles homogeneously
dispersed into Na-CMC.

The hybrid magnetic material samples were also analyzed by X-ray diffraction
with the aim of determining the crystal structure and the size of nanoparticles
dispersed into polymer matrix. The Scherrer equation [26, 29] was used for the
calculus of particle size [26]. Figure 2.6a shows the diffraction pattern obtained
for the magnetic hybrid material. The diffraction peaks which are marked with
an asterisk (*) 18.35◦, 30.25◦, 33.65◦, 42.25◦, 53.7◦, and 62.95◦ correspond to
crystallographic planes (1 1 1), (2 2 0), (3 1 1), (4 0 0), (4 2 2), and (4 4 0), respec-
tively, and they are consistent with the bars shown in Fig. 2.6b coming from a
standard diffraction phase of maghemite [1 0 0], and also with standard diffraction
phase (Fig. 2.6c) of magnetite [1 0 1]. In addition, it also displayed diffraction peaks
associated with the crystallographic planes (2 1 0), (2 1 1), and (1 1 0) belonging to
the phase of maghemite [1 0 0]. These results are important since they corroborate
us the existence of a phase Fe2O3 into the polymer matrix of Na-CMC [26, 29].

From experimental results of Fig. 2.6a, inter-planar distances (d) were calculated
using Bragg law. These calculated values of d are consistent with those reported in
the literature for the crystal structure of the [1 0 0] maghemite. Table 2.1 shows



24 B.C. López-Walle and E. Reyes-Melo

Table 2.1 Computed
inter-planar distances
d = d(dexp) from
experimental results

2θexp d d(γFe2O3) d(Fe3O4)

14.95 0.5921 0.5918
18.35 0.4800 0.4822 0.4852
23.75 0.3740 0.3740
26.10 0.3411 0.3411
30.25 0.2952 0.2953 0.2967
35.65 0.2516 0.2517 0.2532
43.25 0.2090 0.2088 0.2099
53.70 0.1705 0.1704 0.1714
62.95 0.1475 0.1475 0.1484

d-computed values and the reported values in ICDD database for maghemite
d(γFe2O3) and magnetite d(Fe3O4) phases. The computed d values are very close
to the ICDD values for maghemite crystalline structure [26, 29].

On the other hand, from the experimental data of Fig. 2.6a, it is also possible to
compute the crystal size 〈L〉 by Scherrer equation:

〈L〉= 0.89λ
β cosθ

(2.1)

where λ is the wavelength of the incident X-rays, θ is the half of the diffraction
angle 2θ in degrees, and β is the full width at half maximum of the diffraction peak.
The computed value 〈L〉 obtained was 5.6 nm. These results suggest that iron oxide
nanoparticles are embedded into the polymer matrix.

To obtain additional information about the chemical structure of the magnetic
hybrid material, an IR-spectroscopy analysis was performed. Results are displayed
in Fig. 2.7. The IR-spectrum obtained in Fig. 2.7b shows the characteristic bands of
Na-CMC at 3,500, 2,925, and 1,058 cm−1 already mentioned. In this case, unlike
the IR-spectrum of the precursor hybrid material (Fig. 2.5b), the bands associated
with the carboxymethyl groups remain at 1,600 and 1,417 cm−1 for the magnetic
hybrid material.

This result can be interpreted as a weak-chemical interaction between iron oxide
nanoparticles and the carboxymethyl groups of the Na-CMC. In addition, the band
at 1,600 cm−1 also suggests that during the iron oxide precipitation, the sodium-
carboxymethyl groups were again formed through the reaction of carboxymethyl
groups with Na+ of NaOH added to obtain alkaline conditions (see Fig. 2.8). It is
important to remark here the presence of two peaks in the IR-spectrum for magnetic
hybrid material (Fig. 2.7b), they are located at 570 and 437 cm−1 wavenumber.
In [26, 29], these bands were associated with the Fe–O bending vibrations of the
maghemite iron oxide phase.

The size and morphology of Fe2O3 nanoparticles into magnetic hybrid material
were studied by Scanning Transmission Electron Microscope (STEM) and High-
Resolution Transmission Electron Microscope (HRTEM) techniques. A scanning
electron microscope JEOL 2010 transmission with acceleration 200 kV voltage was
used for this purpose. For this analysis, samples were prepared in the form of
powder as the specimen shown in Fig. 2.3c, and they were subsequently dispersed
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Fig. 2.7 IR spectra for: (a) Na-CMC and (b) the magnetic hybrid material

Fig. 2.8 Schematic representation of the synthesis process of magnetic hybrid material from a
precursor hybrid material

in acetone, using for this purpose a sonificator (ultrasound). After that, it is taken an
aliquot and settles on a grid of copper-coated with a film of carbon.

The STEM images (Fig. 2.9) show a higher number of iron oxide nanoparticles
with sphere-like morphology. The average particle size of the iron oxide was
measured using image analysis, and the frequency histogram shows a size of 4 nm
(inset Fig. 2.9), very similar to the previously computed value 〈L〉 obtained using
the Scherrer equation.
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Fig. 2.9 STEM image of the magnetic hybrid material and frequency histogram

HRTEM image of Fe2O3 nanoparticles is shown in Fig. 2.10. The well-defined
lattice fringes correspond to crystallographic planes of Fe2O3 nanoparticles and
they are identified in this HRTEM image. In addition, inter-planar distances: 0.477,
0.332, 0.297, and 0.249 nm were also computed from this figure. These computed
values correspond to inter-planar distances of (1 1 1), (2 1 1), (2 2 0), and (3 1 1)
planes. These crystallographic planes are of maghemite crystalline structure, which
is consistent with the X-ray diffraction analysis. These inter-planar distances are
very close to the computed values, shown in Table 2.1.

The study of the structure and morphology of the magnetic hybrid material
indicates that iron oxide nanoparticles are evenly dispersed in the polymer matrix.
The following section presents the results obtained from the analysis of the magnetic
behavior of the magnetic hybrid material.
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Fig. 2.10 HRTEM images of
Fe2O3 nanocrystals into the
magnetic hybrid material

2.3.2 Magnetic Properties of Magnetic Hybrid Materials

The magnetic hybrid material (Fe2O3/Na-CMC) was synthesized by subjecting
the precursor hybrid material to a chemical treatment in an alkaline solution and
hydrogen peroxide. At this stage it changed its color to black when the precursor
hybrid material is in contact with the alkaline solution, then to reddish brown
by gradually adding the peroxide. This color change is considered a macroscopic
evidence of the formation of nanoparticles of iron oxide (in situ) in the polymer
matrix of the CMC, obtaining with this a magnetic hybrid material, Fe2O3/Na-CMC.
For the study of magnetic properties, the samples of the magnetic hybrid material
were powdered as the specimen shown in Fig. 2.3c.

The study of the magnetic properties of the synthesized hybrid magnetic material
was carried out through a Quantum Design MPMS magnetometer of the SQUID
VSM type by magnetization measurements. Figure 2.11 shows the magnetization
curve at room temperature (300 K). The saturation magnetization value (Ms) is
13.9 emu/g whereas both, remnant magnetization and coercivity (Hc) are unde-
tectable. These last results are characteristics of a magnetic hybrid material with
superparamagnetic behavior.

Conversely, Fig. 2.12 presents the magnetization curve at temperature 2 K. Under
these conditions both coercivity field and remanent magnetization values are differ-
ent to zero. It can be seen that the corresponding values for the different magnetic
parameters are 19.9 emu/g for saturation magnetization, 357 Oe for coercive field
(Hc), and 6.14 emu/g for remanence value (Mr) (inset Fig. 2.12); a ferromagnetic
behavior appears when the magnetic analysis is performed below the blocking
temperature (T B).
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Fig. 2.11 Magnetization curve for the magnetic hybrid material at room temperature

Fig. 2.12 Magnetization curve for the magnetic hybrid material at 2 K

To estimate the T B for the magnetic hybrid material, cooling at zero magnetic
field (ZFC) and field cooling (FC) analyses was performed at a magnetic field of
100 Oe (Fig. 2.13). When the magnetic hybrid material is cooled at ZFC, Fig. 2.13
shows that the total magnetization is small, but not zero (20% of the maximum),
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Fig. 2.13 ZFC and FC magnetization curves at 100 Oe

as the magnetic particles are not fully random. When temperature increases, the
nanoparticle magnetic moment is oriented with the external field increasing the total
magnetization until it reaches a maximum at 71 K which is the value of the blocking
temperature (T B). At this temperature, the thermal energy becomes comparable to
the energy gained by aligning the nanoparticle magnetic vector in the weak field. At
this point, the transition from ferromagnetic to superparamagnetic behavior is ob-
served. When all nanoparticles are at the superparamagnetic relaxation state, above
T B, their magnetization follows Curie’s law decreasing with increasing temperature.
In the case of field cooling (FC), magnetization monotonically increases as the
temperature decreases because the nanoparticles are cooled from room temperature
under a magnetic field and the magnetization direction of all the nanoparticles is
frozen in the field direction. The magnetization shows the maximum at 2 K in the
FC process (Fig. 2.13).

In conclusion, the analysis of the magnetic properties of the magnetic hybrid
material shows a superparamagnetic behavior at room temperature changing to
ferromagnetic below 71 K, the blocking temperature.

The next section presents the experimental and FES response of the magnetic
hybrid material for working as a bending-type actuator.
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2.4 Actuation Properties of the Magnetic Hybrid Material

Electroactive materials with low driving voltage and large displacement are of
critical importance for advancing the technology of microactuation. The major
drawbacks of magnetic actuation are the by-effects arising from the relatively high
currents involved in conventional magnetic actuation: the Joule losses in conductors
imply overheating which may call for cooling techniques but also energy wastage
[7]. The innovative material described above mixes the magnetic properties of
the Fe2O3 and the insulating characteristics of the polymeric Na-CMC. Hence, it
presents a good response face to an external magnetic field, but it does not heat
because of the Joule effect.

Even if electromagnetic systems typically are rather complex, not only does
magnetism already dominate the macroworld, but it also scales down very well
to the microworld. Electromagnetic interactions that deserve a larger interest from
the microsystems community, magnetic fields, and gradients can be effective over
long distances relatively to the size of the microsystems. Additionally, magnetic
microsystems offer large forces, large strokes, remote or distance control, bi-
stability, robustness, high energy conversion efficiency, levitation, etc., all with great
potential for new devices in many domains of applications.

The global market for magnetic sensors has been growing in terms of technology
and applications. Position sensors, speed sensors, and record heads in hard disk
drives in computers are the most commonly used magnetic sensor types currently in
vogue. One of the rapidly expanding application areas includes e-compassing used
in passenger cars, GPS-enabled handheld devices, cell phones and dead reckoning
(DR) in personal vehicle, aircraft and marine navigation [32]. Contactless magnetic
interaction allows remote actuation making magnetic actuators very well suited
to harsh environment or for medical applications, through the skin. Laboratory-
developed prototypes include RF microswitches for mobile phones, read/write
heads and microposition systems, optical microcross-connect for fiber optic net-
works, microscanners, micromotors for less-invasive surgery or microrobotics,
micropumps or microvalves for lab-on-chip and microfluidic devices, electrical
microgenerators for autonomous power supplies, micromirrors for adaptive optics,
microscanners for retinal scanning displays, magnetic suspensions for hard disk
drives, etc. [7, 20, 22, 35, 38].

For these innovative applications, the insertion of smart functions was not
previously possible with macroscopic devices. Performing research in the field
of magnetic microactuators becomes thus a necessity. This section deals with the
actuation properties of the magnetic hybrid material (Na-CMC/Fe2O3). As it has
been explained, the hybrid material reacts to external magnetic fields. The resulting
motion and force could be used as a magnetic field-controlled actuator. The focus of
the macroscopic study of the magnetic behavior of the magnetic hybrid material is to
investigate its dynamic response, specifically the displacement curves as a function
of the applied magnetic field. This study has been performed experimentally and via
a FES.
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Table 2.2 Geometries of the
analyzed samples of the
magnetic hybrid material

Geometry Length (mm) Width (mm) Thickness (mm)

I 17.94 2.81 0.3
II 18.00 1.06 0.02

Fig. 2.14 Geometries of the magnetic hybrid actuator samples (see Table 2.2): (a) lateral view
photograph and (b) schematic representation

The range of variation of the magnetic field for both analyses, experimental and
FES, is based on previous results, which indicates a magnetic field around 100 Oe
necessary to excite the magnetic hybrid material. The geometries of the two samples
analyzed are described and illustrated in Table 2.2 and Fig. 2.14. Both geometries
seam to a long beam.

Next sections will describe the basic theory of magnetics and bending beams
involved in the actuation study of the magnetic hybrid material, as well as
the procedures and results concerning the experimental and simulated actuation
response of the material.

2.4.1 Basic Theory

The following section shows a summary of the relevant theory in magnetics and
bending of beams involved in the actuation response of the magnetic hybrid
material.
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Concerning magnetic equations, two vectorial variables are used to describe
magnetic fields: the magnetic field strength H, in Ampere per meter (A/m), and
the magnetic induction B, in Tesla (T). When an external field H is applied to the
material, the magnetic field B is induced in the material. The two variables are the
same only in free space; otherwise, they are connected by the equation B = μ0H,
where μ0 = 4π ×10−7 (Tm/A) is the magnetic permeability of the free space.

The magnetic force acting on a magnetic particle inside a magnetic field depends
on the volume of the particle V (in m3), the difference in the magnetic susceptibil-
ities χp − χm (dimensionless) between the volume susceptibility of the particle χp

and the volume susceptibility of the medium χm, the magnetic permeability of free
space μ0, and the strength and gradient of the applied magnetic field H [19, 31, 34]:

F = μ0V
(
χp − χm

)
(H ·∇)H (2.2)

For diamagnetic medium, as carboxymethyl cellulose, the volume susceptibility
χm can be neglected and (2.2) becomes:

F = μ0V χp (H ·∇)H (2.3)

When the material is placed in the magnetic field, a magnetic dipole moment m
(in Am2) is induced in the material. The sum of the dipole moments in a volume of
the material is the magnetization M, given by:

M =
m
V

(2.4)

In a uniform magnetic field B, a magnetic dipole experiences a magnetic torque
defined by:

T = m×B (2.5)

This torque tends to line up the magnetic moment with the magnetic field, so this
represents its lowest energy configuration.

Considering bending equations, simplifying approximations are employed to
study problems of beam bending. Euler–Bernoulli beam theory is one of them [5].
It provides a means of calculating the load-carrying and deflection characteristics of
beams and covers the cases for small deflections of a beam which is subjected only
to lateral loads. The principal hypothesis of the Euler–Bernoulli theory is that plane
sections remain plane and normal to the axis of the beam.

Considering this hypothesis, the displacement δ (in m) at the free end of a
cantilever beam (rectangular cross-section) with a single concentrated load F (in N)
at the same free end, is done by the expression:

δ =
FL3

3EI
(2.6)

where E is the Young’s modulus of the cantilever’s material (in Pa) and I = bh3/12
is its area moment of inertia (in m4). The geometry of the cantilever is defined by
its length L, width b, and thickness h (all in meters, m).
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Fig. 2.15 Experimental setup to quantify the bending of the magnetic hybrid material samples

2.4.2 Experimental Actuation Response

The next study will focus on experimental evaluation of the magnetic hybrid
material in an effort to determine the feasibility of utilizing these materials as
bending-type actuators. This study has been realized for the two samples of
the magnetic hybrid material whose geometries are described in Table 2.2. The
experimental setup is shown in Fig. 2.15. After mounting the magnetic samples
in a fixed-free cantilever configuration, uniform magnetic fields are applied to the
samples; it causes the samples to bend, similar to a cantilever beam. The samples
were oriented such that the length of the sample was perpendicular to the direction
of the magnetic field. A wood ruler is placed below the sample to quantify the
displacement of the bending. A digital camera Canon Powershot G10 records the
experiments. In order to produce a varying magnetic field, an electrical current
was supplied to a coil. The objective of this experimentation is to measure the
displacement response of the magnetic hybrid material due to an external applied
magnetic field. Linearity is an important characteristic for both the use and the
characterization of actuators [21].

The coil has been designed using (2.7), considering a magnetic field H =
7957.75 A/m (100 Oe), and an electrical current i = 1 A. The resulting coil consists
of 398 turns of 15-AWG wire wounded around a ferrite core with 5 cm of length l
and 1 cm of diameter φ . For the two samples studied, the relationship between the
applied electrical current and the resulting magnetic field using (2.7) is shown in
Table 2.3.

N =
Hl
i

(2.7)
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Table 2.3 Relationship between electrical current and magnetic field

Sample Current i (A) Magnetic field H (A/m) Magnetic field H (Oe)

I 0 0 0
0.20 1586.69 19.94
0.44 3441.37 43.25
0.65 5197.88 65.32
0.84 6689.05 84.06
1.05 8373.92 105.23
1.23 9809.37 123.27
1.40 11114.81 139.67

II 0 0 0
0.19 1544.24 19.41
0.43 3422.80 43.01
0.61 4855.60 61.02
0.83 6582.92 82.72
1.06 8461.48 106.33
1.21 9639.56 121.13
1.38 10984.80 138.04

Fig. 2.16 Experimental displacement of the two samples of the magnetic hybrid material as a
function of the electrical current applied to the coil

Figure 2.16 gives evidence that the geometry and shape affect the displacement
response. The thinner sample, sample II, presents 48% more displacement than
the bigger sample (sample I), being the maximal displacement attempted 1.55 mm.
Considering an uniform distribution of the nanoparticles in the polymeric matrix, the
rotation motion of the samples depends principally on the medium in which they are
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Fig. 2.17 Finite element setup of the magnetic hybrid material (sample II)

embedded. For both cases, the displacement generated by the magnetic field could
show a positive linear correlation over the range studied. Hence, the magnetic hybrid
material can be considered as a candidate of a flexible actuator.

Next section shows the FES results of the magnetic hybrid material.

2.4.3 Finite Element Simulation of Actuation Dynamics

As improved materials emerging, it becomes necessary to address key issues such
as the need of effective magnetomechanical modeling and guiding parameters in
scaling the actuators [24]. The dynamic FES of the magnetic hybrid film allows the
examination of its behavior in order to extend experimental study and to validate the
performance of the hybrid material.

Generally, FES on magnetic hybrid materials is done considering the material
as one material [4]. The objective of this section is to present the first simulations
of the magnetic hybrid material considering the two components that form it: Na-
CMC and Fe2O3. These FES of the magnetic hybrid material as a bending-type
actuator was done using COMSOL Multiphysics 4.3. We simulate the geometry of
the two samples defined in Table 2.2 introducing only a limited number of particles
to take into account the magnetic effect produced by the iron oxide particles and the
viscoelastic effect inherent to the carboxymethyl cellulose.

Figure 2.17 shows the simulated setup of the samples. The varying magnetic field
has been simulated as a permanent magnet with a magnetization varying linearly
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Table 2.4 Physical parameters of the simulated samples

Parameter
Young’s
module (MPa)

Poisson’s
ratio

Density
(kg/m3)

Relative permeability
(1+ χ)

Values for CMC [1, 4, 9, 23] 6.37 0.35 1.59 1
Values for Fe2O3 [2, 6, 13, 34] 18.82 0.3 1,089 7

Fig. 2.18 FES displacement of the magnetic hybrid material face to an external magnetic field

from 0 to 140 Oe. The iron oxide (Fe2O3) particles, as spheres, are embedded on
the polymeric matrix beam. The sample I contains 528 particles whose diameter
is 0.1 mm, and the sample II contains 348 particles of 0.015 mm of diameter.
Table 2.4 describes the physical parameters for the CMC and the Fe2O3 considered
for the FES.

The simulation has been developed in two steps. First, we evaluate the magnetic
forces acting on the superparamagnetic particles due to the permanent magnet.
Second, we simulate the displacement of the hybrid material produced by these
magnetic forces. Meshed models consist of triangular elements on the surface and
tetrahedral elements in the volume. The automatic meshing available in COMSOL
Multiphysics has been used to define the meshing. Depending on the geometry of
the sample, during the magnetic simulation, the mesh includes 128,268–447,198
elements which represent between 7,479 and 10,111 nodes. Considering the same
conditions, during the second step of the simulation, the mesh includes 134,074–
149,293 elements which represent between 7,068 and 10,178 nodes, depending on
the geometry of the sample. All the simulations are done in statics conditions. The
resulting curves of the displacement as a function of the magnetic field are shown
in Fig. 2.18. The nonlinearity of the displacement response is a consequence of the
polymeric medium in which the particles are embedded.



2 Characterization and Dynamics of Polymer Microactuators 37

Results obtained by FES (Fig. 2.18) could be considered as a first approximation
of experimental results (Fig. 2.16). In experimental results, the displacement seems
proportional to the electrical current that produces a magnetic field; while in FES
results the displacement is exponentially proportional to the simulated magnetic
field. These deviations between experimental results and FES results are associated
with the limited number of Fe2O3 nanoparticles introduced in the FES models to
take into account the magnetic effect produced by the iron oxide particles into the
viscoelastic effect, inherent to the carboxymethyl cellulose.

The synthesis in situ of iron oxide nanoparticles into the precursor hybrid mate-
rial to obtain the magnetic hybrid material allows us to driving the viscoelasticity of
CMC, because the displacements or deformations in the magnetic hybrid material
can be modified as a function of the magnetic field applied.

2.5 Conclusion

On the one hand, a magnetic hybrid material consisting of nanoparticles of iron
oxide in a Na-CMC matrix was obtained. The synthesis of magnetic nanoparticles
from the precursor hybrid material was confirmed via XRD and IR analysis. The
iron oxide nanoparticles are embedded in the Na-CMC and their measured size was
around 4 nm, having a nearly spherical morphology. The analysis of the magnetic
properties of the magnetic hybrid material shows a superparamagnetic behavior at
room temperature changing to ferromagnetic below 71 K, the blocking temperature.
Our results suggest that in situ precipitation of nanoparticles in the precursor hybrid
material is a promising route to the production of the magnetic hybrid material.

On the other hand, the dynamic response, specifically the displacement of the
magnetic hybrid material, has been observed in order to probe the feasibility to
use this material as a bending-type actuator. The experimental results show that the
responses of the deflection have a linear trend over a reasonable range, suggesting
that the magnetic hybrid material can be used as bending-type actuators in small
mechanical systems and devices. The thinner sample showed the largest response
among the two samples considered in this study. When an electrical current of
1.40 A is applied to the coil, the tip deflected nearly 1.55 mm. This result suggests
that the dynamic experimental behavior provide promising implications for their
role as magnetically controlled actuator. First simulations have been also done
considering the two components of the magnetic hybrid material: the oxide iron
nanoparticles and the carboxymethyl cellulose. The displacement response takes
into account the viscoelastic effect of the polymeric matrix and the magnetization
of the magnetic particles. Further studies must be addressed in this sense in order
to describe the macroscopic magnetic behavior of the hybrid material visualizing a
further application of the material working as a magnetic microactuator.
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Chapter 3
Design of Piezoelectric Actuators
with Guaranteed Performances Using
the Performances Inclusion Theorem

Micky Rakotondrabe and Sofiane Khadraoui

Abstract This chapter presents the design of piezoelectric actuators by using
the performances inclusion theorem (PIT). The main objective is to seek for the
dimensions of a cantilevered actuator such that its performances will lie within
some specifications imposed a priori. For that, these specifications are transcribed
into an interval transfer function, called interval reference model, while an interval
model of the actuator is also provided. Then, from the PIT, a problem of finding the
dimensions is yielded such that this latter model is enclosed in the reference model.
The problem is seen as a set-inversion problem that can be solved with interval tools
such as the SIVIA (Set Inversion Via Interval Analysis) algorithms. The designed
piezoelectric actuator is afterwards fabricated and characterized. The experimental
characterizations demonstrate the efficiency of the proposed technique.

3.1 Introduction

Piezoelectric materials are well recognized for the design and development of
actuators in systems working at the micro/nanoscale, in particular for micro/
nanopositioning systems. This recognition is due to their high bandwidth, high
resolution and high density force. Furthermore, the fact that they can be used for
sensing and actuation and the fact that their energy control is electrical make them
more attractive than thermal or other active or smart materials.
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In micro/nanopositioning, there are several approaches to use piezoelectric mate-
rials: stepper piezoelectric actuators such as stick-slip or inch-worm motion princi-
ple [1–4], ultrasonic piezoelectric actuators [5–7], and flexible and continuously
deformed piezoelectric cantilevers used in microgrippers or in microscopes [8–
10]. In the fields of micromanipulation and microassembly, piezoelectric cantilever
actuators with rectangular section are often used to develop microgrippers able to
pick, transport, and place precisely small objects. These piezoelectric cantilevered
structures offer an ease of control of the force or of the deflection (position of the
object) which is essential when performing precise positioning and manipulation at
the same time.

In general, the design of piezoelectric cantilevered actuators are done without
explicit and a priori information on desired performances. Then, the designed
actuators often offer any performances to which the applications should adapt
instead of the converse, i.e. instead of designing actuators that would fit with the
applications. Recently, an optimal design technique was proposed in [11] to design
piezoelectric systems. Based on the gramian tools in control theory, the technique
can provide optimal locations of cantilevered piezoelectric actuators and sensors. In
this sense, the technique is useful when the system is based on several cantilevers
such as treillis and then cannot be used for one cantilever-based system that are
used in microgrippers. The aim of this chapter is to propose a novel technique to
design piezoelectric cantilever-based actuators and systems. The main difference
relative to the work in [11] is that we can design systems with single cantilevered
actuators. Furthermore, in the proposed technique, we impose a priori some desired
performances and specifications. For that, we propose to use interval tools, in
particular we will use the performances inclusion theorem (PIT) developed in [12]
which is effectively an efficient tool to also design actuators.

Interval tools [13, 14] are techniques that were efficiently used in different
applications: control theory and control systems, robotics, signals and parameters
estimation, etc. The main advantage of interval tools is the guarantee aspect that
they can offer with the results, i.e. guaranteed solution or guaranteed nonsolution. In
this chapter, we propose to benefit from such advantage to find guaranteed dimen-
sions of piezoelectric actuators that would provide some specified performances.
The chapter is organized as follows.

In Sect. 3.2, some preliminaries on intervals techniques are given. The PIT
is particularly reminded. Section 3.3 is devoted to the modeling of piezoelectric
cantilevered actuators. Models of multilayered actuators are treated in both static
and dynamics. In Sect. 3.4, the novel technique to design piezoelectric actuators is
proposed. We particularly focus on the design of unimorph cantilevered actuators.
Finally, fabrication and experimental tests on the fabricated actuators are carried out
which demonstrate the efficiency of the proposed approach.
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3.2 Preliminaries on Intervals

3.2.1 Definitions

We remind here some basics on intervals that will be used in the rest of the chapter.
The readers who are interested to see more in details the techniques of intervals are
suggested to read the references [13, 14].

A real interval [x] is a closed interval such that:

[x] = [x−,x+] (3.1)

where x− and x+ are called lower bound and upper bound, respectively. We have:
x− ≤ x+. Having x− = x+ means that the interval [x] is degenerate. By convention,
a degenerate interval [a] = [a,a] is identified by the real number a. The designation
point number is similar to the designation degenerate interval number. While the set
of real point numbers is R, the set of real intervals (or real interval numbers) is IR.

Instead of using the notation in (3.1), one can also identify a real interval number
by its midpoint mid([x]) and its radius rad([x]) such that:⎧⎨

⎩
mid([x]) =

(x++x−)
2

rad([x]) =
(x+−x−)

2 = w([x])
2

(3.2)

where w([x]) is the width of the interval.

3.2.2 Operations on Intervals

In the arithmetics of intervals, the basic operations are extended to interval numbers.
Consider two intervals [x] = [x−,x+] and [y = y−,y+]. So we have:

[x]+ [y] = [x−+ y−,x++ y+] (3.3)

and
[x]− [y] = [x−− y+,x+− y−] (3.4)

Consequently, we have: [x]− [x] �= 0, except for x− = x+.
The multiplication and division are defined as follows:

[x] . [y] = [min(x−y−,x−y+,x+y−,x+y+) ,
max(x−y−,x−y+,x+y−,x+y+)]

(3.5)

and
[x]/ [y] = [x] . [1/y+,1/y−] , 0 /∈ [y] (3.6)
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We say that an interval [x] is included in an interval [y], i.e. [x]⊂ [y], if and if only
[x]∩ [y] = [x]. We have [x]> [y] if x− > y+. The real interval [x] is said to be positive
if x− > 0. The distributive law does not hold in general for interval. However, the
following relation, called subdistributivity, holds: [x] ([y]+ [z]) ⊆ [x] [y] + [x] [z]. In
addition, if [x] + [y] = [x] + [z], the cancellation law for addition holds, and [y] =
[z]. The same property holds for multiplication: if [x] [y] = [x] [z] and 0 /∈ [x], thus
[y] = [z].

If f is a function f : R→ R, then its interval counterpart [ f ] satisfies:

[ f ] ([x]) = [{ f (x) : x ∈ [x]}] (3.7)

The interval function [ f ] is called inclusion function because f ([x]) ⊆ [ f ] ([x]),
for all [x] ∈ IR. An inclusion function [ f ] is thin if for any degenerate interval [x] =
x, [ f ] (x) = f (x). It is minimal if for any [x], [ f ] ([x]) is the smallest interval that
contains f ([x]). The minimal inclusion function for f is unique and is denoted by
[ f ]∗ ([x]).

An easy way to compute an inclusion function for f is to replace each variable x
in the expression of f by [x] and all operations on points by their interval counterpart.
Thus, one obtains the natural inclusion function.

3.2.3 Interval Systems

An interval system is a transfer function representation, a state space representation
or a differential representation where the parameters are intervals. For an interval
transfer function, which is the interest of this chapter, the representation is as
follows:

[G] (s) =
[bm]sm + · · ·+[b1]s1 +[b0]

[an]sn + · · ·+[a1]s1 +[a0]
=

m
∑

l=0
[bl ]sl

n
∑

k=0
[ak]sk

(3.8)

where s is the Laplace variable and where m ≤ n, n being the order of the interval
system [G](s). The parameters [ak] and [bl ] are considered to be constant real
intervals in order to assume linear time invariant (LTI) systems. The notation
[G] (s) shall be used if the intervals [ak] and [bl ] are known. Instead, the notation
[G] ([ak] , [bl ] ,s) is used when they are unknown and to be sought for.

The notion of inclusion of systems should also be defined. Consider two interval
systems having the same polynomials degrees m and n, i.e. having the same
structure:

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(3.9)

[G1] (s)⊆ [G2] (s) is equivalent to saying that for any s∈ [0,∞), we have [G1]⊆ [G2].
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Lemma 2.1. If [b1l ]⊆ [b2l ] and [a1k]⊆ [a2k], ∀k, l, then [G1] (s)⊆ [G2] (s).

Proof. See [12].

3.2.4 The Performances Inclusion Theorem [12]

Consider two interval systems having the same polynomial degrees m and n:

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(3.10)

The PIT which will be used to further design actuators is composed of two
results.

Theorem 2.1. The performances inclusion in the frequency domain:

if

⎧⎨
⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and

[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒
⎧⎨
⎩

[ρ ] ([G1] ( jω))⊆ ρ ([G2] ( jω))

and
[ϕ] ([G1] ( jω))⊆ ϕ ([G2] ( jω))

Theorem 2.2. The performances inclusion in the time domain:

if

⎧⎨
⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and

[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒ [g1] (t)⊆ [g2] (t)

where:

• [ρ ] ([Gi]( jω)) is the modulus of the system [Gi].
• [ϕ] ([Gi]( jω)) is the argument.
• [gi](t) is the impulse response.

Proof. See [12].
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3.3 Piezoelectric Cantilevered Actuators and Their Modeling

3.3.1 Presentation of a Piezoelectric Cantilevered Actuator

A piezoelectric cantilevered actuator, alternately called piezocantilever, is a can-
tilever having one or several layers, where at least one layer is piezoelectric material.
We are interested here by a cantilever with rectangular section. When the cantilever
has many layers, it is called multilayered piezoelectric actuator. Often, if there are p
piezoelectric layers in a multilayered cantilever, we also call the actuator a p-morph
actuator [15]. In the actuator, the non-piezoelectric layers are called passive layers.
They can be silicone, nickel, copper, chrome, polymer materials, etc. The objective
with the actuator is that, when a voltage is applied to the piezoelectric layers, the
whole cantilever bends. Figure 3.1a presents a multilayered piezoelectric actuator
with n layers. In Fig. 3.1b, a bilayer unimorph piezoelectric actuator is presented.
The application of a voltage U to the piezoelectric layer makes it contract/expand
resulting a global deflection of the cantilever. In Fig. 3.1c, a bilayer bimorph actuator
is depicted. The application of the voltage U , yielding an electrical field parallel and
anti-parallel to the internal polarization Pol of the two layers yields a contraction and
a compression of them. This antagonist longitudinal deformation yields a bending
of the cantilever.

An unimorph actuator is more simple to develop and to use, in particular in
terms of electrical connection. A bimorph actuator (and a multimorph actuator) is
more complex to settle. However, relative to an unimorph actuator, it offers higher
deformation and bending with the same applied voltage.

3.3.2 Static Model

First, the static model of a multilayered piezoelectric cantilever is given. We are
particularly interested in the resulting deflection of the actuator when a voltage is
applied. Consider the n-layered actuator pictured in Fig. 3.2a where:

• hi, with i ∈ {1,2, . . . ,n}, is the ith layer.
• ȳ is the distance between the neutral fiber and the bottom surface of the cantilever.

Each layer of the cantilever is exclusively a piezoelectric material or a passive
material. The only rule is that at least one layer among the i-layers is piezoelectric.
The application of a voltage U to the piezoelectric layers yields a bending of the
whole cantilever as depicted in Fig. 3.2b. The bending y(x) at distance x from the
clamp can be written as follows [16]:

y(x) =
mpiezox2

2C
U (3.11)



3 Design of Piezoelectric Actuators with Guaranteed Performances... 47

a

b

c

Fig. 3.1 (a): a multilayered
piezoelectric cantilever.
(b): a (bilayer) unimorph
piezoelectric cantilever.
(c): a (bilayer) bimorph
piezoelectric cantilever
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a

b

Fig. 3.2 (a): a multilayered piezoelectric cantilever. (b): bending of a multilayered piezoelectric
cantilever

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mpiezo =
1
2

n
∑

i=1

wid31,i
s11,ihi

[
2ȳhi −2hi

i
∑
j=1

h j +h2
i

]

C = 1
3

n
∑

i=1

wi
s11,i

[
3hi

(
ȳ−

i
∑
j=1

h j

)(
ȳ−

i−1
∑
j=1

h j

)
+h2

i

] (3.12)

where

• wi is the width of the ith layer. In the sequel, it is assumed that wi = w, ∀i ∈
{1,2, . . . ,n}.

• d31,i is the transversal piezoelectric coefficient of the ith layer. If the layer is non-
piezoelectric material, i.e. passive material, we have d31,i = 0.

• s11,i is the elastic coefficient.

At the tip of the cantilever, this bending is

y(x = L) = y =
mpiezoL2

2C
U (3.13)

where L is the length of the cantilever.
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Table 3.1 Numerical value of kmL

m 1 2 3 4 5 . . .

kmL 1.8751 4.6941 7.8548 10.9955 14.137 . . .

3.3.3 Dynamic Model

The previous model is static and relates the steady-state deflection y(x) of the
cantilever when a voltage U is applied. For performances and control point of
view, a static model is insufficient, and it is important to also have an idea of the
dynamics of the actuator. An essential parameter that can describe the dynamics of
a system is the resonant frequency if the system is oscillating, which is the case
for cantilevered actuators in general. A high resonant frequency indicates that it has
a large bandwidth. For a multimorph piezoelectric cantilevered actuator, the mth
resonant frequency fm[Hz] is defined as follows [16]:

fm =
(kmL)2

2πL2

√
C
μ

(3.14)

where C is defined by (3.12) and km is called wave number and can be calculated
from the Table 3.1. The coefficient μ is given by:

μ =
M
L

=
n

∑
i=1

ρihiwi (3.15)

such that M is the mass of the cantilever, L being its length, and ρi is the density of
the ith layer.

It is noticed, however, that there is no analytical solution to determine the damp-
ing ratio associated with each mode. In general, this is provided experimentally.

3.3.4 Equivalent Parametric Model

In order to design a piezoelectric actuator that will satisfy some specified per-
formances, we will use the previous static model augmented with the resonant
frequency information. The previous model is general: it provides the deflection
at any point x along the cantilever and all resonant frequencies (until to the mth
mode) are given. In our applications, we are interested in the deflection at the tip,
i.e. for x = L, which is the most useful. Indeed, the manipulation of objects is
often performed with the extremity of the cantilever. In addition, the first resonant
frequency m = 1 is sufficient. We therefore provide a model limited to the first mode
and where the range of deflection is calculated at the tip of the cantilevered actuator.
Such a model is a second order model that is expressed by the following transfer
function:
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G(s) =
Y (s)
U(s)

=
K

1
(wn)

2 s2 + 2ξ
wn

s+1
(3.16)

where:

• s is the Laplace variable.
• G(s) is the name of the model.
• Y (s) and U(s) are the Laplace transforms of y(t) and U(t), respectively.
• K is the statical gain.
• wn[

rad
s ] is the natural frequency.

• ξ is the damping ratio.

The statical gain K is derived from (3.13):

K =
Y (s → 0)
U (s → 0)

=
y(t → ∞)

U (t → ∞)
=

mpiezoL2

2C
(3.17)

The natural frequency is dependent on the damping ratio ξ and on the first
resonant frequency [ rad

s ] as described as follows:

wn =
wr√

1−2ξ 2
(3.18)

with wr[
rad
s ] = 2π f1 and such that f1 is calculated from (3.14) by letting m = 1. We

have:

f1 =
(1.8751)2

2πL2

√
C
μ

(3.19)

Remind that the damping ratio ξ is not defined analytically. Hence, we cannot
use this as (extra-)parameter for the design.

In the sequel, we are interested in designing unimorph piezocantilever, i.e. a
cantilever made up of two layers: one piezoelectric layer and one passive layer.
Hence, the coefficients C and mpiezo we have in (3.17) and (3.19) are calculated by
setting n = 2 in (3.12) and by using the coefficients of the materials used. We have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mpiezo =
−wd31hmp(hp+hmp)

2(smp
11 hp+sp

11hmp)

C =
w
[
(sp

11)
2
h4

mp+smp
11 sp

11(4hph3
mp+6h2

ph2
mp+4hmph3

p)+(smp
11 )

2
+h4

p

]
12smp

11 sp
11(smp

11 hp+sp
11hmp)

(3.20)

where:

• d31 is the transversal piezoelectric coefficient, hp is the thickness, and sp
11 is the

elastic coefficient of the piezoelectric layer.
• hmp is the thickness and smp

11 is the elastic coefficient of the passive material.
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3.4 Design of a Unimorph Piezoelectric Actuator
by Using the PIT

This section presents a methodology for designing piezoelectric cantilevered ac-
tuators by combining the analytical modeling presented in the previous section
and interval techniques. We are particularly interested in the design of unimorph
piezoelectric actuators. This choice is motivated by the ease of their fabrication
and of electrical connection with respect to that of the bimorph and multimorph
piezocantilevers. The design problem is formulated as a set inversion problem which
is then solved using interval techniques. The proposed design technique is novel
and very interesting in the sense that the design yields guaranteed performances, if
solution exists.

3.4.1 Specifications

We aim to design unimorph piezocantilevers for which some desired performance
specifications given either in the time domain or in the frequency domain should be
met. These specifications can be transcribed into a model, called reference model,
i.e. is a transfer function or a state-space representation. Considering bounded
performance measures, the model parameters are also bounded. Taking therefore
a reference model with the same structure than the system model in (3.16) (second
order model), we consider the following reference (or desired) model where the
parameters are intervals:

[Gd ](s, [p]) =
[a0]

[a2]s2 +[a1]s+1
(3.21)

such that [p] = ([a0], [a1], [a2])
T is a vector of interval parameters that can be derived

from the specified performances. The unit step response of (3.21) defines upper and
lower envelopes of the desired step response. Also, the interval magnitude and phase
of (3.21) over a sufficient set of frequencies defines upper and lower bounds of the
desired frequency response [12].

3.4.2 Problem Formulation

Reconsider a unimorph piezocantilever having a length L, width w, and thicknesses
hp and hmp for its piezoelectric and passive layers, respectively, as reminded in
Fig. 3.3.

As shown in previous section, the static and dynamic models of the unimorph
piezocantilever depend on the geometrical sizes and the physical properties of
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Fig. 3.3 Unimorph
piezocantilever

the materials that compose it. The model that relates this fact is given by (3.16).
If we admit that, for given piezoelectric and passive materials, there is a set of
dimensions (i.e., of the length, of the thicknesses, and of the width) that would
provide performances which lie within the specified performances transcribed by
(3.21), these geometrical sizes can also be described by intervals. These interval
geometrical parameters yield therefore interval model parameters and the initial
model in (3.16) becomes an interval model as follows:

[G](s, [q]) =
[K]

1
[wn]2

s2 +
2[ξ ]
[wn]

s+1
(3.22)

where [q] = ([K], [wn], [ξ ])T is a vector containing the interval static gain [K], the
interval natural frequency [wn] and the interval damping ratio [ξ ]. [K] and [wn] can
be easily derived using the geometrical sizes and physical properties of the unimorph
piezoelectric actuator as presented in Sect. 3.3.

According to (3.17) and (3.19), the resonant frequency of a unimorph piezocan-
tilever is conversely proportional to the square of its length whereas the deflection
is directly proportional to the square of its length. Therefore, decreasing the length
results in increasing the resonant frequency and therefore enlarging the bandwidth.
However, the static gain will be reduced and the range of deflection will be limited.
This decrease in the range can be compensated by some setting on the thicknesses
of the piezoelectric and passive layers, while holding a large bandwidth. For
that, our endeavor consists in finding the best geometrical sizes of the unimorph
piezocantilever such that its performance still satisfies the specified performances
that are described by the interval reference model (3.21). Such a problem can be
formulated as follows: for a pre-selected value of the damping ratio [ξ ] = ξ , find
suitable values of geometrical sizes with which the unimorph piezocantilever model
is included in the interval reference model as follows:

[G](s, [q])⊆ [Gd ](s, [p]) (3.23)

The statement in (3.23) is from the PIT presented in Theorems 2.1and 2.2. This
statement tells us to find a set of geometrical sizes of unimorph cantilevers such that
the performances of the corresponding model, denoted [G], are enclosed in that of
the reference model [Gd ].
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In general, the applications (micromanipulation, microassembly, etc.) require
that the width [w] is imposed. Indeed, the maximal sizes of the manipulable objects
with the actuator depend on this width. Therefore, in the sequel we fix [w] =w. Then,
the remaining parameters to be sought for are the length [L] and the thicknesses [hp]

and [hmp]. Let [θ ] = ([L], [hp], [hmp])
T be an interval vector containing these design

parameters. Now, our design problem consists in finding the possible values for the
parameter [θ ] for which the inclusion (3.23) is satisfied. To check the fulfillment
of the inclusion [G](s, [q]) ⊆ [Gd ](s, [p]) one can perform parameter by parameter
inclusion as given in Lemma 2.1. Let Θ be the set corresponding to admissible
values of the parameter [θ ] for which (3.23) holds. Thus, the design problem to be
addressed can be viewed as finding the set Θ so that:

Θ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ ∈ D

∣∣∣∣∣∣∣∣∣∣

[K]([θ ])⊆ [a0]
1

([wn]([θ ]))2 ⊆ [a2]

2ξ
[wn]([θ ])

⊆ [a1]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.24)

where D is the definition domain of [θ ]. The problem (3.24) is known as a set-
inversion problem and a possible way to solve a set-inversion problem is the SIVIA
algorithm. In the next subsection, we introduce this algorithm to solve our design
problem.

3.4.3 Solution Computation via the SIVIA Algorithm

The SIVIA algorithm [14, 17] is an interval technique that can be used to solve a
set-inversion problem such as that of problem (3.24). The set inversion operation
consists in computing the reciprocal image of a compact set called subpaving.
The set-inversion algorithm SIVIA allows to solve the design problem given in
(3.24) and provides an approximation with subpavings of the set solution Θ . This
approximation is realized with an inner and outer subpavings, respectively, Θ and
Θ , such that Θ ⊆Θ ⊆Θ . The subpaving Θ corresponds to geometrical sizes of the
unimorph piezocantilever for which the problem (3.24) holds. If Θ = /0, then it is
guaranteed that no solution exists for the design problem (3.24).

We provide in Table 3.2 the recursive SIVIA algorithm that allows to solve the
design problem (3.24) with guaranteed solution. SIVIA algorithm requires a search
box [θ0] (possibly very large), also called initial box within which Θ is guaranteed to
belong. The inner and outer subpavings (Θ and Θ ) are initially empty. ε represents
the wanted accuracy of computation.

Quite often we are interested to compute an inner approximation Θ for which
we are sure that Θ is included in the set solution Θ , i.e., Θ ⊆Θ , but when no inner
approximation exists i.e., Θ = /0, it is possible to choose parameters inside the outer
subpaving, i.e., choose θ ∈Θ .
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Table 3.2 SIVIA algorithm for solving a set-inversion problem [14, 17]

Step SIVIA(in: [K], [wn], [a0], [a1] [a2], [θ ], ε; inout: Θ , Θ )

1 if

⎛
⎜⎜⎜⎜⎝

[K]([θ ])
1

([wn]([θ ]))2

2ξ
[wn]([θ ])

⎞
⎟⎟⎟⎟⎠
⋂
⎛
⎝ [a0]

[a2]

[a1]

⎞
⎠= /0 return;

2 if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K]([θ ])⊆ [a0]

∧
1

([wn]([θ ]))2 ⊆ [a2]

∧
2ξ

[wn]([θ ])
⊆ [a1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

then Θ :=Θ
⋃
[θ ] and Θ :=Θ

⋃
[θ ] return;

4 if width([θ ])< ε then {Θ :=Θ
⋃
[θ ]} return;

5 bisect [θ ] into L([θ ]) and R([θ ]);
6 SIVIA([K], [wn], [a0], [a1] [a2], L([θ ]), ε; Θ , Θ );

SIVIA([K], [wn], [a0], [a1] [a2], R([θ ]), ε; Θ , Θ ).

Remark 1. The number of unknown parameters in (3.24) is 3 and the number of
inclusions is also 3. The set solution Θ can be obtained by intersecting the set
solution of each inclusion in (3.24), i.e.:

Θ =
3⋂

i=1

(set sol)i

such as: (set sol)i is the set solution of the ith inclusion.

Remark 2. If the set-inversion problem is not feasible, i.e. Θ = /0, the initial box of
parameters must be changed and/or the desired performance specifications (interval
reference model) must be relaxed.

3.4.4 Experimental Validation

This part is devoted to a numerical application and an experimental validation of the
proposed design technique presented previously.

3.4.4.1 Materials

The layers of the unimorph to be designed are based on materials commer-
cially available: a PZT-PIC151 (lead zirconate titanate) piezoelectric material from
Physike Instrumente (PI) company for the piezoelectric layer and Nickel material
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Table 3.3 Physical characteristics of PZT-PIC151 and of Nickel materials

Materials Compliance s11 Piezoelectric constant d31 Density ρ
PZT 15×10−12 m2/N −210×10−12 m/V 7,800 kg/m3

Nickel 5×10−12 m2/N 0 8,900 kg/m3

from Goodfellow company for the passive layer. The thermal glue “EPO-TEK
H22” from PI is used to glue the piezoelectric and passive layers (PZT-Nickel).
Table 3.3 summarizes some useful physical properties of the PZT-PIC151 and
Nickel materials. These numerical values will be used during the design process
of the unimorph piezocantilever.

3.4.4.2 Interval Reference Model

The reference model (3.21) is a transcription of some specifications. These specifi-
cations can be given in the time domain such as the settling time and the maximal
overshoot, or in the frequency domain such as the resonant frequency. The relations
that link these performances measures in the time domain or in the frequency
domain with the coefficients [a0], [a1], and [a2] of a second order model will not
be presented here. We directly give the following numerical values instead which,
from our experience, corresponds to the performances required in our applications:

[Gd ](s) =
[0.5,1]

[0.156,2.5]×10−7s2 +[0.25,1]×10−5s+1
(3.25)

3.4.4.3 Unimorph Sizes Computation

Our objective is now to design a unimorph piezocantilever having some perfor-
mances that are enclosed in the performances of the interval reference model
(3.25), i.e. finding the actuator’s sizes such that the model [G] in (3.22) is enclosed
in the reference model (3.25). The problem will be treated with a pre-fixed value
of the damping ratio [ξ ] = ξ = 0.01. In addition, in order to reduce the number of
the design parameters, we set the unimorph piezocantilever length to L = 16 mm
and its width to w = 2 mm. At the end, our design problem boils down to find
thicknesses [hp] and [hmp] of the piezoelectric and of the passive layers, respectively,
so that inclusions (3.24) are satisfied. Using the numerical values defined so far
and applying the SIVIA algorithm presented in Table 3.2 with an initial box
[hp]0 × [hmp]0 = [10,500]× [10,500] and an accuracy ε = 1μm, we obtain the
subpaving shown in Fig. 3.4. In this figure, the area denoted Θ corresponds to
the guaranteed solution (inner subpaving), i.e. the set [hp]× [hmp] that satisfies the
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Fig. 3.4 Set solution Θ
corresponding to the
parameters hp and hmp

inclusion [G](s) ⊆ [Gd ](s). Any choice of the parameters [hp] and [hmp] within the
subpaving Θ ensures the inclusions problem given in (3.24). The area ΔΘ contains
the boxes for which no decision on the test of inclusion in (3.24) can be taken.
Notice that:

Θ =Θ ∪ΔΘ

ΔΘ can be minimized by increasing the computation accuracy. The remaining
external boxes correspond to the parameters [hp] and [hmp] for which the inclusions
(3.24) do not hold.

3.4.4.4 Fabrication of the Unimorph Piezocantilever
and Experimental Verifications

In order to develop and fabricate some prototypes of unimorph piezocantilevers, we
choose the following geometrical sizes:

⎧⎪⎪⎨
⎪⎪⎩

L = 16mm
hp = 200μm
hmp = 100μm
w = 2mm

(3.26)
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Fig. 3.5 Prototype of a
unimorph piezoelectric
actuator and experimental
setup

where hp and hmp have been chosen arbitrarily from the solution region Θ .
Figure 3.5 presents a photography of the fabricated unimorph piezocantilever and
the experimental setup. The whole experimental setup is composed of:

• The fabricated unimorph piezocantilever.
• An optical sensor (from Keyence company) with a resolution of 10 nm and used

to measure the deflection of the piezocantilever.
• A high-voltage (HV) amplifier.
• A dSPACE acquisition board and a computer to generate the input voltage and

to acquire the measurements. The sampling time of the whole acquisition system
is set to 0.2 ms. The Matlab-Simulink software is used to manage the input and
output signals.

In this application,the experimental verifications are done in the frequency
domain. More precisely, we plot in the same graph the experimental frequency
response of the designed piezocantilever and the frequency response of the reference
model [Gd ]. If the magnitude of the experimental response is enclosed in that of
[Gd ], our objective is reached. For the experiment, we apply a sine input voltage
with an amplitude of U = 20V and a frequency ranging between 1 Hz (6.28[ rad

s ])
and more than 1,500 Hz (9,500[ rad

s ]) to the designed piezocantilever. The resulting
experimental magnitude is shown in Fig. 3.6. In the same figure, the envelope
magnitude that corresponds to the magnitude of the interval reference model is
also plotted. According to Fig. 3.6, the experimental magnitude obtained with the
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fabricated piezoelectric unimorph is enclosed in the desired magnitude of the
interval reference model. Consequently, the method used to design a piezoelectric
actuator by using the PIT efficiently provided the expected results and confirmed the
theoretical results. Indeed, the performances obtained with the designed actuator lie
within the performances imposed a priori as specifications.

3.5 Conclusion

In this chapter, the design of piezoelectric actuators based on the performance
inclusion theorem has been presented. It has been shown that static and dynamic
models of these piezoelectric actuators strongly depend on their geometrical
sizes and physical properties. Then, our challenge was to design a (unimorph)
piezoelectric actuator that would satisfy some imposed performances. Based on the
inclusion performances theorem, the design problem has been formulated as a set-
inversion problem. This later has been solved using interval techniques to find the
geometrical sizes of the piezoelectric actuator. The main advantage of the proposed
approach is that guaranteed solution or non-solution of the design problem can be
obtained. The designed actuator was afterwards fabricated and characterized. The
experimental results on the fabricated actuator validated the proposed method.
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Chapter 4
Modeling and Robust H∞ Control of a Nonlinear
and Oscillating 2-dof Multimorph Cantilevered
Piezoelectric Actuator

Micky Rakotondrabe

Abstract This chapter presents the characterization, modeling, and robust control
of a nonlinear and oscillating 2-degrees of freedom (2-dof) piezoelectric can-
tilevered actuator. The actuator possesses a high resolution and a high bandwidth
of the actuator, however, it is typified by a hysteresis and creep nonlinearities,
a badly damped vibration and a strong coupling between the two axes. Based
on the quadrilateral approach, a simple model which can account efficiently all
these properties is proposed. Indeed, the model is linear followed by well-defined
uncertainties and perturbations. In order to ensure certain performances, a robust
standard H∞ control technique is used to synthesize controllers for the 2-dof
actuator. The experimental results confirm the efficiency of the proposed approach
of modeling and control design.

4.1 Introduction

In several applications at the micro and nano scale, piezoelectric materials are
well recognized and frequently used as core of many systems. Such recognition
is due to their high bandwidth, their high resolution and their high force density.
In addition to that, their control is easy (electrical supply) and they can also be
used as sensors. One of the applications at the micro and nano scale that involves
piezoelectric systems is microassembly and micromanipulation application [1]. In
this, piezoelectric microgrippers are often used to pick-transport and to place a
small object from a position to another one. Figure 4.1a presents a piezoelectric
microgripper developed at the department of AS2M (FEMTO-ST Institute) [2]. It
is composed of two piezoelectric cantilevers (actuators) that can be supplied and
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a b

Fig. 4.1 (a): a photography of a piezoelectric microgripper. (b): principle of a piezoelectric
microgripper manipulating a small object

controlled independently. Often, one actuator is controlled on force while the other
is controlled on position (see Fig. 4.1b). This allows to manage the manipulation
force (to avoid the destruction of the object or of the actuator, to estimate the
mechanical characteristics of the object, etc.) by ensuring the precise positioning
at the same time [2].

Although piezoelectric actuators can offer high resolution and high bandwidth,
they are characterized by hysteresis and creep nonlinearities. Furthermore, piezo-
electric actuators in microgrippers are typified by badly damped vibration which
is due to their cantilevered structure. Consequently, they are subjected to a loss of
their general performances: loss of the accuracy, increase in the settling time. The
control of cantilevered piezoelectric actuators has therefore attracted the attention of
researchers these last years. A survey on the different kinds of closed-loop control is
devoted in [3]. While the modeling and closed-loop control of 1-degree of freedom
(1-dof) cantilevered piezoelectric actuators are now well established, this is not
yet the case for 2-dof actuators. In [4], the position control of a 2-dof bimorph
piezoelectric actuator, i.e. composed of two piezoelectric layers, was presented. In
this, the H∞ robust control technique was efficiently used. In [5], an internal model
control (IMC) technique was combined with a feedforward control of the hysteresis
to control a 2-dof multimorph which is composed of several piezoelectric layers.

In this chapter, we present the modeling and position control of the 2-dof
multimorph piezoelectric cantilever. For that, we propose to first decouple the
bivariable system (two inputs two outputs) into two monovariable systems. Then,
the hysteresis is approximated into a linear model with uncertain parameters. The
main advantage relative to the work in [5] is that there is no need to model
and compensate the hysteresis by feedforward, making the approach here more
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simple and direct. The standard H∞ technique is afterwards used to synthesize a
robust controller for each axis of the 2-dof system. The experimental results along
the chapter demonstrate the efficiency of the proposed approach of modeling and
control.

The chapter is organized as follows. Section 4.2 is devoted to the presentation of
the 2-dof multimorph actuator while Sect. 4.3 to its characterization. In Sect. 4.4, we
present the modeling and the identification procedure. Finally, Sect. 4.5 is devoted
to the synthesis of the controllers.

4.2 Presentation of the 2-dof Cantilevered Piezoelectric
Actuator

The 2-dof piezoelectric actuator is presented in Fig. 4.2a. With a rectangular section,
it is made up of 36 piezoelectric layers and 2 passive layers (non-piezoelectric
materials) glued themselves. An arrangement of the electrodes makes possible the
obtention of bending of the actuator along y-axis and along z-axis. This arrangement
of the electrodes is similar to the 2-dof bimorph piezoelectric actuators detailed in
[6]. The actuator used in this chapter has a total active dimensions of: length ×
width× height = 22mm× 1mm× 0.91mm where each piezoelectric layer has a
height of 20 μm. The actuator can be seen as a bivariable system, i.e. having two
inputs and two outputs, as in Fig. 4.2b. As indicated in the figure, we denote y and z
the output bendings while Uy and Uz the input voltages.

In the sequel, the experimental setup to be used which is depicted in Fig. 4.3 is
composed of the following elements:

• The 2-dof multimorph piezoelectric actuator.
• Two optical sensors (LK2420 from Keyence) which are used to measure the

deflection (position) of y and of z axes. Each sensor is set to have a resolution
of 50 nm.

• A computer and a dSPACE-board used to acquire the measured positions and to
generate the control signals. The MATLAB-SIMULINK c© software is employed to
manage the different signals. The sampling time of the whole acquisition system
is set to 0.2 ms which is well convenient for the system to be controlled. As the
control signals Uy and Uz do not exceed 10 V, we do not use a voltage amplifier
in this experimental setup.

4.3 Characterization

In this section, we characterize the 2-dof multimorph piezoelectric actuator. For that,
the static property, the dynamics, and the creep are analyzed.
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a

b

Fig. 4.2 (a): the 2-dof
piezoelectric actuator. (b): the
corresponding system
block-scheme

4.3.1 Static Characterization: Observation of the Hysteresis

The analysis of the static property of the actuator consists in observing the phase-
plane (input–output plane). First, a sine input voltage Uy is applied while the voltage
Uz is left to zero. The amplitude of Uy corresponds to the maximal range of use
which is in this case equal to 10 V. The frequency should be chosen to be small
in order to avoid the phase-lag effect, i.e. the effect of the dynamics to the static
characteristic. However, it should not be too small enough in order to avoid the
effect of the creep which occurs at very low frequencies [7,8]. Different a priori tests
show that a frequency of 0.1 Hz is convenient for this actuator. The output deflection
y resulting from the sine voltage Uy is reported and the direct characteristic (Uy,y) is
plotted (see Fig. 4.4a). In the meantime, the effect of Uy to the z-axis, called coupling
effect, is also plotted (see Fig. 4.4c). As we can see from these figures, the bending
range of y is very interesting (±50μm) for such low voltage (±10 V). However, the
bending versus voltage is typified by a hysteresis nonlinearity. We can also remark
the presence of coupling (Uy,z) of up to ±8μm. Now, we set Uy to zero and apply
a sine input voltage Uz with an amplitude of 10 V and a frequency of 0.1 Hz. The
direct characteristic (Uz,z) is plotted in Fig. 4.4d while the coupling effect to the
y-axis is plotted in Fig. 4.4b. In these, we deduce that the range for the z-axis is
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Fig. 4.3 The experimental
setup

up to ±35μm. We also deduce the presence of hysteresis in this axis. Finally, the
coupling effect of Uz to the y-axis, i.e. (Uz,y), is in excess of ±16μm. Notice that
Fig. 4.4a–d also includes the internal loops of hysteresis which are obtained with
sine input voltages of 5 V of amplitude.
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Fig. 4.4 Hysteresis characterization. (a) and (d): direct hysteresis for the y and for the z-axis
respectively. (b) and (c): coupling hysteresis

4.3.2 Step Responses Characterization

To evaluate the dynamics of the actuator, we study its step responses. The aim is
to analyze the transient parts of the response of the actuator: oscillation, overshoot,
settling time, etc. First, a step input voltage Uy = 10 V is applied while Uz is left
equal to zero. The direct step response, i.e. response y(t), is plotted in Fig. 4.5a while
the coupling response, i.e. response z(t), is plotted in Fig. 4.5c. Then, the input Uy

is set to zero and a step input voltage Uz = 10 V is applied. The response z(t) (direct
step response) is plotted in Fig. 4.5d while the response y(t) which corresponds to
the coupling is plotted in Fig. 4.5b. From these figures, we can deduce that the direct
transfers (Uy → y and Uz → z) are typified by strong oscillations. These oscillations
drastically increase the settling times of the actuator even if this latter has a high
bandwidth. Indeed, the frequency of oscillation is ≈625 Hz (which corresponds to a
period of 1.6 ms) for the two axes; however, the settling time is more than 15 ms for
the y-axis and more than 50 ms for the z-axis. Finally, we also remark the presence
of oscillation on the couplings responses Uy → z and Uz → y.

4.3.3 Creep Characterization

We now characterize the creep behavior of the 2-dof actuator. The creep is defined
as the drift that appears after the end of the transient part when a step input voltage is
applied [9]. This drift is observed for a long duration of period on the step response.
It can also be observed at very low frequency if the input voltage is a periodic signal
(sine or triangular).
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Fig. 4.5 Step responses characterization. (a) and (d): direct step responses for the y and for the
z-axis respectively. (b) and (c): coupling step responses

Let us apply again a step input voltage Uy = 10 V to the actuator, set Uz = 0 and
measure the output bendings y(t) and z(t) during 10 min. The creep of the direct
transfer Uy → y is plotted in Fig. 4.6a while the creep of the coupling Uy → z is
plotted in Fig. 4.6c. We remark that the “direct creep” is evaluated to be in excess of
15μm in the studied duration and the “coupling creep” is negative. Now, we set Uy

to zero and apply a step Uz = 10 V. After reporting the output bendings y and z, they
are plotted as in Fig. 4.6b and d, respectively. We see that the direct creep Uz → z is
in excess of 12μm and the coupling creep Uz → y is of about 3.5μm. Figure 4.6a–d
also present the creep evolution when the input voltages are 5 V. We deduce that the
higher the voltage is, the higher the creep will be.

4.4 Modeling and Identification

In the previous section, we found that the 2-dof multimorph piezoelectric actuator
was typified by hysteresis nonlinearity, a creep behavior, a strong oscillation, and
couplings between the two axes. These characteristics directly affect the general
behavior of the actuator. In particular, the hysteresis, the creep, and the coupling
make it lose its accuracy while the oscillation may lead to unstability of the pick-
transport-and place of objects during a precise positioning task. In this section,
we provide a model of the 2-dof actuator in order to synthesize controllers in the
next section for an enhancement of the actuator’s performances. The behaviors
of the actuator (hysteresis, creep, oscillation, and coupling) are accounted during
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Fig. 4.6 Creep characterization. (a) and (d): direct creep for the y and for the z-axis respectively.
(b) and (c): coupling creep

the modeling. In a spirit of derivation of simpler model however, we propose to
approximate the hysteresis by the quadrilateral approximation method. This yields
a linear approximation of the hysteresis followed by a well-modeled uncertainty.
We also propose to model the coupling, the creep, and any eventual external
disturbances such as manipulation force as a disturbance. At the end, we obtain
two linear monovariable models (one for y-axis and one for z-axis) which are
under uncertainties and under a disturbance. The proposed model has therefore the
advantage to be simple (linear) which still takes into account the hysteresis, the
creep, the coupling, and the oscillation.

4.4.1 General Formulation

Let Eq. (4.1) be a general nonlinear expression of the 2-dof actuator

(
y(s)
z(s)

)
= f (Uy(s),Uz(s),s) ⇔

{
y(s) = fy (Uy(s),Uz(s),s)
z(s) = fz (Uy(s),Uz(s),s)

(4.1)

where s is the Laplace variable, fy (Uy(s),Uz(s),s), and fz (Uy(s),Uz(s),s) are
nonlinear expressions dependent on Uz, Uy, and s for the output y(s) and z(s),
respectively. The fact that the two functions can explicitly be dependent on s means
that the models can be dynamic.
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Assuming that each function fy (Uy(s),Uz(s),s), and fz (Uy(s),Uz(s),s) can be
separated into two nonlinear functions exclusively or mainly dependent on Uy(s)
and on Uz(s), Eq. (4.1) becomes:

{
y(s) = fyy (Uy(s),s)+ fyz (Uz(s),s)
z(s) = fzy (Uy(s),s)+ fzz (Uz(s),s)

(4.2)

where fyy (Uy(s),s) and fyz (Uz(s),s) are the two nonlinear functions exclusively
dependent on Uy(s) and on Uz(s), respectively, for the y-axis, and fzy (Uy(s),s) and
fzz (Uz(s),s) are the two nonlinear functions exclusively dependent on Uy(s) and
on Uz(s), respectively, for the z-axis. Such assumption has been validated for 2-dof
bimorph actuator [4]. In other words, the above assumption means that the direct
transfer and the coupling are additive.

When observing Fig. 4.5a (resp. Fig. 4.5d) which is the step response of the
direct transfer in y-axis (resp. z-axis), we can say that this direct transfer is the
sum of two signals: (1) the very quick transient part with a final value which is
related to the hysteresis which we denote f hyst

yy (Uy(s),s) (resp. f hyst
zz (Uz(s),s)), (2)

and the creep signal which has a very low rate which we denote f creep
yy (Uy(s),s)

(resp. f creep
zz (Uz(s),s)). Hence, replacing the direct transfer fyy (Uy(s),s) (resp.

fzz (Uz(s),s)) in Eq. (4.2) by this fact, we obtain:

{
y(s) = f hyst

yy (Uy(s),s)+ f creep
yy (Uy(s),s)+ fyz (Uz(s),s)

z(s) = fzy (Uy(s),s)+ f hyst
zz (Uz(s),s)+ f creep

zz (Uz(s),s)
(4.3)

Remind that f hyst
yy (Uy(s),s) and f hyst

zz (Uz(s),s) enclose the hysteresis and the
dynamics of the actuator. They can be seen as dynamic hysteresis or rate-dependent
hysteresis. However, it has been shown that the Hammerstein theorem can be
applied to the dynamic hysteresis in piezoelectric actuators [7]. By this theorem, the
dynamic hysteresis f hyst

yy (Uy(s),s) (resp. f hyst
zz (Uz(s),s)) can be approximated by a

static hysteresis Γy (Uy(s)) (resp. Γz (Uz(s))) followed by a linear dynamics Dy(s)
(resp. Dz(s)). Therefore, Eq. (4.3) becomes:

{
y(s) = Γy (Uy(s))Dy(s)+ f creep

yy (Uy(s),s)+ fyz (Uz(s),s)
z(s) = Γz (Uz(s))Dz(s)+ f creep

zz (Uz(s),s)+ fzy (Uy(s),s)
(4.4)

Notice that the dynamics Dy(s) and Dz(s) are normalized, i.e. Dy(0) = 1 and
Dz(0) = 1. Indeed, the statical gain is already described the nonlinearity Γy and Γz.

So far, we have not yet considered any external force applied to the actuator.
An example of this external force is the manipulation force which is between
the actuator and a manipulated object. An external force is a disturbance that can
degrade the performances of the actuator: diminution of the precision, etc. Hence,
it is essential to take it into account when calculating a controller. Considering the
fact that mechanical effects are additive relative to electrical effects [9] even with a
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nonlinear behavior of the piezoelectric actuator, we add to Eq. (4.4) the mechanical
terms and obtain:

{
y(s) = Γy (Uy(s))Dy(s)+ f creep

yy (Uy(s),s)+ fyz (Uz(s),s)+ spyDy(s)Fy(s)
z(s) = Γz (Uz(s))Dz(s)+ f creep

zz (Uz(s),s)+ fzy (Uy(s),s)+ spzDz(s)Fz(s)
(4.5)

where Fy(s) (resp. Fz(s)) is the projection of the external force along y-axis (resp.
z-axis) and spy (resp. spz) is the elastic coefficient of the actuator along the same axis.
As we can observe in Eq. (4.5), the mechanical term possesses a dynamics term
Dy(s) (resp. Dz(s)) similar to that of the electromechanical term Γy (Uy(s))Dy(s)
(resp. Γy (Uz(s))Dz(s)). In fact, as the dynamics is linked to the mechanical structure
itself of the actuator, it is independent from the source of excitation. This fact has
been verified experimentally, for instance, in [10].

For the sake of simplicity of reading, we remove all Laplace variable s of the
signals in Eq. (4.5). Then:

{
y = Γy (Uy)Dy(s)+ f creep

yy (Uy,s)+ fyz (Uz,s)+ spyDy(s)Fy

z = Γz (Uz)Dz(s)+ f creep
zz (Uz,s)+ fzy (Uy,s)+ spzDz(s)Fz

(4.6)

Remind that fyz (Uz,s) (resp. fzy (Uy,s)) is the coupling effect Uz → y (resp.
Uy → z). It is composed of the following three elements: 1) the coupling hysteresis
that expresses the nonlinear static gain and that is characterized in Fig. 4.4b
(resp. Fig. 4.4c), 2) the coupling transient part that is characterized in Fig. 4.5b
(resp. Fig. 4.5c), 3) and the creep coupling that is characterized in Fig. 4.6b (resp.
Fig. 4.6c). Similar to the direct transfer, the coupling transfer fyz (Uz,s) (resp.
fzy (Uy,s)) can be seen as the superposition of two signals: (1) the coupling dynamic

hysteresis f hyst
yz (Uz,s) (resp. f hyst

zy (Uy,s)) and the coupling creep f creep
yz (Uz,s) (resp.

f creep
zy (Uy,s)). Therefore, the model Eq. (4.6) can be rewritten as follows:

{
y = Γy (Uy)Dy(s)+ f creep

yy (Uy,s)+ f hyst
yz (Uz,s)+ f creep

yz (Uz,s)+ spyDy(s)Fy

z = Γz (Uz)Dz(s)+ f creep
zz (Uz,s)+ f hyst

zy (Uy,s)+ f creep
zy (Uy,s)+ spzDz(s)Fz

(4.7)
In the next two sub-sections, we give an approximate model of the static

hysteresis term Γy (Uy) and Γz (Uz) and give the dynamics models Dy(s) and Dz(s).
After having modeled these static and dynamics part, we will provide the final model
of the 2-dof actuator.

4.4.2 Modeling and Identification of the Statical Part

First the statical part is modeled. This statical part is nonlinear and corresponds to
the hysteresis Γy(Uy) and Γz(Uz), also called static hysteresis or rate-independent
hysteresis. There are several approaches to model or to approximate a static



4 Modeling and Robust H∞ Control of a Nonlinear and Oscillating 2-dof . . . 71

Fig. 4.7 The quadrilateral
approximation of a hysteresis
curve

hysteresis: the classical Preisach approach [11–13], the classical and the modified
Prandtl–Ishlinskii approach [8,14–16], the Bouc–Wen model [17], the quadrilateral
approximation approach [7], etc. When using an open-loop (feedforward control
scheme), a precise model such as that of the Preisach, the Prandtl–Ishlinskii, and
the Bouc–Wen approaches is necessary. However, as we treat here a closed-loop
control scheme, the objective is to employ a model as simple as possible which still
accounts the hysteresis. The quadrilateral approximation is convenient for that.

4.4.2.1 The Quadrilateral Approximation

To explain the quadrilateral approach, consider a hysteretic system with input U and
output y. The approach [7] consists to say that a static hysteresis is approximated
by a quadrilateral as pictured in Fig. 4.7. In fact, this is a particular and the simplest
approximation of the multilinear modeling of hysteresis [18].

From the quadrilateral, the maximal slope kM and the minimal slope km among
the four segments are identified. Then, an uncertain linear model is derived as
follows:

y = Γ (U)∼= (k+δ )U + yo (4.8)

where yo is the offset (positive or negative) that varies between the minimal and the
maximal offsets of the quadrilateral. In the case of closed-loop controller synthesis,
yo is directly taken equal to the maximal or the minimal, the one which has the
highest norm. For instance, in Fig. 4.7, yo corresponds to the positive offset. The
statical gain k and the uncertainty δ are defined as follows:{

k = kM+km
2

− (kM−km)
2 ≤ δ ≤ (kM−km)

2

(4.9)

Remind that Eq. (4.8) can be rewritten as follows:

y = Γ (U)∼=
(

1+
δ
k

)
kU + yo (4.10)
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The latter equation is a representation of the uncertainty called “direct multiplica-
tive uncertainty.”

4.4.2.2 The Quadrilateral Approximation Applied to the 2-dof
Piezoelectric Actuator

Now, we apply the quadrilateral approach in Eq. (4.10) to the hysteresis Γy (Uy) in
y-axis and the hysteresis Γz (Uz) in z-axis defined in Eq. (4.6). We obtain:

⎧⎨
⎩

y=
(

1+ δy
ky

)
kyDy(s)Uy+yo+ f creep

yy (Uy,s)+ f hyst
yz (Uz,s)+ f creep

yz (Uz,s)+spyDy(s)Fy

z=
(

1+ δz
kz

)
kzDz(s)Uz+zo+ f creep

zz (Uz,s)+ f hyst
zy (Uy,s)+ f creep

zy (Uy,s)+spzDz(s)Fz

(4.11)
where

{
ky =

kyM+kym
2

−(kyM−kym)
2 ≤ δy ≤ (kyM−kym)

2

and

{
kz =

kzM+kzm
2−(kzM−kzm)

2 ≤ δz ≤ (kzM−kzm)
2

(4.12)

with:

• yo is the offset, kyM is the maximal slope, and kym is the minimal slope identified
from the external loop of Fig. 4.4a. We find: yo = 8.3μm, kyM = 5.63μm, and
kym = 3.97μm.

• zo is the offset, kzM is the maximal slope, and kzm is the minimal slope identified
from the external loop of Fig. 4.4d. We find: zo = −6μm, kzM = 4.1μm, and
kzm = 2.9μm.

which yields:

{
ky = 4.8[μm]

−0.83[μm]≤ δy ≤ 0.83[μm]
and

{
kz = 3.5[μm]

−0.6[μm]≤ δz ≤ 0.6[μm]
(4.13)

4.4.3 Modeling and Identification of the Dynamics Part

The dynamics Dy(s) and the dynamics Dz(s) are identified from the step response
in Fig. 4.5a and d, respectively. Remind that these dynamics should be normalized,
i.e. Dy(s = 0) = 1 and Dz(s = 0) = 1.

The ARMAX-method (Auto Regressive Moving Average with eXternal inputs)
of the Matlab software [19] is applied to the experimental data of Fig. 4.5a, d to
perform the identification procedure. Different orders of models were tested and it
is shown that from an order of 4, the precision of the identified dynamics does not
increase substantially. Therefore, we use the identified 4th order models:



4 Modeling and Robust H∞ Control of a Nonlinear and Oscillating 2-dof . . . 73

⎧⎪⎨
⎪⎩

Dinit
y (s) =

−0.563(s−6863)(s−30)(s2+1.19s+4.96×107)
(s+2913)(s+27.8)(s2+457s+1.49×107)

Dinit
z (s) =

0.347(s+6836)(s+39)(s2−3304s+2.17×107)
(s+1063)(s+35)(s2+91.8s+1.52×107)

(4.14)

The identified dynamics in Eq. (4.14) are not normalized. Indeed, we have:
Dinit

y (s = 0) �= 1 and Dinit
z (s = 0) �= 1. To normalize them, we perform as follows:

Dy(s) =
Dinit

y (s)

Dinit
y (0)

Dz(s) =
Dinit

z (s)
Dinit

z (0) (4.15)

which finally gives the normalized dynamics:
⎧⎪⎨
⎪⎩

Dy(s) =
−0.117(s−6863)(s−30)(s2+1.19s+4.96×107)

(s+2913)(s+27.8)(s2+457s+1.49×107)

Dz(s) =
0.0989(s+6836)(s+39)(s2−3304s+2.17×107)

(s+1063)(s+35)(s2+91.8s+1.52×107)

(4.16)

4.4.4 The Final Model

Let us rewrite the model in Eq. (4.11) as follows:

{
y =

(
1+ΔyWyΔ

)
kyDy(s)Uy +by

z = (1+ΔzWzΔ )kzDz(s)Uz +bz
(4.17)

where by is an output disturbance for the y-axis and bz is an output disturbance for
the z-axis which are defined as follows:⎧⎨

⎩
by = yo + f creep

yy (Uy,s)+ f hyst
yz (Uz,s)+ f creep

yz (Uz,s)+ spyDy(s)Fy

bz = zo + f creep
zz (Uz,s)+ f hyst

zy (Uy,s)+ f creep
zy (Uy,s)+ spzDz(s)Fz

(4.18)

where Δy and Δz are called normalized uncertainties and Wy and Wz are called
weightings which are given by:

{−1 ≤ Δy ≤ 1
−1 ≤ Δz ≤ 1

and

⎧⎨
⎩

WyΔ =
(kyM−kym)

2ky

WzΔ = (kzM−kzm)
2kz

(4.19)

Denoting Gy(s) = kyDy(s) and Gz(s) = kzDz(s) which are called nominal models,
we rewrite the “real models” in Eq. (4.20) as follows:

{
y =

(
1+ΔyWyΔ

)
Gy(s)Uy +by

z = (1+ΔzWzΔ )Gz(s)Uz +bz
(4.20)
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Fig. 4.8 The system to be controlled

Equation (4.20) is the final model to be controlled. It corresponds to two mono-
variable linear systems, each one with an input direct multiplicative uncertainty and
an output disturbance. The block diagram corresponding to this final model is shown
in Fig. 4.8.

In the sequel, we use the model in Eq. (4.20) to find a controller that will enhance
the performances of the 2-dof piezoelectric actuator. The principal objective will be
to track some input references, to reject the output disturbances, and to maintain
all these performances although the presence of uncertainties in the model used to
synthesize the controller. For that, we will use the robust H∞ controller synthesis.
In fact, this technique is well suited for the design of linear controllers when using
uncertain models.

4.5 Robust Standard H∞ Control Technique

Remind that the model to be used for the controller synthesis is given by Eq. (4.20).
It corresponds to two monovariable systems: one system for the y-axis and one
system for the z-axis. As the two monovariable systems are similar in structure, we
will only present the controller synthesis for the y-axis.
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Fig. 4.9 The closed-loop
system

4.5.1 Principle Scheme and Specifications

Reconsider the model of y-axis in Eq. (4.20) and its block diagram in Fig. 4.8 and
introduce the controller Cy(s) to be synthesized. We obtain the closed-loop scheme
as shown in Fig. 4.9.

4.5.1.1 Specifications for the y-Axis

For this closed-loop we give the following specifications, i.e. specifications for the
y-axis:

Tracking performances:

• The settling time should be less than or equal to 5 ms.
• The statical error should be less than or equal to 1 %.
• No overshoot should appear.

Command moderation:
In order to limit the voltage Uy applied to the actuator and therefore to avoid

all possible material’s destruction, we impose a maximal voltage of 10 V for any
frequency and for any amplitude of reference within yr = 50μm.

Rejection of the effect of the disturbance by:

• The settling time of the disturbance rejection should be less than or equal to
10 ms.

• When the disturbance by is maximal (worst case), its effect to the output y should
not exceed 1μm.

• No overshoot should appear during the disturbance rejection.

Robustness in presence of the uncertainty ΔyWyΔ :
The above specifications should be ensured for any uncertainty contained in

ΔyWyΔ .
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4.5.1.2 Specifications for the z-Axis

The above specifications are for the y-axis. Concerning the specifications for the
z-axis, we give:

Tracking performances:

• The settling time should be less than or equal to 15 ms.
• The statical error should be less than or equal to 1 %.
• No overshoot should appear.

Command moderation:
In order to limit the voltage Uy applied to the actuator and therefore to avoid

all possible material’s destruction, we impose a maximal voltage of 10 V for any
frequency and for any amplitude of reference within zr = 35μm.

Rejection of the effect of the disturbance bz:

• The settling time of the disturbance rejection should be less than or equal to
10 ms.

• When the disturbance bz is maximal (worst case), its effect to the output z should
not exceed 1μm.

• No overshoot should appear during the disturbance rejection.

Robustness in presence of the uncertainty ΔzWzΔ :
The above specifications should be ensured although the presence of the uncer-

tainty ΔzWzΔ .

4.5.2 Standard Form and the Standard H∞ Problem

In the standard H∞ technique, during the controller synthesis, the specifications
are accounted by introducing weighting for each specified point. For the y-axis,
the tracking performances is systematically accounted by introducing a weighting
Wy1(s) to weight the error ε . The command moderation specification is accounted
by using a weighting Wy2(s) to weight the control signal Uy. Finally, for the
disturbance rejection specification, Wyb(s) is introduced at the perturbation signal
by. We therefore obtain the weighted closed-loop scheme as in Fig. 4.10. In the
scheme, the new outputs oy1 and oy2 are called weighted outputs while iy indicates
the new input.

The uncertainty presented in Fig. 4.10 is still in its initial structure (direct
multiplicative structure). Yet, having an input direct multiplicative structure of
uncertainty

∥∥Δy
∥∥

∞ ≤ 1 weighted by WyΔ , the condition of stability of a closed-loop
is as follows (see for instance [20]):

∥∥SyGyCyWyΔ
∥∥

∞ < 1 (4.21)
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Fig. 4.10 The weighted
closed-loop system

Fig. 4.11 Equivalent
weighted closed-loop system
when considering the stability
condition with an input direct
multiplicative structured
uncertainty

where S(s) is the sensitivity function and is given by:

Sy(s) =
ε(s)
yr(s)

=
1

1+CyGy
(4.22)

where SyCyGy = Hy(s) is called complementary sensitivity function which links the
output y(s) and the input reference yr(s). It is given by:

Hy(s) = 1−Sy = SyCyGy =
y(s)
yr(s)

=
CyGy

1+CyGy
(4.23)

However, Eq. (4.21) can be also interpreted as if we have a new complementary
sensitivity function

(
SyCyGyWyΔ

)
that would link another output oy3(s) and the input

reference yr(s). The new output oy3(s) is the result of weighting the output y(s) by
WyΔ . Therefore, Fig. 4.10 is equivalent to Fig. 4.11 when considering the stability
condition of the uncertainty to which we are face.

In the standard H∞ problem, a standard form is used. This standard form links
the interconnection of an augmented system Py(s) with a controller as pictured in
Fig. 4.12a. The augmented system Py(s) is made up of the nominal system Gy(s)
augmented with the weighting functions. There are two types of inputs for Py(s):
(1) the first type is composed of all exogeneous inputs which are here the reference
yr and the disturbance iy and (2) the second type is the input control signal Uy from
the controller Cy(s). There are also two types of outputs for Py(s): (1) the first type
is composed of the output signals from all weightings which are here oy1, oy3, and
oy3 and (2) the second type is the output signal εy that will go to the controller.
Figure 4.12b depicts the details of the standard scheme from the weighted closed-
loop in Fig. 4.11.
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a

b

Fig. 4.12 (a): the standard form. (b): detailed block-diagram of the standard form

Having the standard scheme as in Fig. 4.12, the standard H∞ problem can be
expressed:

Problem 5.1 (The standard H∞ problem [20]). Find the controller Cy(s) such
that:

– The interconnection in Fig. 4.12 is stable
–
∥∥Fyl (Py(s),Cy(s))

∥∥
∞ < γy

where γy > 0 is called performances gain, and Fyl (Py(s),Cy(s)) is called lower
linear fractional transformation which is a matricial transfer function defined as
follows:

⎛
⎝ oy1

oy2

oy3

⎞
⎠= Fyl (Py(s),Cy(s))

(
yr

iy

)
(4.24)
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However, from Fig. 4.11, we have the following equations:

⎧⎨
⎩

oy1 =Wy1Syyr −Wy1SyWybiy
oy2 =Wy2CySyyr −Wy2CySyWybiy
oy3 =WyΔ GyCySyyr +WyΔ SyWybiy

(4.25)

Using Eqs. (4.24) and (4.25), we yield:

Fyl (Py(s),Cy(s)) =

⎛
⎝ Wy1Sy −Wy1SyWyb

Wy2CySy −Wy2CySyWyb

WyΔ GyCySy WyΔ SyWyb

⎞
⎠ (4.26)

By using Eq. (4.26), the second condition of Problem 5.1 can be rewritten as
follows: ∥∥∥∥∥∥

⎛
⎝ Wy1Sy −Wy1SyWyb

Wy2CySy −Wy2CySyWyb

WyΔ GyCySy WyΔ SyWyb

⎞
⎠
∥∥∥∥∥∥

∞

< γy (4.27)

which is equivalent to:

∥∥Wy1Sy
∥∥

∞ < γy
∥∥−Wy1SyWyb

∥∥
∞ < γy∥∥Wy2CySy

∥∥
∞ < γy

∥∥−Wy2CySyWyb
∥∥

∞ < γy∥∥WyΔ GyCySy
∥∥

∞ < γy
∥∥WyΔ SyWyb

∥∥
∞ < γy

(4.28)

According to the Cauchy–Schwartz inequality, if we have the following condi-
tions, conditions Eq. (4.28) can be satisfied:

∥∥Wy1
∥∥

∞

∥∥Sy
∥∥

∞ < γy
∥∥Wy1Wyb

∥∥
∞

∥∥−Sy
∥∥

∞ < γy∥∥Wy2
∥∥

∞

∥∥CySy
∥∥

∞ < γy
∥∥Wy2Wyb

∥∥
∞

∥∥−CySy
∥∥

∞ < γy∥∥WyΔ
∥∥

∞

∥∥GyCySy
∥∥

∞ < γy
∥∥WyΔWyb

∥∥
∞

∥∥Sy
∥∥

∞ < γy

(4.29)

which are equivalent to:∥∥Sy
∥∥

∞ < γy
1

‖Wy1‖∞

∥∥−Sy
∥∥

∞ < γy
1

‖Wy1Wyb‖∞∥∥CySy
∥∥

∞ < γy
1

‖Wy2‖∞

∥∥−CySy
∥∥

∞ < γy
1

‖Wy2Wyb‖∞∥∥GyCySy
∥∥

∞ < γy
1

‖WyΔ‖∞

∥∥Sy
∥∥

∞ < γy
1

‖WyΔWyb‖∞ (4.30)

Conditions Eq. (4.30) can also be satisfied if we have the following conditions:

∣∣Sy
∣∣ < γy

∣∣∣ 1
Wy1

∣∣∣ ∣∣−Sy
∣∣< γy

∣∣∣ 1
Wy1Wyb

∣∣∣∣∣CySy
∣∣ < γy

∣∣∣ 1
Wy2

∣∣∣ ∣∣−CySy
∣∣< γy

∣∣∣ 1
Wy2Wyb

∣∣∣∣∣GyCySy
∣∣ < γy

∣∣∣ 1
WyΔ

∣∣∣ ∣∣Sy
∣∣< γy

∣∣∣ 1
WyΔWyb

∣∣∣ (4.31)
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Our objective now consists in finding the controller Cy(s) that will satisfy the
conditions in Eq. (4.31). In this, 1/Wy1(s), 1/Wy2(s), 1/WyΔ (s), 1/Wy1(s)Wyb(s),
1/Wy2(s)Wyb(s), and 1/WyΔ (s)Wyb(s) are called gabarits. In particular, 1/Wy1(s),
1/Wy2(s), and 1/Wy1(s)Wyb(s) are gabarits for the tracking performances, for the
command moderation, and for the disturbance rejection, respectively. They are
defined according to the specifications in Sect. 4.5.1. The objective is to find the
controller such that the performances gain γy > 0 is as small as possible. If γy > 1,
some of the specified performances will not be ensured by the controller. One reason
to make this case, i.e. γy > 1, happens is when the specifications are too severe. In
general, a magnitude plot (singular values plot) of the different transfer functions
and of the gabarits defined in Eq. (4.31) permits to see which magnitude is not
satisfied and how it is not satisfied. This allows to see which specification to be
relaxed before recalculating the controller. If γ ≤ 1, the specified performances will
be ensured by the calculated controller.

Notice that the H∞ problem for the z-axis is exactly similar to that of y-axis in
structure. The same conditions than in Eq. (4.31) are therefore obtained for the z-
axis, one should only replace subscript y into subscript z in all the inequalities.

4.5.3 Gabarits and Weighting Functions

To calculate the principal gabarits 1/Wy1(s), 1/Wy2(s) and 1/Wy1(s)Wyb(s), the
specifications defined in Sect. 4.5.1 are used.

Derivation of the gabarit 1/Wy1(s): This gabarit is calculated from the specified
tracking performances. Indeed, this gabarit is initially from the transfer function that
relates the output oy1 and the input reference yr (see Eq. (4.25)). A possible structure
of gabarit that satisfies a tracking performances with a settling time of try, a statical
error of εsy and without overshoot is:

1
Wy1(s)

=
kovys+(3εsy/try)

s+(3/try)
(4.32)

where kovy = 1+θovy and θovy is the overshoot. If no overshoot is wanted, we have:
θovy = 0.

Choosing the following numerical values: try = 5 ms and εsy = 0.01 (see
Sect. 4.5.1), we have:

1
Wy1(s)

=
s+6

s+600
(4.33)

From Eq. (4.33), the weighting Wy1(s) is yielded:

Wy1(s) =
s+600
s+6

(4.34)



4 Modeling and Robust H∞ Control of a Nonlinear and Oscillating 2-dof . . . 81

Derivation of the gabarit 1/Wy2(s): This gabarit is calculated from the specified
command moderation which mentions that a maximal voltage of 10 V is allowed for
any frequency and any amplitude of reference input up to 50μm. This yields:

1
Wy2(s)

=
Uymax

yrmax
=

10[V]

50[μm]
= 0.2

[
V

μm

]
(4.35)

which yields the weighting Wy2(s):

Wy2(s) = 5
[μm

V

]
(4.36)

Derivation of the gabarit 1/Wy1(s)Wyb(s): This gabarit is calculated from
the specified disturbance rejection which mentions that when the disturbance by

is maximal (worst case), its effect to the output should not exceed 1μm, i.e.
maximal error is 1μm. Remind from Eq. (4.18) that by = yo + f creep

yy (Uy,s) +

f hyst
yz (Uz,s) + f creep

yz (Uz,s) + spyDy(s)Fy. To define the worst case bywc of the dis-

turbance, we choose: bywc = |yo|+
∣∣ f creep

yy (Uy,s)
∣∣+ ∣∣∣ f hyst

yz (Uz,s)
∣∣∣+ ∣∣ f creep

yz (Uz,s)
∣∣+∣∣spyFymax

∣∣, where yo, f creep
yy (Uy,s) are obtained with the maximal or minimal

voltage Uy = ±10 V while and f hyst
yz (Uz,s) and f creep

yz (Uz,s) are obtained with the
maximal or minimal voltage Uz = ±10 V. We have: |yo| = |8.3μm| (see Fig. 4.4a),∣∣ f creep

yy (Uy,s)
∣∣= |15μm| (see Fig. 4.6a),

∣∣∣ f hyst
yz (Uz,s)

∣∣∣= |16μm| (see Fig. 4.4b), and∣∣ f creep
yz (Uz,s)

∣∣ = |3.5μm| (see Fig. 4.6b). In this application, we choose Fy = 0 N.
Hence, the wanted maximal error εbywc due to the disturbance is derived as follows:

εbywc =
|yr − y|

bywc
=

1
8.3+15+16+3.5+0

= 0.0234 (4.37)

However as demanded in Sect. 4.5.1, the specifications require a settling time
of trby ≤ 10 ms and a zero overshoot for the disturbance rejection. Using the same
structure than in Eq. (4.32) and using the statical error due to disturbance as given
by Eq. (4.37), we propose (using trby = 10 ms):

1
Wy1(s)Wyb(s)

=
kbovys+(3εbywc/trby)

s+(3/trby)
=

s+7.009
s+300

(4.38)

where kbovy = 1+ θbovy and θbovy is the overshoot. For a zero overshoot, we have
θbovy = 0.

By using Eqs. (4.34) and (4.38), we yield the weighting Wyb(s)

Wyb(s) =
(s+6)(s+300)

(s+7.009)(s+600)
(4.39)
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Derivation of the weighting WyΔ : The weighting WyΔ is also required in Eq. (4.31)
for the calculation of the controller. This weighting is given by Eq. (4.19). We have:

WyΔ = 0.1729 (4.40)

The previously calculated gabarits and weightings are for the y-axis. The gabarits
1/Wz1(s), 1/Wwz2(s) and 1/Wz1(s)Wzb(s) for the z-axis are calculated from the
specified tracking performances, the command moderation, and the disturbance
rejection, respectively, for the z-axis which are also given in Sect. 4.5.1. We have
the following results.

Derivation of the gabarit 1/Wz1(s): This gabarit is derived from the specified
tracking performances. Using the same structure than in Eq. (4.32) and considering
the numerical value (maximal settling time of 15 ms, maximal statical error of 1 %,
no overshoot) as in Sect. 4.5.1, we propose:

1
Wz1(s)

=
s+2

s+200
(4.41)

from which we derive the weighting Wz1(s)

Wz1(s) =
s+200

s+2
(4.42)

Derivation of the gabarit 1/Wz2(s): This is calculated from the specified
command moderation which states a maximal voltage of 10 V for any frequency
and any amplitude of reference within zr = 35μm (see Sect. 4.5.1). We propose:

1
Wz2(s)

=
Uzmax

zrmax
=

10[V]

35[μm]
= 0.2857

[
V

μm

]
(4.43)

from which we yield the weighting Wz2(s):

Wz2(s) = 3.5
[μm

V

]
(4.44)

Derivation of the gabarit 1/Wz1(s)Wzb(s): This gabarit is defined from the
specified disturbance rejection. The approach to constitute this gabarit is similar
to that of the gabarit 1/Wy1(s)Wyb(s) for the y-axis. The disturbance being given

by bz = zo+ f creep
zz (Uz,s)+ f hyst

zy (Uy,s)+ f creep
zy (Uy,s)+ spzDz(s)Fz (see Eq. (4.18)),

we provide the worst case disturbance as equal to: bzwc = |zo|+
∣∣ f creep

zz (Uz,s)
∣∣+∣∣∣ f hyst

zy (Uy,s)
∣∣∣+∣∣ f creep

zy (Uy,s)
∣∣+∣∣spzFzmax

∣∣. The numerical values are: |zo|= |−6μm|
(see Fig. 4.4d),

∣∣ f creep
zz (Uz,s)

∣∣= |12μm| (see Fig. 4.6d),
∣∣∣ f hyst

zy (Uy,s)
∣∣∣= |8μm| (see

Fig. 4.4c) and
∣∣ f creep

zy (Uy,s)
∣∣= |0μm| (see Fig. 4.6c). In this application, we choose

Fzmax = 0 N. Consequently, the specified maximal error due to this worst case of
disturbance should be no more than:
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εbzwc =
|zr − z|

bzwc
=

1
6+12+8+0+0

= 0.0385 (4.45)

By combining the specified settling time trbz ≤ 10 ms and the zero overshoot
(kbovz = 1) for the disturbance rejection (see Sect. 4.5.1) with the maximal error
Eq. (4.45) and by using the same structure than that of y-axis as given in Eq. (4.38),
we have the gabarit for the z-axis:

1
Wz1(s)Wzb(s)

=
kbovzs+(3εbzwc/trbz)

s+(3/trbz)
=

s+11.54
s+300

(4.46)

Using Eqs. (4.42) and (4.46), we obtain the weighting Wzb(s):

Wzb(s) =
(s+2)(s+300)

(s+11.54)(s+200)
(4.47)

Derivation of the weighting WzΔ : The weighting WzΔ is also required to compute
the controller. This is given by Eq. (4.19). We have:

WyΔ = 0.1714 (4.48)

4.5.4 Calculation of the Controllers

To calculate the controller Cy(s) that satisfies the condition in Eq. (4.31), the
controller Cz(s) and optimal values of the performances gains γy and γz, the DGKF
[21, 22] algorithm is used. The results provide controllers of order 7:

⎧⎨
⎩

Cy(s) =
20088(s+2913)(s+600)(s+27)(s+6.8)(s2+457s+1.5×107)
(s+2×105)(s+682)(s+33)(s+7)(s+6)(s2+7406s+2.5×107)

γy = 1.64
(4.49)

⎧⎨
⎩

Cz(s) =
5380(s+1063)(s+200)(s+35)(s+6.8)(s2+91.8s+1.5×107)

(s+1.86×104)(s+21.8)(s+2)(s2+172s+1.15×104)(s2+2276s+2.37×107)
γz = 1.855

(4.50)

The optimal performances gains γy and γz are strictly higher than one but the
magnitudes (see Figs. 4.13 and 4.14) show that the overshoots of |Si| and |CiSi|
relative to the gabarits magnitudes

∣∣∣ 1
Wi1

∣∣∣,
∣∣∣ 1

Wi2

∣∣∣ and
∣∣∣ 1

Wi1Wib

∣∣∣, where i = {y,z} are

negligible. The calculated controllers are therefore acceptable for our applications.
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Fig. 4.13 Singular values plots for the y axis system

4.5.5 Controllers Implementation

The calculated controllers Cy(s) and Cz(s) were implemented in the Simulink-
software as described in the setup-scheme presented in Fig. 4.3. The block diagram
of the closed-loop composed of the two controllers and the 2-dof actuator to be
controlled is pictured in Fig. 4.15. The experiments consist in applying a series of
references steps yr and zr to the closed-loop. First a step reference yr = 50μm is
applied at about t = 1.2 s while zr is left equal to zero. As we can see, the output
y tracks this input reference without vibration (Fig. 4.16a). Furthermore, we can
observe the coupling effect yr → z which is quickly rejected (Fig. 4.16b). Then, we
apply a reference input zr = 50μm at time t = 1.52 s. From Fig. 4.16b, we can see
the output z reaches the reference zr also without overshoot. The effect zr → y can
be seen in Fig. 4.16a where we observe that the coupling is quickly rejected.

In order to evaluate more precisely the performances, we give in Fig. 4.17
the zoom of the step responses. We yield that the settling time is 5.5 ms in
the y-axis (Fig. 4.17a) while less than 4 ms in the z-axis (Fig. 4.17d), which will
satisfy the specified settling times. We also observe from Fig. 4.17b, c that the
disturbance rejection (coupling rejection) has a settling time much quicker than the
specifications. These results clearly show the efficiency of the proposed controller.
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Fig. 4.14 Singular values plots for the z axis system

Fig. 4.15 Implementation of
the controllers

4.6 Conclusion

This chapter presented the characterization, modeling, and robust control of a 2-
dof piezoelectric actuator. The actuator is a cantilevered piezoelectric structure that
is able to bend along y- and along z-axes. As ceramic material, the actuator is
typified by a strong hysteresis nonlinearity and a creep behavior. In addition to that,
its structure makes the behavior of the actuator be with badly damped oscillation.
Finally, the 2-dof piezoelectric actuator has a strong coupling between the two axes.
All these properties makes the actuator lose the general performances (accuracy,
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Fig. 4.16 Step responses of the controlled 2-dof piezoelectric actuator. (a): responses along y-axis.
(b): responses along z-axis

Fig. 4.17 Zoom of the step responses of the controlled 2-dof piezoelectric actuator. (a): step
response along y-axis. (b): coupling effect on the z-axis. (c): coupling effect on the y-axis. (d):
step response along z-axis

settling time, and damping) in spite of its high resolution and the high bandwidth.
This chapter proposed therefore first a modeling that is able to track all these
properties by remaining simple. Two monovariable linear models with well-defined
uncertainties (related to the hysteresis) and well-defined disturbances (related to the
coupling, the creep and eventual external force) were derived to track the 2-dof
system. Afterwards, a robust standard H∞ controller was synthesized for each axis.
The calculated controllers permitted to ensure the specified performances even in
presence of model uncertainties. Experimental results have shown the efficiency of
the proposed method.
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Chapter 5
A Hybrid Control Approach to Nanopositioning

Tomas Tuma, Abu Sebastian, John Lygeros, and Angeliki Pantazi

Abstract Precise position control on the nanometer and subnanometer scale,
referred to as nanopositioning, is a key enabler for nanoscale science and
engineering. In nanopositioning, feedback control is essential to meet the stringent
requirements on accuracy, stability, and repeatability in the presence of model
uncertainties and environmental disturbances. In this chapter, we review a new
hybrid control approach to nanopositioning which is based on the combination
of a continuous-time control law with impulsive modifications of the controller
states. By using impulsive control, the limitations of conventional linear
controllers can be overcome, such as the inherent trade-off between closed-loop
bandwidth and resolution. We review the related literature, present an in-depth
analysis of the stability and performance characteristics of impulsive control, and
verify the theoretical conclusions experimentally using a custom-built atomic force
microscope.

5.1 Introduction

The burgeoning field of nanoscale science and nanotechnology was arguably started
in the 1980s with the invention of the scanning tunneling microscope [1] and the
atomic force microscope (AFM) [2], two instruments which form the foundation
of scanning probe microscopy (SPM), allowing us to interact with matter on
scales down to the size of a single atom. Scanning probe techniques are currently
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Fig. 5.1 A schematic of a feedback control loop as often encountered in nanopositioning. The
controller forces the scanner to follow the desired reference trajectory by generating an actuation
signal according to a control law based on the reference trajectory and a feedback measurement
signal of the scanner position. The measurements are typically affected by sensing noise

used in the exploration of molecular structure [3], fabrication of nanometer-scale
objects [4], observation of biological phenomena in real time [5], high-density data
storage [6, 7], and characterization of semiconductor devices [8].

In SPM, precise control of motion with a subnanometer accuracy is of key
importance. Nanometer-scale objects and their properties, such as topographical,
electrical, and magnetic properties, are examined by means of a microfabricated
cantilever with an atomically sharp tip at its end. Typically, the tip of the cantilever
is positioned with subnanometer accuracy relative to the sample by means of a
nanopositioner, and the sample properties are inferred from the forces acting on
the tip. For example, to resolve the topography of a surface, the cantilever tip can
be moved in a raster-based pattern across a rectangular scan area, and a three-
dimensional estimate of the topography is obtained from analyzing the deflection
of the tip. The accuracy of the nanopositioner, or scanner, is vital for the overall
performance of the microscope.

In achieving the stringent accuracy requirements in nanopositioning, the concept
of feedback control plays a pivotal role. Feedback controllers are essential in
compensating for exogenous disturbances, such as building vibrations, temperature
fluctuations, and manufacturing imperfections. Moreover, actuation techniques with
ultra-high resolution, such as those using piezoelectric actuators, often exhibit
significant nonlinearities (e.g., hysteresis, creep, and drift) which need to be
compensated for by means of control. If high-speed operation is required, the
complex dynamical behavior of the scanner also needs to be taken into account
to prevent unwanted scanner-induced vibrations.

Figure 5.1 shows a schematic of a feedback loop as often encountered in
nanopositioning. Here, the scanner is controlled by means of a feedback and/or
feedforward controller whose inputs are the reference trajectory and the measure-
ment signal. Based on the reference and the measurement signals, the controller
executes a control law and makes the scanner follow the desired reference trajectory.
The measurement signal is affected by additive measurement noise.

This chapter reviews a novel hybrid control approach to nanopositioning in which
the controller combines a continuous-time control law with a discrete control law
based on impulsive changes of the controller state. By using this impulsive state
multiplication (ISM), some principal limitations of linear control can be overcome,
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such as the trade-off between the closed-loop bandwidth and the positioning
resolution. Moreover, impulsive control is an important theoretical concept which
links hybrid control with some of the recent nonlinear control techniques for
nanopositioning and enables new and elegant ways to analyze and improve them.
Despite its nonlinear character, impulsive control is easy to implement and can
significantly improve the performance of existing nanopositioning systems. The
exposition in this chapter is based on the theoretical and experimental results
published in [9–12].

First, we briefly review the landscape of feedback control for nanopositioning in
Sect. 5.2. Section 5.3 introduces the concept of impulsive control and its particular
type, ISM, and analyzes the stability of linear systems with impulses. Section 5.4
presents control architectures based on impulsive feedback control, including
feedback controllers for tracking piecewise constant and piecewise affine reference
signals, and analyzes their performance. Section 5.5 discusses an inherent connec-
tion between impulsive control and the recently published signal transformation
approach (STA) to nanopositioning, including techniques to significantly improve
the transient performance of STA. Section 5.6 contains extensive experimental
results, which demonstrate the properties of impulsive control and STA in a custom-
built high-speed AFM. Section 5.7 concludes the chapter.

5.2 Feedback Control for Nanopositioning

In the design of feedback controllers for nanopositioning, specific control challenges
must be taken into account, such as the high amount of measurement noise and the
complex dynamical behavior of nanopositioners. In what follows, we review some
of the recent linear and nonlinear control approaches in nanopositioning. The review
includes an extensive account on the existing linear and nonlinear feedback control
techniques in nanopositioning, which provides the necessary context for introducing
the concept of impulsive control in Sect. 5.3.

5.2.1 Linear Feedback Control

Linear feedback controllers have been widely used in nanopositioning because
of their conceptual and implementational simplicity [13–15]. Conventional linear
feedback controllers are often based on the proportional, integral, and derivative
(PID) control components. However, PID control often cannot meet the increasing
requirements on robustness, accuracy, and speed. For instance, PI controllers
inherently impose a trade-off between robustness and performance which becomes
prohibitive in complex high-speed nanopositioning devices, especially when high
bandwidth is of critical importance. Hence, a significant research effort has been
devoted to developing advanced linear feedback architectures for nanopositioning
and design methodologies.
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Resonant control [16–18] is another technique which is used in nanopositioning
as an alternative to conventional PI controllers. In integral resonant control, the
controller consists of a constant feed-through term and a first-order integral feedback
controller. Resonant controllers are well suited for damping of vibrations in systems
with collocated actuators and sensors and are robust and simple to implement.

Advanced linear control techniques can improve the performance and design
trade-offs of feedback control for nanopositioning, but they are subject to inherent
constraints [19,20]. For example, there is a fixed mathematical relationship between
the closed-loop sensitivity and complementary sensitivity transfer functions which
dictates a trade-off between the tracking bandwidth and the positioning resolu-
tion [21]. At the same time, constraints such as Bode’s integral law limit the shape of
the closed-loop sensitivity transfer function. Consequently, bandwidth, positioning
resolution, and robustness requirements often pose a significant challenge in linear
feedback control.

In two-degree-of-freedom (2DOF) control [22], the control laws which act on the
reference and measurement signals are specified independently. This is in contrast
to the conventional single degree of freedom controller, which typically operates on
the difference between the reference and the measurement signal. By using 2DOF
controllers, the transfer functions among the reference signal, measurement noise,
and output can be designed independently, which allows better design trade-offs.

5.2.2 Feedback Control of Repetitive Reference Signals

In many nanopositioning control problems, the reference signals are determined by
the physics of the underlying application and can be exploited in the control design.
In particular, the reference signals in SPM are often repetitive. For example, in raster
scanning SPM, the tip is positioned relative to the sample along consecutive scan
lines, which typically requires repetitive reference signals such as triangular or saw
waveforms.

Repetitive reference signals can be tracked with tailored feedback controllers. In
adaptive control [23], the control law itself is adapted online to improve the tracking
performance. In repetitive control [24, 25], the feedback loop is augmented with
a signal generator which recreates the a priori known reference signal, typically
by means of a pure delay element. By doing so, the repetitive tracking error can
be reduced after a certain number of iterations at the price of increased settling
time, implementation complexity, and robustness issues. Iterative learning control
(ILC) [26] is a similar learning-based concept in which, in contrast to repetitive
control, the initial conditions are reset at every iteration and hence, discontinuous
operation is possible. ILC-based controllers can achieve nearly perfect tracking but
might result in a significant computation complexity which imposes requirements
on the digital signal-processing hardware.
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5.2.3 Feedforward Control and Reference Signal Shaping

Feedback control is often combined with feedforward control in which the dynamics
and nonlinear characteristics of the actuator, such as creep and hysteresis, are
anticipated, modeled, and inverted [27]. Feedforward control can significantly
improve the closed-loop performance. However, it depends on the availability of
accurate models and can be severely affected by changes in the plant dynamics.
In some cases, nonlinear characteristics can be suppressed or inverted by using
special hardware, such as in the case of charge-driven piezoelectric actuators. This
simplifies the control design but increases the complexity and cost of the hardware.

A special case of feedforward control is command pre-shaping, i.e. shaping or
modifying of the reference signal. For instance, vibrations induced by the reference
signal can be reduced by using impulse input sequences [28]. In raster scanning
SPM, shaping of the turnaround points of triangular waveforms has been extensively
used and matured into a useful technique [29]. Most recently, alternative SPM
scan trajectories which result in dramatically different reference signals have been
proposed, such as spiral [30–32], cycloid [33], and Lissajous [34] scan trajectories.
These trajectories can also be obtained by mathematical optimization [35].

5.2.4 Hybrid Feedback Control

Hybrid systems are dynamical systems that combine continuous and discrete
dynamics [36]. They arise naturally in sampled digital control architectures and
in applications where dynamical systems are combined with discrete logic. For
example, in the framework of switched systems [37], multiple linear feedback
controllers are switched depending on various algebraic and logical conditions,
such as the operating points of the plant. Hybrid control systems are a particularly
promising technique for advanced control of mechanical systems: on the one hand,
like nonlinear systems, they have the potential of overcoming the fundamental
limitations of linear feedback control; on the other hand, they allow the use of well-
established linear control techniques in combination with nonlinear control laws.

One of the earliest developments of this kind in the field of applied hybrid control
is the Clegg integrator [38]. Clegg observed that in a feedback loop with a single
integrator, the phase lag due to the integral component can be significantly decreased
if the state of the integrator is reset to zero whenever its input reaches zero. Denoting
the integrator state x(t) and its input e(t), the dynamics of a Clegg integrator in state-
space are

ẋ(t) = e(t) when e(t) �= 0 (5.1)

x(t) := 0 for e(t) = 0 (5.2)
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For instance, if e(t) is the tracking error, resetting the integrator state when the
tracking error is zero reduces the unnecessary overshoot caused by x(t) �= 0 when
the error is already removed. The effect of the reset control law is quite significant:
the magnitude response of the integral controller remains unchanged, the phase lag
decreases from 90◦ to only about 50◦.

More generally, the Clegg integrator belongs to the class of reset control
systems which have been further generalized and studied both theoretically and
experimentally [39–41]. The concept of reset control is conceptually close to that of
impulsive control, which will be studied in the remainder of this chapter.

5.3 Impulsive Control

Dynamical systems which evolve continuously but are subject to sudden impulses
or impacts arise naturally and are one of the basic hybrid phenomena. Examples
include colliding particles, bouncing balls, and systems with mechanical impacts.
In a general treatment, impulsive systems have been studied thoroughly [42]. This
chapter reviews a control concept recently introduced in nanopositioning and based
on impulsive changes of the states of a linear feedback controller. We shall introduce
a particular type of impulsive control namely, ISM, and analyze the stability and
performance of the resulting hybrid impulsive system.

5.3.1 Impulsive State Multiplication

In ISM, the state of a dynamical system is multiplied by given factors at discrete
time instants.

Let {ti}∞
i=1 denote a sequence of time instants such that 0 = t1 < t2 < · · · < ti <

· · · . Let {Qi}∞
i=1 be a sequence of real square multiplication matrices Qi ∈ R

n×n for
i = 1,2, . . . . The multiplication matrices will be referred to as state multiplication
matrices (SMM), and in what follows, they will be assumed to be diagonal

Qi =

⎡
⎢⎢⎣

qi1 0 . . . 0
0 qi2 . . . 0
. . .

0 . . . qin

⎤
⎥⎥⎦ (5.3)

for i = 1,2, . . . ; n is the number of states in the state vector.

Definition 1. Let K be a linear, time-invariant system with state space matrices
(A,B,C,D). K with ISM is a dynamical system that evolves according to the
following equations:



5 A Hybrid Control Approach to Nanopositioning 95

ẋ(t) = Ax(t)+Bu(t) when t �= ti, i = 1,2,3, . . . (5.4)

x(ti) := Qix(t
−
i ) for i = 1,2,3, . . . (5.5)

y(t) =Cx(t)+Du(t) (5.6)

where t ∈ R+, xK(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n,
D ∈ R

1×m and will be denoted as

ISM(K,{ti}∞
i=1,{Qi}∞

i=1). (5.7)

The assumption on the diagonality of SMM is not critical; however, it simplifies the
analysis because it excludes any state coupling at the time of the multiplication.

5.3.2 Stability

Linear systems with ISM are subject to instantaneous state changes at predefined
time instants. Because a stable linear system can be destabilized with ISM, the
stability of the resulting hybrid system must be studied carefully with respect to
the impulse magnitudes and timing. In the following, we present a bounded-input-
bounded-output stability theorem for ISM-based systems.

Theorem 1. Consider a system with ISM

ISM(K,{ti}∞
i=1,{Qi}∞

i=1)

Assume that
0 < ti+1 − ti <Θ

and that the input signal is bounded, i.e.

‖u(t)‖∞ < ∞

If there exists q < 1 such that

∥∥eA(ti+1−ti)Qi

∥∥< q

for i = 1,2,3 . . . then

‖x(t)‖∞ < ∞

The proof of Theorem 1 is relatively straightforward and can be found in [9].
The theorem parallels the results known from the theory of impulsive systems as
elaborated, e.g., in [42]. While the theorem guarantees bounded-input-bounded-
state stability when only an upper bound on the time between impulses is assumed,
stronger results can be obtained, e.g., when the average time between the impulses is
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Fig. 5.2 Sufficient condition for stability of a second-order system under regular impulses. The
plots show the quantity ‖eAT Qi‖ as a function of the frequency of the impulses applied and the
natural frequency and the damping coefficient of the plant, respectively. White corresponds to
values smaller than one, black corresponds to values greater than or equal to one. The system
is guaranteed to be stable in the white parameter region. Figure c©IEEE 2012, reprinted from [9]
with permission

considered. This approach is well known in switched systems [37]. Theorem 1 sheds
light onto the relation between the frequency and the magnitude of the impulses and
the dynamics of the linear system required for stability. For example, if the time
between the impulses is fixed, T := ti+1 − ti for i ∈ N, and the magnitude of the
impulses is upper bounded by Q such that ‖Qi‖≤Q for i∈N, the stability condition
can be rewritten as

‖eAT‖< 1/Q. (5.8)

Hence, if the stability condition applies, the possible locations of the system poles
are limited. It can be shown that an upper bound on the real part of the system
poles is

ℜ(λ )≤ 1
T

log‖eAT‖<− logQ
T

. (5.9)

For Q> 1, i.e., when the impulses magnify some of the states, logQ > 0 and the real
parts of the poles are enforced to be less than a negative number i.e. proportional to
the frequency of the impulses. When Q ≤ 1, the upper bound shifts to nonnegative
numbers, suggesting that poles with a nonnegative real part may be present in
a stable impulsive system. Indeed, such systems can be found, for instance, by
constantly counteracting a state growth with an appropriate impulsive control law.

In the following, we demonstrate the stability condition for a second-order
system with natural frequency ωn and damping coefficient ξ = 0.3. Figure 5.2
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shows the stability criterion as a function of the impulse frequency 1/T and the

plant parameter ωn. The impulse magnitude is uniform and fixed as Qi =

[
2 0
0 2

]
.

The white region depicts the parameter space in which stability is guaranteed,
the dark region depicts the parameter space in which ‖eAT Qi‖ > 1 and stability
is not guaranteed. It is apparent that a high damping coefficient and/or a high
natural frequency are vital for stability; stability is not guaranteed if fast impulses
are applied to plants which are relatively “slow” or insufficiently damped. It also
becomes clear that the frequency of the impulses may interfere with the natural
frequency of the plant. For instance, the line-shaped stability regions in Fig. 5.2
arise when the impulses align with the natural frequency ωn, e.g., when T = c/ωn

for some c ∈ N. In such a case, the stability may be guaranteed even for very high
impulse frequencies.

5.4 Impulsive Control for Feedback Systems

In this section, the concept of ISM is applied to feedback control. A novel control
architecture is presented in which a linear feedback controller is extended into a
hybrid system with ISM.

The control architecture is based on a one degree of freedom, single-input-single-
output feedback loop which combines linear and impulsive control as shown in
Fig. 5.3. The aim of the controller, K, is to force the plant, P, to track the reference
signal, r. The controller consists of a linear feedback and a linear feedforward
component, KFB and KFF, respectively. The feedback component is subject to
impulsive state changes by the ISM block which can be driven either by the
reference or by the measurement signals. The control and measurement signals are
affected by the input disturbance signal, di, the output disturbance signal, do, and
the measurement noise, n.

Fig. 5.3 Control architecture combining linear and impulsive control. Plant P is controlled by
controller K comprising a feedforward component, KFF, and a feedback component, KFB. The ISM
block impulsively modifies the states of KFB based on the reference or measurement signals. Figure
c©IEEE 2012, reprinted from [9] with permission
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In what follows, we present a control design for tracking piecewise constant and
piecewise affine reference signals that is based on the control architecture shown in
Fig. 5.3. Piecewise constant and piecewise affine reference signals are widely used
in nanopositioning and specially in SPM. The control architectures we present can
significantly improve the tracking bandwidth for these reference signals without
increasing the sensitivity to measurement noise. Thereby, they overcome one of the
fundamental limitations of linear feedback systems. Finally, a general methodology
is presented for the design of more complex control architectures, such as those for
feedback control with multiple control objectives.

5.4.1 Tracking of Piecewise Constant Signals

In the following, a linear feedback control loop with a single integrator for tracking
of piecewise constant signal is extended with ISM-based control laws.

Definition 2. A piecewise constant signal r(t), t ≥ 0 is determined by a series of
time instants {ti}∞

i=1 and values {vi}∞
i=0 such that r(t) = vi when t ∈ [ti−1, ti) for

i ∈ N.

First, consider the control scheme of Fig. 5.3 with ISM = 0, KFF = 0, and P with
no poles at the origin and assume that the controller involves a single integrator. In
such a control scheme, a step signal can be tracked with a zero steady-state error.
Because a piecewise constant signal can be viewed as a series of steps, it can also
be tracked if the control loop has a sufficient bandwidth. The tracking will result
in a short transient effect at the points of step changes and near-zero tracking error
elsewhere.

By using impulsive control, the tracking performance of the single integral
controller KFB = k/s can be improved without increasing the controller bandwidth.
This can be done by using the state multiplication matrix (SMM).

Qi =

[
vi

vi−1

]
(5.10)

for i ∈ N, which multiplies the state of the feedback controller at time instants ti,
i ∈ N, by the ratio of the successive reference signal values. It can be shown that by
using this SMM, the tracking error decays exponentially for any piecewise constant
signal if the plant dynamics can be neglected:

Theorem 2. Consider the control scheme in Fig. 5.3 with KFF = 0, KFB = k
s . If

P(s) = 1, all disturbance signals are zero and r(t) = vi for t ∈ [ti−1, ti), i ∈ N, the
controller

K̂FB = ISM

(
k
s
,{ti}∞

i=1,{
[

vi

vi−1

]
}∞

i=0

)
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a b

Fig. 5.4 Tracking of a piecewise constant reference signal with and without impulsive control
(ISM). With impulsive control, the tracking error converges to zero despite the low bandwidth of
the controller. The controller bandwidth governs the error bounds (shown in (b)), which decay
exponentially to zero. (a) System output. (b) Tracking error. Figure c©IEEE 2012, reprinted from
[9] with permission

tracks the reference signal with error

e(t) = vie
−kt .

Theorem 2 bounds the tracking error of an impulsive system with a single integral
controller and a piecewise constant reference on an ideal plant. It says that the
reference is tracked with an error that decays exponentially to zero.

We illustrate the results of Theorem 2 through simulations. A piecewise constant
reference signal (shown in Fig. 5.4a as thin blue curve) was randomly generated
and tracked on an ideal plant, P(s) = 1, with a single integral feedback controller
K(s) = 5/s. The bandwidth of the controller is less than 1 Hz, which is very low
compared with the bandwidth of the reference signal. Consequently, the reference
signal is tracked poorly and with a large tracking error, as shown in Fig. 5.4a and
Fig. 5.4b by the thick green curve. When K is equipped with ISM, the resulting
feedback controller K̂ is the nonlinear system

K̂ = ISM

(
5
s
,{ti}∞

i=1 ,

{[
vi

vi−1

]}∞

i=0

)
. (5.11)

In controller K̂, the impulsive control law multiplies the state of the low bandwidth
integrator by the ratio of the successive values of the reference signal. By doing so, a
near-perfect tracking performance is achieved after a short transition period (shown
in Fig. 5.4a, b as dashed red curve). The duration of the transition period and the
magnitude of the tracking error can be derived from Theorem 2. The bounds on the
tracking error (up to the scaling by vi) are indicated in Fig. 5.4b by the solid black
curve.
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The assumption of P(s) = 1 is critical for the validity of Theorem 2 and translates
into the requirement of a sufficient bandwidth and damping of the plant in the
frequency region where impulses are applied. In many practical scenarios, this
requirement is fulfilled: nanopositioners are often designed specifically for high
bandwidth [43] and their dynamics may in addition be improved by active or
passive damping [44, 45]. Also, the linearity of the nanopositioner is important. For
nanopositioners based on intrinsically nonlinear actuators, such as piezoelectric tube
actuators or piezo-stack actuated flexure stages, a linearizing stage has to precede the
application of impulsive control. Alternatively, in the case of piezoelectric actuation,
using a charge amplifier instead of the conventional voltage amplifier to drive them
can bring about sufficient linearity [46].

5.4.2 Tracking of Piecewise Affine Signals

Similar to piecewise constant signals, piecewise affine signals can be tracked by
extending a linear feedback loop with an ISM-based control law.

Definition 3. A piecewise affine signal r(t), t ≥ 0, is determined by a series of time
instants {ti}∞

i=1, offsets {vi}∞
i=0 and slopes {wi}∞

i=0 such that

r(t) = vi +wi(t − ti−1) (5.12)

when t ∈ [ti−1, ti) for i ∈ N.

Definition 3 defines a piecewise affine signal as a sequence of ramp-like signals
with successive segments that do not necessarily share their endpoints. In addition,
we will assume that the ramp always has a nonzero slope, i.e., wi �= 0 for i ∈ N.
The class of piecewise affine signals includes some of the signals widely used in
nanopositioning, such as triangular waveforms with constant or varying speed and
amplitude.

In the control framework of Fig. 5.3, piecewise affine reference signals can be
tracked using a feedforward gain compensation and a single integral feedback
controller. If the plant, P, has a nonzero, finite DC gain kP which is known exactly,
feedforward compensation with a constant term is applicable, i.e. KFF = 1

kP
. With

this feedforward compensation, it can be shown that a single integral feedback
controller KFB(s) = k

s tracks a ramp reference signal with a zero steady-state error.
Consequently, given sufficient bandwidth of the system, also a piecewise affine
reference can be tracked.

By employing impulsive control, fast piecewise affine signals can be tracked even
with low bandwidth KFB. The ISM control law that can do this originates from
the control architecture for piecewise constant signals derived in Sect. 5.4.1; the
problems are linked because tracking piecewise affine signals inherently involves
tracking piecewise constant signals. This can be shown for various families of
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Fig. 5.5 Tracking of a piecewise affine signal on a second-order positioner (simulation). The
tracking error is approximately piecewise constant and is determined by the slope of the reference
signal. Figure c©IEEE 2012, reprinted from [9] with permission

plants, e.g., for linear, time-invariant plants with a nonzero, finite gain and proper
transfer function [9]. For these plants, the steady-state tracking error under a ramp
input is constant and proportional to the slope of the ramp. If the bandwidth of the
plant is sufficiently high, such that the transients can be neglected, the tracking error
can be approximated by a constant. Hence, because a piecewise affine signal is just
a sequence of ramp signals, the tracking error for a piecewise affine reference signal
is approximately a piecewise constant signal, provided the bandwidth of the plant
is sufficiently high. Therefore, the tracking error can be reduced by applying the
techniques presented in Sect. 5.4.1.

Figure 5.5 illustrates these observations in simulation for a second-order plant
with natural frequency 1 kHz and damping ratio 0.5. A random triangular waveform
with different amplitudes and slopes was applied to the plant and the output
was subtracted from the input to obtain the tracking error. The tracking error is
approximately piecewise constant, with short transients at the points where the
reference signal changes the slope. The character of the transients depends on the
bandwidth and damping of the plant.

Having realized that the tracking error can be approximated by a piecewise
constant signal whose values are proportional to the slope of the ramp, wi, and
applying the results presented in Sect. 5.4.1, the SMM for tracking piecewise affine
signals becomes

Qi =

[
wi

wi−1

]
(5.13)
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for i ∈ N. This SMM multiplies the state of the feedback controller by the ratio
of the successive slopes of the reference signal. By doing so, the tracking error
for piecewise affine signals can be reduced under the same conditions as discussed
in Sect. 5.4.1, namely, for sufficiently damped plants the tracking error diminishes
according to the exponential bounds of Theorem 2.

5.4.3 Feedback Control with Multiple Control Objectives

In the control architecture of Fig. 5.3, the ISM component is able to simultaneously
execute multiple impulsive control laws which are based on different input signals
and affect different states of the linear controller. Such a configuration is needed
when more complex or multiple control objectives have to be met. A general way to
design an ISM-based feedback control architecture in such a case is to partition the
states of the linear controller and apply different ISM control laws to different parts
of the controller.

Consider that the feedback controller, KFB, is decomposed as

KFB(s) =
N

∑
j=1

K j
FB(s), (5.14)

where K j
FB, j = 1, . . . ,N are the controller components. Assume that the realization

of the i-th transfer function is (Ai
FB,B

i
FB,C

i
FB) and consider the realization of the

sum of transfer functions with

AFB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1
FB 0 . . .

0 A2
FB 0 . . .

. . .

0 . . . 0 A j
FB 0 . . .

. . .

AN
FB

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the state partitioned as

xFB = ( x1
FB . . . xN

FB )

where x j
FB ∈ R

n( j), j = 1, . . . ,N, is the state of K j
FB with the dimension n( j) ∈ N.

Accordingly, the input matrix

BFB =
[

B1
FB B2

FB . . . BN
FB

]T
(5.15)
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where B j
FB ∈ R

n( j)×1 is the input matrix of K j
FB. The outputs of the controller

components are added,
CFB =

[
C1

FB C2
FB . . . CN

FB

]
, (5.16)

where C j
FB ∈ R

1×n( j) is the output matrix of K j
FB.

Assume that ISM is applied to the partitioned feedback controller,

K̂FB := ISM(KFB,{ti}∞
i=1,{Qi}∞

i=1). (5.17)

The resulting impulsive controller, K̂FB, has dynamics that evolve between the
impulses, t �= ti, according to

˙̂xK(t) = AFBx̂K(t)+BFBe(t)

y(t) =CFBx̂K(t),

where x̂K denotes the state of K and e(t), y(t) denote the system input and output,
respectively. At the time of impulses, t = ti, the state of K is multiplied

x̂K(ti) := Qix̂K(t
−
i ).

As the state x̂K is partitioned according to the decomposition of the feedback
controller, it is straightforward to partition the SMM:

Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1
i 0 . . .

0 Q2
i 0 . . .

. . .

0 . . . 0 Q j
i 0 . . .

. . .

QN
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In the partitioned SMM, Q j
i ∈R

n( j)×n( j) is the SMM corresponding to the controller
component K j

FB. The advantage of the partitioning is that distinct impulsive control
laws can be applied to the controller components. In the special case when Q j

i is an
identity matrix of appropriate dimensions, the corresponding states evolve linearly.
When Q j

i = 0, the corresponding states are reset to zero.
The method described above is general and can be applied to a wide variety of

problems. The control architectures for tracking piecewise constant and piecewise
affine signals presented above are one example thereof. In [9], an example in which
multiple control objectives must be met simultaneously is elaborated. Experimental
results using an ISM-based feedback loop to track a high-bandwidth reference signal
in presence of significant input disturbance are presented in Sect. 5.6.
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5.5 Relation Between Impulsive Control and Signal
Transformation Approach

Recently, a new nonlinear control scheme for nanopositioning has been reported
called STA [47]. STA is based on transformation of the reference, measurement,
and control signals in a feedback loop. For example, triangular reference signals
are tracked in STA by transforming the triangular waveforms into a ramp signal
and vice versa. Interestingly, there is an inherent connection between STA and
impulsive control which is analyzed in this section. The analysis has some important
implications in the theoretical understanding of STA and leads to significant
improvements in the implementation and performance of STA.

5.5.1 Signal Transformation Approach

STA is a control technique in which a linear feedback system is equipped with a pair
of possibly time-invariant, nonlinear transformation functions. Consider the control
scheme in Fig. 5.6. The transformation functions Φ ,Φ−1 are mutually inverse and
translate the signals between a low-bandwidth and high-bandwidth representation.
Before the high speed reference signal enters the feedback loop, it is transformed by
Φ into the low-bandwidth representation seen by the linear feedback controller K.
The control effort that K generates is translated by Φ−1 before it is applied to the
positioner to ensure that the desired reference signal is tracked. The measured output
of the positioner is transformed by Φ back into the low-bandwidth representation.

The key idea of STA is that if the low-bandwidth representation of r is tracked
accurately by K, the positioner follows the desired reference signal even if the
bandwidth of K is much lower than what would be needed to track r in a
conventional control architecture. The control framework of STA is general; specific
transformation functions can be designed for the reference signals of interest.

One particular case is a triangular reference signal, which can be transformed
into a ramp signal and vice versa by means of an affine, time-variant transfor-
mation [48, 49] as follows. Assume that the reference signal, r(t), has frequency
f = 1/T and range [0,A]. For t ≥ 0, divide the time into intervals corresponding
to the half periods of the triangular waveform, [(i− 1)T

2 , i
T
2 ) for i ∈ N. In the odd

Fig. 5.6 Signal transformation approach to nanopositioning. A pair of mutually inverse trans-
formation functions Φ , Φ−1 are used to transform the signals between a low-bandwidth and
high-bandwidth representation. Figure c©Elsevier 2012, reprinted from [11] with permission
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and even time intervals, r(t) is strictly increasing and decreasing, respectively, and
is governed by the equation

r(t) = (−1)(i−1) 2A
T

(
t −� i

2
�T

)
(5.18)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

Definition 4. The forward and the inverse signal transformation operator, for
conversion between a triangular waveform of frequency 1/T and range [0,A] and
a ramp signal with slope 2A/T are

Φ(x(t), t) = (−1)(i−1)x(t)+2A� i
2
� (5.19)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

Φ−1(x(t), t) = (−1)(i−1)x(t)+(−1)i2A� i
2
� (5.20)

for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N.

In the STA control scheme of Fig. 5.6, the above transformation functions
can be used to facilitate the tracking of fast triangular waveforms by means of
a low bandwidth double integral controller K. This is particularly beneficial in
nanopositioning, wherein a low bandwidth K can be used for a control design with
low sensitivity to the measurement noise, n.

5.5.2 ISM and Multiplicative Signal Transformation

The link between ISM and STA is based on the fact that multiplicative impulsive
changes to the state of a linear system are equivalent to multiplicative transformation
of the system input and output. This important fact is stated precisely in the
following.

Consider the control scheme in Fig. 5.7. The input and output of a linear, time-
invariant system K, are transformed by a pair of signal transformation operators J−1

and J, respectively. Assume that the time, t ≥ 0, is divided into intervals [ti−1, ti),
i ∈ N. The transformation operators are piecewise constant over the time intervals
and multiply the signals as

J(u(t), t) := jiu(t)

J−1(u(t), t) := j−1
i u(t)

(5.21)
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Fig. 5.7 Multiplicative signal transformation. The input and output of linear system K are
transformed by a pair of mutually inverse multiplicative transformation operators. This scheme
is equivalent to ISM applied to system K, thereby creating a link between ISM and STA. Figure
c©Elsevier 2012, reprinted from [11] with permission

for t ∈ [ti−1, ti), i ∈N. The multiplication factors ji, i ∈N, are nonzero real numbers.
At any given time point t ∈ [ti−1, ti), the input signal, u(t) is transformed into u′(t) :=
j−1
i u(t) and enters K. The output of K, y′(t), is transformed as y(t) = jiy′(t). Hence,

the input and output signals entering K are pre-multiplied and post-multiplied,
respectively, by mutually inverse scalar factors.

The multiplicative signal transformation shown in Fig. 5.7 is tightly related to
ISM. In fact, the following theorem holds:

Theorem 3. For a given input u(t), multiplication factors { ji}∞
i=1 and times {ti}∞

i=1,
the output y(t) of system K̄ is the same as the output, z(t), of the impulsive system

K̂ := ISM

(
K,{ti}∞

i=1,{
ji+1

ji
I}∞

i=1

)
(5.22)

for all times t ≥ 0.

In other words, multiplicative signal transformation by factors ji and 1/ ji is
equivalent to ISM with SMM Qi =

ji+1
ji

I. This fact can be shown by induction;
the proof can be found in [11].

5.5.3 Tracking of Triangular Waveforms

Based on the relation between multiplicative impulsive changes to the state of a lin-
ear system and multiplicative signal transformation of its input and output presented
in the preceding section, STA and ISM for tracking of triangular waveforms can be
rigorously linked.

To reveal the connection between ISM and STA, the STA control scheme for
tracking triangular waveforms (see Sect. 5.5.1) can be decomposed and simplified
in a series of steps. This provides useful insights into the inherent properties of
the scheme and reveals its relation to impulsive control. A detailed exposition is
presented in [11]; in what follows, only the basic results are presented.

First, define the signal transformation operator

J(x(t), t) := (−1)i−1x(t) (5.23)
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a

b

c

Fig. 5.8 Tracking of triangular waveforms: the relation between STA and ISM. (a) shows an
STA control scheme with signal transformation blocks Φ and Φ−1. (b) shows a control scheme
equivalent to that shown in (a) with the signal transformation blocks decomposed. (c) shows an
equivalent ISM-based control scheme

for t ∈ [(i− 1)T
2 , i

T
2 ), i ∈ N where 1/T is the frequency of the triangular reference

signal. The operator J inverts the sign of the input signal in the even half periods of
the reference signal, i.e., when the triangular waveform is decreasing. It preserves
the sign of the input signal in the odd half periods. Hence, J is the basic element of
the transformation between a triangular waveform and a ramp signal.

Using the transformation operator J and defining an auxiliary stair-like signal
f (t), we realize that the signal transformation operators defined in Definition 4 can
be expressed as

Φ(x(t), t) = J(x(t), t)+ f (t) (5.24)

Φ−1(x(t), t) = J(x(t)− f (t), t) (5.25)

Therefore, the control scheme of Fig. 5.8a is equivalent to the control scheme of
Fig. 5.8b, with the transformation blocks decomposed.

By applying basic algebraic rules for signal flow diagrams and Theorem 3, the
control scheme of Fig. 5.8b can be transformed into the control scheme shown in
Fig. 5.8c, where the disturbance signal

g′(t) = (−1)i−1 2A
k1T

e
− k2

k1
t

(5.26)
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for t ∈ [(i−1)T
2 , i

T
2 ), i ∈ N, and the feedback controller is an ISM-based impulsive

system

ISM(K,{i
T
2
}∞

i=1,{−I}∞
i=1) (5.27)

while yielding the same input–output relation.
The analysis reveals an important fact: the STA scheme for tracking triangular

waveforms is equivalent to a negative feedback control loop with a constant-term
feedforward connection and an impulsive feedback controller. The sign of the con-
troller state is reversed at each turnaround point of the triangular reference signal.
Furthermore, the analysis reveals the presence of a fixed bounded signal, g′(t),
which enters the feedback loop externally. The signal is implicit in the definition
of the transformation operators and decays exponentially to zero; however, it is
responsible for the large transient tracking error typically observed in the STA
control loop.

5.5.4 Transient Performance of STA

The analysis presented in the preceding sections shows that the transient tracking
error of STA for tracking triangular waveforms is strongly affected by the distur-
bance signal g′(t) entering the feedback loop, see Fig. 5.8c. The disturbance signal
is intrinsically generated by the signal transformation operators and depends on the
reference signal, r(t), and the double-integral feedback controller, K:

K(s) =
k1s+ k2

s2 (5.28)

Exact knowledge of the disturbance signal allows us to estimate the tracking
error of STA analytically. It can be shown [11] that the tracking error induced by
g′(t) corresponds to a natural response of a second-order system with “damping
coefficient” k1 and “spring coefficient” k2, with k1 and k2 being the integral gains of
the feedback controller K. For example, if k2 > k2

1/4, the equation of the tracking
error induced by the intrinsic disturbance signal is

|eg′(t)|=
2A/T√
k2 − k2

1
4

e−
k1
2 t sin t

√
k2 − k2

1

4
(5.29)

The equation says that the magnitude of the tracking error induced by g′(t) is
a sinusoidal waveform that exponentially decays to zero. It also shows that it is
possible to design the feedback controller so that the transient response is “critically

damped” by choosing gains k1, k2 that preserve the equation k2 − k2
1
4 = 0.
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Fig. 5.9 The transient tracking error of STA as a function of the feedback controller gains. By
choosing the controller gains carefully, a critically damped transient response can be achieved
(dashed blue line). Oscillations may occur, however, for certain combinations of controller gains
(bold red line). The transient tracking error can be quantified accurately (dotted green line). Figure
c©Elsevier 2012, reprinted from [11] with permission

In the following example, the effect of k1 and k2 on the transient tracking error
of STA is demonstrated. Assume that P is a second-order positioner with natural
frequency 3,000 Hz and damping coefficient 0.8, and the reference signal is a
triangular waveform of 100 Hz frequency and 5 μm amplitude. We will compare
the tracking performance of the STA control architecture of Fig. 5.8a if two different
feedback controllers are used. In the first controller, the integral gain coefficients are

k1 = 100 and k2 = 2,500, so that k2 − k2
1
4 = 0. In the second controller, k1 = 50 and

k2 = 2,500. Figure 5.9 shows the tracking error for the first and second controller
as dashed blue and solid red lines, respectively. As predicted by theory, the first
controller exhibits a transient tracking error that converges exponentially to zero
without oscillations. The tracking error of the second configuration also decays
exponentially to zero, but, with undesirable transient oscillations. For the second
configuration, the estimate of the transient tracking error based on (5.29) is shown
as dashed green line. Equation (5.29) captures the tracking error exactly if P(s) = 1;
for plants that are well damped and sufficiently fast, such as the one used in the
simulation, (5.29) can be used as an accurate estimate of the tracking error.

The transient response of STA can be improved in several ways. In the most
straightforward approach, STA can be simplified by removing the parasitic dis-
turbance signal g′(t) completely: as the preceding analysis shows, STA can be
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implemented by merely inverting the signs of the input and the output of the
feedback controller and using a constant feedforward term. Also, an equivalent
performance can be achieved with the ISM-based control scheme of Fig. 5.8c. Other
ways to improve the performance of STA are discussed in [11].

5.6 Experiments

In this section, the concept of impulsive control and its properties are demonstrated
in an experimental setup. The experimental results are obtained on a custom-built
AFM, a type of a scanning probe microscope.

A schematic of a common AFM setup is shown in Fig. 5.10. The sample under
investigation is mounted on a nanopositioner, or scanner, which can move the
sample in three degrees of freedom. To enable high-speed, high-resolution motion
in the presence of external disturbances and modeling uncertainties, the scanner
is typically equipped with highly sensitive noncontact sensors and operated in a
feedback loop. During operation, the sample is brought into contact with the tip of a
microfabricated cantilever and positioned relative to the tip along a two-dimensional
scan trajectory, e.g., along a raster-based, spiral or Lissajous pattern. Properties of
the sample, such as its topographical, electrical, or magnetic properties, are inferred
from the nanoscale forces acting on the cantilever tip as the tip is moved across

Fig. 5.10 Schematic of an atomic force microscope
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the sample. In the schematic shown in Fig. 5.10, the deflection of the cantilever is
estimated by means of an optical read-out system in which a laser beam is reflected
from the cantilever tip, passes through an optical system and detected by means of a
special-purpose optical sensor. The deflection of the cantilever provides an accurate
estimate of the topography of the sample.

The feedback loop which controls the scanner motion is of key importance for the
accuracy and speed of the AFM instrument. In the experiments described below, the
feedback loop is equipped with an ISM-based hybrid controller or a linear feedback
controller for comparison and used for high-speed AFM imaging. In the imaging
experiments, a raster-based scan trajectory is followed by actuating the scanner
in two orthogonal directions. In the fast, x-direction, a triangular reference signal
is applied to scan the sample in consecutive scan lines; in the slow, y-direction,
the position of the scanner is increased in discrete steps at the end of every scan
line. In the x-scan direction, the nanopositioner uses a voice-coil actuator which
is particularly suitable for this task because of its clean dynamics and linearity.
In the y- and z-scan directions, a piezo-electric actuator is used. In the imaging
experiments, thermomechanical cantilevers were used [50,51]. The sample consists
of nanolitograpically patterned nanostructures on silicon surface.

For the stability and performance of impulsive control and STA, the flat
frequency response of the nanopositioner is of key importance. To that end,
the mechanical resonances of the nanopositioner were damped by inverting its
dynamics. The resulting transfer function could be approximated as P(s)≈ 1 in the
frequency region below approx. 250 Hz. Owing to the voice-coil actuation principle,
the dynamics of the scanner are highly linear, which is important for impulsive
control. For positioners with significant nonlinearities, such as piezo-actuated
positioners, additional compensation techniques might have to be employed, such
as feedforward inversion [27] and charge amplifiers [46]. A magnetoresistive
sensor [52] with a bandwidth exceeding 10 kHz was used to sense the position of
the nanopositioner.

5.6.1 Impulsive Control for Tracking Piecewise Affine Signals

In this experiment, the performance of a linear feedback loop with and without ISM
is compared and its effect on the quality of AFM imaging is demonstrated.

The control architecture used was the one shown in Fig. 5.3, with P denoting the
shaped positioner dynamics along the fast scan axis. The feedback controller, KFB

was chosen as a simple integral controller such that the closed loop system had a
very low bandwidth below 1 Hz. A benefit of such a scheme is that it minimizes the
impact of measurement noise. The feedforward term KFF was unity as the DC gain
of the shaped positioner is 1.

The imaging was performed over an area of 3.5μm×1.5μm in a raster pattern. In
the first case, the controller was only the linear feedback system as described above.
In the second case, the linear feedback system was equipped with an ISM-based
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Fig. 5.11 Comparison of tracking error for closed loop without and with ISM. The upper panel
shows the settling period of ISM, the lower panel shows the steady-state performance. The
frequency of the reference signal was 100 Hz. Figure c©IOP Publishing 2011, reprinted from [10]
with permission

impulsive control law as described in Sect. 5.4.2. Because the reference signal is a
constant-amplitude, constant-frequency triangular waveform, the ISM control law
simply inverted the sign of the accumulator of K at every turnaround point of r.

The tracking performance of the closed loop system with and without ISM
is compared in Fig. 5.11. Using the ISM-based feedback controller, after a short
settling time (top panel) near-zero steady-state error (bottom panel) was achieved;
the convergence time corresponds to the rise time of the feedback loop K/(1+K)
under a step input which is consistent with the estimates presented in Sect. 5.5.
The reduction of the positioning error is truly remarkable as it is enabled by the
impulsive control law; the bandwidth of the linear control remains very low. This
has a significant effect on the noise sensitivity of the control loop, an important
aspect in nanopositioning as we shall see in the next section.

Figure 5.12 demonstrates how the tracking performance affects AFM imaging
by comparing the images obtained using open loop control (on the left), feedback
control without ISM (in the middle), and feedback control with ISM (on the right).
The closed-loop image without ISM is similar to the open-loop image because of the
very low bandwidth of the controller. The tracking lag resulted in an uncorrected,
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Fig. 5.12 The images of nanopatterns obtained with three different control schemes. The image
on the left was acquired in open loop, using only the shaping of the positioner dynamics. The
image in the middle was obtained using feedback control without ISM. The image on the right was
acquired using feedback control with ISM. The height is in nanometers. The images were obtained
in approx. 2 s. Figure c©IOP Publishing 2011, reprinted from [10] with permission

unknown shift in the image which was different for forward and backward scans. On
the other hand, ISM removed the tracking lag almost perfectly without increasing
the bandwidth of K. This not only resulted in detecting the real positions of the
nanopatterns but also yielded consistent data in both scan directions, speeding up
the imaging by a factor of two.

5.6.2 Sensitivity to Measurement Noise

In high-speed nanopositioning, measurement noise can significantly deteriorate the
positioning accuracy. For example, in the control architecture of Fig. 5.3, additive
measurement noise affects the measurement signal, enters the feedback loop, and is
projected into the motion of the nanopositioner. An estimate of the nanopositioner
motion induced by the measurement noise is an important figure in assessing the
feedback control scheme and its suitability for nanopositioning. In the following,
the nanopositioner motion induced by measurement noise is estimated for a high-
bandwidth linear controller and an ISM-based controller of equivalent tracking
performance.

The character and frequency spectrum of the measurement noise are determined
by the position sensor. In what follows, a relatively noisy magnetoresistive position
sensor is used to demonstrate the effect of ISM. The spectral characteristics of the
measurement noise are presented in Fig. 5.13 and are largely dominated by 1/f noise
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Fig. 5.13 Frequency spectra of the positioner motion induced by measurement noise. The mea-
surement noise (dashed green curve) significantly affects the positioner motion if a high-bandwidth
linear controller is used (solid blue curve). By using impulsive control, the positioning error
introduced is significantly smaller (red curve) without compromising the tracking performance.
Figure c©IEEE 2012, reprinted from [9] with permission

as is common for this type of sensor; spurious peaks occur at frequencies which
are multiples of 50 Hz and are due to the ambient electrical noise. The standard
deviation is approx. 9 nm over the frequency range from 0 Hz to 3 kHz.

For the purposes of a fair comparison, the ISM-based controller used in
Sect. 5.6.1 was compared with a linear high gain integrator KFB(s) = 1,530/s. By
increasing the gain of the integrator, the steady-state performance of both control
schemes was made equivalent. The ISM-based and the linear controller were used
to track a reference signal of frequency 130 Hz.

For the linear controller, the simulated spectral characteristics of the estimated
positioning error are shown in Fig. 5.13 in blue. Because of the high bandwidth of
the controller, the measurement noise at low frequencies significantly affects the
motion of the positioner and induces a positioning error with a standard deviation
of more than 8 nm over the frequency range examined.

For the ISM-based control scheme, the standard deviation of the positioning
error is less than 1 nm over the frequency range from 0 Hz to 3 kHz. The spectral
characteristics are shown in Fig. 5.13 in red. This improvement in resolution is
achieved even though the tracking performance is not compromised; in fact, the
transient tracking performance of the ISM-based controller is even better than
that of the linear controller. However, there are additional peaks in the frequency
spectrum which are induced by the impulsive changes of the controller state. In
particular, the spectral component at 130 Hz corresponds to the frequency of the
signal tracked. Further spectral components at frequencies which are multiples
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of 130 Hz occur because of the discontinuous evolution of the state. However,
these spectral components have only minimal influence on the overall tracking
performance. Moreover, they are not strongly affected by the closed-loop dynamics
because the impulsive control law is of feedforward type and is fully determined by
the reference signal.

5.6.3 Multiobjective Impulsive Control: Tracking
and Disturbance Rejection

Impulsive control can be applied to feedback controllers with a complex structure,
such as those designed for achieving multiple control objectives simultaneously.
To demonstrate this, a feedback controller for the control architecture of Fig. 5.3 is
presented which can track a fast triangular waveform in the presence of a sinusoidal
input disturbance.

The feedback controller consists of a tracking component, a disturbance rejec-
tion component and an ISM-based component. Using the notation introduced in
Sect. 5.4.3, the controller takes the form

KFB(s) = KR
FB(s)+KDi

FB(s), (5.30)

where KR
FB(s) = k/s is the tracking component, here a single integrator with gain k,

and KDi
FB rejects the sinusoidal input disturbance. For example, KDi

FB can be a peak
filter or a model-based controller. To track the fast triangular waveform with low
gain k, KR

FB is extended with an impulsive control law as in the previous experiments.
On the other hand, given the type of the disturbance, the states of KDi

FB are not
affected by the impulsive control law and evolve linearly.

This feedback controller was used for high-speed AFM imaging in the presence
of significant input disturbance that would cause scanner motion of more than
500 nm in the absence of control. Figure 5.14 compares the images taken in open-
loop mode and with the feedback controller. In open-loop mode, the image is heavily
distorted by the input disturbance, as is evident in Fig. 5.14a. By using the proposed
controller, the effect of the input disturbance is minimized and at the same time,
excellent tracking performance is achieved (Fig. 5.14b).

5.6.4 Transient Performance of STA and Impulsive Control

Section 5.5 provided a detailed analysis of the relation between impulsive control
and the recently published STA. It was shown that for triangular waveform tracking,
both schemes are inherently linked and essentially equivalent. Importantly, one
of the conclusions in the theoretical analysis was that impulsive control has
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Fig. 5.14 High-speed AFM images of approx. 1,000×250×100 nm titanium nitride nanopatterns
taken in the presence of a significant input disturbance. The image in (a) was acquired in open-
loop; the image in (b) was acquired using a feedback controller with combined control objectives
for tracking and disturbance rejection. It demonstrates the combination of impulsive and linear
control: the good tracking performance was obtained with only a low-gain integrator with ISM.
Moreover, at the same time, the effect of the input disturbance was minimized. Figure c©IEEE
2012, reprinted from [9] with permission

significantly less transient tracking error than STA while having the same steady-
state performance. In the following, experiments are presented which compare
impulsive control with STA.

The STA control architecture was implemented as shown in Fig. 5.8a. A double
integral controller

K(s) =
50
s
+

1,000
s2 (5.31)

was used together with the pair of signal transformation operators Φ ,Φ−1 as defined
in Sect. 5.5.1. By doing so, the triangular reference signal was transformed into a
ramp signal which was tracked by the feedback controller K.

In the control architecture based on impulsive control, the control scheme of
Fig. 5.3 was used with the feedforward term KFF(s) = 1 and the feedback controller

KFB(s) =
50
s

(5.32)

As the DC gain of the positioner was known exactly, a single integrator was
sufficient to provide a near-zero tracking error in the steady state. The state of the
feedback controller was multiplied by −1 at every turnaround point of the triangular
reference signal. The factor of −1 is the ratio of the successive slopes of the single
frequency triangular signal.

Figure 5.15 compares the tracking performance of STA and impulsive control. As
predicted by theory, the transient phase of STA is dominated by a large overshoot
which exponentially decays to zero. Because of the overshoot, the amplitude of
the reference signal had to be limited so that the scanner stroke was not exceeded
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Fig. 5.15 Tracking of a fixed frequency triangular waveform with a control architecture based on
impulsive control in blue and signal transformation approach in red. The frequency of the reference
signal was 75 Hz and the amplitude was 1 μm. (a) Tracking output (position). (b) Tracking error.
Figure c©Elsevier 2012, reprinted from [11] with permission

in the transient phase. The transient effects also induced unwanted mechanical
vibrations. The transient phase of the impulsive control scheme did not suffer from
the overshoot present in STA and quickly achieved the convergence as discussed in
Sect. 5.5.4. The steady state performance of both schemes was comparable.

5.7 Conclusion

We have reviewed a novel hybrid control approach to nanopositioning that is
based on the concept of impulsive control. In impulsive control, the states of
a feedback controller are changed abruptly at discrete instances in time. We
have analyzed the stability of impulsive control systems and introduced feedback
control architectures based on impulsive control, including control architectures
for tracking piecewise constant and piecewise affine signals and multiobjective
hybrid feedback control. We discussed the inherent connection between impulsive
control and the recently published STA to nanopositioning. The theoretical findings
are supported by experiments in which impulsive control was used in a high-
speed AFM. The experiments show that by using impulsive control, the tracking
error in AFM can be minimized without increasing the bandwidth of the linear
controller, thereby speeding up the AFM imaging process by a factor of two without
increasing the sensitivity of the feedback loop to measurement noise. We have
also demonstrated impulsive feedback control in the presence of a significant input
disturbance and experimentally compared the performance of impulsive control
and the signal transformation approach. The theoretical and experimental results
indicate that impulsive control for nanopositioning has a significant potential for
practical applications and at the same time fosters new research directions in the
theoretical understanding of hybrid feedback control.
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Chapter 6
Interval Modeling and Robust Feedback Control
of Piezoelectric-Based Microactuators

Sofiane Khadraoui, Micky Rakotondrabe, and Philippe Lutz

Abstract This chapter presents the modeling and the control of piezoelectric-based
microactuators. Typified by uncertainties of models, we propose to use intervals
to bound the uncertain parameters. These uncertainties are particularly due to the
difficulties to perform precise identification and to the high sensivity of the systems
at the micro/nanoscale. In order to account the models uncertainties, we propose
therefore to combine interval tools and classical control theory to derive robust
controllers. Experimental results confirm the predicted theory and demonstrate the
efficiency of the proposed method.

6.1 Introduction

This chapter presents the control of piezoelectric actuators used in microgrippers
generally dedicated to micromanipulation or to microassembly. Piezoelectric
actuators are well recognized for their high resolution (submicrometric), their high
bandwidth (up to several tens of kiloHertz), their high force density, and for their
ease of control (control signal is electrical). However, like other microactuators
(thermal, electrostatic, etc.), piezoelectric microactuators suffer from the high
sensivity face to the environment due to their small sizes. For instance, small
mechanical vibrations or small thermal noises surrounding the microactuators
would generate nonnegligible unwanted movement of them. All these make the
used models have uncertain or varying parameters and consequently may lead to
the loss of performances or even the loss of stability during the utilization of the
actuators.
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In order to achieve the required performances in micromanipulation and mi-
croassembly tasks, linear modeling with Δ -matrix uncertainties has been used
and classical robust control laws (H2, H∞, and μ-synthesis) were applied for
each piezocantilever [4, 14–16]. The efficiency of these advanced methods was
proved in several applications (SISO and MIMO microsystems). However their
major disadvantage is the derivation of high-order controllers which are time
consuming and which limit their embedding possibilities, as required for real
packaged microsystems.

An alternative possibility to classical robust control laws is the use of interval
analysis which is a way to model the parametric uncertainties. The principle of the
controller design is therefore based on the combination of the interval arithmetic
with a linear control theory. In addition to its principle simplicity to model the
uncertain parameters, the main advantage is the derivation of low-order controllers.

In this chapter, interval tools are used to design robust controllers for piezoelec-
tric microactuators and to check a posteriori their performances. Two methods are
proposed for the control design, a method based on the Performances Inclusion
Theorem [13] and a method based on the combination of the H∞ and interval tools.
Experimental results demonstrate the efficiency of the proposed approaches and
show their real interest for uncertain systems such as piezoelectric microactuators.

The chapter is organized as follows. We give first some preliminaries on interval
tools in Sect. 6.2. Section 6.3 is devoted to the design of robust controller using
the Performances Inclusion Theorem while the method based on the combination of
H∞ tool and interval tools is presented in Sect. 6.4. In Sect. 6.5, we present the a
posteriori performances analysis still by using H∞ tool and interval tools. Finally,
the experimental results are presented in Sect. 6.6.

6.2 Preliminaries on Intervals

6.2.1 Definitions

We remind here some basics on intervals that will be used in the rest of the chapter.
The readers who are interested to see more in details the techniques of intervals are
suggested to read the references [6, 12].

A real interval [x] is a closed interval such that

[x] = [x−,x+] (6.1)

where x− and x+ are called lower bound and upper bound, respectively. We have,
x− ≤ x+. Having x− = x+ means that the interval [x] is degenerate. By convention,
a degenerate interval [a] = [a,a] is identified by the real number a. The designation
point number is similar to the designation degenerate interval number. While the set
of real point numbers is R, the set of real intervals (or real interval numbers) is IR.
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Instead of using the notation in (6.1), one can also identify a real interval number
by its midpoint mid([x]) and its radius rad([x]) such that

⎧⎨
⎩

mid([x]) =
(x++x−)

2

rad([x]) =
(x+−x−)

2 = w([x])
2

(6.2)

where w([x]) is the width of the interval.

6.2.2 Operations on Intervals

In the arithmetics of intervals, the basic operations are extended to interval numbers.
Consider two intervals [x] = [x−,x+] and [y = y−,y+]. So we have

[x]+ [y] = [x−+ y−,x++ y+] (6.3)

and
[x]− [y] = [x−− y+,x+− y−] (6.4)

Consequently, we have, [x]− [x] �= 0, except for x− = x+.
The multiplication and division are defined as follows

[x] . [y] = [min(x−y−,x−y+,x+y−,x+y+) ,
max(x−y−,x−y+,x+y−,x+y+)]

(6.5)

and
[x]/ [y] = [x] . [1/y+,1/y−] , 0 /∈ [y] (6.6)

We say that an interval [x] is included in an interval [y], i.e. [x]⊂ [y], if and if only
[x]∩ [y] = [x]. We have [x]> [y] if x− > y+. The real interval [x] is said to be positive
if x− > 0. The distributive law does not hold in general for interval. However,
the following relation, called subdistributivity, holds, [x] ([y]+ [z]) ⊆ [x] [y]+ [x] [z].
In addition, if [x] + [y] = [x] + [z], the cancellation law for addition holds, and
[y] = [z]. The same property holds for multiplication, if [x] [y] = [x] [z] and 0 /∈ [x],
thus [y] = [z].

If f is a function f : R→ R, then its interval counterpart [ f ] satisfies

[ f ] ([x]) = [{ f (x) : x ∈ [x]}] (6.7)

The interval function [ f ] is called inclusion function because f ([x]) ⊆ [ f ] ([x]),
for all [x] ∈ IR. An inclusion function [ f ] is thin if for any degenerate interval [x] =
x, [ f ] (x) = f (x). It is minimal if for any [x], [ f ] ([x]) is the smallest interval that
contains f ([x]). The minimal inclusion function for f is unique and is denoted by
[ f ]∗ ([x]).
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An easy way to compute an inclusion function for f is to replace each variable x
in the expression of f by [x] and all operations on points by their interval counterpart.
Thus, one obtains the natural inclusion function.

6.2.3 Interval Systems

An interval system is a transfer function representation, a state space representation
or a differential representation where the parameters are intervals. For an interval
transfer function, which is the interest of this chapter, the representation is as follows

[G] (s) =
[bm]sm + · · ·+[b1]s1 +[b0]

[an]sn + · · ·+[a1]s1 +[a0]
=

m
∑

l=0
[bl ]sl

n
∑

k=0
[ak]sk

(6.8)

where s is the Laplace variable and where m ≤ n, n being the order of the interval
system [G](s). The parameters [ak] and [bl ] are considered to be constant real
intervals in order to assume linear time invariant (LTI) systems. The notation
[G] (s) shall be used if the intervals [ak] and [bl ] are known. Instead, the notation
[G] ([ak] , [bl ] ,s) is used when they are unknown and to be sought for.

The notion of inclusion of systems should also be defined. Consider two interval
systems having the same polynomials degrees m and n, i.e. having the same structure

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(6.9)

[G1] (s)⊆ [G2] (s) is equivalent to saying that for any s∈ [0,∞), we have [G1]⊆ [G2].

Lemma 2.1. If [b1l ]⊆ [b2l ] and [a1k]⊆ [a2k], ∀k, l, then [G1] (s)⊆ [G2] (s).

Proof. See [13].

6.2.4 The Performances Inclusion Theorem [13]

Consider two interval systems having the same polynomials degrees m and n

[G1] (s) =

m
∑

l=0
[b1l ]·sl

n
∑

k=0
[a1k]·sk

, [G2] (s) =

m
∑

l=0
[b2l ]·sl

n
∑

k=0
[a2k]·sk

(6.10)
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The performances inclusion theorem (PIT) which will be used to further design
a controller is composed of two results.

Theorem 2.1. The performances inclusion in the frequency domain

if

⎧⎨
⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and
[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒
⎧⎨
⎩

[ρ ] ([G1] ( jω))⊆ ρ ([G2] ( jω))

and
[ϕ] ([G1] ( jω))⊆ ϕ ([G2] ( jω))

Theorem 2.2. The performances inclusion in the time domain

if

⎧⎨
⎩

[a1k]⊆ [a2k] , ∀k = 1, . . . ,n
and
[b1l ]⊆ [b2l ] , ∀l = 1, . . . ,m

⇒ [g1] (t)⊆ [g2] (t)

where

• [ρ ] ([Gi]( jω)) is the modulus of the system [Gi].
• [ϕ] ([Gi]( jω)) is the argument.
• [gi](t) is the impulse response.

Proof. See [13].

6.3 PIT-Based Robust Control Design

Consider the feedback system shown in Fig. 6.1, where an uncertain system modeled
by an interval transfer function [G](s, [a], [b]) is controlled by a controller [C](s).
yc(t) is the reference input, y(t) is the output signal, and u(t) is the input control
signal.

Let us define the SISO interval system [G](s, [a], [b]) as follows

Fig. 6.1 A unity feedback
interval control system
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[G](s, [a], [b]) =
[N](s, [b])
[D](s, [a])

, (6.11)

where [N](s, [b]) and [D](s, [a]) are known polynomial with interval coefficients

[D](s, [a]) = [a0]+ [a1]s+[a2]s2 + · · ·+[an]sn

[N](s, [b]) = 1+[b1]s+[b2]s2 + · · ·+[bm]sm
(6.12)

with m ≤ n and the interval vectors [a] and [b] are defined by

[a] =

⎛
⎜⎜⎜⎜⎜⎝

[a0]

[a1]

[a2]
...
[an]

⎞
⎟⎟⎟⎟⎟⎠

[b] =

⎛
⎜⎜⎜⎜⎜⎝

1
[b1]

[b2]
...
[bm]

⎞
⎟⎟⎟⎟⎟⎠

The natural question in control design approaches for interval systems is: How
can one derive a candidate controller for which the closed-loop system of Fig. 6.1
meets some performance requirements whatever the coefficients ai and b j ranging
in their intervals [ai] and [b j] (for i = 0, . . . ,n and j = 1, . . . ,m), respectively. This
point will be presented next.

Let us define a controller [C](s, [θ ]) with a prior knowledge on its order l ≤ k as
follows

[C](s, [θ ]) =
[Nc](s)
[Dc](s)

(6.13)

where the interval polynomials [Dc](s) and [Nc](s) are given as follows

[Dc](s) = [c0]+ [c1]s+[c2]s2 + · · ·+[ck]sk

[Nc](s) = [d0]+ [d1]s+[d2]s2 + · · ·+[dl ]sl
(6.14)

with the interval parameters vector of the controller [θ ]=([c0], . . ., [ck], [d0], . . ., [dl ])
T

is assumed to be unknown.
Let us denote the closed-loop model of Fig. 6.1 by [Hcl](s, [p], [q]). This latter

can be computed using the interval model (6.11) and the imposed controller (6.13)
as follows

[Hcl](s, [p], [q]) =
1

1
[C](s, [θ ])[G](s, [a], [b])

+1
(6.15)

where the interval vectors [q] and [p] are function of the intervals [a], [b], and [θ ].
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The closed-loop form given in (6.15) allows to avoid a multi-occurrence of the
interval terms [G](s, [a], [b]) and [C](s, [θ ]) which can produce an overestimation
during the closed-loop computation.

After replacing [G](s, [a], [b]) and [C](s, [θ ]) in (6.15), we get

[Hcl](s, [p], [q]) =
[N](s, [b])[Nc](s)

[N](s, [b])[Nc](s)+ [D](s, [a])[Dc](s)
(6.16)

which can be written after developing as follows

[Hcl](s, [p], [q]) =
[Ncl](s, [q])
[Dcl](s, [p])

(6.17)

with
[Dcl](s, [p]) = [p0]+ [p1]s+[p2]s2 + · · ·+[pr]sr

[Ncl](s, [q]) = 1+[q1]s+[q2]s2 + · · ·+[qe]se
(6.18)

where e = m+ l, r = n+ k, and

[p] =

⎛
⎜⎜⎜⎜⎜⎝

[p0]

[p1]

[p2]
...

[pr]

⎞
⎟⎟⎟⎟⎟⎠

[q] =

⎛
⎜⎜⎜⎜⎜⎝

1
[q1]

[q2]
...
[qe]

⎞
⎟⎟⎟⎟⎟⎠

Consider a family of wanted closed-loop behaviors described by a known interval
transfer function, called interval reference model. If the controller defined in (6.13)
for a given θ ensures that the set of all possible closed-loop plants (6.17) is included
in the set of all feasible reference models, then robust performances are achieved.

Let’s denote by [H](s, [p], [q]) the interval reference model that describes the
required performance measures. Also, let Θ be the set of admissible values of the
controller parameters allowing to ensure required performances. Thus, the design
problem to be addressed can be viewed as finding the set Θ for which the following
inclusion holds [7, 8, 11], i.e., robust performances achieve.

Θ = {θ ∈ D |[Hcl](s, [p], [q])⊆ [H](s, [p], [q])} (6.19)

where D is the definition domain of θ .
Assume that an interval reference model is available and can be defined as

follows

[H](s, [p], [q]) =
[N](s, [q])
[D](s, [p])

(6.20)
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where
[D](s, [p]) = [p0]+ [p1]s+[p2]s

2 + · · ·+[pr]s
r

[N](s, [q]) = 1+[q1]s+[q2]s
2 + · · ·+[qe]s

e
(6.21)

such as e ≤ r and

[p] =

⎛
⎜⎜⎜⎜⎜⎝

[p0]

[p1]

[p2]
...

[pr]

⎞
⎟⎟⎟⎟⎟⎠

[q] =

⎛
⎜⎜⎜⎜⎜⎝

1
[q1]

[q2]
...
[qe]

⎞
⎟⎟⎟⎟⎟⎠

In order to check the inclusion [Hcl](s, [p], [q]) ⊆ [H](s, [p], [q]) by applying the
parameter by parameter inclusion as given in the PIT theorem in Sect. 6.2.4, the
interval reference model [H](s, [p], [q]) must have the same structure than the closed-
loop transfer [Hcl](s, [p], [q]) defined in (6.17). For that, let’s assume that the interval
polynomials [D](s, [p]) and [N](s, [q]) of the interval reference model have the same
order as in the polynomials [Dcl](s, [p]) and [Ncl](s, [q]), respectively, as follows

[D](s, [p]) = [p0]+ [p1]s+[p2]s
2 + · · ·+[pr]s

r

[N](s, [q]) = 1+[q1]s+[q2]s
2 + · · ·+[qe]s

e
(6.22)

According to the PIT theorem in Sect. 6.2.4, if the following set of inclusions

{
[q j]⊆ [q j], for j = 1, . . . ,e
[pi]⊆ [pi], for i = 0, . . . ,r

(6.23)

hold, then the set of all possible closed-loop plants [Hcl](s, [p], [q]) belong to the
set of all admissible plants [H](s, [p], [q]), and therefore the performances defined
by [Hcl](s, [p], [q]) are included in those of the wanted closed-loop [H](s, [p], [q]).
As a result, the controller [C](s, [θ ]) that guarantees the above inclusions will
effectively ensures the required performances for any system G(s) in the interval
model [G](s, [a], [b]).

Remark 1. The interval vectors [p] and [q] are known and they can be easily
computed from the required specifications, while the interval parameters [pi] and
[q j] (for i = 0, . . . ,r and j = 1, . . . ,e) depend on the controller parameters which are
unknown.

Finally, the design problem given in (6.19) can be reduced as finding the set-
solution Θ of the admissible values of the controller parameters that ensure the
following set of inclusions
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Table 6.1 SIVIA algorithm
for solving a set-inversion
problem [5, 6]

Step SIVIA(in: [p], [q], [p], [q], [θ ], ε; inout: Θ , Θ )

1 if [[p]([θ ]), [q]([θ ])]
⋂
[[p], [q]] = /0 return;

2 if [[p]([θ ]), [q]([θ ])]⊆ [[p], [q]] then
{Θ :=Θ

⋃
[θ ]; Θ :=Θ

⋃
[θ ]} return;

4 if width([θ ])< ε then {Θ :=Θ
⋃
[θ ]}; return;

5 bisect [θ ] into L([θ ]) and R([θ ]);
6 SIVIA([p], [q], [p], [q], L([θ ]), ε; Θ , Θ );

SIVIA([p], [q], [p], [q], R([θ ]), ε; Θ , Θ ).

Θ =

{
θ ∈ D

∣∣∣∣
{
[q j]([θ ])⊆ [q j],∀ j = 1, . . . ,m+ l
[pi]([θ ])⊆ [pi],∀i = 0, . . . ,n+ k

}
(6.24)

where D is the definition domain of θ .
The above problem described in (6.24) is known as a set-inversion problem which

can be solved using interval techniques. The set inversion operation consists to
compute the reciprocal image of a compact set called subpaving. The set-inversion
algorithm SIVIA (more details are given in [5,6]) allows to solve the design problem
given in (6.24) and provides an approximation with subpavings of the set solution
Θ . This approximation is realized with an inner and outer subpavings, respectively,
Θ and Θ , such that Θ ⊆ Θ ⊆ Θ . The subpaving Θ corresponds to the controller
parameter vector for which the problem (6.24) holds. If Θ = /0, then it is guaranteed
that no solution exists for (6.24).

We give in Table 6.1 the recursive SIVIA algorithm allowing to solve the control
problem (6.24) with guaranteed solution. SIVIA algorithm requires a search box
[θ0] (possibly very large) also called initial box within which Θ is guaranteed to
belong. The inner and outer subpavings (Θ and Θ ) are initially empty. ε represents
the wanted accuracy of computation.

Quite often we are interested to compute an inner approximation Θ for which
we are sure that Θ is included in the set solution Θ , i.e., Θ ⊆Θ , but when no inner
approximation exists i.e., Θ = /0, it is possible to choose parameters inside the outer
subpaving, i.e., choose θ ∈Θ .

Remark 2. The number of unknown parameters in (6.24) is l + k + 2, while the
number of inclusions is r + e + 1. Since e = m + l and r = n + k, we can write
r+ e+1 ≥ l + k+2. Therefore, there are more inclusions than unknown variables.
So, the set solution Θ can be obtained by the intersection of the set solution of each
inclusion in (6.24) as follows

Θ =
r+e+1⋂

i=1

(set sol)i

such as, (set sol)i is the set solution of the ith inclusion.
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Remark 3. If the set-inversion problem is not feasible, i.e., Θ = /0, the initial box
of the parameters must be changed and/or one must modify the controller structure
and/or the required performance specifications.

6.4 Design of a Robust Controller by Combining Standard
H∞ and Interval Tools

In this part, another approach to design robust controllers for interval systems
is proposed. The method is based on the standard H∞ technique and interval
tools. While the specifications and wanted performances are transcribed in terms
of weighting transfers and the standard H∞ is used to formulate the objective or
problem, interval tools are used to compute the controllers.

Consider the closed-loop pictured in Fig. 6.1, where the controlled system
[G](s, [a], [b]) is a general nth-order interval system defined by the following transfer
function

[G](s, [a], [b]) =
[b0]+ [b1]s+[b2]s2 + · · ·+[bm]sm

[a0]+ [a1]s+[a2]s2 + · · ·+[an]sn (6.25)

where m ≤ n and

[a] =

⎛
⎜⎜⎜⎜⎜⎝

[a0]

[a1]

[a2]
...
[an]

⎞
⎟⎟⎟⎟⎟⎠

[b] =

⎛
⎜⎜⎜⎜⎜⎝

[b0]

[b1]

[b2]
...
[bm]

⎞
⎟⎟⎟⎟⎟⎠

Similar to the design problem presented in the previous section, the main
objective is to design robust controller for which robust performances hold for
any system G(s) part of the family of systems defined by [G](s, [a], [b]). Also, in
addition to the desired performance specifications of the closed-loop system, it
is often desired to design low-order controllers for simplicity of implementation,
especially for embedded systems. For that, a fixed structure of the controller can be
a priori imposed as follows

[C](s, [θ ]) =
[d0]+ [d1]s+[d2]s2 + . . .+[dl ]sl

[c0]+ [c1]s+[c2]s2 + · · ·+[ck]sk (6.26)

where [θ ] = ([c0], · · · , [ck], [d0], . . . , [dl ])
T is an unknown vector of interval parame-

ters and l ≤ k to have the causality of the controller.
The issue is to find the set (or subset) of the suitable values of the controller

parameters so that the closed-loop system respects some given performances despite
the parametric uncertainties considered in the transfer function of the controlled
system. For that, the controller parameters can be adjusted using H∞-criterion. Such
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a

b

Fig. 6.2 Standard H∞ control
scheme (a): the weighted
closed-loop block-diagram.
(b): the corresponding
standard form

criterion is defined as the H∞-norm of some weighted transfer functions of the
closed-loop to be less than or equal to one.

Let’s remind the H∞-standard principle that considers the tracking performances
and the input control limitation [3, 18]. It is based on the standard block pictured
in Fig. 6.2b where P(s) is called the augmented system. This standard scheme is
derived from the weighted closed-loop in Fig. 6.2a. While the weighting W1(s)
is used to transcribe the tracking performances, the weighting W2(s) is used to
transcribe the input control limitation.

The H∞ problem is to find a controller stabilizing the closed-loop system and
achieving the following H∞-criterion

‖Fl(P(s),C(s))‖∞ ≤ γ (6.27)

where γ is a positive scalar. If γ ≤ 1, the nominal (specified) performances are
achieved.

The linear fractional transformation Fl(P(s),C(s)) is the transfer between the
weighted outputs and the exogenous inputs of Fig. 6.2b. It is defined as follows

Fl(P(s),C(s)) = z(s) y−1
c (s) (6.28)
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with z =

(
z1

z2

)

From Fig. 6.2a Fl(P(s),C(s)) is given by

Fl(P(s),C(s)) =

(
W1(s)S(s)

W2(s)C(s)S(s)

)
(6.29)

where S(s) = (1+C(s)G(s))−1 is the sensivity function.
Applying the H∞ standard problem in (6.27) to (6.28) and (6.29), we obtain the

following conditions to be satisfied

{ ‖W1(s)S(s)‖∞ ≤ γ
‖W2(s)C(s)S(s)‖∞ ≤ γ

(6.30)

Now we reapply the same H∞ principle presented above to design robust
controller for systems modeled by an interval transfer function [G](s, [a], [b]). Since
the system is interval, the augmented plant will also be interval, [P](s, [a], [b]).
Moreover, the H∞-criterion ‖Fl([P](s, [a], [b]), [C](s, [θ ]))‖∞ ≤ γ is given by

{‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

(6.31)

In this case, if γ ≤ 1, the robust performances are achieved.
Let’s denote by Θ the set of the suitable values corresponding to the controller

parameters that ensures the requirements. Based on the H∞ principle above, the
design problem can be formulated as follows [7, 9, 10].

Find the set Θ so that H∞ performance holds for any positive number γ ≤ 1, i.e.,

Θ =

{
θ ∈ D

∣∣∣∣
{‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

}
(6.32)

where D is the definition domain of θ . The interval sensivity function [S](s) is
defined as follows

[S](s) =
1

1+[C](s, [θ ])[G](s, [a], [b])
(6.33)

However, the resolution of the problem (6.32) requires the computation of the
H∞-norm of certain interval transfers. This computation can be done by applying
the following theorems which are due to the results in [1, 2, 17].

Theorem 4.1. Consider an interval system [G](s, [a], [b]) defined as in (6.25). The
H∞-norm of [G] is the maximal among the H∞-norm of the sixteen transfers,

‖[G]‖∞ = max
i=1→16

∥∥∥G(i)
∥∥∥

∞
(6.34)
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where G(i), for i = 1,2, . . . ,16 are sixteen (point) systems based on the eight
Kharitonov vertex polynomials corresponding to the numerator and denominator
of the interval system, i.e., sixteen transfer functions formed by combining the
four Kharitonov vertex polynomials of the numerator of [G](s, [a], [b]) and the four
Kharitonov vertex polynomials of its denominator.

Proof. see [1, 2].

When the interval system [G] is weighted by a weighting function (not interval
transfer) W (s), it is not advised to compute the multiplication W [G] first and then
compute the H∞-norm of the resulting interval plant afterwards. Indeed, developing
the multiplication of the intervals polynomials produces a multi-occurrence of the
parameters and therefore a overestimation of the resulting intervals. Thus, the H∞-
norm of W [G] is defined as follows [1, 2]

‖W [G]‖∞ = max
i=1→16

∥∥∥WG(i)
∥∥∥

∞
(6.35)

Also, in this control approach, we need to compute the H∞-norm of the sensivity
function of an interval system [G](s, [a], [b]). This has been addressed in the
following theorem proposed by Long-Wang [17].

Theorem 4.2. Consider an interval system [G](s, [a], [b]) and its sensivity function

[S] = 1
1+[G] =

[D]
[N]+[D] , where [N] and [D] are the numerator and denominator

polynomials of [G]. The H∞-norm of the sensivity [S] is defined by the maximal
among the H∞-norm of twelve vertex systems out of sixteen vertex systems,

‖[S]‖∞ =

∥∥∥∥ [D]

[N]+ [D]

∥∥∥∥
∞
= max

i=1→12

∥∥∥S(i)
∥∥∥

∞
(6.36)

Proof. see [17].

The computation of ‖W1(s)[S](s)‖∞ and ‖W1(s)[C](s, [θ ])[S](s)‖∞ given in (6.32)
can be easily carried out by applying the above theorems.

‖W2[C][S]‖∞ = max
i=1→16

∥∥∥W2M(i)
∥∥∥

∞

‖W1[S]‖∞ = max
i=1→12

∥∥∥W1S(i)
∥∥∥

∞

(6.37)

where [M] = [C][S] and M(i) (i = 1,2, . . . ,16) are the sixteen vertex of [M].
The problem given in (6.32) is known as a set-inversion problem which can be

solved using set inversion algorithms. By using SIVIA algorithm [5,6], it is possible
to approximate the set solution Θ corresponding to the controller parameters for
which the problem (6.32) is fulfilled. In fact, testing the existing or not of a
solution (existing of a candidate controller) for the problem (6.32) requires to have
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a knowledge on the minimum and the maximum values of the H∞-norm of the
involved interval transfers. However, Theorems 4.1 and 4.2 allow only to evaluate
the maximum value of the H∞-norm of interval transfers. For that, we present in
Fig. 6.3, a flow chart describing the recursive SIVIA algorithm allowing to solve
the above design problem (6.32). The controller computation requires a search box
[θ0] also called initial box. The subpaving Θ is initially empty. ε represents the
wanted accuracy of computation. Note that, contrary to the standard H∞ problem
(for point systems) where the optimal value of γ is found by dichotomy, its value
here is directly set to one, γ = 1. The objective is to find directly the controller
parameters for which the specified performances are met.

Remark 4. The controller computation based on the algorithm shown in Fig. 6.3
takes more time due to the high number of bisections carried out on the domain of
the parameters θ .

6.5 A Posteriori Performances Analysis Using Standard H∞
and Interval Tools Combined

Contrary to the problem presented in the two last sections where the objective was
to design robust controller for interval systems, in this part, we deal with the inverse
problem. This latter is as follows.

Consider an uncertain system modeled by an interval transfer [G](s, [a], [b]) and
controlled by a controller C(s) (see Fig. 6.4) to ensure for the closed-loop system a
more desirable behavior.

Assume that a candidate controller C∗(s) is available (for example, computed
using the method presented in Sect. 6.3), then the natural question: How can one
check if a such controller C∗(s) achieves the required performance specifications
for the closed-loop system? This point can be carried out by means of H∞ approach
combined with interval analysis.

The principle of H∞ synthesis combined with interval analysis discussed in
Sect. 6.4 consists first in transcribing during the synthesis, the requirements into
weighting functions (see Fig. 6.5), then computing a controller for which a H∞
criterion holds,

‖Fl([P](s, [a], [b]),C(s)‖∞ ≤ 1 (6.38)

where Fl(P(s),C(s)) is the transfer of the interconnection between C(s) and the
augmented plant [P](s, [a], [b]).

In our case the controller C∗(s) is known, so we need to check the fulfillment of
the condition (6.38) for the controller C(s) =C∗(s). From Fig. 6.5, the H∞ criterion
becomes, {‖W1(s)[S](s)‖∞ ≤ γ

‖W2(s)C(s)[S](s)‖∞ ≤ γ
(6.39)
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Fig. 6.3 Flow chart corresponding to the SIVIA algorithm used for solving the problem (6.32)

Fig. 6.4 Closed-loop control
system
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Fig. 6.5 H∞-standard
problem

then satisfying the conditions defined in (6.39) for C(s) = C∗(s), means that the
controller C∗(s) guarantees robust performances for any G(s) within the interval
system [G](s). The computation of the maximal H∞ norm of the interval transfers
given in (6.39) can be carried out by applying the Theorems 4.1 and 4.2.

Remark 5. The H∞ conditions given in (6.39) are only sufficient, so if these
constraints are not satisfied, then no conclusion on the achievement of the desired
performances can be done.

6.6 Application to Piezocantilevers and Experimental Results

The aim of this section is to apply the interval control methods previously presented
to control piezoelectric microactuators used in microgrippers. In fact, a piezoelectric
microgripper is composed of two piezoelectric cantilevers (microactuators) gener-
ally with rectangular section. Figure 6.6 pictures a microgripper made at the AS2M
department of FEMTO-ST Institute manipulating a small gear.

In general, one of the two actuators that compose the microgripper is used for
the precise positioning while the second actuator is used to measure or control
the manipulation force. In this application, we are interested by the modeling and
control of the positioning. The actuator used is a unimorph cantilever made up of
one piezoelectric layer (PZT material) and one passive layer (Copper material).
Figure 6.7 presents the setup used for the rest of the chapter which includes,

• The piezoelectric actuator itself.
• A computer and a dSPACE board for the data acquisition, for generating the

control signal or the reference signal and for the controller implementation. The
MATLAB-SIMULINK is used for the implementation and the sampling time is set
equal to Ts = 0.2 ms.
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Fig. 6.6 A piezoelectric
microgripper manipulating a
small gear

Fig. 6.7 Setup used for the
experiments
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• An optical sensor (Keyence LC-2420) which is set to have a resolution of 50 nm.
• A high-voltage (HV) amplifier (±200 V).

Modeling and identification of microsystems are very delicate because of their
small sizes, their fragility, and the lack of convenient (accurate and high bandwidth)
sensors to report precise measurements. These systems are also very sensitive to
environmental disturbances (temperature, vibrations, manipulated objects, etc.). As
a result, their behavior parameters may change during their functioning or during
the tasks and therefore the wanted performances or even the stability may be lost.
In this application, we bound the uncertain parameters of piezocantilever models
by intervals that are able to account the above complex characteristics. Afterwards,
control design approaches presented previously can be easily applied to improve the
performances of piezocantilevers.

6.6.1 Interval Model Derivation

The models of piezocantilevers are often subjected to variation due to the environ-
ment (small thermal variation, manipulated object, etc.). In fact, these characteristics
stem from the relatively small sizes of the piezoelectric actuators used in mi-
cromanipulation and micropositioning applications which finally make them very
sensitive to any minor variation. The model parameters can be considered as
uncertain and thus bounded by intervals within its range of variation in order to
further design a robust controller. However, for an ease of identification in this
application, we will not characterize the parameter variations of the piezoelectric
actuator during a micropositioning or a micromanipulation task. We will use two
unimorph piezocantilevers denoted by P1 and P2. The first piezocantilever P1 has
the dimensions length×width× thickness = 16mm× 1mm× 0.45mm, while the
second one P2 has dimensions of 14mm × 1mm × 0.45mm. The difference in
their length generate nonnegligible difference on their model parameters. The
interval model [G](s, [a], [b]) which represents a family of piezocantilever models
is derived using the two point models G1(s) and G2(s) corresponding to the used
piezocantilevers P1 and P2, respectively, where the models G1(s) and G2(s) are
identified without performing the above tasks. After a frequency identification for
each piezocantilever and performing some computation, we obtain the following
interval model [G](s, [a], [b]),

[G](s, [a], [b]) =
[b2]s2 +[b1]s+[b0]

[a2]s2 +[a1]s+[a0]
(6.40)



6 Interval Modeling and Robust Feedback Control. . . 139

where
[b2] = [7.042,8.0313]×10−8

[b1] = [1.808,1.809]×10−4

[b0] = 1
[a2] = [8.802,9.794]×10−8

[a1] = [5.24,5.364]×10−6

[a0] = [1.291,1.44]

In order to increase the stability margin and to ensure that the interval model
really contains the models of the two piezocantilevers, we propose to expand by
10% the interval width of each parameter of the model [G](s, [a], [b]). This choice
is a compromise. If the widths are too large, it is difficult to find a controller
that respects both the stability and performances for the closed-loop. Finally, the
extended interval model that will be used for the computation of a controller is as
follows

[G](s, [a], [b]) =
[6.992,8.08]×10−8s2 +[1.807,1.809]×10−4s+1

[8.753,9.844]×10−8s2 +[5.234,5.37]×10−6s+[1.283,1.448]

(6.41)

6.6.2 Specifications and Controller Structure

Piezocantilevers are very resonant (more than 60% of overshoot). Such overshoot
is not desirable in micromanipulation and microassembly tasks. The following
specifications are therefore considered for the closed-loop,

• Zero or very small overshoot.
• Settling time tr5% ≤ 8 ms.
• Static error |ε | ≤ 1%.

These specifications often correspond to the requirement in microposition-
ing tasks for microassembly and micromanipulation that use piezoelectric
microgrippers.

To ensure the above requirements, the control design approach does not require
any specified structure for the controller. So, any structure can be chosen for the
controller [C](s) as long as Remark 2 is satisfied. In this example, we consider a PI
(Proportional–Integral) structure because of its low-order (two parameters) and its
wide use in the industry

[C](s, [Kp], [Ki]) =
[Kp]s+[Ki]

s
(6.42)

where [Kp] and [Ki] are the proportional and integral gains, respectively.
Next, the both proposed control approaches will be applied to achieve these

requirements.
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6.6.3 PI Controller Computation Using PIT Approach

Based on the interval model in (6.41) and the interval controller in (6.42), the general
model of the closed-loop can be expressed as follows

[Hcl](s, [p], [q]) =
[q3]s3 +[q2]s2 +[q1]s+1

[p3]s3 +[p2]s2 +[p1]s+[p0]
(6.43)

where [q3] =
[Kp][b2]

[Ki]
, [q2] =

[Kp][b1]

[Ki]
+ [b2], [q1] =

[Kp]

[Ki]
+ [b1],

[p3] =
[a2]+ [Kp][b2]

[Ki]
, [p2] =

[a1]+ [Kp][b1]

[Ki]
+ [b2], [p1] =

[a0]+ [Kp]

[Ki]
+ [b1]

and [p0] = 1.

Concerning the reference model, its computation is carried out according to the
closed-loop (6.43) and to the required specifications. According to the specifications
(see Sect. 6.6.2), a first order model can be used for the reference model.

[H](s, [K], [τ ]) =
[K]

[τ ]s+1
(6.44)

where the parameters [K] and [τ ] define the static error and settling time,
respectively:

• [K] = 1+ ε = [0.99,1.01].

• [τ ] =
[tr5%]

3
= [0,2.66ms].

However, it is necessary that the interval reference model has the same structure
than that of the closed-loop in order to apply the parameter by parameter inclusion
as required in (6.24). Thus we add some poles and zeros far from the imaginary axis
to (6.44)

[H](s, [K], [τ ]) =
[K]

(
[τ ]
10

s+1

)3

([τ ]s+1).

(
[τ ]
10

s+1

)2 (6.45)

which can also be rewritten as follows:

[H](s, [p], [q]) =
[q3]s

3 +[q2]s
2 +[q1]s+1

[p3]s3 +[p2]s2 +[p1]s+[p0]
(6.46)

where [q3] = 0.001[τ ]3, [q2] = 0.03[τ ]2, [q1] = 0.3[τ ], [p3] = 0.01
[τ ]3

[K]
,

[p2] = 0.21
[τ ]2

[K]
, [p1] = 1.2

[τ ]
[K]

and [p0] =
1
[K]

.
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Fig. 6.8 Set solution of the
parameters [Kp] and [Ki]
ensuring the wanted
performances

According to the control method discussed in Sect. 6.3, the admissible values of
the PI controller parameters that guarantee the required specifications for the interval
model (6.41) can be obtained by solving the following system of inclusions.

[Kp][b2]

[Ki]
⊆ 0.001[τ ]3

[a1]+ [Kp][b1]

[Ki]
+ [b2]⊆ 0.21[τ ]2

[K]

[Kp][b1]

[Ki]
+ [b2]⊆ 0.03[τ ]2

[a0]+ [Kp]

[Ki]
+ [b1]⊆ 1.2[τ ]

[K]

[Kp]

[Ki]
+ [b1]⊆ 0.3[τ ] 1 ⊆ 1

[K]

[a2]+ [Kp][b2]

[Ki]
⊆ 0.01[τ ]3

[K]

(6.47)

The application of the SIVIA algorithm implemented in the Matlab-Software,
with an initial box [Kp0]× [Ki0] = [0,1]× [0.1,1000], provides the subpaving shown
in Fig. 6.8. The dark colored subpaving (Θ ) corresponds to the inner approximation,
i.e., the set parameters [Kp] and [Ki] of the controller (6.42) that ensures the above
inclusions and consequently that meets the performances for the interval model.

The controller [C](s, [Kp], [Ki]) is an interval and is not directly implementable.
Point parameters Kp and Ki within the set solution Θ must be chosen and the
corresponding point controller C(s,Kp,Ki) = C(s) has to be implemented. In this
example, we test the following PI controller

C(s) =
0.1s+900

s
(6.48)

This controller has been independently tested on the both piezocantilevers P1 and
P2. A step response analysis is performed on each closed-loop by applying a step



142 S. Khadraoui et al.

Fig. 6.9 Experimental step
responses when testing the
implemented controller C(s)

reference of amplitude 40μm. The application of the implemented controller C(s)
to the both piezocantilevers leads to the experimental results shown in Fig. 6.9.

As shown in Fig. 6.9, the implemented controller has played its role and achieved
the wanted performances for the closed-loops. Indeed, the experimental settling
times are about tr1 = 4 ms and tr2 = 4.7 ms with the piezocantilever P1 and P2,
respectively. Moreover, the obtained behaviors are with very small overshoot and the
experimental static errors are neglected and belong to the required interval |ε | ≤ 1%.

6.6.4 PI Controller Computation by Combining the H∞
Technique with Interval Analysis

In this section, we apply the robust control approach proposed in Sect. 6.4 to control
the deflection (position) of piezocantilevers having model inside the interval model
[G](s, [a], [b]) defined in (6.41). The same requirements presented in Sect. 6.6.2 are
considered here. Moreover, it is necessary to limit the applied voltage in order to
avoid any damage of the actuators. For that, we add a condition on the amplitude of
the input voltage U applied to the piezocantilever. We particularly choose a maximal
voltage Umax = 2.5 V for each 1μm of reference. Also, without loss of generality, we
consider the design of the previous PI (Proportional–Integral) controller structure
(6.42).

Figure 6.10a presents the closed-loop scheme for the controller design, where
the weighting function W1(s) is added to transcribe the tracking performances and
W2(s) for the input control limitation.

The weighting functions W1(s) and W2(s) were chosen according to the required
performances. We choose
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a

b

Fig. 6.10 (a) The
closed-loop scheme with
the weighting functions.
(b) The H∞-standard scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W1(s) =
0.002667s+1

0.002667s+0.01

W2(s) =
1

2.5

(6.49)

We aim to find the set-solution Θ of the PI controller parameters that ensures H∞
performance for γ = 1, i.e.,

Θ =

{
θ ∈ [θ ]

∣∣∣∣
{ ‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ ])[S](s)‖∞ ≤ γ

}
(6.50)

where [S](s) = (1+ [C](s, [θ ])[G](s, [a], [b]))−1 is the sensivity function defined as
follows:

[S](s) =

[a2]

[K]
s3+

[a1]

[K]
s2+

1
[K]

s

[a2]

[K]
s3+

[a1]

[K]
s2+

1
[K]

s+[Kp][b2]s3+([Ki][b2]+[Kp][b1])s2+([Kp]+[Ki][b1])s+[Ki]

(6.51)
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Now, we solve the set-inversion problem in (6.50) using the recursive algorithm
presented in Fig. 6.3. We choose an initial box for the controller parameters [Kp0]×
[Ki0] = [0,1.2]× [0.1,1200]. The resulting subpaving is presented in Fig. 6.11. The
dark colored subpaving Θ corresponds to the set parameters [Kp] and [Ki] of the PI
controller (6.42) that ensures the performances defined by the H∞-criterion (6.50).

Note that any choice of the parameters [Kp] and [Ki] within the dark colored
subpaving Θ (see Fig. 6.11) satisfies the conditions (6.50) and consequently ensures
the required performances. In the case where the problem (6.50) is not feasible (with
the imposed controller), i.e., Θ = /0, the initial box of the parameters [Kp0]× [Ki0]
must be changed and/or the structure of the controller must be modified (increase
the order, for example) and/or the specifications must be modified (degrade the
specifications).

Similar to the previous case, the controller C(s) to be implemented is chosen by
taking any point parameters Kp and Ki within the set-solution Θ in Fig. 6.11. In this
example, we test the following controller:

C(s) =
s+1,000

s
(6.52)

In order to prove that the inequalities (6.50) are satisfied, the magnitudes of the

bounds
∣∣∣ 1

W1(s)

∣∣∣ and

∣∣∣∣ 1
W2(s)

∣∣∣∣ are compared to the magnitudes of the sensivity function

|[S](s)| and of the transfer |C(s)[S](s)|, respectively, when using the implemented
controller (6.52). This comparison is given by Fig. 6.12.

The obtained results in Fig. 6.12 prove that the magnitudes of [S](s) and
C(s)[S](s) are effectively bounded by that of 1

W1(s)
and 1

W2(s)
, respectively, when us-

ing the computed controller C(s). This fact confirms that the specified performances
are effectively ensured.
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Fig. 6.13 Experimental
step responses of the
piezocantilevers when
using C(s)

Now, we implement the computed controller C(s) using the first piezocantilever
with length l = 16 mm then the second one with length l = 14 mm. Figure 6.13
shows the experimental results when a step reference of 40μm is applied. As
shown on the Fig. 6.13, the implemented controller (6.52) has played its role
since the closed-loop piezocantilevers satisfy the wanted specifications. Indeed,
experimental settling times obtained with the piezocantilevers P1 and P2 are about
tr1 = 5.2 ms and tr2 = 7 ms, respectively. The overshoots and static errors are
neglected (D1,2 ≈ 0, ε1,2 ≈ 0 < 1%). Furthermore, the maximal voltages U applied
to the both piezocantilevers are less than 40×2.5= 100 V, which should be the limit
for a displacement of 40μm. Indeed, the experiments show that the maximal input
voltage is Umax = 97 V.
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6.7 Conclusion

This chapter presents the modeling and robust control of piezoelectric microactua-
tors. These latters are characterized by models with uncertain parameters and need
convenient modeling and robust control laws. The challenge in micromanipulation,
microassembly, and micropositioning application is to ensure robust performances
despite the variation in model parameters. For that, interval analysis has been
introduced to describe uncertain parameters in the models of microactuators.
The main advantage of a such description by interval is the ease and natural way
to bound these uncertainties. Moreover, interval techniques can be used to solve
many engineering problems, such as control system problems. In the second part
of this chapter, two control design approaches for interval systems have been
proposed. The first control design method is based on the inclusion of interval
transfers and their time and frequency responses, while the second one combines the
H∞-standard method with interval techniques. The main advantage of the proposed
approaches is that they can provide low-order controllers that are able to ensure
robust performances for uncertain systems and that are convenient for real-time
embedded systems. It has been noted that these proposed control methods are based
on some sufficient conditions. This is one limitation of these proposed methods,
since sometimes the fulfillment of the constrained conditions does not hold for
a given controller, however the required performances measures can be met with
this latter. Also, based on the principle of the second control approach, it has been
shown that it is possible to perform a posteriori analysis of the performances of
interval closed-loop system when the controller is assumed to be known. At the
end of this chapter, the proposed control design methods have been applied to
control the deflection of piezocantilevers which are typically uncertain systems.
The derived controllers were with very low-order (first order) that are suitable for
embedded systems. The obtained experimental results confirmed the robustness
of the implemented controllers and also the efficiency of the proposed control
approaches. As a conclusion interval analysis can be viewed as a guaranteed
and powerful tool to represent uncertainties in real systems. Moreover, it can be
introduced also to formulate and solve many engineering problems.
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Chapter 7
Kalman Filtering and State-Feedback
Control of a Nonlinear Piezoelectric
Cantilevered Actuator

Micky Rakotondrabe, Juan-Antonio Escareno, Didace Habineza,
and Sergio Lescano

Abstract This chapter deals with the state estimation with noise rejection in a
piezoelectric cantilevered actuator and its state-feedback control. The noises which
come from the sensor used, strain gage, are important and should be filtered.
For that, we employ the classical Kalman filtering for their rejection and for the
state estimation and we apply afterwards a state-feedback control with integral
action to improve the general performances of the actuator. However, as the
actuator exhibits hysteresis nonlinearity, we propose first its linearization thanks to
a feedforward control before application of the above filtering and feedback control.
The experimental results confirm the efficiency of the approach and demonstrate
the interest of the method for precise positioning such as in micropositioning
applications.

7.1 Introduction

Most of smart and active materials used as actuators in micro/nanopositioning sys-
tems exhibit nonlinearities like hysteresis. Piezoelectric ceramics-based actuators
are in this case. When working at large deformation, the hysteresis that typifies
them becomes non-negligible and leads to a loss of precision of the whole system
even if they have a high resolution. For an enhancement of the performances,
closed-loop control techniques have been widely used [1–10], Chaps. 5 and 10.
In fact, these techniques seem to be the best way to reach overall substantial
performances such as accuracy, repeatability, disturbances and coupling rejection,
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bandwidth augmentation, etc. In addition to that, closed-loop control techniques
permit a robustification of the closed-loop scheme in case of model uncertainties.
Unfortunately, closed-loop techniques are not convenient for most of applications
at the micro/nano-world. Indeed, there is a lack of convenient sensors usable for
feedback at this scale, in particular for piezoelectric-based micro/nanopositioning
systems. In fact, these systems require high-bandwidth, high-resolution, and high-
precision sensors but the actual and existing sensors that could provide such
performances are bulky (optical sensors) and are not embeddable. Hence, they are
not suitable for more complex structured and/or batch fabricated small systems,
additionally to their expensive cost. On the other hand, sensors that are embeddable
such as strain gage do not offer the required performances. As their sizes are
small, most of them are highly sensitive to (thermal, surrounding, etc.) noises and
then provide high noise to signal ratio. Alternative techniques used to enhance the
performances of piezoelectric actuators were therefore the open-loop (feedforward)
control techniques [10–18], Chaps. 6, 8 and 9. These techniques allow a very
high packageability and a low cost of the systems since no sensors are used to
control them. Nevertheless, they cannot provide enough robustness as closed-loop
control techniques can provide, and then when non-perfect systems models are
used, a loss of precision appears. Finally, other approaches to control piezoelectric
micro/nanopositioning systems are the self-sensing techniques. Initially used for
vibration control and AFM microscope systems [19–23], these techniques were
recently extended to work in micro/nanopositioning tasks that require long-term
measurement of constant displacement or force [10,24–26]. Although very interest-
ing, self-sensing techniques for micro/nanopositioning applications with feedback
control objectives are still under development. In particular, the integration of the
hysteresis behavior in self-sensing is still under research. This chapter proposes to
use smaller and embeddable sensors to measure the displacement in piezoelectric
actuators and then integrate the signals in a feedback control. Knowing that these
embeddable sensors are noisy, we propose to employ a Kalman filtering to improve
the measured signals. Furthermore, this Kalman filtering also permits the estimation
of the state vector of the actuator. This state vector is afterwards used in a state-
feedback control technique for a general performance enhancement. As the actuator
exhibits hysteresis nonlinearity, a hysteresis compensator (feedforward control) is
first implemented before the Kalman filtering and the feedback control. The main
advantage of the proposed approach is the enhancement of the performances of the
actuator with robust feedback controller using an embeddable sensor.

The chapter is organized as follows. We present in Sect. 7.2 the piezoelectric
actuator to be controlled and the setup used for the experiments. Section 7.3 is
devoted to the linearization by feedforward control of the actuator. In Sect. 7.4,
we present the Kalman filtering in order to estimate its state and to minimize the
measurement noise that affects the displacement signal provided by the sensor used.
Finally, the state-feedback control of the actuator is presented in Sect. 7.5.
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7.2 Presentation of the Setup to be Controlled

In the sequel, we use a unimorph piezoelectric cantilever (piezocantilever). A
unimorph piezocantilever is a cantilever with rectangular section and made up of
two layers: a piezoelectric layer and a passive layer glued themselves. When a
voltage is applied to the piezoelectric layer, it contracts/expands which results in
a global deflection of the cantilever (see Fig. 7.1). It is also possible to obtain the
deflection of the actuator when more than two layers compose it.

In this chapter, we employ a PZT material (lead zirconate titanate) for the
piezoelectric layer and nickel for the passive layer. The actuator has dimensions
of 15mm×2mm×0.3mm, where the thickness of the piezoelectric layer is 0.2 mm
and that of the passive layer is 0.1 mm. The experimental setup, pictured in Fig. 7.2,
is composed of:

• The unimorph piezoelectric actuator.
• A strain gauge embedded on its surface and used to measure the deflection. The

calibration of the strain gauge has been carried out a priori.
• An electronic conditioner for the strain gauge.
• A computer and a dSPACE-board that supply the control signal and acquire the

measurement. They are cadanced at a fresh time of 0.2 ms. The Matlab-Simulink
software is used to implement the signal generators, the Kalman filtering, and the
controllers.

• A high-voltage amplifier that amplifies the control voltage from the com-
puter/dSPACE.

Remind that we also use an optical sensor (from Keyence) to measure the
deflection of the cantilever. This optical sensor is only used to characterize the
actuator’s hysteresis in the next subsection and to validate the different results during
the linearization and the Kalman filtering.

Fig. 7.1 A unimorph
piezoelectric cantilever
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Fig. 7.2 The experimental
setup

7.3 Linearization by Feedforward Control
of the Piezoelectric Actuator

This section is devoted to the characterization, modeling, and feedforward control
of the hysteresis that typifies the piezoelectric actuator. The aim of the control is
to obtain a new linear system to which we can afterwards apply the linear Kalman
filtering (LKF) and linear state-feedback control. Figure 7.3 depicts the principle
scheme of the feedforward control. In the figure, Γ −1 is an inverse model of a
hysteresis model Γ and yrh is the reference input of hysteresis controlled system.

7.3.1 Hysteresis Characterization

In this part, we characterize the piezocantilever’s behaviors, in particular in the static
domain. The main objective is to have an idea about the hysteresis nonlinearity that
appears in the piezocantilever behavior. For that, we apply a sine input voltage U to
the actuator and measure the resulting deflection y at its tip. The amplitude UA of the
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Fig. 7.3 Principle scheme of
a feedforward control of the
hysteresis
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Fig. 7.4 The hysteresis of the actuator

voltage is chosen to cover the range of operation of the actuator. For that we choose
UA = 40 V. The frequency is chosen to be low enough in order to avoid the phase-
lag, i.e., to avoid the influence of the dynamics of the actuator on the shape of the
plotted hysteresis [2]. Different tests show that a frequency of 0.1 Hz is convenient
for our setup. Afterwards, the input–output (U,y) map is plotted. Figure 7.4 depicts

the results which shows a hysteresis of hyst
Hyst

≈ 19%.

7.3.2 Hysteresis Modeling

Different approaches have been used to model and compensate the hysteresis
phenomenon in piezoelectric actuators. A small survey can be found in Chap. 9.
In this chapter, we propose to use the classical Prandtl–Ishlinskii approach which
offers a high precision and a convenience for real-time applications. In the approach,
a complex hysteresis can be modeled by the superposition of several elementary
hysteresis called hysterons. The hysteron itself, called play-operator or backlash
operator and denoted γ , has the following equation:
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Fig. 7.5 Hysteresis curve: experimental result and simulation of the identified model

{
y(t) = γ (U(t),y(t −T )) = max{U(t)− r,min{U(t)+ r,y(t −T )}}
y(0) = y0

(7.1)

where r is called threshold of the backlash operator, T is the sampling time, and
y(t −T ) is the output displacement measured at the previous time.

Hence, the complex hysteresis, denoted Γ , is written as follows [27]:

⎧⎨
⎩

y(t) = Γ =
nh

∑
i=1

wi ·max{U(t)− ri,min{U(t)+ ri,yei(t −T )}}
y(0) = y0

(7.2)

where nh is the number of superposed hysterons, ri is the backlash, and yei is the
elementary output of the ith backlash operator. Finally the gain wi is used to weight
the corresponding operator.

Following the procedure proposed in [13], the parameters ri and wi of the
hysteresis of Fig. 7.4 were identified. Figure 7.5 pictures the comparison of the
experimental result and of the model simulation which shows a good adequacy
between the identified model and the real hysteresis.
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Fig. 7.6 Implementation of hysteresis compensator based on the inverse multiplicative inverse
structure [17]

7.3.3 Feedforward Control

To compensate a hysteresis modeled with a classical Prandtl–Ishlinskii approach,
another classical Prandtl–Ishlinskii model can be used as the feedforward controller
(or compensator) [13, 28]. This requires an additional calculation of the parameters
of the controller however. Another compensation technique is to employ the same
model Γ as base of the compensator but with a slightly modified structure, more
precisely with the inverse multiplicative structure. This technique was proposed in
[17] and its main advantage is the non-requirement of additional calculation of the
compensator’s parameters. Indeed, the initial model Γ with its parameters is directly
used in the compensator. We use this technique which is reminded by the following
theorem.

Theorem 3.1. Reconsider the PI hysteresis model in Eq. (7.2). If the compensator
is defined by

U(t) =
n

∑
i=0

wi ·max{U(t −T )− ri,min{U(t −T )+ ri,yei(t −2T )}}− yrh(t)

then the hysteresis will be compensated.

Proof. See [17]

The implementation of the compensator in Theorem 3.1 is pictured in Fig. 7.6.



156 M. Rakotondrabe et al.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Fig. 7.7 Experimental results with the hysteresis compensator

The compensator was implemented in Simulink following the block diagram
of Fig. 7.6. To verify its efficiency, a sine input reference yrh is applied. The
amplitude should be less or equal to the output amplitude of y obtained during the
identification, i.e., less than the output in Fig. 7.5. We choose an amplitude of yrhA =
20μm. A frequency of 0.1 Hz is also used for the sine input. In general, a frequency
(much) higher than that used during the identification would not work. Indeed,
the hysteresis model used here (the classical Prandtl–Ishlinskii model) is a static
hysteresis model. Consequently, the model is valid for the frequency (and for low
frequencies) with which it has been identified. To be efficient at high frequencies, a
dynamics such as a transfer function should be combined with the static hysteresis
model. Such dynamics will be introduced in the next sections. Figure 7.7 pictures the
experimental results with the hysteresis compensator. It shows that the new system
is linear.

7.3.4 The New System

Having controlled the piezoelectric cantilever thanks to a hysteresis feedforward
compensator, we obtain a new linear system. Remind that the compensator only
removed the static nonlinearity and then allowed to derive a (linear) static gain.
Combining this linear static gain with a linear dynamics (transfer function, differen-
tial equation), the complete model (static and dynamic model) is yielded. This new
system is pictured in Fig. 7.8.
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Fig. 7.8 The new system

In the sequel, we will use a second-order dynamic model for the linearized
actuator. The advantage of such a model is its low order but at the same time its
ability to account the vibration, if the latter exists. We use:

aÿ+bẏ+ y = kyrh ⇔ y(s)
yrh(s)

= k
as2+bs+1

(7.3)

where k = ∂y/∂yrh is the static gain identified from Fig. 7.7, and a and b are the
coefficients of the dynamics of the new system. The parameters a and b can be
determined by identifying the linearized system. For that, a step reference input
yrh is applied to the system, then system identification techniques with Matlab1 are
used. We have k ≈ 1, a = 4.5× 10−8, and b = 4.2× 10−6. Figure 7.9 depicts the
response of the linearized system (new system) when a step input of yrh = 20μm is
applied. In the same figure, we also plot the step response of the model (Eq. (7.3))
with the identified parameters. Remind that the experimental response in Fig. 7.9
was measured with the optical sensor.

7.4 Kalman Filtering Applied to the Linearized
Piezoelectric Cantilever

In this section, we use the strain gauge as displacement sensor for the piezo-
cantilever. Its main advantage with respect to the optical sensor used so far is
its embeddability onto the actuator (see Fig. 7.2). Unfortunately, the strain gauge
provides noisy signal which may, among others, alter the performances of the
system if a closed-loop control is employed. To filter the noise, we propose to use a
Kalman filtering. As we have now a linearized system, we use the LKF. In addition
to the noise filtering, this also enables us to estimate the state of the piezocantilever.
This estimate state can be afterwards used in a state-feedback control scheme.

1Identification Matlab Toolbox.
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Fig. 7.9 Step response of the linearized system

7.4.1 The Linear Kalman Filtering

When introducing the noise, the state-space representation of the overall dynamic
equation in (7.3) becomes

dX
dt

= AX +Byrh +ηpw (7.4)

where X = (y,(dy/dt))T and w = (wvel ,wacc)
T represent the state vector and the

process noise vector, respectively. The matrices

A =

(
0 1
− 1

a − b
a

)
, B =

(
0
k
a

)
and ηp =

(
0 0
0 1

)
(7.5)

represent the state transition matrix, the input control distribution matrix, and the
process-noise distribution matrix, respectively. The noise vector w is modeled as
random walk process dictated by white Gaussian noise corresponding to modeling
inaccuracies. Such a noise process is described by a continuous covariance matrix
Q as follows:
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Q =

(
σ2

vel 0
0 σ2

acc

)
(7.6)

Likewise the measurement equation is

y =CX +v (7.7)

where v corresponds to the noise that affects the current measurement. The matrix

C =
(

1 0
)

(7.8)

represents the output-measurement distribution matrix. The noise vector v is
described by the variance of the displacement measurement R = σ2

meas, with R = 0.7
in our case.

Hence, the LKF for the continuous model in Eqs. (7.4) and (7.7), also called
Kalman–Bulcy filtering, is given by [29]:

dX̂
dt

= AX̂ +Byrh +Kf
(
y−CX̂

)
(7.9)

where Kf is the gain of the filter. This gain Kf is calculated as follows:

Kf (t) = Pf (t)C
T (R)−1 (7.10)

where Pf (t) is the solution of the following differential Riccati equation:

dPf

dt
= ηpQ(ηp)

T +APf +Pf AT −PfC
T (R)−1 CPf (7.11)

Remark 1. The inputs of the LKF comprise the actual deflection measurement
(provided by the strain gauge) as well as the input yrh of the hysteresis compensator,
as pictured in Fig. 7.10. In the figure, the state noise w is not represented. The output
X̂ of the LKF represents the filtered estimate state vector.

7.4.2 LKF Implementation

The LKF equation in Eq. (7.9) was implemented in the Simulink. Figure 7.11
depicts the estimate and filtered output deflection ŷ provided by the LKF and
the measurement y from the optical sensor in order to validate the efficiency of the
strain gauge sensor combined with the LKF. Notice that y is the first element of the
vector state X , i.e., y = X(1) and ŷ = X̂(1).

Concerning the second element of the state vector, i.e., the velocity X(2)= dy/dt,
Fig. 7.12a shows the estimate X̂(2) provided by the LKF. Figure 7.12b depicts the
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Fig. 7.10 Block diagram of the linearized system with the LKF for state estimation and noise
rejection

estimate X̂(2) obtained with a numerical derivative of the above estimate X̂(1)= ŷ of
the bending. Finally Fig. 7.12c depicts the estimate X̂(2) obtained with a numerical
derivative of the measurement y. As we can see from these figures, the estimate X̂(2)
from the LKF presents the most clear signal as it is almost without noise.

7.5 State-Feedback Control with Integral Action

Having now the state available, we can perform a state-feedback control of the
linearized system. In this section, such a feedback control scheme is proposed. The
pole assignment is used to adjust and to enhance the dynamics of the closed loop
while an integral action is introduced to cancel the steady-state error and then to
increase the accuracy.
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Fig. 7.11 (a) Measured bending y and estimate bending ŷ of the piezocantilever and (b) zoom
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7.5.1 Remind of the New System to be Controlled
and Principle Scheme

The system to be controlled is composed of:

• The piezocantilever with hysteresis.
• The hysteresis compensator.
• The strain gauge sensor to derive the measurement of the bending y. Remind that

the measurement from this sensor is noisy.
• A LKF that provides an estimate of the internal state of the system and that filters

the noise.

The scheme of the system to be controlled is pictured in Fig. 7.10. Assuming
that the observer, i.e., the Kalman filtering, is highly quick relative to the further
controlled system (closed loop), we can write the following equality for the sequel:

X̂ = X ⇔ CX̂ =CX ⇔ ŷ = y (7.12)

for a control synthesis point of view.
This assumption is equivalent to saying that the transient part time of the

estimation/observation is very low and negligible relative to the time characteristics
of the control. Hence, the system to be controlled, in its state-space representation,
can be written as follows:

{ dX
dt = AX +Byrh

y =CX
(7.13)

instead of
{

dX̂
dt = AX̂ +Byrh

y =CX̂
(7.14)

Notice that the model in Eq. (7.13) is similar to the model in Eqs. (7.4) and (7.7)
except the absence of the noises thanks to the Kalman filtering.

7.5.2 Scheme of the Closed Loop

Let Fig. 7.13a be the scheme of the closed loop. In this, the controller is based on
a state-feedback gain Kc and an integral gain Ki. The gain Kc is used to enhance
the dynamics of the closed loop while the gain Ki is employed to suppress the
static error. The main advantage of using an integral in the loop for the static error
suppression, instead of employing a prefilter gain, is its robustness. The reason
for which we use the estimate output ŷ = CX̂ as external feedback loop instead
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a

b

Fig. 7.13 (a): Scheme of the state-feedback control with integral action; (b): the simplified
equivalent scheme

of the measured output y is because ŷ is with minimized noise. Let Fig. 7.13b be the
simplified equivalent scheme of Fig. 7.13a. In the figure, we have

• yr as the reference input of the closed loop.
• Z as a new variable that we introduce such that dZ

dt = yyr − y is the error.

7.5.3 Equations of the Closed-Loop

From Eq. (7.13) and Fig. 7.13, we have:

⎧⎨
⎩

dX
dt = AX +Byrh

y =CX
dZ
dt = yr −CX

(7.15)

Considering a new vector state

(
X
Z

)
, we obtain a new state-space representa-

tion, called augmented state-space, of the closed loop as follows:
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⎧⎪⎪⎨
⎪⎪⎩

d
dt

(
X
Z

)
=

(
A [0]
−C [0]

)(
X
Z

)
+

(
B
[0]

)
yrh +

(
[0]
I

)
yr

y =
(

C [0]
)(X

Z

) (7.16)

On the other hand, we derive from Fig. 7.13 that:

yrh =−(KcX +KiZ) (7.17)

which is equivalent to

yrh =−(Kc Ki
)(X

Z

)
(7.18)

As a consequence, we can say that we have the augmented state-space model
given by Eq. (7.16) which is feedback controlled by an augmented-state-feedback
gain K =

(
Kc Ki

)
. The matrices of the augmented state-space model (Eq. (7.16))

are:
The augmented state matrix

Aaug =

(
A [0]
−C [0]

)
(7.19)

The augmented input matrix

Baug =

(
B
[0]

)
(7.20)

The augmented output matrix

Caug =
(

C [0]
)

(7.21)

Finally, from all these remarks, the closed-loop controlled scheme of Fig. 7.13
has the following state-space representation:

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(
X
Z

)
=

(
A [0]
−C [0]

)(
X
Z

)
−
(

B
[0]

)(
Kc Ki

)(X
Z

)
+

(
[0]
I

)
yr

y =
(

C [0]
)(X

Z

) (7.22)

which is equivalent to
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⎧⎪⎪⎨
⎪⎪⎩

d
dt

(
X
Z

)
=

(
A−BKc −BKi

−C [0]

)(
X
Z

)
+

(
[0]
I

)
yr

y =
(

C [0]
)(X

Z

) (7.23)

The aim is therefore to find the augmented feedback gain K =
(

Kc Ki
)

such that
we have convenient eigenvalues of the augmented closed-loop state matrix A:

A=

(
A−BKc −BKi

−C [0]

)
(7.24)

The order of A is n+1 = 3, where n = 2 is the order of A. We mention that the

static error is still rejected. Indeed, letting d
dt

(
X
Z

)
= [0] (at steady-state regime) in

Eq. (7.24) yields ⎧⎨
⎩

(A−BKc)X = BKiZ
CX = yr

y =CX
(7.25)

The two last equation of Eq. (7.25) yields

y = yr (7.26)

which means that the static error is always null.

7.5.4 Calculations of the Controller Gains

The calculation of the augmented feedback gain K =
(

Kc Ki
)

is based on the
following requirements [10]:

• Stability condition—the matrix A should be HURWITZ, i.e., it should have
eigenvalues with negative real parts.

• Performances condition—the closed-loop system should have better perfor-
mance than that of the initial system. In other words, the eigenvalues of A should
be “more performant” than the eigenvalues of Aaug.

The second condition requires information about the eigenvalues of Aaug. From
the model (Eq. (7.5)) and the numerical values of its parameters, we yield the
eigenvalues:
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eig
(
Aaug

)
=

⎛
⎝ 0

−46.7+4713i
−46.7−4713i

⎞
⎠ (7.27)

with i2 =−1. It is worth to notice that the presence of the imaginary parts indicates
the vibration that we can see in the step response in Fig. 7.9.

By assigning eigenvalues better than Eq. (7.27) to A, we can derive the gain K =(
Kc Ki

)
. Such a technique is called synthesis by eigenvalues or pole assignment.

Different values of eigenvalues of A have been tested. We present here the results
with the following chosen eigenvalues:

eig(A) = P=

⎛
⎝ −200

−200+1000i
−200−1000i

⎞
⎠ (7.28)

For the calculation of K =
(

Kc Ki
)
, the following pole assignment function of

Matlab is used:
K = place

(
Aaug,Baug,P

)
(7.29)

We obtain

K =
(

Kc Ki
)
=
(−21102222 507 −207999999

)
(7.30)

from which we extract the feedback gain Kc and the integral gain Ki:

{
Kc =

(−21102222 507
)

Ki =−207999999
(7.31)

7.5.5 Controller Implementation

The controller gains in Eq. (7.31) were implemented in Simulink additionally
to the feedforward control in Sect. 7.3 and to the LKF designed in Sect. 7.4.
Figure 7.14a depicts the block diagram of the whole implementation and of the
piezoelectric actuator with hysteresis. Experimental tests with different values of
step input references yr were carried out. Figure 7.14b shows the step response
which demonstrates the efficiency of the designed controller in terms of oscillation
diminution and rapidity augmentation. Indeed, the important overshoot seen in the
step response of the initial system (see Fig. 7.9) is highly reduced by the proposed
closed-loop control scheme. Furthermore the settling time is less than 11 ms with the
closed-loop controller while it was more than 50 ms for the initial system according
to Fig. 7.9.
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Fig. 7.14 (a) Block diagram of the hysteresis feedforward controller, of the LKF, and of the state-
feedback controller. (b) Step response of the closed loop

7.6 Conclusion

This chapter presented the use of Kalman filtering and the application of a state-
feedback control with integral action in piezoelectric cantilevered actuators. The
main objective was to employ embeddable sensors (strain gage) for the output
measurement and then for a feedback control of the actuator in order to enhance its
general performances. As the sensor provided noisy signals, the Kalman filtering
allowed the noise rejection additionally to the state estimation. The feedback
control is based on a state-feedback scheme with integral action in the loop.
Its main advantage is the guaranteed derivation of a zero static error. Moreover,
it also provides an improvement of the dynamics of the whole system. As the
piezoelectric actuator exhibits hysteresis, we proposed first a feedforward controller
to compensate this before applying the Kalman filtering and the state-feedback
control. The experimental results confirmed the efficiency of the approach and
demonstrated its interest for micropositioning applications.
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Chapter 8
Intelligent Hysteresis Modeling and Control
of Piezoelectric Actuators

Qingsong Xu

Abstract This chapter presents a new approach to hysteresis modeling and com-
pensation of piezoelectric actuators by resorting to an intelligent model. A least
squares support vector machine (LSSVM)-based hysteresis model is developed
and used for the purposes of both hysteresis characterization and compensation.
By this way, the hysteresis inverse is not needed in the feedforward hysteresis
compensator since only the hysteresis model is used. The effectiveness of the
presented approach is validated by experimental studies on a piezoactuated system.
Experimental results confirm that this approach is superior to Bouc–Wen model in
terms of both hysteresis modeling and compensation.

8.1 Introduction

Smart materials-based actuators are popularly employed for actuation in various
precision engineering applications such as micropositioning, micromanipulation,
and microassembly. As a typical smart actuator, piezoelectric actuators are partic-
ularly attractive owing to the merits of subnanometer positioning resolution and
rapid response speed [14]. Even though intensive works have concentrated on the
research and applications of piezoelectric actuators, the nonlinear piezoelectric
effects, especially the hysteresis, still pose big challenges to precise positioning
nowadays.

To fulfill the requirements of ultrahigh-precision positioning, the piezoelec-
tric hysteresis behavior has to be suppressed by developing a suitable control
strategy [20]. It has been shown that the hysteresis can be greatly alleviated by
using a charge-driven approach or a capacitor insertion method [12]; it is however
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at the cost of stroke reduction. Thus, voltage actuation is still widely adopted
in practice. Generally, the existing control schemes fall into two categories of
hysteresis model-based and hysteresis model-free methods. In the first approach,
a hysteresis model (e.g., Preisach model) is generated and used to construct an
inverse-based feedforward compensator [1, 2]. It is known that the inverse model-
based compensation is capable of achieving an accurate positioning, whereas the
result is very sensitive to the model accuracy [5,6]. In order to suppress the residual
hysteresis as well as creep effects, a combination of feedforward with feedback
control can be adopted [3, 15]. The major advantage of the second approach is that
no hysteresis model is required. Instead, the unmodeled hysteresis is considered as
an uncertainty or a disturbance [19] to the nominal system, which is tolerated by
a robust or adaptive control technique. For instance, the sliding mode control [19],
H∞ robust control [18], fuzzy logic control [4], and neural network control [10] have
been applied in recent works.

Even though it is possible to compensate the hysteresis nonlinearity by designing
an advanced feedback controller without modeling the hysteresis effect, it is true that
a feedforward controller by resorting to a simple hysteresis model in combination
with a simple feedback (e.g., PID) controller makes it more feasible to suppress
the hysteresis effect. The reason lies in that the latter approach allows the relief of
burden to develop complicated modern controllers. For example, it has been shown
that by modeling the hysteresis with Prandtl–Ishlinskii model [9], a feedforward
compensator combined with a PID feedback controller is capable of effectively
compensating the nonlinear hysteresis. Nevertheless, the majority of existing works
on model-based hysteresis compensation employ an inverse hysteresis model.
Hence, both a forward model and an inverse hysteresis model are required for
the purposes of hysteresis characterization and compensation. Recently, it has been
shown that it is possible to compensate the hysteresis by using a simple Bouc–Wen
hysteresis model without adopting the hysteresis inverse [7, 13] .

The purpose of the current research is to characterize and compensate the
piezoelectric hysteresis by only using an intelligent hysteresis model without
solving the hysteresis inverse. It has been shown that support vector machine (SVM)
is superior to artificial neural networks (ANN) in terms of global optimization
and higher generalization capability, hence SVM is widely employed to estimate
nonlinear system models accurately [16]. Specifically, in the current research, a least
squares support vector machine (LSSVM)-based hysteresis model is established and
a feedforward compensator is developed without modeling the hysteresis inverse. It
is shown that the LSSVM model is more effective than Bouc–Wen model in terms
of both hysteresis modeling and hysteresis compensation.

8.2 Modeling of Dynamics with Hysteresis Behavior

The Bouc–Wen model has been extensively applied in piezoelectric hysteresis
modeling. It has been shown that the entire dynamic model of the piezoactuated
system can be established as follows [7, 11]:
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Mÿ(t)+Bẏ(t)+Ky(t) = K[Du(t)−H(t)] (8.1)

Ḣ(t) = αDu̇(t)−β |u̇(t)|H(t)− γ u̇(t)|H(t)| (8.2)

where t is the time variable, parameters M, B, K, and y represent the mass,
damping coefficient, stiffness, and displacement response of the piezoactuated
system, respectively; D is the piezoelectric coefficient, u denotes the input voltage,
and H indicates the hysteretic loop in terms of displacement whose magnitude and
shape are determined by parameters α , β , and γ .

The hysteresis model describes the relationship between the input voltage and
output displacement of the piezostage system. On the other hand, the input voltage
used to produce a desired displacement value is obtained by solving (8.1).

u(t) =
1

KD
[Mÿ(t)+Bẏ(t)+Ky(t)+KH(t)]. (8.3)

It is observed that the feedforward control signal (8.3) is generated by using the
hysteresis term H(t) without solving the inverse hysteresis model. A block diagram
constructed with Matlab and Simulink software is given in [7].

Motivated by the hysteresis compensation using Bouc–Wen model which does
not solve the hysteresis inverse, an intelligent model based on LSSVM is proposed
below.

The dynamic model (8.1) of the system is written into the form

ÿ(t)+2ξ ωnẏ(t)+ω2
n y(t) = du(t)+h(t) (8.4)

where ξ and ωn denote the damping ratio and natural frequency of the piezoactuated
system, respectively, d is a positive parameter, and h represents the hysteresis effect
in terms of acceleration.

If the hysteresis model h is established, a feedforward hysteresis compensator
can be constructed.

u(t) =
1
d
[ÿ(t)+2ξ ωnẏ(t)+ω2

n y(t)−h(t)] (8.5)

which uses the hysteresis model directly without solving the inverse hysteresis
model. The hysteresis model based on LSSVM is established in the following
discussions.

8.3 Hysteresis Modeling Using LSSVM

It is well known that the hysteresis effect is rate-dependent. Specifically, the
hysteresis behavior is dependent not only on the amplitude but also on the frequency
of input voltage signals. Moreover, due to the hysteresis nonlinearity, an input
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voltage corresponds to multiple position outputs. Typically, LSSVM only treats the
problem of single-valued mapping between the input and output. Hence, one of the
challenges in modeling the hysteresis behavior with LSSVM lies in how to convert
the multivalued mapping problem into a single-valued one.

In previous work [21] of the authors, a one-to-one mapping is constructed
by introducing the current input value and input variation rate as one data set.
Nevertheless, in the case that the input data are accompanied with noises, the
variation rate is not smooth and will induce modeling error. Moreover, it is unknown
how many orders of the variation rate are sufficient to establish the mapping.
Later, a regression model of hysteresis is developed in [17] by employing the
current and previous inputs and previous outputs as exogenous inputs to transform
the multivalued mapping is into a single-valued one. Yet, the above work takes
the voltage and position as the input and output variables, respectively, which is
different from the situation in the current research as shown below.

8.3.1 Regression Model Development

In the current research, the hysteresis term is expressed by taking into account (8.4):

h(t) = ÿ(t)+2ξ ωnẏ(t)+ω2
n y(t)−du(t). (8.6)

It is observed from (8.6) that the output variable is the hysteresis term h, whereas
both input voltage u and output position y appear as input variables. It is different
from the scenario in [17].

Using LSSVM, a nonlinear regression model is formulated to capture the
hysteresis behavior

ĥ(t) = f (xk) (8.7)

with

xk = [uk, . . . ,uk−m,yk, . . . ,yk−n,hk−1, . . . ,hk−l ] (8.8)

where ĥk denotes the predicted hysteresis term by LSSVM at the current time instant
k. uk−1, yk−1, and hk−1 represent the input voltage, output position, and hysteresis
term at previous time instant k−1, respectively. In addition, m ≥ 0, n ≥ 0, and l ≥ 1
define the order of the model.

8.3.2 Modeling with LSSVM

It is known that the LSSVM maps the input data into a high-dimensional feature
space and constructs a linear regression function therein [17, 21]. The unknown
hysteresis function is approximated by the equation
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h(x) = wT ϕ(x)+b (8.9)

with the given training data set {xk,hk}N
k=1 where N represents the number of

training data set, xk ∈ Rm+n+l+2 is an input vector as shown in (8.8), and hk ∈ R
are the output data. Additionally, w is a weight vector, ϕ(·) denotes a nonlinear
mapping from the input space to a higher-dimensional feature space, and b is the
bias.

The LSSVM approach formulates the regression as an optimization problem in
the primal weight space. Then, the conditions for optimality are obtained by solving
a series of partial derivatives, which are used to construct the dual formulation, i.e.,

[
0 1T

N

1N Ω + γ−1IN

][
b
α

]
=

[
0
h

]
(8.10)

where α = [α1,α2, . . . ,αN ]
T is called the support vector. The support values

are αk = γek with γ ∈ R denoting the regularization factor. In addition, 1N =
[1,1, . . . ,1]T , h = [h1,h2, . . . ,hN ]

T , and IN is an identity matrix. Besides, the kernel
trick is employed to derive that

Ωk j = ϕ(xk)
T ϕ(x j) = K(xk,x j), k, j = 1,2, . . . ,N (8.11)

where K is a predefined kernel function. The purpose of introducing the kernel
function is to avoid the explicit computation of the map ϕ(·) in dealing with the
high-dimensional feature space.

After calculating b and α from (8.10), one can obtain the solution for the
regression problem

h(x) =
N

∑
k=1

αkK(x,xk)+b (8.12)

where K is the kernel function satisfying Mercer’s condition, xk is the training data,
and x denotes the new input data.

By adopting the radial basis function (RBF) as kernel function,

K(x,xk) = exp

(
−‖x−xk‖2

σ2

)
(8.13)

with σ > 0 denoting the width parameter (which specifies the kernel sample
variance σ2) and ‖ · ‖ representing the Euclidean distance, the LSSVM model for
the hysteresis model estimation becomes

h(x) =
N

∑
k=1

αk exp

(
−‖x−xk‖2

σ2

)
+b. (8.14)
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With the assigned regularization parameter γ and kernel parameter σ , the purpose
of the training process is to determine the support values αk and the bias b. A good
generalization ability of the LSSVM model relies on an appropriate tuning of the
two hyperparameters (γ and σ ). In the current research, the leave-one-out cross-
validation approach is adopted to infer the values of the hyperparameters.

8.4 Experimental Investigations on Hysteresis Modeling

In this section, the hysteresis modeling based on Bouc–Wen model and LSSVM
approach is carried out by experimental studies.

8.4.1 Experimental Setup

Figure 8.1 depicts the experimental setup, where a four-layer piezoelectric bimorph
actuator with the dimension of 28 × 5 × 0.86mm3 is driven by a high-voltage
amplifier. A USB-6259 board (from National Instruments Corp.) with 16-bit DAC
and ADC channels is adopted to produce an analog voltage, which is then amplified
by a high-voltage amplifier (model: EPA-104 from Piezo Systems, Inc.) with an
adjustable gain of 10 to provide a high voltage for driving the piezo-actuator. The
output displacement at the end point of piezo-bimorph is measured by a laser
displacement sensor (model: LK-H055, from Keyence Corp.). The analog voltage
output of the sensor signal conditioner is acquired by a PC through one ADC
channel of the USB-6259 board. Moreover, LabVIEW software is employed to
implement a real-time control of the piezoactuated system.

Fig. 8.1 Experimental setup of a piezoactuated system
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Fig. 8.2 Results of the identified Bouc–Wen model. (a) Input voltage; (b) experimental result and
Bouc–Wen model output; (c) displacement–voltage hysteresis loops; (d) Bouc–Wen model output
errors

8.4.2 Bouc–Wen Model Results

8.4.2.1 Bouc–Wen Model Identification

To identify the hysteresis model, the input voltage signal is chosen as shown in
Fig. 8.2a, and the corresponding output data are depicted in Fig. 8.2b.

It has been shown that the seven parameters (M, B, K, D, α , β , and γ) of the
Bouc–Wen model can be identified by minimizing the following fitness function [7]:

f (M,B,K,D,α,β ,γ) =
1
N

N

∑
i=1

(
yi − yBW

i

)2
(8.15)

where N denotes the total number of samples and yi−yBW
i represents the error of the

ith sample which is calculated as the deviation of Bouc–Wen model output (yBW
i )

from experimental result (yi).
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Table 8.1 Parameters of the
Bouc–Wen hysteresis model

Parameter Search space Value

M – 1
B [103, 106] 7.8486×105

K [104, 109] 5.3959×107

D [0, 1] 0.0234
α [0, 1] 0.9991
β [0, 1] 6.2399×10−9

γ [0, 1] 4.2805×10−5

By setting a time interval of 0.02 s, 500 training data sets are obtained as shown
in Fig. 8.2a, b. Note that the voltage signal is applied to the high-voltage amplifier.
Then, the Bouc–Wen model is identified by optimizing the seven parameters to
minimize the fitness function (8.15). Specifically, the particle swarm optimization
(PSO) is adopted, and the identified model parameters are shown in Table 8.1. It is
noticeable that the mass M is normalized as 1 in order to reduce the number of the
model parameters.

8.4.2.2 Modeling Results

The experimental output and the Bouc–Wen model output are plotted in Fig. 8.2b–d.
It is found that the Bouc–Wen model cannot exactly represent the complicated hys-
teresis of the piezostage system. A relatively large error exists between the identified
model output and the experimental result as shown in Fig. 8.2d. Specifically, the
maximum model error is 13.63μm, which accounts for 5.8% of the travel range of
the piezo-actuator. The root-mean-square error (RMSE) is 3.71μm, which accounts
for 1.6% of the travel range. It is observed that smaller model error is obtained when
the input has lower magnitude and frequency. Hence, the model errors vary greatly
at different amplitudes and frequencies of the input signal, which indicates that the
Bouc–Wen model cannot capture the rate dependency of the hysteresis precisely.

8.4.2.3 Generalization Study

To test the generalization of the Bouc–Wen model, a new input signal is selected
as shown in Fig. 8.3a. The model output is depicted in Fig. 8.3b, c. The model
error with respect to the actual output (yd) obtained by experiments is illustrated in
Fig. 8.3d. It is observed that the Bouc–Wen model produces an RMSE of 2.86μm,
which accounts for 2.1% of the motion range.
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Fig. 8.3 Generalization test results of the Bouc–Wen model. (a) Input voltage; (b) experimental
result and Bouc–Wen model output; (c) displacement-voltage hysteresis loops; (d) Bouc–Wen
model output error

8.4.3 LSSVM Model Results

8.4.3.1 Dynamic Model Identification

Before developing the LSSVM model, a linear dynamic model of the system plant
is identified by the swept-sine approach. The magnitudes of frequency responses
obtained from the experimental data and the identified model are compared in
Fig. 8.4. It is found that the first resonant mode occurs around 404 Hz, and the
identified second-order model matches the system dynamics well in the frequencies
below 600 Hz. The identified transfer function is

Gc(s) =
1.247×108

s2 +1.847s+6.477×106 (8.16)

which is employed to demonstrate the effectiveness of the proposed hysteresis
modeling and compensation scheme.
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By comparing the parameters of (8.4) and (8.16), one can deduce that ω =
2.5450×103 rad/s, ξ = 3.6287×10−4, and d = 1.247×108 μm/s2-V.

8.4.3.2 LSSVM Modeling and Testing

To train the LSSVM model, the same exciting voltage signal as shown in Fig. 8.5a is
employed. In order to accurately capture the hysteresis behavior based on LSSVM
model, a suitable input vector (8.8) is required to be determined. Without loss of
generality, the position and hysteresis terms are considered as input variables in the
current research.

By setting n = 2 and l = 2, the LSSVM model is trained by using the
corresponding input variables and the output variables, i.e., the hysteresis term h as
shown in Fig. 8.5b–d which is generated by resorting to (8.6). The training results
of the LSSVM model are shown in Fig. 8.6. By employing the input signal (see
Fig. 8.3a), the testing results are illustrated in Fig. 8.7.

It is observed that the LSSVM model is trained to produce an RMSE of 0.01%
for the hysteresis term h, which leads to a percent RMSE of 1.05% for the output
position x. With the new testing signal, the LSSVM model generates an RMSE of
0.77% for h, which results in 1.42% RMSE for the output position x.

It is evident that the LSSVM model has reduced the testing error of output posi-
tion by 32% in comparison with the Bouc–Wen model. Therefore, the effectiveness
of LSSVM model is confirmed by the hysteresis modeling results.



8 Intelligent Hysteresis Modeling and Control of Piezoelectric Actuators 181

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Time (s)

In
pu

t v
ol

ta
ge

 (
V

)

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 x 108

Time (s)

H
ys

te
re

si
s 

te
rm

 h
 (

μm
/s

2 )

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

a

c

b

d
4 x 108

Input voltage (V)

H
ys

te
re

si
s 

te
rm

 h
 (

μm
/s

2 )

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 x 108

Output position (μm)

H
ys

te
re

si
s 

te
rm

 h
 (

μm
/s

2 )

Fig. 8.5 The hysteresis term h. (a) Time history of input voltage; (b) time history of h; (c) h versus
input voltage; (d) h versus output position

0 2 4 6 8 10

ba

0

0.5

−0.5

1

1.5

2

2.5

3

3.5

4
x 108

Input voltage (V)

H
ys

te
re

si
s 

te
rm

 h
 (

μm
/s

2 )

Experiment
LSSVM model

0 2 4 6 8 10
−50

0

50

100

150

200

250

Input voltage (V)

D
is

pl
ac

em
en

t (
μm

)

Experiment
LS−SVM model

Fig. 8.6 Results of the trained LSSVM model. (a) Hysteresis term versus voltage; (b)
displacement–voltage hysteresis loops



182 Q. Xu

0 1 2 3 4 5 6
−20

a b

0

20

40

60

80

100

120

140

Input voltage (V)

D
is

pl
ac

em
en

t (
μm

)

Experiment
LS−SVM model

Fig. 8.7 Generalization test results of the LSSVM model. (a) Hysteresis term versus voltage;
(b) displacement–voltage hysteresis loops

+2
nω

2ξωn

yd

d / dt

d / dt
++

LSSVM
hyst. model

+

−

1

d

uFF

h

yPiezoactuated
system plant

Fig. 8.8 Block diagram of LSSVM model-based feedforward control scheme

8.5 Feedforward Hysteresis Compensation and Results

In this section, the feedforward control schemes based on the developed Bouc–Wen
and LSSVM models are realized to compensate for the hysteresis effect.

To suppress the hysteresis nonlinearity, a feedforward (FF) control (8.3) based
on the Bouc–Wen model is first implemented. Moreover, the block diagram of
LSSVM model-based FF control is depicted in Fig. 8.8. It is obvious that only the
hysteresis model is needed whereas no inverse hysteresis model is required in the
implementation of the feedforward compensation.

In order to demonstrate the superiority of LSSVM over Bouc–Wen model for
hysteresis compensation, several experimental studies have been carried out. For
instance, concerning a desired position trajectory as shown in Fig. 8.9a, the FF
control results of Bouc–Wen model and LSSVM model are illustrated in Fig. 8.9a, c,
and the tracking errors are compared in Fig. 8.9b. It is observed that the Bouc–Wen
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model gives an RMSE of 7.92μm (i.e., 5.8% of motion range), and the LSSVM
model produces a 1.02-μm RMSE (i.e., 0.7% of motion range). As compared with
Bouc–Wen model, the LSSVM is capable of suppressing the tracking error more
by 88%, which leads to a negligible hysteresis as depicted in Fig. 8.9c. Thus, the
effectiveness of LSSVM in the hysteresis compensation is demonstrated by the
experimental results.

Although some degree of compensation error exists as evident from Fig. 8.9b, it
can be easily reduced by combining a feedback controller as shown in [8].

8.6 Conclusion

This chapter is dedicated to hysteresis modeling and compensation of piezoelectric
actuators. It is shown that the nonlinear hysteresis can be well compensated by
resorting to a trained intelligent hysteresis model without modeling the hysteresis
inverse. That means that the established hysteresis model can be used for both hys-
teresis characterization and compensation, which is more computationally effective
than most of existing approaches where both a hysteresis model and an inverse
hysteresis model are employed. Experimental results confirm that the LSSVM
model is superior to the Bouc–Wen model in terms of hysteresis modeling accuracy
and hysteresis compensation effectiveness. Furthermore, the proposed approach
applies to hysteresis modeling and compensation of other smart materials-based
actuators as well.
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Chapter 9
Compensation of Rate-Dependent Hysteresis
in a Piezomicropositioning Actuator

Mohammad Al Janaideh

Abstract Piezomicropositioning actuators exhibit strong rate-dependent hysteresis
nonlinearities that affect the accuracy of these micropositioning systems in open-
loop system and may even lead to system instability of the closed-loop control
system. Compensation of rate-dependent hysteresis effects using inverse rate-
independent hysteresis models may yield high compensation error at high-excitation
frequencies since these hysteresis effects increase as the excitation frequency of
the input voltage increases. The inverse rate-dependent Prandtl–Ishlinskii model
is utilized for compensation of the rate-dependent hysteresis nonlinearities in a
piezomicropositioning stage. The exact inversion of the rate-dependent model is on
hold under the condition that the distances between the thresholds do not decrease
in time. The inverse of the rate-dependent model is applied as a feedforward
compensator to compensate for the rate-dependent hysteresis nonlinearities of a
piezomicropositioning actuator at different excitation frequencies between 0.1 and
50 Hz. The results show that the inverse compensator suppresses the hysteresis
percent and the maximum positioning error in the output displacement of the
piezomicropositioning actuator at different excitation frequencies, respectively.

9.1 Introduction

Piezomicropositioning actuators are increasingly used in micro and nano-
positioning applications because of their advantages which include nanometer
resolution, high stiffness, and fast response [1–9]. However, piezomicropositioning

M. Al Janaideh (�)
Department of Mechatronics Engineering, The University of Jordan, Amman 11942, Jordan

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
e-mail: aljanaideh@gmail.com

M. Rakotondrabe (ed.), Smart Materials-Based Actuators at the Micro/Nano-Scale:
Characterization, Control, and Applications, DOI 10.1007/978-1-4614-6684-0 9,
© Springer Science+Business Media New York 2013

187

mailto:aljanaideh@gmail.com


188 M. Al Janaideh

actuators show hysteresis nonlinearities between the applied input voltage and
output displacement. These nonlinearities have been associated with oscillations in
the open-loop system’s responses, and poor tracking performance and potential
instabilities of the closed-loop system [10]. Different piezomicropositioning
actuators show obvious increase in hysteresis nonlinearities when the excitation
frequency of the applied input voltage increases in a nonlinear manner [11–15]. The
inverse-based control methods generally employ a cascade of a rate-independent
hysteresis model and its inverse together with a controller to compensate for the
error of the compensation in piezomicropositioning actuators; see for example
[16]. These methods, however, necessitate the formulation of the hysteresis model
inverse, which is often a challenging task.

Different closed-loop control systems, however, have been proposed with inverse
rate-independent hysteresis models to compensate for hysteresis nonlinearities at
different excitation frequencies. Ge and Jouaneh [16] used inverse Preisach model,
which was obtained using a numerical algorithm, as a feedforward compensator
with PID feedback control system. Hu et al. [17] applied inverse Preisach model
formulated with a dynamic density function in a closed-loop control system. In
a similar manner, Song et al. [18] applied the inverse Preisach model with PD-
lag and PD-lead controllers in a closed-loop control system. Esbrook et al. [19]
applied a servocompensator with inverse Prandtl–Ishlinskii model in a closed-
loop control system. Shan and Leang[20] applied discrete-time repetitive controller
combined with an inverse hysteresis compensator based on the Prandtl–Ishlinskii
model. Feedback control techniques could compensate for the rate-dependent
hysteresis in peizomicropositioning actuators. However, the accurate and large
bandwidth sensors as well as the feedback control techniques inserted in the
closed-loop control systems may limit the use of the piezomicropositioning systems
in different industrial applications. Ang et al. [21] applied the inverse modified
Prandtl–Ishlinskii model as a feedforward compensator to compensate for hysteresis
nonlinearities under different excitation frequencies.

In this chapter, the open-loop control technique is applied to compensate
for the rate-dependent hysteresis nonlinearities over different excitation frequen-
cies. The rate-dependent hysteresis nonlinearities are characterized using the rate-
dependent Prandtl–Ishlinskii model. The analytical exact inverse of the rate-
dependent Prandtl–Ishlinskii model is formulated and applied as a feedforward
compensator to compensate for the rate-dependent hysteresis nonlinearities in a
piezomicropositioning actuator. The main advantage of the rate-dependent Prandtl–
Ishlinskii model over the other hysteresis models used in the literature is that its
inverse can be attained analytically, and it can be implemented as a feedforward
compensator to control the piezomicropositioning actuator over different excitation
frequencies without inserting feedback control techniques.

In [7, 22], the analytical inverse of the Prandtl–Ishlinskii model is constructed
with dynamic thresholds. The explicit inversion formula for the Prandtl–Ishlinskii
model presented in [23] remains applicable also for the case of time-dependent
thresholds, provided the distances between them do not decrease in time. This
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inverse is applied in this chapter as a feedforward controller in order to compensate
for the rate-dependent hysteresis nonlinearities. Such compensations are experimen-
tally illustrated by a piezomicropositioning actuator.

9.2 Background

The Prandtl–Ishlinskii model integrates play operators Γr with different thresholds
r and with positive weights in order to characterize hysteresis nonlinearities in
actuators and materials; see [23, 24]. For t ∈ [0,T ], when an input u(t) ∈ C[0,T ]
is applied, where C[0,T ] is the space of continuous functions on the time interval
[0,T ], the output of the Prandtl–Ishlinskii model for i = 1, . . . ,n, where n is an
integer represents the number of the play operators, is given, according to [23],
by the formula

Π [u](t) = a0u(t)+
n

∑
i=1

aiΓri [u,xi](t), (9.1)

where a0 and ai are positive weights.
The Prandtl–Ishlinskii model (9.1) is a rate-independent hysteresis model,

attributed to the time-independent play operator that the model employs. This model
has a unique advantage since it admits an exact inverse, which has been established
in [25]. In [23], the output of the inverse rate-independent independent Prandtl–
Ishlinskii model is written in the form

Π−1[u](t) = b0u(t)+
n

∑
i=1

biΓsi [u,yi](t). (9.2)

This inverse has been widely applied as a feedforward controller to compensate for
hysteresis nonlinearities in smart-material actuators at low-excitation frequencies
of the applied input. However, these actuators exhibit hysteresis nonlinearities that
are strongly rate-dependent. Consequently, the use of the inverse rate-independent
Prandtl–Ishlinskii model as a feedforward compensator may cause considerable
errors in the output displacement. It is therefore necessary to design a model and
a compensator capable of incorporating rate-dependent hysteresis effects. This can
be accomplished by adding a viscosity term in the constitutive relation [7].

9.3 Rate-Dependent Prandtl–Ishlinskii Model and Its Inverse

In this section the rate-dependent Prandtl–Ishlinskii model and its inverse are
presented. The rate-dependent Prandtl–Ishlinskii model is employed in this study to
characterize the rate-dependent hysteresis nonlinearities in a piezomicropositioning
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stage. This model is formulated in [22] using a play operator of time-dependent
(dynamic) threshold.

9.3.1 The Rate-Dependent Prandtl–Ishlinskii Model

Let AC(0,T ) the space of real absolutely continuous functions defined on the
interval [0,T ]. For an input u(t) ∈ AC(0,T ), the output of the rate-dependent
Prandtl–Ishlinskii model, constructed based on the rate of the applied input u̇(t),
is given by the formula

Ψ [u](t) = a0u(t)+
n

∑
i=1

aiΦri(u̇(t))[u,xi](t). (9.3)

The output of the rate-dependent play operator is denoted as

zi(t) = Φri(u̇(t))[u,xi](t). (9.4)

Let xi be given initial conditions for i = 1,2, . . . ,n such that for i = 1, . . . ,n−1

|x1| ≤ r1(u̇(0)),

|xi+1 − xi| ≤ ri+1(u̇(0))− ri(u̇(0)). (9.5)

The dynamic thresholds ri(t) are defined for t ∈ [0,T ] as

0 ≤ r1(u̇(t))≤ r2(u̇(t))≤ ·· · ≤ rn(u̇(t)). (9.6)

As shown in [11], the rate-dependent Prandtl–Ishlinskii model can characterize
the rate-dependent hysteresis nonlinearities in piezomicropositioning actuators over
different excitation frequencies. The inverse of the rate-dependent Prandtl–Ishlinskii
model is achievable and can be applied as a feedforward compensator to compensate
for the rate-dependent hysteresis nonlinearities in real-time systems.

9.3.2 Inverse Rate-Dependent Prandtl–Ishlinskii Model

The concept of the open-loop control system is used to obtain identity mapping
between the input u(t) and the output v(t) such that u(t) = v(t). When the output
of the exact inverse of the rate-dependent Prandtl–Ishlinskii model Ψ−1[u](t) is
applied as a feedforward controller to compensate for the rate-dependent hysteresis
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nonlinearities presented by the rate-dependent Prandtl–Ishlinskii model Ψ [u](t), the
output of the compensation is expressed as

v(t) =Ψ◦Ψ−1[u](t). (9.7)

The exact inversion is on hold under the condition that the distances between
the dynamic thresholds ri(u̇(t)) do not decrease in time [22]. Analytically for
∀i = 1, . . . ,n−1

d
dt

(
ri+1(u̇(t))− ri(u̇(t))

)≥ 0. (9.8)

The proof of the inversion formula is based in a substantial way on the so-called
Brokate formula for the superposition of play operators with different thresholds.
It was established for constant thresholds in [26], and the extension to moving
thresholds has been done in [22]. The inverse of the rate-dependent Prandtl–
Ishlinskii is also a rate-dependent Prandtl–Ishlinskii model. The output of the
inverse model is expressed as

Ψ−1[u](t) = b0,u(t)+
n

∑
i=1

biΦsi(u̇(t))[u,yi](t). (9.9)

Let the output of the rate-dependent play operator of the inverse model is

di(t) = Φsi(u̇(t))[u,yi](t). (9.10)

The thresholds of the inverse model are

s1(u̇(t)) = a0r1(u̇(t)),

si+1(u̇(t))− si(u̇(t)) =

(
i

∑
j=0

a j

)
(ri+1(u̇(t))− ri(u̇(t))). (9.11)

The weights of the inverse model b0,b1, . . . ,bn are

b0 =
1
a0

,

bi =
1

∑i
j=0 a j

− 1

∑i−1
j=0 a j

. (9.12)

The initial conditions of the inverse model y1,y2, . . . ,yn are

y1 = a1x1,

yi+1 − yi =

(
i

∑
j=0

a j

)
(xi+1 − xi). (9.13)
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9.3.3 The Dynamic Threshold

The following dynamic thresholds are used:

ri(u̇(t)) = αi +g(u̇(t)). (9.14)

This can be shown to be mathematically equivalent to modeling hysteresis and creep
by means of an analogical model with elastic, plastic, and viscous elements as in
[7, 27]. Then

αi −αi−1 ≥ σ , (9.15)

where σ is a positive constant. The constants αi in (9.14) represent the rate-
independent hysteresis effects, while the function g(u̇(t)) is proposed to characterize
the rate-dependent hysteresis effects. With this choice

ri+1(u̇(t))− ri(u̇(t))≥ 0 (9.16)

and
d
dt

(
ri+1(u̇(t))− ri(u̇(t))

)
= 0. (9.17)

From these equations it can be concluded that the exact inversion formula for
the rate-dependent Prandtl–Ishlinskii model holds. It should be mentioned that the
proposed formulation for the dynamic threshold reduces the rate-dependent Prandtl–
Ishlinskii model Ψ [u](t) into the rate-independent Prandtl–Ishlinskii model Π [u](t)
for g(u̇(t)) = 0.

9.3.4 Numerical Implementation

The numerical implementation of the rate-dependent Prandtl–Ishlinskii model and
its inverse is presented for an input u(t) with h sampling time. The rate of the applied
input u̇(t) can be estimated for k = 1,2,3, . . . ,K = T/h as

us(k) =
u(k)−u(k−1)

h
, (9.18)

where

h = t(k)− t(k−1). (9.19)

The discrete dynamic threshold is presented as

ri(us(k)) = αi +g(us(k)). (9.20)

The discrete output of the rate-dependent play operator is expressed as

zi(k) = max(u(k)− ri(us(k)),min(u(k)+ ri(us(k)),zi(k−1))). (9.21)
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The discrete output of rate-dependent Prandtl–Ishlinskii model can thus be de-
rived as

Ψ [u](k) = a0u(k)+
n

∑
i=1

aiΦri(us(k))[u](k). (9.22)

The discrete output of the inverse rate-dependent Prandtl–Ishlinskii model can thus
be expressed as

Ψ−1[u](k) = b0u(k)+
n

∑
i=1

biΦsi(us(k))[u](k). (9.23)

9.4 Experimental Results and Hysteresis Modeling

9.4.1 Experimental Results

The experiments were performed on a piezomicropositioning actuator (P-753.31C)
from Physik Instrumente Company. The actuator provided maximum displacement
of 100 μm from its static equilibrium position, and it integrates a capacitive sensor
(sensitivity = 1 μm/V; resolution 0.1 nm) for measurement of stage displacement
response. The excitation module compromises a voltage amplifier (LVPZT, E-505)
with a fixed gain of 10, which provides the excitation voltage to the actuator. The
actuator displacement response signal was acquired by a DSpace DS1104 controller
board. The measurements with the piezomicropositioning stage were performed
under a harmonic input of u(t) = 40 cos(2 f π t) at seven excitation frequencies
(1, 5, 10, 20, 30, 40, and 50 Hz). The input voltage and output displacement signals
were acquired at a sampling frequency of 10 KHz.

The measured data were further analyzed to quantify hysteresis and displacement
attenuation as a function of the applied excitation frequency. The resulting hysteresis
loops relating displacement responses to the input voltage are shown at excitation
frequencies in Fig. 9.1. The results show that hysteresis nonlinearities increase with
increasing the excitation frequency of the applied input voltage. It is evident that the
micropositioning stage exhibits highly rate-dependent hysteresis effects between the
input voltage and the output displacement.

9.4.2 Parameter Identification

Parameter identifications of the rate-dependent Prandtl–Ishlinskii model are pre-
sented in this section. Measured rate-dependent hysteresis loops between the applied
input voltage and the output displacement are used to identify the parameters of
the rate-dependent Prandtl–Ishlinskii model and its inverse. Let g(u̇(t)) = β (u̇(t))2.
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Fig. 9.1 Hysteresis loops
at different excitation
frequencies

The parameter vector X = {β ,ζ ,a0,a1,a2, . . . ,an} was identified through minimiza-
tion of the an error function over different excitation frequencies. This function is
given by

Q(X) =Θ(k). (9.24)

The model error function Θ is used to identify the parameters of the rate-dependent
Prandtl–Ishlinskii model Ψ [v](t). The error function Θ is expressed as

Θ(k) =
P

∑
p=1

K

∑
k=1

Ap(Ψ [v](k)− ym(k))
2, (9.25)

where Ψ [v](k) is the displacement response of the model corresponding to a
particular excitation frequency and ym(k) is the measured displacement under
the same excitation frequency. The model error function is constructed through
summation of squared errors over a range of input frequencies, denoted by p
(p = 1,2, . . . ,P). The index k (k = 1, . . . ,K) refers to the number of data points
considered to compute the error function Q for one complete hysteresis loop. Two
hundred data points (K = 200) were available for each measured hysteresis loop.
Seven excitation frequencies (P = 7) of 1, 5, 10, 20, 30, 40, and 50 Hz are used.
Owing to the higher error at excitation frequencies, a weighting constant Ap was
introduced to emphasize the error minimization at higher excitation frequencies.
The weights Ap for p = 1,2, . . . ,7 are selected based on the hysteresis percent as

Ap =
Hp

H1
, (9.26)

where Hp represents the hysteresis percent for the p excitation frequency. The
weights Ap are obtained as: 1, 1.18, 1.38, 1.57, 1.78, and 1.96 for 1, 5, 10, 20, 30, 40,
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Fig. 9.2 Comparison between the output of the rate-dependent Prandtl–Ishlinskii model (solid
line) and the measured hysteresis nonlinearities (dashed line) in the piezomicropositioning actuator
at: (a) 1 Hz and (b) 50 Hz

and 50 Hz, respectively. The error minimization is performed using the MATLAB
constrained optimization toolbox subject to the following constraints:

(β ,ζ ,a0,a1,a2)> 0,ζ � β . (9.27)

The rate-dependent Prandtl–Ishlinskii model is used to characterize the rate-
dependent hysteresis nonlinearities of the piezomicropositioning actuator between 1
and 50 Hz. The results propose two rate-dependent play hysteresis operators (n = 2)
to characterize the rate-dependent hysteresis nonlinearities.

9.4.3 Hysteresis Modeling

The validity of the model was examined by comparing the model displacement
responses to the measured data. The results suggest that the model can effectively
predict the hysteresis properties of the piezomicropositioning actuator at different
excitation frequencies between 1 and 50 Hz. Figure 9.2 shows the capability of the
model to characterize the rate-dependent hysteresis nonlinearities at 1 and 50 Hz.

9.5 Feedforward Compensation of Rate-Dependent
and Rate-Independent Hysteresis Nonlinearities

In this section the inverse rate-dependent Prandtl–Ishlinskii model is applied as a
feedforward compensator to compensate for hysteresis nonlinearities under different
excitation frequencies.
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9.5.1 The Inverse Compensator

The input–output characteristics of the inverse rate-dependent Prandtl–Ishlinskii
model at excitation frequencies of 1, 20, and 50 Hz are shown in Fig. 9.3. This figure
shows that hysteresis nonlinearities in the output of the inverse model increase as
the excitation frequency of the input voltage increases.

9.5.2 Compensation of Rate-Dependent Hysteresis

The inverse rate-dependent Prandtl–Ishlinskii model obtained in the previous sec-
tion is applied as a feedforward compensator to compensate for the rate-dependent
hysteresis nonlinearities between 1 and 50 Hz. The measured output–input charac-
teristics of the piezomicropositioning stage with inverse compensator are illustrated
in Fig. 9.4 at excitation frequencies of 1, 20, and 50 Hz. The results show that
the inverse rate-dependent model can effectively compensate the hysteresis effects
at different excitation frequencies. Figure 9.5 shows the time history of the input
voltage and the measured displacement with and without the inverse compensator
at excitation frequency of 50 Hz.

The positioning error is computed as the deviation between measured displace-
ment and the input voltage, which represents the desired displacement, at different
excitation frequencies (Fig. 9.6). Figure 9.7 illustrates comparison of the maximum
positioning errors with and without the inverse compensator. Without the inverse
compensator, the maximum positioning errors are between 6.5 and 13.8 μm, while
the measured responses with the inverse compensator show maximum positioning
errors between 2.3 and 3.7 μm across the entire 1–50 Hz band. In a similar manner,
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Fig. 9.5 The time history of the input voltage (solid line) and the measured displacement (dashed
line) at excitation frequency of 50 Hz: (a) without the inverse compensator and (b) with the inverse
compensator

Fig. 9.8 shows that the inverse compensator decreases the hysteresis percent to 3.5.
It is obvious that the inverse rate-dependent Prandtl–Ishlinskii model suppresses the
error due to rate-dependent hysteresis disregarding the excitation frequency of the
input voltage and the tracking accuracy remains consistent.

In Fig. 9.18, the compensation effectiveness of the inverse rate-dependent
Prandtl–Ishlinskii model is further evaluated by comparing the time history of
the measured displacement responses of the piezomicropositioning stage with and
without the inverse compensator at 20 and 50 Hz frequencies. The results show the
effectiveness of the inverse rate-dependent model under low- and high-excitation
frequencies.
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9.5.3 Compensation of Hysteresis Nonlinearities
at Low-Excitation Frequencies

At low-excitation frequencies, the rate-dependent Prandtl–Ishlinskii model (9.3) and
its inverse (9.9) constructed based on the dynamic threshold (9.20) are reduced to the
rate-independent Prandtl–Ishlinskii model and its inverse. Analytically, the dynamic
thresholds are reduced to

r(u̇(t))≈ ζ i. (9.28)

Then

Π [v](t)≈Ψ [v](t). (9.29)

Further investigation shows that the performance of the inverse rate-dependent
Prandtl–Ishlinskii model still remains at low-excitation frequencies. In other words,
the inverse rate-dependent Prandtl–Ishlinskii model can be applied to compensate
for rate-independent hysteresis nonlinearities. As shown in Fig. 9.9, the inverse rate-
dependent Prandtl–Ishlinskii model compensates for the hysteresis nonlinearities
at excitation frequencies of 0.1 and 0.5 Hz. The time history for the positioning
error is presented in Fig. 9.10. It can be concluded that the inverse rate-dependent
Prandtl–Ishlinskii can be used as a feedforward compensator also at low-excitation
frequencies.

9.5.4 Triangular Waveform

A triangular waveform of amplitude 40 at excitation frequencies of 10 and 20 Hz is
applied as an input voltage. The experimental results show that the percent of the
hysteresis nonlinearities are 13.54 and 15.62 for 10 Hz and 20 Hz, respectively. As
shown in Fig. 9.11, the inverse model compensates for the hysteresis nonlinearities
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Fig. 9.9 The input–output of the piezomicropositioning actuator with (red line) and without (blue
line) the inverse compensator at (a) f = 0.10 Hz and (b) f = 0.50 Hz
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Fig. 9.10 The time history of the positioning error of the piezomicropositioning actuator with (red
line) and without (blue line) the inverse compensator at (a) f = 0.10 Hz and (b) f = 0.5 Hz
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Fig. 9.11 The output of the piezomicropositioning stage with (red line) and without (blue line) the
inverse compensator when a triangular waveform is applied at: (a) f = 10 Hz and (b) f = 20 Hz
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placement (red line) at f = 20 Hz: (a) without the inverse compensator and (b) with the inverse
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when a triangular input voltage is applied. Figure 9.12 shows the triangular input
voltage and the output displacement at the excitation frequency of 20 Hz with
and without the inverse compensator. Figure 9.13 shows the time history of the
positioning error with and without the inverse compensator. The results show the
effectiveness of the inverse compensator when a triangular input voltage is applied
at different excitation frequencies.

9.5.5 Major and Minor Hysteresis Loops

Major and minor hysteresis loops with the inverse rate-dependent Prandtl–Ishlinskii
model are tested in this section (Fig. 9.14). Harmonic input voltages of u(t) =
10cos(2π f t) + 30cos(4π f t) are applied to the piezomicropositioning actuator to
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Fig. 9.14 The output of the piezomicropositioning actuator with the input voltage u(t) =
10cos(2π f t)+30cos(4π f t), where (a) f = 5 Hz and (b) f = 10 Hz
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Fig. 9.15 The time history of the positioning error of Fig. 9.16 with the inverse compensator (red
line) and without the inverse compensator (blue line) at: (a) f = 5 Hz and (b) f = 10 Hz

show major and minor hysteresis loops at excitation frequencies of f = 5 Hz and f =
10 Hz. Figure 9.15 shows the output of the inverse compensation. Figure 9.16 shows
the time history of the positioning error with and without the inverse compensator.

9.6 Discussions

The above analysis shows that the inverse rate-dependent Prandtl–Ishlinskii model
is capable of suppressing the error due to hysteresis, regardless of the excitation
frequency of the input voltage, while maintaining consistency in the tracking
accuracy (Fig. 9.17). The results manifest the effectiveness of the inverse rate-
dependent model in compensating for hysteresis under low- and high-excitation
frequencies. However, the inverse compensator shows some deviation in the output,
which is attributed to prediction errors attained between the output of the rate-
dependent model and the measured displacement of the piezomicropositioning
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Fig. 9.16 The output of the piezomicropositioning actuator when the inverse rate-dependent
Prandtl–Ishlinskii is applied as a feedforward compensator with the input voltage of u(t) =
10cos(2π f t)+30cos(4π f t), where (a) f = 5 Hz and (b) f = 10 Hz
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Fig. 9.17 Comparison between the measured displacement (solid line) and the output of the rate-
dependent Prandtl–Ishlinskii model (dashed line) at excitation frequencies of 1 and 50 Hz

actuator. Figure 9.18 shows a comparison between the characterization error
of the rate-dependent Prandtl–Ishlinskii model and the positioning error in the
displacement output of the piezomicropositioning actuator. The figure shows a
similarity between the error in both cases. It can be seen from the experimental
results that the characterization error of the rate-dependent Prandtl–Ishlinskii model
at the turning points is relatively larger than elsewhere. It should be mentioned that
piezomicropositioning actuators also show creep effects during slow-speed actua-
tion. These dynamic effects cause positioning errors in the output displacement.

As shown in the previous section, the inverse rate-dependent Prandtl–Ishlinskii
model shows perfect compensation for symmetric hysteresis nonlinearities. How-
ever, the inverse model may not show the same performance when applied to
compensate for asymmetric rate-dependent hysteresis nonlinearities. In future work,
the inverse rate-dependent Prandtl–Ishlinskii model will be developed to compen-
sate for asymmetric rate-dependent hysteresis nonlinearities of smart-material based
actuators.



204 M. Al Janaideh

−50 −40 −30 −20 −10 0 10 20 30 40 50

−2

−1

0

1

2

Input Voltage (V)

f = 1 Hz

−50 −40 −30 −20 −10 0 10 20 30 40 50

−2

−1

0

1

2

Input Voltage (V)

f = 20 Hz

Fig. 9.18 Comparison between the error of the inverse compensation when the inverse rate-
dependent Prandtl–Ishlinskii model is applied as a feedforward compensator (circle) and the
characterization error between the measured displacement and the output of the rate-dependent
Prandtl–Ishlinskii model (square)

It should be mentioned that different piezomicropositioning actuators exhibit
asymmetric rate-dependent hysteresis nonlinearities that increase as the excitation
frequencies of the applied input voltage increase. These effects can be accurately
compensated for using the method proposed in this chapter. The results presented
in this chapter can also be extended to complex hysteresis nonlinearities studied by
Kuhnen [28] and Visone and Sjöström [29].

9.7 Conclusions

The inverse rate-dependent PrandtlIshlinskii model is analytical and exact. This
makes the inverse PrandtlIshlinskii model attractive for control piezomicroposi-
tioning actuators at different excitation frequencies. The proposed compensation
algorithm is easy to use and can be applied to compensate for rate-dependent
hysteresis nonlinearities in micro/nano-positioning applications where the use of
feedback sensors and feedback control techniques are not easy.
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Chapter 10
Feedforward Control of Flexible and Nonlinear
Piezoelectric Actuators

Micky Rakotondrabe

Abstract In this chapter, the control without sensors, also called feedforward
control, of piezoelectric actuators is proposed. Typified by hysteresis and creep non-
linearities and by badly damped vibration, the design of the controller (compensator)
is based on precise models and on the inversion of the latter. For that, the hysteresis
is first modeled and compensated by using the Prandtl–Ishlinskii technique. Then,
the creep is treated. Finally, the badly damped vibration is modeled and controlled.
Experimental results along the chapter demonstrate the efficiency of the approach.

10.1 Introduction

Piezoelectric materials are well known for the design and development of mi-
croactuators in microsystems, microrobotics, and systems working at the micro/
nanoscale. Such recognition is particularly due to their high resolution (better than
the micron), their high bandwidth (up to some tens of kiloHertz), their high force
density, the fact that they can also be used as sensors, and their ease of control
(electrical supply)

Among the systems working at the micro/nanoscale that are based on piezo-
electric materials, there are microgrippers which are used to manipulate or to
assemble small objects (micromanipulation and microassembly) [1]. A piezoelectric
microgripper, pictured in Fig. 10.1a, is made up of two piezoelectric actuators with
cantilever structure (piezocantilever). Each piezocantilever has a rectangular section
and can be supplied and controlled independently. Often, while one cantilever
is controlled on deflection for the precise positioning, the second cantilever is
controlled on force in order to avoid the destruction of the manipulated object
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a
b

Fig. 10.1 (a): A photography of a piezoelectric microgripper developed at FEMTO-ST institute.
(b): principle of manipulation of a small object using a microgripper

(or conversely to avoid the destruction of the actuator) or in order to estimate
the mechanical characteristics of this latter [2] (see Fig. 10.1b). In the figure, y is
the displacement and F is the manipulation force. A piezocantilever is generally
composed of two or several layers where at least one layer is made of piezoelectric
material (piezolayer). The non-piezoelectric layers are called passive layers.

Although piezoelectric actuators offer a very good resolution, they are typified
by hysteresis and creep nonlinearities that can drastically decrease the accuracy.
Furthermore, cantilever structured piezoelectric actuators are characterized by a
badly damped oscillation which not only increases the response time but also affects
the stability of the whole system. Closed-loop control techniques (or feedback) have
therefore been studied in the past to overcome these nonlinearities and oscillation
[2–10]. These techniques offer a high robustness relative to model uncertainties
and to external disturbances. However, they are strongly limited by the available
sensors. Indeed, sensors that have the required performances at the same time (high
accuracy, high bandwidth) are expensive and have bulky dimensions that are not
convenient face to the dimensions of the actuators and face to the available space.
They include interferometry and optical sensors. On the other hand, embeddable
sensors such as strain gages do not often provide the necessary performances
(limited range, sensitive to noises, etc.) and are very fragile. Hence, open-loop
control techniques (or feedforward) have been emerging. The main advantage of
feedforward is that no sensor is required. This makes these techniques very attractive
for applications where packaging and compacity are essential. These applications
include micromanipulation and microassembly, measurement and scanning at the
micro/nanoscale with small systems, intra-body microrobotics, etc. The main
principle of feedforward control consists in modeling as precise as possible the
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Fig. 10.2 Principle of a
feedforward control
technique

nonlinearities or the oscillation to be cancelled and then putting in cascade with
the actuator a kind of inverse model as in Fig. 10.2. The objective is therefore to
find the compensator such that y = yr. In the figure, u represents the input voltage
(control signal).

Controlling the hysteresis in piezocantilevers by feedforward has attracted
several attentions. Different approaches have been proposed: the Preisach [11, 12],
the Prandtl–Ishlinskii [13–17], and the Bouc–Wen [18]. In the two first approaches
(Preisach and Prandtl–Ishlinskii), the complex hysteresis model is a superposition of
many elementary hysteresis operators. These approaches could be very accurate at
a price of a complexity of implementation: increasing the number of the elementary
operators increases not only the accuracy but also the model/compensator complex-
ity. The last approach (Bouc–Wen) is based on a set of two nonlinear differential
equations that contain very few number of parameters. This approach is very
interesting in terms of simplicity of structure. Concerning the creep nonlinearity,
the main approaches that have been used are the logarithmic method [19] and the
linear dynamic operator [11, 13, 15]. Finally, to compensate the vibration and the
badly damped oscillation, Croft et al. [11] and Clayton et al. [20] use once again
linear dynamic models and their direct inversion while in [13, 21] an input shaping
technique is employed. A complete survey of control of piezocantilevers in general
is presented in [22].

This chapter deals with the feedforward control of piezocantilever used in
micromanipulation and microassembly. The main challenge remains in the fact that
the feedforward controller should account the hysteresis and the creep nonlinearities
and the badly damped oscillation at the same time. For that, we propose to
compensate first the hysteresis, then the creep, and finally the vibration. The final
compensator includes therefore three sub-compensators conveniently calculated.
For the hysteresis, we propose to employ the Bouc–Wen approach which presents
the advantage of structure simplicity. The creep will be modeled with a linear
dynamic model and then compensated by using an inverse multiplicative structure.
Finally, to efficiently damp the vibration, we propose to use an input shaping
technique which is very simple in computation and in implementation. The chapter
will treat the displacement y control and the force F shall not be considered.

The experimental setup used for the rest of the paper is pictured in Fig. 10.3.
It includes:

• The actuator which is a unimorph piezocantilever. It is composed of one
piezoelectric layer based on PZT material (lead zirconate titanate) and of a
Nickel layer (passive layer). When a voltage u is applied to the piezolayer, it
contracts or expands. Due to the constraint between the two layers, a global
flexion y of the cantilever is obtained. The total dimensions of the cantilever
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Fig. 10.3 The experimental
setup

are 15mm× 2mm× 0.3mm where the thicknesses of the piezolayer and of the
Nickel layer are 0.2 mm and 0.1 mm, respectively.

• An optical sensor (Keyence LC2420) that is set to have a resolution of 50 nm.
This sensor is used to measure y for the identifications of the model parameters
and to validate the control technique.

• A computer and a dSPACE board to acquire the measured displacement y, to
implement the feedforward controller, and to generate the control signals u. The
software Matlab-Simulink is used for the implementation and for the signal
management. The sampling time to cadence the computer and the dSPACE
board is 0.2 ms. It has been chosen to conveniently account the dynamics of the
piezocantilever.

• A high-voltage amplifier (±200 V) that amplifies the signals from the dSPACE
board before supplying the actuator.
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10.2 Hysteresis Compensation Using the Bouc–Wen
Approach and the Inverse Multiplicative Structure

In this section, the hysteresis is first characterized, modeled, and compensated. As
we will further characterize and compensate the dynamics, the hysteresis studied
here is reduced to a static or rate-dependent hysteresis.

10.2.1 Characterization

To characterize the static hysteresis, a sine or triangular input voltage u(t) is
applied to the piezocantilever. The amplitude uA of the signal should include the
maximal range of use. In the applications considered, an amplitude of uA = 80 V
is sufficient. The frequency f should be low enough such that the dynamics of
the structure will not affect the hysteresis, i.e., to avoid the phase lag. However,
it should not be too low in order to avoid the effect of the creep (which is
seen at very low rate/frequency) on the hysteresis curve [13]. For the employed
piezocantilever, f = 0.1 Hz is convenient. After applying the sine input voltage,
the output displacement y(t) is recorded. Figure 10.4a, b picture the sine voltage
applied to the piezocantilever and the output deflection, respectively. The hysteresis
curve is afterwards obtained and can be characterized by plotting the (u,y)-map
(see Fig. 10.4c). From this figure, we observe that the hysteresis amplitude is of
hh
Hh

≈ 40μm
160μm = 25% which is non-negligible. It is therefore essential to correctly

control such a hysteresis in order to improve the accuracy of the piezocantilever
during its utilization. For that, a feedforward control technique based on the Bouc–
Wen approach is proposed in the next subsections.

10.2.2 Modeling and Identification

To calculate a feedforward controller able to correctly compensate the hysteresis
pictured in Fig. 10.4c, a model is first required. The controller (compensator) can be
afterwards derived from this model. In the Bouc–Wen approach [23, 24], the model
has the advantage to be a simple structure and to have lower number of parameters
to be identified. The following set of two equations describes the Bouc–Wen model
adapted to piezoelectric actuators in general [25, 26]:

{
y(t) = dpu(t)−h(t), y(t0) = y0

dh
dt = Abw

du
dt −Bbw

∣∣ du
dt

∣∣h−Γbw
du
dt |h| , h(t0) = h0

(10.1)

where Abw, Bbw, and Γbw are parameters that determine the amplitude and the
shape of the hysteresis and dp is the piezoelectric coefficient. The signal h(t) is
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Fig. 10.4 Characterization of the hysteresis. (a): the applied input voltage. (b): the measured
output displacement. (c): the obtained hysteresis

an internal state. Remark that if the hysteresis parameters Abw, Bbw, and Γbw are
null, the model in (10.1) becomes a linear model: y(t) = dpu(t). Remind also
that this model is a model for static (or rate-independent) hysteresis. The block-
scheme corresponding to the Bouc–Wen model is shown in Fig. 10.5. Both the set
of equations in (10.1) and this block-scheme can be used to simulate the model.
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Fig. 10.5 Block diagram of the Bouc–Wen model in (10.1)
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Fig. 10.6 Hysteresis curve: comparison of the model simulation and experimental results

By using a nonlinear filter system identification method [25], we provide
approximated values of Abw, Bbw, and Γbw. Afterwards, the identified parameters
are validated by comparing the hysteresis curves of the model and of the actuator.
During this step, the parameters can be manually refined if required. We finally have
dp = 1.6

[μm
V

]
, Abw = 0.9

[μm
V

]
, and Bbw = Γbw = 0.008

[
V−1

]
. Figure 10.6 pictures

the comparison of the model simulation with the experimental results. It shows that
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Fig. 10.7 Hysteresis compensation. (a) General principle. (b) Bouc–Wen model and inverse
multiplicative structure as compensator [18]. (c) Experimental result

the identified model fits enough to the experiments both for the external loop (with
u = 80 V) and internal loop (here, we use u = 40 V).

10.2.3 Compensation

To compensate a static hysteresis that has been modeled with the Bouc–Wen model,
we proposed to combine the same model with an inverse multiplicative structure
for the compensator [18]. The main advantage is that no additional computation is
required to have the compensator. This technique is used here to compensate the
hysteresis and will further be combined with a creep and a vibration compensator
in order to enhance the general performances of the piezocantilever. Let us consider
the figure in Fig. 10.7a that corresponds to the piezocantilever with the hysteresis
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compensator. In the figure, yrh is the input reference. From the first equation of the
Bouc–Wen model in (10.1), we derive the necessary control voltage u(t) such that
the output y(t) matches the input reference yrh, i.e., such that y = yrh. We have

u(t) =
1
dp

(yrh(t)+h(t)) (10.2)

Thus, the hysteresis compensator is described as follows:
{

u(t) = 1
dp
(yrh(t)+h(t))

dh
dt = Abw

du
dt −Bbw

∣∣ du
dt

∣∣h−Γbw
du
dt |h|

(10.3)

The block diagram that corresponds to the compensator (10.3) is given in
Fig. 10.7b. We can see from this diagram that the compensator has an inverse
multiplicative structure. The hysteresis compensator has been implemented in the
Matlab-Simulink. To check the efficiency of the compensation, a sine reference
signal yrh is applied. Figure 10.7c pictures the results. It clearly shows the deletion of
the initial hysteresis of 25% (see Fig. 10.4c). Furthermore, not only the new system
(piezocantilever with the hysteresis compensator) is linear but also the gain is nearly
equal to one, i.e., a high accuracy is obtained: y ≈ yrh.

10.3 Creep Compensation Using a Linear Model
and the Inverse Multiplicative Structure

10.3.1 Characterization

The previous section deals with the hysteresis compensation. The new system
(piezocantilever with the hysteresis compensator) becomes linear and quite accurate
since y ≈ yrh. Unfortunately, when a step input reference yrh = 20μm is applied
and when we report the output displacement y for a long period of time, we will
observe a very slow drift as in Fig. 10.8. This drift is called creep and acts at very
low frequency. This makes again the previous linearized system non-accurate and
requires therefore a control. Once again, to feedforward control this behavior, an
accurate model is required first.

10.3.2 Modeling and Identification

Regarding Fig. 10.8, the output displacement y can be seen as the summation of two
signals:

• The evolution ytransient from 0μm to a final value before the drift start
• The evolution ycreep that tracks the drift
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Fig. 10.8 Characterization of the creep

Then, in the time domain, we can write

y(t) = ytransient(t)+ ycreep(t) (10.4)

which, in the Laplace domain, is equivalent to

y(s) = ytransient(s)+ ycreep(s) (10.5)

where s is the Laplace variable.
Under the assumption that we do not regard the dynamics of the piezocantilever,

which is valuable since we study the behavior at low and very low frequency so far,
the ratio between ytransient(s) and yrh(s) is a constant, denoted K, that corresponds to
the slope of the curve in Fig. 10.7c. We have

ytransient(s)
yrh(s)

= K (10.6)

Although the creep behavior is classified as a nonlinear behavior, it can be
approximated by a linear model, for instance by a transfer function. Denote C(s) the
transfer function that approximates the ratio between ycreep(s) and yrh(s) such that

ycreep(s)
yrh(s)

=C(s) (10.7)



10 Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators 217

8

7

6

5

4

3

2

1

0
0 100 200 300 400 500

Fig. 10.9 Creep evolution: experimental result and model simulation

From (10.4), (10.6), and (10.7), we derive

y(s)
yrh(s)

= (K +C(s)) (10.8)

K can be identified from Fig. 10.7c, which provide K ≈ 1. To identify C(s), the drift
in Fig. 10.8 needs to be separated from the whole curve. Then applying a system
identification technique (such as ARMAX-Auto Regressive Moving Average with
eXternal inputs) in the Matlab software [27], we obtain

C(s) = 0.465 · (16 · s+1) · (203 · s+1)
(3 · s+1) · (34 · s+1) · (444 · s+1)

(10.9)

Figure 10.9 presents the simulation of the creep model in (10.9) and the
experimental result extracted from Fig. 10.7a. It shows the accuracy of the identified
model used.

10.3.3 Compensation

Let Fig. 10.10a picture the general block diagram of the new system (linearized
system) with the creep compensator where yrc is the new reference. The aim is
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a

b

c

Fig. 10.10 Compensation of the creep. (a) General block diagram. (b) Detailed diagram of the
compensators. (c) Experimental results

now to compute this creep compensator. To control the creep, we start with the
model (10.8) and derive the necessary input yrh such that the output y meets the new
reference yrc, i.e., such that yrc = y. We obtain

yrh(s)
yrc(s)

=
1

(K +C(s))
(10.10)

which provides

yrh(s) =
1
K
(yrc(s)−C(s)yrh(s)) (10.11)
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where K is ensured to be invertible since it corresponds to the static gain between the
input yrh and y (K �= 0). Equation (10.11) is the equation of the creep compensator
and its block diagram, when applied to the linearized system in Fig. 10.7b, is
pictured in Fig. 10.10b. The main advantage of the controller in (10.11) is that no
direct dynamics inversion is required. Hence, no particular conditions are required
for the creep model C(s) [13].

The experimental results effectuated with the piezocantilever are pictured in
Fig. 10.10c. It presents the response y of the actuator when a step reference yrc =
10μm is applied. It clearly shows that the creep has been completely removed.

10.4 Vibration Compensation Using an Input
Shaping Technique

10.4.1 Characterization

Although the hysteresis and the creep have been removed, the piezocantilever has a
badly damped vibration behavior. This can be seen by zooming the transient part in
the step response pictured in Fig. 10.10c. Figure 10.11a pictures this transient part
(step response) from which we observe an overshoot of d

D ≈ 33%. In Fig. 10.11b,
we show the frequency response of the system. This clearly shows the high peak
of resonance. In many applications such as micromanipulation and microassembly,
a badly damped vibration is unwanted because the corresponding high overshoot
may imply the destruction of the manipulated object. In addition, the settling time
is greatly increased due to the long time necessary to damp and stabilize the
piezocantilever. The control of this vibration is therefore as essential as the control
of the nonlinearities previously presented.

10.4.2 Modeling and Identification

The nonlinear parts having been compensated, the remaining behavior is now
linear. The dynamics studied here is therefore linear. The system to be considered
is pictured in Fig. 10.10b and has as input the reference yrc and as output the
displacement y. A general model of this system is

y(s)
yrc(s)

=

m
∑
j=0

b js j

n
∑

i=0
aisi

(10.12)

where ai and b j are the coefficients to be identified and where m≤ n for the causality
of the system.
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Fig. 10.11 (a) Response of the piezocantilever to a step yrc = 21μm. (b) Frequency response of
the piezocantilever

The higher the order n is, more accurate will be the identified model. However
this will increase the complexity of the model and therefore the complexity of the
vibration compensator. This is the case for the zero magnitude error tracking control
(ZMETC), the zero phase error tracking control (ZPETC), and the direct dynamics
inversion compensation techniques for which the compensators orders are at least
equal to the model’s orders [22]. Some techniques such as the input shaping and
the Posicast techniques can however use lower model (second-order model) by still
maintaining their efficiency to strongly damp the vibration. We will present here
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the input shaping technique. Hence, we impose the dynamics that will be used as a
model of Fig. 10.11 as a second-order model. The ARMAX method and the Matalb
software are again used to identify the parameters. We obtain

y(s)
yrc(s)

=
1(

1
ωn

)2
s2 + 2ξ

ωn
s+1

(10.13)

where the natural frequency is ωn = 3,092 rad/s and the damping ratio is ξ = 0.029.

10.4.3 Compensation by Using an Input Shaping Technique

The input shaping approach is a simple approach to damp vibration in oscillatory
structures. It consists in shaping the input control and generating the right signal
such that the steady state is obtained without having an oscillating transient part. The
way to shape the input control is by using a sequence of impulses convolved with
a reference input. There are several kinds of input shaping techniques as surveyed
in [28]. Among them, the zero vibration input shaping technique (ZVIS) [29] is the
simplest one that can minimize the vibration and that we will use in this chapter.
First, we remind its principle.

When an impulse is applied to an oscillating system, for instance the system in
(10.13), a vibration appears. When a second impulse is applied at time t2 = Tp/2,
with Tp = 2.π

ωn.
√

1−ξ 2
, the vibration caused by the second impulse can cancel the

one caused by the first impulse if the amplitudes of both are judiciously chosen
(Fig. 10.12). For any reference input yr, the precedent sequence of impulses, also
called shaper, is convolved with it to obtain a new signal control that will cause no
vibration. As example, if the reference input is a step, the resulting signal control
will be a staircase with two steps.

The shaper is calculated as follows. Consider Ai and ti the amplitudes of the

impulses and their application times. Consider K = e
− ξ .π√

1−ξ 2 . Then:

[
A1 =

1
1+K , A2 =

K
1+K

]
[

t1 = 0, t2 =
Tp
2

]
(10.14)

Sometimes, it is hard to precisely identify the parameters ωn and ξ . The model
uncertainty will therefore generate residual vibration when applying the calculated
shaper. In such a case, it is recognized to use a higher number of impulses in
the shaper. Then, when a step reference input yr is applied, the amplitudes of the
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Fig. 10.12 Response of the piezocantilever to two delayed impulses

different impulses will be lower and the residual vibration will be reduced. For a
shaper with k impulses, we have

[
A1 =

a1

(1+K)m−1 , A2 =
a2

(1+K)m−1 ,

. . . , Am = am

(1+K)m−1

]
[

t1 = 0, t2 =
Tp
2 , . . . , tm = (m−1) Tp

2

]
(10.15)

with ai the ith coefficient of the polynomial from (1+K)m−1. We have a1 = 1
and am = Km−1. Using the dynamic model given by (10.13) and the identified
parameters, a shaper has been computed. It has been implemented in cascade with
the linearized system as pictured in Fig. 10.13.

First, a step response characterization was carried out. The step reference applied
is yr = ±15μm. Different shapers with different number of impulses were tested.
The step responses indicated that the performances did not increase substantially
when using number of impulses greater than four. The results are pictured in
Fig. 10.14. This figure includes the response of the vibration compensated system
with a shaper with 1, 2, 3, and 4 impulses. The response of the system without
vibration compensation is also pictured in the same figure. Table 10.1 summarizes
the performances. They point out that the overshoot has been reduced from 50.8 to
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Fig. 10.14 Step response of the vibration compensated system with different order of shaper

Table 10.1 Performances summary

Overshoot (%) Setting time (ms)

Uncompensated vibration 50.8 >28.5
Compensated vibration (2 impulses) 3.65 10.7
Compensated vibration (3 impulses) 0 3.95
Compensated vibration (4 impulses) 0 ≈4

0% when the number of impulses is four. In addition, a high reduction of the settling
time is obtained. Finally, the results point out that there is no major amelioration of
the performances when using more than 3 impulses.

Next, we perform a harmonic analysis. The results are pictured in Fig. 10.15.
They show the great attenuation of the peak at the resonant frequency. These
experimental results demonstrate the efficiency of the proposed approach to open-
loop control the vibration, the hysteresis, and the creep in piezocantilevers.

10.5 Conclusion

Piezoelectric materials are well recognized for the design and development of
microactuators and systems for micro and nanopositioning. This recognition is
due to their high resolution, good bandwidth, high force density, and the ease
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Fig. 10.15 Harmonic responses of the vibration compensated system with different order of
shaper

of supply (electrical). In particular, many systems used in micromanipulation
or microassembly are based on piezoelectric actuators with cantilever structure,
for instance piezoelectric microgrippers. These actuators allow the positioning of
the manipulated object with a very high resolution and with a high dynamics.
Unfortunately, piezoelectric material-based actuators are typified by hysteresis and
creep nonlinearities that make them lose the final accuracy. In addition, cantilever
structured actuators are often characterized by a badly damped vibration which
increases the settling time of the process.

This chapter presented the feedforward control of the hysteresis, the creep,
and the badly damped oscillation in piezoelectric cantilever actuators used in
microgrippers. The main advantage of the feedforward control relative to feedback
is the non-necessity of sensors which make them very attractive for applications
where the packageability is essential. The approach presented in this chapter
consisted to compensate first the hysteresis by using the Bouc–Wen approach and
the inverse multiplicative structure. Then the creep was compensated by using a
linear approximate model combined with the inverse multiplicative structure again.
The interest of using the inverse multiplicative structure was the nonnecessity to
compute the compensator: as soon as the model is identified, the compensator is
derived by the structure. Finally the vibration was compensated using the input
shaping technique. This technique is simple in implementation and could be robust
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enough even in the presence of uncertain model parameters. Experimental results
in a unimorph piezocantilever were carried out and confirmed the efficiency of the
proposed approach.
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1. J. Agnus, N. Chaillet, C. Clévy, S. Dembélé, M. Gauthier, Y. Haddab, G. Laurent, P. Lutz,
N. Piat, K. Rabenorosoa, M. Rakotondrabe, B. Tamadazte, Robotic microassembly and
micromanipulation at FEMTO-ST. J. Micro. Bio. Robot. (JMBR), 8(2), 91–106 (2013)
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Chapter 11
Micro/Nanorobotic Manufacturing of Thin-Film
NEMS Force Sensor

Gilgueng Hwang and Hideki Hashimoto

Abstract This chapter presents the fabrication and characterization of piezore-
sistive force sensors based on helical nanobelts. The three-dimensional helical
nanobelts are self-formed from 27-nm-thick n-type InGaAs/GaAs bilayers us-
ing rolled-up techniques and assembled onto electrodes on a micropipette using
nanorobotic manipulation. Patterned gold electrodes were fabricated using thermal
evaporation or fountain-pen-based gold nanoink deposition. Nanomanipulation
inside a scanning electron microscope was conducted to locate small metal pads
of helical nanobelts to be connected to the fabricated pipette-type electrodes. Gold
nanoink was deposited under optical micrograph using the fountain-pen method.
Nanomanipulation inside a scanning electron microscope using a calibrated atomic
force microscope cantilever was conducted to calibrate the assembled force sensors,
and the values were compared with finite-element-method simulation results. With
their strong piezoresistive response, low stiffness, large-displacement capability, and
good fatigue resistance, these force sensors are well suited to function as sensing
elements for high-resolution and large-range electromechanical sensors.

11.1 Introduction

In recent decades, various micro-/nanoelectromechanical systems (MEMS/NEMS)
have been used for many applications. Much effort has been devoted to the
innovative process of synthesizing micro-/nanostructures as the building blocks
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for creating such MEMS or NEMS [1, 2]. Carbon nanotubes (CNTs) [3–6],
nanowires (NWs) [7], and Nanohelixes [8–13] are the most widely synthesized
and considered the promising elements in NEMS and nanoelectronics. For their
successful applications, the packaging process to construct devices from these
new building blocks and the characterization of the devices are among the most
critical steps to proving their quality for working in application environments. For
example, with field emitting displays, the major packaging challenge is to achieve
directionally controlled growing of NWs and CNTs. For this purpose, the mechan-
ical properties of these nanostructures should be understood precisely. Electrical
property characterizations is another practical issue along with device packaging.
Regarding packaging, a bottom-up approach like self-assembly is the most widely
used. A top-down approach using micro-/nanolithography and etching processes is
another process. In addition to the top-down approach, micro-/nanoassembly could
be an alternative approach to creating devices or prototypes [14–16]. This approach
is based on micro-/nanorobotic manipulation systems with precise MEMS/NEMS
sensors and actuators installed inside nanoscale imaging devices such as scan-
ning/transmission electron microscopes (SEM/TEM). In particular, wide-range
mechanical pressure/force sensors are among the most important devices that should
be integrated into robotic manipulations to characterize the mechanical/electrical
and even electromechanical properties of various nanostructures. The characterized
physical properties are essential to establish a precise model of nanostructures.
Physical models of single nanostructures are essential for the device engineering and
performance optimization of the NEMS sensors/actuators constructed from them.
Force sensing is the most widely used tool to characterize the mechanical properties
of these structures.

In this chapter, we demonstrate the micro-/nanorobotic manufacture of thin-film
NEMS force sensors to have a large force-sensing range. For example, force sensing
probes based on the piezoresistivity of InGaAs/GaAs helical nanobelts (HNBs) is
introduced. HNBs can serve as a mechanism to transduce force to displacement. The
deformation is detected through a piezoresistive effect to measure the corresponding
force after calibration. A major challenge in the development of the proposed force
sensor is the lack of manufacturing processes. Therefore, this chapter describes the
details of the micro-/nanorobotic manufacturing process of such three-dimensional
thin-film nanodevices.

11.2 Helical Nanobelt Force Sensors

11.2.1 Large-Range Force Sensors

Force sensing with high enough precision but large bandwidth is essential to
in particular small-scale robotics applications (mechanical characterizations of
nanostructures, robotic drug delivery, single-molecule detection from a whole bunch
of molecules, robotic injection, etc.) [17, 18]. Kinking and buckling force mea-



11 Micro/Nanorobotic Manufacturing of Thin-Film NEMS Force Sensor 231

Table 11.1 Required
specification of force sensor
in nanomanipulation

Dimension ∼a few tens of microns
Force-sensing range nN ∼ a few hundred

nanonewtons
Displacement range 1 nm to a few microns
Force-sensing direction Arbitrary direction
Force-sensing
mechanism

Self-sensing mechanism

surements are shown to be very important in the understanding of the mechanical
properties of newly synthesized nanomaterials for determining their competitive
NEMS applications [19, 20]. To fulfill these nanomanipulation tasks, it is highly
expected that NEMS-based force sensors will be developed.

The required features of force sensors to fulfill these tasks are summarized in
Table 11.1. These requirements were based on empirically obtained knowledge
from nanomanipulations of nanostuctures such as CNTs, NWs, etc. They were
also obtained from published works on nanomanipulations [19, 20]. Meanwhile,
an increasing number of applications in nanorobotic manipulations require an
nanonewton range force sensing [21]. Conventionally, mechanical transducers have
been developed. A scanning force microscopy (SFM) cantilever is used mostly for
sensing forces in a range of 10 pN–100 nN [22]. Microneedles have been used to
measure the force of a single actin filament [23]. Photon-field-based optical tweezers
[24] have been used for force sensing in a range of 0.1–100 pN [22]. This laser-
based sensing can heat biological samples, and so its application is limited. A
magnetic field can measure below 10 pN by manipulating an attached magnetic
bead [25]. However, it has also a drawback in that it requires indirect measurement
of the magnetic force. Flow fields in a laminar flow can measure 0.1 pN–1 nN
[22]. To reach this sensing resolution in a more systematic way, many NEMS
force-sensing devices have been demonstrated in several different types such as in-
plane devices and out-of-plane probes. As an in-plane force and pressure sensor,
an individual single-walled carbon nanotube (SWNT) was bridged between two
electrodes using the characterized piezoresistivity [26, 27]. For out-of-plane device
transduction, CNTs were attached to an atomic force microscope (AFM) cantilever
[3–5]. However, there are still no built-in sensing elements have been demonstrated
for such cantilevers due to their nanometer sizes, whereas similar MEMS force
sensors, such as piezoresistive cantilevers [28, 29] and capacitance sensors [30],
have been fabricated. On the other hand, three-dimensional (3D) helical structures
with micro- and nanofeatures have been synthesized from various materials. Typical
examples include microcoils based on amorphous carbon [8], nanocoils based on
CNTs [9], and zinc oxide HNBs [10, 11]. Because of their interesting morphology,
as well as mechanical [12, 13], electrical, and electromagnetic properties, these
micro-/nanostructures can be used as components for MEMS and NEMS such as
springs, inductors, sensors, and actuators. Recently, the electrical and mechanical
properties of SiGe/Si/Cr and SiGe/Si HNBs were characterized separately through
experiments and simulations [12]. The fabrication and mechanical characterization
of InGaAs/GaAs HNBs have been also described [13]. Their excellent flexibility
provides a new avenue for fabricating ultra small force sensors with high resolution.
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Fig. 11.1 Schematic of working principle of HNB force sensors

11.2.2 Piezoresistive Helical Nanobelt Force Sensors

The helical morphology benefits the ultraflexible mechanical property compared
to beam-type cantilevers. Therefore, helical nanostructures such as HNBs have a
large displacement range and high resolution. By determining the piezoresistivity
in HNBs, arbitrary directional force sensing and easy integration with nanoma-
nipulators from self-sensing are achievable. Therefore, our approach is to build
a force sensor with an ultraflexible structure from a helical morphology. As a
sensing mechanism, the piezoresistivity of InGaAs/GaAs HNBs for force sensing
is characterized first. Since the proposed design undergoes both axial and bending
forces, the corresponding piezoresistivities in multiple axes were also characterized
to estimate the piezoresistivity effect after the force sensor assembly. Nanorobotic
assembly processes were proposed mainly for the field-assisted alignment of HNBs
onto a pipette electrode and for electrical soldering to assure an ohmic conductivity.
The assembled HNB force sensor was characterized using an as-calibrated AFM
cantilever. The force sensor was able to measure the applied force by reading
the resistance change from the HNBs’ piezoresistivity. HNBs represent a new
material and are much more flexible and fit our out-of-plane devices. HNBs have
very nice features: for example, they are ultrasoft and uniform in geometry and
have easy band-gap tuning. Their drawbacks include mainly that they have a high
surface-to-volume ratio, making soldering difficult, and their ultra flexibility with
an ultra-thin film can lead to misalignment or uncontrolled assembly. Most of the
assembly technologies that have been investigated so far do not work well with 3D
HNBs. To solve these problems, we have proposed better alignment technologies
of HNBs using an external field assist. Furthermore, we propose robust soldering
technologies which can be applied to various scales (gold nanoink deposition, in situ
extension of gold nanoink soldering, and chemical-free resistance spot welding) for
3D structures.
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Fig. 11.2 As-fabricated (a) InGaAs/GaAs HNBs with metal pads and (b) electrodes on tapered
micropipettes

11.2.3 Working Principle of HNB Force Sensors

As shown in Fig. 11.1, HNB force sensors measure the force by piezoresistivity.
When a certain amount of force is applied to a HNB force sensor, the deflection
of the HNB changes the resistance of the assembled structure. Figure 11.1 shows
a schematic view of the proposed HNB force sensors. Two HNBs with metal
connectors are assembled on an independently patterned micropipette electrode.
Then each electrode passing through two HNBs is interfaced outside to determine
the strain (ε)-induced current change given a constant voltage input.

11.3 Force Sensor Assembly

11.3.1 Interconnection Layer Fabrication

NEMS using HNBs include two typical configurations [31], i.e., a HNB bridging
two electrodes horizontally or standing vertically on electrodes. An as-fabricated
HNB is shown in Fig. 11.2. To obtain a better interconnection conductivity, HNBs
were fabricated with metal connectors (Cr/Ni/Au 20/200/25 nm) on both ends
[32], which is different from the standard design [31]. Microtapered pipette-
type electrodes were prepared [33]. A ferromagnetic Ni layer was evaporated at
the end of the HNB for electromagnetic actuation. Figure 11.2 shows the as-
fabricated pipette electrodes used to assemble HNBs. The electrode pattern was
generated by thin-film evaporation. Our objective is to assemble suspended HNBs
on the as-fabricated pipette electrodes (Fig. 11.2b), Cr/Ni/Au deposited independent
electrodes, for precise location of HNBs with metal deposited connectors. First, the
borosilicate capillary was pulled to make tapered micropipettes. The dimensions
of the pipette opening were controlled in a reproducible way using a micropipette
puller (DMZ Universal Puller, Zeitz Instruments, Germany). Pipettes with 1 and
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Fig. 11.3 Experimental setup: (a) Helmholtz coil on piezoelectric rotational stage, (b) CAD
model of integration with manipulators, (c), (d) manipulators and Helmholtz coil installed inside
SEM

15 μm openings were fabricated. Then, independent Cr/Ni/Au metal layers were
evaporated on both sides of the pipette by changing the exposure to the target
electron-beam-heated metal source. A homemade pipette holder with wiring was
used to mount to a nanomanipulator and connect to the power supply.

11.3.2 External Force-Generating System

The nanorobotic manipulation system shown in Fig. 11.3 was used for the
manipulation of the as-fabricated HNBs inside a SEM (Carl Zeiss DSM 962). Three
nanorobotic manipulators (Kleindiek, MM3A) were installed inside the SEM; each
had three degrees of freedom and 5-, 3.5-, and 0.25-nm resolution in the X-, Y -, and
Z-directions at the tip. A metal probe (Picoprobe, T-4-10-1 mm, tip radius: 100 nm)
was mounted on the nanomanipulator. The same manipulation setup was used for
both the assembly and the characterizations.
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Table 11.2 Experiment
specifications

Gap r [μm] 5
Length [μm] 36.3
Rext [μm] 1.05
Rint [μm] 1.023
Electric constant e0 [C2/Nm2] 8.85 ·10−12

Voltage range V [V] 0-1;Step:0.1 V
E-module [N/m2] 8.0215 ·1010

Fig. 11.4 FEM simulation of HNB by ANSYS. (a) Bending force simulation for closing HNBs;
(b) voltage as a function of HNB deflection for different gaps (10, 15, and 20μm)

Additionally, we designed a Helmholtz coil to generate the required external
magnetic force to assemble the HNB (Fig. 11.3). For use inside the SEM chamber,
we should consider the working distance of an electron beam and sample stage.
Rings 21 mm in diameter were used to wind coils, and these coils were grounded
onto the sample stage to prevent charging from the electron beam.

A single SEM sample holder was located between two coils. Samples were
placed onto the sample holder between two coils. With this coil configuration, we
measured a 2-mT magnetic field at 2.3 V, 0.254 A, which was required to deflect the
magnetic pads on both ends of the HNB. A sample holder was also coiled so as to
have a vertical axis magnetic field that achieved 1.3 mT at 2 V, 0.554 A. This coil
was mounted onto a piezoactuated rotating nanostage, as shown in Fig. 11.3. Two
nanomanipulators were installed through the coils to work over the sample chip. We
experienced SEM imaging distortion over 5.5 V, which caused heating and melted
the plastic part of coils.

11.3.3 External Field-Assisted Assembly

Finite-element-method (FEM) simulation was used to estimate the applied force
on the HNBs in the experiments. The dimensions of the HNBs used in the simulation
were the same as in the experiments, as summarized in Table 11.3. The simulation
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Table 11.3 Specifications of
HNBs used for simulation Length [μm] 36.3

Radius [μm] 1.05
Pitch [μm] 6.6
Width [μm] 3
� of turns 5.5
Stiffness [N/m] 0.0001
Force [pN] 0.001–1

result was previously validated with experimental results for similar structures
[13]. Simulation was carried out in an linear elastic range (small displacements).
The values of the material properties in the model were taken from [13] with
the rule of mixture applied for the InGaAs layer. Both ends of the helix were
constrained from rotation around all three axes. Moreover, on one end of the helix
was constrained from all translational movements, and on the other end it was
constrained from translational movement perpendicular to the axis. On this end,
a force in the axial (X-axis) or bending (Y -axis) direction was applied to compute
the displacement.

In Fig. 11.4, a plot of the displacement along the bending direction is shown.
From the simulation, the bending stiffness of the structure was determined to be
0.0001 N/m, as summarized in Table 11.3. The first thing to do was the preparation
of the sample and the installation of the manipulators. In fact, if the pipette were
touched with bare hands, without protection, the electrostatic discharge (ESD) could
have broken the thin part of the pipette. For this reason, a bracelet and special gloves
were used to ground it during the installation.

In Fig. 11.5, we see that the probe is in contact with and forms an electric circuit
with the suspended HNB. The HNB plays the role of a switch. In Fig. 11.5c, the
circuit is closed, whereas in Fig. 11.5d it is open. The pipette had to be as close as
possible to the HNB until it touched the HNB (the circuit was closed). At this point,
an SEM image was grabbed for the initial state. Then the pipette was moved from
its present position on the y-axis until the contact between the pipette and the HNB
was broken and another new image was grabbed. In the end two images (Fig. 11.5)
were compared to determine the extent to which the HNB was deflected (Δd). This
procedure was repeated with different voltages. When all the results were analyzed
(voltage or current versus Δd), we finally obtained the curve shown in Fig. 11.6a. It
shows the linear relation between the voltage and the deflection, except for the drop
at 8 V, which was caused by an unequal contact configuration.

The next experiment to be discussed is similar to previous tests. This time,
however, we used Helmholtz coils to generate a uniform EM field (Fig. 11.5).
Between the coils, a sample with HNBs was mounted. The experiment consisted
in moving the pipette until it was in contact with the HNB. This was the initial state;
then the pipette was moved from this position until the pipette–HNB contact was
released. As was described in the previous experiment, images at each time were
grabbed for the deflection measurement.
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Fig. 11.5 Experiment: deflection of HNB by EM force (a), (b), deflection of HNB by ES force
(c), (d)
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Fig. 11.7 Electromechanical
characterization of magnetic
HNB. (a) magnetic field
measurement of Helmholtz
coil. (b) Magnetic attracting
force between probe and Ni
pad

Figure 11.6b plots deflection versus the current flowing through the Helmholtz
coil. It should be noted that there is a limit on the current, and a current that exceeds
the limit results in SEM image distortion. In fact, the curve of the plot increases
linearly. It was improved by several attempts with an ESD. A few problems remain
with respect to decoupling the EM force itself from ES or van der Waals forces.
However, the current result is sufficient to show that the EM field contributed the
magnetization of the metal pads of the HNBs.

Given the coil setup, we measured a 2-mT magnetic field at 2.3 V, 0.254 A.
Then the resistance was calculated using Ohm’s law with R = 2.3[V]/0.254 [A] =
9.055 [Ω ]. In Fig. 11.6b, we use the current I = 0.12 [A] to measure the voltage:
V = R/I = 1.086 [V]. For a voltage of 1.086 [V] we obtained a B-field of 0.9 [mT]
from Fig. 11.7a. We obtained an attracting force between the probe and Ni pad of
0.2 [μN] from a magnetic field of 0.9 [mT]. Then we were able to compare the
estimated force with the experimental result in Fig. 11.6b. It showed a force of
1.33 [nN] for a current of I = 0.12 [A]. This very large difference can be explained
by the fact that the analytical result was an ideal case with surface-to-surface contact
between metal pad and pipette. However, as shown in Fig. 11.5, we could only on
the side of the pad, which reduced the adhesive force. We also needed to consider
that the HNB was fixed on one side; this means that the torsion force played a
bigger role.
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qelec =
πε0V 2

R
√

r(r+2R)
R2 log2(1+ r

R +
√

r(r+2R)R2)
(11.1)

In theory, we have explained the equation of the ES force (11.1), and along
with that we have conducted a few simulations to understand the behavior of the
voltage as a function of the deflection. A MATLAB script to calculate the force
with different HNBs was prepared, which was useful for the iterative simulations.
We used different gaps between HNBs. The gap distances were set at 10, 15, and
20μm. It should be noted that the pull-in voltage or the voltage necessary to collapse
HNB to the electrode was found in the middle of the gap. This means that two HNBs
were attached together at this position. In (11.1), we must insert the gap (r), the
voltage (V ), and the radius of the HNB turn (Rext) (Table 11.2).

The calculated force using the MATLAB script was used in another MATLAB
script to create a HNB model for simulation in ANSYS. We had to change step
by step the force data in the file and compile and start in ANSYS the simulation
in accordance with the determined deflection. Finally, we were able to obtain
the relation between the voltage and the deflection of the HNBs. The results of
this simulation are shown in Fig. 11.4b. The pull-in voltage of 27 V was obtained
in the case of a 10-μm gap. We should not consider the result with a negative
value in the graph because the two HNBs, when the distance 0μm was reached,
were attached together, so the HNBs were not able to exceed this distance. We had
these negative data from the ANSYS simulation because we had used a range of
voltages (for the force) without considering the limit. In the second case (15-μm
gap), the voltage was 40 V, and in the third (20-μm gap) it was 54 V. An entire
assembly procedure inside the SEM with the assistance of an external field was
conducted and is introduced at the end of this section. A piezoresistive HNB force-
sensing probe was assembled using the proposed method. It was conducted by serial
nanorobotic assembly with an external electrostatic and electromagnetic force assist.
The force-sensing probe showed piezoresistivity by deflection and was calibrated
with an as-calibrated atomic force microscope cantilever.

The HNB force-sensing probe was assembled using an external-force-assisted
nanorobotic assembly. Both the ES and EM forces were characterized quantitatively
to show their contribution to the whole assembly process. The ES force is a relatively
stronger force than the EM force in a SEM environment constraint. However, the
hybrid approach of using both fields might be useful for a variety of future assembly
tasks that will requires a certain amount of assembly force, such as, for example,
soldering. The work is expected to be applied to real assembly tasks and steps
toward future autonomous nanorobotic manufacturing. Table 11.4 summarizes the
comparison of assembly steps in coarse and fine motions. The field-assist assembly
reduces the assembly steps and improves the success rate and completion time.
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Table 11.4 Summary of
assembly process
comparison: nanorobotic
manipulation only and field
assist

NR only Field assist
Coarse steps 9 6
Fine steps 9 4
Success rate Rarely successful Almost successful
Completion time No limit ∼10 min

Fig. 11.8 Basic sensor assembly and calibration process sequence: (A) fabricated HNBs with
metal connectors are aligned using electrostatic force on the two independently fabricated
electrodes; (B and C) gold nanoink or RSW is used to solder the aligned HNBs for electrical
measurement; (D) electromagnetic force is used to assist the assembly; (E) EBID is used to solder
the aligned HNBs [[34] ( c©AIP 2012), reprinted with permission]

11.3.4 Force Sensor Assembly

Figures 11.8 and 11.9 depict the fabrication process. After the previous experiments,
to test if the resistance spot welding (RSW) is an optimal choice to fix the HNB
over the pipette, we concluded that this was the best way to create our final sensor
prototype. In other words, RSW is a good choice because the generated contact is
strong but is also a good conductor. After these observations, we decided to create
a sensor using RSW. The procedure is similar to the previous one (assembly with
glue and nanoink). This means that a pipette with double conductive layers, two
picoprobes, chips with HNBs, and the necessary welding equipment was required.
To create the sensor, first, HNBs were attached over the surface of the pipette.
Figure 11.9 shows a coil attached over the pipette using RSW. As shown in Fig. 11.9,
we broke the contact between the surface of the chip and the pad. When we were
done with this side, we began with the other. The process was the same, and in the
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Fig. 11.9 Assembly procedure of HNBs on electrodes with pipette: (a) a side of an HNB is
selected; (b) second HNB connection; (c) assembly by electrostatic force; (d) assembled device
is moved [[34] ( c©AIP 2012), reprinted with permission]

end we obtained a device like that in the Fig. 11.9. To ensure contact, we decided to
perform an extra process, electron-beam-induced deposition (EBID) (Fig. 11.9).

11.4 Characterizations

11.4.1 Giant Piezoresistivity of InGaAs/GaAs HNBs

For the electromechanical characterization experiments, two nanomanipulators
(Kleindiek, MM3A), each with two metal probes (Picoprobe, T-4-10-1 mm) with a
tip radius of 100 nm attached, were installed inside an SEM (Zeiss, DSM 962). The
experimental procedure was explained in [35]. One manipulator was used to break
and pick up a HNB on one side. For this purpose the HNBs were fabricated with
a small length between the support and the first metal pad. The other manipulator
was used to make contact with the other side. To achieve good electrical contacts
on both sides of the HNBs, EBID with W (CO)6 precursor was used. In this way,
a voltage could be applied to both sides of the HNBs and the current could be
measured with a low-current electrometer (Keithley 6517A). After a HNB was
attached as described, a tensile force was applied to it by moving one probe away
from the other in the axial direction. Continuous frames of images were taken to
analyze the deformation, and I−V curves were recorded for the different positions.
The characterization was carried out for three different HNBs. It was verified from
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Table 11.5 Piezoresistivity
and fabrication methods
[21, 26, 35]

Piezo. coef. πσ
l [10−10 Pa−1] Fabrication

Si bulk 1.7–9.4 MEMS
Bn-Si 4 MEMS
SiNW 3.5–355 Self-assembly
CNT 400 Self-assembly
HNB 996–3,560 Robotic assembly

the images that the boundary conditions did not change significantly during the
experiments. The SEM images were analyzed to extract the HNB deformation for
a certain I −V measurement. This negative piezoresistivity behavior was observed
in many different experiments and used as the force transduction of the proposed
force sensors. The piezoresistivity of the structures can further be increased if Al
is incorporated in the bilayer. Further details on the piezoresistive HNBs can be
found in [35].

The material property of piezoresistivity in several piezoresistors is compared.
The piezoresistance coefficients (πσ

l ) and fabrication methods of several piezoresis-
tors are summarized in Table 11.5. The piezoresistance coefficients of HNBs were
measured from our work (35). And Bn Si show that |πσ

l | is less than 10 [10−10 Pa−1]
[26]. But their fabrication was controlled with MEMS-compatible processes. It was
recently reported that very large piezore- sistivities in SiNW and CNTs showed that
a piezoresistance coefficient of |πσ

l | is 3.5–400 [10−10 Pa−1] [21]. The high response
was explained by the size effect. From this work, HNBs were found to be much
higher (|πσ

l | was 996–3,560 [10−10 Pa−1] [35]) than other piezoresistors. They are
considered to be 249–890 times higher than Si piezoresistors. Therefore, HNBs are
promising piezoresistors that will prove useful in high-resolution force sensors.

11.4.2 Force Transduction of Assembled HNB Force Sensor

The second experiment was conducted to characterize the assembled HNB force
sensor. We aimed to measure the change in resistance when a force was applied
and we wanted to find the parameters of the HNB for the force calibration. As
we characterized the piezoresistive HNB, we expected to observe a change in
resistance when a force was applied to it. Before we started this force transduc-
tion experiment, we needed to calibrate an AFM cantilever. For the mechanical
characterization experiments, a nanomanipulator (Kleindiek, MM3A) and an AFM
cantilever (Mikromasch, CSC38/Al BS, nominal stiffness 0.03 N/m) were installed
inside the SEM (Zeiss, DSM 962). The AFM cantilever was calibrated using the
method shown by Sader et al. [36], and the stiffness was found to be 0.132 N/m.
Table 11.6 shows the proprieties of the cantilever and data items such as stiffness
after calibration. The calibration procedure is shown in Fig. 11.10. The sensor
pressed against the top of the cantilever, and so we measured the deflection of the
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Fig. 11.10 Force measurement setup: (a) sensor geometry and force diagram; (b) SEM photo of
calibration with AFM cantilever; (c) sensor mounted on manipulator; (d) SEM photo calibration
after application of compressive force; (e) ANSYS simulation of HNB [[34] ( c©AIP 2012),
reprinted with permission]

cantilever and the compression of the sensor. During these measurements, the data
of the resistance change were saved. The process was as follows.

1. We took an initial picture of the experiment, made a voltage sweep from 0 to 1
[V], for a step of 0.1 [V], and recorded the measured current I [A] at each step.
It was also important to measure the distance between the pipette and the top of
the cantilever (for the compression of the sensor) and the distance between the
cantilever used and the reference cantilever (see Fig. 11.10 for the deflection of
the cantilever).

2. The pipette was moved forward. The sensor began to compress itself, and the
cantilever started to deflect. As before, we swept the voltage from 0 to 1 [V]
and measured the current I [A], and so we needed new photo frames for the
calculation of the distances.
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Table 11.6 Specification of cantilevers

Cantilever properties:
Type B

Length 350±5 [μm]
Width ±3 [μm]
Thickness min = 0.7, typical = 1, max = 1.3 [μm]
Resonant frequency min = 7, typical = 10, max = 14 [kHz]
Force constant min = 0.01, typical = 0.03, max = 0.08 [N/m]
Cantilever after calibration:
Stiffness K = 0.132 [N/m]
Q-factor Q = 59.9
Fluid density 1.18 [kg/m3]
Fluid viscosity 1.86 ×10−5 [kg·m/s]

3. The last step was repeated for a few more cycles. After this procedure was
finished, we needed to calculate the amount of force applied by the sensor
against the cantilever. To calculate this, we needed to measure the deflection
of the cantilever between the cantilever itself (touched) and the other cantilever
(reference, Fig. 11.10). To calculate the force, we used Hooke’s law (F = k · x),
where k is the stiffness of the cantilever. Now we knew the force for each
compression of the sensor. The next step was to determine whether there was
a relationship between the force and the change in resistance of the sensor. The
resistance was calculated using Ohm’s law at a constant voltage (1 V).

Measurement results are summarized in Figs. 11.11 and 11.12. We applied 0–
80 nN in five different steps (trial 1) and applied 0–154 nN in a wider force
range (trial 2) in Fig. 11.11. Better curves were observed in the second trial. In
a smaller force range, deflection should be measured more carefully. SEM image
frames were grabbed by the image acquisition software (DISS-5, Point Electronic
GmbH) and analyzed using image processing software (DIPS, Point Electronic)
to examine the cantilever deflections. The image analysis resolution of SEM was
100 nm, which could have minimum detectable forces of cantilever and HNB force
sensing resolution of 13.2 nN and 2.42 nN respectively. The resistance changed at
the second and third points of trial 1 while the same force was measured but the same
13.2 nN was recorded as in Fig. 11.12. Both trials show quite good repeatability.
To further estimate the piezoresistivity behavior of HNBs, we decided to analyze
HNB deflections that had much lower stiffness than that of the AFM cantilever.
However, we needed to make the model estimate the force that could be eligible
for experimental data. In the FEM simulation (axial direction) using ANSYS, we
estimated a single HNB’s axial stiffness as 0.0121 N/m. As the sensor had two
angled HNBs connected at the end, a simple model to estimate stiffness of parallel
aligned HNBs caused considerable error. In particular, the stiffness of the sensor
varied by the angle change between the two HNBs when a force was applied.
Finally, we wanted to determine the relation between the axial force on the sensor
and the single HNB in the arm. Based on the geometric information from Fig. 11.10,
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Fig. 11.11 Stiffness calibration of HNB force sensor using as-calibrated AFM cantilever [[34]
( c©AIP 2012), reprinted with permission]

Fig. 11.12
Electromechanical
measurements on a
piezoresistive HNB force
sensor: change in percentage
of resistance as a function of
axial force [nN] [[34] ( c©AIP
2012), reprinted with
permission]

a trigonometric method was used to derive (11.2), which describes the mentioned
relation. A detailed derivation is not included here:

K =
2k1ΔL

ΔX
cos

θ
2
. (11.2)

where K is the stiffness of the sensor, k1 is the stiffness of a single HNB, ΔX is
the deflection of a single HNB arm, ΔL is the axial deflection of the sensor, and
θ is the angle between two HNB arms. As the stiffness varied while the sensor
underwent deflection, the model simulation of a sensor with constant stiffness
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resulted in a nonuniform error during deflection. Therefore applying (11.2) to
estimate the stiffness at each deflection yielded a better fitted calibration curve
of the sensor model and real experiment, as shown in Fig. 11.11. It shows the
stiffness difference between the AFM cantilever and the sensor, which varied by
the deflection. Figure 11.11 shows the stiffness calibration of the HNB force sensor
using an as-calibrated AFM cantilever. From the measurement, the stiffness of
the HNB force sensor varied slightly by the deflection but was almost constant
in the measured region. The stiffness of the measured HNB force sensor was
approximately 0.03125 [N/m] compared with the value (0.132 [N/m]) of the as-
calibrated AFM cantilever. Furthermore, the optimized design of the HNB force
sensor could be predicted. From (11.2), the higher range of the force sensor could be
designed by decreasing the angle (θ ) and increasing the given design of individual
HNBs. In addition to the assembly design parameters, the individual HNBs could
also be tuned their stiffness. When the two HNBs are assembled serially (θ is 180◦),
the highest resolution but minimum range force sensing is possible. For a wider
range of force sensing compensating for resolution, two HNBs should be assembled
in parallel (θ is 180◦).

Figure 11.12 shows the response of the piezoresistive HNB force sensor. The
stiffness of HNB force sensor is close to the stiffness of the cantilever. It should be
noted that these results are considered for an ideal simulation, where the device is
symmetric and the HNBs have the same properties. The piezoresistance coefficient
(πσ

l ) of the assembled sensor was calculated to be 515 · 10−10 [Pa−1] from the
measurement and from (11.3):

πσ
l =

1
X

Δσ
σ0

, (11.3)

where σ0 is the conductivity under zero stress and X is the stress applied.
This is close to the individual HNB that was measured in a range of 996–
3,560·10−10 [Pa−1]. It should be noted that the stiffness of the assembled structure
was almost doubled; thus the piezoresistance coefficient was decreased by half.
It could explain the fact that the design of triangular shape of the HNB force sensor
did not sacrifice the force sensitivity compared to the single HNB. The stiffness of
the HNB force sensors can also be tuned by the assembly geometry using constant
stiffness of individual HNBs. It allows for the control of the force-sensing range and
resolution by editing both the assembly and individual HNBs’ design parameters.
The calibration experiment and simulation based on the assembled force sensor
model shown here were not ideal for measuring the sensitivity of force sensing.
It should be considered that the calibration was performed in a full force-sensing
range to verify how the piezoresistivity of HNBs contributed to measuring the
force in the range. To measure to more accurately measure the sensing resolution,
we should apply smaller force steps (displacement) under magnified SEM image.
Another consideration is on the shape of the sensor (Fig. 11.10). The minimum
detectable force resolution using an individual HNB was estimated to be 0.91 nN
by considering the standard deviation of the measured noise (0.03 nA), which is
within the range of the high-resistance electrometer (Keithley 6517 A, measurable
up to 1 fA).
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11.5 Conclusions

Large bandwidth force sensing based on thin-film three-dimensional nanostructures
could be a useful tool for various micro-/nanomanipulation applications. For exam-
ple, this chapter described a manufacturing challenge and the proposed assembly
process of thin-film piezoresistive HNB force sensors assembled by nanorobotic
manipulations. The proposed process consists of assembly, characterizations, and
calibrations done in an in situ manner inside a SEM. The assembled HNB force
sensors showed a large displacement range, high-resolution force sensing, self-
sensing, and low weight as a result of the unusually high piezoresistivity, low
stiffness, and high-strain capability of HNBs. There are open applications from
electronics (electric contact probing and testing for microelectronic circuits), biol-
ogy (wide range mechanical characterizations of tissues, fibers), and MEMS/NEMS
(mechanical characterizations of CNTs, NWs). Moreover, this alternative technol-
ogy to the conventional micro-/nanomanufacturing process holds great potential for
MEMS/NEMS.
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Chapter 12
Human Sperm Tracking, Analysis,
and Manipulation

Jun Liu, Clement Leung, Zhe Lu, and Yu Sun

Abstract Sperm analysis and manipulation play a significant role in biology
research and reproductive medicine (assisted reproductive technologies). This
chapter reviews computer vision-based sperm tracking methods, sperm analysis
techniques, and automated sperm manipulation. Based on computer vision tracking
of sperm head and sperm tail, sperm motility can be quantified by calculating
the sperm’s straight line velocity, curvilinear velocity, moving path linearity, and
the sperm tail beating amplitude. Conventional computer-assisted sperm analysis
(CASA) systems are capable of performing some of these tasks. Recent progress
in this field provides additional, enhanced capabilities to biologists and clinical
embryologists. This chapter also introduces recent progress in automating sperm
manipulation procedures, including sperm immobilization, aspiration, and position-
ing inside a micropipette.

12.1 Introduction

A sperm is a male reproductive cell consisting of an ellipsoidal or spherical head,
a short midpiece, and a thin motile tail. The sperm head contains the nucleus
with genetic materials, surrounded anteriorly by a cap-like acrosome that contains
digestive enzymes. These enzymes can break down the outer membrane of ovum
during the fertilization process, allowing the haploid nucleus in the sperm cell to
join with the haploid nucleus in the ovum. The midpiece of the sperm cell has a
central filamentous core with many mitochondria spiralled around it, generating
energy for the sperm’s motion. The sperm tail executes the swing movement that
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Fig. 12.1 Human sperm cells: (a) Image taken under 20× magnification. (b) A diagram of human
sperm cell

propel the sperm to move. In humans, the average total length of sperm tail and
the short midpiece is approximately 50 μm, and the sperm head dimensions are
4.4× 2.8 μm [1]. Figure 12.1 is an image of sperms on a Petri dish taken under
20× magnification and a schematic diagram of a human sperm cell.

In natural conception, a healthy sperm overcomes the physiological and bio-
logical selection barriers, actively seeks out and fertilizes an egg. Sperm selection
occurs naturally in this procedure. However, for couples having infertility issues,
assisted reproduction technologies are required to address their reproductive needs.
For example, in intracytoplasmic sperm injection (ICSI), an embryologist selects a
single sperm cell and injects it directly into an oocyte (i.e., egg cell) to overcome
issues such as male infertility [2]. These assisted reproduction technologies bypass
the natural sperm selection barriers and demands the operator to select high-quality
sperms. The criteria for sperm quality assessment provided by the World Health
Organization are vitality, morphology, and motility [3]. A widely used method
for sperm selection is motile sperm organelle morphology examination (MSOME)
[4–7]. Sperm motility is also a commonly used criterion for sperm quality assess-
ment. A motility grade is often used as a specified measure and classified into four
grades:

Grade 1: Sperm with fast progressive movements
Grade 2: Sperm with slow progressive movements
Grade 3: Sperm with slow non-progressive movements (i.e., with curved motion)
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Grade 4: Sperm are immotile and fail to move at all

Besides sperm assessment based on morphology and motility, another method for
selecting a healthy sperm is based on the analysis of sperm DNA integrity. Some of
the DNA analysis methods assess sperm DNA quality directly, such as the TUNEL
assay and the sperm chromatin structure assay. Some other systems indirectly
measure sperm DNA quality. For instance, Huszar’s group recently proposed a
hyaluronic acid (HA) assay [8]. Among a consecutive series of studies on HA-based
sperm assay, Huszar’s group indicated that the HA assay permits the selection of
healthy sperm with no DNA damage [9, 10]. In their studies, sperms that bind to
HA microdots are proven to have a higher level of DNA integrity compared to
those unbound sperm. In clinical HA-based sperm selection, a number of healthy
sperm’s head bind to the HA microdot and lose their progressive movement despite
vigorous tail beating. In this case, the sperm tail beating movement becomes the
only indicator to differentiate the HA bound sperm from each other.

The past few decades have witnessed the development of computer-assisted
sperm analysis (CASA) methods for measuring both sperm morphology and motil-
ity [11]. CASA utilizes an automated system to digitize successive images of sperm,
process, and analyze the information and provide the accurate and objective value
for individual sperm cell. Since 1970s, many algorithms have been developed to
track sperm trajectories, measure sperm velocities, and analyze sperm morphology.
Shi et al. reported a robust single-sperm tracking algorithm based on a four-class
thresholding method to extract a single sperm in a region of interest (ROI) [12].
The nearest neighbor method is complemented with a speed-check feature to aid
tracking in the presence of additional sperm or other particles. In another study,
Nafisi et al. demonstrated a template matching algorithm for sperm tracking. The
algorithm is insensitive to image acquisition conditions [13]. Existing algorithms for
sperm tracking are largely limited to sperm head tracking. The small size (≤1 μm in
thickness) and low contrast of sperm tails under optical microscopy make sperm tail
tracking challenging. In a recent study [14], a maximum intensity region algorithm
was developed for sperm tail detection and tracking.

In this chapter, we first discuss methods for tracking sperm head and tail via
real-time image processing. We then discuss sperm analysis on the basis of sperm
motility, morphology, and DNA quality. Recent developments in automated sperm
manipulation systems will then be introduced. We finally discuss future research
directions.

12.2 Sperm Tracking

12.2.1 Sperm Head Tracking

Compared with sperm tail, sperm head has clearer contrast under microscopy.
Therefore, most CASA systems were designed for tracking sperm head only. To
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Fig. 12.2 Single sperm head tracking: (a) Sperm in the original image. (b) The sperm head ROI
image is extracted. (c) The sperm head is found through adaptive thresholding

successfully track sperm heads, the algorithms should take into account sperms’
three-dimensional movements, which can cause targets to be out of focus. A target
sperm can also be occluded by other sperms or by foreign particles present in the
Petri dish.

Sperm head tracking often begins with filtering noise and image enhancements.
Filters (e.g., median filters and Gaussian filters) are used in most of the sperm
tracking systems. For image enhancements, Nafisi et al. proposed a two-step
enhancement method for noise reduction [13]. The first step is to remove completely
stationary objects via frame subtraction. The second step is to remove or reduce the
effect of those objects with vague boundaries (due to out-of-focus) by using wavelet
transform.

After noise reduction, sperm head detection is performed by using template
matching, fitting ellipse, and thresholding approach. Template matching is robust to
different imaging modes (e.g., bright field, phase contrast, and DIC). However, the
high computing cost could make this method unsuitable for real-time sperm tracking
tasks. Besides for sperm head tracking, fitting ellipse can also be used for sperm tail
tracking. Through analyzing the shape of sperm head, this method can provide the
direction of sperm tail for sperm tail detection. It was reported that sperm tail can be
found along the major axis of the ellipse [15]. However, this method is less effective
for detecting sperm heads that do not have regular elliptical shapes.

The most commonly used method for sperm detection is the thresholding
approach [14,16,17]. This approach applies thresholding inside a ROI. The ROI for
sperm head can be initiated by a human operator who selects a desired sperm head to
track via computer mouse click on the sperm head (Fig. 12.2). The ROI image can be
binarized by applying Otsu’s adaptive thresholding algorithm (Fig. 12.2c). Within
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the binarized ROI image, the contour of the sperm head is computed. The sperm
head position is obtained by calculating the moments of the contour. The ROI is then
updated to be another ROI centered at the sperm head’s centroid. For subsequent
frames, a similar process is performed to track the sperm head position.

When a sperm is occluded by other sperms or particles, the sperm tracking
algorithms should be able to differentiate between the sperm of interest and
interfering sperms/particles that are present in the ROI. The swimming direction
vector of the sperm of interest can be used as a unique identifier to discriminate the
sperm of interest from other sperms/particles. In the situation where only one sperm
is present in the ROI, the sperm’s current direction vector D(i) in the current frame,
represented by (12.1), is found by subtracting the sperm centroid position in the
previous frame P(i−1) from the sperm centroid position in the current frame P(i).

D(i) = P(i)−P(i−1) (12.1)

When more than one sperm or object is present in the sperm head ROI (SHROI),
(12.1) is extended to

D(i,s) = P(i,s)−P(i−1,sprev) (12.2)

where s represents each sperm in the SHROI and sprev is the sperm of interest in
the previous frame. The candidate sperm s that produces the minimum Euclidean
distance value is considered the sperm of interest ssoi

ssoi = min
s∈[1,N]

‖D(i,s)−D(i−1,sprev)‖ (12.3)

where N is the total number of sperm and objects inside the SHROI. Specifically,
the nearest neighbor approach is applied to determine the sperm of interest ssoi at
frame i, with the knowledge of the sperm of interest sprev at frame i−1. The ssoi is
updated for every frame using this nearest neighbor computation.

12.2.2 Sperm Tail Tracking

Tracking sperm tail can also be useful, such as for the manipulation of sperm and
for selecting sperms that are bound to HA dots in the HA assay. After the sperm
head position is detected, a sperm tail region of interest (STROI) is extracted by
using the sperm head position and the average direction vector of its movement, as
shown in Fig. 12.3b. The average direction vector D is used instead of the direction
vector D(i) because the sperm may exhibit abrupt changes in movement direction
between two consecutive frames. By averaging the direction vectors of the sperm
across a number of frames (e.g., 30 frames), the effect of abrupt changes in the
sperm moving direction between frames is mitigated and the extraction of STROI
becomes more robust.
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Fig. 12.3 Sperm tail tracking. (a) Sperm head position is found. (b) STROI (sperm tail region
of interest) is determined. (c) 5× 5 windows are scanned to locate the section with the highest
intensity sum in the flicker image. The center point (blue dot in figure) of the section is considered
the tail location. (d) Based on the blue dot position found in (c), Kalman filter is applied to improve
the accuracy of located sperm tail position ( c©IEEE 2013), reprinted with permission

The STROI’s center position in the i frame, T (i), is determined by subtracting a
scaled value of the direction vector from the sperm head’s centroid

T (i) = P(i)−a · D

‖D‖ (12.4)

where a is a scalar value determined by the human sperm length. Under the 20×
magnification, the average length of human sperms is approximately 90 pixels (i.e.,
a = 90). After the center position is found, a 25×25 ROI is taken as the STROI. The
size of 25×25 provides a sufficient tail search area that takes into consideration a
range of sperm tail length variations and sperm tail beating amplitudes.

After finding the STROI, the algorithm verifies that a tail is present in the STROI.
The fundamental feature of flicker is extracted by taking the absolute difference
between six consecutive inverted grayscale image frames.

f (i) =
5

∑
k=0

|I(i− k)− I(i− k−1)| (12.5)
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where f (i) is the flicker image extracted at frame i and I represents the grayscale
images containing the sperm of interest in frame i to frame i − 5. Each pixel in
the flicker image is squared to enhance the pixel values of areas in which the tail
is present. The sum of pixel value in the STROI of the f (i) image is used as a
measure to determine the presence of a sperm tail. If the pixel sum is above a
specified threshold value, a tail is considered present. The threshold value was found
experimentally by comparing the pixel sum values of STROI images in which a
tail exists against cases where no tail exists. An example flicker image is shown in
Fig. 12.3c. If the pixel sum is below a threshold value, no tail is found inside the
STROI. This situation can occur when the sperm of interest moves out of focus,
resulting in the disappearance of the sperm tail.

Once the sperm tail is determined to exist within the STROI, the maximum
intensity region algorithm will locate a point on the sperm tail by using the flicker
image. This flicker image approach overcomes the challenges that arise from the
low-contrast image of the sperm tail in a single frame. The algorithm first finds
the location of maximum intensity within the STROI of the flicker image. This is
accomplished by evaluating the sum of the intensity values inside a 5× 5 window
at a spatial sampling interval of 5 pixels in both the x and the y coordinates of the
STROI flicker image. The center position of the 5 × 5 window with the highest
intensity is considered the tail location (i.e., a point on the sperm tail). In order to
obtain an accurate sperm tail position, a Kalman filter can be applied to optimize the
tracked results. Figure 12.3d shows the sperm tail tracking result and Kalman filter
optimized result.

12.3 Sperm Analysis

12.3.1 Sperm Motility Analysis

Sperm motility is a basic criterion for assessing sperm quality. The most commonly
used criteria for sperm motility analysis are sperm’s curvilinear velocity (VCL),
straight line velocity (VSL), and movement linearity (LIN). Additionally, sperm
tail beating amplitude is also a motility value that reflects the sperm’s locomotive
behavior. These criteria can be calculated from the sperm tracking results.

Assume a sperm enters the field of view at frame i and swims out of the field
of view at frame i+N. With the sperm position detected in each frame, the travel
distance of the sperm between two consecutive frames can be determined from its
direction vector, D(i). The VCL, which is the average velocity of the sperm head
along its actual curvilinear path, is

VCL =
1
N

N−1

∑
k=0

D(i) (12.6)
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The VSL, which is the average velocity of the sperm head along the straight line
between its first and last detected position, is

VSL =
P(i+N)−P(i)

N
(12.7)

where P(i) represents the position of the sperm at frame i. The linearity (LIN) of the
sperm’s curvilinear path is

LIN =
VSL
VCL

(12.8)

where LIN is the linearity measure (0 ≤ LIN ≤ 1). A higher LIN value means
that the sperm’s moving path is more linear. In sperm selection, healthy energetic
sperms with progressive/linear movement are desired (vs. those traveling in circles
for instance).

With the sperm tail’s position, the sperm tail beating amplitude inside the STROI
is computed. The relative position inside the STROI in frame i is denoted by PT (i).
The sperm tail beating amplitude is

A =
1
N

N

∑
i=1

‖PT (i)−PT‖ (12.9)

where PT is the sperm tail’s average position inside the STROI and N is the number
of frames until when the sperm tail is successfully detected. Generally speaking, a
higher sperm tail’s beating amplitude will result in a faster sperm head movement.
Thus, sperm tail’s beating amplitude can possibly be used as an indicator to reflect
sperm’s motility when the sperms lose their head motion (e.g., in HA-based sperm
selection).

12.3.2 Sperm Morphology Analysis

Sperm morphology has been recognized as a powerful predictor of the outcome
of natural conception, intrauterine insemination, and conventional IVF therapies
[18, 19]. For sperm morphology analysis, a method of unstained, real-time, high-
magnification motile sperm organellar morphology examination (MSOME) was
developed [20, 21].

In MSOME, motile sperms are transferred to an observation microdroplet of
sperm medium containing PVP solution. PVP solution is added to slow down the
sperm moving speed. To reduce the toxicity of PVP, a low concentration of the PVP
is typically used (<8%). In order to assess the morphological state of the sperm
nucleus, the motile sperm cell must be kept inside the field of view for at least
20 s. According to Berkovitz’s study [20], the success of MSOME is dependent on:
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(1) optical resolution, which depends on microscope optics and on the light source
of the microscope; (2) image contrast, which is enhanced by Nomarski differential
interference contrast optics; (3) maximal optical magnification, which is commonly
higher than 100×; and (4) magnification of the video system, which is equal to the
ratio of TV monitor diagonal dimension to the CCD chip diagonal dimension.

A sperm is considered morphologically normal when it exhibits a normal nucleus
as well as acrosome, post-acrosomal lamina, neck, tail, and it does not possess a
cytoplasmic droplet or cytoplasm around the head [21]. A normal nucleus reveals a
smooth, symmetric, and oval shape. The normal length and width of the nucleus are
estimated as 4.75±2.8 μm and 3.28±0.2 μm, respectively.

12.3.3 Sperm DNA Integrity Analysis

A number of studies have indicated that infertile men have a higher level of DNA
strand breaks and other types of DNA damage than fertile sperm donors [22–24]. In
order to detect DNA damage, several sperm analysis methods have been developed,
including TUNEL [25], comet [26], in situ nick translation [27], DNA breakage
detection fluorescence in situ hybridization [28], sperm chromatin dispersion test
[29], and sperm chromatin structure assay [30]. Some of these sperm analysis
systems assess DNA quality directly, such as TUNEL or comet at neutral pH while
others measure DNA damage levels after denaturation steps, such as the sperm
chromatin structure assay, sperm chromatin dispersion test, and comet at acid or
alkaline pH.

Indirect methods measure DNA susceptibility to denaturation after exposure to
acid conditions [31]. However, it has been reported that these methods can only
evaluate acid-labile sites and would not have a significant impact on the formation
of male pronucleus because the intracellular pH of the oocyte is approximately
7.0 [32]. Another indirect approach checks sperm’s DNA integrity by using the
hyaluronic acid (HA) coated Petri dishes [8]. HA is a linear polysaccharide in the
extracellular matrix of cumulus oophorus around the oocyte that seems to play an
important role in natural human fertilization [33]. Huszar et al. proved that sperms
that bind the head to the HA have a higher level of DNA integrity than those sperms
that cannot bind to HA. After a sperm binds the head to a HA microdot, it loses the
head movement but reveals more vigorous tail motion.

12.4 Sperm Manipulation

Sperm manipulation is routinely performed by embryologists in the ICSI procedure
in IVF clinics. Sperm manipulation includes immobilizing a sperm, aspirating it into
a micropipette, and positioning it inside the micropipette.
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Fig. 12.4 Automated sperm immobilization

12.4.1 Sperm Immobilization

Sperm immobilization must be performed before injecting the sperm into the egg to
increase the chance of fertilization since sperm tail movement can cause damage to
the intracellular structure of the egg [34]. In sperm immobilization, a micropipette is
used to press (tap) the sperm tail against a surface (e.g., the bottom of a Petri dish).

Sperm manipulation requires dexterous operation due to the motile nature
of sperms and their small size. Recent study has shown that automated sperm
immobilization using a robotic approach is feasible [14]. In automated sperm
immobilization, a vision-based contact detection was first performed to determine
the vertical depth between the micropipette and the surface of Petri dish. Single
sperm head and tail tracking is then conducted to locate the sperm head and tail’s
positions. The sperm head tracking algorithm enables the system to visually servo a
motorized X–Y stage to keep the moving sperm at the center of the field of view. A
micropipette is then controlled to tap the midpoint of the sperm tail against the dish
bottom to immobilize the sperm (Fig. 12.4). The midpoint of the sperm tail is found
by averaging the tracked sperm head and tail position.

Two conditions must be met for tapping the sperm tail: (1) sperm tail needs to
be at appropriate orientation and (2) sperm moves within a depth of 25 μm above
the dish bottom. In the automated sperm immobilization system, the micropipette
is placed on the left side of field of view. Thus, the target sperm should move near-
vertically (i.e., within −45 to 45 ◦ with respect to the y-axis). For some sperms that
do not have the appropriate orientation, a rotational stage can possibly be used to
adjust the sperm tail orientation. To immobilize a sperm, the micropipette needs to
tap the sperm tail against the dish bottom. If a sperm is too far away from the dish
bottom (e.g., >25 μm), the system will fail to tap the sperm tail. The automated
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immobilization system computes the focus measure by using the normalized
variance [35] of ROI image of the sperm head. During sperm immobilization, the
microscope is focused on the dish bottom. A sperm with higher normalized variance
is close to the focal plane and is preferred for immobilization.

Trials of the automated sperm immobilization system on 1,000 sperms indicate
the success rate of sperm immobilization is 88.2%. The failure cases include (1) the
turbulent flow caused by micropipette movement displacing the sperm’s original
position; (2) the sperm moving at 25 μm above the dish surface; (3) the sperm tail
not staying in the required orientation; (4) sperm tail changing the orientation during
the taping step; (5) sperm increasing its speed during the taping step.

12.4.2 Sperm Aspiration and Positioning Inside Micropipette

After the sperm is immobilized on the Petri dish bottom, the next step is to aspirate
the sperm into the micropipette and position it to a desired location inside the
micropipette. Aspirating a single sperm into a micropipette and precisely controlling
the sperm’s position within the micropipette is challenging, due to the small volume
of a sperm (picoliter) and the nonlinear dynamics involved in the process (e.g.,
varying mass of culture medium entering the micropipette in cell aspiration).

In manual operation, an operator looks through the eyepieces of a microscope
and operates multiple devices (microscope stage, micromanipulator, pump, etc.).
When the micropipette approaches a target sperm cell, a small negative pressure
is applied to aspirate the sperm into the micropipette. Once the sperm enters the
micropipette, which is a rapid event, the operator must quickly apply a positive
pressure to stop the sperm movement so that the sperm does not enter too far
into the micropipette and disappears. In order to position the sperm to a desired
location inside the micropipette, the operator must repeatedly adjust the application
of negative and positive pressure skillfully.

In automated sperm aspiration and positioning [36], the sperm aspiration and
positioning tasks are achieved via computer vision microscopy and closed-loop
motion control. The major components in the micropipette aspiration system are
a syringe, a micropipette, and a connecting tube. The syringe and connecting tube
are filled with mineral oil. The inner space of micropipette typically consists of
three segments: mineral oil, air, and culture medium. A sperm cell moves together
with the culture medium segment (no relative motion within the culture medium).
Figure 12.5 is a schematic diagram of a sperm moving inside a micropipette.

In the automated system, the micropipette is first controlled to approach the
immobilized sperm. The sperm is then aspirated into the micropipette by applying
a negative pressure. In this process, the target sperm is detected and tracked. After
the sperm is aspired into the micropipette, a robust controller quickly positions the
sperm to a desired position in the micropipette. In the study of the sperm posi-
tioning in the micropipette, it was reported that the robust controller significantly
outperforms PD controllers in terms of efficiency, overshoot, and accuracy.
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Fig. 12.5 A schematic diagram of a sperm moving inside a micropipette [36] ( c©IEEE 2012),
reprinted with permission

12.5 Conclusion

Sperm analysis, which involves the measurement of sperm’s velocity, morphology,
and DNA integrity, is necessary for male infertility diagnostics, sperm quality
assessment, sperm selection, and other IVF related issues. In the past few decades,
CASA systems were developed and used for providing objective and accurate
results for sperm analysis. The core of CASA systems is computer vision-based
sperm tracking. Most of the sperm tracking algorithms are focused on sperm head
tracking. Due to the emerging HA-based sperm assay and the automation of sperm
manipulation, sperm tail tracking becomes necessary. This chapter introduced sperm
head and tail tracking methods as well as sperm manipulation techniques, including
immobilization, aspiration, and positioning in a micropipette.

Further studies using these sperm tracking, analysis, and manipulation technique
as well biochemical approaches will answer presently open questions, such as: (1)
Does a sperm that moves faster than others have a higher level of DNA integrity?
(2) Does a sperm possessing perfect morphologies have less DNA defects? (3)
Does a sperm showing faster tail motion, among the HA bound sperms, have
higher reproductive quality? The engineering techniques discussed in this chapter
will prove instrumental in addressing these questions and will prove useful in both
biology research and reproductive medicine.
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