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Abstract In this chapter, we present some methods to construct interval type-2
membership functions from fuzzy membership functions and their applications in
image processing, classification, and decision making. First, we review some basic
concepts of interval type-2 fuzzy sets (IT2FSs). Next, we analyze three different
approaches to construct IT2FSs starting from fuzzy sets and their applications in
different fields.

1 Interval Type-2 Fuzzy Sets

From the beginning, it was clear that fuzzy set theory [30] was an extraordinary
tool for representing human knowledge. The use of linguistic labels enables the
acquisition of interpretable knowledge systems, and in this manner the choice of
the membership function plays an essential role in their success. The punctual
value set as membership degree is usually defined either by means of expert
knowledge or homogeneously over the input space. Nevertheless, Zadeh himself
established (see [31]) that sometimes, in decision-making processes, knowledge is
better represented by means of some generalizations of fuzzy sets.

Extensions of fuzzy sets are not as specific as their counter-parts of fuzzy sets,
but this lack of specificity makes them more realistic for some applications. Their
advantage is that they allow us to express our uncertainty in identifying a particular
membership function. This uncertainty is involved when extensions of fuzzy sets
are processed, making results of the processing less specific but more reliable.

The concept of type-2 fuzzy set was suggested by Zadeh in 1975 [31] as a
generalization of an ordinary fuzzy set. Type-2 fuzzy sets are characterized by a
fuzzy membership function, that is, the membership value for each element of the
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set is given by a fuzzy set defined in the reference set [0, 1]. These sets were first
studied and analyzed in [20].

There is still some discussion about the notation for type-2 fuzzy sets. We shall
follow the standard mathematical notation in the following definitions (for equiva-
lences with other notations, see [1]). A good review of these sets can be found in [18].

Sometimes, it is appropriate to represent the membership degree of each ele-
ment to the fuzzy set by means of an interval. Hence, not only vagueness (lack of
sharp class boundaries), but also a feature of uncertainty (lack of information) can
be addressed intuitively.

A particular case of type-2 fuzzy sets called interval type-2 fuzzy sets (see [19]).
In May 1975 Sambuc (see [24]) presented in his doctoral thesis, the concept of an
interval-valued fuzzy set named a @-fuzzy set. That same year, Zadeh [31] discussed
the representation of type 2 fuzzy sets and its potential in approximate reasoning.
One year later, Grattan-Guinness [13] established a definition of an interval-valued
membership function. In that decade, interval-valued fuzzy sets appeared in the
literature in various guises and it was not until the 1980s, that the importance of these
sets, as well as their name, was definitely established. In [10, 16, 18], it is proved that
interval-valued fuzzy sets are a particular case of IT2FSs. It turns out that interval
type-2 fuzzy sets are isomorphic to interval-valued fuzzy set [24].

In this chapter, we work with finite, nonempty reference sets. We denote by
L([0, 1]) the set of all closed subintervals of the unit interval [0, 1] in the following
way:

L([0,1]) = {x = [x,%]|(x,X) € [0,1]* and x <X}. (1)

We use bold letters to refer the elements x € L([0, 1]) and we denote with W the
length of an interval, that is, W(x) =% — x.

L([0,1]) is a partially ordered set with respect to the relation <, defined in the
following way: given x,y € L([0, 1]),

x <y if andonly if x <y andX <y. (2)
With this order relation, (L([0, 1]), <) is a complete lattice, where the smallest

element is 0, = [0, 0] and the largest is 1, = [1, 1].
An interval type 2 fuzzy set A on U is defined by

A = {(u,Au), p, (x)) 1 € U, A(u) € L([0, 1))},

where A(u) = [A(u),A(u)] is a closed subinterval of [0, 1], and the function g, (x)
represents the fuzzy set associated with the element u € U obtained when x covers
the interval [0, 1]; p,(x) is given in the following way:

(x) = {a if A(u) <x<A(u)

o otherwise

3)
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where 0 <a < 1. As we have said previously with a = 1 an interval type 2 fuzzy
set is the same as an interval valued fuzzy set.
Mendel and others [17] defined IT2FSs using the footprint of uncertainty

(FOU). An IT2FS A for a primary variable (x € X) is characterized by its footprint

of uncertainty, FOU(A), which in turn is completely described by its lower

membership function, LMF(A), also denoted by #;(x), and upper membership

function UMF(A), also denoted by fi;(x), i.e., the lower and upper bounding

functions of FOU(A) respectively.
Through the chapter we denote by ZT2FSs(U) the set of all the interval type-2
fuzzy sets defined on U, and FSs(U) all the fuzzy sets on U.

2 Construction Methods of IT2FSs

When we will develop an application using IT2FSs, the first step is to define the
membership functions that will represent these sets. For example, if we use an
IT2FS system then we must define the rules and the lower and upper membership
functions of the linguistic labels. It is known that a key problem of the fuzzy
systems is the definition of the membership functions, as we have previously
stated.

Usually, IT2FS are defined manually or from data extracted [17]. Other typical
method to obtain a good definition of the membership functions is to optimize their
shape using genetic algorithms [14].

When we are working with IT2FSs, we must take into account that the FOU of
the IT2FSs represents the uncertainty in the membership degree. Therefore the
FOUs must represent the uncertainty that exists in the model.
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Fig. 1 a Triangular fuzzy membership function. b Triangular interval type-2 fuzzy membership
function
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In this work, we present three different methods to construct IT2FS from fuzzy
sets that try to generate FOUs adapted to the model’s uncertainty. We have studied
three different cases:

e Using several fuzzy membership functions.

e Using two fuzzy membership functions that represent opposite objects or
concepts.

e Using only one fuzzy membership function.

2.1 Construction of an IT2FS from Several Fuzzy
Membership Functions

When we define a fuzzy system one key problem is the definition of the mem-
bership functions. In the context of fuzzy rule-based systems, sometimes the expert
can choose between different functions (triangular, gaussian, etc.) and different
parameters. Therefore, the expert is not sure about which is the best membership
function, he can choose several adequate membership functions. If we want to
construct an IT2FS from different membership functions, the IT2FS should be
such that the lengths of the intervals represent the uncertainty that the expert has in
the selection of these fuzzy sets. That is, if the expert is absolutely sure of the
membership degree of an element, then the length of the interval associated to such
element is zero (a fuzzy set). On the other hand, if the expert does not know the
membership degree of an element at all, then the length of the interval associated
to this element should be the maximum possible.

k times
®: FSs(U)% -+ X FSs(U) — IT2FSs(U) given by
o(A' ,Ak) {0, DA, -, A () |u € U} such that (4)
DAL, A () = [T (g (), g () S(par (), -+, e ()],

where T and S are a t-norm and a t-conorm, respectively, in [0, 1].

Remark The associativity of triangular norms and triangular t-conorms allows us
to extend these mappings to an arbitrary finite number of arguments in a unique
way, by means of a recursive definition. For example, n-ary triangular norms are
defined as follows. Let (x;,---,x,) be a finite family in [0,1]". Then
T(xy, o yx,) =T(T(x1, -, Xn1), Xn)-

We denote by Wrg the length of an interval constructed by the above method,
where T is a t-norm and S is a t-conorm.

As U is discrete, our method can be seen as a construction of the footprint of
uncertainty from several fuzzy sets. Suppose that the expert gives two different
opinions (or two different experts each giving a single opinion). We can use a t-norm
and a t-conorm to construct an IT2FS. Figure 2 depicted different IT2FSs
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Fig. 2 (a) Three different fuzzy membership functions. (b) Interval type-2 fuzzy membership
function generated using the t-norm minimum and the t-conorm maximum. (c) Interval type-2
fuzzy membership function generated using the t-norm product and the t-conorm probabilistic sum

constructed using different t-norms and t-conorms. We can also observe in Fig. 2
that the FOU generated with the t-norm product and the t-conorm probabilistic sum
is wider than the one generated with the t-norm minimum and the t-conorm
maximum.

Corollary 1 Under the conditions of the construction method described in Eq.
(4), the following statement is true:
If T and S are any t-norm and t-conorm in [0,1], then

Wrs(D(Q', -+, 0")(u)) > Wiy (P(A", -+, A*) (u))Vu € U.

Proof 1t is enough to take into account the fact that A is the largest t-norm and V
is the smallest t-conorm. (]

This corollary proves that the FOU constructed with the t-norm minimum and
t-conorm maximum is the smallest one. If other combination of t-norm and
t-conorm is used the FOU will be greater.

2.2 Construction of an IT2FS from Two Fuzzy Membership
Functions

Next we introduce the concept of Ignorance function and the way we use it to
construct IT2FS from two related fuzzy sets. In this case, the fuzzy sets must be
related with each other; they must represent opposite concepts. For example, one
set represents the concept near and the other the concept far, or the concepts small
and big. We have proposed this method in the context of image segmentation
where we have two sets, one to represent the object and another to represent the
background; but it can be used in any environment in which we have two different
sets that represent opposite concepts.

The concept of ignorance function [6] tries to model the lack of knowledge that
sometimes experts suffer when determining the membership degrees of some
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pixels of an image Q to the fuzzy set representing the background (B) of the image
and to the fuzzy set representing the object (A) in the image.

For us, pp(x) (ua(x)) is the quantification of the expert knowledge that the
pixel with intensity x belongs to the background (object). In this sense, if
Ug(x) = 1(p4(x) = 1), then the expert has total knowledge (total sureness) that the
pixel belongs to the background (object). When puz(x) = 0.5 (uy(x) = 0.5), we
say that the expert is totally ignorant of whether the pixel belongs to the back-
ground (object) (total doubt). If the expert is totally sure that the pixel belongs to
the background (object), then he should take pgz(x) =1 and in this case the
membership to the object (background) should be close to 0, (14 (x) = 0). In spite
of this, the simultaneous ignorance of a pixel’s membership to the background and
to the object will be given when the two membership functions are close to 0.5.

Evidently, there are pixels of the image for which the expert is absolutely sure
that the chosen representation is the correct one. Nevertheless, there are also pixels
for which the expert does not know if the representation taken is the best. We will
represent the expert’s ignorance in terms of pz and p, by means of what we denote
as ignorance functions.

Under this interpretation, the following conditions must be fulfilled by these
functions:

1. The ignorance function depends only on pg(x) and g, (x).

2. The ignorance does not depend on whether we first consider the membership to
the background and then the membership to the object or we first consider the
membership to the object and then the membership to the background.

3. (Representation of total knowledge) The ignorance of the expert in the choice
of the membership of a pixel must be zero if and only if he is certain that the
pixel belongs to the object or the background.

4. (Representation of total doubt) If pgz(x) = 0.5 and u,(x) = 0.5; that is if the
expert is not capable of distinguishing whether a pixel belongs to the back-
ground or to the object, then we will say that the expert’s ignorance of the
membership of this pixel to the background or to the object is one.

5. If the membership of the pixel to the background and its membership to the
object are greater than 0.5, then the greater both memberships are, the smaller
the ignorance should be.

6. If the membership of the pixel to the background and its membership to the
object are smaller than 0.5, then the greater both memberships are, the greater
the ignorance should be.

We just recall that these properties are equivalent for any problem in which there

are two objects that represent opposite things, and therefore the mathematical

definition is valid in those environments. The considerations above have led us to
present the following definition.
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Definition 1 A function G, : [0,1]* — [0, 1] is called an ignorance function, if it
satisfies the following conditions:

1) Gi(x,y) = Gi(y,x) for all x,y € [0,1];
(xy)—Olfandonlyle—lory—l

(Gi
(G2) G

(G,3) If x=0.5and y = 0.5, thenG(x y) =1,
(Gi4) G; is decreasing in [0.5, 1]

(G;5) G; is increasing in [0,0.5]*.

In some cases, it is advisable to require ignorance functionss to be continuous,
since the ignorance must not present a chaotic reaction to small changes in the
degree of knowledge that the experts possess regarding to the membership of the
pixel in question to the background or to object. If this is the case, we will say that
the ignorance functionss are continuous.

In the following theorem, we show a construction method of continuous
ignorance functions from t-norms.

Theorem 1 [6] Let T be a continuous t-norm such that
T(x,y)=0if and only if x-y=0.
Under these conditions, the function

T(1—x,1-y) .

— > ifT(1—x,1—-y)<T(0.5,0.5
by | OS0! (1—x1-) <T(05,0.5)
i\X, =

Y 7(0.5,0.5) .

——————~—  otherwise

T(l - X, 1 _y)

is a continuous ignorance function.

Example 1
(1) The t-norm minimum satisfies the conditions in Theorem 1, so

2-min(l —x,1—y) ifmin(l —x,1—y)<0.5
G,‘(X,y): 1

therwi
2 min(l —x, 1 —y) Ooe

is a continuous ignorance function.
(2) The t-norm product satisfies the conditions in Theorem 1., so

4-(1—x)-(1—y) if(1—x)-(1-y)<0.25

Gi(x,y) = 1
091y

otherwise

is a continuous ignorance function.

In [6], we developed a method to construct ignorance functions from functions
different than the t-norms. Next, we show an example.
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Example 2 If we take ¢(x) = /x for all x € [0,1] we recover the following
ignorance function:

(1—-x)-(1—y) if(1—x)-(1-y)<0.25
Gi(x,y) = 1
2y/(1=x)-(1-y)

otherwise

Taking into account, the value of ignorance and the original fuzzy set we can
construct the IT2FS. First, we assign the value of the ignorance function to the
length W of the interval. Such a way the ignorance calculated represent the FOU:

W(x) = Gi(pa (x), up(x)).

The main problem is that the lower membership function must always be
greater than zero and the upper membership function must be lower than one.
Therefore in [21], we propose the following method to construct IT2FS for two
opposite fuzzy sets A and B:

Au) = [S(0, pa () + 2 x W(u)/2)  T(L,py(u) + 2 x W()/2)],  (5)

where T and S are a t-norm and a t-conorm, respectively, in [0,1] and A > 0.
With this method the interval generated is always within [0, 1]. Also the
parameter A modifies the length of the intervals. If 2 =1 then the length of the
interval is the same as the value of the ignorance function G; calculated.
One of the advantages of this method is that the shape of the FOU is related
with the shape of the membership functions, as we can see in Fig. 3.

2.3 Construction of an IT2FS from One Fuzzy Membership
Function

If we have a membership function that represents the fuzzy set that modelizes
certain concept, sometimes we know that there exist uncertainty in this mem-
bership. There exist several works that try to obtain from the proper membership
function a value of the uncertainty and from this value to construct an IT2FS.
Mainly two different approaches have been proposed. The first one intervals are
generated using one or two parameters, we denote this method as interval gen-
erators. The second approach intervals are constructed by means of a function that
only depends on the value of the membership function. This function gives an
ignorance value, related with the membership degree, allowing us to construct an
IT2FES.
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Fig. 3 a Two different fuzzy membership functions. b IT2FS generated from the ignorance
function of example 1.1 and 4 = 1. ¢ IT2FS generated from the ignorance function of example
1.1 and A = 0.5. d IT2FS generated from the ignorance function of example 1.2 and A = 0.5

2.3.1 Interval Generators

If the uncertainty presented in the problem is due to a known cause, we can
modelize it with some functions [3], called generators, and construct an IT2FS
from the former fuzzy set.
In the following example we present an interval generator with two parameters.
Let A € FSs(U) and let the functions:

f:[0,1] — [0,1] given by
f(x) =x* witho > 1.
g:10,1] —

glx) = xF with > 1.

[0, 1] given by

Under these conditions

Aoy = {(w, [ () 1 (w))|u € U} € TT2FSs(U).



156 M. Pagola et al.

(@ (b)
1 : : 1
0.9 {09}
0.8 | o8}
0.7 o7y
0.6 {06}
0.5 I o0s5)
0.4 1 04}
0.3 1 03}
0.2 {02}
0.1 AR
0 0

0 50 100 150 200 0 50 100 150 200

Fig. 4 a Original fuzzy set. b IT2FS generated from an interval generator with o = 2 and f§ = 2.

~ 1
The verification that A, 3 € ZT2FSs(U) is evident: 0 < p(u) <y (u) <1. The
parameters o and f can be related with the ignorance of the expert in the mem-
bership function selection. An specific case with only one parameter « is:

Ay = {(u, [1(u) gy (w)))lu € U} € IT2FSs(U). (6)

Figure 4 depicted a fuzzy set and an IT2FS generated with values of o = 2 and

B =2.

2.3.2 Weak Ignorance Function

The length of the IT2FSs can be seen as a representation of the ignorance when
assigning punctual values as membership degrees. In order to measure the igno-
rance degree, we define the concept of weak ignorance functions [26], which are a
particular case of ignorance functions depending on a single variable and
demanding a less number of properties.

Definition 2 [26] A weak ignorance function is a mapping g : [0, 1] — [0, 1] that
satisfies:

e (gl) g(x) = g(1 —x) for all x € [0, 1];
e (g2)glx)=0 fandonlylfxfOOrxfl
. (53) 8(0.5) =

Example 3 g(x) =2 -min(x, ] —x) is a weak ignorance function.

We also present in [26] the following construction method of IT2FSs. First, we
assign the length of the interval the value of ignorance of the membership degree
of the fuzzy set A, i.e., W(u) = g(u, () and then we construct the IT2FSs A in the
following way:
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Fig. 5 a Original fuzzy set. b IT2FS generated with weak ignorance function of equation
g(x) =2 -min(x,1 —x) and 2=1. ¢ IT2FS generated with weak ignorance function of
equation g(x) =4 - (x- (1 —x)) and 1 = 1. d IT2FS generated with weak ignorance function of
equation g(x) =4 (x- (1 —x)) and A =0.5

A= {(, a1 = A x W) pa()(1 = 2 x W) + 4 x W(w)]u € UY.
™)

Also the parameter 4 modifies the length of the intervals. If 4 = 1 then the length

of the interval is the same as the value of the ignorance function g calculated.

Figure 5 depicted three different IT2FSs generated from different weak igno-
rance functions.

3 Applications

Next we present three different applications where we use IT2FSs constructed with
the methods presented in the previous section.
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3.1 Classification

Fuzzy rule-based classification systems (FRBCSs) are widely employed in clas-
sification tasks since they allow us to deal with noisy, imprecise or incomplete
information which is often present in many real world problems. They provide a
good trade-off between the empirical precision of traditional engineering tech-
niques and the interpretability achieved through the use of linguistic labels whose
semantic is close to the natural language.

However, FRBCSs can suffer a lack of system accuracy as a result of the
uncertainty related to the definition of the membership functions.

In [25], we propose a methodology in which we use IT2FSs to model the
linguistic labels of the classification system. To do so, we define a new parame-
trized IT2FSs construction method using triangular shaped membership IT2FSs.
Specifically, the amplitude of the support of the upper bound of the IT2FSs is
determined by the value of the parameter W, which establishes the relationship
between the length of the lower and the upper bounds of each IT2FS. In this
manner, we can build an IT2FSs model using the initial knowledge base generated
by any fuzzy rule learning algorithm. Furthermore, the representation of the lin-
guistic labels by means of IT2FSs leads to a natural extension of the classical
fuzzy reasoning method (FRM) [8]. Specifically, we modified the two first steps
out of the four, which compose the original FRM, in the following way:

e Matching degree: we apply a t-norm to the lower and upper bounds of the
interval membership degrees of the elements to the IT2FSs composing the
antecedent of the rules.

e Association degree: we take the mean between the product of the matching
degree by the rule weight associated with the lower bound and the product of the
matching degree by the rule weight associated with the upper bound.

In addition, we defined an evolutionary tuning in which we modified the value of
the parameter W for each IT2FS used in the system. In this way, we tried to
improve the system’s performance by looking for the best amount of uncertainty
that the FOU of each IT2FS represents.

In the experimental study, we used two well-recognized fuzzy rule learning
methods, i.e., the algorithm proposed by Chi et al. [9] and the fuzzy hybrid
genetics-based machine learning (FH-GBML) defined by Ishibuchi and Yamamoto
[11]. In both cases, the application of our methodology (to the knowledge base
generated by each algorithm) allowed to notably enhance the results provided by
the initial nonIT2 fuzzy methods.

In [26], using the concept of weak ignorance function, we formalize the IT2FSs
construction method introduced in [25] by establishing the relationship between
the uncertainty represented by the FOUs of the IT2FSs and the ignorance degree.
Specifically, we achieve that the length of the intervals, which are assigned as the
membership degree of the elements to the set, are proportional to the weak
ignorance degree computed by g(x).
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The experimental study supported the suitability of our method, since we
outperformed the results of: (1) the original FH-GBML method; (2) the tuning
approach based on the linguistic 3-tuples representation applied to the original
fuzzy knowledge base, and (3) the lateral tuning applied to both the nonIT2 and the
IT2 fuzzy versions of the knowledge base.

3.2 Image Segmentation

In 2005, Tizhoosh [28] presented an image thresholding approach using interval
type 2 fuzzy sets (we must point out that he tries to use type 2 fuzzy sets, however
he only uses interval type 2 fuzzy sets [7]). His study is based on the modification
of the classical fuzzy algorithm of Huang and Wang [15], so that he applies an «
factor as an interval generator to the membership function. Starting from a
membership function, Tizhoosh obtains an interval type-2 fuzzy set that “con-
tains” different membership functions and is useful for finding the threshold of an
image. Tizhooh’s algorithm is applied directly to color segmentation using RGB in
[27] and it is also used to segment color image skin lesions [29]. Starting form the
idea of obtaining the uncertainty from the information given by the user, we have
proposed an approximation using interval type-2 fuzzy sets generated from
interval generators [3] (where the key point is to choose the correct parameters).
Also we have used interval type-2 membership functions within an algorithm of
stereo matching [12] (in this case we use the terminology of interval-valued fuzzy
sets). In said paper, we were interested in eliminating the sensitivity to the
radiometric gain, bias, and noise using IT2FSs to represent the images. In this way,
we managed the cited problems by splitting the image into two different areas
(background and objects), where the membership degree of each pixel to an object
or to the background is represented with an interval. We proposed a thresholding-
based segmentation to build these interval type-2 fuzzy sets. These works led us to
introduce the concept of ignorance function to try to model the lack of knowledge
from which experts may suffer when determining the membership degrees of some
pixels of a given image. This concept was presented in [5] and [6] where we
modified the classical fuzzy thresholding algorithm such way the user should pick
two functions, one to represent the background and another one to represent the
object, instead of using one membership function to represent the whole image;
that is, we proposed by means of ignorance functions to modelize the user’s
ignorance for choosing these two membership functions. From this value of
ignorance we constructed the IT2FSs. The rest of the algorithm remained similar
to the algorithm using IT2FS constructed from interval generators.

We evaluated the performance of the algorithm that uses ignorance functions in
natural images and prostate ultrasound images. We must take into account that,
since ultrasound images depend on the particular settings of the machine is very
important that our algorithm gives good solutions even if some membership
functions that do not represent accurately the background and the prostate are
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chosen. The IT2FS algorithm performance was compared with the classical fuzzy
algorithm and we can conclude that for the pairs of membership functions such
that the fuzzy algorithm solution is good (small error), the IT2FS algorithm does
not provide better results but if the error we get with the fuzzy algorithm begins to
be high (i.e., if we have used bad-chosen membership functions), then the result of
the IT2FS algorithm improves the other algorithm’s result.

3.3 Decision Making

Fuzzy preference relations have been widely used to model preferences for
decision-making problems due to their high expressiveness and their effectiveness
as a tool for modeling decision processes. In the fuzzy case, the experts express
their opinions using a difference scale [0,1]. In [2] we presented a generalization of
the nondominance criterion proposed by Orlovsky using interval preferences.

Our method starts from fuzzy preferences and by means of weak ignorance
functions we construct an interval type-2 fuzzy preference matrix (in the paper we
use the notation of interval valued fuzzy preference relation).

Let R* € FR(X x X) be a fuzzy preference relation over a set of alternatives
X = {x1,...,x,}; for each pair of alternatives x; and x;, R; =R (x;,x;) represents a
degree of (weak) preference of x; over x;, namely the degree to which x; is
considered as least as good as x;.

Given R* € FR(X x X) we normalize it to [0, 1] in such a way that for each
element of the new relation, denoted by R € FR(X x X), holds that R; = 1 — R);.

Next, from R we must extract a set of nondominated alternatives as the solution
of the decision-making problem. Specifically, the maximal nondominated ele-
ments of R are calculated extending the nondominance criterion proposed by
Orlovsky in [22] to intervals.

The Non-dominance Interval Algorithm that we proposed [2] is the following:
Given a fuzzy preference relation R* (without defined elements in the main
diagonal) and a weak fuzzy ignorance function g,

1. Construct R normalizing R*
2. Compute the fuzzy strict preference relation R® in Orlovsky’s sense
3. Build the interval type-2 fuzzy relation r:

_: { R+ (1= g(Ry)): R - (1 = g(Ro)) + ¢(Ry)] it Ry > Ry

[0’ g(Rjj )] otherwise

4. Build the interval type-2 fuzzy set:
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ND[V = {(Xj7ND1\/(.Xj))|Xj S X} where

(e, \/ (m] (9)

1 i=1

1

NDyy(x;) = S(ry;) = [

n

5. Build the interval type-2 fuzzy set:

va(NDlv) = {(Xj,va(NDlv(xj)))|Xj S X} where (10)

Ny (NDyy)(x;) = [1 - \n/(fz:/‘)a - \Vl/(zy)] (11)

i=1 i=1

6. Order the elements of Ny (NDyy) in a decreasing way in terms of accuracy and
score functions.

7. If there exist several alternatives occupying the firstplace, take as solution the
alternative with the biggest upper bound of its interval associated.

We must remark that if for a majority of the elements ry; we have that g(R;;) — 0,
then the resulting intervals have a very small length and it is reasonable to assume
that the result obtained with the algorithm is the same than the result obtained with
the nondominance algorithm.

If for a majority of the elements ry; we have that g(R;;) — 1, then the algorithm
allows us to distinguish better than the nondominance algorithm the alternative or
alternatives that we must take as solution.

4 Conclusions

A key problem of fuzzy systems and algorithms is the accurate election of the
membership function. In this chapter, we have presented three different methods to
generate interval type-2 fuzzy sets from fuzzy sets, such that they are very
goodtools to represent the uncertainty existing in the problem or specifically in the
election of the correct membership function. We have presented three different
applications in which these methods have been applied successfully. In some
cases, the IT2FS systems or algorithms achieved an improvement in the results of
the original fuzzy cases.

As future research we plan to study different methods to construct IT2FS from
data. Another interesting study is how to construct a general type-2 fuzzy set from
a fuzzy set.
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