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Preface

In 1975, Zadeh proposed Type-2 Fuzzy Sets (T2 FS) as an extension to the
previously introduced ordinary fuzzy sets (now called type-1 fuzzy sets). Type-2
fuzzy sets have the ability to capture the uncertainty about membership functions
of fuzzy sets through fuzzification of the membership function of type-1 fuzzy sets.
Instead of using a single crisp number from the unit interval [0, 1] as the mem-
bership value, as is done in a type-1 fuzzy set, in a T2 FS one or more crisp
numbers are used as membership values, and with different strengths. More pre-
cisely, a membership grade in a T2 FS is a type-1 fuzzy set; this introduces a new
third dimension into a fuzzy set which provides more degrees of freedom for
handling uncertainties. Unfortunately, practitioners are still cautious to put general
T2 FSs to real use due to their computational complexity. Consequently, there has
been extensive research toward simplification of the concepts of and operations for
T2 FSs, so that Interval Type-2 Fuzzy Sets (IT2 FSs) are often the preferred
method of choice.

As a special variation of a general T2 FS, an IT2 FS uses a subinterval of [0, 1]
as its membership value. This is in contrast to the membership grades in T2 FSs
that are type-1 fuzzy sets. Simplicity of the concept of IT2 FSs in comparison with
general T2 FSs, together with the affordable complexity of their operations, has
made IT2 FSs a widely used framework for implementation of fuzzy systems.

There has been a recent steady increase of attention and interest in T2 FS theory
from the research community. As of 1999 (when intensive research into T2 FSs
began), less than 40 publications had anything to do with T2 FSs or logic. As of
2012, there are thousands of articles that have something to do with T2 FSs or
logic. Quite a change in less than 15 years.

On one hand, there have been various studies on T2 FS theories with the
objectives of providing a uniform set of definitions and terms, a simple intro-
duction of concepts, justification of their existence, and development of efficient
algorithms for performing basic operations. On the other hand, there are endeavors
related to the applications of T2 FSs. This book is intended to explore recent
developments in the theoretical foundations and novel applications of general and
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IT2 FSs and systems. Leading researchers in the field of T2 FSs have participated
in the preparation of this book through contribution of their most important and
recent achievements in theory and applications of T2 FSs. The chapters cover
novel theoretical aspects of T2 FSs, methods for generating their membership
functions, and promising applications. This book is organized in three parts.

Part I is dedicated to the theoretical foundations of T2 FSs and is composed of
eight chapters. In chapter ‘‘Interval Type-2 Fuzzy Logic Systems and
Perceptual Computers: Their Similarities and Differences’’, Mendel, compares
Interval type-2 fuzzy logic systems and Perceptual Computers and highlights their
similarities and differences. By focusing on inputs and membership functions,
fuzzifiers versus encoders, rules versus Computing with Words (CWW) engines,
inference versus output of CWW engine, output processing versus decoder, and
outputs versus recommendation plus data, this chapter shows that the differences
outnumber the similarities. In chapter ‘‘A Survey of Continuous Karnik–
Mendel Algorithms and Their Generalizations’’, Liu summarizes the extensions
of the continuous Karnik–Mendel Algorithms in type-2 fuzzy logic. It provides a
general framework for the analysis and design of the Karnik–Mendel algorithms
with numerical analysis. In chapter ‘‘Two Differences Between Interval
Type-2 and Type-1 Fuzzy Logic Controllers: Adaptiveness and Novelty’’, Wu
explores the differences between interval type-2 and type-1 fuzzy logic controllers.
This chapter shows that adaptiveness and novelty are two fundamental differences
between interval type-2 and type-1 fuzzy logic controllers. In chapter ‘‘Interval
Type-2 Fuzzy Markov Chains’’ Figueroa-García presents a framework to use IT2
FSs in Markov chains analysis. This is useful for handling multiple experts’
opinions and perceptions, multiple definitions of type-1 fuzzy Markov chains, and
uncertain type-1 fuzzy sets. In chapter ‘‘zSlices Based General Type-2 Fuzzy Sets
and Systems’’, Wagner and Hagras provide a concise introduction to zSlices based
general T2 FSs and their associated set-theoretic operations. In chapter
‘‘Geometric Type-2 Fuzzy Sets’’, Coupland and John give a review and technical
overview of the geometric representation of a T2 FS and explore logical operators
used to manipulate this representation. In chapter ‘‘Type-2 Fuzzy Sets
and Bichains’’, Harding, Walker and Walker study the variety generated by the
truth value algebra of T2 FSs. They identify weakly projective bichains for the
variety generated by the truth value algebra of T2 FSs with only its two semilattice
operations in its type. In chapter ‘‘Type-2 Fuzzy Sets and Conceptual Spaces’’,
Aisbett and Rickard extend the conceptual space theory to incorporate T2 FS
structures. They study the usefulness of directional overlap (subsethood) as a
metric-free notion of similarity. Moreover, they relate the theory of conceptual
spaces to conventional multivariate classification and CWW and illustrate its
application to land use assessment tasks.

Chapters in Part II, discuss different methodologies for generating membership
functions of interval and general T2 FSs. In chapter ‘‘Modeling Complex
Concepts with Type-2 Fuzzy Sets: The Case of User Satisfaction of Online
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Services’’, Moharrer, Tahayori and Sadeghian propose a two-phase methodology
for generating membership functions of general T2 FSs that model complex
concepts. As a case study, they extensively discuss modeling of human perceptions
of the linguistic terms that are used in evaluating online satisfaction. The chapter is
of importance from at least two points of view. First, a decompositional method for
implicit calculation of type-1 fuzzy set models of an individual’s perception of a
complex concept is discussed. Second, a fuzzy approach to the representation of
uncertainty in measurement is adopted for constructing the membership functions
of general T2 FSs. In chapter ‘‘Construction of Interval Type-2 Fuzzy
Sets From Fuzzy Sets: Methods and applications’’, Pagola et al. present three
different methods to construct IT2 FS from type-1 fuzzy sets so that the footprint
of uncertainties of the IT2 FSs adapt to the model’s uncertainty. In chapter
‘‘Interval Type-2 Fuzzy Membership Function Generation Methods for
Representing Sample Data’’, Rhee and Choi discuss three methods based on
heuristics, histograms, and Interval Type-2 Fuzzy C-Means clustering for auto-
matic generation of interval type-2 fuzzy membership functions from sample data.

Finally, chapters in Part III introduce novel application of T2 FSs. In chapter
‘‘Type-2 Fuzzy Logic in Image Analysis and Pattern Recognition’’, Melin and
Castillo show experimental results for several edge detectors that are used to
preprocess the same image sets. By way of experiments, they find the better edge
detector that can be used to improve the training data of a neural network for an
image recognition system. In chapter ‘‘Reliable Tool Life Estimation with
Multiple Acoustic Emission Signal Feature Selection and Integration Based on
Type-2 Fuzzy Logic’’, Ren, Baron, Balazinski, and Jemielniak present a type-2
fuzzy tool life estimation system. In their proposed system, type-2 fuzzy analysis is
used as a powerful tool to model acoustic emission signal features, and also as a
very good estimator for the related ambiguities and uncertainties. In chapter
‘‘A Review of Cluster Validation with an Example of Type-2 Fuzzy Application
in R’’, Ozkan and Türks�en explain how interval valued type 2 fuzziness can be
used to develop a new cluster validation procedure. Their approach identifies the
number of clusters based on the stability of cluster centers with respect to the level
of fuzziness. In chapter ‘‘Type-2 Fuzzy Set and Fuzzy Ontology for Diet
Application’’, Lee, Wang, and Hsu provide a T2 FS and fuzzy ontology for a diet
application. They use a type-2 fuzzy markup language to describe the related
knowledge base and rule base.

This book outlines notable achievements in the realm of T2 FS to date. The
editors hope the materials covered in this book, provided by the leading scholars in
the field, motivate and accelerate future progress. Of course, there are still many
theoretical and applied issues that need to be addressed before the full potential of
Type-2 Fuzzy Systems is realized. The editors encourage the readers to participate
in research opportunities that are associated with T2 FSs, e.g., to investigate and
demonstrate the applicability, effectiveness, and potential advantages of T2 FSs
over type-1 fuzzy sets in a wide range of complex real world problems.
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Part I
Theoretical Foundations



Interval Type-2 Fuzzy Logic Systems
and Perceptual Computers: Their
Similarities and Differences

Jerry M. Mendel

Abstract In this chapter, we compare the interval type-2 fuzzy logic system and
perceptual computer, so as to eliminate confusion among researchers about whether
or not there really are differences between them. We show that there are many more
differences than similarities between them by focusing on the following six issues:
inputs and membership functions, fuzzifier versus encoder, rules versus computing
with words (CWW) engines, inference versus output of CWW engine, output pro-
cessing versus decoder, and outputs versus recommendation plus data.

1 Introduction

This chapter compares two seemingly similar-looking systems that use interval
type-2 fuzzy sets1 (IT2 FSs), an interval type-2 fuzzy logic system (IT2 FLS) and a
perceptual computer (Per-C). We do this because there may be some confusion
among researchers as to whether or not there really are differences between the
two. We shall demonstrate that there are many more differences than similarities
between the two. Our approach will be to focus on the generic architectures of the
IT2 FLS and Per-C and six associated issues.

To begin we provide the block diagrams for both the IT2 FLS and Per-C, in
Figs. 1 and 2, respectively.

1 A type-2 fuzzy set can be thought of as a type-1 fuzzy set on steroids. Its membership function
no longer has a single value at each value of the primary variable, but instead is a blurred version
of that function, i.e., at each value of the primary variable the membership is itself a function,
called a secondary membership function (MF). When the secondary MF is a constant equal to 1,
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An IT2 FLS (e.g., [1–5]) is the extension of a T1 FLS (e.g., [4, 6–8]) from T1
FSs to IT2 FSs. For an IT2 FLS, the important issues are about its inputs and
membership functions, fuzzifier, rules, inference, output processing, and outputs.

A perceptual computer [9–13] is one implementation of Zadeh’s paradigm of
computing with words (CWW) [14, 15], an implementation that focuses on the
broad class of applications that assist people in making subjective judgments. For
the perceptual computer, the important issues are about its inputs and membership
functions, encoder, CWW engine, output of CWW engine, decoder, and recom-
mendation plus data.

These issues, which will be compared one to one for the two systems, are
discussed in the rest of this chapter.

First, however, we wish to remind the reader that an IT2 FLS has been and con-
tinues to be applied to function approximation problems, e.g., fuzzy logic control
(e.g., [1, 16, 17]), signal processing (e.g., [1, 4]), and rule-based classification [4]. In all
of these applications, it is numerical values of the output of the FLS that are used and
great comfort is taken by the universal approximation property (e.g., [18]) of the FLS
(proven for a T1 FLS, yet to be proved for an IT2 FLS, but believed to be true for it,
since an IT2 FLS reduces to a T1 FLS when all sources of MF uncertainties disappear).
On the other hand, the Per-C has been and continues to be applied to CWW problems,
e.g., investment advising, social judgments, distributed decision making and hierar-
chical, and distributed decision making [13]. In all of these applications, it is linguistic
recommendations plus data at the output of the Per-C that are used and great comfort
is taken by the ability to interact with the Per-C using words.

2 Inputs and Membership Functions

For an IT2 FLS, the inputs are numbers. How they are modeled is the subject of
our next section. For the Per-C, the inputs are a mixture of numbers, uniformly
weighted intervals of numbers, nonuniformly weighted intervals of numbers
(T1 FSs), or words (IT2 FSs); generally, it will not be numbers alone.

For both an IT2 FLS and the Per-C, the fuzzy sets that are used by rules are
modeled using IT2 FSs. It is the order in which these FSs are obtained that is
different.

Footnote 1 (continued)
the type-2 fuzzy set is called an interval type-2 fuzzy set or an interval-valued fuzzy set;
otherwise,it is called a general type-2 fuzzy set. The MF of a T2 FS is three-dimensional, with x-
axis called the primary variable, y-axis called the secondary variable (or primary membership),
and z-axis called the MF value (or secondary MF value). A vertical slice is a plane that is parallel
to the MF-value z-axis. The footprint of uncertainty (FOU) of a T2 FS lies on the x–y plane (i.e.,
the primary and secondary variable plane) and includes all points on that plane for which the MF
value is nonzero; it is the 2D-domain on which sit the secondary membership values. The FOU
can be completely covered by T1 FSs that are called embedded T1 FSs.

4 J. M. Mendel



In an IT2 FLS, numerical domains come first; they are then partitioned into
overlapping intervals of numbers after which IT2 FSs are assigned to them. It does
not matter what these fuzzy sets are called, because they are only used within
computer programs that ultimately provide numerical outputs for the FLS.
An exception to this is the FLSs where it is also important to interpret the rules;
however, for the most part, interpretability is still not so important in most real-
world applications of FLSs (e.g., fuzzy-logic control), although it is becoming
more important.

In the Per-C words come first, because for each application (A) the very first
step in designing a Per-C is to create the Codebook that will be used both to design
the CWW Engine and decoders. A codebook for an application is the collection of
pairs of word and the IT2 FS model for the word, i. e.,

Codebook ¼ ð ~Wi;FOUð ~WiÞÞ; i ¼ 1; . . .;NA

� �
ð1Þ

The words in the codebook must mean something to the end-user; hence, for the
Per-C the linguistic labels of the T2 FSs are very important.

CWW EngineEncoder Decoder

IT2FS

Words

IT2FS

Perceptual Computer, the Per-C

Recommendation
+ Data

Fig. 2 Perceptual computer [13]

Type-2 FLS

Type-reduced 
Set (Type-1)

Rules

Crisp
inputs

IT2 FSs

Crisp
outputs

x X

Inference

Type-reducer

Output Processing

X

IT2 FSs

Y

y Y

Fig. 1 Interval type-2 fuzzy logic system [4]
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3 Fuzzifier Versus Encoder

For an IT2 FS, there can be three kinds of fuzzification [4]:

(1) Singleton fuzzification in which numbers are modeled as type-0 fuzzy sets, i.e.,
they are considered to be perfect. This is by far the most popular kind of
fuzzification today, because it leads to enormous simplifications of the infer-
ence process.

(2) Nonsingleton type-1 fuzzification in which each measured number is modeled
as a T1 FS. This kind of fuzzification is more realistic than singleton fuzz-
ification when measurements are corrupted by stationary additive measure-
ment noise.

(3) Nonsingleton interval type-2 fuzzification in which each measured number is
modeled as an IT2 FS. This kind of fuzzification is more realistic than non-
singleton type-1 fuzzification when measurements are corrupted by non-
stationary additive measurement noise.

Inferencing for both nonsingleton T1 and IT2 fuzzifications is more difficult than
it is for singleton fuzzification; hence, such fuzzifications are rarely used, although
lately nonsingleton type-1 fuzzification is becoming more popular primarily,
because people are using nongradient-based optimization procedures (e.g., PSO
[19] or QPSO [20, 21]) to optimize FOU parameters during the designs of IT2 FLSs
(computing derivatives for such fuzzifications are very complicated [22]).

The encoder of the Per-C models words as IT2 FSs and there is no choice about
this (maybe in the future, people will model words using general T2 FSs, but
to-date this is not being done). Why? Because words mean different things to
different people, and the two kinds of uncertainties associated with a word cannot
be modeled using T1 FSs [11, 23, 24]. Those uncertainties are: intra-uncertainty—
the uncertainty that an individual has about a word—and inter-uncertainty—the
uncertainty that a group of subjects has about the word.

The encoder maps words into IT2 FSs. It uses interval end-point data that are
collected from a group of subjects. The subjects are asked a question like: On a
scale of 0–10 where would you locate the end-points of an interval that you
associate with word W? The interval approach [13, 25] [or its enhanced version,
the enhanced interval approach (EIA) [26]] maps the interval data into an FOU,
and it does not decide what kind of an FOU to choose ahead of time. Instead, it
includes a classification step that does this based on the data that are collected from
the group of subjects—the data speaks! The result is either a left shoulder, interior,
or right shoulder FOU (Fig. 3); but none of these FOUS are usually symmetrical.
The IA (EIA) transfers the uncertainties from each subject as well as the group of
subjects into the word’s FOU.

6 J. M. Mendel



4 Rules Versus CWW Engines

For an IT2 FLS, rules may be obtained from domain experts, extracted from data,
or postulated by the designer and then optimized during a training/tuning proce-
dure. Rules are independent of the kind of FSs that are used to model their
antecedents and consequent, i.e. a rule is a rule is a rule… . When at least one
antecedent or consequent is modeled using an IT2 FS, the resulting FLS is an IT2
FLS.

There are two kinds of rules in an IT2 FLS, Mamdani and TSK. In a Mamdani
rule [27], the rule’s consequent is a FS, whereas in the TSK rule its consequent is a
linear combination of linear or nonlinear functions of inputs or its FSs.2 Mamdani
rules for a T1 FLS have the structure (e.g., [4, 6, 7])

Rl : IF x1 is Fl
1 and � � � and xp is Fl

p; THEN y is Gl; l ¼ 1; . . .;M;

Mamdani rules for an IT2 FLS have the structure (e.g., [3, 4])

Rl : IF x1 is ~Fl
1 and � � � and xp is ~Fl

p; THEN y is ~Gl; l ¼ 1; . . .;M:

TSK rules for a T1 FLS have the structure (e.g., [4, 28, 29])

Rl : IF x1 is Fl
1 and � � � and xp is Fl

p; THEN ylðxÞ¼cl
0þcl

1x1þcl
2x2þ � � �þcl

pxp;

l ¼ 1; . . .;M;

TSK rules for an IT2 FLS have the structure [4]

Rl : IF x1 is ~Fl
1 and � � � and xp is ~Fl

p; THEN Yl¼Cl
0þCl

1x1þCl
2x2þ � � �þCl

pxp;

l ¼ 1; . . .;M;

In the Per-C, there can be different kinds of CWW engines. To date, there are
two such engines, namely if–then rules and novel weighted averages (NWA).

N
x

1

Left-Shoulder
FOU Interior FOUs

Right-Shoulder
FOU

N
x

1

Fig. 3 Left shoulder, right
shoulder and interior FOUs,
all of whose LMFs and UMFs
are piecewise linear [25]

2 TSK rules are also available in which their consequents are dynamical systems, but such rules
are outside of the scope of this chapter.
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The rules in the Per-C can only have the structure of Mamdani rules because in
CWW rules the consequents are words; however, the words must be in the
codebook (note that there is no codebook for an IT2 FLS).

A NWA is a weighted average [13] in which at least one weight ( ~Wi) or signal
(~Xi) that is being averaged is not just a number. When at least one of them is a
uniformly weighted interval of numbers, then the NWA is called an interval
weighted average (IWA). When at least one of them is a nonuniformly weighted
interval of numbers, then the NWA is called a fuzzy weighted average (FWA)
(e.g., [30]). When at least one of them is a word that is modeled by an IT2 FS, then
the NWA is called linguistic weighted average (LWA) [31, 32]. The FWA is
computed by using IWAs, and the LWA is computed by using FWAs.

A NWA can be expressed as:

~YNWA ¼
Pn

i¼1
~Xi ~WiPn

i¼1
~Wi

ð2Þ

We call this an ‘‘expressive equation,’’ because (2) does not mean that the
NWA is computed by multiplying, adding and dividing IT2 FSs. How to compute
~YNWA is briefly described in Sect. 5.

A recently published linguistic weighted power mean (LWPM) [33, 34] gen-
eralizes NWAs to the following expressive structure:

~YLWPM ¼ lim
q!r

Pn
i¼1

~Xq
i

~WiPn
i¼1

~Wi

 !1=q

ð3Þ

According to Rickard et al. [34], as r ranges over the real line, ~YLWPM ranges
from logical conjunction of the inputs, ~X1 ^ . . . ^ ~Xn (in the limit, as r ! �1), to
logical disjunction of the inputs, ~X1 _ . . . _ ~Xn (in the limit, as r !1). ~YLWPM is
an orand operator that can be computed by using the KM algorithms but modified
to the LWPM, as explained in [33, 34]. When r ¼ 1 it reduces to a NWA.

5 Inference Versus Output of CWW Engine

There are two main kinds of inference procedures for an IT2 FLS, Mamdani, and
TSK. Both can be thought of as a two-step procedure: (1) Obtain a firing interval
through activating the rule’s antecedents by means of the inputs to the FLS, and
(2) Blend the firing intervals from the fired rules with each rule’s consequent.

In Mamdani inferencing one uses the extended sup-star composition [4] to
formally compute the firing interval. For an IT2 FLS in which singleton fuzzifi-
cation is used, the firing interval only involves using the lower and upper MFs for
each of the antecedent’s IT2 FS, i.e., the lower value of the firing interval is
computed as the t-norm between the lower MFs of all of the rule’s antecedent
MFs, and the upper value of the firing interval is computed as the t-norm between

8 J. M. Mendel



the upper MFs of all of the rule’s antecedent MFs. Usually, minimum or product
t-norms are used. An example is given in Fig. 4.

Fired rule outputs may be combined or not depending upon the kind of output
processing that is used. If they are combined, then this is done using the union
operation, the result being one composite IT2 FS (see Fig. 5). It they are not
combined, then each of the firing intervals as well as some information about the
IT2 consequent FS of each fired rule is sent to output processing, as will be
discussed in the next section.

In TSK inferencing, one also computes the firing interval as in Mamdani
inferencing, but now this is done formulaically, i.e., there is no rigorous justifi-
cation for doing this. The firing intervals are then usually used to compute a
weighed average between each fired rule’s consequent expression, in which the
firing intervals act as the weights. Sometimes the firing intervals are used only to
compute an unnormalized linear combination of each fired rule’s consequent
expression [4].

Regardless of which kind of inference is used in an IT2 FLS, there is no
constraint on it that the resulting IT2 FSs have to resemble the FOUs in a code-
book, because, as mentioned above, there is no codebook for an IT2 FLS. The
same is not true for the output of the CWW engine of the Per-C.

Because words must also mean similar things to different people (or else people
will not be communicating effectively), we believe that the output FOUs from the
CWW engine must resemble the words that are in the codebook. This is a new kind
of constraint for a fuzzy system, but it is one that to date can only be checked after
the fact, i.e., it has yet to be used as a constraint during the design of a CWW

x1

x2

x1

x2

min

y

min

µ
F1

(x1)

µ
F1

(x1)

µ
F2

(x2 )

µ
F

2

(x2 )

f (x )

f (x )

Firing interval calculation: 

Rule output calculation:  

FOU(G)

FOU(B)

F(x ) = [ f (x ), f (x )]

Fired rule 

FOU(F1)

FOU(F2 )

FOU(B)

1

0

1

0

1

0

Fig. 4 IT2 FLS inference: from firing interval to fired-rule output FOU [5]
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engine. Perhaps, in the future, researchers will be able to invoke this constraint at
the front end of such a design.

When the Per-C engine is a collection of if–then rules, then, as for an IT2 FLS,
we: (1) Obtain a firing interval [35] or firing level [36] through activating the rule’s
antecedents by means of the inputs to the FLS, and (2) Blend the firing intervals or
firing levels from the fired rules with each rule’s consequent. Because of the
constraint that the output FOUs from the if–then rules must resemble the words
that are in the codebook, Step 2 is carried out differently from an IT2 FLS. It is
performed by means of a special LWA. Steps 1 and 2 together are called
Perceptual Reasoning [13, 35, 36].

Although it is possible to compute a firing interval for the first step, as in an IT2
FLS [35], we have found that the resulting FOU obtained from the second step
does not resemble the FOUs of the words in the codebook as well as when a
Jaccard similarity measure is used in the first step to compute a firing level.
Because the Jaccard similarity measure for two IT2 FSs is so important to the Per-
C, we provide its formula next [13, Chap. 4], [37]:

smJð~A; ~BÞ ¼
PN

i¼1 minð�l~AðxiÞ; �l~BðxiÞÞ þ
PN

i¼1 minðl~A
ðxiÞ; l~B

ðxiÞÞ
PN

i¼1 maxð�l~AðxiÞ; �l~BðxiÞÞ þ
PN

i¼1 maxðl~A
ðxiÞ; l~B

ðxiÞÞ
ð4Þ

Note that smJð~A; ~BÞ 2 ½0; 1�.

y

y

f 1

f 1

f 2

f 2

Rule-1 Output Rule-2 Output

y

Combined Output

FOU (G1)

FOU (B1)

FOU (G 2)

FOU (B2)

1 1

(a)

(b)

1

f 1

f 1

f 2

f 2

FOU (B)

Fig. 5 Pictorial descriptions of (a) fired-rule output FOUs for two fired rules, and (b) combined
fired output FOU for the two fired-rules in (a) [13]
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The special LWA that is used in the second step of perceptual reasoning is one
in which the firing levels from the first step are used to weight the IT2 consequent
FSs. This way of aggregating fired-rule consequent sets is novel and is quite
different from taking the union (using the maximum operation) of such sets. If one
does the latter, then the resulting composite FOU does not resemble the FOU of a
word in a codebook [e.g., see FOUð~BÞ in Fig. 5b; it looks quite different than
FOUð~G1Þ or FOUð~G2Þ, even if there is only one such fired rule, due to the clipping
operation of the minimum operation].

It has been proved that the output FOUs from the if–then rules of perceptual
reasoning resemble the words that are in the codebook [36, 13].

When the Per-C CWW engine is the IWA, then its output is computed by using
two enhanced KM algorithms (see Table 1), one for the left end point and one for
the right end point of the IWA. The KM algorithms (and EKM algorithms), which
were originally developed in the context of an IT2 FLS for type reduction
(see Sect. 6) [4, 38], have turned out to be essential tools for the Per-C.

When the Per-C CWW engine is the FWA, then its output is computed by using
the alpha-cut function decomposition theorem3 [39], because the FWA is a
(nonlinear) function of T1 FSs. At each alpha-level the resulting computation
reduces to an IWA, because alpha cuts are intervals of real numbers [39].

When the Per-C CWW engine is a LWA, then its output, which is itself an IT2
FS, is computed as two FWAs, one for the LMF and one for the UMF. This comes
about by first representing each IT2 FS as the union of all of its embedded T1 FSs
[40, 41], so that the LWA can be viewed as a FWA involving a multitude of T1
FSs.

It has been proved that the output FOUs from the LWAs resemble the words
that are in the codebook [31]. An example of the LWA is in Fig. 6.

6 Output Processing Versus Decoding

For most IT2 FLSs, output processing consists of two steps: (1) type reduction
(TR) and (2) defuzzification.

Type reduction is a way to project an IT2 FS into a T1 FS [2, 4]. Just as there
are many kinds of defuzzifiers for a T1 FLS, there are many comparable type
reducers for an IT2 FLS. Center-of-sets TR is most popular. It consists of the
following two steps: (1) Compute the centroid of each consequent IT2 FS (it will
be an interval-valued set) and put them in storage; and (2) After the firing interval
has been computed for each fired rule, compute an IWA in which the firing
intervals act as weights and the centroid of the consequents act as the signals. In
the IT2 FLS literature, the IWA is called the generalized centroid [4, 38].

3 The MF for a function of T1 FSs equals the union (over all values of alpha) of the MFs for the
same function applied to the alpha cuts of the T1 FSs.

12 J. M. Mendel



No closed-form formulas are available to perform either Steps 1 or 2. Instead,
EKM algorithms are used in both of these steps. Step 1 only has to be carried out
one time after the design of the IT2 FLS has been completed. The use of EKM
algorithms in the second step may sometimes lead to a time-delay, because EKM
algorithms are iterative (however, they are quadratically convergent [42]). Such a
delay may be unacceptable for real-time applications, such as fuzzy logic control,
but does not pose a problem for nonreal-time applications, e. g., classification.

Because the type-reduced set is an interval of real numbers, defuzzification is
trivial; it is obtained as the average of the two end-points of the type-reduced set.

The type-reduced set also provides a measure of the MF uncertainties that have
flowed through all of the computations within the IT2 FLS. It plays a role that is
analogous to standard deviation in probability. When TR is bypassed, as is
commonly done in FLC, then no such useful measure is available.

To date, the three decoders for the Per-C are similarity, rank and subsethood
[13, 37]. More than 50 similarity measures have been reported for T1 FSs.
Additionally, the notion of similarity is very application dependent. Similarity of
word FOUs requires a similarity measure that can simultaneously capture the
similarities of FOU shapes and FOU proximities. The former is obvious; the latter
is because word-FOUs are aligned on a scale. To date, the Jaccard similarity
measure in (4) is the preferred one used for the Per-C, because it does an excellent
job of simultaneously capturing similarity of both shape and proximity of FOUs.

There is no optimal way to rank FOUs. Our approach for doing this is to first
compute the centroid of competing FOUs and then to use the COG of the centroids
to provide a numerical ranking [13, 37]. In addition, the centroid provides a
ranking band that is very useful, because it summarizes the uncertainties about
ranking. Let the centroid of ~A be denoted Cð~AÞ ¼ ½clð~AÞ; crð~AÞ�. Then the
numerical rank for ~A, rð~AÞ, is rð~AÞ ¼ ½clð~AÞ þ crð~AÞ�=2. A useful way to sum-
marize the ranking information is as rð~AÞ � ½crð~AÞ � clð~AÞ�=2.

Fig. 6 (a) FOUs of five signals, (b) FOUs of their corresponding weights, (c) FOU of the LWA
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Subsethood is useful when the output of the CWW engine has to be mapped
into a class. We use the following subsethood measure, introduced first by Vlachos
and Sergiadis [43], and later re-expressed by Wu and Mendel [37], so that it is very
clear that it is the extension of Kosko’s subsethood measure for T1 FSs [44],
namely:

ssVSð~A; ~BÞ ¼
PN

i¼1 minð�l~AðxiÞ; �l~BðxiÞÞ þ
PN

i¼1 minðl~A
ðxiÞ; l~B

ðxiÞÞ
PN

i¼1 �l~AðxiÞ þ
PN

i¼1 l~A
ðxiÞ

ð5Þ

Although this formula resembles similarity formula (4) it is quite different,
because smJð~A; ~BÞ ¼ smJð~B; ~AÞ, but ssVSð~A; ~BÞ 6¼ ssVSð~B; ~AÞ.

7 Outputs Versus Recommendation + Data

The output of an IT2 FLS is usually just a number. If TR is bypassed, then it is
only a number—the defuzzified output value. If TR as well as defuzzification are
performed, then the outputs of the IT2 FLS will be both the defuzzified number as
well as the type-reduced set, which, as has been mentioned earlier, provides a
measure of the MF uncertainties that have flowed through the IT2 FLS.

Observe, in Fig. 2, that the outputs from the Per-C are both a recommendation
and data. In our earlier works on the Per-C, its output was only a recommendation
or even just a ‘‘word.’’ Psychologists have shown that although people want to
communicate using words—the recommendation—they also want the recom-
mendation to be backed up by data. For example, if your boss gives you a poor
evaluation for the year, you will want to know ‘‘Why?’’ He or she will then
provide you with the reasons for this and those will usually involve ‘‘data’’
(e.g., ‘‘You did not meet your sales target of $X for the year.’’). For the Per-C, the
centroid, ranking bands, and similarities can be used to provide the data. People
seem to understand such measures. On the other hand, we would not use subset-
hood because people generally do not understand it.

8 Recapitulation and Conclusions

By comparing an IT2 FLS and the Per-C in terms of inputs and membership
functions, fuzzifier versus encoder, rules versus CWW engines, inference versus
output of CWW engine, output processing versus decoder, and outputs versus
recommendation plus data, it should be clear that there are many more differences
between these two systems than there are similarities. In the Per-C:

• Words come before their MFs because one must first establish the vocabulary
that will be used by Per-C.
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• Words mean different things to different peoples, so IT2 FSs are used.
• Words must also mean similar things to different people, so IT2 FS models must

also include this requirement.
• Words or a mixture of words and numbers always excite the Per-C.
• CWW engines are constrained; their outputs resemble the FOUs in the

codebook.
• Similarity, rank and subsethood are very important in the Per-C.

In an IT2 FLS:

• Words that label a FS are not used by the calculations; hence, the MF can come
before the word.

• Uncertainties about the labels of the FSs do not play an important factor in using
IT2 FS; it is their additional design degrees of freedom that are important.

• Words do not excite it; numbers (certain or uncertain) do.
• Rules are aggregated in such a way that universal approximation can be

appealed to; the shapes of the aggregated FOUs are unimportant.
• Most often, their output is a number that is obtained either directly by de-

fuzzification or by a combination of TR plus defuzzification.

Something that is similar to both an IT2 FLS and the Per-C is they both rely
heavily on the EKM algorithms. In an IT2 FLS, TR uses the EKM algorithms, and
in the Per-C, NWAs, centroid, and ranking use the EKM algorithms. Although the
EKM algorithms were developed in the context of IT2 FLSs, their use has crossed-
over into CWW. Perhaps there are other FLS tools that will do the same.

Finally, an IT2 FLS and the Per-C are used for very different applications.
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A Survey of Continuous Karnik–Mendel
Algorithms and Their Generalizations

Xinwang Liu

Abstract Karnik–Mendel (KM) algorithms are important tools for type-2 fuzzy
logic. This survey chapter summarizes some extensions of continuous Karnik–
Mendel algorithms. It is shown that the solution of KM algorithms can be trans-
formed into the solution of root-finding problems, and that the iteration formula in
KM algorithms is equivalent to the Newton-Raphson root-finding method in
numerical analysis. New iteration formulas are summarized that accelerate the
convergence speed and it is shown that numerical integration methods can be used
to improve computation accuracy. This chapter demonstrates that properties and
structures of KM algorithms can be understood and improved with the techniques
from numerical analysis.

1 Introduction

A type-2 fuzzy logic system (FLS) allows for better modeling of uncertainty than a
type-1 FLS, because a type-2 fuzzy set (T2 FS) has a Footprint of Uncertainty (FOU)
that gives it more degrees of freedom than a type-1 fuzzy set (T1 FS) [2, 13, 23]. An
interval type-2 fuzzy set (IT2 FS) is a simplified version of a general T2 FS because
its membership grade is a crisp interval rather than a function. Most applications of
type-2 FLSs involve only IT2 FSs. It has been shown that IT2 FLSs can outperform
their type-1 FLSs counterparts in a variety of fields including information pro-
cessing, fuzzy control, and decision making [2, 3, 7, 16, 23, 30, 31].

The centroid of an IT2 FS, developed originally by Karnik and Mendel [6],
which provides a measure of the uncertainty of that FS [32], is also one of the most
important computations for that FS, and is a commonly used type reduction
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method in T2 FLSs [8, 14, 21, 22]. Popular and efficient algorithms, called
‘‘Karnik-Mendel (KM) algorithms,’’ were developed for centroid type reduction
for interval type-2 FLSs [6, 13]. Mendel and Liu [20] proved monotonicity and
super-exponential convergence of the algorithms. The iteration number of KM
algorithm is usually less than seven for accuracies of 10�2. Wu and Mendel [29]
proposed Enhanced KM (EKM) algorithms to reduce the computational cost of the
standard KM algorithms. Yeh et al. [33] proposed the Enhanced Karnik–Mendel
algorithm with new initialization to compute the generalized centroid of general
T2 FSs. Similarly, Zhai and Mendel [34] proposed a new centroid flow (CF)
algorithm to compute the generalized centroid of general T2 FSs without having to
apply KM/EKM algorithms for every a-plane. Mendel [17] gave reviews on the
centroid, the algorithms for centroid computation, and its applications.

KM algorithms and their extensions have been applied to many applications of
T2 FSs and play an important role in interval type-2 and general type-2 FLSs [5, 8,
13, 15, 16, 21, 23, 26], computing with words [23, 30, 31] and fuzzy weighted
average problems [4, 9, 27]. The latest theoretical development related to KM
algorithm is proposed by Liu and Mendel [10], in which the KM algorithm is
discovered to be equivalent to the Newton-Raphson method in root finding. KM
algorithms can be understood and studied from this novel point of view.

In this survey chapter, new forms of continuous KM algorithms are proposed.
Section 2 gives preliminaries about IT2 FSs and the centroid computation of IT2
FSs; Sects. 3–7 provide the extensions of the KM algorithms using our new
continuous KM algorithm, and, Sect. 8 summarizes the main results and draws
conclusions.

2 Preliminaries

This section provides some background about IT2 FSs, the centroid of such fuzzy
sets, the KM algorithms, and continuous KM algorithms.

2.1 Interval Type-2 Fuzzy Sets

An interval type-2 fuzzy set (IT2 FS) ~A is characterized as [1, 13, 18, 19]:

~A ¼
Z

x2X

Z

u2Jx�½0;1�

1=ðx; uÞ ¼
Z

x2X

Z

u2Jx�½0;1�

1=u

2

64

3

75=x ð1Þ

where x, the primary variable, has domain X; u 2 U, the secondary variable, has
domain Jx at each x 2 X; Jx is called the primary membership of x; and, the
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secondary grades of ~A all equal 1. Note that (1) means: ~A : X ! f½a; b� :
06 a6 b61g. Uncertainty about ~A is conveyed by the union of all the primary
memberships, which is called the footprint of uncertainty (FOU) of ~A, i.e.,

FOUð~AÞ ¼ fðx; uÞ : u 2 Jx � ½0; 1�g

The upper membership function (UMF) and lower membership function (LMF) of
~A are two type-1 MFs that bound the FOU. The UMF is associated with the upper
bound of FOUð~AÞ and is denoted l~AðxÞ, 8x 2 X, and the LMF is associated with

the lower bound of FOUð~AÞ and is denoted l~A
ðxÞ.

An embedded T1 FS, Ae, is a function whose range is a subset of [0, 1]
determined by l~Aðx; uÞ, i.e.,

Ae ¼
n�

x; uðxÞ j x 2 X; u 2 Jx

�o
ð2Þ

When the primary variable x is sampled at N values, x1; . . .; xN , and at each of
these values its primary memberships are sampled at Mi values, li1 ; . . .; liMi

, then

there will be nA ¼
QN

i¼1 Mi embedded T1 FSs that are contained within FOUð~AÞ.

2.2 Centroid of an Interval Type-2 Fuzzy Set

Recall that the centroid, cðAÞ, of the T1 FS A ðA 2 X ¼ fx1; x2; ; xNgÞ is defined as

cðAÞ ¼
PN

i¼1 xilAðxiÞ
PN

i¼1 lAðxiÞ
ð3Þ

The centroid, CeA , of an IT2 FS, ~A, which was developed by Karnik and Mendel
[6], has turned out to be a very important concept for IT2 FSs and their associated
FLSs. The centroid CeA is the union of the centroids of all its embedded T1 FSs Ae,
i.e., [28]:

CðeAÞ ¼ ½clðeAÞ; crðeAÞ� ð4Þ

where

clðeAÞ ¼ min
8Ae

cðAeÞ ð5Þ

crðeAÞ ¼ max
8Ae

cðAeÞ ð6Þ
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2.3 KM Algorithms

Let xiði ¼ 1; 2;NÞ represent the discretization of the primary variable of an IT2 FS
eA. The centroid of IT2 FS eA, ceA ¼ ½cl; cr�, can be computed as the optimal
solutions of the following interval weighted average problems [6, 20]:

cl ¼ min
8hi2½l~A

ðxiÞ;l~AðxiÞ�

PN
i¼1 xihi
PN

i¼1 hi

¼
Pkl

i¼1 xil~AðxiÞ þ
PN

i¼klþ1 xil~A
ðxiÞ

Pkl
i¼1 l~AðxiÞ þ

PN
i¼klþ1 l~A

ðxiÞ
ð7Þ

cr ¼ max
8hi2½l~A

ðxiÞ; l~AðxiÞ�

PN
i¼1 xihi
PN

i¼1 hi

¼
Pkr

i¼1 xil~A
ðxiÞ þ

PN
i¼krþ1 xil~AðxiÞ

Pkr
i¼1 l~AðxiÞ þ

PN
i¼krþ1 l~A

ðxiÞ
ð8Þ

where kl and kr are called ‘‘switch points’’ with xkl 6 cl6 xklþ1 and xkr 6 cr 6 xkrþ1.
The determination of kl and kr can be performed by using the KM algorithms

and are summarized in Table 1 [6, 13, 23].
Recently, Wu and Mendel [29] proposed Enhanced KM (EKM) algorithms

given in Table 2, which improve the KM algorithms with better initializations,
computational cost reduction techniques, and stopping rules.

2.4 Continuous KM Algorithms

Continuous KM (CKM) algorithms [24, 25] were proposed for studying the the-
oretical properties of IT2 FS centroid computations, e. g., they were used to prove
that the KM algorithms converge monotonically and super-exponentially fast [20].

We assume all the xis are different, and they are bounded in ½a; b�, where
a ¼ min

16i6N
fxig and b ¼ max

16i6N
fxig.1 Then, the continuous versions of (7) and (8) are

cl ¼ min
n2½a;b�

clðnÞ � min
n2½a;b�

R n
a xleAðxÞdxþ

R b
n xleAðxÞdx

R n
a leAðxÞdxþ

R b
n leAðxÞdx

ð9Þ

cr ¼ max
n2½a;b�

crðnÞ � max
n2½a;b�

R n
a xleAðxÞdxþ

R b
n xleAðxÞdx

R n
a leAðxÞdxþ

R b
n leAðxÞdx

ð10Þ

Continuous versions of the KM algorithms for cl and cr, which give the optimal
solutions of (9) and (10), are given in Table 3.

1 As noted in [25, p. 363], if Gaussian MFs are used, one can extend the theoretical results to
a! �1, b! þ1; but, in practice, when truncations are used, a and b are again finite
numbers.
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Table 1 KM algorithm for computing the centroid end-points of an IT2 FS, eA [6, 13, 23]a

Step KM algorithm for cl KM algorithm for cr

cl ¼ min
8hi2½l~A

ðxiÞ;l~AðxiÞ�

PN
i¼1 xihi=

PN
i¼1 hi

� �
cr ¼ max8hi2½l~A

ðxiÞ;l~AðxiÞ�
PN

i¼1 xihi=
PN

i¼1 hi

� �

1 Initialize hi by setting hi ¼ ½l~A
ðxiÞ þ l~AðxiÞ�=2; i ¼ 1; 2;N and then compute

c0 ¼ cðh1; h2; ; hNÞ ¼
PN

i¼1 xihi

,
PN

i¼1 hi

2 Find kð16 k6N � 1Þ such that xk 6 c06 xkþ1.
3 Compute Compute

clðkÞ ¼
Pk

i¼1
xil~AðxiÞþ

PN

i¼kþ1
xil~A
ðxiÞPk

i¼1
l~AðxiÞþ

PN

i¼kþ1
l~A
ðxiÞ

crðkÞ ¼
Pk

i¼1
xil~A
ðxiÞþ

PN

i¼kþ1
xil~AðxiÞPk

i¼1
l~A
ðxiÞþ

PN

i¼kþ1
l~AðxiÞ

4 Check if clðkÞ ¼ c0. If yes, stop and set
clðkÞ ¼ cl and k ¼ L. If no, go to step 5.

Check if crðkÞ ¼ c0. If yes, stop and set
crðkÞ ¼ cr and k ¼ R. If no, go to step 5.

5 Set c0 ¼ clðkÞ and go to Step 2. Set c0 ¼ crðkÞ and go to Step 2.

a Note that x16 x26 � � � 6 xN

Table 2 EKM algorithms for computing the centroid end-points of an IT2 FS, ~A [23, 29]a,

Step EKM algorithm for cl EKM algorithm for cr

cl ¼ min
8hi2½l~A

ðxiÞ;l~AðxiÞ�

PN
i¼1 xihi=

PN
i¼1 hi

� �
cr ¼ max

8hi2½l~A
ðxiÞ;l~AðxiÞ�

PN
i¼1 xihi=

PN
i¼1 hi

� �

1 Set k ¼ ½N=2:4� (the nearest integer to
N=2:4) and compute

Set k ¼ ½N=1:7� (the nearest integer to
N=1:7) and compute

a ¼
Pk

i¼1
xil~AðxiÞ þ

PN

i¼kþ1
xil~A
ðxiÞ; a ¼

Pk

i¼1
xil~A
ðxiÞ þ

PN

i¼kþ1
xil~AðxiÞ;

b ¼
Pk

i¼1
l~AðxiÞ þ

PN

i¼kþ1
l~A
ðxiÞ: b ¼

Pk

i¼1
l~A
ðxiÞ þ

PN

i¼kþ1
l~AðxiÞ:

Compute c0 ¼ a=b.
2 Find k0 2 ½1;N � 1� such that xk0 6 c06 xk0þ1.
3 Check if k0 ¼ k. If yes, stop and set c0 ¼ cl

and k ¼ L. If no, go to step 4.
Check if k0 ¼ k. If yes, stop and set c0 ¼ cr

and k ¼ R. If no, go to step 4.
4 Compute s ¼ signðk0 � kÞ and Compute s ¼ signðk0 � kÞ and

a0 ¼ aþ s
Pmaxðk;k0Þ

i¼minðk;k0Þþ1
a0 ¼ a� s

Pmaxðk;k0Þ

i¼minðk;k0Þþ1

xi l~AðxiÞ � l~A
ðxiÞ

h i
; xi l~AðxiÞ � l~A

ðxiÞ
h i

:

b0 ¼ bþ s
Pmaxðk;k0 Þ

i¼minðk;k0Þþ1
b0 ¼ b� s

Pmaxðk;k0Þ

i¼minðk;k0Þþ1

l~AðxiÞ � l~A
ðxiÞ

h i
: l~AðxiÞ � l~A

ðxiÞ
h i

:

Compute c00ðk0Þ ¼ a0=b0.
5 Set c0 ¼ c00ðk0Þ; a ¼ a0;b ¼ b0 and k ¼ k0 and go to Step 2.
aNote that x16 x26 � � � 6 xN
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The continuous version of EKM called continuous EKM (CEKM) is given in
Table 4.

3 Transforming the Solution of KM Algorithms
into Root-Finding Problems

The solutions of (9) and (10) can also be transformed into the solutions of root-
finding problems.

Theorem 1 [10] (1) cl ¼ clðn�Þ is the unique minimum value of (9), and n� is the
unique simple root of the monotonic increasing convex function:

uðnÞ¼
Zn

a

ðn� xÞleAðxÞdxþ
Zb

n

ðn� xÞleAðxÞdx ð11Þ

(2) cr ¼ crðn�Þ is the unique maximum value of (10), and n� is the unique simple
root of the monotonic decreasing convex function:

wðnÞ¼�
Zn

a

ðn� xÞleAðxÞdx�
Zb

n

ðn� xÞleAðxÞdx ð12Þ

Proof See [10]. h

Table 3 Continuous KM (CKM) algorithms for computing the centroid end-points of an IT2 FS,
~A

Step CKM algorithm for cl CKM algorithm for cr

cl ¼ min
8hðxÞ2½l~A

ðxÞ;l~AðxÞ�

R b

a
xhðxÞdx

R b

a
hðxÞdx

cr ¼ max
8hðxÞ2½l~A

ðxÞ;l~AðxÞ�

R b

a
xhðxÞdx

R b

a
hðxÞdx

1 Let hðxÞ ¼ ðl~A
ðxÞ þ l~AðxÞÞ=2, and compute the initial value n, as

n ¼
R b

a
xhðxÞdx

R b

a
hðxÞdx

2 Compute Compute

nl ¼
R n

a
xl~AðxÞdxþ

R b

n
xl~A
ðxÞdx

R n

a
l~AðxÞdxþ

R b

n
l~A
ðxÞdx

nr ¼
R n

a
xl~A
ðxÞdxþ

R b

n
xl~AðxÞdx

R n

a
l~A
ðxÞdxþ

R b

n
l~AðxÞdx

3 Check if jn� nlj6 e (e is a given error
bound of the algorithms). If yes, stop and
set cr ¼ nr . If no, go to step 4.

Check if jn� nrj6 e (e is a given error
bound of the algorithms). If yes, stop and
set cl ¼ nl. If no, go to step 4.

4 Set n ¼ nl and go to Step 2. Set n ¼ nr and go to Step 2.
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From Theorem 1, the computation of cl and cr can be transformed into root-
finding problems. Liu and Mendel [10] have also proved that the iteration formula
in the CKM algorithms is equivalent to the iteration of the Newton-Raphson root-
finding method in numerical analysis, for the root-finding problems (11) and (12).
More specifically, the Newton-Raphson iteration formulas can be stated as

nl ¼ nþ u0ðnÞ
u0ðnÞ ð13Þ

and

nr ¼ nþ w0ðnÞ
w0ðnÞ

ð14Þ

When the respective derives are substituted into (13) and (14), then those equa-
tions become the same as the iteration formulas in Table 3, respectively. EKM
algorithms use the same iteration formula as KM algorithms; hence, convergence
speeds of KM and EKM algorithms are quadratic, because Newton-Raphson
algorithms are known to be quadratically convergent.

Table 4 Continuous EKM (CEKM) algorithms for computing the centroid end-points of an IT2
FS, ~A

Step CEKM algorithm for cl CEKM algorithm for cr

cl ¼ min
8hðxÞ2½l~A

ðxÞ;l~AðxÞ�

R b

a
xhðxÞdx

R b

a
hðxÞdx

cr ¼ max8hðxÞ2½l~A
ðxÞ;l~AðxÞ�

R b

a
xhðxÞdx

R b

a
hðxÞdx

1a Set c ¼ aþ ðb� aÞ=2: 4, and compute Set c ¼ aþ ðb� aÞ=1: 7, and compute

a ¼
Rc

a
xl~AðxÞdxþ

Rb

c
xl~A
ðxÞdx; a ¼

Rc

a
xl~A
ðxÞdxþ

Rb

c
xl~AðxÞdx;

b ¼
Rc

a
l~AðxÞdxþ

Rb

c
l~A
ðxÞdx: b ¼

Rc

a
xl~A
ðxÞdxþ

Rb

c
xl~AðxÞdx:

Compute c0 ¼ a=b.
2 Check if jc0 � cj6 e (e is a given error bound

of the algorithms). If yes, stop and set
c0 ¼ cl. If no, go to step 4.

Check if jc0 � cj6 e (e is a given error bound
of the algorithms). If yes, stop and set
c0 ¼ cr . If no, go to step 4.

3 Compute s ¼ signðc0 � cÞ and: Compute s ¼ signðc0 � cÞ and:

a0 ¼ aþ s
Rmaxðc;c0Þ

minðc;c0Þ
x l~AðxÞ � l~A

ðxÞ
h i

dx; a0 ¼ a� s
Rmaxðc;c0Þ

minðc;c0Þ
x l~AðxÞ � l~A

ðxÞ
h i

dx;

b0 ¼ bþ s
Rmaxðc;c0Þ

minðc;c0Þ
l~AðxÞ � l~A

ðxÞ
h i

dx: b0 ¼ b� s
Rmaxðc;c0Þ

minðc;c0Þ
l~AðxÞ � l~A

ðxÞ
h i

dx

Computec00 ¼ a0; =b0

4 Set c ¼ c0; c0 ¼ c00; a ¼ a0; b ¼ b0 and go to Step 2
aThe initialization step utilizes the shift-invariant property of computing the centroid of an IT2 FS
[25], i. e., one can always set a ¼ 0, so that the total sample number N corresponds to the integral
length b� a.
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From this viewpoint, the KM algorithm iteration can be regarded as a special
form of a root-finding method, which suggests that other techniques from
numerical analysis can also be used to further improve the KM algorithms.

4 Halley’s Method to Accelerate the Convergence
of KM Algorithms

Motivated by (13) and (14), one can use Halley’s method from numerical analysis
to improve the convergence from quadratic to cubic.

For the root-finding problem (11), it follows from Halley’s method [12], that

nl ¼ n� uðnÞ
u0ðnÞ 1� uðnÞu00ðnÞ

2ðu0ðnÞÞ2

 !�1

ð15Þ

where

uðnÞ ¼
Zn

a

ðn� xÞleAðxÞdxþ
Zb

n

ðn� xÞleAðxÞdx ð16Þ

u0ðnÞ ¼
Zn

a

leAðxÞdxþ
Zb

n

leAðxÞdx ð17Þ

u00ðnÞ ¼ leAðxÞðnÞ � leAðxÞðnÞ ð18Þ

Similarly, for the root-finding problem (12), a comparable algorithm for nr is

nr ¼ n� wðnÞ
w0ðnÞ 1� wðnÞw00ðnÞ

2ðw0ðnÞÞ2

 !�1

ð19Þ

where

wðnÞ ¼ �
Zn

a

ðn� xÞleAðxÞdx�
Zb

n

ðn� xÞleAðxÞdx ð20Þ

w0ðnÞ ¼ �
Zn

a

leAðxÞdx�
Zb

n

leAðxÞdx ð21Þ
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w00ðnÞ ¼ �leAðxÞðnÞ þ leAðxÞðnÞ ð22Þ

Although convergence is improved by using (15) and (19), complexity is
increased.

5 Another Way to Accelerate the Convergence
of KM Algorithms

A Taylor series expansion of uðnlÞ around n, is

uðnlÞ � uðnÞ þ u0ðnÞðnl � nÞ þ 1
2
u00ðnÞðnl � nÞ2

If u00ðnÞ 6¼ 0, then the one root of uðnÞ ¼ 0 that is closer to n is

nl ¼ n�
u0ðnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ðnÞ2 � 2uðnÞu00ðnÞ

q

u00ðnÞ
ð23Þ

On the other hand, if u00ðnÞ ¼ 0, then

nl ¼ n� u0ðnÞ
uðnÞ ð24Þ

Observe that (24) is the same as a KM algorithm or the Newton-Raphson iteration
formula (13), which provides those algorithms with another interesting
interpretation.

Considering these two cases together, we have the following new algorithm for
computing nl:

nl ¼
n� u0ðnÞ

uðnÞ if u00ðnÞ ¼ 0

n� u0ðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ðnÞ2�2uðnÞu00ðnÞ
p

u00ðnÞ if u00ðnÞ 6¼ 0

8
<

:
ð25Þ

Similarly, for nr, we have

nr ¼
n� w0ðnÞ

wðnÞ if w00ðnÞ ¼ 0

n� w0ðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0ðnÞ2�2wðnÞw00ðnÞ
p

w00ðnÞ if w00ðnÞ 6¼ 0

8
<

:
ð26Þ

Note that uðnÞ and wðnÞ and their derivatives are given in Sect. 4.
These new algorithms can be proved to be cubically convergent (omitted), and

they can be used to replace nl and nr in the Table 3 CKM algorithms (Step 2).
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6 Extension of EKM Algorithms to Weighted EKM
Algorithms

By comparing KM algorithms and CKM algorithms, and also EKM algorithms and
CEKM algorithms, respectively, we observe that the former compute the centroid
using the sample points of the FOU, whereas the latter compute the centroid using
MFs of the FOU. The summing operations in (E) KM algorithms are the
approximations of the integral operations in C(E)KM algorithms. Using numerical
integration techniques, weighted EKM (WEKM) algorithms can be obtained to
improve computational accuracy [11]. Table 5 gives weighted EKM algorithms,
where some weight assignments are given in Table 6 for some well-known
numerical integration rules.

Ordinary EKM algorithms are special cases of the WEKM algorithms. Like
EKM algorithms, WEKM algorithms obtain the centroid values of an IT2 FS

Table 5 Weighted EKM (WEKM) algorithms for computing the centroid end-points of IT2 FS,
~Aa;

Step WEKM algorithm for cl WEKM algorithm for cr

cl ¼ min
8hi2½l~A

ðxiÞ;l~AðxiÞ�

PN

i¼1
wixihiPN

i¼1
wihi

cr ¼ max8hi2½l~A
ðxiÞ;l~AðxiÞ�

PN

i¼1
wixihiPN

i¼1
wihi

1 Set k ¼ ½N=2: 4� (the nearest integer to
N=2: 4) and computeb:

Set k ¼ ½N=1: 7� (the nearest integer to

N=1: 7) and computeb:

a ¼
Pk

i¼1
wixil~AðxiÞ þ

PN

i¼kþ1
wixil~A

ðxiÞ a ¼
Pk

i¼1
wixil~A

ðxiÞ þ
PN

i¼kþ1
wixil~AðxiÞ;

b ¼
Pk

i¼1
wil~AðxiÞ þ

PN

i¼kþ1
wil~A
ðxiÞ: b ¼

Pk

i¼1
wil~A
ðxiÞ þ

PN

i¼kþ1
wil~AðxiÞ:

Compute c0 ¼ a=b.
2 Find k0 2 ½1;N � 1� such that xk0 6 c06 xk0þ1.
3 Check if k0 ¼ k. If yes, stop and set Check if k0 ¼ k. If yes, stop and set

c0 ¼ cl and k ¼ L. If no, go to step 4. c0 ¼ cr and k ¼ R. If no, go to step 4.
4 Compute s ¼ signðk0 � kÞ and: Compute s ¼ signðk0 � kÞ and:

a0 ¼ aþ s
Pmaxðk;k0 Þ

i¼minðk;k0Þ
a0 ¼ a� s

Pmaxðk;k0Þ

i¼minðk;k0Þ

wixi l~AðxiÞ � l~A
ðxiÞ

h i
; wi l~AðxiÞ � l~A

ðxiÞ
h i

:

b0 ¼ bþ s
Pmaxðk;k0Þ

i¼minðk;k0Þ
b0 ¼ b� s

Pmaxðk;k0Þ

i¼minðk;k0Þ

wixi l~AðxiÞ � l~A
ðxiÞ

h i
; wi l~AðxiÞ � l~A

ðxiÞ
h i

:

Compute c00 ¼ a0=b0.
5 Set c0 ¼ c00; a ¼ a0;b ¼ b0 and k ¼ k0 and go to Step 2.

aNote that x16 x26 � � � 6 xN
bwi are given in Table 6
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approximately. Such approximate values approach the exact values only when the
sample size N !1.

Numerical examples have shown these new algorithms significantly outperform
current KM and EKM algorithms as far as computational accuracy.

7 Relationships Among the Three Extensions
of Continuous KM Algorithms

By connecting the transformation of the two KM optimization problems to
equivalent rooting-finding problems, demonstrating the equivalence between KM
algorithms and Newton-Raphson algorithms, and using different kinds numerical
integration methods to obtain WEKM algorithms, three new kinds of methods for
computing the centroid of an IT2 FS have been obtained:

1. Direct root-finding methods: using Theorem 1, the centroid values of an IT2 FS
can be obtained by solving for the roots of (11) and (12) directly. Various root-
finding methods can be applied to do this.

2. CEKM algorithms and their accelerations: the centroid values of an IT2 FS can
also be obtained using the CEKM algorithms in Table 4, which are improve-
ments of the CKM algorithms in Table 3. These algorithms can be accelerated
using the new iteration formulas in (25) and (26) from quadratic to cubic.

3. WEKM algorithms and their accelerations: WEKM algorithms are the imple-
mentations of CEKM algorithms using various numerical integration methods.
EKM algorithms are special cases of WEKM algorithms. EKM/WEKM can
also be accelerated by using the discrete versions of (25) and (26).

Table 6 Weight assignment methods of WEKM (EKM) algorithms,

Algorithms Integration rule Weight value

EKM Riemann sum wi ¼ 1ði ¼ 1; 2; ;NÞ
TWEKM Trapezoidal rule

wi ¼
1=2 if i ¼ 1;N;

1 if i 6¼ 1;N:

�

SWEKM Simpson’s rule
wi ¼

1=2 if i ¼ 1;N
1 if i ¼ 1 modað2Þ and i 6¼ 1;N;
2 if i ¼ 0 modð2Þand i 6¼ N:

8
<

:

S3/8WEKM Simpson’s 3=8 rule

wi ¼

1=3 if i ¼ 1;N
2=3 if i ¼ 1 modð3Þand i 6¼ 1;N;

1 if i ¼ 2 modð3Þand i 6¼ N;
1 if i ¼ 0 modð3Þ and i 6¼ N:

8
>><

>>:

a mod is modular arithmetic operator. i ¼ jðdÞ means i ¼ nd þ j, where n is an integer
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8 Conclusions

This chapter has summarized many extensions of KM/EKM algorithms that are
used in the centroid computations of interval type-2 fuzzy sets. Most important is
the fact that the KM algorithm iteration is a special form of root finding solved by
using a Newton-Raphson formula. Different iteration formulas are given that
accelerate the convergence speed. Different numerical integration formulas can be
used to improve the accuracy of KM algorithms by means of so-called weighted
KM algorithms.
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Two Differences Between Interval Type-2
and Type-1 Fuzzy Logic Controllers:
Adaptiveness and Novelty

Dongrui Wu

Abstract Interval type-2 fuzzy logic controllers (IT2 FLCs) have been attracting
great research interests recently. Many reported results have shown that IT2 FLCs
are better able to handle uncertainties than their type-1 (T1) counterparts.
A challenging question is: What are the fundamental differences between IT2 and
T1 FLCs? Once the fundamental differences are clear, we can better understand
the advantages of IT2 FLCs and hence better make use of them. This chapter
explains two fundamental differences between IT2 and T1 FLCs: (1) Adaptiveness,
meaning that the embedded T1 fuzzy sets used to compute the bounds of the type-
reduced interval change as input changes; and, (2) Novelty, meaning that the upper
and lower membership functions of the same IT2 fuzzy set may be used simul-
taneously in computing each bound of the type-reduced interval. T1 FLCs do not
have these properties; thus, a T1 FLC cannot implement the complex control
surface of an IT2 FLC given the same rulebase.

1 Introduction

Interval type-2 fuzzy logic controllers (IT2 FLCs) have been attracting great research
interests recently. Many reported results have shown that IT2 FLCs are better able
to handle uncertainties than their type-1 (T1) counterparts [1, 5, 10, 22, 23].
A challenging question is: What are the fundamental differencesbetween IT2 and
T1 FLCs? Once the fundamental differences are clear, we can better understand
the advantages of IT2 FLCs and hence better make use of them. In the literature,
there has been considerable effort on answering this challenging and fundamental
question. Some important arguments are [17]:
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1. An IT2 fuzzy set (FS) can better model intra-personal and inter-personal
uncertainties,1 which are intrinsic to natural language, because the membership
grade of an IT2 FS is an interval instead of a crisp number in a T1 FS. Mendel
[11] also showed that IT2 FS is a scientifically correct model for modeling
linguistic uncertainties, whereas T1 FS is not.

2. Using IT2 FSs to represent the FLC inputs and outputs will result in the
reduction of the rulebase when compared to using T1 FSs [5, 10], as the ability
of the footprint of uncertainty (FOU) to represent more uncertainties enables
one to cover the input/output domains with fewer FSs. This makes it easier to
construct the rulebase using expert knowledge and also increases robustness
[20, 22, 23].

3. An IT2 FLC can give a smoother control surfacethan its T1 counterpart,
especially in the region around the steady state (i.e., when both the error and
the change of error approach 0) [6, 20, 22, 23]. Wu and Tan [24] showed that
when the baseline T1 FLC implements a linear PI control law and the IT2 FSs
of an IT2 FLC are obtained from symmetrical perturbations of the T1 FSs, the
resulting IT2 FLC implements a variable gain PI controller around the steady
state. These gains are smaller than the PI gains of the baseline T1 FLC, which
result in a smoother control surface around the steady state. The PI gains of the
IT2 FLC also change with the inputs, which cannot be achieved by the baseline
T1 FLC.

4. IT2 FLCs are more adaptive and they can realize more complex input–output
relationships which cannot be achieved by T1 FLCs. Karnik and Mendel [8]
pointed out that an IT2 fuzzy logic system can be thought of as a collection of
many different embedded T1 fuzzy logic systems. Wu and Tan [21] proposed a
systematic method to identify the equivalent generalized T1 FSs that can be
used to replace the FOU. They showed that the equivalent generalized T1 FSs
are significantly different from traditional T1 FSs, and there are different
equivalent generalized T1 FSs for different inputs. Du and Ying [3], and Nie
and Tan [14], also showed that a symmetrical IT2 fuzzy-PI (or the corre-
sponding PD) controller, obtained from a baseline T1 PI FLC, partitions the
input domain into many small regions, and in each region it is equivalent to a
nonlinear PI controller with variable gains. The control law of the IT2 FLC in
each small region is much more complex than that of the baseline T1 FLC, and

1 According to Mendel [11], intra-personal uncertainty describes ‘‘the uncertainty a person has
about the word.’’ It is also explicitly pointed out by psychologists Wallsten and Budescu [15] as
‘‘except in very special cases, all representations are vague to some degree in the minds of the
originators and in the minds of the receivers,’’ and they suggest to model it by a T1 FS.
According to Mendel [11], inter-personal uncertainty describes ‘‘the uncertainty that a group of
people have about the word,’’ i.e., ‘‘words mean different things to different people.’’ It is also
explicitly pointed out by psychologists Wallsten and Budescu [15] as ‘‘different individuals use
diverse expressions to describe identical situations and understand the same phrases differently
when hearing or reading them.’’
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hence it can realize more complex input–output relationship that cannot be
achieved by a T1 FLC using the same rulebase.

5. IT2 FLCs have a noveltythat does not exist in traditional T1 FLCs. Wu [16, 17]
showed that in an IT2 FLC different membership grades from the same IT2 FS
can be used in different rules, whereas for traditional T1 FLC the same
membership grade from the same T1 FS is always used in different rules. This
again implies that an IT2 FLC is more complex than a T1 FLC and it cannot be
implemented by a T1 FLC using the same rulebase.

This chapter explains why adaptiveness and novelty are two fundamental differ-
ences between IT2 and T1 FLCs. Methods for visualizing the effects of these two
differences can be found in [17].

2 Interval Type-2 Fuzzy Sets and Controllers

This section introduces background materials on IT2 FSs and FLCs, and shows
two numerical examples on IT2 FLCs.

2.1 Interval Type-2 Fuzzy Sets (IT2 FSs)

T1 FS theory was first introduced by Zadeh [25] in 1965 and has been successfully
applied in many areas.

Definition 1 A T1 FS X is comprised of a domain DX of real numbers (also called
the universe of discourse of X) together with a membership function (MF)
l

X
: DX ! ½0; 1�, i.e.,

X ¼
Z

DX

l
X
ðxÞ=x: ð1Þ

Here
R

denotes the collection of all points x 2 DX with associated membership
grade l

X
ðxÞ. h

Despite having a name which carries the connotation of uncertainty, research
has shown that there are limitations in the ability of T1 FSs to model and minimize
the effect of uncertainties [4, 5, 10, 22]. This is because a T1 FS is certain in the
sense that its membership grades are crisp values. Recently, type-2 FSs [26],
characterized by MFs that are themselves fuzzy, have been attracting great
interests. IT2 FSs [10], a special case of type-2 FSs, are currently the most widely
used for their reduced computational cost.

Two Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers 35



Definition 2 [10, 12] An IT2 eX is characterized by its MF leX ðx; uÞ, i.e.,

~X ¼
Z

x2D~X

Z

u2Jx�½0;1�

l~Xðx; uÞ=ðx; uÞ¼
Z

x2D~X

Z

u2Jx�½0;1�

1=ðx; uÞ

¼
Z

x2D~X

Z

u2Jx�½0;1�

1=u

2

64

3

75

,

x

ð2Þ

where x, called the primary variable, has domain D~X ; u 2 ½0; 1�, called the
secondary variable, has domain Jx � ½0; 1� at each x 2 D~X ; Jx is also called the
support of the secondary MF; and the amplitude of l~Xðx; uÞ, called a secondary

grade of ~X, equals 1 for 8x 2 D~X and 8u 2 Jx � ½0; 1�. h

An example of an IT2 FS, eX , is shown in Fig. 1. Observe that unlike a T1 FS,
whose membership grade for each x is a number, the membership of an IT2 FS is
an interval. Observe also that an IT2 FS is bounded from above and below by two
T1 FSs, X and X, which are called upper membership function (UMF) and lower
membership function (LMF), respectively. The area between X and X is the
footprint of uncertainty (FOU). An embedded T1 FS is any T1 FS within the FOU.
X and X are two such sets.

2.2 Interval Type-2 Fuzzy Logic Controllers (IT2 FLCs)

Figure 2 shows the schematic diagram of an IT2 FLC. It is similar to its T1
counterpart, the major difference being that at least one of the FSs in the rulebase
is an IT2 FS. Hence, the outputs of the inference engine are IT2 FSs, and a type-
reducer [8, 10] is needed to convert them into a T1 FS before defuzzification can
be carried out.

In practice the computations in an IT2 FLC can be significantly simplified.
Consider the rulebase of an IT2 FLC consisting of N rules assuming the following
form:

eR
n

: IF x1 is eX
n
1 and � � � and xI is eXn

I ; THEN y is Yn: n ¼ 1; 2; . . .;N

Fig. 1 An IT2 FS. X (the
LMF) and X (the UMF) are
two embedded T1 FSs
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where eXn
i ði ¼ 1; . . .; IÞ are IT2 FSs, and Yn ¼ ½yn; yn� is an interval, which can be

understood as the centroid [7, 10] of a consequent IT2 FS,2 or the simplest TSK
model. In many applications [20, 22, 23] we use yn ¼ yn, i.e., each rule consequent
is represented by a crisp number.

For an input vector x0 ¼ ðx01; x02; . . .; x0IÞ, typical computations in an IT2 FLC
involve the following steps:

1. Compute the membership interval of x0i on each Xn
i , ½lXn

i
ðx0iÞ; lX

n
i
ðx0iÞ�,

i ¼ 1; 2; . . .; I, n ¼ 1; 2; . . .;N.
2. Compute the firing interval of the nth rule, Fnðx0Þ:

Fnðx0Þ ¼ ½lXn
1
ðx01Þ � � � � � lXn

I
ðx0IÞ; lX

n
1
ðx01Þ � � � � � lX

n
I
ðx0IÞ� � ½f n; f

n� ð3Þ

Note that the minimum t-norm may also be used in (3). However, this chapter
focuses only on the product t-norm.

3. Perform type-reduction to combine Fnðx0Þ and the corresponding rule conse-
quents. There are many such methods [10]. The most commonly used one is the
center-of-sets type-reducer [10], derived from the Extension Principle [25]:

Ycosðx0Þ ¼
[

f n2Fnðx0 Þ
yn2Yn

PN
n¼1 f nyn

PN
n¼1 f n

¼ ½yl; yr� ð4Þ

It has been shown that [10, 13, 18]:

yl ¼ min
k2½1;N�1�

Pk
n¼1 f

n
yn þ

PN
n¼kþ1 f nyn

Pk
n¼1 f

n þ
PN

n¼kþ1 f n
�
PL

n¼1 f
n
yn þ

PN
n¼Lþ1 f nyn

PL
n¼1 f

n þ
PN

n¼Lþ1 f n
ð5Þ

yr ¼ max
k2½1;N�1�

Pk
n¼1 f nyn þ

PN
n¼kþ1 f

n
yn

Pk
n¼1 f n þ

PN
n¼kþ1 f

n �
PR

n¼1 f nyn þ
PN

n¼Rþ1 f
n
yn

PR
n¼1 f n þ

PN
n¼Rþ1 f

n ð6Þ

where the switch points L and R are determined by

yL� yl� yLþ1 ð7Þ

Fig. 2 The schematic
diagram of an IT2 FLC

2 The rule consequents can be IT2 FSs; however, when the popular center-of-sets type-reduction
method [10] is used, these consequent IT2 FSs are replaced by their centroids in the computation;
so, it is more convenient to represent the rule consequents as intervals directly.
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yR� yr � yRþ1 ð8Þ

and fyngn¼1;...;N and fyngn¼1;...;N have been sorted in ascending order, respec-
tively. yl and yr can be computed by the KM algorithms [8, 10] or their many
variants [18, 19]. The main idea of the KM algorithms is to find the switch
points for yl and yr. Take yl as an example. yl is the minimum of Ycosðx0Þ. Since
yn increases from the left to the right along the horizontal axis of Fig. 3a, we
should choose a large weight (upper bound of the firing interval) for yn on the
left and a small weight (lower bound of the firing interval) for yn on the right.
The KM algorithm for yl finds the switch point L. For n� L, the upper bounds
of the firing intervals are used to calculate yl; for n [ L, the lower bounds are
used. This ensures yl is the minimum.

4. Compute the defuzzified output as:

y ¼ yl þ yr

2
: ð9Þ

3 Examples of IT2 FLC

A pair of T1 and IT2 PI FLCs are used in this section to illustrate the differences
between them.

3.1 The T1 and IT2 PI FLCs

The MFs of the T1 PI FLC are shown in Fig. 4 as the bold dashed lines, where the
standard deviation of all Gaussian MFs is 0.6. Its four rules are:

(a) (b)

Fig. 3 Illustration of the switch points in computing yl and yr . (a) Computing yl switch from the
upper bounds of the firing intervals to the lower bounds. (b) Computing yr switch from the lower
bounds of the firing intervals to the upper bounds
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R1 : IF _e is X _e
1 and e is Xe

1; THEN _u is y1.

R2 : IF _e is X _e
1 and e is Xe

2; THEN _u is y2.

R3 : IF _e is X _e
2 and e is Xe

1; THEN _u is y3.

R4 : IF _e is X _e
2 and e is Xe

2; THEN _u is y4.

where _u is the change of the control signal, e is the feedback error, and _e is the
change of error. y1 � y4 are given in Table 1. For simplicity the rule consequents
are crisp numbers instead of intervals. However, they can be arbitrary numbers or
intervals and do not affect the conclusions of this chapter.
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Fig. 4 Firing levels of the T1 FLC, and firing intervals of the IT2 FLC, when
x0 ¼ ð _e0; e0Þ ¼ ð�0:3;�0:6Þ
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An IT2 fuzzy PI controller may be constructed by blurring the T1 FSs of the T1
FLC to IT2 FSs.3 In this chapter, we blur the standard deviation of the Gaussian
MFs from 0.6 to an interval ½0:5; 0:7�, as shown in Fig. 4. The rulebase of the IT2
FLC is

eR1 : IF _e is eX _e
1 and e is eXe

1, THEN _u is y1.

eR2 : IF _e is eX _e
1 and e is eXe

2, THEN _u is y2.

eR3 : IF _e is eX _e
2 and e is eXe

1, THEN _u is y3.

eR4 : IF _e is eX _e
2 and e is eXe

2, THEN _u is y4.

Next, the mathematical operations in an IT2 FLC, introduced in Sect. 2.2, are
illustrated using two numerical examples, which will be revisited in Sect. 4.

3.2 Example 1

Consider an input vector x0 ¼ ð _e0; e0Þ ¼ ð�0:3;�0:6Þ, as shown in Fig. 4. The
firing levels of the four T1 FSs are:

lX _e
1
ð _e0Þ ¼ 0:5063; lX _e

2
ð _e0Þ ¼ 0:0956; lXe

1
ðe0Þ ¼ 0:8007; lXe

2
ðe0Þ ¼ 0:0286

The firing levels of their four rules are shown in Table 2. The output of the T1
FLC is

_u ¼ f 1y1 þ f 2y2 þ f 3y3 þ f 4y4

f 1 þ f 2 þ f 3 þ f 4
¼ �0:3886:

For the IT2 FLC, the firing intervals of the four IT2 FSs are:

½lX _e
1
ð _e0Þ; l

X
_e
1
ð _e0Þ� ¼ ½0:3753; 0:6065�; ½lX _e

2
ð _e0Þ; l

X
_e
2
ð _e0Þ� ¼ ½0:0340; 0:1783�

½lXe
1
ðe0Þ; lX

e
1
ðe0Þ� ¼ ½0:7261; 0:8494�; ½lXe

2
ðe0Þ; lX

e
2
ðe0Þ� ¼ ½0:0060; 0:0734�

The firing intervals of the four rules are shown in Table 3. From the KM
algorithms, we find that L ¼ 1 and R ¼ 2. So,

Table 1 The rule
consequents of the T1 and
IT2 FLCs

Xe
1 (eXe

1) Xe
2 (eXe

2)

X _e
1 (eX _e

1) y1 ¼ �1 y2 ¼ �0:5

X _e
2 (eX _e

2) y3 ¼ 0:5 y4 ¼ 1

3 An IT2 FLC can also be constructed from scratch without using a baseline T1 FLC [22, 23].
This chapter uses a baseline T1 FLC for comparison purposes.
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yl ¼
f

1
y1 þ f 2y2 þ f 3y3 þ f 4y4

f
1 þ f 2 þ f 3 þ f 4

¼ 0:5152� ð�1Þ þ 0:0022� ð�0:5Þ þ 0:0247� 0:5þ 0:0002� 1
0:5152þ 0:0022þ 0:0247þ 0:0002

¼ �0:9288

yr ¼
f 1y1 þ f 2y2 þ f

3
y3 þ f

4
y4

f 1 þ f 2 þ f
3 þ f

4

¼ 0:2725� ð�1Þ þ 0:0022� ð�0:5Þ þ 0:1514� 0:5þ 0:0131� 1
0:2725þ 0:0022þ 0:1514þ 0:0131

¼ �0:4209

ð10Þ

Finally, the crisp output of the IT2 FLC is:

_u ¼ yl þ yr

2
¼ �0:9288� 0:4209

2
¼ �0:6748:

Observe from the above example that for the same input, IT2 and T1 FLCs give
quite different outputs.

Table 3 Firing intervals of the four rules of the IT2 FLC in Example 1

Rule no.: Firing interval ! Rule consequent

eR1 : ½f 1; f
1� ¼ ½lX _e

1
ð _e0Þ � lXe

1
ðe0Þ;l

X
_e
1
ð _e0Þ � lX

e
1
ðe0Þ� ! y1 ¼ �1

¼ ½0:3753� 0:7261; 0:6065� 0:8494� ¼ ½0:2725; 0:5152�
eR2 : ½f 2; f

2� ¼ ½lX _e
1
ð _e0Þ � lXe

2
ðe0Þ;l

X
_e
1
ð _e0Þ � lX

e
2
ðe0Þ� ! y2 ¼ �0:5

¼ ½0:3753� 0:0060; 0:6065� 0:0734� ¼ ½0:0022; 0:0445�
eR3 : ½f 3; f

3� ¼ ½lX _e
2
ð _e0Þ � lXe

1
ðe0Þ;l

X
_e
2
ð _e0Þ � lX

e
1
ðe0Þ� ! y3 ¼ 0:5

¼ ½0:0340� 0:7261; 0:1783� 0:8494� ¼ ½0:0247; 0:1514�
eR4 : ½f 4; f

4� ¼ ½lX _e
2
ð _e0Þ � lXe

2
ðe0Þ;l

X
_e
2
ð _e0Þ � lX

e
2
ðe0Þ� ! y4 ¼ 1

¼ ½0:0340� 0:0060; 0:1783� 0:0734� ¼ ½0:0002; 0:0131�

Table 2 Firing levels of the four rules of the T1 FLC in Example 1

Rule no.: Firing level ! Rule consequent

R1 : f 1 ¼ lX _e
1
ð _e0Þ � lXe

1
ðe0Þ ¼ 0:5063� 0:8007 ¼ 0:4054 ! y1 ¼ �1

R2 : f 2 ¼ lX _e
1
ð _e0Þ � lXe

2
ðe0Þ ¼ 0:5063� 0:0286 ¼ 0:0484 ! y2 ¼ �0:5

R3 : f 3 ¼ lX _e
2
ð _e0Þ � lXe

1
ðe0Þ ¼ 0:0956� 0:8007 ¼ 0:0766 ! y3 ¼ 0:5

R4 : f 4 ¼ lX _e
2
ð _e0Þ � lXe

2
ðe0Þ ¼ 0:0956� 0:0286 ¼ 0:0027 ! y4 ¼ 1
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3.3 Example 2

Consider another input vector x0 ¼ ð _e0; e0Þ ¼ ð�0:3; 0:6Þ, as shown in Fig. 5. The
firing levels of the four T1 FSs are:

lX _e
1
ð _e0Þ ¼ 0:5063; lX _e

2
ð _e0Þ ¼ 0:0956; lXe

1
ðe0Þ ¼ 0:0286; lXe

2
ðe0Þ ¼ 0:8007

The firing levels of its four rules are shown in Table 4. The output of the T1 FLC is

_u ¼ f 1y1 þ f 2y2 þ f 3y3 þ f 4y4

f 1 þ f 2 þ f 3 þ f 4
¼ 0:0393:
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Fig. 5 Firing levels of the T1 FLC, and firing intervals of the IT2 FLC, when
x0 ¼ ð _e0; e0Þ ¼ ð�0:3; 0:6Þ
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For the IT2 FLC, the firing intervals of the four IT2 FSs are:

½lX _e
1
ð _e0Þ; l

X
_e
1
ð _e0Þ� ¼ ½0:3753; 0:6065�; ½lX _e

2
ð _e0Þ; l

X
_e
2
ð _e0Þ� ¼ ½0:0340; 0:1783�

½lXe
1
ðe0Þ; lX

e
1
ðe0Þ� ¼ ½0:0060; 0:0734�; ½lXe

2
ðe0Þ; lX

e
2
ðe0Þ� ¼ ½0:7261; 0:8494�

The firing intervals of the four rules are show in Table 5. From the KM algorithms,
we find that L ¼ 2 and R ¼ 2. So,

yl ¼
f

1
y1 þ f

2
y2 þ f 3y3 þ f 4y4

f
1 þ f

2 þ f 3 þ f 4

¼ 0:0445� ð�1Þ þ 0:5152� ð�0:5Þ þ 0:0002� 0:5þ 0:0247� 1
0:0445þ 0:5152þ 0:0002þ 0:0247

¼ �0:4743

yr ¼
f 1y1 þ f 2y2 þ f

3
y3 þ f

4
y4

f 1 þ f 2 þ f
3 þ f

4

¼ 0:0022� ð�1Þ þ 0:2725� ð�0:5Þ þ 0:0131� 0:5þ 0:1514� 1
0:0022þ 0:2725þ 0:0131þ 0:1514

¼ 0:0443

ð11Þ

Table 4 Firing levels of the four rules of the T1 FLC in Example 2

Rule no.: Firing level ! Rule consequent

R1 : f 1 ¼ lX _e
1
ð _e0Þ � lXe

1
ðe0Þ ¼ 0:5063� 0:0286 ¼ 0:0145 ! y1 ¼ �1

R2 : f 2 ¼ lX _e
1
ð _e0Þ � lXe

2
ðe0Þ ¼ 0:5063� 0:8007 ¼ 0:0484 ! y2 ¼ �0:5

R3 : f 3 ¼ lX _e
2
ð _e0Þ � lXe

1
ðe0Þ ¼ 0:0956� 0:0286 ¼ 0:0027 ! y3 ¼ 0:5

R4 : f 4 ¼ lX _e
2
ð _e0Þ � lXe

2
ðe0Þ ¼ 0:0956� 0:8007 ¼ 0:0766 ! y4 ¼ 1

Table 5 Firing intervals of the four rules of the IT2 FLC in Example 2

Rule no.: Firing interval ! Rule consequent

eR1 : ½f 1; f
1� ¼ ½lX _e

1
ð _e0Þ � lXe

1
ðe0Þ;l

X
_e
1
ð _e0Þ � lX

e
1
ðe0Þ� ! y1 ¼ �1

¼ ½0:3753� 0:0060; 0:6065� 0:0734� ¼ ½0:0022; 0:0445�
eR2 : ½f 2; f

2� ¼ ½lX _e
1
ð _e0Þ � lXe

2
ðe0Þ;l

X
_e
1
ð _e0Þ � lX

e
2
ðe0Þ� ! y2 ¼ �0:5

¼ ½0:3753� 0:7261; 0:6065� 0:8494� ¼ ½0:2725; 0:5152�
eR3 : ½f 3; f

3� ¼ ½lX _e
2
ð _e0Þ � lXe

1
ðe0Þ;l

X
_e
2
ð _e0Þ � lX

e
1
ðe0Þ� ! y3 ¼ 0:5

¼ ½0:0340� 0:0060; 0:1783� 0:0734� ¼ ½0:0002; 0:0131�
eR4 : ½f 4; f

4� ¼ ½lX _e
2
ð _e0Þ � lXe

2
ðe0Þ;l

X
_e
2
ð _e0Þ � lX

e
2
ðe0Þ� ! y4 ¼ 1

¼ ½0:0340� 0:7261; 0:1783� 0:8494� ¼ ½0:0247; 0:1514�
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Finally, the crisp output of the IT2 FLC is:

_u ¼ yl þ yr

2
¼ �0:4743þ 0:0443

2
¼ �0:2150:

Observe again from the above example that for the same input, IT2 and T1 FLCs
give quite different outputs. The next section explains the fundamental reasons
behind this difference.

4 Fundamental Differences Between IT2 and T1 FLCs

Observe from (9), and also Examples 1 and 2, that the output of an IT2 FLC is the
average of two ‘‘T1 FLCs’’. However, these two ‘‘T1 FLCs’’ are fundamentally
different from traditional T1 FLCs, for the following reasons [16, 17]:

1. Adaptiveness, meaning that the embedded T1 FSs used to compute the bounds
of the type-reduced interval change as input changes. Take yl in (10) and (11) as

an example. The firing levels of the four rules in (10) are f
1
; f 2; f 3; and f 4,

respectively, which are computed from different lower and upper MFs, as
shown in the first part of Table 6 and Fig. 6a. The firing levels of the four rules
in (11) are shown in the second part of Table 6 and Fig. 6b. Comparing the two
parts of Table 6, and the two sub-figures in Fig. 6, we can observe that when
the input ð _e0; e0Þ changes from ð�0:3;�0:6Þ to ð�0:3; 0:6Þ, different embedded

Table 6 The embedded T1 FSs from which the four firing levels in (10) and (11) are obtained.

eX _e
1

eX _e
2

eXe
1

eXe
2

UMF LMF UMF LMF UMF LMF UMF LMF

Equation (10)
ð _e0; e0Þ ¼ ð�0:3;�0:6Þ

f
1
p p

f 2
p p

f 3
p p

f 4
p p

Equation (11)
ð _e0; e0Þ ¼ ð�0:3; 0:6Þ

f
1 p p

f
2
p p

f 3
p p

f 4
p p

Observe that f 2 is used when ð _e0; e0Þ ¼ ð�0:3;�0:6Þ and f
2

is used when ð _e0; e0Þ ¼ ð�0:3; 0:6Þ; as

a result, different embedded T1 FSs are used in Rule eR2 when the input changes. Observe also that
when ð _e0; e0Þ ¼ ð�0:3;�0:6Þ both the UMFs and LMFs of eX _e

1 and eXe
1 are used in computing yl, and

when ð _e0; e0Þ ¼ ð�0:3; 0:6Þ both the UMFs and LMFs of eXe
1 and eXe

2 are used in computing yl
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T1 FSs of eX _e
1 and eXe

2 are used in computing the firing levels for Rule eR2 and
hence yl. This adaptiveness is impossible for a T1 FLC since it does not have
such embedded T1 FSs.

2. Novelty, meaning that the UMF and LMF of the same IT2 FS may be used
simultaneously in computing each bound of the type-reduced interval. Observe
from the first part of Table 6, and also Fig. 6a, that both the upper and lower

MFs of eX _e
1 are used in computing yl, and they are used in different rules: The

UMF of eX _e
1 is used in computing f

1
, the firing level of Rule eR1, whereas

the LMF of eX _e
1 is used in computing f 2, the firing level of Rule eR2. Similarly,

the upper and lower MFs of eXe
1 are used simultaneously in different rules for

computing yl. Observe also from the second part of Table 6 and Fig. 6b that the

upper and lower MFs of eXe
1 and eXe

2 are used simultaneously in different rules
for computing yl. This novelty is again impossible for a T1 FLC because it does
not have embedded T1 FSs and the same MFs are always used in computing the
firing levels of all rules.

(a)

(b)

Fig. 6 The embedded T1 FSs used in (a) Eq. (10) for computing yl, where ð _e0; e0Þ ¼ ð�0:3;�0:6Þ
and the LMFs of eX _e

1 and eXe
2 are used in computing the firing level f

2
of Rule eR2; and, (b) Eq. (11)

for computing yl, where ð _e0; e0Þ ¼ ð�0:3; 0:6Þ and the UMFs of eX _e
1 and eXe

2 are used in computing

the firing level f 2 of Rule eR2. Observe that in (a) both the UMFs and LMFs of eX _e
1 and eXe

1 are used

in computing yl, and in (b) both the UMFs and LMFs of eXe
1 and eXe

2 are used in computing yl
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We consider adaptiveness and novelty as two fundamental differences between
IT2 and T1 FLCs. Though they are illustrated by specific numerical examples, they
are fundamental to an arbitrary IT2 FLC. Furthermore, [17] presents several
methods for visualizing and analyzing the effects of these two fundamental dif-
ferences, including the control surface, the P-map, the equivalent generalized T1
fuzzy sets, and the equivalent PI gains. It also examines five alternative type-
reducers for IT2 FLCs and explain why they do not capture the fundamentals of
IT2 FLCs.

Theorem 1 [17] yl in (5) cannot be implemented by a T1 FLC using the same
rulebase.

Proof In this proof we make use of the following two facts:

• Fact 1: The rule firing levels used in the KM algorithms are the bounds of the
firing intervals. For an upper bound, all involved embedded T1 FSs must be
UMFs, and for a lower bound, all involved embedded T1 FSs must be LMFs.
There is no mixture of UMFs and LMFs in computing the firing level of any
rule.

• Fact 2: f
1

and f N are always used for computing yl in (5), though we are not sure
about whether the upper or lower firing levels should be used for the rest of the

rules. For f
1
, all involved embedded T1 FSs must be UMFs. For f N , all involved

embedded T1 FSs must be LMFs.

We consider two cases separately:

1. Rules eR1 and eRN share at least one IT2 FS eXi. In this case, according to Fact 2,

for Rule eR1 Xi must be used, whereas for Rule eRN , Xi must be used. This
novelty cannot be implemented by a T1 FLC using the same rulebase.

2. Rules eR1 and eRN do not have any IT2 FS in common, (e.g., for yl in (11), eR1

involves eX _e
1 and eXe

1, whereas eR4 involves eX _e
2 and eXe

2). This case is more
complicated than the previous one. We prove it by contradiction. Assume yl in
(5) can be implemented by a T1 FLC, where the same T1 MFs are used in

computing all firing levels, e.g., if the UMF of eX _e
1 is used in computing the

firing level of Rule eR1, it must also be used in computing the firing levels of all

other rules involving eX _e
1. In the second case, it is always possible to find a Rule

eRk such that Rules eR1 and eRk share at least one common IT2 FS eXi, and Rules
eRk and eRN share at least one common IT2 FS eXj (e.g., for yl in (11), Rules eR1

and eR2 share eX _e
1, and Rules eR2 and eR4 share eXe

2). According to Fact 2, Xi must

be used in Rule eR1 for computing f
1
. If yl can be implemented by a T1 FLC

using the same rulebase, then Xi must also be used in Rule eRk. According to

Fact 1, Xj must also be used for Rule eRk. For a T1 FLC, this means Xj must also

be used in Rule eRN , which is a contradiction with Fact 2. So, again yl in (5)
cannot be implemented by a T1 FLC using the same rulebase. h
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Theorem 2 [17] yr in (6) cannot be implemented by a T1 FLC using the same
rulebase.

The proof is very similar to that for Theorem 1, so it is omitted.
Based on Theorems 1 and 2, we can easily reach the following conclusion:

Theorem 3 [17] An IT2 FLC using the KM type-reducer cannot be implemented
by a T1 FLC using the same rulebase.

Theorem 3 is very helpful in understanding why IT2 FLCs may outperform T1
FLCs. It suggests that an IT2 FLC can implement a more complex control surface
than a T1 FLC: when there is no FOU, an IT2 FLC collapses to a T1 FLC; with
FOU, an IT2 FLC can implement a control surface that cannot be obtained from a
T1 FLC using the same rulebase. Note that Theorem 3 does not conflict with the
fact that T1 fuzzy logic systems are universal approximators [2, 9]: Being a
universal approximator requires a T1 fuzzy logic system to have an arbitrarily
large number of MFs, whereas in this chapter we only consider IT2 and T1 FLCs
with the same rulebase and a fixed (small) number of MFs.

5 Conclusions

IT2 FLCs have been widely used and demonstrated better ability to handle
uncertainties than their T1 counterparts. A challenging question is what the fun-
damental differences are between IT2 and T1 FLCs. Once the fundamental dif-
ferences are clear, we can better understand the advantages of IT2 FLCs and hence
better make use of them. In this chapter, we have explained two fundamental
differences between IT2 and T1 FLCs: 1) Adaptiveness, meaning that the
embedded T1 FSs used to compute the bounds of the type-reduced interval change
as input changes; and, 2) Novelty, meaning that the UMF and LMF of the same IT2
FS may be used simultaneously in computing each bound of the type-reduced
interval. As a result, an IT2 FLC can implement a complex control surface that
cannot be achieved by a T1 FLC using the same rulebase.
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Interval Type-2 Fuzzy Markov Chains

Juan Carlos Figueroa-García

Abstract Uncertainties in fuzzy Markov chains can be treated in different ways.
The use of interval type-2 fuzzy sets (IT2FS) allows describing the distributional
behavior of an uncertain discrete-time Markov process through infinite type-1
fuzzy sets embedded in its Footprint of Uncertainty. In this way, a finite state
fuzzy Markov chain process is defined in an interval type-2 fuzzy environment. To
do so, its limiting properties and its type-reduced behavior are defined and applied
to two explanatory examples.

1 Introduction and Motivation

Markov chains are processes well studied through probabilistic measures (For
additional information see Grimmet and Strizaker [12], Ross [30], Gordon [11],
and Stewart [34]). A first approach to type-1 fuzzy Markov chains (T1FM) was
given by Avrachenkov and Sanchez [2, 3] where they used the max-min operator
for finding its stationary behavior.

The use of interval-valued probabilities has been suggested by Araiza et al. [1],
Campos et al. [5] and Skulj [33]. In these approaches, the transition probabilities of
a Markov chain are defined by a bounded interval. Buckley and Eslami [4], Kurano
[17, 18], and Symeonakia [35] applied fuzzy theory to interval-valued probabili-
ties, finding complementary results.

Some approaches to IT2FS were provided by Zeng and Liu [39]. In this study,
they used a hybrid of Markov random fields (MRFs) and type-2 fuzzy sets (T2FS)
to solve a character recognition problem characterized by ETL-9B and KAIST
databases. Zeng and Liu [38] defined an IT2 fuzzy hidden Markov model where
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the secondary membership function of the IT2FS fxðuÞ was defined as a probability
distribution. Figueroa [6] defined a pure interval type-2 fuzzy Markov process
(IT2FM), which is the starting point for defining some necessary conditions for
uncertain T1FS through an IT2FS, and also for defining its primary and its sec-
ondary membership functions, namely Jx and fxðuÞ=u ¼ 1=u.

The following chapter is organized as follows. First, some concepts about type-
1 fuzzy Markov chains (T1FM) are given. A brief discussion about uncertainty in
fuzzy sets is provided in order to give some definitions about IT2FM. Later, a
general procedure for computing the stationary distribution of a T1FM is presented
followed by a section where an algorithm to compute the IT2FM stationary dis-
tribution is presented and a type-reduction method is proposed. Finally, two
application examples are provided, and the concluding remarks of the chapter are
presented.

2 Basic Definitions of Fuzzy Markov Chains

As in classical Markov processes analysis, the definition of a fuzzy Markov chain
is based on a square relational matrix that represents the conditional possibility
that a discrete state at an instant t changes into any state at the next instant t þ 1.

Avrachenkov and Sanchez [3] defined some concepts of fuzzy Markov chains,
which are shown next:

Definition 2.1 Let S ¼ f1; 2; . . .; ng. A finite fuzzy set for a fuzzy distribution on
S is defined by a mapping x from S to ½0; 1� represented by a vector x ¼ fx1;
x2; . . .; xng, where 06 xi6 1, i 2 S.

In this way, xi is the membership degree1 that a state i has regarding a fuzzy set
S, i 2 S with cardinality m, CðSÞ ¼ m. In this approach, all operations and relations
are defined for fuzzy sets, so their properties and computations are preserved.

Now, a fuzzy relational matrix P is defined in a metric space S� S by a matrix
fpijgm

i;j¼1 where 06 pij6 1, i; j 2 S. The complete set of all fuzzy sets is denoted by
FðsÞ where CðSÞ ¼ m.

Definition 2.2 At each instant t; t ¼ 1; 2; . . .; n, the state of the system is
described by the fuzzy set2 xðtÞ 2FðSÞ. The transition law of a fuzzy Markov
chain is given by the fuzzy relational matrix P at an instant t; T ¼ 1; 2; . . .; n,
as follows:

xðtþ1Þ
j ¼ max

i2S
fxðtÞj ^ pijg; j 2 S: ð1Þ

1 As a function of the ith state e.g. xðiÞ.
2 This matrix is also known as the Fuzzy Distribution of x.
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xðtþ1Þ ¼ xðtÞ � P ð2Þ

where i and j, i; j ¼ 1; 2; . . .;m are the initial and final states of the transition and
xð0Þ is its initial distribution.

In probabilistic Markov chains, it is possible to obtain the steady state of a
Marko-vian process based on convergence laws of random variables and/or matrix
powers. Now, the powers of a fuzzy transition matrix P can be obtained as follows:

pt
ij¼
4

max
k2S

pik ^ pt�1
kj

n o
ð3Þ

Note that p1
ij ¼ pij and p0

ij ¼ dij where dij is a Kronecker Delta. In matrix form:

Pt ¼4 P � Pt�1 ð4Þ

Specifically, the state xðtÞ at the instant t ¼ 1; 2; . . .; n can be computed as:

xðtÞj ¼ max
i2S

xð0Þj ^ pt
ij

n o
; j 2 S ð5Þ

Which can be shown in a matrix form:

xðtÞ ¼ xð0Þ � P t ð6Þ

In a fuzzy environment, it is also posible that P t never reach a steady state
(see Figueroa et al. [7]). On the other hand, Thomason [36] shows that the powers
of a fuzzy matrix exhibit a stable behavior if the operator used is the max-min.
Moreover, Chin-Tzong Pang [29] used these results to obtain the powers of a fuzzy
matrix using the max-archimedean operator. For further information about powers
of a fuzzy matrix, see Sánchez [31, 32]. In this way, the following theorem is
useful to find the stationary distribution of a fuzzy matrix by using a time con-
vergence criterion.

Theorem 2.1 (Thomason [36]) The powers of the fuzzy transition matrix fpijgm
i;j¼1

either converge to idempotent fps
ijg

m
i;j¼1 with elements pj where s6n, or oscillate

with a finite period tstarting from some finite power.

Consequently, the Stationary Distribution of a fuzzy markov chain is defined as
follows:

Definition 2.3 (Stationary Distribution) Let the powers of the fuzzy transition
matrix P converge in s steps to a nonperiodic solution, then the associated fuzzy
Markov chain is called aperiodic fuzzy Markov chain and P� ¼ Ps is its stationary
fuzzy transition matrix.

Figueroa et al. [7] found that the use of the max-min operator could lead to a
periodical behavior, so they defined two useful properties of a T1FM, Definitions
2.4 and 2.5 below:
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Definition 2.4 (Strong Ergodicity for FM) A fuzzy Markov chain is called Strong
Ergodic if it is aperiodic and its stationary transition matrix has identical rows.

Definition 2.5 (Weak Ergodicity for FM) A fuzzy Markov chain is called Weakly
Ergodic if it is aperiodic and its stationary transition matrix is stable with no
identical rows.

These definitions imply that any fuzzy markov chain with a stationary distri-
bution given by both an idempotent and aperiodic matrix Ps with no identical rows
is an Ergodic Markov chain on a weak sense. In other words:

Proposition 2.2 Denote Ps
i as the ith row of the stationary distribution of P

obtained from its s powers. If P is strong ergodic then:

Ps
i1
¼ Ps

i2
for all i1 6¼ i2; i1; i2 2 m; ð7Þ

Now, P is Weak Ergodic iff:

Ps
i1
6¼ Ps

i2
for any i1 6¼ i2; i1; i2 2 m; ð8Þ

So any fuzzy markov chain fulfills only one of these two statements.

Now, if the stationary distribution of P is given by P� ¼ Ps where lim
n!s

Pn ¼ P�,

then P becomes an idempotent matrix as described in Theorem 2.1.

Remark 2.3 (Periodical FM) The Definition 2.2 refers to an ergodic FM that has a
steady state with the possibility of having nonidentical rows. Another case is a
periodical FM, where Ps has a stable but periodic behavior (see Theorem 2.1). This
case has been recently treated by Martin Gavalec [8–10] so his results are useful
for identifying the period of a fuzzy markov chain.

2.1 From Classical to Uncertain FM

Type-1 fuzzy sets are measures of imprecision based on the perception about a
variable through its linguistic label. Uncertain-based models use multiple per-
ceptions about the same linguistic variable, where uncertainty can be treated in two
ways: Linguistic and Random uncertainty. Mendel [24, 25] extends the concept of
linguistic uncertainty through type-2 fuzzy sets and its Footprint of Uncertainty. In
this way, an uncertain FM can be defined with uncertain type-1 fuzzy sets, in other
words, an uncertain FM can be defined with type-2 fuzzy sets.

An IT2FS approach involves uncertainty in the sense that it covers different
opinions of the experts around p ¼ lSi

ðxÞ by using a secondary grade, namely
fxðuÞ=u. This uncertainty is modeled by means of a three-dimensional membership
function with point value ðx; u; l~Si

ðx; uÞÞ where x 2 X and u 2 Jx. Note that Jx is
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the primary membership function of x defined for an interval boundary of mem-

bership values e.g. Jx ¼ l
Si
ðxÞ; lSi

ðxÞ
h i

.

This bounded interval Jx which encloses an infinite number of type-1 fuzzy sets,
represents a large number of possible choices that an expert can use for x,
moreover, Jx has embedded the perception of many experts about p and together
with their estimates. On the other hand, another source of uncertainty is given by
the numerous techniques and methods available to obtain p, which lead to the
following question: what is the correct method to define p? In this sense, an IT2
fuzzy sets approach can handle this kind of uncertainty.

3 Definitions for IT2FM

In the last section, a discussion about how to come from classical to interval type-2
fuzzy sets was provided, so we need an appropriate framework for using IT2FS in
Markov chains. To do so, all the theory used in this chapter is based on the results
of Mendel [14, 16, 19, 23, 26, 27], and Melgarejo [20, 22]. Now, some basic
definitions about interval type-2 fuzzy Markov chains are presented next.

Definition 3.1 (IT2 fuzzy conditional state) Let ~P be an Interval Type-2 fuzzy
relational matrix defined in CðSÞ � CðSÞ with elements f~pijgm

i;j¼1, composed by na

embedded values of pJx
ij in the closed interval p

ij
; pij

h i
characterized by a sec-

ondary membership function fxðuÞ=u ¼ 1=u, Jx � ½ 0; 1 � 8 x 2 S, j 2 S. Denote the
conditional state xt ¼ j j xt�1 ¼ i

� �
as xij, then we have:

~Si ¼
Xm

xij¼1

X

u2Jxij

1=u

2

4

3

5
,

xij 8 i 2 S ð9Þ

and consequently:

Jxij ¼
XMj

k¼1

1=ujk

" #,

xij; i; j 2 S ð10Þ

Note that each ~Si is composed by an infinite amount of fuzzy sets, na. The union
of all those na embedded fuzzy sets namely ðeðiÞÞ, is:

~Si ¼
Xna

l¼1

~Sl
eðiÞ ð11Þ

where ~Sl
eðiÞ is defined as follows
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~Sl
eðiÞ ¼

X

x2S

1=ul
jk

h i
,

xij; ujk 2 Jxij ½0; 1� ð12Þ

Now, an IT2FS called ~P can be composed by m individual IT2FS ~Si, obtaining the
following result:

~Si ¼ ðxij; lð~SiÞðxijÞÞ j xij ¼ i
n o

i; j 2 S ð13Þ

This leads us to define a compact form of an IT2FM, whose elements are con-
ditional statements according to the Markovian property, as we present as follows.

Definition 3.2 (IT2 fuzzy conditional matrix) Let ~Si be a row conditional state of
an IT2FS. A squared matrix ~P of m states is defined as follows:

~P ¼

lð~S1Þðx1jÞ
lð~S2Þðx2jÞ

..

.

lð~SmÞðxmjÞ

2

666664

3

777775
¼

~p11 ~p12 � � � ~p1m

~p21 ~p22 � � � ~p2m

..

. ..
. . .

. ..
.

~pm1 ~pm2 � � � ~pmm

2

66664

3

77775
ð14Þ

where ~P can be decomposed into the following two matrices:

~P ¼

p
11

p
12
� � � p

1m

p
21

p
22
� � � p

2m

..

. ..
. . .

. ..
.

p
m1

p
m2
� � � p

mm

2

666664

3

777775
;

p11 p12 � � � p1m

p21 p22 � � � p2m

..

. ..
. . .

. ..
.

pm1 pm2 � � � pmm

2

66664

3

77775

2

666664

3

777775
ð15Þ

Here ~pij is the IT2 membership degree that any xðtÞ ¼ j state reaches regarding
the fuzzy set S conditioned to an initial state i, i; j 2 S where CðSÞ ¼ m. Thus, the
~P IT2 fuzzy transition matrix can be defined by two matrices P and P:

~P ¼ P;P
� �

ð16Þ

The footprint of uncertainty namely FOU of an specific set Si is displayed in
Fig. 1. The continuous line shows the FOU where na sets ~Sl

eðiÞ are bounded by two

values: r which represents pij and M which represents p
ij
.

Now, some useful theorems about the distribution of ~P are:

Theorem 3.1 Mendel [23]. The Join tn
i¼1Fi of n IT2FS F1;F2; . . .;Fn having

domains ½l1; r1�; ½l2; r2�; . . .; ½ln; rn�, respectively, is an IT2FS with domain
ðl1 _ l2 _ . . . _ lnÞ; ðr1 _ r2 _ . . . _ rnÞ½ � where _ denotes maximum.
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Theorem 3.2 Mendel [23]. The Meet un
i¼1Fi of n IT2FS F1;F2; . . .;Fn having

domains ½l1; r1�; ½l2; r2�; . . .; ½ln; rn� , respectively, where li> 0 and ri> 0 , is an
IT2FS with domain ðl1Il2I. . .IlnÞ; ðr1Ir2I. . .IrnÞ½ � where I denotes either
minimum or product t-norm.

There exists an infinite amount of T1FM enclosed in the FOU of an IT2FM,
which is a natural condition of the process. Moreover, the powers of ~P namely ~Pt

are bounded by the interval Pt, P
t

and any T1FM namely �Pt embedded in its FOU

is enclosed in Pt;P
t

h i
, that is �Pt � Pt;P

t
h i

.

This allows us to define the transition law of an IT2FM as follows.

Theorem 3.3 (Transition law for an IT2FM) The transition law for an IT2FM is
given by fuzzy operations on its IT2 fuzzy matrix ~P at an instant t; T ¼ 1; 2; . . .; n ,
as follows:

~xðtþ1Þ
j ¼ t

i2S
~xðtÞj u ~pij

n o
; j 2 S ð17Þ

By using the max t-conorm as the union operator, and the min t-norm as the
intersection operator, we have

~xðtþ1Þ
j ¼ max

i2S
f~xðtÞj u ~pijg; j 2 S ð18Þ

~xðtþ1Þ ¼ ~xðtÞ � ~Pt ð19Þ

~pt
ij¼
4

max
k2S

~pik ^ ~pt�1
kj

n o
ð20Þ

where ~xð0Þ is the IT2 fuzzy initial distribution of fxtg.
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Fig. 1 Footprint of uncertainty of an IT2FM
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Remark 3.4 Usually ~xð0Þ is unknown, so a common approach is to use the fol-
lowing supposition:

~xð0Þ ¼ p
ij
¼ pij ¼ 1 for i ¼ j; and 0 for i 6¼ j

By extension of Definition 2.3, it is possible to define the following statements:

Proposition 3.5 The powers of an IT2FM transition matrix f~pijgm
i;j¼1 either

converge to an idempotent f~ps
ijg

m
i;j¼1 where s6n with elements ~pj , or oscillate with

a finite period t starting from some finite power.

Remark 3.6 Note that it is possible that only one of the primary transition
matrices oscillates with a finite period.

Therefore, it is suitable to define the Time Limiting Distribution of a fuzzy
matrix.

Definition 3.3 Let the powers of the fuzzy transition matrix ~P converge in s steps
to a nonperiodic solution, then such solution is called Aperiodic Type-2 Fuzzy
Markov Chain and it is divided into two matrices: P� ¼ Ps and P

� ¼ P
s

namely
its Limiting Type-2 Fuzzy Transition Matrix.

The transition law of an IT2FM can be divided in two steps: (a) computations
for the lower fuzzy transition matrix P and (b) computations for the upper fuzzy
transition matrix P, where there exist na embedded T1FS ~Si ¼

Pna
l¼1

~Sl
eðiÞ.

Remark 3.7 It is important to emphasize that an IT2FM is completely ergodic if
and only if both P and P are aperiodic and meet the condition given in Theorem
2.1.

4 Computing the T1 Fuzzy Limiting Distribution

Several algorithms and methods can be used to compute the limiting fuzzy
distribution of a T1FM process (see [2, 3, 31, 32]). A first method consists in
computing the max-min operations for a fuzzy matrix P, as follows:

Pn ¼ P � Pn�1 ¼ � � � ¼ P � P � � � � � P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n times

ð21Þ

This method converges to lim
n!s

Pn ¼ P�, turning P into an idempotent matrix.

Sánchez [2, 31, 32] has created three useful algorithms in order to reduce the
computing complexity for obtaining the limiting fuzzy distribution of P. His
results are based on the definition of an Eigen Fuzzy Set similar to the classical
concept of an Eigenvector and Eigenvalue. These two definitions are given below:
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Definition 4.1 Let P be a fuzzy relation in a given matrix format. Then x is called
an Eigen Fuzzy set of P, iff:

x � P ¼ x ð22Þ

Definition 4.2 The fuzzy set x 2FðSÞ is contained in the fuzzy set y 2FðSÞ
written ðx � yÞ, iff xi6 yi for all i 2 S.

Definition 4.3 Let X be the complete set of eigen fuzzy sets for P, namely:

X¼4fx 2FðSÞ j x � P ¼ xg ð23Þ

The elements of ðXÞ are invariants of P according to the �-(max-min) compo-

sition. Then, if there exists any x
_ 2FðSÞ such that x � x

_
for any x 2 ðXÞ, then x

_
is

the Greatest Eigen Fuzzy Set of P.

Sánchez uses these concepts to find a maximum eigen fuzzy set, idempotent and
stable; in other words:

x
_ ¼ max

i2S
Pn

ij ð24Þ

Recall that if P is a Strong Ergodic fuzzy Markov chain, then its greatest eigen
fuzzy set converges to an idempotent matrix Ps with equal rows. This implies that
all rows of the ergodic projection and the greatest eigen fuzzy set are equal.

Sánchez then designed three algorithms to compute the greatest eigen fuzzy set,
namely Method I, Method II and Method III. In this chapter, Method II will be
used as described below:

(i) Determine x
1

first with the elements corresponding to the greatest element in
each column of P.

(ii) Compute P2 ¼ P � P and determine the greatest elements in each column of

P2. They yield x
2

where max
i2S

Pk
ij ¼ ðx

k � Pk�1Þj ¼ x
k

j; j ¼ 1; n; for all k 	 0.

Here k ¼ 2 and j ¼ 1;m.

(iii) Compare x
2

with x
1
: If they are different, compute P3 ¼ P2 � P to get x

3
where

max
i2S

P3
ij ¼ ðx

3 � P2Þj ¼ x
3

j; j ¼ 1;m.

(iv) Compare x
3

with x
2
: If they are different, compute P4 ¼ P3 � P to get x

4
where

max
i2S

P4
ij ¼ ðx

4 � P3Þj ¼ x
4

j; j ¼ 1;m. And so on. Stop when _ is found such that

x
nþ1 ¼ x

n
, that is x

_ ¼ x
n � P.

It is important to recall that if P is a Strong Ergodic fuzzy Markov chain, for any
s6 n, then the greatest eigen fuzzy set converges to an idempotent matrix Ps with
equal rows. This result implies that the rows of the strong ergodic matrix are equal
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to the greatest eigen fuzzy set of P. Now, for the Weak Ergodic case, the following
proposition is given:

Proposition 4.1 Let P be a weak ergodic fuzzy transition matrix. Since Ps has no

equal rows, then a proper estimation of its steady state is its eigen fuzzy set, x
_
.

5 Computing the IT2 Fuzzy Limiting Distribution

There are two ways for computing the steady state ~Ps of ~P: either by computing the
fuzzy powers of ~P or by using an adaptation of the above algorithm to compute its
steady state efficiently. For this purpose, the following Lemma is given.

Lemma 5.1 Consider an IT2FM chain namely ~P, decomposable into two
matrices: P and P where P4P . If all powers of ~P can be obtained by operations
on P and P separately, as presented in Proposition 4.1, then each one of its

stationary distributions converges to its greatest eigen fuzzy set x
_

only if each one

of them is strong ergodic, that is x
_ ! Ps and the IT2FM has a steady state

composed by the two stationary distributions Ps and P
s
.

Therefore, the steady state of ~P can be decomposable into two stages: Ps and
P

s
, and each one has a greatest eigen fuzzy set which represents the point of major

inertia of the matrix. Based on the above Lemma and on the Proposition 4.1, the
following algorithm is proposed for finding the steady state of ~P:

1. Compute the eigen fuzzy set x
_

for the lower fuzzy transition matrix P, called Ps

by using any of the referred methods in Sect. 4.

2. Compute the eigen fuzzy set x
_

for the lower fuzzy transition matrix P, called P
s

by using any of the referred methods in Sect. 4.
3. Compute the type-reduced steady state of the process called Ps

r by using any
IT2FS type-reducer.

4. Compose the uncertain steady-state fuzzy distribution ~Ps whose elements are
they type-2 stationary possibilities called ~pj by using the three distributions
mentioned above (Ps, P

s
and Ps

r) as follows:

~Ps ¼ hPs;Ps
r ;P

si ð25Þ

where Ps
4Ps

r 4P
s
. ~Ps has elements called ~pj, Ps has elements called pj, P

s

has elements called pj and Ps
r has elements called prj.

In practice, the analyst should make decisions using a real-value criteria, because it
reduces the complexity of the problem, increasing its interpretability. The use of a
type-reducer improves the inference process by reducing its computing cost. In
this way, the following definitions about type-reduction are proposed.
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6 Type-Reduction of an Interval Type-2 Fuzzy
Markov Chain

Most decision-making applications use real-value criteria to reduce the complexity
of the problem, increasing its interpretability. These measures can be computed
using a type-reduction strategy that employs well-known algorithms.

The type-reduction of an IT2FM can be performed in two ways: Type-reduction
of its stationary distribution and the type-reduction of its expected value
(Centroid); the first one is defined as follows:

Theorem 6.1 (Type-reduced stationary distribution) The IT2FM type-reduced
distribution of the steady state of an ergodic IT2FM, namely Ps

r , is the average
between its lower and upper fuzzy distributions, element by element as follows:

prj ¼
pj þ pj

2
8 j 2 S ð26Þ

Proof First, it is assumed that a stationary distribution for �P exists, and by
extension, the existence of an ergodic IT2FM is ensured. Now for an IT2FM, its
secondary membership function is defined as one, that is fxðuÞ=u ¼ 1=u, so
dividing the FOU of any jth state by Mj parts and using (10) leads to:

J~pj ¼
XMj

k¼1

1=ujk

" #,

~pj; j 2 S ð27Þ

The centroid of
PMj

k¼1 1=ujk ¼ prj yields3:

prj ¼

H pj

pj
x dx

H pj

pj
1 dx

Which finally is the centroid of any jth state of the IT2FS:

C~pj ¼
pj þ pj

2

� �
=~pj; j 2 S

where the type-reduced stationary distribution prj of each ~pj is
pjþpj

2 and the proof
of the theorem is complete.

The type-reduced expected value of an IT2FS can be obtained by using any
type-reduction strategy. In this work, a centroid-based defuzzification method is
implemented since it is a well-known measure of central tendency of an IT2FS.
This leads us to the following statement

3 Here,
H

denotes crisp integration.
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Proposition 6.2 Given ~Ps in (25) and its finite projections onto xj, it is possible to

compute its centroid, called Cð~PsÞ, through any centroid-based type-reduction
method, which yields the following interval:

C ~Ps
	 


¼ 1=

�
Cl ~Ps
	 


; Cu ~Ps
	 
 �

ð28Þ

where Cl ~Ps
	 


and Cu ~Ps
	 


are the lower and upper centroids of an IT2FS.

In the same way, an IT2FM is defined by a finite amount of states, the com-
putation of the centroid of ~P is bounded by m. The best known type-reduction
algorithms were proposed by Mendel, Karnik, Melgarejo, and Liu [15, 20, 21, 23,
28, 37]. Unfortunately, both the IASCO and the EKM algorithms have nonclosed
forms, so (29) and (30) are expressed as general forms of Clð~PsÞ and Cuð~PsÞ,
where m is the cardinality of the markovian process.

Cl ~Ps
	 


¼
PL

j¼1 xj pj þ
Pm

i¼Lþ1 xj pj
PL

i¼1 pj þ
Pm

i¼Lþ1 pj

ð29Þ

Cu ~Ps
	 


¼
PU

j¼1 xj pj þ
Pm

i¼Uþ1 xj pj
PU

i¼1 pj þ
Pm

i¼Uþ1 pj

ð30Þ

As usual, a crisp measure is a desirable output of the model, so the most used crisp
output of an IT2FS is the expected value of its centroid

C ~Ps
	 


¼
Cl ~Ps
	 


þ Cu ~Ps
	 


2
ð31Þ

The uncertain fuzzy expected value of ~P is defined by (29–31) where L and U are
computed using either the IASCO or the EKM algorithm.

Remark 6.3 The type-reduced centroid Cð~PÞ of ~P can be computed by either the
IASCO or the EKM algorithm. The main focus of both the IASCO and the EKM
algorithms is to compute the values of L and U iteratively, which minimizes and
maximizes C ~Ps

	 

, finding Cl ~Ps

	 

, and Cuð~PsÞ respectively. For all technical

details about their initialization points, their recursive iterations and computations,
see Melgarejo [21] and Mendel [15, 28].

7 Application Examples

Two introductory examples are presented. First, a five states matrix and afterwards
an inventory control example.
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7.1 A 5� 5 IT2FM Example

Let ~P have the following transition matrices P and P:

P¼

0:721 0:569 0:438 0:025 0:241

0:342 0:020 0:452 0:824 0:915

0:529 0:060 0:289 0:774 0:057

0:746 0:013 0:385 0:015 0:008

0:746 0:490 0:459 0:356 0:521

2

6666664

3

7777775

P¼

0:856 0:773 0:529 0:160 0:734

0:563 0:061 0:626 0:924 0:974

0:734 0:080 0:404 0:871 0:348

0:880 0:154 0:449 0:108 0:067

0:870 0:690 0:763 0:732 0:582

2

6666664

3

7777775

By using Method II, exposed by Sánchez [31, 32], the following vectors Ps and P
s

are obtained:

Ps ¼ ½ 0:721 0:569 0:459 0:569 0:569 �

P
s ¼ ½ 0:856 0:773 0:763 0:773 0:773 �

The type-reduced fuzzy stationary distribution Ps
r is obtained from (26), achieving

the following results:

Ps
r ¼ ½ 0:789 0:671 0:611 0:671 0:671 �

The type-reduced expected values Cl ~Ps
	 


;Cu ~Ps
	 


and C ~Ps
	 


are obtained from
(29)–(31), achieving the following results:

Cl ~Ps
	 


¼ 2:759; Cu ~Ps
	 


¼ 3:093; C ~Ps
	 


¼ 2:926

7.2 An Inventory Control Example

This example is taken from Lieberman [13]. The case consists in a seller who can
only hold three cameras in his store with the following policy of weekly ordering:
If there are no cameras in stock at the end of the Saturday, the store must order of
three cameras. However, if there is one or more cameras in stock, no order is
placed. The stochastic process is defined as amount of cameras are sold in week t
as a function of the demand of cameras and the stock of the store in week t, namely
Xt. For our purposes, we assume that the demand of cameras is a random variable
and there are multiple experts who try to define a transition fuzzy matrix that
represents having Xt cameras in stock regarding the previous week Xt�1. For
instance, if Xt ¼ 1 and Xt�1 ¼ 0 means that the store ordered three cameras in
week Xt�1 and only two of those were sold in week Xt, and so on.

Now, the opinion of all experts is collected and embedded into an IT2FM where
~P is composed by the matrices P and P.
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P ¼

0:318 0:268 0:539 0:392

0:472 0:375 0 0

0:204 0:426 0:241 0

0:314 0:312 0:490 0:415

2

6664

3

7775
P ¼

0:479 0:289 0:641 0:549

0:766 0:489 0 0

0:267 0:485 0:380 0

0:534 0:367 0:654 0:477

2

6664

3

7775

where the vectors Ps and P
s

are:

Ps ¼ ½ 0:426 0:426 0:426 0:415 �

P
s ¼ ½ 0:534 0:489 0:534 0:534 �

Finally, the type-reduced stationary distribution of ~P is:

Ps
r ¼ ½ 0:480 0:458 0:480 0:475 �

By using (29)–(31) its type-reduced expected values Cl ~Ps
	 


;Cu ~Ps
	 


and C ~Ps
	 


,
are obtained as follows:

Cl ~Ps
	 


¼ 1:388; Cu ~Ps
	 


¼ 1:612; C ~Ps
	 


¼ 1:5

Now, the camera seller should have an average of 1.5 cameras in store per week,
so the demand of the market is less than 1.5 cameras per week. In fact, the demand
of cameras is less than ½1:388; 1:612� on average; this means that the possibility of
having more than two cameras sold per week decreases as their demand decreases.

8 Concluding Remarks

A theoretical framework of IT2FS applied to Markov chains is provided assuming an
effect of linguistic uncertainty contained in the opinion of multiple experts about the
same conditional relational matrix ~P. The computation of its stationary behavior, its
type-reduced centroid and its properties are presented through two examples.

This study presents some interesting definitions about uncertain fuzzy markov
chains, treated as IT2FS where the type-reduced behavior is computed through
well-known type-reduction methods such as the IASCO and the EKM algorithms.

There are different methods to handle uncertain probabilities (see Sect. 1), but
the focus of this work is to define some necessary conditions of a pure fuzzy
approach through the use of IT2FS.

The results of Avrachenkov and Sanchez can be extended to a type-2 fuzzy sets
approach. While these authors use type-1 fuzzy Markov chains processes, this
work extends its scope of their findings to uncertain FM by means of IT2 fuzzy
transition matrices.

Finally, an uncertain fuzzy Markov chain can deal either with the opinion of
different experts or inference methods to get an interval of solutions, and therefore
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yield a crisp stationary solution using a type-reduction algorithm. Linguistic
uncertainty embedded into the FOU of an IT2FS is involved in the problem, and its
crisp solution can be found by using any type-reduction strategy.

9 Future Work

The use of general type-2 fuzzy sets (GT2FS) and quasi type-2 fuzzy sets (QT2FS)
emerges as a new subject in the field of Markov chains analysis. These approaches
use the secondary membership function fxðuÞ=u of an IT2FS, inducing researchers
to take new directions.
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zSlices Based General Type-2 Fuzzy Sets
and Systems

Christian Wagner and Hani Hagras

Abstract This chapter provides a concise introduction to zSlices based general
type-2 fuzzy sets and their associated set-theoretic operations. zSlices based
general type-2 fuzzy sets allow the representation of and computation with general
type-2 fuzzy sets by modeling each fuzzy set as a series of zSlices, i.e., modified
interval type-2 fuzzy sets, thus greatly reducing computational as well as design
and implementation complexity. The chapter proceeds to illustrate the role and
application of zSlices based general type-2 fuzzy sets as part of general type-2
fuzzy systems and reviews their utility as part of both traditional, control style, as
well as more recent applications such as fuzzy set based agreement modeling.

1 Introduction

In 1975, Lotfi Zadeh first introduced the concept of type-2 fuzzy logic in the context
of linguistic variables [1]. While the concept was clear and the utility of type-2 fuzzy
sets and systems (FSSs) seemed obvious, the complexity (specifically in computa-
tion terms) prevented the wider application of type-2 FSSs until the late 1990s. Since
then, the vast majority of research and application have focused on a simplified
version of type-2 fuzzy logic, generally referred to as interval type-2 fuzzy logic.
While (general) type-2 fuzzy sets are an extension of type-1 fuzzy sets in the sense
that rather than the membership function of the set associating each given point with
a crisp degree of membership as in the type-1 case, in the (general) type-2 case, each
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point is associated itself with a type-1 set as its membership. Interval type-2 fuzzy
sets finally are a simplification of the general case of (general) type-2 fuzzy sets in
the sense that each point is associated with an interval type-1 fuzzy set, effectively
modeling the membership of each point through an interval rather than a distribution
(type-1 set), as in the (general) type-2 case.

Since about the year 2000, the interest in type-2 fuzzy logic has been growing
rapidly driven by a several landmark publications such as [2, 3]. While the majority
of the work focused on interval type-2 fuzzy logic (e.g. [4–10],), an increasing level
of interest in ‘‘taming the complexity’’ of general type-2 FSSs in order to leverage
their potential as part of applications led to the development of new approaches for
the implementation of general type-2 FSSs, most notably the development of novel
representations of general type-2 fuzzy sets and associated set-theoretic operations
[11–16]. The first complete alternative representation reducing the computational
complexity of general type-2 FSSs was proposed by Coupland et al. in 2007. This
was followed in 2008 by the introduction of the alpha-plane and zSlices represen-
tations which were independently developed by Liu et al. and Wagner et al.,
respectively. The full detail of a complete implementation of a zSlices based general
type-2 fuzzy system (FS) was published for the first time in 2010 in [17]. The alpha-
planes and zSlices representations allow the representation of general type-2 fuzzy
sets as a series of modified interval type-2 fuzzy sets and thus not only greatly reduce
computational complexity but also allow the re-use of most of the theoretical results
developed for interval type-2 fuzzy FSSs.

This chapter focuses on an overview of the zSlices based representation for
general type-2 fuzzy sets and its utility for general type-2 fuzzy systems. It pro-
vides insight into the theory behind and the applications of general type-2 FSSs
and briefly introduces some of the recent areas of application, specifically the
notion of agreement as modeled based on general type-2 fuzzy sets.

Parts of the material provided here have been adopted from previous publica-
tions by the authors.

2 General Type-2 Fuzzy Sets

General type-2 fuzzy sets [1] are an extension of type-1 fuzzy sets. While a type-1
fuzzy set F is characterized by a type-1 membership function (MF) lFðxÞ, where
x 2 X and lF xð Þ 2 ½0; 1�, a general type-2 set ~F is characterized by a general type-
2 MF l~Fðx; uÞ, where x 2 X and u 2 Jx � ½0; 1�, i.e.,

~F ¼ f x; uð Þ; l~F x; uð Þð Þj8x 2 X;

8u 2 Jx � 0; 1½ �g
ð1Þ

in which l~F x; uð Þ 2 ½0; 1�. ~F can also be expressed as follows [2]:
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~F ¼
Z

x2X

Z

u2Jx

l~Fðx; uÞ=ðx; uÞ Jx � ½0; 1�; ð2Þ

where
R R

denotes union over all admissible x and u. An example of a general type-

2 fuzzy set is depicted in Fig. 1a, b. Jx is called the primary membership of x in ~F.
At each value of x say x = x0, the 2-D u and l~Fðx0; uÞ is called a vertical slice of ~F
[3]. A secondary membership function is a vertical slice of ~F. It is l~Fðx ¼ x0; uÞ,
for x’[ X and 8 u [ Jx0 ( [0,1], [2], i.e.,

l~F x ¼ x0; uð Þ � l~F x0ð Þ ¼
Z

u2Jx0

fx0 ðuÞ=u Jx0 � 0; 1½ � ð3Þ

in which 0� fx0 ðuÞ � 1. Because 8x0 2 X, the prime notation on l~F x0ð Þ is
dropped and l~F xð Þ is referred to as a secondary membership function [3]; it is a
type-1 fuzzy set which is also referred to as a secondary set [3]. If 8x 2 X, the
secondary membership function is an interval type-1 set where fx uð Þ ¼ 1, the type-
2 set ~F is referred to as an interval type-2 fuzzy set.

Besides the vertical slice representation mentioned above, a general type-2
fuzzy set can also be represented as a series of wavy slices where for discrete

Fig. 1 (a) Side view of a general type-2 fuzzy set, indicating three zLevels on the third
dimension. (b) Tilted rear/below view of the same set, indicating the position of the three zSlices
(dashed lines). (c) Side view of the zSlices version of the set in (a), with I = 3. (d) Tilted rear/
below view of the same set, showing the zSlices. Note to improve the accessibility of the complex
3D nature of general type-2 fuzzy set, we are referring to the three dimensions in the traditional
mathematical notation of x, y, and z. These designations are equivalent to the respective
traditional designations in the fuzzy logic field of x, u, and l x; uð Þ or fx uð Þð Þ
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universes of discourse X and U, Mendel and John [3] have shown that a type-2
fuzzy set ~F can be represented as follows:

~F ¼
Xn

j¼1

~F j
e ; ð4Þ

where ~F j
e is an embedded type-2 fuzzy set which can be written as follows:

~F j
e ¼

XN

d¼1

fxd u j
d

� �
=u j

d

� �
=xd; ð5Þ

where u j
d 2 Jxd � U ¼ 0; 1½ �:

~F j
e has N elements, as it contains exactly one element from Jx1 ; Jx2 ; . . .; JxN , namely

u j
1; u j

2; . . .; u j
N , each with its associated secondary grade namely, fx1 u j

1

� �
;

fx2 u j
2

� �
; . . .; fxN u j

N

� �
[2]. ~F j

e is embedded in ~F and there is a total of n ¼
QN

d¼1 Md

embedded sets ~F j
e [3]. Where Md is the discretization levels of u j

d at each xd [2, 3].
While the vertical and wavy-slice representations have proved highly useful for

theoretical developments of general type-2 fuzzy sets, they have proved less useful
for the practical implementation of general type-2 fuzzy sets. In the following
section we will review the concept of zSlices introduced in [16] and [17] and show
how zSlices are related to interval type-2 fuzzy sets before proceeding to the
zSlices representation of general type-2 fuzzy sets and systems.

3 From Interval Type-2 Fuzzy Sets to zSlices

As noted above, an interval type-2 fuzzy set is a general type-2 fuzzy set where the
secondary membership is 1 for all primary memberships. As discussed in [2], this
simplification allows for a drastic reduction in the complexity of the computation
with the respective (interval type-2) fuzzy sets. zSlices aim to capture this benefit of
interval type-2 fuzzy sets for the subsequent modeling of general type-2 fuzzy sets.

Conceptually, a zSlice is formed by ‘‘slicing’’ a general type-2 fuzzy set in the
third dimension (z) at level zi. This slicing action will result in an interval set in the
third dimension with height zi. As such, a zSlice ~Zi is equivalent to an interval
type-2 fuzzy set with the exception that its membership grade l~Zi x;uð Þ in the third

dimension is not fixed to 1 but is equal to zi where 0 � zi � 1. Thus, the zSlice ~Zi

can be written as follows:

~Zi ¼
Z

x2X

Z

ui2Jix

zi=ðx; uiÞ ð6Þ
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Where at each x value (as shown in Fig. 2a), zSlicing creates an interval set with
height zi and domain Jix which ranges from li to ri as shown in Fig. 2b, 1� i� I,
I is number of zSlices (excluding ~Z0) and zi ¼ i=I.

Thus Eq. (6) can be written as follows:

~Zi ¼
Z

x2X

Z

ui2½li;ri�

zi=ðx; uiÞ ð7Þ

Additionally,

~Z0 ¼
Z

x2X

Z

u2Jx

0=ðx; uÞ ð8Þ

Where ~Z0 is considered as a special case with z = 0. In applications of zSlices as
part of zSlices based general type-2 fuzzy sets (and systems), zSlice ~Z0 can
generally be disregarded with no effect (its secondary membership is 0) as shown
in [17].

Finally, a zSlice can also be expressed as follows:

~Zi ¼ fð x; uið Þ; ziÞj8x 2 X; 8ui 2 ½li; ri�g ð9Þ

Having defined the basic concept of zSlices, we proceed by reviewing the
concept of zSlices based general type-2 fuzzy sets (zFSs) in the following section.

4 zSlices Based General Type-2 Fuzzy Sets

A general type-2 fuzzy set ~F can be seen equivalent to the collection of an infinite
number of zSlices:

Fig. 2 (a) Front view of a general type-2 set ~F. (b) Third dimension at x’ of a zSlices-based
type-2 fuzzy set with I = 4
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~F ¼
Z

0� i� I

~Zi I !1 ð10Þ

In a discrete universe of discourse Eq. (10) can be rewritten as follows:

~F ¼
XI

i¼0

~Zi ð11Þ

We will be referring to the discrete version in Eq. (11) throughout the chapter.
It should be noted that the summation signs in Eqs. (11) and (12) do not denote
arithmetic addition but they denote the union set theoretic operation [2]. We have
employed the max operation to represent the union, hence whenever a u value is
attached to more than one zi values, the maximum zi is chosen and attached to the
given u value. Hence, the MF l~F x0ð Þ at x0 of the zFS ~F shown in Fig. 2b can be
expressed as:

l~Fðx0Þ ¼
XI

i¼0

X

ui2½li;ri�
zi=ui

¼
X

u2Jx0

maxðziÞ=u; Jx0 � 0; 1½ �
ð12Þ

where 0� i� I. It is worth noting that at x0; l~F x0ð Þ is a type-1 fuzzy set.
Figure 1 shows a three dimensional diagram for a general type-2 fuzzy set

(shown in Figs. 1a, b) that is represented as a zFS (Fig. 1c, d) with I = 3.

5 Operations on zSlices Based General Type-2 Fuzzy Sets

zFSs provide a straightforward representation framework for general type-2 fuzzy
sets. In order to employ the sets for logical inference, for example as part of zFSs,
extensions of the set theoretical operations for union and intersection as well as
centroid calculation and defuzzification operations have been developed. We
briefly review the operations before addressing the mechanics of a complete
zSlices based general type-2 fuzzy system in the following subsection.

5.1 Set-Theoretic Operations

The set-theoretic operations of union and intersection for zFSs were initially
described in [16] and are implemented through the join and meet operations on the
vertical slices of the respective sets.
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Theorem 1 The join operation between two zSlices-based general type-2 fuzzy
sets reduces to the computation of the join operation (which employs the maxi-
mum t-conorm) between each corresponding zSlice in both sets and can be
computed as follows:

~A t ~B, l~At~B ¼ l~A xð Þ t l~B xð Þ

¼
XI

i¼0

X

k2 max lAi;lBið Þ;max rAi;rBið Þ½ �
zi=k; 8x 2 X

ð13Þ

Theorem 2 The meet operation between two zSlices-based general type-2 fuzzy
sets reduces to the computation of the meet operation (which employs the mini-
mum t-norm) between each corresponding zSlices in both sets and can be written
as follows:

~A u ~B, l~Au~B ¼ l~A xð Þ u l~B xð Þ

¼
XI

i¼0

X

k2 min lAi;lBið Þ;min rAi;rBið Þ½ �
zi=k; 8x 2 X

ð14Þ

The proofs for Theorems 1 and 2 can be found in [16]. It is worth noting that a
zFS ~Z where I ¼ 1 is a general type-2 fuzzy set with a zSlice ~Z0 at zLevel 0 which
does not contribute to the fuzzy set (points with a secondary membership of 0 are
not actually part of the set) and a zSlice ~Z1 at zLevel 1. As such, a zFS with I ¼ 1
is equivalent to a standard interval type-2 fuzzy set and consequently—standard
interval type-2 operations are applicable.

5.2 Type Reduction

Type reduction has generally been the main stumbling block for the application of
general type-2 FSSs. The standard type-reduction method for general type-2 sets is
the centroid type reduction [2] which is based on computing the centroid of every
wavy slice within the output set [3]. This is usually not possible in real-time
control as it leads to exponentially growing computational requirements as the
number of discretizations increases along the x and y axis [17]. zSlices based
general type-2 fuzzy sets eliminate the need for a ‘‘brute force’’ calculation of the
centroid by leveraging the zSlices based structure of the zFS and applying well-
known techniques designed for interval type-2 fuzzy sets to compute the centroid.
The actual slices based approach to computing the centroid was first published (in
the context of alpha-planes) by Liu [13]. It was independently developed and
published in the context of zSlices later in [17].
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Theorem 3 The centroid C~Z for a zSlices-based general type-2 fuzzy set ~Z is

equivalent to the combination of the centroids of its zSlices ~Zi. The centroid of
each individual zSlice can be calculated in exactly the same fashion as the cen-
troid for interval type-2 fuzzy sets while maintaining the zLevel of each individual
zSlice. As such, C~Z can be written as the combination of the centroids of its zSlices
C~Zi

each associated to their respective zLevel zi:

C~Z ¼
XI

i¼1

zi=C~Zi
ð15Þ

C~Z represents the centroid of the zSlices based general type-2 fuzzy set formed
by the zSlices ~Zi. As C~Zi

are bounded by two endpoints, we can write
C~Zi
¼ ½clzi ; crzi �, where clzi and crzi are the left and right endpoints of the interval,

respectively. These endpoints are calculated using standard interval type-2 algo-
rithms (like the iterative KM procedure [2]) applied to every zSlice ~Zi:

The proof of Theorem 3 as well as a comparison between it and the standard
centroid calculation as well as numeric examples can be found in [17].

5.3 Defuzzification

The defuzzification of zFSs employs the centroid defuzzifier on the type-1 fuzzy sets
that are generated using the type-reducer described in the previous subsection. As
such, the standard centroid defuzzifier can be applied to the type-reduced set C~Z by
discretizing the type-reduced set and applying the normal centroid defuzzifier

equation
PN�1

t¼0 zðgtÞ � gt=
PN�1

t¼0 zðgtÞ, where t ¼ ðyro � yloÞ= N � 1ð Þ; N is the
number of discretization points and g0 ¼ clz0 and gN�1 ¼ crz0 , zðgtÞ is the maximum
zi level corresponding to any gt according to Eq. (12). Note that all values associated
with z0 ¼ 0 will vanish from the numerator and denominator of the equation, and
hence all values associated with z0 will not affect the total defuzzified output of the
zFS. As such, as previously mentioned, the processing of ~Z0 can be omitted both for
individual zFSs as well as throughout complete zFLSs as they will not affect the FLS
output. This is intuitive as at z0, the certainty about the secondary membership is 0,
thus it can be considered to not be part of the fuzzy set.

A new way particular to zFSs introduced in [17] is that their structure allows
defuzzification by leveraging the fact that each zLevel is associated with a zSlice
~Zi. Hence, the resulting defuzzified value of the zFS (at a given zLevel) will be the
average of the type reduced—set as in interval type-2 FLSs. This will result in a
discrete set where we will have the average of the type-reduced set for each zSlice,
associated with the relevant zLevel zi. Hence, by applying the centroid defuzzifier
for this discrete set, we can write the defuzzified D~Z of the zFS ~Z as:
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D~Z ¼
z1

clz1þcrz1ð Þ
2 þ z2

ðclz2þcrz2 Þ
2 þ � � � þ zI

ðclzIþcrzI Þ
2

� �

ðz1 þ z2 þ � � � þ zIÞ

¼

PI
i¼1 zi

clziþcrzið Þ
2

� �

PI
i¼1 zi

ð16Þ

Note that we have excluded the values associated the zSlice ~Z0 as they will not
have any impact as previously noted. From Eq. (16), it can be easily seen that the
defuzzified value of the zFS is the weighted average of the outputs of the different
zSlices.

The use of zFSs provides a series of advantages for the straightforward
application of (zSlices based) general type-2 fuzzy sets and systems, ranging from
the reduction in computational complexity to the possibility of re-using the
existing interval type-2 fuzzy approaches and implementations. We briefly review
zSlices based general type-2 fuzzy systems in the following section, a detailed
introduction can be found in [17].

6 zSlices Based General Type-2 Fuzzy Systems

zFS based fuzzy systems are identical in structure to standard type-2 FLSs, with
the obvious difference that throughout the FLS, zSlices based general type-2 fuzzy
sets are employed. As part of the current chapter, we will mainly focus on the
nature of zFS without proceeding in detail to their application as part of zFLSs
which we only briefly review in this section. The main components of a zFLS are
depicted in Fig. 3. For a detailed description of all parts of the FLS, see [17].

Fig. 3 The structure of a zSlices based general type-2 FLS
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6.1 Fuzzifier

In zSlices based FLSs (zFLSs), the fuzzification step is identical to standard
general type-2 FLSs (while employing zSlices based general type-2 fuzzy sets).
As in most current applications of FLSs, singleton fuzzification provides the
simplest form of fuzzification. Non-singleton fuzzification can be employed in
cases where the specific uncertainty related to the input of the fuzzy system is to be
modeled directly. It should be noted that a non-singleton fuzzifier will map a given
input modeled as a (zSlices based) general type-2 fuzzy set to the given zSlices
based antecedent fuzzy sets, thus, in the general case, a zSlices based general type-
2 fuzzy set model of the input with an identical number of zSlices (at the same
zLevels) as the rest of the zFLS should be employed.

6.2 Rule Base

The rule structure within zSlices based general type-2 FLSs is the standard
Mamdani type FLS rule structure employed in standard type-1 and type-2 FLSs.

As such, a rule Rs from a zFLS can be written as:

RS : IF x1 is ~F1 AND. . .AND xP is ~FP

THEN g1 is ~G1; . . .; gQ is ~GQ; s 2 f1; . . .; Sg
ð17Þ

where P is the number of FLS inputs, Q the number of FLS outputs, and S is the
number of rules in the rule base. The fuzzy sets employed in the rules are zFSs and
all zFSs within the zFLS employ the same number of zSlices at the same zLevels.
The latter enables the different zLevels within the zFLS to be computed in parallel,
greatly improving performance when parallel computing resources are available.

6.3 Fuzzy Inference Engine

At a high level, the inference engine within a zFLS is similar in concept to that in
all FLSs, i.e., from a given set of inputs, the firing strength of the antecedent
membership functions (MFs) is determined for each rule. Note that, in this case,
the firing strengths are zSlices induced type-1 fuzzy sets (see [17]). In order to
proceed with the actual inference, the firing strengths (respectively their cylin-
drical extensions) are combined with the consequent sets applicable in the indi-
vidual rules. The resulting outputs are combined through the union operation to
produce the overall output (a zFS) for the given set of inputs. Full details of the
inference process in zFLSs can be found in [17].
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6.4 Type Reduction

Type reduction for zSlicesbased general type-2 sets also employs the nature of
zSlices which can be seen as standard interval type-2 fuzzy sets with a specific
zLevel zi 2 ½0; 1�. Type reduction relies on the principle of a centroid calculation
on the set in question as addressed in Theorem 3. In the practical application of
zFLSs (as in interval type-2 FLSs) we do not need to find the fuzzy outputs of each
rule, to combine the outputs of each fired rule and finally to compute the centroid
of this combined set in order to find the type-reduced set. We can employ the
centre-of-sets (COS) type reducer for each individual zLevel zi:

ycos ¼
XI

i¼1

zi=ycosi; ð18Þ

where ycos refers to the overall type-reduced set (a type-1 set) of the zSlicesbased
FLS. ycosi

is bounded by the interval ½yli ; yri �. ycos is the combination of the type-
reduced sets at each individual zLevel referred to as ycosi

which are each associated
with their respective zLevel zi. The type-reduced sets ycosi

can be found using
standard interval type-reduction methods such as the KM iterative procedure [2] or
alternatively the type-reduced sets ycosi

can be approximated using the Wu–Mendel
uncertainty bounds method [18]. We should note that as in standard fuzzy logic
theory, the summation sign (union operation) in Eq. (18) implies that for any point
that is associated with more than one membership, we choose for this point the
maximum of the associated membership values.

Thus, in zFLSs, we take the firing interval of each fired rule (which is calculated
as in interval type-2 FLSs) and the associated centroid interval, and then,over all the
fired rules we calculate ycosi

for that specific zLevel using the KM iterative procedure
or using the Wu–Mendel uncertainty bounds method. Each ycosi

is associated to its
respective zLevel zi. Hence, it can be seen that zFLS is aggregating the outputs of
several interval type-2 FLSs, each associated with a given zLevel (i.e., zSlices). This
allows for a parallel implementation which results in a significantly faster compu-
tation which, in turn, makes it possible for us to use the zFLS for real-time real-world
applications such as the robotic control example shown in [17].

Full details on the centroid calculation and the COS type reduction in zFLSs
can be found in [17].

6.5 Defuzzification

The defuzzification step in a zFLS employs the centroid defuzzifier on the type-1
fuzzy set that was generated using the type-reducer described in the previous
subsection. The details of the defuzzification and in particular the rapid defuzz-
ification harnessing the zSlices induced structure of the output set have been
introduced in the previous section and are available in [17].

zSlices Based General Type-2 Fuzzy Sets and Systems 75



7 Utility of zSlices Based General Type-2 Fuzzy Sets

After establishing the nature and properties of both zSlices based general type-2
fuzzy sets and systems, we proceed to review their applications and general utility.
Fundamentally, (zSlices based) general type-2 fuzzy systems can be applied to the
same problems as other FLSs (type-1, etc.), for example, in [17], we demonstrated
their applicability to real world, real-time robotic control. However, a series of
mostly recent applications benefit and in some cases depend on the more powerful
and more complex modeling capabilities of zSlices based fuzzy sets. Examples
here include applications where system interpretability (i.e., low number of rules)
is important and recent advances such as fuzzy set based agreement modeling [19].
We briefly expand on both the application of zSlices based general type-2 fuzzy
sets in more traditional, ‘‘control-style’’ applications in Sect. 7.1 and on more
recent application areas ‘‘beyond control’’ in Sect. 7.2.

7.1 zSlices Based General Type-2 Fuzzy Sets in Control-Style
Applications

In control and similar applications, the potential for general type-2 FLSSs lies with
their greater potential to model uncertainty precisely—compared to type-1 and
interval type-2 fuzzy systems. In order for general type-2 FLSSs to be able to exploit
this potential, a significant effort is required to design the appropriate (zSlices based)
general type-2 fuzzy sets for each application. This is not possible as part of all
applications and in combination with the computational overhead of general type-2
fuzzy systems which,—even though much reduced—is still present (when com-
paring type-1 to type-2 fuzzy systems), a decision on whether or not to employ
general type-2 fuzzy systems as part of traditional applications needs to be made
very carefully. A number of guidelines and standard questions can be helpful to
make this decision.

1. Does the system we are trying to model encompass varying levels of uncer-
tainty and is the uncertainty significant?

2. If 1 is true, can we capture information on the uncertainty distribution in order
to specify the secondary membership of general type-2 fuzzy sets (either from
data, through learning, etc.)?

3. If 2 is true, employing general type-2 FLSSs may provide benefits. If not,
interval type-2 FLSSs may be a more interesting option.

It is clear that the guidelines above are ‘‘fuzzy’’ and the design of an appropriate
FLS is still dependent on a high familiarity with the problem and significant
experience with FLSSs. Further, context and domain constraints, such as for
example very low levels of available processing power are an intrinsic part of the
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design and decision process and crucially impact the viability of employing
general type-2 fuzzy sets.

7.2 zSlices Based General Type-2 Fuzzy Sets Beyond Control

While the choice in terms of type of FLS is clearly not trivial for the standard set
of FLS applications, there are applications which can directly benefit from higher
order type-2 FLSs in ways which specifically are not possible by using for example
type-1 FLSs. A known example of this is the interpretability of FLSs and the fact
that interval type-2 fuzzy systems can provide similar performance to type-1 FLSs
with a lower number of rules [20]. In cases where the number of rules is relevant,
for example in intelligent inhabited environment (IIE) applications, this is a crucial
advantage facilitating the interpretability of the system by the human user. zSlices
based general type-2 fuzzy FLSs provide a unique set of features not available in
type-1 or interval type-2 FLSs, namely the possibility to employ the secondary
membership for the advanced modeling of concepts or values. A recent application
of this potential is the concept of general type-2 based agreement modeling [19].
Agreement modeling harnesses the secondary membership of zSlices based gen-
eral type-2 fuzzy sets to model agreement between multiple nodes, where the latter
can be people, sensors, actuators, etc. The following section provides a brief
introduction to the principles behind agreement-based modeling.

8 Agreement Modeling

We refer to the notion of ‘‘agreement’’ as agreement between sets. In other words,
the agreement of two sets A and B is the set constituted by the overlap of both sets. In
set terms, this overlap is referred to as the intersection of A and B, denoted as A \ B.

Further, consider a specific concept (such as size, weight, beauty, strength, light
levels, temperature, etc.). The agreement (i.e., the intersection) between multiple
sets describes the ‘‘common ground’’ expressed by the sets. Practically speaking, if
for example several people provide an interval of medium temperature on a
temperature scale, the intersection (an interval) of the provided intervals describes
the least common denominator of the provided interpretations (in the form of
intervals) by the individuals, in other words: their agreement on the meaning of the
concept of ‘‘medium’’ temperature.

While ‘‘agreement’’ could be considered merely an interpretation of the logical
intersection operation, it is the modeling of levels of agreement (i.e., different
degrees of agreement over a number of sets) which cannot be captured by standard
intersections of sets and for which the notion of ‘‘Multi-Leveled Agreement’’ (MLA)
has been established [19]. MLA models agreement of multiple sets in such a way that
the resulting agreement set expresses the proportional level of agreement of its
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constituting sets, i.e., areas where multiple sets overlap are considered as more
significant than areas where few sets overlap or even just one set exists.

For example, if three people define a fuzzy set for the linguistic label ‘‘com-
fortable indoor temperature’’, the three resulting sets will not be identical. The
MLA of the three sets is itself a set which gives the most significance to the areas of
the provided sets that are common to all three sets, less significance to areas which
are common to two of the three sets, and finally low significance to the areas which
belong only to one set.

This notion of MLA, while very intuitive, cannot be modeled using classical
sets or indeed type-1 or interval type-2 fuzzy sets as was shown in [19]. However,
the additional degree of freedom provided by the third dimension (secondary
membership) of (zSlices based) general type-2 fuzzy sets allows the accurate
modeling of multiple levels of agreement. As such, in MLA, the modeling of the
uncertainty encompassed in the fuzzy set is identical to that of interval type-2
fuzzy sets in the sense that it is expressed in the FOU of each zSlice. It should be
noted that the uncertainty encompassed in the FOU relates to the uncertainty about
the primary membership, i.e., the sensor value, the actual variable like tempera-
ture, tallness, etc.

As noted, the secondary membership i.e., the third dimension is employed to
model the level of agreement. A higher secondary membership as such reflects a
higher degree of agreement. As has been shown, a zSlices based general type-2
fuzzy set is based on a series of zSlices. As part of MLA modeling, the total number
of zLevels I is equal to the number of constituting (or input) interval type-2 fuzzy
sets and the agreement is modeled as follows (full details are available in [19]):

• Areas which belong to only one interval type-2 fuzzy set are associated with a
zLevel equal to 1=I.

• Areas which belong to areas where at least two interval type-2 fuzzy sets
intersect, i.e., ‘‘agree’’, are associated with the zLevel 2 � 1=I.

• Areas where all interval type-2 fuzzy sets intersect, i.e., ‘‘agree’’, are associated
with the zLevel I � 1=I ¼ I.

It should be noted that the number of zLevels can be reduced as for all zSlices
based general type-2 fuzzy sets by relying on interpolation. However, the MLA
agreement model will deteriorate in accuracy as a result. Further, the actual
application of the resulting MLA sets as part of FLSs is currently constrained to
zLevel by zLevel processing and subsequent recombination of centroids and is a
current topic of research.

9 Conclusions

For many years, general type-2 fuzzy sets and systems have been little more than
objects of theory, concepts constructed to account for obvious limitations in type-1
fuzzy sets and systems. Many advances have contributed to the progress of general
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type-2 FLSSs from the conceptual stage to real-world application. The ‘‘in-
between’’ stage (between type-1 and general type-2) of intensive research into
interval type-2 FLSS has been crucial not only to develop vital contributions such
as the KM algorithm(s) but also to develop a deeper understanding of the nature of
(type-2) fuzzy sets and their modeling of uncertainty. The most recent advances in
representation of general type-2 fuzzy sets [11, 15, 17] have leveraged the existing
knowledge and today provide a realistically applicable platform for general type-2
FLSSs. As we have shown in this book and in more detail in [16, 17] with the first
complete description of a slices based representation of zSlices based FLSSs,
zSlices based sets, and the zSlices based FLSs that employ them are based on a
direct expansion of interval type-2 fuzzy logic theory.

This shows a great strength of zFLSs which enables a series of advantages:

• Complex operations on general type-2 sets can be reduced to common interval
type-2 operations, significantly reducing the design and implementation com-
plexity, and thus facilitating the use of general type-2 FLSs.

• The property of zFLSs that allows the computation of each zLevel indepen-
dently allows for a high degree of parallel computation. In fact, all zSlices levels
can be computed simultaneously on separate processors followed only by the
very simple defuzzification stage which is done centrally and the output of
which is fed to the system. This offers great potential with minimal imple-
mentation effort and should allow the use of general type-2 FLSs in a far wider
set of applications.

• In zFLSs, current interval type-2 theory can be re-used and only very small
modifications are necessary to use current interval type-2 implementations to
compute zFLSs.

• When computing the centroid of a zSlices based general type-2 set as done
during the type-reduction stage, the resulting type-reduced type-1 set still (as for
standard general type-2 FLSs) gives an indicative model of the amount of
uncertainty contained within the current iteration of the zFLS.

• The use of zFLSs allows achieving real-time performance for general type-2
FLSs as a result of significantly simplifying the computational complexity
associated with the deployment of general type-2 FLSs.

In this chapter, we have detailed zSlices based general type-2 fuzzy sets and
provided a brief review of zSlices based general type-2 fuzzy systems. Specifically
we have focused on fuzzy sets themselves and the most common operations
required to employ them. Finally, we have given a brief outlook on applications of
general type-2 fuzzy logic sets and systems in the existing and particularly in new
areas such as zSlices based agreement modeling.

The area of general type-2 fuzzy logic is still in its infancy and it is without
doubt that the coming years will see significant developments both in theory and
application. It is an exciting time to be part of the fuzzy logic community and we
are excited to be part of it.
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Geometric Type-2 Fuzzy Sets

Simon Coupland and Robert John

Abstract This chapter gives a review and technical overview of the geometric
representation of a type-2 fuzzy set and explores logical operators used to
manipulate this representation. Geometric fuzzy logic provides a distinct way of
understanding a fuzzy system, where fuzzy sets and fuzzy logic operators are seen
purely as geometric objects which are manipulated only using knowledge of
geometry. This approach is simple and intuitive, ideal for those who are not well
versed in discrete mathematics. For researchers working with fuzzy systems
regularly, this approach can raise some interesting questions about how fuzzy sets
and systems are constructed.

1 Geometry and Fuzzy Logic

Fuzzy logic, based around the fuzzy set, is an extension of classical set and
Boolean logic. It may seem odd to attempt to bring together this methodology
rooted in discrete mathematics with the distinct paradigm of geometry. However,
fuzzy logic is already reliant of aspects of geometry for modelling membership
functions of fuzzy sets. The vast majority of fuzzy sets used take the form of
continuous (Gaussian) of piecewise linear functions (triangle, trapezoid and
shoulder). The notion of a geometric fuzzy set [6] came out of modelling a
membership function as a piecewise linear function. A geometric type-1 fuzzy set
is a piecewise linear approximation of a continuous membership function, which is
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of course totally accurate if that function happens to be piecewise linear in nature
anyway, i.e. triangular. This notion of approximating a continuous function with
discrete geometric objects is continued in geometric type-2 fuzzy sets described in
Sect. 2. A more formal definition of a type-1 geometric fuzzy set is given below.

Definition 1 A geometric type-1 fuzzy set is a series of ordered vertices that are
connected by line segments to form a function over a continuous domain. This
function is linear in all but a finite set of points. A geometric fuzzy set A over the
domain X consists of pairs of vertices ðx; yÞ where the x 2 X and the y component
of all the vertices are in the interval ½0; 1� i.e.,

lA : X ! ½0; 1� ð1Þ

The membership grade lA for any particular value of x is given by

lAðxÞ ¼
0; x� x1 or xn� x

yi; x ¼ xi

yi þ x�xi
xiþ1�xi

ðyiþ1 � yiÞ; xi\x\xiþ1

8
><

>:
ð2Þ

where x0 and xn are, respectively, the x-component of the first and last vertices of
A. For convenience, a geometric type-1 fuzzy set can also be denoted by a set of
vertices, i.e.

A ¼ fðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞjxi 2 X; yi 2 ½0; 1�; xi\xiþ1; 8ig ð3Þ

where xi is the x component or domain value of the ith vertex and yi is the y
component or range value of the ith vertex.

Figure 1 depicts a Gaussian membership function and one possible geometric
representation of this set.

Geometric type-1 fuzzy sets provide a practically useful representation of a
fuzzy set; however, the most interesting and important aspect of geometric fuzzy
logic is the geometric inference process. Logical operations, namely AND, OR and
IMPLIES, may be defined using geometry operators. To define geometric logic

0

1
µ
(a)

0

1
µ
(b)

Fig. 1 (a) A Gaussian fuzzy set and (b) a geometric Gaussian fuzzy set
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operators, it is necessary to identify all points where the line segments which make
up a geometric membership function intersect with another geometric membership
function. This can be done efficiently with the Bentley–Ottmann plane sweep
algorithm [2]. Simple algorithms given in [6] describe how AND, OR and
IMPLIES can be performed simply once all intersection points have been iden-
tified. Figure 2 depicts the OR operation on two geometric type-1 one fuzzy sets.
The geometric type-1 fuzzy set A OR B = fv; i1; i2; zg and A AND B =
fa; i1; x; y; i2; dg.

To summarise, geometric type-1 fuzzy sets are made up of a discrete set of
connected line segments. In order to perform logical operations, all points where
the line segments from two sets intersect must be identified and processed. In the
next section, we take this notion forward from 2-dimensional type-1 fuzzy sets to
3-dimensional type-2 fuzzy sets.

2 Geometric Type-2 Fuzzy Sets

We saw in the last section that geometric type-1 fuzzy sets are a discrete set of
connected line segments. Each line segment fits the equation:

Axþ Byþ C ¼ 0 ð4Þ

and is constrained by a start and end point on this line. This is the simplest
geometric primitive which could be used to model a type-1 membership function.
Type-2 fuzzy sets exist in 3-dimensions and as such the natural extension from the
geometric type-1 model is to add a third dimension to the geometry. In 3D, we
need a geometric primitive which fits the equation of a plane:
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x y
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i1 i2

0

1
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A

0

1
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0

1
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A or B

Fig. 2 (a) The geometric fuzzy set A. (b) The geometric fuzzy set B. (c) The geometric fuzzy set
A OR B
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Axþ Byþ Czþ D ¼ 0 ð5Þ

Although any 3-dimensional polygon can fit the equation of plane, there is only
one primitive which by definition must fit the equation of a plane and that is a 3D
triangle. A 3D triangle is a constrained area on a plane which is analogous to how
a line segment is a constrained length on a linear function. Geometric type-2 fuzzy
sets are defined as discrete set of connected 3D triangles which approximate the
membership function of a type-2 fuzzy set, a formal definition is given below.

Definition 2 A geometric type-2 fuzzy set is defined as a collection of n triangles
in 3D space where the edges of these triangles connect to form a 3D polyhedron,
i.e.

eA ¼
[

i¼1::n

ti where ti ¼
xi

1 yi
1 zi

1

xi
2 yi

2 zi
2

xi
3 yi

3 zi
3

2

64

3

75 ð6Þ

where xi
1, xi

2 and xi
3 2 X and yi

1, yi
2, yi

3, zi
1, zi

2 and zi
3 2 ½0; 1�. In this geometric

model, values on the y axis represent primary membership grades and values on
the z axis represent secondary membership grades.

An example geometric type-2 fuzzy set gModerate is depicted in Fig. 3. The

membership function of gModerate is a polyhedron, in this case made up of eight

triangles. These eight triangles approximate the membership function of gModerate
over a continuous domain X. The polyhedron provides an approximation of the

actual membership function of gModerate as a surface modelled by triangles. The set
gModerate give a good illustrative example of a geometric type-2 fuzzy membership

function; however, it is possible to model more complex membership functions.

0

1

1

X

µÃ (x)

µÃ (x, u)

Fig. 3 The geometric type-2

fuzzy set gModerate
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In the previous section, we saw how line segments can approximate a Gaussian
type-1 membership function. The same concept is now demonstrated for a Gaussian
type-2 membership function where triangles are used to approximate the mem-

bership function. The equation of eA, a Gaussian-like set with an uncertain standard
deviation, is given in Eq. (7) and depicted in Fig. 4.

l~Aðx; uÞ ¼ exp � u� cðxÞ2

2rðxÞ2

 !

ð7Þ

where cðxÞ is given by Eq. (8) and rðxÞ is given by Eq. (9).

cðxÞ ¼ exp � x� c2

ðr1 þ r2Þ2

 !

ð8Þ

rðxÞ ¼ exp �
x�c2

2r2
1

� �
� x�c2

2r2
2

� �

5

0

BB@

1

CCA ð9Þ

where x 2 X, u 2 ½0; 1�, r1 and r2 give the range of values for standard deviation.
Figure 4 depicts 11,600 points of this continuous function. Any values of

l~Aðx; uÞ\0:001 are not included, this prevents eA from having an infinite FOU,
hence it is Gaussian like and not Gaussian. This continuous function is contrasted to
two other type-2 fuzzy set models, a discrete model and geometric model.

Fig. 4 A type-2 Gaussian-like fuzzy set with an uncertain standard deviation

Geometric Type-2 Fuzzy Sets 85



The discrete model (see Fig. 5) has 20 discrete points in the primary domain and the
secondary domain ([0,1]) has been discretised into 11 points. The geometric model
used in this comparison was constructed from this discrete model using the method
presented in [7]. The geometric model consists of 365 triangles and is depicted in

Fig. 6. In each of these figures, the domain X of eA runs along the x-axis, the

Fig. 5 A discrete type-2 Gaussian-like fuzzy set with an uncertain standard deviation

Fig. 6 A geometric type-2 Gaussian-like fuzzy set with an uncertain standard deviation
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co-domain l~AðxÞ runs vertically along the y-axis and the secondary membership
grades l~Aðx; uÞ are depicted as if coming out of the page, on the z-axis.

This example demonstrates the complexity inherent in type-2 fuzzy sets and the
modelling of these sets. However, conceptual and mathematically geometric type-2
fuzzy sets are simply geometric type-1 fuzzy sets with a third dimension added.
Type-2 fuzzy membership functions exist in 3D and geometric type-2 fuzzy sets
simply approximate this 3D surface with triangles. The next section defines
algorithms for manipulating such models to implement logical operators.

3 Geometric Type-2 Fuzzy Logic Operators

We saw in Sect. 1 that in order to manipulate a geometric type-1 fuzzy set, it was
necessary to identify all points where the line segments which made up two fuzzy
sets intersected. For type-2 fuzzy sets, we need to take this 2D idea into 3D, that is
we need to identify all line segments where two triangles intersect and the con-
struct new triangles at these intersection lines. Guigue and Devilliers [9] provide
an extension of Möller’s triangle–triangle intersection test [13] which provides this
functionality for a pair of triangles. Figure 7 depicts the intersection of two such
triangles, where the line segment at the intersection of the two triangles is the line
fK; Jg. Once this line of intersection has been identified, a new set of triangles is
needed to model this intersection. With type-1 inference, we identified the mini-
mum and maximum lines to produce the AND and OR of the sets. A similar
operation is required to produce a set of triangles which model the minimum and
maximum of the surface modelled by these triangles. In [8], the authors defined the

Fig. 7 Intersecting triangles and the planes in which they lie. Adapted from [9]
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surface clipping algorithm which performs this operation across a surface made up
of a set of triangles. This algorithm works by performing an ordered search of two
surfaces made up of triangles, identifying all pairs of intersecting triangles and the
line on which they intersect. It is then trivial to obtain the minimum or maximum
surface as a new collection of triangles.

Figure 8 shows an example of the intersection of two triangles and how the
minimum surface modelled by this pair of triangles can be created. Triangles t1

and t2 where originally contained within the subject triangle. These two triangles
make up the minimum surface, they are area contained with in the clipping triangle
which lie below the intersection. The other triangle t3 lies outside of the inter-
section of the two triangles and so is not clipped. The remainder of the subject
triangle (within and above the intersection of the two triangles) is clipped. Figure 9
shows how this operation may be used to find either the minimum or maximum of
two surfaces made up of a discrete set of triangles using the surface clipping
algorithm.

So, the membership function of a type-2 fuzzy set can be modelled by a
collection of 3D triangles. These triangles form a surface and using the surface
clipping algorithm, it is possible to calculate a new set of triangles which form the
minimum and maximum of two such surfaces. These are all the tools we need to

Fig. 8 The minimum surface calculated from two triangles

Y

Z
X

Y

Z
X

Y

Z
X

(a) (b) (c)

Fig. 9 (a) Two surfaces. (b) The minimum of those two surfaces. (c) The maximum of those two
surfaces
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implement the AND, OR and IMPLIES operators for type-2 fuzzy sets. The first
step is to separate the triangles which make up the membership function of a type-2

fuzzy set eA into two new sets of triangles which form the upper and lower surface

of the membership function eA and eA. It is easy to identify which set an individual
triangle belongs to. Simply take the normal of the triangle; if the y component of
the normal is positive, then it belongs to the upper surface, if negative then if
belongs to the lower surface. We can now define the AND and OR operations for
geometric type-2 fuzzy sets. The AND and OR will now be defined using as

examples the geometric type-2 fuzzy sets eA and eB depicted in full in Fig. 10 and
the associated FOUs in Fig. 11.

3.1 The Geometric AND Operator

The AND of two type-2 fuzzy sets is defined as the result of taking the meet [5, 11]
of the secondary membership functions of the two sets at each point in the domain
of the sets. The surface clipping operation is used to give the meet, not at every

Fig. 10 The geometric

type-2 fuzzy sets eA and eB

A B

X0
0

1
µFig. 11 The FOU of the

geometric type-2 fuzzy sets eA
and eB
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discrete point, but a every point along the continuous domain of the two geometric
type-2 fuzzy sets.

Definition 3 Let eA and eB be two geometric type-2 fuzzy sets, each with
membership functions defined by lower and upper surface over the continuous

domain X. Let the logical AND of eA and eB be a third geometric type-2 fuzzy set eC .

• The lower surface of eC ¼ the minimum, as given by the surface clipping

algorithm, of the lower surfaces of eA and eB.

• The upper surface of eC ¼ the minimum, as given by the surface clipping

algorithm, of the upper surfaces of eA and eB.

This performs the meet across the entire domain of eA and eB giving the logical
AND.

The logical AND of the example geometric type-2 fuzzy sets eA and eB is
depicted in full in Fig. 12 and just the FOU in Fig. 13.

Fig. 12 The geometric

type-2 fuzzy set eC ¼ eA \ eB

X0
0

1
µFig. 13 The FOU of the

geometric type-2 fuzzy set
eC ¼ eA \ eB
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3.2 The Geometric OR Operator

The OR of two type-2 fuzzy sets is defined as the result of taking the join [5, 11] of
the secondary membership functions of the two sets at each point in the domain of
the sets. Again, the surface clipping operation is used to give the join, not at every
discrete point, but every point along the continuous domain of the two geometric
type-2 fuzzy sets.

Definition 4 Let eA and eB be two geometric type-2 fuzzy sets, each with
membership functions defined by lower and upper surface over the continuous

domain X. Let the logical OR of eA and eB be a third geometric type-2 fuzzy set eC .

• The lower surface of eC ¼ the maximum, as given by the surface clipping

algorithm, of the lower surfaces of eA and eB.

• The upper surface of eC ¼ the maximum, as given by the surface clipping

algorithm, of the upper surfaces of eA and eB.

This performs the join across the entire domain of eA and eB giving the logical OR.

The logical OR of the example geometric type-2 fuzzy sets eA and eB is depicted
in full in Fig. 14 and just the FOU in Fig. 15

We have now seen how the concepts of geometric primitives and their inter-
sections used in type-1 geometric fuzzy operations are taken forward with the
addition of a third dimension to give type-2 geometric fuzzy operators. Negation
and implementation may be implemented in a similar fashion [8]. The next section
presents a method for defuzzifying a geometric type-2 fuzzy set.

4 Defuzzification of Geometric Type-2 Fuzzy Sets

Only one defuzzifier has been defined for geometric fuzzy sets based on the centre
of area defuzzifier [4, 7]. For a discrete type-1 fuzzy set, the centre of area

Fig. 14 The geometric

type-2 fuzzy set eC ¼ eA [ eB
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defuzzifier calculates the weighted midpoint of the membership function typically
expressed as:

CA ¼
Pn

i¼1 lAðxiÞxiPn
i¼1 lAðxiÞ

ð10Þ

where A is a discrete type-1 fuzzy set made up of n discrete points. The centre of
area defuzzifier does exactly what is says, it identifies the geometric centre of the
membership function that defines that fuzzy set.

For a geometric type-1 fuzzy set, the centre of the area can be calculated by
treating the membership function as a closed polygon. The centroid of a polygon
[1, 3] can be calculated by deconstructing the polygon into a collection of trian-
gles. Each of these triangles has one vertex at ð0; 0Þ with the other two vertices
taking values in order from one of the line segments that forms the polygon. This
means a polygon with n vertices can be broken down into n triangles. The centroid
of the polygon is the weighted average of the area and centre of these triangles.
Consider the polygon P1 depicted in Fig. 16a. This polygon has four vertices and
can therefore be broken down into four triangles t1 to t4 as depicted in Fig. 16b–e
where the dotted lines depict P1. Note that the triangles t1, t2 and t3 all encompass
an area that lies outside the polygon P1. The sum of these areas from t1 to t3 is
equal to the entire area of the triangle t4. Since, a signed value for the area is taken
for each triangle these overlapping areas will cancel out. This is because the sign
of area of t4 will be the opposite to all the other triangles.

The signed area of a triangle is given by the half of the cross product of two of
the edge vectors. The centre of a triangle is the sum of the vertices divided by
three. The area of t1 is therefore

Area t1 ¼
ðx1 � 0Þðy2 � 0Þ � ðx2 � 0Þðy1 � 0Þ

2
¼ x1y2 � x2y1

2
ð11Þ

Since all the triangles from the polygon P1 contain the vertex ð0; 0Þ the area A of
any triangle ti is given by

X0
0

1
µFig. 15 The FOU of the

geometric type-2 fuzzy set
eC ¼ eA [ eB
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AðtiÞ ¼
xiyiþ1 � xiþ1yi

2
ð12Þ

An assumption is made that the polygon starts and ends at the same vertex ðx0; y0Þ.
The x-component of the centre or centroid C of the triangle ti is given by

CðtiÞ ¼
xi þ xiþ1

3
ð13Þ

The x-component of the centroid C of a polygon P is given by

C ¼
Pn�1

i¼0 AðtiÞCðtiÞ
Pn�1

i¼0 AðtiÞ
ð14Þ

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

P1

(a)

(0, 0)

(x0, y0)

(x1, y1)

t1

(b)

(0, 0)

(x1, y1)

(x2, y2)
t2

(c)

(0, 0)

(x2, y2)

(x3, y3)

t3

(d)

(0, 0)
(x3, y3)

(x0, y0)

t4

(e)

Fig. 16 Calculating the centroid of Polygon P1 using constituent triangles t1 to t4
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where n is the number of vertices that make up P, AðtiÞ and Cðt1Þ are given by
Eqs. (12) and (13), respectively. Substituting Eqs. (12) and (13) into Eq. (14)
gives

C ¼
Pn�1

i¼0 ðxi þ xiþ1Þðxiyiþ1 � xiþ1yiÞ
3ð
Pn�1

i¼0 xiyiþ1 � xiþ1yiÞ
ð15Þ

which is used to calculate the centroid of a geometric type-1 fuzzy set.
The centroid of geometric type-2 fuzzy set is calculated in much the same way.

The geometric membership function is already made up triangles, so there is no
need to do any further decomposition. All that needs to be done is that this area
and centroid of each triangle must be calculated in 3D and the weighted average
taken [7]. This calculation requires the following notational definitions:

The ith triangle t in the polyhedron ti ¼
xi

1 yi
1 zi

1
xi

2 yi
2 zi

2
xi

3 yi
3 zi

3

2

4

3

5

The x-value of the centroid of ti ¼ Ci

The area of ti ¼ Ai

The centroid of a geometric type-2 fuzzy set is given in Eq. (16) where C~A is

the centroid of a type-2 fuzzy set eA made up of n triangles.

C~A ¼
Pn

i¼1 CiAi

Pn
i¼1 Ai

ð16Þ

Since we are only interested in the x component of a triangles centroid we only
need to work out the arithmetic mean of the x components of three vertices that
make up that triangle as given by Eq. (17).

Ci ¼ xi
1 þ xi

2 þ xi
3

3
ð17Þ

The area on a single triangle in 3D is calculated by

Ai ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððyi

2 � yi
1Þðzi

3 � zi
1Þ � ðyi

3 � yi
1Þðzi

2 � zi
1ÞÞ

2þ
ððxi

2 � xi
1Þðzi

3 � zi
1Þ � ðxi

3 � xi
1Þðzi

2 � zi
1ÞÞ

2þ
ððxi

2 � xi
1Þðyi

3 � yi
1Þ � ðxi

3 � xi
1Þðyi

2 � yi
1ÞÞ

2

vuuuut ð18Þ

So, the centroid of a geometric type-2 fuzzy set is calculated as the centre of the
volume that makes up that sets membership function. Although this is analogous to
the centroid of a geometric type-1 fuzzy set there is one important difference. The
membership function of a geometric type-1 fuzzy set is a piecewise-linear func-
tion, which is closed to form a polygon for defuzzification. For a geometric type-2
fuzzy set the membership function is already a closed polyhedron. So, why is this
important? It means a type-1 geometric membership function can only ever have
on line of symmetry parallel to the y axis. A type-2 geometric membership
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function can also have a line of rotational symmetry. A geometric defuzzifier will
identify this line of symmetry, which may not be the required answer. Consider the

FOU of a geometric type-2 fuzzy set eS depicted in Fig. 17. Most people would

think the centroid of this set should be around 14. Indeed if we discretise eS and
calculate the type-reduced centroid we get an answer of 14.16. The geometric
defuzzifier calculate the centroid as 10.00. Clearly, sets with rotational symmetry
are problematic to geometric type-2 fuzzy logic.

5 Conclusion

This chapter has presented a review of geometric fuzzy systems of type-1 and
type-2. Geometric systems offer advantages over conventional fuzzy systems. The
models of the membership functions are more accurate. Furthermore, the operators
maintain this accuracy throughout the inference process. Geometric fuzzy sets
offer models over a truly continuous domain. For type-1 systems discrete models
are quicker to process, for type-2 systems the performance of the geometric model
far exceeds the discrete equivalent. Although new highly efficient representations
[10, 12, 14] are yet to be benchmarked against the geometric approach. For type-2
systems, the problem of defuzzifing type-2 fuzzy sets with rotational symmetry
remains unsolved.
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Type-2 Fuzzy Sets and Bichains

John Harding, Carol L. Walker and Elbert Walker

Abstract This chapter is a continuation of the study of the variety generated by
the truth value algebra of type-2 fuzzy sets. That variety and some of its reducts
were shown to be generated by finite algebras, and in particular to be locally finite.
A basic question remaining is whether or not these algebras have finite equational
bases, and that is our principal concern in this chapter. The variety generated by
the truth value algebra of type-2 fuzzy sets with only its two semilattice operations
in its type is generated by a four element algebra that is a bichain. Our initial goal
is to understand the equational properties of this particular bichain, and in par-
ticular whether or not the variety generated by it has a finite equational basis.

1 Introduction

The underlying set of the algebra of truth values of type-2 fuzzy sets is the set
M ¼ Mapð½0; 1�; ½0; 1�Þ of all functions from the unit interval into itself. This set is
equipped with the binary operations þ and �, the unary operation �, and the nullary
operations �1 and �0 as spelled out below, where _ and ^ denote maximum and
minimum, respectively.
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f þ gð Þ xð Þ ¼ sup f ðyÞ ^ gðzÞ : y _ z ¼ xf g
f � gð Þ xð Þ ¼ sup f ðyÞ ^ gðzÞ : y ^ z ¼ xf g

f �ðxÞ ¼ sup f ðyÞ : 1� y ¼ xf g ¼ f ð1� xÞ

�1ðxÞ ¼
0 if x 6¼ 1

1 if x ¼ 1

�
and �0ðxÞ ¼

1 if x ¼ 0

0 if x 6¼ 0

�

The algebra of truth values of type-2 fuzzy sets was introduced by Zadeh in 1975,
generalizing the truth value algebras of ordinary fuzzy sets, and of interval-valued
fuzzy sets. (Sometimes in the fuzzy literature, the operations þ and � are denoted
t and u, respectively, but we choose to use the less cumbersome notations þ and �.
We also frequently write fg instead of f � g.) The definitions of the convolutions
þ, �, and � are sometimes referred to as Zadeh’s extension principle.

Definition 1 The algebra M ¼ ðM;þ; �; �; �1; �0Þ is the algebra of truth values for
fuzzy sets of type-2.

Type-2 fuzzy sets, that is, fuzzy sets with this algebra M of truth values, play an
increasingly important role in applications, making M of some theoretical interest.
See, for example, [1–6].

We are concerned here with the equational properties of this algebra, much as
one is concerned with the equational properties of the Boolean algebras used in
classical logic. The main question we are interested in is whether there is a finite
equational basis for the varietyV Mð Þ generated by M. We have made some
progress toward this, and other questions, but it remains open.

An important step in understanding the equational theory of M was taken in
[7, 8] where the operations þ and � were written in a tractable way using the
auxiliary operations L and R, where f L and f R are the least increasing and decreasing
functions, respectively, above f . Using this, it was shown that M satisfies the
following equations.

Proposition 1 Let f ; g; h 2 M.

1. f þ f ¼ f ; f � f ¼ f
2. f þ g ¼ gþ f ; f � g ¼ g � f
3. f þ gþ hð Þ ¼ f þ gð Þ þ h; f � g � hð Þ ¼ f � gð Þ � h
4. f þ f � gð Þ ¼ f � f þ gð Þ
5. �1 � f ¼ f ; �0þ f ¼ f
6. f �� ¼ f
7. f þ gð Þ�¼ f � � g�; f � gð Þ�¼ f � þ g�

Algebras, such as M, that satisfy the above equations have been studied in the
literature under the name De Morgan bisemilattices [9–11].
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Definition 2 A variety of algebras is the class of all algebras of a given type
satisfying a given set of identities (a basis for the variety). Equivalently (by a
famous theorem of Birkhoff), a variety is a class of algebras of the same type
which is closed under the taking of homomorphic images, subalgebras and (direct)
products.

Definition 3 For an algebra A, the variety VðAÞ generated by A is the class of all
algebras with the same type as A that satisfy all the equations satisfied by A. An
algebra A is locally finite if each finite subset of A generates a finite subalgebra of
A, and a variety is locally finite if each algebra in the variety is locally finite.

An advance in understanding M and its equational properties came in [12],
where it was shown that the variety VðMÞ is finitely generated, meaning it is
generated by a single finite algebra. In fact, it is generated by the complex algebra
(algebra of subsets) of a 5-element bounded chain with involution. In this same
paper, it was shown VðMÞ is generated by a smaller 12-element De Morgan
bisemilattice, but this algebra is not so easily described. An important consequence
of this result is an algorithm to determine whether an equation holds in M. One
simply checks to see if the equation holds in the finite algebra generating VðMÞ.
In this same paper, a normal form for terms in VðMÞ was given, and used to
develop a syntactic algorithm to determine when an equation holds in VðMÞ.

It is natural to consider whether the equations in Proposition 1 could be a basis
for the variety VðMÞ; that is, whether or not every equation satisfied by the
algebras in VðMÞ is a consequence of those equations in Proposition 1. This is not
the case as VðMÞ is locally finite, and there are De Morgan bisemilattices that are
not locally finite, such as certain ortholattices. So to find a basis for the variety
VðMÞ one must add equations to this list. We will exhibit later some equations
that hold in M that are not consequences of the equations above. Whether there is a
finite basis for VðMÞ remains open.

The observant reader at this point will have considered Baker’s Theorem [13]
that says a finitely generated congruence distributive variety has a finite basis.
Unfortunately we cannot apply this result as VðMÞ is not congruence distributive,
as is noted in a later section.

We decided to simplify the problem, and restrict attention to equations
involving only the operations þ and � and not using the negation � or constants �1
and �0.

Definition 4 An algebra ðA; �;þÞ with two binary operations is called a
bisemilattice if it satisfies Eqs. 1–3 of Proposition 1, and a Birkhoff system if it
satisfies Eqs. 1–4 of Proposition 1.

Of course the reduct ðM;þ; �Þ ofM to this type satisfies Eqs. 1–4 of Proposition 1,
so is a Birkhoff system.
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In any bisemilatticeðA; �;þÞ, the binary operations � and þ induce partial orders
by x � �y if x ¼ xy and x � þy if xþ y ¼ y. It is not difficult to show that these
two partial orders are the same if and only if the bisemilattice is a lattice.

Definition 5 A bisemilattice ðA; �;þÞ is a bichain if the two partial orders � � and
�þ are chains.

A bichain is thus given by a set and two linear orderings on it. This is the same
as giving an ordering on a set, and a permutation on that set. Of particular
importance here will be finite bichains. Here we often assume the underlying set is
f1; . . .; ng, that the �-ordering is 1\�2\� � � �\�n, and that the þ-ordering is given
by some permutation u of f1; 2; . . .; ng. The situation is shown in below.

Any permutation u gives an ordering of 1; 2; . . .; n for the þ-order, so up to
isomorphism there are n! n-element bichains. We assume the �-order is
1 \ 2 \ � � �\n and then just give the þ-order. So we may depict bichains in the
following manner:

Our reduct ðM; �;þÞ is a Birkhoff system. Of course, the variety generated by
this algebra is generated by the reduct of the 12-element De Morgan system that
generates VðMÞ, but one can do better. In [12] it was shown that the variety
generated by ðM;þ; �Þ is generated by the 4-element bichain we call B, shown in
below

·

1

2

3

4

1

3

2

4

.
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Of course, this bichain can be depicted simply by

2

4

3

1

While there is considerable literature on bisemilattices (see, for example,
[11, 14, 15]), there seems to be relatively little known about the quite natural case
of bichains. Our efforts here are largely devoted to studying bichains and the
varieties they generate. We believe this is of interest for its own sake, as well as for
its application to understanding equational properties of M. One thing it enables us
to do is to produce equations satisfied by M that are not a consequence of the
Eqs. 1–4 of Proposition 1. We list four such equations below. The names come
from their donations by Fred (L)inton, Peter (J)ipsen, Keith (K)earnes, and a key
equation (S) that is a splitting equation of a certain variety.

xzþ yðxþ zÞ ¼ ðxþ zÞðyþ xzÞ ðLÞ

yðxþ xzÞ ¼ yðxþ yÞðxþ zÞ ðJÞ

xðyþ zÞðxyþ xzÞ ¼ xðyþ zÞ þ ðxyþ xzÞ ðSÞ

xðxyþ xzÞ ¼ xyþ xz ðKÞ

These equations hold in B as is easily checked. However, they do not hold in the
variety of Birkhoff systems, so are not consequences of Eqs. 1–4 of Proposition 1.
The first three equations fail in the 3-element bichain denoted A5 in the following
section. The fourth is valid in all six 3-element bichains. Each subset of a bichain
is a subalgebra, and it follows that this fourth equation (K) is valid in all bichains;
however, it fails in the Birkhoff system depicted below.

0

1 2

3

4

0

1 2

4

3
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We further remark that using the third equation (S) and several equations
valid in all bichains, such as (K), we can prove the first two equations (L) and
(J). Rather, a software package called Prover9 [16] can prove them. We con-
jecture that any equation valid in B can be proved from (S) and equations valid
in BiCh, or equivalently, that VðBÞ is defined by the equations defining BiCh
and the equation (S).

2 Subvarieties of VðBÞ

Let BiSemi be the variety of all bisemilattices, Birk be the variety of all Birkhoff
systems, BiCh be the variety generated by all bichains, DL be the variety of all
distributive lattices, and SL be the variety of all bisemilattices satisfying
x � y ¼ xþ y, which is called the variety of semilattices. For any bisemilattice S we
let VðSÞ be the variety generated by S.

Proposition 2 Every bichain is a Birkhoff system, so BiCh � Birk.

Proof Suppose x; y are elements of a bichain. Then each of xy and xþ y is either x
or y, and we check that in the four possible cases xðxþ yÞ ¼ xþ xy. h

The inclusion BiCh � Birk is proper, since (K) is valid in all bichains, but not
in all Birkhoff systems.

Below we describe and name all bichains with two or three elements.

Note that D1 and A1 are distributive lattices so generate the variety DL, and D2

and A6 are semilattices so generate SL [13]. By [17] the join of DL and SL is the
variety of distributive bisemilattices; that is, bisemilattices satisfying both dis-
tributive laws. As D1 and D2 are subalgebras of A4, and A4 is a quotient of their
product, A4 generates DL _ SL. By [11] the variety of bisemilattices satisfying the
meet-distributive law xðyþ zÞ ¼ xyþ xz covers the distributive bisemilattices, as
does the variety of bisemilattices satisfying the join-distributive law
xþ yz ¼ ðxþ yÞðxþ zÞ. As A2 satisfies meet-distributivity but not join distribu-
tivity, and A3 satisfies join distributivity but not meet distributivity, VðA2Þ and
VðA3Þ cover VðA4Þ. As A2 and A3 are subalgebras of B, we have VðA2Þ _
VðA3Þ is contained in VðBÞ. Using the Universal Algebra calculator [18] we can
find an equation to show this containment is strict. The algebras A2 and A3 satisfy
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ðxþ zÞðwxþ wþ yÞ ¼ ðxþ zÞðxyþ wþ yÞ

and this equation fails in B. The program also provides equations to show neither
VðA2Þ nor VðA3Þ is contained in VðA5Þ, and VðA5Þ is not contained in VðBÞ.

zðxþ zÞðyþ zÞ ¼ zðzþ xyÞ
zþ xzþ yz ¼ zþ zðxþ yÞ

xðyþ zÞðxyþ xzÞ ¼ xðyþ zÞ þ ðxyþ xzÞ

The first holds in A5 and fails in A2, the second holds in A5 and fails in A3, and
the third holds in B and fails in A5. A diagram of the containments between these
varieties follows.

Our conjecture is that VðBÞ is the largest subvariety of BiCh not containing A5,
a situation known as a splitting. If this is indeed the case, VðBÞ is defined by a
single equation called a splitting equation, together with equations defining BiCh.
In this case, a splitting equation is

xðyþ zÞðxyþ xzÞ ¼ xðyþ zÞ þ ðxyþ xzÞ ðSÞ

That (S) is the splitting equation of A5 in BiCh comes through the fact that A5 is
weakly projective in this variety, a topic we shall return to later. We remark that
(S) is a type of generalized distributive law, with the left side of (S) being the meet
of the two sides of the usual distributive law, and the right side of (S) being their
join. We have not yet determined an equational basis of BiCh, and indeed do not
even know if this variety is finitely based.
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3 Bichains in the variety VðBÞ

To lend some credence to our conjecture that VðBÞ is the largest subvariety of
BiCh not containing A5, we use this section to show that a bichain belongs to
VðBÞ if and only if it does not contain A5 as a subalgebra. We remark that if the
variety BiCh were congruence distributive, our conjecture would follow from this
using Jónsson’s Lemma and Łoś’s Theorem.

Theorem 1 For a bichain C, the following are equivalent.

1. C 2VðBÞ.
2. A5 is not a subalgebra of C.
3. C satisfies (S).

Proof (1) 3) This is of course simply a matter of checking that the equation (S)
holds in B, but the situation is a bit more interesting than this. Note there is a
congruence on B that collapses only the two middle elements f2; 3g, and the
resulting quotient is a distributive lattice. Take any equation s ¼ t that holds in all
distributive lattices. If this equation is to fail in B for some choice of elements, it
must be that s and t evaluate to 2 and 3. As f2; 3g is a subalgebra of B isomorphic
to the 2-element semilattice, it then follows that st ¼ sþ t holds in B. The
equation (S) is an instance of this, taking s ¼ t to be the meet distributive law.

(3) 2) Take x ¼ 2, y ¼ 1, and z ¼ 3 to see that A5 does not satisfy (S).
(2) 1) To show C 2VðBÞ, it is sufficient to show every finite sub-bichain of

C belongs to VðBÞ. Indeed, if C 62VðBÞ, there is some equation valid in B that
fails in C. This equation involves only finitely many variables, so there is some
finitely generated subalgebra of C that does not belong to VðBÞ. But as C is a
bichain, every subset of C is in fact a subalgebra of C. So to show 2) 1, it is
enough to show this for C a finite bichain.

We show by induction on n ¼ jCj that if A5 is not isomorphic to a subalgebra of
C, then C 2VðBÞ. For n� 3 all n-element bichains are given in the figure in the
previous section, and all but A5 are shown to belong to VðBÞ. Suppose C has
n� 4 elements. We first establish a lemma that handles several cases.

Lemma 1 For a finite bichain C, let C [ f1g be the bichain formed from C by
adding a new element to the bottom of the �-order and the top of the þ-order; let
C [ fbg be formed from C by adding a new element to the bottom of both orders;
and let C [ ftg be formed from C by adding a new element to the top of both
orders. Then if C 2VðBÞ, so are C [ f1g, C [ fbg and C [ ftg.

Proof (Proof of Lemma). We first show B [ f1g, B [ fbg and B [ ftg belong to
VðBÞ. Note B [ f1g is the quotient of B	 D2 by the congruence h that has one
non-trivial block consisting of B	 f1g; B [ fbg is the subalgebra of B	 D1

consisting of B	 f2g and ð1; 1Þ; and B [ ftg is the subalgebra of B	 D2 con-
sisting of B	 f1g and ð4; 2Þ. As D1 and D2 belong to VðBÞ, so do these algebras.
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Assume C belongs to VðBÞ. Then there is a set I, a subalgebra S�B
I , and an

onto homomorphism u : S! C. Consider the constant function1 in ðB [ f1gÞI
whose constant value is the new element 1 added to B. In B, x � 1 ¼ 1 and
xþ1 ¼ 1. It follows that S [ f1gis a subalgebra of this power, and u extends
to a homomorphism from S [ f1g onto C [ f1g. The arguments for C [ fbg
and C [ ftg are similar, using powers of B [ fbg and B [ ftg. h

(Proof of Theorem continued) Assume the �-order of C is 1\2\ � � �\n. If the
bottom element of the þ-order of C is 1, then C is isomorphic to C

0 [ fbg where
C
0 is the sub-bichainf2; . . .; ng of C. Then by the inductive hypothesis and the

above lemma, C 2VðBÞ. A similar argument handles the cases where either 1 or
n is the top element of the þ-order of C. Set

U ¼ fk : 2� k� n and k precedes 1 in the þ-orderg

V ¼ fk : 2� k� n and 1 precedes k in the þ-orderg

As 1 is not the bottom or top of the þ-order, U and V are non-empty. Also, as A5 is
not a subalgebra of C, if u 2 U and v 2 V , then u\v. Also, as n is not the top
element of the þ-order, V must have at least two elements. So there is some
2� k� n� 2 with U ¼ f2; . . .; kg and V ¼ fk þ 1; . . .; ng.

There are congruences h and / on C with h collapsing f1; . . .; kg and nothing
else, and / collapsing V and nothing else. Note C=h is isomorphic to the sub-
bichainf1; k þ 1; . . .; ng of C, and C=/ is isomorphic to the sub-bi-
chainf1; . . .; k; k þ 1g of C. It follows from the inductive hypothesis that C=h and
C=/ belong to VðBÞ. As h and / intersect to the diagonal, C is a subalgebra of
their product, so belongs to VðBÞ. h

At this point, if we had congruence distributivity, it would follow that every
subdirectly irreducible in the variety BiCh is a bichain, and then the above theorem
would imply VðBÞ is defined, relative to the equations defining BiCh, by the
single equation (S). However we do not have congruence distributivity [14].

4 Splitting

In this section we investigate projectivity and splitting for various bichains, and in
particular for A5. Our main result here shows there is a largest subvariety of BiCh
not containing A5, and the theorem of the previous section leads us to believe this
may be the variety VðBÞ.

Definition 6 An algebra P is weakly projective in a variety V if for any two
algebras E and A in V, for every homomorphism f : P! E, and for every onto
homomorphism g : A�E, there is a homomorphism h : P! A with gh ¼ f .
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The usual definition of projective uses the categorical notion of an epimorphism
in place of the onto homomorphism g. In a variety V, there may be more epi-
morphisms than onto homomorphisms, so an algebra that is weakly projective may
not be projective. However, we do not know whether epimorphisms must be onto
in either of the varieties Birk or BiCh.

The following well-known result [19] is a convenient reformulation.

Proposition 3 An algebra P is weakly projective in V if and only if for every
onto homomorphism u : A�P, there is an embedding r : P! A with u 
 r ¼ idP.

Weak projectives are of interest for several reasons, but our primary one lies in
Proposition 4 below. Before stating this, we define for an algebra P in a varietyV,

WðPÞ ¼ fA 2V : P 6,!Ag

Here P 6,!A means P is not isomorphic to a subalgebra of A.

Proposition 4 If P is weakly projective in V and subdirectly irreducible, then
WðPÞ is a variety, and is the largest subvariety of V that does not contain P.

This is a well-known result [19] and not difficult to prove. The situation is
sometimes referred to as a splitting, as it splits the lattice of subvarieties of V into
two parts, those that contain the variety VðPÞ, and those that are contained in
WðPÞ. Further, such a splitting yields an equation, called the splitting equation,
defining the variety WðPÞ relative to the equations defining V. We now apply
these results in our setting.

Proposition 5 The 2-element distributive lattice D1 is subdirectly irreducible and
weakly projective in BiCh. Its splitting variety WðD1Þ is the variety SL of
semilattices.

Proof Clearly D1 is subdirectly irreducible. Let A be a bichain and f : A�D1 be
an onto homomorphism. Then there are x and y in A with f ðxÞ ¼ 1 and f ðyÞ ¼ 2.
Then f ðxyÞ ¼ 1 and f ðxþ yÞ ¼ 2, so xy is different from xþ y. In any Birkhoff
system we have xyðxþ yÞ ¼ xy and xþ yþ xy ¼ xþ y. So there is a homomor-
phism r : D1 ! A defined by rð1Þ ¼ xy and rð2Þ ¼ xþ y, and this homomorphism
satisfies f 
 r ¼ idD1 . So D1 is weakly projective.

To see that WðD1Þ ¼ SL, note that the two-element semilattice D2 belongs to
WðD1Þ, so one containment is trivial. For the other, suppose A does not belong to
SL. Then there are x; y 2 A with xy not equal to xþ y, giving fxy; xþ yg is a
subalgebra of A isomorphic to D1, so A 62WðD1Þ. h

Note that for D1, these results hold also in the larger variety Birk.

Proposition 6 The 2-element semilattice D2 is subdirectly irreducible and weakly
projective in BiCh. Its splitting variety WðD2Þ in BiCh is the variety DL of
distributive lattices.

Proof Clearly D2 is subdirectly irreducible. Let A be a bichain and f : A�D2 be
an onto homomorphism. Then there are x and y in A with f ðxÞ ¼ 1 and f ðyÞ ¼ 2.
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While we could now just jump to the answer, we build it step at a time to
demonstrate an idea that will be used in a later proof. This same idea would have
worked above. We first patch up the meet operation and consider the following:

xy

y

y

xy

We have f ðxyÞ ¼ f ðxÞf ðyÞ ¼ 1ð Þ 2ð Þ ¼ 1 and f ðyÞ ¼ 2. Also ðxyÞy ¼ xy. So
fx; xyg is a 2-element subset of A that works well with respect to meet. But it
doesn’t work well with respect to join since we would like that yþ xy ¼ xy and
there is no reason for this to be true. We work with what we have now and get it to
work with respect to join.

y xy

y

y

y xy

Now by construction, this works well with respect to join, as
yþ yþ xy ¼ yþ xy. It also works with respect to meet, as yþ xy ¼ yðxþ yÞ, so
yðyþ xyÞ ¼ yþ xy. So fyþ xy; yg is a subalgebra of A, f ðyþ xyÞ ¼ 2þ 1 ¼ 1
and f ðyÞ ¼ 2. So there is r : D2 ! A with rð1Þ ¼ yþ xy and rð2Þ ¼ y, so D2 is
weakly projective.

We next show that WðD2Þ ¼ DL. Surely WðD2Þ � DL. To show
WðD2Þ � DL, suppose A 2 BiCh and A has no subalgebra isomorphic to D2. Note
that for any x; y 2 A we have x½xðxþ yÞ� ¼ xðxþ yÞ, and Birkhoff’s equation
aðaþ bÞ ¼ aþ ab gives xþ xðxþ yÞ ¼ xðxþ xþ yÞ ¼ xðxþ yÞ. As A has no
subalgebra isomorphic to D2, it follows that xðxþ yÞ ¼ x for each x; y 2 A, and
then by Birkhoff’s equation that xþ xy ¼ x for each x; y 2 A. So A is a lattice.

Consider the equations

xðxþ yÞðxzþ yÞ ¼ xðxþ yÞðxzþ yþ zÞ

zðxþ yÞðyþ xzÞ ¼ zðxþ yÞðyþ zþ xzÞ

Both hold in every bichain. To see this, as these equations involve three variables
it is enough to check them in each 3-element bichain, and this is not difficult. So
these equations hold in the variety BiCh, hence also in A. The first does not hold in
the 5-element modular, non-distributive lattice M3, and the second does not hold
in the 5-element non-modular lattice N5. So A is a lattice containing neither M3

nor N5 as a subalgebra, showing A is a distributive lattice [13]. h
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Note that our proof shows more. The algebra D2 is weakly projective in the
larger variety Birk. It therefore has a splitting variety in Birk, but this is not DL, but
the variety Lat of all lattices. This proof also shows Lat \ BiCh ¼ DL. In
particular,

Corollary 1 Any lattice in VðBÞ ¼VðMÞ is distributive.

Now to the result most pertinent to our variety V Bð Þ. For convenience, we
recall what A5 looks like.

· +

1

2

3

3

1

2

Proposition 7 A5 is subdirectly irreducible and weakly projective in BiCh.

Proof The bichain A5 is subdirectly irreducible with its minimal congruence
being the one collapsing 1 and 2. To see that it is weakly projective, assume
A 2 BiCh and f : A�A5. Then there are x; y, and z in A with f ðxÞ ¼ 1, f ðyÞ ¼ 2,
and f ðzÞ ¼ 3. We follow the process in the previous proof to try to build a
subalgebra of A that is isomorphic to A5. As our first step, we fix meets.

xyz

yz

z

z

xyz

yz

So now meets are okay, but joins are a problem. We fix them, bearing in mind
we may wreck our meets when we do so.

z xyz

z xyz yz

z

z

z xyz

z xyz yz

So now we have fixed joins, but have troubles with the meets again. Before we
continue further, note that Birkhoff’s identity aðaþ bÞ ¼ aþ ab gives the
following
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zðzþ xyzþ yzÞ ¼ zþ zðyzþ xyzÞ
¼ zþ zyzðyzþ xÞ
¼ zþ yzðyzþ xÞ

So in fixing meets again, we may leave intact the top two elements of the �-order
to obtain the following.

(z xyz)(z xyz yz)

z xyz yz

z

z

(z xyz)(z xyz yz)

z xyz yz

Birkhoff’s identity gives ðzþ xyzÞðzþ xyzþ yzÞ ¼ zþ xyzþ yzðzþ xyzÞ. So
the join of the bottom two elements of the þ-order are correct since z will be
absorbed when added to this element. To see the join of the top two elements of
the þ-order are correct, we again use Birkhoff’s identity.

zþ xyzþ yzþ ðzþ xyzþ yzÞ � zþ xyzÞ ¼ ðzþ xyzþ yzÞðzþ xyzþ yzþ zþ xyzÞ
¼ ðzþ xyzþ yzÞðzþ xyzþ yzÞ
¼ zþ xyzþ yz

So after the last round of fixing meets, joins also are fixed.
We then get that fz; zþ xyzþ yz; ðzþ xyzÞðzþ xyzþ yzÞg is a subalgebra of A.

One easily sees that f ððzþ xyzÞðzþ xyzþ yzÞÞ ¼ 1; f ðzþ xyzþ yzÞ ¼ 2, and
f ðzÞ ¼ 3. So A5 is weakly projective. h

We have shown somewhat more, that A5 is weakly projective in the larger
variety Birk. In [20] we are able to extend this result significantly and show any
finite bichain not containing the algebra A4 is weakly projective in the variety
Birk. However, it is the specific instance given above that is applicable to our study
of Type-2 fuzzy sets. The main points are summarized below.

Theorem 2 The algebra A5 is subdirectly irreducible and weakly projective in
the variety BiCh. Its splitting variety WðA5Þ in BiCh contains VðBÞ and these two
varieties contain exactly the same bichains. Equations defining WðA5Þ are given
by the equations defining the variety BiCh and the splitting equation below, which
is a generalized form of the distributive law.

xðyþ zÞðxyþ xzÞ ¼ xðyþ zÞ þ ðxyþ xzÞ: ðSÞ

Proof That A5 is subdirectly irreducible and weakly projective in the variety
BiCh is the content of Proposition 7. By Proposition 4, WðA5Þ is a variety and is
the largest subvariety of BiCh not containing A5. From its definition, B belongs to
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WðA5Þ, so WðA5Þ contains VðBÞ. That WðA5Þ and VðBÞ contain the same
bichains is provided by Theorem 1.

It remains to find the splitting equation for A5 in BiCh. Let F be the free
Birkhoff system on the generators x; y, and z and let u : F ! A5 be the homo-
morphism mapping x; y and z to 1; 2 and 3, respectively. In the proof of the
previous result, we found that fðzþ yzþ xyzÞðzþ xyzÞ; zþ yzþ xyz; zg is a sub-
algebra of F mapping isomorphically onto A5. Since f1; 2g generates the smallest
non-trivial congruence on the subdirectly irreducible algebra A5, it follows from
general considerations that the elements of this subalgebra mapped to 1 and 2 give
the splitting equation for A5 in the variety of Birkhoff systems:

ðzþ yzþ xyzÞðzþ xyzÞ ¼ zþ yzþ xyz ðTÞ

Using the software packages Prover9 and Mace4 [16], we can find an example to
show equation (T) is not equivalent to (S) in the variety of Birkhoff systems.
However, consider the equations

xðxþ yÞðxzþ yÞ ¼ xðxþ yÞðxzþ yþ zÞ ð1Þ

xðxyþ xzÞ ¼ xyþ xz ð2Þ

Considering cases, one checks that these equations are valid in every bichain, so
are valid in the variety BiCh. Prover9 shows that in the presence of the identities
for Birkhoff systems, equations (T), (1), and (2) together imply (S), and (S), (1),
and (2) together imply (T). So in the varietyBiCh we have (T) and (S) are
equivalent, showing (S) is the splitting equation for S in the variety BiCh. h

We remark that as (S) is not equivalent to the splitting equation for A5 in the
variety Birk, the splitting variety for A5 in Birk is strictly larger than the splitting
variety for A5 in BiCh, and therefore strictly larger than VðBÞ. So VðBÞ is not
simply defined by the equations for Birkhoff systems plus (S), thus we do need
some additional equations.

5 Conclusions and Remarks

From a previous paper [12], we know that the variety generated by the truth value
algebra of type-2 fuzzy sets with only its two semilattice operations in its type is
generated by a 4-element algebra B that is a bichain and, in particular, a Birkhoff
system.

Our aim is to find an equational basis for the variety generated byB. This problem
is difficult, but we have some progress. Our technique is to consider a particular
3-element bichain A5, show it is subdirectly irreducible and weakly projective,
hence splitting, and that its splitting variety WðA5Þ in BiCh contains VðBÞ.
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We conjecture that WðA5Þ ¼VðBÞ. If so, this will show the splitting equation
(S) forA5 then definesVðBÞwithin BiCh. The results of Sect. 3 lend credence to this
as we have shown a bichain belongs to WðA5Þ if and only if it belongs to VðBÞ.

There remain a number of open problems in connection with this work. These
include determining whether or not WðA5Þ ¼VðBÞ, and finding an equational
basis for BiCh. Together, these will provide an equational basis for VðBÞ, and
hence for the �;þ fragment of the truth value algebra M of type-2 fuzzy sets. One
could conjecture that an equational basis for M with all its operations is one for B
plus the equations for negation and the constants.

We have determined [20] that a bichain is weakly projective in the variety Birk
if and only if it does not contain a copy of the bichain A4. As each weakly
projective subdirectly irreducible algebra gives a splitting of the lattice of sub-
varieties, this adds to our knowledge of the lattice of subvarieties of Birkhoff
systems, and in particular, of subvarieties of BiCh. We believe this variety BiCh is
natural and of interest independent of its connection to fuzzy logic.

Finally, we remark that in preparing this still incomplete work, we made use of
Universal Algebra Calculator [18], as well as the programs Prover9 and Mace4
[16] to find and work with equations. After finding equations with these programs
we further verified all properties by hand. We are grateful to several people for
providing equations of help to us, including Peter Jipsen, Keith Kearnes, and Fred
Linton, and also to Anna Romanowska for several communications.
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Type-2 Fuzzy Sets and Conceptual Spaces

Janet Aisbett and John T. Rickard

Abstract Conceptual spaces provide a rich interpretation for computing with
words, offering additional structure to that provided by fuzzy set models alone. In
fuzzy conceptual spaces, properties are type-2 fuzzy sets on domains, concepts are
type-2 fuzzy sets on pairs of properties and an observation is a family of fuzzy sets
on domains relevant to a context. These type-2 fuzzy set structures are derived and
manipulated using subsethood. This chapter relates such a theory of conceptual
spaces to conventional multivariate classification and computing with words
(CWW), and illustrates its application to land use assessment tasks.

1 Introduction

This chapter describes an approach to classification and computing with words
(CWW) based on conceptual spaces [1]. Conceptual spaces are in turn based on
the feature spaces of conventional multivariate classification. Fuzzy conceptual
spaces enhance the knowledge structure of conceptual spaces with the ability to
model imprecision through type-1 and type-2 fuzzy sets.

Conventional classification assigns an observation to a concept (class)
according to some notion of the match between values observed on various
domains and the properties that define the concept on those domains [2]. Typically,
classes are defined as conjunctions of properties. Reference [1] distinguishes
properties defined on domains such as sensory domains as natural properties, in
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contrast to abstract or constructed properties. Nevertheless, most domains are
assumed to be equipped with a metric.

In the terminology of CWW, a property is a value of a linguistic variable, such
as young as a value of the variable age, together with a fuzzy set model of the
value [3, 4]. More complex linguistic descriptors are usually formed as a con-
junction of linguistic values, although negation and disjunction may also be
invoked. The match between observations (inputs) and a linguistic descriptor (the
antecedent) is the firing level of a fuzzy system rule.

The departure of conceptual space modeling [1] from these approaches is to
define concepts as labeled sets of properties and the associations between these
properties. This co-occurrence of properties is a potentially important discrimi-
nator. In order to formalize concepts and to compare observations made about an
entity with a concept, Rickard represents concepts using square co-occurrence
matrices, with dimension equal to the number of properties used to define the
concept [5]. He models observed entities using symmetric matrices with entries the
minimum of the degrees to which a the entity possesses the two associated
properties. Subsethood, the directional measure of overlap of fuzzy sets, is used to
define directional similarity, rather than some inverse function of distances.

Table 1 translates terminology from conceptual spaces [6] into their mathe-
matical forms and into the nearest equivalents in CWW and multivariate classi-
fication. This table points to another distinguishing feature of conceptual spaces as
presented in [6], i.e., the explicit modeling of context.

Table 1 Approximate translations of standard conceptual space (CS) terminology used in [6]

CS Mathematical CWW Multivariate modeling

Label Member of index set Word
Domain Set, possibly with

structure, e.g.,
topology

Universe—a set Domain—usually a categorical set,
or a subset of reals R or Rn

Property Indexed function
mapping a set into
the unit interval

Linguistic value and
a fuzzy model of
the value

Properties (or features, attributes,
characteristics)—usually
modeled as elements of
categories or connected regions
in Rn

Observation Element in a set, or a
vector of
elementsa

Perception—a
linguistic value
and its fuzzy
model

Value on a domain, or a set of such
values over multiple domains

Concept Square matrix
representing
associations
between properties

Linguistic descriptor
or conjunction of
linguistic values

Class—a set of properties, one on
each domain

Context Indexed set of
functions into
[0,1]

(Implicitly defined
through linguistic
variables)

(Implicitly defined through the
domains considered)

a Converted to symmetric square matrix when compared with a concept
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Imprecision has been introduced into conceptual space representations used in
land use assessments [7–9]. This is an important application area. Land use
involves a rich set of domains, usually real-valued or categorical. Observations
indexed by location are recorded directly, as ground-registered observations, or by
processing raw data such as satellite imagery. The data are uncertain due to a wide
range of factors including processing errors, averaging over heterogeneous regions,
changes since raw data were recorded, spatial registration errors, and interpolation
errors [10]. Concepts are labeled with a set of linguistic terms such as mixed forest
or developed open space [8, 11, 12]. A land use class description is typically a
conjunction of propositions built from descriptors such as ice cover, or impervious
surface, relations such as greater than 25 % or dominated by, and vague qualifiers
such as generally, most commonly, as in ‘‘generally vegetation accounts for less
than 15 % of total cover’’.

This chapter extends the representation of imprecision in conceptual spaces,
building on [13]. This chapter is organized as follows: the remainder of this section
presents notation, conventions, and the key definition of subsethood. Section 2
formally defines type-1 and type-2 fuzzy constructs and operations required for an
extended theory of conceptual spaces. Section 3 illustrates their application to land
use management. The final section briefly discusses benefits and overheads of
fuzzifying conceptual spaces, and suggests further research.

1.1 Notation and Conventions and the Definition
of Subsethood

Symbols V;X; Y ; Z denote domains and M(V) denotes the set of normal (i.e., unity
height) membership functions on V . Symbols F;G;H denote type-1 fuzzy sets on a
domain with respective membership functions f ; g; h and ~F; ~G; ~H denote type-2
fuzzy sets with respective membership functions ~f ; ~g; ~h: As usual ~fv : 0; 1½ � ! 0; 1½ �
denotes the secondary membership function at v, i.e., the restriction of ~f to fixed
v 2 V : We assume all secondary membership functions are normal.

A fuzzy set G is at times identified with its membership function g, and likewise
for type-2 fuzzy sets and membership functions. A type-2 fuzzy set ~G on V is also
identified with the fuzzy set on M(V) with membership function

m~GðFÞ ¼ inf ~gðv; f ðvÞÞ : v 2 Vf g; ð1Þ

where ~g : V � 0; 1½ � ! 0; 1½ � and inf is the infimum [14].
Subsethood. Subsethood SV is a membership function on pairs of fuzzy sets

defined on the same domain V . It directionally measures the extent to which the
fuzzy sets overlap. If V is finite,

SVðF;GÞ � SVðf ; gÞ ¼
X

vi2V
minff ðviÞ; gðviÞg=

X
vi2V

f ðviÞ: ð2Þ
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In general, if V has a measure [15] with respect to which f and g are mea-
surable, the subsethood of F;G is defined as in (2) with Lesbegue integral
replacing summation.

Subsethood is extended to pairs of type-2 fuzzy sets ~G and ~H on domain V by
considering them to be fuzzy sets on M(V) via (1) and applying the Extension
Principle. The subsethood of ~G and ~H is thus a type-2 fuzzy set with membership

~SV
~G; ~H
� �

; y
� �

¼ sup
c;d2MðVÞ

inf ~g v; c vð Þð Þ; ~h v; d vð Þð Þ : v 2 V
� �

: SV c; dð Þ ¼ y
� �

ð3Þ

for y 2 0; 1½ �: When ~G and ~H are interval type-2 fuzzy sets on V the subsethood
secondary membership function is unity on a subinterval whose limits can be
specified in terms of the bounding functions; [16] presents an algorithm to com-
pute the limits.

2 Fuzzy Conceptual Spaces

Real world situations involve fuzzy observations and fuzzy properties. Observa-
tions are imprecise for many reasons besides measurement error. A characteristic
is often subjectively assessed or partially satisfied, e.g., does the goldfish show
lassitude? Even the definition of a property such as yellow may need to account for
the observer’s visual processing, the effects of lighting conditions, and so on.

The formal definition of fuzzy observations and properties that follows is
straightforward. However, the expression for the degree that an observed entity
possesses a (fuzzy) property is important. Proposition 1 shows this expression
generalizes the usual formulation when observations are crisp.

Definition 1 (Properties and observations [13])
1. A (fuzzy) property on V is a labeled (type-2) fuzzy set on V . Thus a fuzzy

property is defined by a name and a type-2 membership function
~g : V � 0; 1½ � ! 0; 1½ �.

2. A fuzzy observation on domain V is a labeled fuzzy set on V , where the label
denotes the entity observed. A fuzzy observation on a set of domains is a
labeled set of fuzzy sets, one for each domain. This set records the observations
made about a single entity on each of the domains.

3. The membership of an entity observed as F in a fuzzy property ~G is

~g fð Þ yð Þ, sup min f vð Þ; ~g v; yð Þf g : v 2 Vf g; y 2 0; 1½ � ð4Þ

where ~g (resp. f ) is the membership function of the property (resp. observation).
In the case that the property is representable by a type-1 fuzzy membership
function g, (4) reduces to
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~g fð Þ yð Þ ¼ sup f vð Þ : v 2 V ; g vð Þ ¼ yf g: ð5Þ

When ~g is interval type-2, (4) reduces to ~g fð Þ yð Þ ¼ sup f vð Þ :f
v 2 V ; ~g v; yð Þ ¼ 1g, and when the property collapses to a type-1 fuzzy set this
becomes the expression (5).

Proposition 1 If h : V �M Vð Þ ! 0; 1½ � is defined by h v; gð Þ ¼ g vð Þ for all

v; gð Þ 2 V �M Vð Þ then ~g fð Þ yð Þ ¼ h F; ~G
� �

for ~g fð Þ yð Þ as in Eq. (4) and f 2
M Vð Þ and ~gv 2 M 0; 1½ �ð Þ; v 2 V :

Proof Applying the Extension Principle to h gives h F; ~G
� �

yð Þ ¼ sup minf
f vð Þ;m~G hð Þ
� �

: v; hð Þ 2 V �M Vð Þ; h vð Þ ¼ yg where m~G hð Þ ¼ inf ~g v; h vð Þð Þ :f v 2
Vg as in (1). By construction, m~G hð Þ� ~g v; h vð Þð Þ for all v 2 V . Therefore, since

the supremum in (4) is computed over all v 2 V satisfying h vð Þ ¼ y; h F; ~G
� �

yð Þ� sup min f vð Þ; ~g v; yð Þf g : v 2 Vf g.

However, we can define h~g;v 2 M Vð Þ with h~g;vðvÞ ¼ y and h~g;v uð Þ ¼ u~g;v where

~g u; u~g;v

� �
¼ 1 when u 6¼ v. Then m~G h~g;v

� �
¼ ~g v; yð Þ. So h F; ~G

� �
yð Þ� sup

min f vð Þ; ~g v; yð Þf g : v 2 Vf g. This completes the proof.

In the context of finite fuzzy sets, Bellman and Zadeh called h F;Gð Þ the fuzzy
compatibility of the reference F with the linguistic value G (see [14] for a dis-
cussion). We interpret hðF;GÞ as the membership of an entity observed as F in
property G, and extend the interpretation to fuzzy properties ~G. Whether or not the
property is a type-2 function on V , membership of entities in the property is a type-
2 fuzzy set on the set M Vð Þ of possible observations.

Suppose X consists of all the labels of a set of fuzzy observations with mem-
bership functions fx; x 2 X on V (for example, X consists of the identifiers of
people whose heights have been measured, or the pixel locations of a satellite
image). Then the observations are represented by a membership function f :
X � V ! 0; 1½ � with f x; yð Þ ¼ fx vð Þ. Using (4), the membership of the entities in X

in property ~G can be collected into a type-2 fuzzy set ~g fð Þ : X � 0; 1½ � ! 0; 1½ �
with

~g fð Þ x; yð Þ ¼ sup min f x; vð Þ; ~g v; yð Þf g : v 2 Vf g: ð6Þ

This type-2 fuzzy set can be interpreted as the degree to which the collection X
has property ~G.

Example of membership of fuzzy observation in a fuzzy property. Figure 1
illustrates two examples in which a fuzzy observation has triangular fuzzy
membership function and a fuzzy property is an interval type-2 fuzzy set with
membership function of the form ~g v; yð Þ ¼ 1 for 1� exp �cvð Þ� y� 1�
exp �dvð Þ and ~g v; yð Þ ¼ 0 elsewhere. The entity property membership is readily
computed from (4) to be ~g fxð Þ yð Þ ¼ sup fx vð Þ : v 2 V0f g where V0 ¼
d�1 ln 1� yð Þ; c�1 ln 1� yð Þ½ � .
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The centroid of the fuzzy set in Fig 1a representing the membership of the
observed entity in the property is 0.90. If the observation is defuzzified to the value
at which its membership function peaks, and if the property is defuzzified by
taking the centroid of the secondary membership intervals, the membership in the
property is 0.83. These values are shown as asterisks in Fig 1a. The corresponding
values in Fig 1b are 0.64 and 0.59. In both cases the fuller modeling increases the
defuzzified membership value by about 8%.

We next present the key constructions of conceptual spaces [6] in fuzzy form.

Definition 2 (Context and concepts)
1. A context is a set I of (possibly fuzzy) properties, or equivalently, words with

associated (type-2) fuzzy sets. The properties may or may not be defined on the
same domains.

2. A concept C in the context I is a named membership function (fuzzy set) on
I � I. A concept can be presented as an n-square matrix Cij

� �
where 1; 2; . . .nf g

indexes the elements of I and Cij ¼ C ~gi; ~gj

� �
is interpreted as the degree to

which the occurrence of the property indexed by i coincides with the occur-
rence of the property indexed by j.

3. A fuzzy concept ~C in the context of a set of (fuzzy) properties I is a named type-
2 membership function on I � I, equivalently, a mapping
~C : I � I � 0; 1½ � ! 0; 1½ �:

The values C ~gi; ~gj

� �
and ~C ~gi; ~gj

� �
are interpreted as the way in which property

~gj is associated with property ~gi in understanding the concept. For example, are
fluffy patches near the mouth and a yellowish fin always observed together in a
diseased fish, or are these two symptoms most likely to be observed at different
stage of the disease and hence unlikely to co-occur? ~C ~gi; ~gið Þ and ~C ~gi; ~gið Þ are
interpreted as the salience of property ~gi for the concept. For example, are the

0

0.2

0.4

0.6

0.8

1

0 0.5 1

m
em

be
rs

hi
p

V/[0,1]

0

0.2

0.4

0.6

0.8

1

0 0.5 1

m
em

be
rs

hi
p

V/ [0,1]

property
bounds

observation

membership

defuzzified

(a) (b)

Fig. 1 Degree to which an entity has a fuzzy property when the observation is fuzzy. Solid lines
are bounding functions of the fuzzy property on V . For these bounding functions and for the
membership function of the observation, the horizontal axis is the domain V . The horizontal axis
is the unit interval for the property membership (shown as coarse dashes) and for the values at the
asterisks (see text). The vertical axis is the membership interval 0; 1½ �
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fluffy patches a reliably observed symptom? As in this example, properties in a
context are generally defined on different domains. Reference [6] discusses esti-
mation of these entries.

Definition 2 makes explicit the context in which concepts are modeled (and in
which observations are made). Context is important in defining both concepts and
similarity, as human judgments of similarity are well known to be context
dependent [17]. The same concept has different representation in different con-
texts, and different problems require different contexts, e.g., a wealth concept may
require the ownership of cattle in some countries.

When words not in a context overlap words in a context. According to Defi-
nition 2, properties are either in a context or are not. However, at times it may be
necessary to translate a description into words used in a context. For example, an
observation may have been made of a red apple when the context only contains
property crimson. A context I induces a (type-2) fuzzy indicator membership
function lI on the set of all (fuzzy) properties involved in a concept, namely,

lI ~gð Þ ¼ max ~SV ~g; ~g0ð Þ : ~g0 2 I
� �

ð7Þ

for subsethood ~SV defined as in (3) and for V the domain of ~g. Properties in I
obviously have membership unity, and fuzzy properties in I have peak member-
ship lI ~g; yð Þ ¼ infv2V ~g v; yvð Þ : ~g v; yvð Þ� ~g v; sð Þ; s 2 0; 1½ �f g at y ¼ 1. On the other
hand, lI ~gð Þ ¼ 0 if the support of ~G is disjoint from that of each property in the
context (in particular, if ~G is defined on a different domain to those on which the
properties in I are defined).

The indicator is used to translate concepts between contexts as follows. If ~C is
defined in context I and ~gi; ~gj 2 I0 then

~C ~gi; ~gj

� �
¼ lI ~gið ÞlI ~gj

� �
~C ~hi; ~hj

� �
ð8Þ

where ~hi; ~hj 2 I and lI ~gkð Þ ¼ ~SVk ~gk; ~hk

� �
; k ¼ i; j. (Note that this is a product of

fuzzy numbers, and that the choice ~hi; ~hj may not be unique so the estimate in (8)

may not be uniquely defined.) Applying (8) to all pairs in I0 � I0 redefines ~C in
context I0:

The computational implications of modeling additional vagueness, even with
crisp context, become apparent when we fuzzify the definition of concept
similarity.

Definition 3 (Similarity and pseudo concepts)
1. The similarity of a fuzzy concept ~C to concept ~C0 in context I is their sub-

sethood ~SI�I
~C; ~C0
� �

computed using (3) on domain I � I.
2. Suppose fuzzy observations f ¼ fkf g are made of an entity on each domain Vk

in a context I ¼ ~gk : Vk � 0; 1½ � ! 0; 1½ �; k ¼ 1; ::;Kf g. Then the pseudo-con-
cept ~Cf representation of the observed entity in context I is the fuzzy concept
with
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~Cf ~gi; ~gj

� �
¼ min ~gi fið Þ; ~gj fj

� �� �
: ð9Þ

Thus, a pseudo-concept of an entity can be thought of as a matrix with entries
the pairwise conjunction of the membership of the entity in the context
properties.

3. The membership of the entity in concept ~C is

~SI�I
~C; ~Cf

� �
: ð10Þ

Equation (9) is the minimum of two fuzzy membership values of the form (4),
so entries in ~Cf are likewise fuzzy membership values which the Extension
Principle gives as

~Cf ~gi; ~gj

� �
; y

� �
¼ sup min ~gi fið Þ zð Þ; ~gj fj

� �
z0ð Þ

� �
: min z0; zf g ¼ y

� �
ð11Þ

The pseudo-concept construction was first provided in [5] in the case of crisp
observations, to allow similarity of an observation to a concept to be defined using
subsethood. In standard classification schemes, the similarity of an observation to a
number of concepts or classes is computed and the observation is classed as
belonging to the concept to which it has greatest similarity. When the similarities
are fuzzy numbers, a method of ordering them must be chosen, e.g. by their
centroids.

3 Examples of Land Use Suitability and Change
Assessments

This section illustrates how land use assessment tasks are conducted within the
conceptual space framework. We first look at land suitability assessment, and then
at land use change assessment. We show that performance can be improved even
with simple models of vagueness, but that this cannot replace more sophisticated
modeling.

3.1 Land Suitability Assessment and Classification

In land use suitability assessments, the concepts (classes) represent the suitability
of location for a potential use, such as growing a commercial crop or building
public housing. Some schemes combine suites of concepts, for example, concepts
of climate, water resources, environmental hazards, and soil suitability [18], from
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which complex suitability concepts are constructed. In most schemes, disjoint
classes and crisp membership are assumed [8, 11, 12].

Linguistic descriptors identify a set of characteristics such as propensity to
flooding and slope [19] taking values in a small ordinal domain, say {0,1,2,3}. The
ordinals reflect the impact of an underlying domain rating on the land suitability.
The values might be an expert’s assessment with respect to a linguistic descriptor
such as perfect drainage, or might be a range, such as stoniness value of 2 when
10–20% percent of the subsoil is stones, or slope value of 1 for\2�, 2 for 2–8� etc.

The values (sometimes called indexes [20]) are combined in various ways to
form a land use suitability rating or land use classification. A class in most land use
definitional schemes is a set of crisp properties, with a location classified as
belonging to a class only if it satisfies all the properties. The FAO land suitability
scheme [18] also uses the least favorable factor to determine land suitability. (In
our terminology, characteristics and factors are properties gi : Vi !

ni1; . . .; niL ið Þ : n1i 2 0; 1½ �
� �

and the rating of the location as suitable under the
FAO strategy is the membership value minfgiðfiÞ : i ¼ 1; . . .; Jg for fi the obser-
vation on domain i.)

Concept membership is also sometimes calculated as a weighted aver-
age
P

i wigi fið Þ, possibly converted to a categorical rating by partitioning the range
of the aggregate score and assigning a rating to each partition. Reference [10]
discusses other algorithms including ordered weighted averages in which an
additional set of location-dependent weights are assigned according to the size-
based rank of the factor value at that location. Alternatively, a continuous land
suitability membership function can be defined, for example as
exp �a

P
i 1� wigi fið Þð Þ

� �
[12] or the jth root of the product of property mem-

berships,
Q

i giðfiÞ
� �1

j [20].
Translated to our terminology, suitability is determined by a context

I ¼ gi : Vi ! 0; 1½ � : i ¼ 1; . . .; Jf g. Each property takes membership values in a
set of L ið Þ ratings between 0 and 1, with higher ratings indicating greater suit-
ability for that crop. Thus gi has membership function of the form
gi vð Þ ¼ nil; v 2 Vil; l ¼ 1; . . . L ið Þ, where Vil ¼ g�1

i nilð Þ and Vi ¼ [l¼1;...;LðiÞVil. (For
example, Ref. [12] partitions the possible attribute values on each continuous
domain into a range of values, then assigns a rating on different domains according
to the partition element to which an observation belongs. The partition element is
mapped to a score.)

Suppose the overall suitability of a location is determined by a finite partition
irf gr¼1;...;L of the range of the aggregate suitability score. After normalization, this

partition can be modeled as a property g on the unit interval, taking L membership
values, with ir � g�1 rð Þ. If the observation f at location x is crisp on all domains,
under this standard approach x has suitability rating r when

P
ði;liÞ:fi2Vili

nili=J 2 ir:

In contrast, we define suitability using subsethood as in (10). A suitability
concept C of the form suitable for crop b is modeled as the up-fuzzification of the
concept in which all associations are unity. (Like current models, this assumes all
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properties are satisfied in an ideally suitable location.) Thus for i; jð Þ 2 I �
I; ~C gi; gj

� �
; 1

� �
¼ 1 and ~C gi; gj

� �
; y

� �
¼ 0 for y 2 0; 1½ �. Suitability of x is the

subsethood of the fuzzy observation fx in ~C; which, from (9), (10), (3) and (2), is

~SI�I
~C; ~Cfx

� �
; y

� �
¼ inf

i;j2I
~Cfx gi; gj

� �
; yij

� �
: yij 2 0; 1½ �; y ¼

XJ

i;j¼1

yij=J2

( )

: ð12Þ

Next, suppose the membership of an observation fx ¼ fxi : Vi ! 0; 1½ Þf g in a

property Gi is a truncated Gaussian, that is, gi fxið Þ yð Þ ¼ exp �axi y� zxið Þ2
� 	

for

some parameters axi [ 0; zxi 2 0; 1½ �. Such a form is approximated for the
expression gi fxið Þ yð Þ given in (5) when properties and fuzzy observations both have
Gaussian membership functions. Such a form could also be estimated by an expert
observer, for example, assessing the degree to which topsoil at a location x is stony
in a method analogous to experiments in [21].

By (9), ~Cfx gi; gj

� �
is the minimum of two fuzzy sets. Therefore if zxi\zxj, by a

well-known result generalized in [22], ~Cfx gi; gj

� �
; y

� �
¼ exp �axi y� zxið Þ2

� 	

when y 2 0; 1½ � is less than the largest crossover point (if any) of the Gaussians,

after which ~Cfx gi; gj

� �
; y

� �
¼ exp �axj y� zxj

� �2
� 	

. When the variances of the

Gaussians are similar, ~Cfx gi; gj

� �
; y

� �
� exp �axi y� zxið Þ2

� 	
over the unit interval.

Using this approximation and, with parameters zxi sorted to increase with i, (12)
becomes

~SI�I
~C; ~Cfx

� �
; y

� �
¼ inf

i2I
exp �axi yi � zxið Þ2
� 	

: y ¼
XJ

i¼1

2n� 2iþ 1ð Þyi=J2

( )

:

ð13Þ

This is solved by forcing axi yi � zxið Þ2¼ d for each i and using the constraint to
solve for d as a function of y 2 0; 1½ �. Recall that the zxi help describe the mem-
bership value that location x has the property Gi, and so the sorting and hence the
weights 2n� 2iþ 1ð Þ in (13) are observation dependent.

Figure 2a depicts gi fxið Þ yð Þ as a function of y 2 0; 1½ � for five properties and one
location x (referred to as location 3). We will also consider two other locations
(locations 1 and 2) whose membership in each of the properties has similar shape
but whose Gaussian means congregate respectively in the lower and upper regions
of the unit interval, being (0.06, 0.15, 0.06, 0.06, 0.08) and (1.0, 0.8, 0.9, 0.8, 0.9).
This positioning is reflected in the overall location suitability, Fig 2(b), computed
in the context of the 5 properties using (13). The peak of the suitability mem-
bership function is, respectively, 0.07, 0.84, and 0.66 for the three locations. The
simple average of the means of the membership of the location in each of the five
properties is 0.08, 0.88, and 0.59 for locations 1, 2, and 3 respectively.
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Figure 2c compares suitability of location 3 computed using (13) with the
minimum, maximum, and average of the location’s membership in the five
properties. Minimum and maximum were computed using the methods described
in [22]. The fuzzy average is obtained using (10) if the concept is treated as a
diagonal matrix, i.e., with nontrivial membership values ~C gi; gj

� �
; 0

� �
¼ 1; i 6¼ j;

and ~C gi; gið Þ; 1ð Þ ¼ 1: The constraint in the expression (13) is then replaced by
y ¼

P
i¼1;...;J

yi=J, i.e., the fuzzy average. The fuzzy average is more optimistic
than the subsethood measure of suitability.

3.2 Land Use Change

An important application of land use maps is monitoring change. Standard
approaches aggregate the area whose use has changed from one class to a second
class in the period between mappings. The resulting value is entered into a land use
change matrix. Not all land use class changes are equally significant [8]; two
classes may be more similar to each other than they are to a third class. Reference
[7] proposes using two type of similarity measure, based on overlap of properties
on a domain and on distance between fuzzy membership functions. Overlap is a
directional measure, related to the subsethood of properties on a domain. In our
notation, the expression proposed by [7] for the overlap of two concepts defined
respectively by property gi; g0i on each of J domains Vi is:

location 1

location 2

location 3

subsethood, 
C(i, j)=1
average

maximum

minimum

(a) (b)

(c)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Fig. 2 (a) Membership of location 3 in five properties. See text for description of the
membership of locations 1 and 2. (b) Membership of the three locations in the concept suitability
for crop based on the five properties. (c) Suitability membership functions for location 3
computed using minimum, maximum, and the average of property membership functions at that
location
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O C;C0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XJ

i¼1
wiSVi g0i; gið Þ2

r

: ð14Þ

Generally, in land use change modeling each class/concept under consideration
is described in terms of a set of properties, one per domain. The classes can be
assumed to involve the same set of domains; if the definition of a concept does not
involve a domain used in defining some other concept, then a dummy property
consisting of the entire domain can be used.

So suppose the modeling concerns properties ~gmi, one per domain
Vi for i ¼ 1; . . .; J, say, and M classes. Represent each class ~C mð Þ;m ¼ 1; . . .;M as a
concept in a context I mð Þ in which all entries are unity, i.e.
for 1� i; j� J; ~C mð Þ ~gmi; ~gmj

� �
; 1

� �
¼ 1 and ~C mð Þ ~gmi; ~gmj

� �
; y

� �
¼ 0; y\1. In the

context I nð Þ, concept ~C nð Þ would also have all entries of unity. However, in the
context I mð Þ the associations in ~C nð Þ have to be estimated from the overlap of
properties, using (8). Since there is only one property per domain in each context,
(8) becomes

~CðnÞð~gmi; ~gmjÞ ¼ ~SVið~gmi; ~gniÞ~SVjð~gmj; ~gnjÞ~CðnÞð~gni; ~gnjÞ ð15Þ

This reduces to ~SVið~gmi; ~gniÞ~SVjð~gmj; ~gnjÞ, which in general is a product of fuzzy
numbers.

Now suppose ~CðmÞxðtÞ is the pseudo concept formed from observations fxi tð Þ 2
M Við Þ made at location x at time t in the context of Ið~CmÞ. As in (12), the
membership of location x in class m at time t is

Ct
x mð Þ yð Þ ¼ inf

i;j
~C mð Þ

x tð Þ gmi; gmj

� �
; yij

� �
: yij 2 0; 1½ �; y ¼

XJ

i;j¼1

yij
�
J2

 !( )

ð16Þ

where ~C mð Þ
x tð Þ gmi; gmj

� �
; yij

� �
is as in (11).

A directional measure of change at location x between times t ¼ 1 and t ¼ 2 is
1� SP C1

x;C
2
x

� �
, where Ct

x are interpreted as fuzzy sets on the universe P con-

sisting of the classes m ¼ 1; . . .;M with membership functions Ct
x mð Þ. Thus from

(2), 1� SP C1
x;C

2
x

� �
¼ 1�

PM
m¼1 min C1

x mð Þ;C2
x mð Þ

� �
=
PM

m¼1 C1
x mð Þ. This sub-

sethood change measure is based on a fuzzy notion of whether the location is in a
class, rather than crisp classification as in the standard approach. If the only non-
zero membership at time 1 is C1

x mð Þ but C2
x mð Þ ¼ 0 then the change is 1 regardless

of the actual value of C1
x mð Þ:

A related symmetric subsethood measure of change is

1� 1
2

SP C1
x;C

2
x

� �
þ SP C2

x;C
1
x

� �� �
: ð17Þ
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Aggregation of the local change measure gives a directed subsethood measure
of change over the region of interest X, namely Xj j �

P
x2X xj jSP C1

x;C
2
x

� �
where

Xj j is the total area of X and xj j denotes the subarea of X to which the observations
at x refer. A symmetric subsethood measures of change over a region X is

Xj j � 1
2

X

x2X

xj j SP C1
x;C

2
x

� �
þ SP C2

x;C
1
x

� �� �
ð18Þ

Typically x is a pixel location in an image and xj j ¼ 1. If class membership is
crisp, then this measure is the count of pixels that have changed class.

When Properties are Fuzzy Sets. On properties which are fuzzy sets, as we
henceforth assume, subsethood is a number. Computing concept similarity as
subsethood (3) using (15) with C mð Þ gmi; gmj

� �
¼ 1 ¼ C nð Þ gni; gnj

� �
, we see that

SI nð Þ�I nð Þ C nð Þ;C mð Þ� �
is

X

i;j¼1;...;J

SVi gmi; gnið ÞSVj gmj; gnj

� �
=J2 ¼

X

i¼1;...;J

SVi gmi; gnið Þ=J

 !2

: ð19Þ

This can be written in terms of concept overlap O C0;Cð Þ as defined in (13):

SI nð Þ�I nð Þ C nð Þ;C mð Þ
� 	

¼
X

i¼1;...;J

SVi gmi; gnið Þ2
P

j¼1;...;J SVj gmj; gnj

� �

J2SVi gmi; gnið Þ ð20Þ

,O C nð Þ;C mð Þ
� 	2

with wi ¼
P

j¼1;...;J
SVj gmj;gnjð Þ

J2SVi gmi;gnið Þ when SVi gmi; gnið Þ 6¼ 0:

Thus, subsethood as concept overlap gives relatively greater weight to the
contribution of domains on which the respective concept properties have small
overlaps. Put another way, a small property overlap diminishes the concept overlap
more than in the case when concept overlap is computed using uniform weights.

Land Use Change Example when Properties and Observations are Fuzzy Sets.
We now present a simple example of land use change measurement that compares
the subsethood change measure with the standard measure when observations are
interval valued. Three land use classes are considered: open grassland, forest, and
urban development. There are three real-valued domains, respectively, percentage
of canopies, of grassland, and of impervious (man-made) surfaces. The entities
observed are locations (pixels) in region X. Full membership of each of the classes
under investigation requires that the location satisfy a set of properties which are
the crisp intervals listed in Table 2. When a class definition does not involve a
domain we use a dummy property over the full range of that domain. Note from
the table that even a crisp observation could be classified as both class 1, open
grassland, and class 3, urban development. The classes also do not cover all
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possible observations, so some locations may not belong to any of the studied
classes at one or both of the observed times.

In such a scenario, under standard land use classification a location x would be
assigned to a class m if and only if on each domain Vi the observation interval
overlaps the class property interval. Because the studied classes are not all
mutually exclusive and do not cover all possible observations, the standard
absolute measure of change can take one of three values: it is 1 when the location
changes class between observations or changes from satisfying two of the studied
classes to satisfying none; it is 0.5 if it changes to or from one of the studied
classes or between satisfying two to just one of the studied classes; and it is 0 if it
does not change.

By (9), ~C mð Þ
x tð Þ gmi; gmj

� �
; 1

� �
is the minimum of two fuzzy sets. Inspection of (11)

shows if properties and observations are crisp subsets, ~C mð Þ
x tð Þ gmi; gmj

� �
; 1

� �
¼ 1

when the observation overlaps the class m properties on the ith and jth domains
and is otherwise zero.

It then follows from (16) that Ct
x mð Þ is the number it

x mð Þ2=J2 for it
x mð Þ the count

of domains on which the observation at location x at time t overlaps the property of
class m on that domain. Inspecting (17) in conjunction with Table 2 we see that the
subsethood measure can take a larger number of values (in fact, it takes ten
values). When a location satisfies none of the studied classes at either time period
then inspection shows that the location must satisfy two properties for each of the
classes and so change must be zero.

Figure 4 is generated with the singleton observations shown in Figs. 3, and 5
with interval observations of width 10% of the width of X and with centroids as
depicted in Fig 3. Comparing Fig. 4a with Fig. 4c, Fig. 4b with Fig. 4d, and
Fig. 4e with Fig. 4f shows that the subsethood measure in this situation gives
similar results to the standard measure. Figure 4g gives the difference between the
measures, with darker areas indicating where the subsethood measure (17) has
recorded greater change. Aggregated over all pixels, change was detected in 38%
of locations with the conventional method, in 47% with the subsethood method,
but with aggregated measure of change based on (17) was 13%.

Allowing vagueness in the observations reduces the measured change, as can be
seen by looking at the difference between the change measure with vagueness and
without, in Figs. 4 and 5. Imprecision effectively acts to broaden the property
boundaries by the width of the interval. The conventional change measure reports
less change although the difference is reduced when imprecision is modeled.

Table 2 Concepts and their defining properties on domains V1, V2 and V3

V1 % grassland V2 % canopies V3 % impervious

C(1) open [60, 100] [0, 40]
C(2) forest [0, 40] [60, 100] [0, 40]
C(3) development [60, 100]
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Fig. 3 Observations in the square region X at times t ¼ 1; 2 of percentage grassland V1, canopy
V2 and impervious surface V3

Fig. 4 Land use change over a square region X. (a) Count of properties satisfied by each pixel
for the 3 classes at time t ¼ 1: (b) Change in counts by time t ¼ 2 (grey = no change).
(c) Membership of pixels in each of the three classes at time 1 (Eq. 16). (d) Change in
membership for each class by time 2. (e) Subsethood measure (17) of overall change. (f) Standard
absolute change measure. (g) Difference between measures (white implies greater change
registered with standard measure)

Fig. 5 Land use change over a square region X when centroids of interval observations on each
domain are as in Fig 3 and interval length is 10% of breadth of X. (a) Membership values (16) for
pixels being in each of the three classes at time 1. (b) Change in membership values by time t ¼ 2
(grey = no change). (c) Subsethood measure of overall change. (d) Standard absolute change
measure. (e) Difference between subsethood measure (17) of change when observations are fuzzy
and when they are crisp (white = greater change registered with crisp observations, grey = no
difference)
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4 Discussion

This chapter extended conceptual space theory to incorporate type-2 fuzzy set
structures. The need for such an extension is motivated by real world applications,
in which observations about a phenomenon are often vague and imprecise. The
key operation is subsethood, which is used to aggregate and to compare. Thus,
practical implementation of conceptual spaces benefits from recent algorithms to
efficiently compute subsethood of interval type-2 fuzzy sets [16].

Type-2 fuzzy sets played a variety of roles in our simulations of land use suit-
ability and land use change assessments. Neglect of imprecision was shown to affect
results by the order of 10%. The additional accuracy may warrant the workload
required in type-2 modeling for applications such as these involving public impact
and sensitivity, or where there is financial interest, as in share market prediction.

A property or a fuzzy property on a domain V induces a type-2 fuzzy set on the
set of fuzzy observations M(V), i.e., on the fuzzy sets on V. Vagueness captured in
these type-2 fuzzy sets can be attributed to the vagueness inherent in the property
membership combined with imprecision of an observation.

Explicit modeling of context is an important aspect of our approach to con-
ceptual spaces. The properties in a context are generally defined on different
domains, such as height and weight, and are thus open to the objection that mem-
bership functions on different domains are incommensurate (so that, for example, a
minimum of two membership functions cannot meaningfully be defined) [23, 24].
Our modeling attributes membership to the object. The fact that we still attribute
more heaviness than tallness to Jack is supported by evidence such as that found in
classification tasks [25], where people are prepared to make comparative judgments
on incommensurate domains such as ‘‘this object is more red than it is square’’.

A perennial issue which we could not adequately address was how best to
compare results presented as type-1 and type-2 fuzzy sets on the unit interval, for
example, membership of a location in concepts suitable for rice or suitable for
corn, or membership of two locations in a suitability concept.

Finally, fuzzifying conceptual spaces introduces additional modeling decisions
as well as computational overheads. When should we use a (fuzzy) conjunction of
properties tall and heavy defined on a product of length and weight using a
procedure such as that in [21], rather than a concept tall and heavy referenced to a
defining population (for example, Japanese men, 10-year old girls, ships)? More
work is needed on real applications to provide guidance for such decision making.
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Modeling Complex Concepts with Type-2
Fuzzy Sets: The Case of User Satisfaction
of Online Services

Masoomeh Moharrer, Hooman Tahayori and Alireza Sadeghian

Abstract Specific characteristics of human perception, like context-dependency,
imprecision, and diversity, demand capable formal frameworks for modeling the
human mind. This chapter discusses a two-phase method for deriving type-2 fuzzy
sets that model human perceptions of the linguistic terms used in describing online
satisfaction. In the first phase, we describe the identification of the determinants of
user satisfaction of online tourism services. We will demonstrate how the
decomposition of the satisfaction concept into a set of simpler, albeit covering
subconcepts, would be used to calculate a type-1 fuzzy set model of an individ-
ual’s perception. In the second phase, type-2 fuzzy sets modeling online user
satisfaction are derived based on the obtained type-1 fuzzy sets. The construction
of type-2 fuzzy sets is based on the exploitation of the fuzzy approach to represent
uncertainty and by stacking the a-planes calculated at different levels of confi-
dence around the estimated mean values of the type-1 fuzzy set.

1 Introduction

In daily communications, there are linguistic terms with immediate and trivial
interpretations. Generally, for such terms, like tall man, high temperature, low
speed, with a well-defined context, people may simply come up with a single
number or an interval as its interpretation. On the other hand, there are complex
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concepts like high satisfaction, low performance, good creditworthiness, whose
interpretations are not straightforward. Their complexity arises from the fact that
such concepts do not rely on a single determinant, but rather several factors with
different weights take part in forming their meaning. People are sometimes asked
to provide exact interpretations of such concepts, i.e., numbers or interval esti-
mations. In order to determine a number or the endpoints of an interval, different
machineries in different parts of the brain should be invoked, but the determination
is more associated with emotions [1]. Expecting an individual to be cognizant of
all the factors affecting such concepts is very optimistic.

In this chapter, we elaborate on modeling user satisfaction of online services
with type-2 fuzzy sets. To determine user satisfaction, users’ preferences are
usually measured using linguistically labeled rating scales. The use of linguisti-
cally labeled rating scales is based on the fact that people naturally demonstrate
their perceptions and cognitions with words, expressions, and sentences from
natural languages [1] and despite their diversity of perception, they communicate
smoothly with each other. However, human perception is not precise and varies
over time; one’s intuitions and cognition of a concept highly depends on the
context, domain knowledge, individual senses, etc. Hence, different individuals
may perceive the same concept differently [2]. That is why for the same concept,
although individuals use the same linguistic term, their perceptions and hence
interpretations are not necessarily similar [3, 4]. Nonetheless, people communicate
using linguistic terms, which suggests that the meanings of these terms among
individuals should not vary greatly [5].

Zadeh in 1975 [6] introduced the concept of linguistic variables whose key
aspect is the use of fuzzy sets to represent the meaning of words or terms from
natural languages. Deriving fuzzy set models of words usually relies on the data
gathered from different subjects. Although the theory of Type-1 Fuzzy Sets (T1
FS) provides a natural framework for modeling intrauncertainty, i.e., the uncer-
tainty of a subject on a concept, (i) except from fuzzy set experts, generally we
cannot expect people to explicitly express their intuitions using fuzzy sets and (ii)
using T1 FS to model a word requires all T1 FSs gathered from different indi-
viduals to be reduced to a single T1 FS which conceals the diversity and uncer-
tainty that exist among a group of people.

Type-2 Fuzzy Sets (T2 FS), fuzzy sets with fuzzy membership functions, are
proposed [6] as an extension of type-1 fuzzy sets. T2 FS are said to provide a
correct scientific uncertainty model for words and linguistic terms from natural
languages [7]. By providing more degrees of freedom than type-1 fuzzy sets, type-
2 fuzzy sets have more potential for handling uncertainties [3]. However, the most
challenging part of modeling words with T2 FSs is the calculation of their
membership functions. This is true to a lesser extent for Interval T2 FSs and
Shadowed Fuzzy Sets (SFS) [8, 9] as specific cases of T2 FS. In SFSs, the
fuzziness associated with membership functions of T2 FSs are redistributed in
shadowed sets [10]. SFSs provide more freedom degrees for handling uncertainties
in comparison with IT2 FSs, but with lower computational complexity than gen-
eral T2 FSs.
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To model the linguistic terms uses for describing user satisfaction, we will
primarily demonstrate decomposition of the concept into some covering subcon-
cepts. We will calculate the unique effect of each subconcept on the overall user
satisfaction. Then we will discuss the indirect derivation of a T1 FS, modeling
each individual’s satisfaction for whom we do not assume any fuzzy set theory
literacy. To capture the diversity of the T1 FSs derived from different subjects, we
will detail the construction of a T2 FS that models the concept. The methodology
proposed in this chapter which is an extension and enhancement to [11] can be
applied to model other decomposable complex concepts.

2 Review of Type-2 Fuzzy Sets

Type-2 Fuzzy Set ~A defined on the universe of discourse X is represented as,

~A ¼ x; l~A xð Þ
� ��� x 2 X; l~A xð Þ ¼ u; fx uð Þð Þ; u 2 Jx � 0; 1½ �; fx uð Þ 2 0; 1½ �f g
� �

ð1Þ

We refer to l~AðxÞ as the fuzzy membership value of x in ~A—it is also known as
secondary membership function or secondary set. Moreover, in (1), x is called the
primary variable, Jx represents the primary membership values of x and fxðuÞis
named secondary grade. When 8u 2 Jx; fx uð Þ ¼ 1, the type-2 fuzzy sets would be
reduced to interval type-2 fuzzy set.

Given a type-2 fuzzy set ~A, its Footprint of Uncertainty (FOU) is defined as,

FOUð~AÞ ¼
[

x2X

Jx ¼
[

x2X

uðxÞ; uðxÞ½ �; uðxÞ ¼ Inf
u2Jx

ðuÞ; uðxÞ ¼ Sup
u2Jx

ðuÞ ð2Þ

FOU of a type-2 fuzzy set ~A, can be fully characterized by two type-1 fuzzy
sets, named Upper Membership Function (UMF) and Lower membership Function
(LMF),

UMFð~AÞ ¼ FOU ~A
� �
¼ �uðxÞ; xð Þ; x 2 Xf g ð3Þ

LMFð~AÞ ¼ FOU ~A
� �
¼ uðxÞ; xð Þ; x 2 Xf g ð4Þ

In other words, FOUð~AÞ is bounded by UMFð~AÞ and LMFð~AÞ. Note that an
interval type-2 fuzzy set is fully characterized by its FOU. More detailed dis-
cussion on interval T2 FSs and general T2 FSs and their operations can be found in
[12–18].

3 User Satisfaction in Online Tourism

Alluding to the psychologists’ efforts in satisfaction-related studies, there is a
general agreement that satisfaction in a situation is a multidimensional attitude
which is the resultant of one’s perceptions, feelings, or attitudes toward a variety of
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factors that affect the situation [19]. The focus of this chapter is on satisfaction of
users of online tourism services in the prestage of a travel, i.e., before they actually
start their travel. In the prestage, potential tourists search for different tourist ser-
vices, airline tickets, hotels, etc., and make purchases in order to schedule their trip.

Unlike durable goods, intangible tourism services cannot be physically dis-
played or inspected at the point of sale before the trip. Therefore, tourism products
are thoroughly dependent on different aspects of their representations and offerings
by the tourism firms. Hence, proper and efficient utilization and management of
information is essential for tourism organizations to satisfy their customers.
Websites, hence, are the main channel which link tourism organizations with
potential tourists.

In order to evaluate user satisfaction of online services, we designed a ques-
tionnaire inspired by the models proposed by Szymansky and Hise [20], and
Servequal [21]. The main idea behind the design was to decompose the concept of
online satisfaction into its covering but simpler, more focused subconcepts.
Consequently, each question in the questionnaire was designed to shed light on the
concept of user satisfaction of online services from a unique aspect.

The questionnaire was comprehensively reviewed by different experts in the
field. Notably, the answers to the questions in the questionnaire were designed to
be in five-point Likert scale on the bipolar adjective pair bad-good with qualifiers
much worse than, worse than, the same, better than, and much better than. The
qualifiers are, respectively, assigned the values of 1–5. The questionnaire was
finalized after conducting a pilot test.

To gather data, a survey was conducted in front of the check-in desk in
Beauvais airport, Paris. The airport serves airlines like Ryanair, which sell the
majority of their tickets online. The respondents were the people who had expe-
rienced e-tourism at least once before. A total of 115 questionnaires were col-
lected. Cases with standard residuals above three were identified as outliers. After
omitting outliers and missing valued questionnaires, the number of valid responses
reduced to 99.

In order to determine the factors affecting the user’s overall satisfaction, a
factor analysis was performed on independent variables (the questions). Factor
analysis attempts to identify underlying variables or factors that explain the pattern
of correlations within a set of observed variables. Factor analysis is often used in
data reduction to identify a small number of factors that explain most of the
variance observed in a much larger number of manifest variables. Factor analysis
can also be used to generate hypotheses regarding causal mechanisms or to screen
variables for subsequent analysis (for example, to identify co-linearity prior to
performing a linear regression analysis).

The results confirmed that the five-factor measurement model introduced by
Szymansky and Hise [20] reflects the underlying respondents’ mental model in
e-tourism. The five factors observed were site design, convenience, financial secu-
rity, product information, and product offering. Moreover, the items of the ques-
tionnaire belonging to each factor were identified. Importantly, similar to [20] and
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[22] a regression analysis was performed to estimate the unique effect of each factor.
The results of the regression and factor analysis are shown in Table 1.

To ensure that we could use factor analysis on gathered data, Kaiser–Meyer–
Olkin Measure of Sampling Adequacy (KMO measurement) and Bartlett’s test
analysis were conducted. Results showed that KMO is greater than 0.5 (=0.79),
which signifies the number of samples, is big enough for using factor analysis [23].
Moreover, the significance of Bartlett’s test is 0, which signifies factor analysis
was applicable [24].

To test the reliability and internal consistency of each factor, Cronbach’s alpha
scores [25]—for factors with more than two items—and correlation coefficient—
for factors with two items—were calculated. The Cronbach’s alpha scores and the
correlation coefficient ranged from 0.53 to 0.82 for the five factors. Since 0.5 is the
minimum value for accepting the reliability test [26], the results of factor analysis
are reliable. More details on the method and results may be found in [27–30].

4 Modeling Individual’s Satisfaction with T1 FS

To model a subject’s overall satisfaction of online tourism services using T1 FSs,
we rely on the decomposition of the concept, the calculated weight of each con-
stituting item, and the answers to each of the items. As discussed, we have
identified the set of all factors and their items comprising the domain of satis-
faction in online tourism and we have calculated the contributing effect of each
factor—Table 1. Moreover, we have also calculated the weight of each item/
question of the questionnaire that is loaded into a specific factor—Table 1.

Let Rij be the response of the individual i to the question j with the contributing
weight Wj. An individual’s overall satisfaction would be calculated through

Table 1 Factors, Items, factor loading of items, and unique effects of factors in Satisfaction of
online Tourism Services

Factors Items Factor loading Factor weight

Factor 1: Attractive website 0.864 0.377
Site design Friendliness ease of use 0.682

Uncluttered screens 0.645
Factor 2: Purchase any time 0.797 0.375
Convenience Purchase anywhere 0.737

Time efficiency 0.711
Factor 3: Formal privacy 0.897 0.119
Financial security Safe feeling in transactions 0.807
Factor 4: Quantity of information 0.832 0.144
Product information Quality of information 0.740
Factor 5: Number of tourism services 0.753 0.163
Product offering Variety of tourism services 0.789
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aggregating the responses of the subject to each question with respect to the weight
of the item for which the question is asked [19],

Si ¼
X

j

WjRij ð5Þ

Given M questions—whose answers are designed on L point-scale—that are
loaded into N factors, we expand the Eq. (5) as follows:

Si ¼
XM

j¼1

Fkj � Qkj

� �
� Rij; k ¼ 1; . . .;N ð6Þ

where, Qkj represents the loading factor of question j into the factor k, and Fkj

denotes the weight of the factor k that the item j is loaded into. Reordering (6) to
group the items with equal response values, we have,

Si ¼
X

j2J1
8j2J1;Rij¼R1

Fkj � Qkj

� �
� R1 þ . . . þ

X

j2JL
8j2JL;Rij¼RL

Fkj � Qkj

� �
� RL ;

k ¼ 1; . . .;N

ð7Þ

Since R1,…, RL are constant, then

Si ¼ R1 �
X

j2J1
8j2J1;Rij¼R1

Fkj � Qkj

� �
þ . . . þ RL �

X

j2JL
8j2JL;Rij¼RL

Fkj � Qkj

� �
;

k ¼ 1; . . .;N

ð8Þ

In (8),
P

j2Jn
8j2Jn;Rij¼Rn

Fkj � Qkj

� �
denotes the cumulative belief degree of the

individual i for Rn, n ¼ 1; . . .; L to be his/her satisfaction degree. Dividing the (8)
by the maximum possible belief degree, we have,

S0i ¼

R1 �
P

j2J1
8j2J1;Rij¼R1

Fkj � Qkj

� �
þ . . . þ RL �

P

j2JL
8j2JL;Rij¼RL

Fkj � Qkj

� �
0

B@

1

CA

PM
j¼1 Fkj � Qkj

� � ;

k ¼ 1; . . .;N

ð9Þ

Considering the responses of a subject to all the items that were identified as the
building blocks of the satisfaction, Eq. (9) generates the numerical value of the
respondent overall satisfaction of tourism online services.
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In the survey, based on their experience with tourism online services, each
respondent was also asked to provide the evaluation of his/her overall sense of
satisfaction in online tourism by choosing from a list of linguistic labels. To
capture the respondent’s overall judgment, we used the following five-point
bipolar scale of Fully Dissatisfied—Fully Satisfied, where the points were,
respectively, qualified by the linguistic terms Very poor, Poor, Fair, Good, and
Very good.

We argue that the crisp value calculated by (9) is not easily interpretable. More
importantly, the correlation of the crisp number with the label that the subject has
chosen as his/her overall rate of satisfaction is not straightforward. Instead,
elaboration on (9) reveals that it can be considered as the centroid of the following
fuzzy set,

FS0i
¼

P
j2J1

8j2J1;Rij¼R1

Fkj � Qkj

� �
,
PM

j¼1 Fkj � Qkj

R1
þ . . .

þ

P
j2JL

8j2JL;Rij¼RL

Fkj � Qkj

� �
,
PM

j¼1 Fkj � Qkj

RL
; k

¼ 1; . . .;N ð10Þ

where ‘+’ denotes union operation and horizontal division line shows that its
numerator is the membership value of the denominator in the fuzzy set FS0i

. We
observe that by Eq. (10) we may represent a subject’s overall satisfaction as a T1
FS. In effect, we argue that, for a completed questionnaire, the calculated T1 FS by
(10) would represent the meaning of the label chosen by the respondent from the
following scale as his/her overall satisfaction.

1 2 3 4 5

Fully Dissatisfied

V
er

y-
po
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P
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r

F
ai

r 

G
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d

V
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y-
go

od

Fully Satisfied

Figure 1a represents all fuzzy sets calculated from the questionnaires of
respondents who had chosen the linguistic label Fair as their overall satisfaction
rate in online tourism. Figure 1b, however, shows a normalized fuzzy set derived
by calculating the point-wise average of all Fair fuzzy sets shown in Fig. 1a.
Figure 1c–f, respectively, show fuzzy sets associated with Good and Very good
overall satisfaction rates. The number of fuzzy sets associated with Very poor and
Poor were not sufficient for processing.

A notable characteristic of the T1 FSs is observed by calculating the average of
all T1 FSs modeling the same overall satisfaction—Fig. 1b. The resulting FSs are
all unimodal convex fuzzy sets with their apex on the numeric value that was
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associated to the label they represent. The apexes of FSs shown in Fig. 1b, d, and f
that are respectively calculated from all T1 FSs modeling Fair, Good, and Very
Good are on 3, 4, and 5.

5 T2 FS Model of User Satisfaction

There was no preassumption on participants in the survey, except having a prior
experience in online tourism services. The T1 FS that is calculated based on a
valid questionnaire, models the intra-uncertainty of its respondent about his/her
overall satisfaction. In effect, the T1 FS is the representative of the respondent’s
perception of the meaning of the linguistic term he/she has chosen as the overall
rate of satisfaction. Figures 1a, c, and e show that the perceptions of different
people of the same concept are not essentially equal. Using T1 FS to model a word
requires all T1 FSs gathered from different individuals to be reduced to a single T1
FS which conceals the diversity and uncertainty that exist among a group of people
[31, 32]. In the following, we will demonstrate the exploitation of IT2 FS and T2
FSs to handle the uncertainties that obviously exist among a group of individuals
on a single concept. In this section, we will only show the figures related to the
Fair satisfaction.

1 2 3 4 5
X

µ

(a)

1 2 3 4 5
X

µ

(b)

1 2 3 4 5
X

µ

(c)

1 2 3 4 5
X

µ

(d)

1 2 3 4 5
X

µ

(e)

1 2 3 4 5
X

µ
(f)

Fig. 1 Overall satisfaction rate: (a, c, e) All T1 FS models of individuals whose overall
satisfaction has been, respectively, Fair, Good, and Very good, (b, d, f) Point-wise average of all
T1 FSs of Fair, Good, and Very good overall satisfaction
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5.1 Union of All T1 FSs

As discussed in Sect. 2, an interval T2 FS (IT2 FS) would be represented by its
embedded T1 FSs. Let FS0i

l denote the fuzzy satisfaction model of individual i who
has chosen linguistic term l as his/her overall satisfaction rate. With respect to the

Mendel–John IT2 FS representation theorem [13], in order to derive an IT2 FS fFl

based on the set of T1 FSs we have,

UMFeF l xð Þ ¼ Max
i

FS0i
l xð Þ

� �
; i ¼ 1; . . .;Nl ð11Þ

LMFeF l xð Þ ¼ Min
i

FS0i
l xð Þ

� �
; i ¼ 1; . . .;Nl ð12Þ

The result of applying this method on the T1 FSs of Fair satisfaction rate is shown
in Fig. 2. It can be seen that the resulting IT2 FS is almost filled-in, i.e.,
LMFeFFair

xð Þ � 0 for most part of the U, which does not exhibit a reasonable IT2

FS [5].

5.2 Mean Confidence Interval

The point-wise averages of the calculated T1 FSs for each of the overall satisfaction
rate labels, shown in Fig. 1b, d, and f, are important from at least two aspects. On
one hand, from an individual basis, their convexity, apex position, and unimodality
and on the other hand, as the frame of cognition, their proper ordering, and dis-
tinguishability, make them exhibit considerable signs of interpretability [33].
However, since they are point estimations calculated from sample data, we cannot
expect the calculated values to coincide with what they are intended to estimate.
Hence, we will calculate the confidence interval M1�a around the mean estimation,
such that with the confidence level of 1� a, it contains the real mean value. The
interval estimation of mean at the confidence level of 1� a, for x 2 X is,

mFl xð Þ � ta=2:
sFl xð Þ
ffiffiffiffiffi
Nl
p � lFlðxÞ�mFl xð Þ þ ta=2:

sFl xð Þ
ffiffiffiffiffi
Nl
p ð13Þ

where mFl xð Þ, sFl xð Þ and Nl ,respectively, represent the mean, standard deviation,
and the number of samples gathered for the overall satisfaction rate l. In (13),
lFlðxÞ denotes the mean value of the population—all possible valid T1 FSs rep-
resenting the meaning of the label l—at x, which is actually unknown.

The IT2 FS of Fair satisfaction rate shown in Fig. 3 is derived by calculating the
estimation of mean bounds for all x 2 X with 1� a ¼ 0:99, i.e.,
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UMFFFair xð Þ ¼ mFFair xð Þ þ ta=2:
sFFair xð Þ
ffiffiffiffiffiffiffiffiffiffi
NFair
p ð14Þ

LMFFFair xð Þ ¼ Max 0; mFFair xð Þ � ta=2:
sFFair xð Þ
ffiffiffiffiffiffiffiffiffiffi
NFair
p


 �
ð15Þ

The resulting IT2 FS demonstrates to be more reasonable model of Fair
Satisfaction than the IT2 FS shown in Fig. 2.

Based on the fuzzy approach to the representation of uncertainty in measure-
ment [34, 35], a family of nested confidence intervals of point estimation—that are
calculated with various confidence levels—would be used to construct the mem-
bership function of a fuzzy set that represents an uncertainty in the gathered data

Fig. 2 IT2 FS of ‘Fair’
satisfaction rate calculated as
the union of all individual’s
perception of ‘Fair’
satisfaction rate
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Fig. 3 IT2 FS of ‘Fair
Satisfaction’ derived by
calculating the mean
estimation intervals at all
x 2 X; 1� a ¼ 0:99
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for the measurand. In effect, each confidence interval at the level of 1� a, cor-
responds to the a-cut of a fuzzy set that represents the uncertainty about the
measurand.

In order to construct a T2 FS representing the meaning of l overall satisfaction
rate, we will construct FOUs as discussed above, with various levels of confidence.
In practice, we refer to each calculated FOU as an a-plane [16, 36] and by stacking
nested planes the T2 FS would be constructed. Equivalently, from the vertical
standpoint [16], at each u 2 U, we construct a fuzzy grade by calculating mean
confidence intervals at various levels of confidence and pile them up. More pre-
cisely, for l at x 2 X we calculate,

Ml
1�a xð Þ ¼ mFl xð Þ � ta=2:

sFl xð Þ
ffiffiffiffiffi
Nl
p ; mFl xð Þ þ ta=2:

sFl xð Þ
ffiffiffiffiffi
Nl
p

� 

; a 2 ð0; 1� ð16Þ

Consequently, the fuzzy grade of u 2 U in the T2 FS FS0i
l is,
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Fig. 4 T2 FS model of Fair
Satisfaction in the context of
online tourism services
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Fig. 5 Fuzzy grade of x = 3
in the T2 FS model of Fair
Satisfaction in the context of
online tourism services

Modeling Complex Concepts with Type-2 Fuzzy Sets 143



lF
S0

i
l

xð Þ ¼
[

a

Ml
1�a xð Þ ð17Þ

Figure 4 shows the T2 FS calculated for Fair Satisfaction in the context of
online tourism services. Figure 5 depicts the vertical slice of the T2 FS shown in
Fig. 4 at x ¼ 3.

6 Conclusion

In this chapter, we discussed a practical method for modeling the complex concept
of user satisfaction in the context of online tourism services with T2 FSs. The
method is composed of two parts, first, identification of each individual’s mental
model with T1 FS and then integrating all T1 FSs into a reasonable T2 FS.
Existing methods for modeling concepts with T1 FSs mainly rely on mapping
gathered data from a group of individuals into a parametric T1 FS. These methods
require the person to provide endpoints of an interval as the quantification of his/
her perception that should be later mapped to a parametric T1 FS. If the individual
is knowledgeable enough, he/she might be expected to directly provide a T1 FS.
Although these methods may work for simple concepts, they might not be
applicable to complex concepts like user satisfaction. This would be explained
with respect to the fact that one’s quantification of such concepts is rather emo-
tional, and expecting individuals to directly provide T1 FSs, at least highly limits
the number of participating individuals. To handle the uncertainty of different
individuals on the same concept, we mapped the calculated T1 FSs into interval
and general T2 FSs. General T2 FSs were constructed based on the fuzzy approach
to represent the uncertainty in measurement and by stacking the a-planes calcu-
lated at different levels of confidence around the estimated mean values of T1 FSs.

Acknowledgments The authors would like to sincerely acknowledge Professor G. Degli Antoni
from Universita Degli Studi di Milano, and the staff of the Beauvais airport, Paris, without their
help the data collection would not have been completed.

References

1. Montero, J., Ruan, D.: Modeling uncertainty. Inf. Sci. 180, 799–802 (2010)
2. Pedrycz, W.: Human centricity in computing with fuzzy sets: an interpretability quest for

higher order granular constructs. J. Ambient Intell Humaniz Comput 1, 65–74 (2010)
3. Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inf. Sci. 177,

988–1006 (2007)
4. Mendel, J.M.: Uncertain rule-based fuzzy logic systems: introduction and new directions.

Prentice-Hall, Upper Saddle River (2001)
5. Liu, F., Mendel, J.M.: Encoding words into interval type-2 fuzzy sets using an interval

approach. IEEE Trans. Fuzzy Syst. 16(6), 1503–1521 (2008)

144 M. Moharrer et al.



6. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate
reasoning-1. Inf. Sci. 8, 199–249 (1975)

7. Mendel JM (2003) Fuzzy sets for words: a new beginning. Proc FUZZ-IEEE 37–42, St.
Louis, MO

8. Tahayori H, Sadeghian A (2012) Handling uncertainties of membership functions with
shadowed fuzzy sets. Proceeding of World Automation Congress, pp. 1–5, Puerto Vallarta,
Mexico

9. Tahayori H, Sadeghian A.: Shadowed fuzzy sets: a framework with more freedom degrees
than interval Type-2 fuzzy sets for handling uncertainties and lower computational
complexity than general Type-2 fuzzy sets. In: Balas, V.E. et al. (ed.) New Concepts and
Applications in Soft Computing, SCI 417, pp. 97–117, Springer, New York (2013)

10. Tahayori H, Sadeghian A, Pedrycz W.: Induction of shadowed sets based on the Gradual
Grade of Fuzziness to be published in IEEE Transactions on Fuzzy Systems, doi:10.1109/
TFUZZ.2012.2236843.

11. Moharrer M, Tahayori H, Sadeghian A.: Modeling linguistic label perception in tourism E-
Satisfaction with Type-2 fuzzy sets. Proceeding of North American Fuzzy Information
Processing Society (NAFIPS) Annual Meeting, pp. 1–6, Toronto, Canada (2010)

12. Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2),
117–127 (2002)

13. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE
Trans. Fuzzy Syst. 14(6), 808–821 (2006)

14. Tahayori, H., Degli Antoni, G.: Operations on concavoconvex Type-2 fuzzy sets. Int J.Fuzzy
Syst. 10(4), 276–286 (2008)

15. Tahayori H, Sadeghian A, Visconti A.: Operations on Type-2 Fuzzy Sets based on the set of
Pseudo-Highest intersection points of convex Fuzzy Sets. Proceeding of North American
Fuzzy Information Processing Society (NAFIPS) Annual Meeting, pp. 1–6, Toronto, Canada
(2010)

16. Tahayori H, Tettamanzi AGB, Degli Antoni G.: Approximated Type-2 Fuzzy Set Operations.
Proceeding of IEEE World Congress on Computational Intelligence, pp. 1910–1917,
Vancouver, Canada (2006)

17. Tahayori, H., Tettamanzi, A.G.B., Degli Antoni, G., Visconti, A.: On the calculation of
extended Max and Min operations between convex Fuzzy Sets of the real line. Fuzzy Sets
Syst. 160(21), 3103–3114 (2009)

18. Tahayori, H., Tettamanzi, A.G.B., Degli Antoni, G., Visconti, A., Moharrer, M.: Concave
Type-2 fuzzy sets: properties and operations. Soft Comput. J. 14(7), 749–756 (2010)

19. Bailey, J.E., Pearson, S.W.: Development of a tool for measuring and analyzing computer
user satisfaction. Manage. Sci. 29(5), 530–545 (1983)

20. Szymansky, M.D., Hise, R.: E-satisfaction: an initial examination. J. Retail. 76(3), 309–322
(2000)

21. Akama, J.S., Kieti, D.M.: Measuring tourist satisfaction with Kenya’s safari. Tourism Manag.
24, 73–81 (2002)

22. Evanschitzky, H., Gopalkrishnan, R.I., Hesse, J., Ahlert, D.: E-satisfaction: a re-examination.
J. Retail. 80, 239–247 (2004)

23. Kaiser, H.F.: An index of factorial simplicity. Pschometrika 39, 31–36 (1974)
24. Bartlett, MS.: (1937) Properties of sufficiency and statistical tests. Royal Stat. Soc. Ser. A

160, 268–282
25. Cronbach, L.J., Shavelson, R.J.: My current thoughts on coefficient alpha and successor

procedures. Educ. Psychol. Measur. 64(3), 391–418 (2004)
26. Nunnally, J.C.: Psychometric theory. McGraw-Hill, New York (1967)
27. Moharrer M, Tahayori H.: Clustering E-satisfaction factors in tourism industry. Proceeding of

International Conference Information Society, pp. 182–185, Merrillville Indiana, USA (2007)
28. Moharrer M, Tahayori H.: Drivers of customer convenience in electronic tourism industry.

Proceeding of IEEE 20th Canadian Conference on Electrical and Computer Engineering,
pp. 836–839, Vancouver, Canada (2007)

Modeling Complex Concepts with Type-2 Fuzzy Sets 145

http://dx.doi.org/10.1109/TFUZZ.2012.2236843
http://dx.doi.org/10.1109/TFUZZ.2012.2236843


29. Moharrer M, Tahayori H, Albadvi A, Zegordi SH, Perzon H.: Satisfaction in E-Tourism, a
case of European Online Customers. Proceeding of IADIS e-Commerce Conference,
pp. 303–307, Barcelona, Spain (2006)

30. Moharrer M, Zegordi SH, Tahayori H.: Drivers of customer satisfaction in Electronic
Tourism Industry. Proceeding of 24th EuroCHRIE Congress, Thessaloniki, Greece (2006)

31. Turksen, I.B.: Type 2 representation and reasoning for CWW. Fuzzy Sets Syst. 127(1), 17–36
(2002)

32. Turksen, I.B., Willson, I.A.: A fuzzy set preference model for consumer choice. Fuzzy Sets
Syst. 68, 253–266 (1994)

33. Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Inf.
Sci. 178(24), 4585–4618 (2008)

34. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations,
triangular Fuzzy sets, and probabilistic inequalities. Reliable Comput. 10, 273–297 (2004)

35. Mauris, G., Lasserre, V., Foulloy, L.: A fuzzy approach for the expression of uncertainty in
measurement. Measurement 29, 165–177 (2001)

36. Mendel, J.M., Liu, F., Zhai, D.: a-Plane representation for Type-2 fuzzy sets: theory and
applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)

146 M. Moharrer et al.



Construction of Interval Type-2 Fuzzy
Sets From Fuzzy Sets: Methods
and Applications

Miguel Pagola, Edurne Barrenechea, Javier Fernández,
Aranzazu Jurio, Mikel Galar, Jose Antonio Sanz, Daniel Paternain,
Carlos Lopez-Molina, Juan Cerrón and Humberto Bustince

Abstract In this chapter, we present some methods to construct interval type-2
membership functions from fuzzy membership functions and their applications in
image processing, classification, and decision making. First, we review some basic
concepts of interval type-2 fuzzy sets (IT2FSs). Next, we analyze three different
approaches to construct IT2FSs starting from fuzzy sets and their applications in
different fields.

1 Interval Type-2 Fuzzy Sets

From the beginning, it was clear that fuzzy set theory [30] was an extraordinary
tool for representing human knowledge. The use of linguistic labels enables the
acquisition of interpretable knowledge systems, and in this manner the choice of
the membership function plays an essential role in their success. The punctual
value set as membership degree is usually defined either by means of expert
knowledge or homogeneously over the input space. Nevertheless, Zadeh himself
established (see [31]) that sometimes, in decision-making processes, knowledge is
better represented by means of some generalizations of fuzzy sets.

Extensions of fuzzy sets are not as specific as their counter-parts of fuzzy sets,
but this lack of specificity makes them more realistic for some applications. Their
advantage is that they allow us to express our uncertainty in identifying a particular
membership function. This uncertainty is involved when extensions of fuzzy sets
are processed, making results of the processing less specific but more reliable.

The concept of type-2 fuzzy set was suggested by Zadeh in 1975 [31] as a
generalization of an ordinary fuzzy set. Type-2 fuzzy sets are characterized by a
fuzzy membership function, that is, the membership value for each element of the
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set is given by a fuzzy set defined in the reference set ½0; 1�. These sets were first
studied and analyzed in [20].

There is still some discussion about the notation for type-2 fuzzy sets. We shall
follow the standard mathematical notation in the following definitions (for equiva-
lences with other notations, see [1]). A good review of these sets can be found in [18].

Sometimes, it is appropriate to represent the membership degree of each ele-
ment to the fuzzy set by means of an interval. Hence, not only vagueness (lack of
sharp class boundaries), but also a feature of uncertainty (lack of information) can
be addressed intuitively.

A particular case of type-2 fuzzy sets called interval type-2 fuzzy sets (see [19]).
In May 1975 Sambuc (see [24]) presented in his doctoral thesis, the concept of an
interval-valued fuzzy set named a U-fuzzy set. That same year, Zadeh [31] discussed
the representation of type 2 fuzzy sets and its potential in approximate reasoning.
One year later, Grattan-Guinness [13] established a definition of an interval-valued
membership function. In that decade, interval-valued fuzzy sets appeared in the
literature in various guises and it was not until the 1980s, that the importance of these
sets, as well as their name, was definitely established. In [10, 16, 18], it is proved that
interval-valued fuzzy sets are a particular case of IT2FSs. It turns out that interval
type-2 fuzzy sets are isomorphic to interval-valued fuzzy set [24].

In this chapter, we work with finite, nonempty reference sets. We denote by
Lð½0; 1�Þ the set of all closed subintervals of the unit interval ½0; 1� in the following
way:

Lð½0; 1�Þ ¼ fx ¼ ½x; x�jðx; xÞ 2 ½0; 1�2 and x� xg: ð1Þ

We use bold letters to refer the elements x 2 Lð½0; 1�Þ and we denote with W the
length of an interval, that is, WðxÞ ¼ x� x.

Lð½0; 1�Þ is a partially ordered set with respect to the relation � L defined in the
following way: given x; y 2 Lð½0; 1�Þ,

x� Ly if andonly if x� y and x� y: ð2Þ

With this order relation, ðLð½0; 1�Þ; � LÞ is a complete lattice, where the smallest
element is 0L ¼ ½0; 0� and the largest is 1L ¼ ½1; 1�.

An interval type 2 fuzzy set ~A on U is defined by

~A ¼ fðu;AðuÞ; luðxÞÞju 2 U;AðuÞ 2 Lð½0; 1�Þg;

where AðuÞ ¼ ½AðuÞ;AðuÞ� is a closed subinterval of ½0; 1�, and the function luðxÞ
represents the fuzzy set associated with the element u 2 U obtained when x covers
the interval ½0; 1�; luðxÞ is given in the following way:

ðxÞ ¼ a if AðuÞ� x�AðuÞ
0 otherwise

(

ð3Þ
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where 0� a� 1. As we have said previously with a ¼ 1 an interval type 2 fuzzy
set is the same as an interval valued fuzzy set.

Mendel and others [17] defined IT2FSs using the footprint of uncertainty
(FOU). An IT2FS ~A for a primary variable ðx 2 XÞ is characterized by its footprint
of uncertainty, FOUð~AÞ, which in turn is completely described by its lower
membership function, LMFð~AÞ, also denoted by l~A

ðxÞ, and upper membership

function UMFð~AÞ, also denoted by l~AðxÞ, i.e., the lower and upper bounding

functions of FOUð~AÞ respectively.
Through the chapter we denote by IT2FSsðUÞ the set of all the interval type-2

fuzzy sets defined on U, and FSsðUÞ all the fuzzy sets on U.

2 Construction Methods of IT2FSs

When we will develop an application using IT2FSs, the first step is to define the
membership functions that will represent these sets. For example, if we use an
IT2FS system then we must define the rules and the lower and upper membership
functions of the linguistic labels. It is known that a key problem of the fuzzy
systems is the definition of the membership functions, as we have previously
stated.

Usually, IT2FS are defined manually or from data extracted [17]. Other typical
method to obtain a good definition of the membership functions is to optimize their
shape using genetic algorithms [14].

When we are working with IT2FSs, we must take into account that the FOU of
the IT2FSs represents the uncertainty in the membership degree. Therefore the
FOUs must represent the uncertainty that exists in the model.
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Fig. 1 a Triangular fuzzy membership function. b Triangular interval type-2 fuzzy membership
function
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In this work, we present three different methods to construct IT2FS from fuzzy
sets that try to generate FOUs adapted to the model’s uncertainty. We have studied
three different cases:

• Using several fuzzy membership functions.
• Using two fuzzy membership functions that represent opposite objects or

concepts.
• Using only one fuzzy membership function.

2.1 Construction of an IT2FS from Several Fuzzy
Membership Functions

When we define a fuzzy system one key problem is the definition of the mem-
bership functions. In the context of fuzzy rule-based systems, sometimes the expert
can choose between different functions (triangular, gaussian, etc.) and different
parameters. Therefore, the expert is not sure about which is the best membership
function, he can choose several adequate membership functions. If we want to
construct an IT2FS from different membership functions, the IT2FS should be
such that the lengths of the intervals represent the uncertainty that the expert has in
the selection of these fuzzy sets. That is, if the expert is absolutely sure of the
membership degree of an element, then the length of the interval associated to such
element is zero (a fuzzy set). On the other hand, if the expert does not know the
membership degree of an element at all, then the length of the interval associated
to this element should be the maximum possible.

U : FSsðUÞ� � � � �
zfflfflffl}|fflfflffl{k times

FSsðUÞ �! IT2FSsðUÞ given by

UðA1; � � � ;AkÞ ¼ fðu;UðA1; � � � ;AkÞðuÞÞju 2 Ug such that

UðA1; � � � ;AkÞðuÞ ¼ ½TðlA1ðuÞ; � � � ; lAkðuÞÞ SðlA1ðuÞ; � � � ; lAkðuÞÞ�;

ð4Þ

where T and S are a t-norm and a t-conorm, respectively, in ½0; 1�.

Remark The associativity of triangular norms and triangular t-conorms allows us
to extend these mappings to an arbitrary finite number of arguments in a unique
way, by means of a recursive definition. For example, n-ary triangular norms are
defined as follows. Let ðxi; � � � ; xnÞ be a finite family in ½0; 1�n. Then
Tðx1; � � � ; xnÞ ¼ TðTðx1; � � � ; xn�1Þ; xnÞ.

We denote by WTS the length of an interval constructed by the above method,
where T is a t-norm and S is a t-conorm.

As U is discrete, our method can be seen as a construction of the footprint of
uncertainty from several fuzzy sets. Suppose that the expert gives two different
opinions (or two different experts each giving a single opinion). We can use a t-norm
and a t-conorm to construct an IT2FS. Figure 2 depicted different IT2FSs
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constructed using different t-norms and t-conorms. We can also observe in Fig. 2
that the FOU generated with the t-norm product and the t-conorm probabilistic sum
is wider than the one generated with the t-norm minimum and the t-conorm
maximum.

Corollary 1 Under the conditions of the construction method described in Eq.
(4), the following statement is true:

If T and S are any t-norm and t-conorm in [0,1], then

WTSðUðQ1; � � � ;QkÞðuÞÞ�W^_ðUðA1; � � � ;AkÞðuÞÞ8u 2 U:

Proof It is enough to take into account the fact that ^ is the largest t-norm and _
is the smallest t-conorm. h

This corollary proves that the FOU constructed with the t-norm minimum and
t-conorm maximum is the smallest one. If other combination of t-norm and
t-conorm is used the FOU will be greater.

2.2 Construction of an IT2FS from Two Fuzzy Membership
Functions

Next we introduce the concept of Ignorance function and the way we use it to
construct IT2FS from two related fuzzy sets. In this case, the fuzzy sets must be
related with each other; they must represent opposite concepts. For example, one
set represents the concept near and the other the concept far, or the concepts small
and big. We have proposed this method in the context of image segmentation
where we have two sets, one to represent the object and another to represent the
background; but it can be used in any environment in which we have two different
sets that represent opposite concepts.

The concept of ignorance function [6] tries to model the lack of knowledge that
sometimes experts suffer when determining the membership degrees of some
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Fig. 2 (a) Three different fuzzy membership functions. (b) Interval type-2 fuzzy membership
function generated using the t-norm minimum and the t-conorm maximum. (c) Interval type-2
fuzzy membership function generated using the t-norm product and the t-conorm probabilistic sum
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pixels of an image Q to the fuzzy set representing the background (B) of the image
and to the fuzzy set representing the object (A) in the image.

For us, lBðxÞ
�
lAðxÞ

�
is the quantification of the expert knowledge that the

pixel with intensity x belongs to the background (object). In this sense, if
lBðxÞ ¼ 1 lAðxÞ ¼ 1ð Þ, then the expert has total knowledge (total sureness) that the
pixel belongs to the background (object). When lBðxÞ ¼ 0:5

�
lAðxÞ ¼ 0:5

�
, we

say that the expert is totally ignorant of whether the pixel belongs to the back-
ground (object) (total doubt). If the expert is totally sure that the pixel belongs to
the background (object), then he should take lBðxÞ ¼ 1 and in this case the
membership to the object (background) should be close to 0, (lAðxÞ � 0). In spite
of this, the simultaneous ignorance of a pixel’s membership to the background and
to the object will be given when the two membership functions are close to 0:5.

Evidently, there are pixels of the image for which the expert is absolutely sure
that the chosen representation is the correct one. Nevertheless, there are also pixels
for which the expert does not know if the representation taken is the best. We will
represent the expert’s ignorance in terms of lB and lA by means of what we denote
as ignorance functions.

Under this interpretation, the following conditions must be fulfilled by these
functions:

1. The ignorance function depends only on lBðxÞ and lAðxÞ.
2. The ignorance does not depend on whether we first consider the membership to

the background and then the membership to the object or we first consider the
membership to the object and then the membership to the background.

3. (Representation of total knowledge) The ignorance of the expert in the choice
of the membership of a pixel must be zero if and only if he is certain that the
pixel belongs to the object or the background.

4. (Representation of total doubt) If lBðxÞ ¼ 0:5 and lAðxÞ ¼ 0:5; that is if the
expert is not capable of distinguishing whether a pixel belongs to the back-
ground or to the object, then we will say that the expert’s ignorance of the
membership of this pixel to the background or to the object is one.

5. If the membership of the pixel to the background and its membership to the
object are greater than 0:5, then the greater both memberships are, the smaller
the ignorance should be.

6. If the membership of the pixel to the background and its membership to the
object are smaller than 0:5, then the greater both memberships are, the greater
the ignorance should be.

We just recall that these properties are equivalent for any problem in which there
are two objects that represent opposite things, and therefore the mathematical
definition is valid in those environments. The considerations above have led us to
present the following definition.
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Definition 1 A function Gi : ½0; 1�2 ! ½0; 1� is called an ignorance function, if it
satisfies the following conditions:

ðGi1Þ Giðx; yÞ ¼ Giðy; xÞ for all x; y 2 ½0; 1�;
ðGi2Þ Giðx; yÞ ¼ 0 if and only if x ¼ 1 or y ¼ 1;
ðGi3Þ If x ¼ 0:5 and y ¼ 0:5, then Giðx; yÞ ¼ 1;

ðGi4Þ Gi is decreasing in ½0:5; 1�2;

ðGi5Þ Gi is increasing in ½0; 0:5�2.

In some cases, it is advisable to require ignorance functionss to be continuous,
since the ignorance must not present a chaotic reaction to small changes in the
degree of knowledge that the experts possess regarding to the membership of the
pixel in question to the background or to object. If this is the case, we will say that
the ignorance functionss are continuous.

In the following theorem, we show a construction method of continuous
ignorance functions from t-norms.

Theorem 1 [6] Let T be a continuous t-norm such that
Tðx; yÞ ¼ 0 if and only if x � y ¼ 0.

Under these conditions, the function

Giðx; yÞ ¼

Tð1� x; 1� yÞ
Tð0:5; 0:5Þ if Tð1� x; 1� yÞ� Tð0:5; 0:5Þ

Tð0:5; 0:5Þ
Tð1� x; 1� yÞ otherwise

8
>><

>>:

is a continuous ignorance function.

Example 1
(1) The t-norm minimum satisfies the conditions in Theorem 1, so

Giðx; yÞ ¼
2 �minð1� x; 1� yÞ if min ð1� x; 1� yÞ� 0:5

1
2 �minð1� x; 1� yÞ otherwise

8
<

:

is a continuous ignorance function.
(2) The t-norm product satisfies the conditions in Theorem 1., so

Giðx; yÞ ¼
4 � ð1� xÞ � ð1� yÞ if ð1� xÞ � ð1� yÞ� 0:25

1
4 � ð1� xÞ � ð1� yÞ otherwise

8
<

:

is a continuous ignorance function.

In [6], we developed a method to construct ignorance functions from functions
different than the t-norms. Next, we show an example.
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Example 2 If we take uðxÞ ¼
ffiffiffi
x
p

for all x 2 ½0; 1� we recover the following
ignorance function:

Giðx; yÞ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ � ð1� yÞ

p
if ð1� xÞ � ð1� yÞ� 0:25

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ � ð1� yÞ

p otherwise

8
><

>:

Taking into account, the value of ignorance and the original fuzzy set we can
construct the IT2FS. First, we assign the value of the ignorance function to the
length W of the interval. Such a way the ignorance calculated represent the FOU:

WðxÞ ¼ GiðlAðxÞ; lBðxÞÞ:

The main problem is that the lower membership function must always be
greater than zero and the upper membership function must be lower than one.
Therefore in [21], we propose the following method to construct IT2FS for two
opposite fuzzy sets A and B:

~AðuÞ ¼ ½Sð0; lAðuÞ þ k�WðuÞ=2Þ Tð1; lAðuÞ þ k�WðuÞ=2Þ�; ð5Þ

where T and S are a t-norm and a t-conorm, respectively, in ½0; 1� and k[ 0.
With this method the interval generated is always within ½0; 1�. Also the

parameter k modifies the length of the intervals. If k ¼ 1 then the length of the
interval is the same as the value of the ignorance function Gi calculated.

One of the advantages of this method is that the shape of the FOU is related
with the shape of the membership functions, as we can see in Fig. 3.

2.3 Construction of an IT2FS from One Fuzzy Membership
Function

If we have a membership function that represents the fuzzy set that modelizes
certain concept, sometimes we know that there exist uncertainty in this mem-
bership. There exist several works that try to obtain from the proper membership
function a value of the uncertainty and from this value to construct an IT2FS.
Mainly two different approaches have been proposed. The first one intervals are
generated using one or two parameters, we denote this method as interval gen-
erators. The second approach intervals are constructed by means of a function that
only depends on the value of the membership function. This function gives an
ignorance value, related with the membership degree, allowing us to construct an
IT2FS.
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2.3.1 Interval Generators

If the uncertainty presented in the problem is due to a known cause, we can
modelize it with some functions [3], called generators, and construct an IT2FS
from the former fuzzy set.

In the following example we present an interval generator with two parameters.
Let A 2 FSsðUÞ and let the functions:

f : ½0; 1� ! ½0; 1� given by

f ðxÞ ¼ xa with a� 1:

g : ½0; 1� ! ½0; 1� given by

gðxÞ ¼ x
1
b with b� 1:

8
>>><

>>>:

Under these conditions

~Aa;b ¼ fðu; ½la
AðuÞ l

1
b

AðuÞÞ�ju 2 Ug 2 IT2FSsðUÞ:
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Fig. 3 a Two different fuzzy membership functions. b IT2FS generated from the ignorance
function of example 1.1 and k ¼ 1. c IT2FS generated from the ignorance function of example
1.1 and k ¼ 0:5. d IT2FS generated from the ignorance function of example 1.2 and k ¼ 0:5
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The verification that ~Aa;b 2 IT2FSsðUÞ is evident: 0� la
AðuÞ� l

1
b

AðuÞ� 1. The
parameters a and b can be related with the ignorance of the expert in the mem-
bership function selection. An specific case with only one parameter a is:

~Aa ¼ fðu; ½la
AðuÞ l

1
a
AðuÞÞ�ju 2 Ug 2 IT2FSsðUÞ: ð6Þ

Figure 4 depicted a fuzzy set and an IT2FS generated with values of a ¼ 2 and
b ¼ 2.

2.3.2 Weak Ignorance Function

The length of the IT2FSs can be seen as a representation of the ignorance when
assigning punctual values as membership degrees. In order to measure the igno-
rance degree, we define the concept of weak ignorance functions [26], which are a
particular case of ignorance functions depending on a single variable and
demanding a less number of properties.

Definition 2 [26] A weak ignorance function is a mapping g : ½0; 1� ! ½0; 1� that
satisfies:

• ðg1Þ gðxÞ ¼ gð1� xÞ for all x 2 ½0; 1�;
• ðg2Þ gðxÞ ¼ 0 if and only if x ¼ 0 or x ¼ 1;
• ðg3Þ gð0:5Þ ¼ 1:

Example 3 gðxÞ ¼ 2 �minðx; 1� xÞ is a weak ignorance function.

We also present in [26] the following construction method of IT2FSs. First, we
assign the length of the interval the value of ignorance of the membership degree
of the fuzzy set A, i.e., WðuÞ ¼ gðlAðuÞÞ and then we construct the IT2FSs ~A in the
following way:
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Fig. 4 a Original fuzzy set. b IT2FS generated from an interval generator with a ¼ 2 and b ¼ 2.
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~A ¼ fðu; ½lAðuÞð1� k�WðuÞÞ lAðuÞð1� k�WðuÞÞ þ k�WðuÞ�ju 2 Ug:
ð7Þ

Also the parameter k modifies the length of the intervals. If k ¼ 1 then the length
of the interval is the same as the value of the ignorance function g calculated.

Figure 5 depicted three different IT2FSs generated from different weak igno-
rance functions.

3 Applications

Next we present three different applications where we use IT2FSs constructed with
the methods presented in the previous section.
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Fig. 5 a Original fuzzy set. b IT2FS generated with weak ignorance function of equation
gðxÞ ¼ 2 �minðx; 1� xÞ and k ¼ 1. c IT2FS generated with weak ignorance function of
equation gðxÞ ¼ 4 � ðx � ð1� xÞÞ and k ¼ 1. d IT2FS generated with weak ignorance function of
equation gðxÞ ¼ 4 � ðx � ð1� xÞÞ and k ¼ 0:5
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3.1 Classification

Fuzzy rule-based classification systems (FRBCSs) are widely employed in clas-
sification tasks since they allow us to deal with noisy, imprecise or incomplete
information which is often present in many real world problems. They provide a
good trade-off between the empirical precision of traditional engineering tech-
niques and the interpretability achieved through the use of linguistic labels whose
semantic is close to the natural language.

However, FRBCSs can suffer a lack of system accuracy as a result of the
uncertainty related to the definition of the membership functions.

In [25], we propose a methodology in which we use IT2FSs to model the
linguistic labels of the classification system. To do so, we define a new parame-
trized IT2FSs construction method using triangular shaped membership IT2FSs.
Specifically, the amplitude of the support of the upper bound of the IT2FSs is
determined by the value of the parameter W , which establishes the relationship
between the length of the lower and the upper bounds of each IT2FS. In this
manner, we can build an IT2FSs model using the initial knowledge base generated
by any fuzzy rule learning algorithm. Furthermore, the representation of the lin-
guistic labels by means of IT2FSs leads to a natural extension of the classical
fuzzy reasoning method (FRM) [8]. Specifically, we modified the two first steps
out of the four, which compose the original FRM, in the following way:

• Matching degree: we apply a t-norm to the lower and upper bounds of the
interval membership degrees of the elements to the IT2FSs composing the
antecedent of the rules.

• Association degree: we take the mean between the product of the matching
degree by the rule weight associated with the lower bound and the product of the
matching degree by the rule weight associated with the upper bound.

In addition, we defined an evolutionary tuning in which we modified the value of
the parameter W for each IT2FS used in the system. In this way, we tried to
improve the system’s performance by looking for the best amount of uncertainty
that the FOU of each IT2FS represents.

In the experimental study, we used two well-recognized fuzzy rule learning
methods, i.e., the algorithm proposed by Chi et al. [9] and the fuzzy hybrid
genetics-based machine learning (FH-GBML) defined by Ishibuchi and Yamamoto
[11]. In both cases, the application of our methodology (to the knowledge base
generated by each algorithm) allowed to notably enhance the results provided by
the initial nonIT2 fuzzy methods.

In [26], using the concept of weak ignorance function, we formalize the IT2FSs
construction method introduced in [25] by establishing the relationship between
the uncertainty represented by the FOUs of the IT2FSs and the ignorance degree.
Specifically, we achieve that the length of the intervals, which are assigned as the
membership degree of the elements to the set, are proportional to the weak
ignorance degree computed by gðxÞ.
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The experimental study supported the suitability of our method, since we
outperformed the results of: (1) the original FH-GBML method; (2) the tuning
approach based on the linguistic 3-tuples representation applied to the original
fuzzy knowledge base, and (3) the lateral tuning applied to both the nonIT2 and the
IT2 fuzzy versions of the knowledge base.

3.2 Image Segmentation

In 2005, Tizhoosh [28] presented an image thresholding approach using interval
type 2 fuzzy sets (we must point out that he tries to use type 2 fuzzy sets, however
he only uses interval type 2 fuzzy sets [7]). His study is based on the modification
of the classical fuzzy algorithm of Huang and Wang [15], so that he applies an a
factor as an interval generator to the membership function. Starting from a
membership function, Tizhoosh obtains an interval type-2 fuzzy set that ‘‘con-
tains’’ different membership functions and is useful for finding the threshold of an
image. Tizhooh’s algorithm is applied directly to color segmentation using RGB in
[27] and it is also used to segment color image skin lesions [29]. Starting form the
idea of obtaining the uncertainty from the information given by the user, we have
proposed an approximation using interval type-2 fuzzy sets generated from
interval generators [3] (where the key point is to choose the correct parameters).
Also we have used interval type-2 membership functions within an algorithm of
stereo matching [12] (in this case we use the terminology of interval-valued fuzzy
sets). In said paper, we were interested in eliminating the sensitivity to the
radiometric gain, bias, and noise using IT2FSs to represent the images. In this way,
we managed the cited problems by splitting the image into two different areas
(background and objects), where the membership degree of each pixel to an object
or to the background is represented with an interval.We proposed a thresholding-
based segmentation to build these interval type-2 fuzzy sets. These works led us to
introduce the concept of ignorance function to try to model the lack of knowledge
from which experts may suffer when determining the membership degrees of some
pixels of a given image. This concept was presented in [5] and [6] where we
modified the classical fuzzy thresholding algorithm such way the user should pick
two functions, one to represent the background and another one to represent the
object, instead of using one membership function to represent the whole image;
that is, we proposed by means of ignorance functions to modelize the user’s
ignorance for choosing these two membership functions. From this value of
ignorance we constructed the IT2FSs. The rest of the algorithm remained similar
to the algorithm using IT2FS constructed from interval generators.

We evaluated the performance of the algorithm that uses ignorance functions in
natural images and prostate ultrasound images. We must take into account that,
since ultrasound images depend on the particular settings of the machine is very
important that our algorithm gives good solutions even if some membership
functions that do not represent accurately the background and the prostate are
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chosen. The IT2FS algorithm performance was compared with the classical fuzzy
algorithm and we can conclude that for the pairs of membership functions such
that the fuzzy algorithm solution is good (small error), the IT2FS algorithm does
not provide better results but if the error we get with the fuzzy algorithm begins to
be high (i.e., if we have used bad-chosen membership functions), then the result of
the IT2FS algorithm improves the other algorithm’s result.

3.3 Decision Making

Fuzzy preference relations have been widely used to model preferences for
decision-making problems due to their high expressiveness and their effectiveness
as a tool for modeling decision processes. In the fuzzy case, the experts express
their opinions using a difference scale [0,1]. In [2] we presented a generalization of
the nondominance criterion proposed by Orlovsky using interval preferences.

Our method starts from fuzzy preferences and by means of weak ignorance
functions we construct an interval type-2 fuzzy preference matrix (in the paper we
use the notation of interval valued fuzzy preference relation).

Let R	 2 FRðX � XÞ be a fuzzy preference relation over a set of alternatives
X ¼ fx1; . . .; xng; for each pair of alternatives xi and xj, R	ij ¼ R	ðxi; xjÞ represents a
degree of (weak) preference of xi over xj, namely the degree to which xi is
considered as least as good as xj.

Given R	 2 FRðX � XÞ we normalize it to ½0; 1� in such a way that for each
element of the new relation, denoted by R 2 FRðX � XÞ, holds that Rij ¼ 1� Rji.

Next, from R we must extract a set of nondominated alternatives as the solution
of the decision-making problem. Specifically, the maximal nondominated ele-
ments of R are calculated extending the nondominance criterion proposed by
Orlovsky in [22] to intervals.

The Non-dominance Interval Algorithm that we proposed [2] is the following:
Given a fuzzy preference relation R	 (without defined elements in the main
diagonal) and a weak fuzzy ignorance function g,

1. Construct R normalizing R	

2. Compute the fuzzy strict preference relation Rs in Orlovsky’s sense
3. Build the interval type-2 fuzzy relation r:

rij ¼
½Rs

ij � ð1� gðRijÞÞ;Rs
ij � ð1� gðRijÞÞ þ gðRijÞ� if Rij [ Rji

0; gðRijÞ
� �

otherwise

(

ð8Þ

4. Build the interval type-2 fuzzy set:
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NDIV ¼ fðxj;NDIVðxjÞÞjxj 2 Xg where

NDIVðxjÞ ¼ SðrijÞ ¼
_n

i¼1

ðrijÞ;
_n

i¼1

ðrijÞ
" #

ð9Þ

5. Build the interval type-2 fuzzy set:

NIVðNDIVÞ ¼ fðxj;NIVðNDIVðxjÞÞÞjxj 2 Xg where ð10Þ

NIVðNDIVÞðxjÞ ¼ 1�
_n

i¼1

ðrijÞ; 1�
_n

i¼1

ðrijÞ
" #

ð11Þ

6. Order the elements of NIVðNDIVÞ in a decreasing way in terms of accuracy and
score functions.

7. If there exist several alternatives occupying the firstplace, take as solution the
alternative with the biggest upper bound of its interval associated.

We must remark that if for a majority of the elements rij we have that gðRijÞ ! 0,
then the resulting intervals have a very small length and it is reasonable to assume
that the result obtained with the algorithm is the same than the result obtained with
the nondominance algorithm.

If for a majority of the elements rij we have that gðRijÞ ! 1, then the algorithm
allows us to distinguish better than the nondominance algorithm the alternative or
alternatives that we must take as solution.

4 Conclusions

A key problem of fuzzy systems and algorithms is the accurate election of the
membership function. In this chapter, we have presented three different methods to
generate interval type-2 fuzzy sets from fuzzy sets, such that they are very
goodtools to represent the uncertainty existing in the problem or specifically in the
election of the correct membership function. We have presented three different
applications in which these methods have been applied successfully. In some
cases, the IT2FS systems or algorithms achieved an improvement in the results of
the original fuzzy cases.

As future research we plan to study different methods to construct IT2FS from
data. Another interesting study is how to construct a general type-2 fuzzy set from
a fuzzy set.
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Interval Type-2 Fuzzy Membership
Function Generation Methods
for Representing Sample Data

Frank Chung-Hoon Rhee and Byung-In Choi

Abstract Type-2 fuzzy sets (T2 FSs) have been shown to manage uncertainty
more effectively than type-1 fuzzy sets (T1 FSs) in several areas of engineering.
However, computing with T2 FSs can require an undesirably large amount of
computations since it involves numerous embedded T2 FSs. To reduce the com-
plexity, interval type-2 fuzzy sets (IT2 FSs) can be used, since the secondary
memberships are all equal to one. In this chapter, three novel interval type-2 fuzzy
membership function (IT2 FMF) generation methods are proposed. The methods
are based on heuristics, histograms, and interval type-2 fuzzy C-means (IT2 FCM).
For each method, the footprint of uncertainty (FOU) is only required to be
obtained, since the FOU can completely describe an IT2 FMF. The performance of
the methods is evaluated by applying them to back-propagation neural networks
(BPNNs). Experimental results for several data sets are given to show the effec-
tiveness of the proposed membership assignments.

1 Introduction

For many pattern classification applications, type-1 fuzzy sets (T1 FSs) have been
successfully used to model the various uncertainties associated with the sample
data over conventional methods [1–10]. Although T1 FSs may properly model the
uncertainties, there may still exist uncertainties in the fuzzy pattern classification
algorithm. To manage the uncertainties more effectively, type-2 fuzzy sets (T2 FSs)
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have been successfully applied to various engineering areas [11–15]. This is due to
the extra degree of freedom that T2 FSs possess. However, operations of T2 FSs,
such as union (join), intersection (meet), and type reduction, involve numerous
combinations of embedded T2 FSs. To reduce the complexity, the use of interval
type-2 fuzzy sets (IT2 FSs), where all secondary grades are uniformly weighted
(i.e., all equal to one) have been introduced [16–24]. However, the type-reduction
process in IT2 FSs can still require a large amount of computation. Methods for
reducing the computational complexity have been proposed [15, 24].

The issue of automatic generation of T1 FMFs from pattern data is an important
step in developing algorithms that can handle uncertainties. Several T1 FMF
generation methods have been proposed [6–10]. Typical T1 FMFs were generated
based on heuristics (e.g., concepts based on human perception and experts),
histograms, probability, and entropy. Additionally, algorithms based on the fuzzy
nearest neighbor, back-propagation neural network, fuzzy C-means (FCM), robust
agglomerative Gaussian mixture decomposition (RAGMD), and self-organizing
feature map (SOFM) were used to generate T1 FMFs as well.

Generation methods of T2 FMFs have been limitedly discussed although various
algorithms based on T2 FMFs have been proposed. In this chapter, we focus on
some simple and effective generation methods of interval type-2 fuzzy membership
functions (IT2 FMFs). Three methods for generating IT2 FMFs automatically from
sample data are presented [16]. The three methods are based on heuristics, histo-
grams, and interval type-2 fuzzy C-means (IT2 FCM) clustering. The heuristic
method generates IT2 FMFs by simply incorporating heuristic T1 FMFs. The
histogram-based method generates IT2 FMF by performing parameterized function
fitting to smoothed histograms of sample data. The IT2 FCM-based method uses the
formulas of IT2 FCM to obtain IT2 FMFs. For each method, the footprint of
uncertainty (FOU) is only required to be obtained, since the FOU can completely
describe an IT2 FMF (i.e., all secondary grades are equal to one).

To validate the IT2 FMF design methods, we apply them to back-propagation
neural networks (BPNNs). T1 FMF values for each pattern are computed from the
interval centroids of the generated IT2 FMFs and are used as inputs to train the
BPNN. The remainder of this chapter is organized as follows. In Sect. 2, we briefly
explain IT2 FSs. In Sect. 3, we present the three IT2 FMF generation methods. In
Sect. 4, we explain how the IT2 FMF generation methods can be applied in a
BPNN. Section 5 gives several examples showing the validity of the generation
methods. Finally, Sect. 6 gives the summary and conclusions.

2 Overview of Interval Type-2 Fuzzy Sets

The extension of T1 FSs to T2 FSs can be used to effectively describe uncertainties
in situations where the available information is uncertain. T2 FSs include a sec-
ondary membership function to model the uncertainty of exact (crisp) T1 FSs. A T2
FS in the universal set X, denoted as Ã, can be characterized by a T2 FMF lÃ(x, u) as
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~A ¼
Z

x2X

l~AðxÞ=x ¼
Z

x2X

Z

u2Jx

fxðuÞ=u

2

4

3

5=x Jx � ½0; 1�; ð1Þ

where fx(u) is the secondary membership function and Jx is the primary mem-
bership of x which is the domain of the secondary membership function [24]. The
region bounded by an upper membership function (UMF) �l~AðxÞ and lower
membership function (LMF) l~A

ðxÞ is called FOU. The FOU of Ã can be expressed

by the union of all the primary memberships as

FOUð~AÞ ¼ [
8x2X

Jx ¼ ðx; uÞ : u 2 Jx � ½0; 1�f g: ð2Þ

The secondary membership function is a vertical slice of lÃ(x, u). Although T2
FSs may be useful in modeling uncertainty where T1 FSs cannot, the operations of
T2 FSs involve numerous embedded T2 FSs which consider all possible combi-
nations of secondary membership values. Therefore, undesirably large amounts of
computations may be required. However, IT2 FSs can be used to reduce the
computational complexity. IT2 FSs are specific T2 FSs whose secondary mem-
bership functions are interval sets expressed as

~A ¼
Z

x2X

Z

u2Jx

1=u

2

4

3

5
,

x: ð3Þ

All the secondary memberships are uniformly weighted for each primary
membership of x. Therefore, Jx can be expressed as

Jx ¼ ðx; uÞ : u 2 l~A
ðxÞ; �l~AðxÞ

h in o
: ð4Þ

Moreover, FOU(Ã) in (2) can also be expressed as

FOUð~AÞ ¼
[

8x2X

l~A
ðxÞ; �l~AðxÞ

h i
: ð5Þ

Fig. 1 Illustration of T2 FMFs: (a) IT2 Gaussian FMF and (b) general T2 Gaussian FMF
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As a result, IT2 FSs requires only simple interval arithmetic for computing.
Figure 1a and b shows the result of an IT2 Gaussian FMF and general T2 Gaussian
FMF, respectively.

3 Interval Type-2 Fuzzy Membership Function
Generation Methods

In this section, we present three methods for generating IT2 FMF automatically
from pattern data. The methods are based on heuristics, histograms, and IT2 FCM.
The heuristic-based design method simply generates the IT2 FMF using heuristic
T1 FMFs and a scaling factor. The histogram-based method uses suitable
parameterized functions chosen to model the histogram representing the sample
data. The IT2 FCM-based method uses the derived formulas of the IT2 FMFs in
the IT2 FCM algorithm [18]. A detailed description of each method is discussed as
follows.

3.1 Heuristic Method

The heuristic method simply uses an appropriate predefined T1 FMF function,
such as triangular, trapezoidal, Gaussian, S, or p function, to name a few, to
initially represent the distribution of the pattern data. The following are some
frequently used heuristic membership functions:

(1) Triangular function

lðx; a; b; cÞ ¼

0 if x� a
x�a
b�a if a� x� b
c�x
c�b if b� x� c
0 if x� c:

8
>><

>>:
ð6Þ

(2) Trapezoidal function

lðx; a; b; c; dÞ ¼

0 if x� a
x�a
b�a if a� x� b
1 if b� x� c

c�x
c�b if c� x� d
0 if x� d:

8
>>>><

>>>>:

ð7Þ

(3) Gaussian function

lðxÞ ¼ e
� x�cð Þ2

2r2 ð8Þ
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(4) S-function

Sðx; a; b; cÞ ¼

0 if x� a

2 � x�a
c�a

� �2
if a� x� b

1� 2 � x�a
c�a

� �2
if b� x� c

1 if x� c

8
>>>><

>>>>:

;

where b ¼ aþ c

2
:

ð9Þ

(5) p-function

Pðx; a; b; cÞ ¼ Sðx; c� b; c� b
2 ; cÞ x� c

1� Sðx; c; cþ b
2 ; cþ bÞ x� c:

�
ð10Þ

Once a T1 FMF is selected such as the ones in (6–10), the heuristic T1 FMF
li(x) for feature i is designed by determining the parameters of the function which
are usually provided by an expert. This becomes the UMF �uiðxÞ of the IT2 FMF.
The LMF uiðxÞ is obtained by scaling the UMF by a factor a between 0 and 1,
which can also be provided by an expert. The FOU of the heuristic method for
feature i can be expressed as

[
8x2X

uiðxÞ; �uiðxÞ½ � ¼ [
8x2X

liðxÞ; a � liðxÞ½ �; 0\a\1: ð11Þ

For input data of dimensions two or higher, we can obtain the overall FOU by
taking intersections of all upper and lower memberships for all features. If we
choose the min operation as intersection, the FOU can be expressed as

[
8x2X

uðxÞ; �uðxÞ½ � ¼ [
8x2X

min
i
fuiðxiÞg; min

i
f�uiðxiÞg

� �
: ð12Þ

Figure 2 shows a simple example of triangular IT2 FMFs that are generated by
the heuristic method for the two feature sample data sets in Fig. 2a. For the UMF,
we select the height in (6) (parameter b) as the center location of the patterns of
each class. Next, we compute the distance between the center and most distant
pattern. The spread (distance between a and c) is selected by subtracting and
adding this distance from the center. The LMF is obtained by adequately scaling
the height of the UMF. Figure 2b and c shows the resulting UMF and LMF for
class ‘‘9’’ and class ‘‘o’’, respectively. The region between the UMF and corre-
sponding LMF indicates the FOU for each class. Unfortunately, the shapes of
heuristic FMFs are not flexible enough to model all types of data. The heuristic
method is summarized as follows.

Heuristic-Based IT2 FMF Generation Method

(1) Select a heuristic T1 FMF that is suitable for a given data set.
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(2) Set the parameters for the membership function that is provided by an expert.
(3) Design the upper and lower membership functions using (11) and (12).

3.2 Histogram-Based Method

Histograms of features can be used to effectively describe the distribution of the
feature values of the input data. Therefore, membership functions generated from
histograms may be considered more suitable for arbitrary distributed data than
from heuristics. We now present a method which designs IT2 FMFs by fitting
parameterized functions to the histograms of the sample data. The method is
described as follows.

3.2.1 Histogram Generation and Smoothing

First, the histogram of a given sample data for each labeled class is obtained. Next,
the histograms are smoothed by sliding a symmetric window such as a hyper-cube
or triangular window across the feature space and then normalized.

3.2.2 Polynomial Function Fitting

To extract the membership function, a suitable parameterized function is chosen to
model the smoothed histograms. Approximate parameter values (e.g., the number
of functions, height, and location of peaks) used to determine the optimal
parameter values of the function can be obtained by polynomial function (PF)
fitting. Using a least squares approximation, the PF of the lowest possible degree
(i.e., to avoid over fitting) is chosen such that the fit to each smoothed histogram
has a reasonably small error.

Fig. 2 Illustration of the heuristic-based IT2 FMF generation method using a triangular FMF for
a given sample data set: (a) scatter plot, (b) UMF and LMF representing the FOU of class ‘‘9’’,
and (c) UMF and LMF representing the FOU of class ‘‘o’’
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To illustrate the above procedure, we shall consider Gaussian functions as
suitable parameterized functions to model the IT2 FMFs, and describe a method
for estimating the parameters for a reasonable approximation [8].

3.2.3 Gaussian Function Modeling

Consider a parameterized function given by

GðxÞ ¼ a exp � 1
2
ðx� lÞTR�1ðx� lÞ

� �
; ð13Þ

where a is the height, l is mean vector, and R is the covariance matrix. If the
smoothed histogram has N significant peaks, we can model it as the sum of
Gaussian functions by minimizing the objective function

JðpÞ ¼ 1
2

XN

i¼1

GiðxÞ � HðxÞ
 !2

; ð14Þ

where parameter vector pi = (ai, li, Ri) is for the ith Gaussian function Gi(x) and
H(x) is the smoothed histogram of the input data. The gradient descent method can
be used to estimate the parameter vector pi which minimizes (14) by the following
update rule:

pnew
i ¼ pold

i � q
oJ

opi
; ð15Þ

where q is a positive learning constant.
For Gaussian functions, the partial derivatives of J with respect to each com-

ponent of pi are

oJ

oai
¼

XN

j¼1

GjðxÞ � HðxÞ
 !

� exp � 1
2
ðx� liÞ

TR�1
i ðx� liÞ

� �
; ð16Þ

oJ

oli

¼ 1
2

XN

j¼1

GjðxÞ � HðxÞ
 !

� GiðxÞ � ðx� liÞ
T � ðR�T

i þ R�1
i Þ; ð17Þ

and

oJ

oRi
¼ 1

2

XN

j¼1

GjðxÞ � HðxÞ
 !

� GiðxÞ � R�T
i ðx� liÞ � ðx� liÞ

TR�T
i

� �
: ð18Þ

For gradient descent methods, the choice of the initial values for the parameters
is critical, due to the local minima problem. Therefore, for the case of Gaussian
functions, we can use the following heuristic approach [8] that consists of 4 steps
to obtain the initial parameters.
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Step 1 Generate the smoothed histograms for the given sample data set as
explained in Sect. 3.2.1.

Step 2 Using least squares approximation, fit a PF of the lowest possible degree
(i.e., to avoid over fitting) such that the fit to each smoothed histogram has
a reasonably small error.

Step 3 Calculate the extrema (maxima and minima) values for the PF in Step 2
and determine the number of Gaussians by the number of positive valued
maxima, ignoring the ones that have small peaks.

Step 4 Initialize the heights of the Gaussians by the maxima values (peak values)
and initialize the mean values of the Gaussians as the locations of these
peaks. Initialize the standard deviation of each Gaussian as the shortest
value among the distances between the mean of the Gaussian and the
nearest minima or roots of the PF.

3.2.4 Upper and Lower Membership Function Modeling

To obtain the generated IT2 FMF, the FOU needs to be determined. The UMF and
LMF are obtained by again fitting GFs to the smoothed histograms values that are
above and below the fitted GF obtained previously.

As the final step, to obtain the FOU, the UMFs and LMFs are designed by using
the upper and lower GFs as discussed above. The UMF can be obtained by nor-
malizing the height to 1. Moreover, the height of the LMF is scaled in proportion
to the UMF.

As the illustration in Fig. 3 shows, the smoothed histogram (using a 3-point
triangular window) and resulting IT2 FMF is obtained by one-dimensional
Gaussian function fitting for Feature 2 (y axis) of class ‘‘9’’ in Fig. 2a. The
approximate parameters of the UMF and LMF are obtained after PF fitting of the
smoothed histogram values that correspond to the upper and lower histogram

Fig. 3 Results of GF fitting
for obtaining the UMF and
LFM for feature 2 patterns
labeled class ‘‘9’’ in Fig. 2a
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values. The suitable degree of the PF is selected as the knee point of error. For this
example, a third degree polynomial function is considered suitable. The resulting
UMF and LMF are obtained by Gaussian function fitting the corresponding upper
and lower histogram values. The shaded region between the UMF and LMF
indicates the FOU. As shown in the figure, this method can effectively design IT2
FMFs based on the distribution of the input data.

Finally, Fig. 4 shows the results obtained by the histogram-based method for
the sample data in Fig. 2a. Figure 4a and b shows the smoothed histograms for
class ‘‘9’’ and class ‘‘o,’’ respectively. As a result, Fig. 4c and d shows the FOU
obtained for each class. The histogram-based method is summarized as follows:

Histogram-Based IT2 FMF Generation Method

(1) Construct and smooth the histogram of the sample data for each labeled class.
(2) Perform PF fitting to obtain the approximate parameter values (e.g., the

number of functions, height, and location of peaks).
(3) Perform GF fitting using the values in step 2).

Fig. 4 Illustration of the histogram-based IT2 FMF generation method for the sample data in
Fig. 2a: (a) smoothed histogram of class ‘‘9’’, (b) smoothed histogram of class ‘‘o’’, (c) UMF and
LMF representing the FOU of class ‘‘9’’, and (d) UMF and LMF representing the FOU of class
‘‘o’’
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(4) Perform GF fitting for the upper and lower histogram values with respect to
the GF in step 3).

(5) Determine UMF by normalizing the height of the upper GF and LMF by
proportionally scaling the lower GF obtained in step 4).

For high-dimensional input data, the computational load can become undesir-
ably high, due to the high-dimensional histogram smoothing process and fitting. As
an alternative, first we find the one-dimensional UMF and LMF for each class label
and feature by the histogram-based method. Next, we obtain the overall UMF and
LMF by taking intersections of all UMF and LMF obtained for all features. If we
use the min operation as our choice for intersection, the FOU can be expressed as

f LðxÞ; f UðxÞ
	 


¼ min
i

f L
i ðxiÞ

� �
;min

i
f U
i ðxiÞ

� �� �
; ð19Þ

where fU is the UMF, fL is the LMF, and i is the feature number.

3.3 Interval Type-2 Fuzzy C-Means Based Method

The IT2 FCM algorithm was proposed to control the uncertainty of the fuzzifer
m in FCM which affects the assignment of memberships for the patterns [18]. In
this section, we present an IT2 FMF generation method based on the IT2 FCM
algorithm. First, the IT2 FCM algorithm is briefly explained, and then the IT2
FCM-based method is described.

3.3.1 Interval Type-2 Fuzzy C-Means Algorithm

The FCM algorithm has been widely used for data partitioning [1]. FCM considers
weight values (memberships) to control the contribution degree of a pattern in
determining cluster prototypes. For example, a higher weighed pattern can play a
more important role in determining the resulting cluster prototype. Thus, FCM can
give more desirable cluster results than crisp C-means for pattern sets which contain
overlapping clusters. The goal of FCM is to minimize the objective function

JðU; X;VÞ ¼
XC

j¼1

XN

i¼1

um
ij d2

ij subject to
XC

j¼1

uij ¼ 1; ð20Þ

where uij is the membership value of pattern xi for cluster i, dij
2 is distance between

xi and the cluster prototype vj, and m represents the fuzzifier (m [ 1). The partition
matrix U represents the memberships for the patterns across each cluster having
the elements uij and the matrix V is the collection of all cluster prototypes vj. The
memberships and cluster prototypes that minimize the objective function in (20)
can be obtained by
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uij ¼
1=d2

ij


 �1=ðm�1Þ

PC
k¼1 1=d2

ik

� �1=ðm�1Þ ð21Þ

and

vj ¼
PN

k¼1 ukj

� �m
xk

PN
k¼1 ukj

� �m : ð22Þ

However, in FCM, fuzzifier m affects the membership assignment for the
patterns. Suppose that there exist two cluster prototypes, namely centers v1 and v2,
for a given pattern set. The membership plots corresponding to center v1 for
patterns that lie between the two cluster centers for various values of fuzzifier
m can be explained as follows. When m ? 1, the memberships are maximally
crisp (hard), that is, patterns that are located just left (right) of the maximum fuzzy
boundary are assigned full (0) membership for center v1 (v2). Conversely, when
m ? ?, the memberships are maximally fuzzy, which means that patterns that are
only located at the centers are assigned full (0) membership, otherwise they are
assigned memberships of 0.5. If the geometry of the clusters is of similar volume
and density, change in fuzzifier m will not significantly affect the clustering result
in FCM. This is illustrated in Fig. 5. As shown in the figure, the gray region
indicates the maximum fuzzy region for various values of m. However, if there is a
significant difference in density among clusters in a pattern set, the choice of
m will give inconsistent clustering results in the FCM. The reason is that an
impertinent establishment of maximum fuzzy boundary in FCM can provide
undesirable updating of the cluster centers. This was previously emphasized in
detail in [18]. A more desirable establishment of the maximum fuzzy region can
allow for desirable clustering results in the FCM. Again, due to the constraint on
the memberships we cannot design this region with any particular single value of
fuzzifier m to be used in the FCM. However, if we can somehow simultaneously
incorporate various values of fuzzifier m, we may perhaps be able to design a
desirable maximum fuzzy region as reported in [18].

Fig. 5 Maximum fuzzy region (gray area) for various m: (a) 1.1, (b) 2.0, (c) 5.0, and (d) 10.0
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To overcome this problem caused by the uncertainty of fuzzifier m, the IT2
FCM algorithm was proposed [18]. In IT2 FCM, the maximum fuzzy boundary
can be controlled by incorporating two values of fuzzifier m. By doing so, the
management of uncertainty can further improve clustering results obtained by
FCM algorithm. The IT2 FMF Jxi ¼ uðxiÞ; �uðxiÞ½ � in IT2 FCM can be expressed as

uj xið Þ ¼
1PC

k¼1
dij=dikð Þ2=ðm1�1Þ if 1PC

k¼1
dij=dikð Þ2=ðm1�1Þ [ 1PC

k¼1
dij=dikð Þ2=ðm2�1Þ

1PC

k¼1
dij=dikð Þ2=ðm2�1Þ otherwise

8
<

:
ð23Þ

and

uj xið Þ ¼
1PC

k¼1
dij=dikð Þ2=ðm1�1Þ if 1PC

k¼1
dij=dikð Þ2=ðm1�1Þ � 1PC

k¼1
dij=dikð Þ2=ðm2�1Þ

1PC

k¼1
dij=dikð Þ2=ðm2�1Þ otherwise

8
<

:
: ð24Þ

The procedure for updating cluster prototypes in IT2 FCM requires type-
reduction and defuzzification using type-2 fuzzy operations. The generalized
centroid (GC) type-reduction can be used as a type-reduction procedure. The
centroid obtained by the type-reduction is shown as the following interval:

v~x ¼ vL; vR½ � ¼
X

uðx1Þ2Ix1

. . .
X

uðx1Þ2Ix1

1

,PN
i¼1 xiu xið Þm
PN

i¼1 u xið Þm
: ð25Þ

The crisp center can be simply obtained by defuzzification as

vj ¼
vL þ vR

2
: ð26Þ

3.3.2 Membership Generation Method Using Interval Type-2 Fuzzy
C-Means Algorithm

For this method, we use (23) and (24) to generate IT2 FMF of patterns for each
class. For pattern data that are labeled, it is not necessary to use unsupervised
clustering as in FCM. Instead, we should perform ‘‘supervised’’ FCM clustering on
each class separately. This is performed as follows:

Let the pth prototype obtained by FCM in class k be denoted by vp
k. Next, the

minimum distance between the prototypes and input pattern xj is

d�kj ¼ min
p

d xj; v
k
p


 �n o
; p 2 fnkg ; ð27Þ

where nk is the number of prototypes used for class k. The UMF and LMF for class
k and input pattern xj can be expressed by modifying (23) and (24) by replacing dij

and dik with dij
* and dik

* , respectively.
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Figure 6 shows the IT2 FMF obtained by the IT2 FCM-based method for the
same sample data in Fig. 2a. Fuzzifiers m1 and m2 are selected as 2 and 5 and
the number of prototypes is chosen as one for each class. Figure 6a and b shows
the generated UMF and LMF for class ‘‘9’’. As indicated, the membership values
for the UMFs based on the lower fuzzifier value m1 are selected when the mem-
berships are above 0.5. On the contrary, the membership values based on the
higher fuzzifier value m2 are selected when the memberships are below 0.5.
Figure 6c and d shows the FOU of the IT2 FMF for each labeled class. It is to be
noted that the selection of fuzzifier values may affect the formation of the FOU.

The IT2 FCM-based membership generation method can desirably control the
uncertainty of fuzzifier m for pattern distributions of different structure and density
as in IT2 FCM. Additionally, the method is quite simple and can be used for all
features simultaneously as in the case of high-dimensional input data. The method
is summarized as follows:

Fig. 6 Illustration of the IT2 FCM (m1 = 2, m2 = 5) based IT2 FMF generation method for the
sample data in Fig. 2a: (a) UMF for class ‘‘9’’, (b) LMF for class ‘‘9’’, (c) FOU of class ‘‘9’’,
and (d) FOU of class ‘‘o’’
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IT2 FCM-Based IT2 FMF Generation Method

(1) Select fuzzifiers m1 and m2.
(2) Perform IT2 FCM on each class separately.
(3) Find the minimum distance between prototypes of each class and input

patterns.
(4) Design the UMF and LMF using (23) and (24).

4 Application to Back-Propagation Neural Networks

To evaluate the performance of the IT2 FMF generation methods, we apply them to
BPNNs [25]. In doing so, we extract T1 fuzzy membership values from the centroid
of each IT2 FMF obtained by the methods. The centroid is obtained by performing
type reduction. The type reduction procedure gives the GC for the IT2 FMF. The
GC is an IT1 FS for the centroid of embedded T2 FSs and is expressed as

GC ¼ cl; cr½ � ¼
Z

x12X

� � �
Z

xN2X

� � �
Z

li2M1

� � �
Z

lN2MN

1=

PN
i¼1 xiliPN
i¼1 li

; ð28Þ

where xi is input feature pattern and li is the primary membership for xi. This GC
can be obtained using the Karnik-Mendel (KM) iterative procedure [15]. Next, the
fuzzy membership value of input pattern x for class j is obtained according to the
distance between the centroid and input patterns as

fj xð Þ ¼ max
8k

1� d x;Ck
j


 �n o
; ð29Þ

where Cj
k denotes the kth centroid of class j and d(�) is distance between the pattern

and the centroid. The distance measure can be described as

d x;Ck
j
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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i¼1 min xi � ck
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���
���; xi � ck
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 �2
r

otherwise

8
<

:
;

ð30Þ

where M is the number of features, cjl
k (cjr

k ) is the left (right) value of the interval
centroid Cj

k. The equation above is used to compute the distance between input
pattern and interval centroid using the minimum values among the distances
between input pattern and left and right values of the interval centroid for all
features. The fuzzy memberships extracted from the IT2 FMF can be considered
suitable in describing the class memberships of patterns, since the uncertainty of
pattern data are desirably controlled by the IT2 FMF. The extracted fuzzy mem-
bership values of the patterns are used as input training data to the BPNN.
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5 Experimental Results

To illustrate the performance of the three IT2 FMF generation methods, we apply
them to BPNNs and the classification results are given for several data sets. We
first obtain the centroid from the generated IT2 FMF by performing type-reduction
using the KM iterative procedure as mentioned in the Sect. 4. Then, fuzzy
membership values for patterns are extracted according to the distances between
the centroids and patterns using (29) and (30). These fuzzy membership values are
then used as inputs to the BPNN. The structure of the BPNN consists of a fully
connected three-layered network. The classification results are reported by varying
the number of neurons in the hidden layer fromone to ten for the three generation
methods for several pattern sets. In addition, segmentation results for real images
are also given. As a comparison, results are given for inputs to the BPNN that are
from T1 FMF generation [7, 8, 21]. As in the generation of IT2 FMFs, fuzzy
membership values for the patterns are extracted according to the distances
between the centroids and patterns using (29) and (30), where in this case the
centriod Cj

k (i.e., cjl
k = cjr

k ) is simply considered as the peak (instead of interval) of
the generated T1 FMF.

5.1 ‘‘T-shape’’ Data Set

The ‘‘T-shape’’ data set consists of 447 patterns (228 and 219 patterns for each
class) of two features and two classes. We use one pattern for testing and the
remaining patterns for training. This procedure was repeated for all patterns.
Figure 7a shows the scatter plot of the data set. We assume that the patterns
located outside of the shaded region do not have uncertainty. Therefore, we
exclude those patterns (232 patterns) when comparing the classification results.
The BPNNs are trained using all of the sample patterns, however, classification
results are reported for only the patterns in the shaded region (215 patterns).
Figure 7b–g shows the IT2 FMFs obtained by the three methods. As shown in
Fig. 7b and c, the heuristic IT2 FMF was designed based on a triangular function.
Figure 7d and e shows the membership designed by the histogram-based method.
As shown in the figure, 2-D GF fitting was used. Figure 7f and g displays the
memberships designed by the IT2 FC-based method. Experiments for several
possible combinations of fuzzifiers m1 and m2 were performed and the combination
m1 = 2 and m2 = 5 gave the best results. The IT2 FMF generation methods gave
improved classification results (i.e., patterns in the shaded region) compared with
the generated T1 FMF. Average improvement in classification resulted in about
0.6 % for the heuristic method, 2.1 % for the histogram-based method, and 1.7 %
for the IT2 FCM-based method.
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5.2 ‘‘Pima Indian Diabetes’’ Data Set

We now give classification results for a high-dimensional data set, namely ‘‘Pima
Indian diabetes’’ data set. The data set consists of 768 patterns (500 and 268
patterns for each class) of eight features and two classes. The classification results
are reported as follows. For the histogram-based method, due to the difficulty of
processing the eight-dimensional histogram and Gaussian function fitting, we
generated the IT2 FMF by (19) using a one-dimensional histogram and GF fitting
for each feature. As in the above example, the IT2 FMF generation methods gave
significantly improved classification results compared with the generated T1 FMF.
Average improvement in classification resulted in about 0.92 % for the heuristic
method, 2.16 % for the histogram-based method, and 1.5 % for the IT2 FCM-
based method.

5.3 Real Image Segmentation

For the last example, we give segmentation results for 200 9 200 real scene
images. The sample image consists of three regions namely, road, forest, and sky.
The gray levels of median and excess green filtered images were used as feature
values. We randomly selected 100 pixels in each region of the image, and obtained
the sample patterns as the feature values of the selected pixels. Figure 8a shows
the sample image. Next, BPNNs were trained the same as in the previous examples
using the sample data. Then, all the pixels in the image were classified into three
classes by the trained networks. For this example, we give segmentation results for

Fig. 7 IT2 FMFs generated for the ‘‘T-shaped’’ data set: (a) scatter plot, heuristic method for
(b) class ‘‘o’’, and (c) class ‘‘9’’, histogram-based method for (d) class ‘‘o’’, and (e) class ‘‘9,’’
and IT2 FCM-based method for (f) class ‘‘o’’ and (g) class ‘‘9’’ (m1 = 2, m2 = 5)
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the case of two hidden neurons. The results for networks with higher number of
hidden neurons gave similar results.

5.3.1 Inference Results

We present inference (segmentation) results involving one training image (see
Fig. 8a) and one test image (see Fig. 8b). Figure 9 shows the segmentation results
for the test image. For all three IT2 FMF methods, one can visually see that the
forest region was better classified than with the T1 FMF method.

6 Conclusions

In this chapter, we presented three IT2 FMF generation methods that were obtained
from sample data. The heuristic method generated IT2 FMFs by simply incorporating
heuristic type-1 FMFs provided by experts. The FOU was designed by assigning the
UMF with the heuristic T1 FMF, and adequately scaling the UMF for the LMF.
However, since the shapes of the heuristic FMF are not flexible, the obtained
IT2 FMFs may not sufficiently represent the uncertainty for data that are complex.

Fig. 8 Natural scenes used for training and testing: (a) scene 1 training image, (b) scene 2
testing image

Fig. 9 Segmentation results for scene 2: heuristic-based method using (a) T1 FMF and (b) IT2
FMF, histogram-based method using (c) T1 FMF and (d) IT2 FMF, and IT2 FCM-based method
using (e) T1 FMF and (f) IT2 FMF
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In the histogram-based method, the FOU was designed by fitting Gaussian functions
to the smoothed histograms of data. The UMF and LMF obtained by the histogram-
based method have shown to effectively represent the distribution of patterns better
than the heuristic method. In the IT2 FCM-based method, the FOU was designed
using the UMF and LMF equations in the IT2 FCM. As with IT2 FCM, the mem-
bership generation method can control the uncertainty of the fuzzifer m in FCM
which undesirably affects the fuzzy memberships when the clusters are significantly
different in size and density. This suggests that the IT2 FCM based method can
represent the uncertainty of fuzzifier m induced by arbitrary structures and densities
of sample data.

Finally, we incorporated the IT2 FMF generation methods into the BPNN,
where T1 fuzzy membership values were computed from the centroids of the IT2
FMFs. Then, the T1 fuzzy membership values representing the sample data were
used as inputs to the BPNN. The membership assignment showed to improve the
classification performance of the BPNN since the uncertainty of pattern data has
been desirably controlled by the IT2 FMFs. Experimental results show that the IT2
FMF generation methods can effectively model the uncertainty of pattern data.
Other methods of representing FMFs and the integration of IT2 FMFs into other
types of neural networks may also be considered.

To comment on the possible future studies, we presented three IT2 FMF gen-
eration methods to represent the uncertainty of sample data. We believe that the
methods may be considered to be early attempts for effectively generating IT2
FMFs automatically from pattern sets. However, there exist areas of improvement
as described in the following.

In the heuristic method, we need to select the proper heuristic T1 FMF for the
sample data and optimally find the parameters of the selected heuristic T1 FMF.
The proper shape and parameters of the heuristic T1 FMF can be critical for
properly designing the IT2 FMF. Moreover, the scaling factor a which determines
the height of the LMF needs to be carefully selected, since the FOU is dependent
on the scaling factor. If the value of a is poorly chosen, the IT2 FMF may not
suitably represent the uncertainty of the sample data.

In the histogram-based method, we used symmetric Gaussian function fitting to
the smoothed histograms of the sample data. However, non-symmetric Gaussian
function fitting could be used to represent the distribution of sample data more
effectively. Non-symmetric Gaussian functions can model the smoothed histo-
grams with more flexibility since the symmetry constraint has been relaxed.

In the IT2 FCM-based method, the selection of the fuzzifier m1 and m2 is very
important in designing the FOU for the sample data distribution. In general, if we
select unsuitable fuzzifier m1 and m2, IT2 FCM can yield poor clustering results
compared with FCM. For this reasoning, this method may not suitably model the
uncertainty of the sample data as well. Therefore, the selection of m1 and m2 is an
important research area to which various methods can be applied (e.g., neural
networks and genetic algorithms).

As a final note, the methods presented can be used as major components of
various applications in pattern recognition and computer vision. For example, they
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may be applied to the modeling of objects in images for object detection. Our
studies show that applying generated IT2 FMFs into various fuzzy classification
systems can improve their performance.
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Applications



Type-2 Fuzzy Logic in Image Analysis
and Pattern Recognition

Patricia Melin and Oscar Castillo

Abstract Interval type-2 fuzzy systems can be of great help in image analysis and
pattern recognition applications. In particular, edge detection is a process usually
applied to image sets before the training phase in recognition systems. This pre-
processing step helps to extract the most important shapes in an image, ignoring
the homogeneous regions and remarking the real objective to classify or recognize.
Many traditional and fuzzy edge detectors can be used, but it is difficult to dem-
onstrate which ones are better before the recognition results are obtained. In this
work we show experimental results, where several edge detectors were used to
preprocess the same image sets. Each resulting image set was used as training data
for a neural network recognition system, and the recognition rates were compared.
The goal of these experiments is to find the better edge detector that can be used to
improve the training data of a neural network for an image recognition system.

1 Introduction

In previous work, we have proposed extensions to traditional edge detectors to
improve their performance by using fuzzy systems [1–3]. The performed experi-
ments have shown that the resulting images obtained with fuzzy edge detectors
were visually better than the ones obtained with the traditional methods.

There is still work to be done on developing formal validation metrics for fuzzy
edge detectors. In the literature we can find comparisons of edge detectors based
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on human observations [4–8], and some others that found the optimal values for
parametric edge detectors [9].

Edge detectors can be used in recognition systems for different purposes, but in
this work we are particularly interested in knowing, which is the best edge detector
for a neural recognition system. In this chapter we present some experiments that
show that fuzzy edge detectors are a good method to improve the performance of
neural recognition systems, and for this reason we propose that the recognition rate
of the neural networks can be used as an edge detection performance index.

The rest of the chapter is organized as follows. Section 2 presents an overview
of fuzzy edge detectors. Section 3 describes the experimental setup used to test the
proposed fuzzy edge detectors in a neural recognition system. Section 4 presents
the experimental results achieved with the proposed fuzzy edge detectors. Finally,
Section 5 outlines the conclusions and future work.

2 Overview of Fuzzy Edge Detectors

In this section an overview of the previously proposed fuzzy edge detectors is
presented. First, the Sobel edge detector improved with fuzzy logic is presented.
Second, the morphological gradient edge detector enhanced with fuzzy logic is
also presented.

2.1 Sobel Edge Detector Improved with Fuzzy Logic

In the Sobel fuzzy edge detector we used the individual operators Sobelx and
Sobely as in the traditional method, and then we substitute the Euclidean distance
of Eq. (1) by a fuzzy system, as we show in Fig. 1 [3].

Sobel edges ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sobel2

x þ Sobel2
y

q
ð1Þ

The individual Sobel operators are the main inputs to the type-1 fuzzy inference
system (FIS1) and type-2 fuzzy inference system (FIS2), and we have also con-
sidered adding two more inputs, which are filters that improve the final edge
image. The fuzzy variables used in the Sobel+FIS1 and Sobel+FIS2 edge detectors
are shown in Figs. 2 and 3 respectively.

The use of the FIS2 [10, 11] provided images with better defined edges than the
FIS1, which is a very important result in providing better inputs to the neural
networks that will perform the recognition task.

The fuzzy rules for both the FIS1 and FIS2 are the same and are shown below:

1. If (dh is LOW) and (dv is LOW) then (y1 is HIGH)
2. If (dh is MIDDLE) and (dv is MIDDLE) then (y1 is LOW)
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3. If (dh is HIGH) and (dv is HIGH) then (y1 is LOW)
4. If (dh is MIDDLE) and (hp is LOW) then (y1 is LOW)
5. If (dv is MIDDLE) and (hp is LOW) then (y1 is LOW)
6. If (m is LOW) and (dv is MIDDLE) then (y1 is HIGH)
7. If (m is LOW) and (dh is MIDDLE) then (y1 is HIGH).

The fuzzy rule base shown above infers the gray tone of each pixel for the edge
image with the following reasoning: When the horizontal gradient dh and vertical
gradient dv are LOW it means that there is not enough difference between the gray
tones in its neighbors pixels, and hence the output pixel must belong to a homoge-
neous or not edges region, then the output pixel is HIGH or near WHITE. In the
opposite case, when dh and dv are both HIGH this means that there is enough dif-
ference between the gray tones in its neighborhood, then the output pixel is an EDGE.

2.2 Morphological Gradient Edge Detector Improved
with Fuzzy Logic

In the morphological gradient, we calculated the four gradients as in the traditional
method [12, 13], and substitute the sum of gradients in Eq. (2) with a fuzzy
inference system, as we show in Fig. 4.

MG edges ¼ D1 þ D2 þ D3 þ D4 ð2Þ

The linguistic variables used in the MG+FIS1 and MG+FIS2 edges detectors
are shown in Figs. 5 and 6 respectively.

The rules for both the FIS1 and FIS2 are the same and are shown below:

1. If (D1 is HIGH) or (D2 is HIGH) or (D3 is HIGH) or (D4 is HIGH) then (E is
BLACK)

Fig. 1 Sobel edge detector improved with fuzzy logic
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2. If (D1 is MIDDLE) or (D2 is MIDDLE) or (D3 is MIDDLE) or (D4 is MID-
DLE) then (E is GRAY)

3. If (D1 is LOW) and (D2 is LOW) and (D3 is LOW) and (D4 is LOW) then (E is
WHITE)

After many experiments we found that an edge exists when any gradient Di is
HIGH, which means that a difference of gray tones in any direction of the image
must produce a pixel with a BLACK value or EDGE. The same behavior occurs

Fig. 2 Membership functions of the variables for the Sobel ? FIS1 edge detector
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when any gradient Di is MIDDLE, which means that even when the differences in
the gray tones are not maximal, the pixel is an EDGE, then the only rule that found
a non-edge pixel is the number 3, where only when all the gradients are LOW, the
output pixel is WHITE, which means a pixel belonging to a homogeneous region.

Fig. 3 Membership functions of the variables for the Sobel ? FIS2 edge detector
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3 Experimental Setup

The experiment consists on applying a neural recognition system using each of the
previously presented edge detectors: Sobel, Sobel+FIS1, Sobel+FIS2, Morpho-
logical Gradient (MG), Morphological Gradient+FIS1, and Morphological
Gradient+FIS2 and then comparing the results.

3.1 General Algorithm Used for the Experiments

1. Define the database folder.
2. Define the edge detector.
3. Detect the edges of each image as a vector and store it as a column in a matrix.
4. Calculate the recognition rate using the k-fold cross validation method.

a. Calculate the indices for training and test k folds.
b. Train the neural network k - 1 times, one for each training fold calculated

previously.
c. Test the neural network k times, one for each fold test set calculated

previously.

5. Calculate the mean rate for all the k-folds.

Fig. 4 Morphological gradient edge detector improved with fuzzy systems
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3.2 Parameters for the Image Databases

The experiments can be performed with benchmark image databases used for
identification purposes. This is the case of face recognition applications, then we
use three of the most popular benchmark sets of images, the ORL face database
[14], the Cropped Yale face database [15, 16], and the FERET face database [17].

For the three databases we defined the variable p as the person number and s as
number of samples for each person. The tests were made with k-fold cross

Fig. 5 Membership functions of the variables for the MG ? FIS1 Edge Detector
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validation method, with k = 5 for the three databases. We can generalize the
calculation of fold size m or number of samples in each fold, dividing the total
number of samples for each person s by the fold number, and then multiplying the
result by the person number p (3), then the train data set size i (4) can be calculated
as the number of samples in k-1 folds m, and test data set size t (5) are the number
of samples in only one fold.

m ¼ ðs=kÞ � p ð3Þ

i ¼ mðk � 1Þ ð4Þ

Fig. 6 Membership functions of the variables for the MG ? FIS2 Edge Detector
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t ¼ m ð5Þ

The total number of samples used for each person were 10 for the ORL and
YALE databases; then if the size m of each 5-fold is 2, the number of samples for
training for each person is 8 and for testing is 2. For experiments with the FERET
face database we use only the samples of 74 persons who have 4 frontal sample
images. The particular information for each database is shown in Table 1.

3.3 The Monolithic Neural Network

In previous experiments with neural networks for image recognition, we have
found a general structure with acceptable performance, even if it is not optimized.
We used the same structure for multi-net modular neural networks, in order to
establish a standard for comparison for all the experiments [18–23]. The general
structure for the monolithic neural network is indicated below:

• Two hidden layers with 200 neurons.
• Learning Algorithm: Gradient descent with momentum and adaptive learning

rate back-propagation.
• Error goal of 0.0001.

4 Experimental Results

In this section we show the numerical results of the experiments. Table 2 contains
the results for the ORL face database, Table 3 contains the results for the Cropped
Yale database and Table 4 contains the results for the FERET face database.

It can be noticed that mean times in Table 2 are the same and this is true
because the ORL database is very uniform, in other words the figures (faces) do
not have much diversity. The standard deviations appear to be relatively high, but
considering that the neural networks are trained with different initial weights is not
a concern. Table 3 shows larger standard deviations on the results due to the fact
that the Yale database is more complicated for recognition on average and this
causes some neural networks to produce sometimes bad results, although it is also
possible to find very good solutions.

Table 1 Particular information for the tested benchmark face databases

Database Person number
(p)

Samples number
(s)

Fold size
(m)

Training set size
(i)

Test set size
(t)

ORL 40 10 80 320 80
Cropped

Yale
38 10 76 304 76

FERET 74 4 74 222 74
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For a better appreciation of the results we made plots for the values presented in
Tables 2, 3 and 4. Even if this work does not pretend to make a comparison based
on the training times as performance index for the edge detectors, it is interesting
to note that the necessary time to reach the error goal is established for each
experiment.

As we can see in Fig. 7 the lowest training times are for the Morphological
Gradient+FIS2 edge detector and Sobel+FIS2 edge detector. That is because both
edge detectors were improved with interval type-2 fuzzy systems and produce
images with more homogeneous areas; which means a high frequency of pixels
near the WHITE linguistic values.

However, the main advantage of the interval type-2 edges detectors are the
recognition rates plotted in Fig. 8, where we can notice that the best mean per-
formance of the neural network was achieved when it was trained with the data
sets obtained with the MG+FIS2 and Sobel+FIS2 edge detectors.

Figure 9 shows that the recognition rates are also better for the edge detectors
improved with interval type-2 fuzzy systems. The maximum recognition rates
could not be the better parameter to compare the performance of the neural net-
works depending on the training set; but it is interesting to note that the maximum
recognition rate of 97.5 % was achieved when the neural network was trained with

Table 2 Recognition rates for the ORL face database

Training set pre-processing
method

Mean time
(s)

Mean rate
(%)

Standard
deviation

Max rate
(%)

MG+FIS1 1.2694 89.25 4.47 95.00
MG+FIS2 1.2694 90.25 5.48 97.50
Sobel+FIS1 1.2694 87.25 3.69 91.25
Sobel+FIS2 1.2694 90.75 4.29 95.00

Table 3 Recognition rates for the Cropped Yale face database

Training set pre-processing
method

Mean time
(s)

Mean rate
(%)

Standard
deviation

Max rate
(%)

MG+FIS1 1.76 68.42 29.11 100
MG+FIS2 1.07 88.16 21.09 100
Sobel+FIS1 1.17 79.47 26.33 100
Sobel+FIS2 1.1321 90 22.36 100

Table 4 Recognition rates for the FERET face database

Training set pre-processing
method

Mean time
(s)

Mean rate
(%)

Standard
deviation

Max rate
(%)

MG+FIS1 1.17 75.34 5.45 79.73
MG+FIS2 1.17 72.30 6.85 82.43
Sobel+FIS1 1.17 82.77 00.68 83.78
Sobel+FIS2 1.17 84.46 03.22 87.84
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Fig. 7 Training time for the compared edge detectors tested with the ORL, Cropped Yale, and
FERET face databases

Fig. 8 Mean recognition rates for the compared edge detectors with ORL, Cropped Yale, and
FERET face databases
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the ORL data set preprocessed with the MG+FIS2. This is important because in a
real-world system we can use this as the best configuration for images recognition,
expecting to obtain good results.

The statistical analysis of the simulation results for the interval type-2 fuzzy
method in comparison with the type-1 method is shown in Table 5, in which it is
appreciated that in this case the difference between both methods is very signifi-
cant (t = -21.61). This high t value can be interpreted as having sufficient
statistical evidence (with more than 99 % degree of confidence) to say that that the
interval type-2 method is better than the type-1 method in this case of face
recognition.

Another way to illustrate the significant difference between the interval type-2
fuzzy logic method and the type-1 fuzzy method is with Fig. 10 in which the
differences, between the mean recognition rates, as well as the individual values,
are indicated. Here we have to say that the FERET face database is more com-
plicated because the original photographs not only include the face, but in many
cases other parts of the human body, and for this reason there is more uncertainty
in the recognition, and as a consequence type-2 fuzzy logic is able to manage
better this higher degree of uncertainty.

Figure 10 is a more descriptive representation of the difference between results
with type-2 and type-1 fuzzy edge detector, in which is clearly evidenced the
significant difference that can be achieved by using type-2 fuzzy logic. As a final
note, we have to mention that the type-2 fuzzy logic toolbox developed by our

Fig. 9 Maximum recognition rates for the compared edge detectors with ORL, Cropped Yale,
and FERET face database

198 P. Melin and O. Castillo



research group was used in all the type-2 fuzzy calculations. This toolbox can be
obtained following the instructions provided at the web page of our group: http://
www.hafsamx.org/his/index_files/Page315.htm. The toolbox can be requested for
academic and research use as indicated in the web page.

5 Conclusions

This chapter is the first effort to develop a comparison method for edge detectors
as a function of their performance in different types of recognition systems. In this
chapter we show that Sobel and Morphological Gradient edge detectors improved
with type-2 fuzzy logic have better performance than the type-1 fuzzy edge
detector and traditional methods in an image recognition system based on neural
networks. Based on these results the type-2 fuzzy edge detectors can be recom-
mended as good image processing techniques for complex recognition tasks, like
face recognition. The future work includes the development of metrics for mea-
suring the quality of edge detection and applying the type-2 fuzzy edge detector to
other biometric datasets.

Table 5 Comparison of results for type-2 and type-1 for the FERET database

Method Mean recognition rate Standard deviation n

Type-1 75.0500 0.224 20
Type-2 77.5320 0.327 10

Fig. 10 Comparison of recognition results for type-2 and type-1 for the FERET database
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Reliable Tool Life Estimation
with Multiple Acoustic Emission Signal
Feature Selection and Integration Based
on Type-2 Fuzzy Logic

Qun Ren, Luc Baron, Marek Balazinski and Krzysztof Jemielniak

Abstract Reliable tool life estimation of cutting tool in micromilling is essential
for planning machining operations for maximum productivity and quality. This
chapter presents type-2 fuzzy tool life estimation system. In this system, type-2
fuzzy analysis is used as not only a powerful tool to model acoustic emission
signal features, but also a great estimator for the ambiguities and uncertainties
associated with them. Depending on the estimation of root-mean-square-error and
variations in modeling results of all signal features, reliable ones are selected and
integrated to cutting tool life estimation.

1 Introduction

Tool wears quickly in micromilling with the microscaled cutting tool (diameter
\1 mm) and the high speed ([10,000 rpm). High throughput and in-process
measurement and monitoring become the central objective due to the high pre-
cision required.
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Currently, both experimental and commercially available tool condition mon-
itoring (TCM) systems are based on the measurements of physical phenomena that
are correlated with tool wear and can be exploited as tool wear symptoms. Cutting
force and acoustic emission (AE) are most often used for TCM in micromilling
process. Compared to conventional machining, the noise component in the signal
for monitoring micro-machining is usually very high and difficult to separate [1].
AE is particularly well suited, because it is not only a capable detector of
microscale deformation mechanisms but also a relatively uncontaminated signal
within the noisy machining environment. Despite the small material removal rate
in micromilling, AE signal is strong, easy to register, and shows a very short
reaction time to the tool—workpiece contact, which makes it a very good means of
detecting this contact and monitoring the integrity of the cutting process [2]. Very
limited work has been conducted at the microscale TCM system [3–10].

The possibility of a reliable tool wear evaluation using conventional statistical
methods based on one signal feature (SF) has been questioned, because the
measured feature depends not only on tool wear but also on a variety of other
process parameters and random disturbances. Attempts at rectifying these short-
comings have focused on pursuing a multi-sensor fusion strategy. Because of the
dependence of the magnitude and frequency characteristics of AE signal on
the nature of the transmission path of the signal and the sensor itself [11], the
impossibility to detect damage of millimeter-sized end mill directly, and the dif-
ficulty in understanding the exact physics in micromilling processes, establishment
of intelligent models for modeling and propagating uncertainties of multiple AE
SFs to characterize the tool condition have been one of the key elements in making
small parts accurately.

Recently, type-2 fuzzy sets and systems had become a very strategic and active
research area around the world. When comparing it with traditional mathematical
modeling methods and traditional fuzzy approach, type-2 fuzzy logic systems
(FLSs) not only can obtain a modeling result directly from vague input–output
information, but also can capture the uncertainties in the estimation results. This
information is very helpful to a decision maker as he can better handle the deci-
sion. Type-2 FLSs moves the world of FLSs into a fundamentally new and
important direction. Based on the literature review and our previous studies, type-2
fuzzy logic should be very suitable to identify the uncertainty in machining which
has direct effect on products. And no research on this subject has been done.

In this chapter, type-2 fuzzy system based tool life estimation system is pro-
posed. In the system, type-2 Takagi–Sugeno-Kang (TSK) FLSs are used to analyze
AE SFs in micromilling process. Numerous SFs of AE signal obtained from mi-
cromilling are calculated, because it cannot be determined in advance which ones
will appear to be useful in a particular application. To make the comparison and
evaluation of the SFs easier and more transparent, Type-2 TSK fuzzy analysis is
used as not only a powerful tool to model SFs, but also a great estimator for the
ambiguities and uncertainties associated with them. Depending on the estimation
of variations in modeling results of AE SFs. Reliable SFs are selected and inte-
grated into tool life evaluation.
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The rest of the chapter is organized as follows. Type-2 fuzzy logic and the
strategy of type-2 fuzzy analysis method are introduced in Sect. 2. Proposed type-
2 fuzzy tool life estimation system is presented in Sect. 3. A micromilling case
study is presented in Sect. 4. The experimental results show the effectiveness of
this method. Finally, conclusions are given in Sect. 5.

2 Type-2 Fuzzy Logic System

The universal approximation property of TSK fuzzy systems [12, 13] is well-
known today. TSK FLS has a powerful capability of explaining complex relations
among variables using rule consequents which are functions of the input variables.

A generalized type-1 TSK model can be described by IF–THEN rules which
represent input–output relations of a system. For a multi-input–single-output
(MISO) first-order type-1 TSK model, its kth rule can be expressed as:

IF x1 is Q1K and x2 is Q2K and . . . and xn is QnK

THEN Z is wk ¼ pk
0 þ pk

1x1 þ pk
2x2 þ . . . þ pk

nxn

where x1; x2; . . .; xn and Z are linguistic variables; Q1k; Q2k; . . .; and Qnk are the
fuzzy sets on universe of discourses U, V,…, and W, and pk

0, pk
1,…, pk

n are
regression parameters.

A Gaussian MF can be expressed by the following formula for the vth variable:

Qvk ¼ exp � 1
2

xv � xk�
v

r

� �2
" #

ð1Þ

where xk�
v is the mean of the vth input feature in the kth rule for v 2 ½0; n�. r is the

standard deviation of Gaussian MF.
Based on Zadeh’s conception of type-2 fuzzy sets and extension principle [14],

practical algorithms for conjunction, disjunction, and complementation operations
of type-2 fuzzy sets are obtained by extending previous studies [15]. Embedded
interval valued type-2 fuzzy sets was introduced and a general formula was
developed for the extended composition of type-2 relations which is considered as
an extension of the type-1 composition [16, 17]. Based on this formula, a complete
type-2 fuzzy logic theory with the handling of uncertainties was established [18].
The characterization in the definition of type-2 fuzzy sets uses the notion that type-
1 fuzzy sets can be thought of as a first-order approximation to uncertainty and
therefore type-2 fuzzy sets provide a second-order approximation. First-order type-
2 TSK FLS and its structures were presented in 1999 [19]. High-order type-2 TSK
FLS and generalized type-2 TSK FLS were presented in 2008 [20, 21].

A generalized kth rule in the first-order type-2 TSK fuzzy multiple-input–
single-output (MISO) system can be expressed as
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IF x1 is ~Q1K and x2 is ~Q2K and . . . and xn is ~QnK ;

THEN Z is ~wk ¼ ~pk
0 þ ~pk

1x1 þ ~pk
2x2 þ . . .þ ~pk

nxn

where ~pk
0; ~pk

1. . .; ~pk
n are consequent parameters, ~wk output from the kth IF–THEN

rule in a total of M rules FLS, Q�1k , Q�2k ,…,Q�nk are fuzzy sets on universe of
discourses. For the most general model of type-2 TSK FLS, antecedents are type-2
fuzzy sets and consequents are type-1 fuzzy sets, then consequent parameter
~pk

0; ~pk
1; . . .; ~pk

n are assumed as convex and normal type-1 fuzzy number subsets of
the real numbers, so that they are fuzzy numbers. These rules let us simultaneously
account for uncertainty about antecedent MFs and consequent parameter values.
The output of type-2 fuzzy system is not only a crisp output but also an interval
output. The interval output reveals the uncertainty due to antecedent or consequent
parameter uncertainties.

To obtain a type-2 model directly form a type-1 model, a width ak
j of cluster

center x�jk is extended both directions as shown in Fig. 1. The cluster center x�jk
becomes a constant width interval valued fuzzy set ~x�jk.

~x�jk ¼ ½x�jkð1� ak
j Þ; x�jkð1þ ak

j Þ� ð2Þ

where ak
j is spread percentage of cluster center x�jk.

Consequent parameter ~pk
j is obtained by extending the consequent parameter pk

j

from its type-1 counterpart using the following expression:

Fig. 1 Spread of cluster
center
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~pk
j ¼ pk

j � sk
j ; p

k
j þ sk

j

h i
; ð3Þ

where j 2 0; n½ �, and sk
j denotes the spread of fuzzy numbers ~pk

j , where

sk
j ¼ pk

j � bk
j ð4Þ

with bk
j denoting the spread percentage of consequent parameter pk

j .
Hence, the premise MF is changed from type-1 fuzzy sets of (2) into type-2

fuzzy set, i.e.,

Q
�

jk
¼ exp � 1

2

xj � x�jk 1� ak
j

� �

rk
j

0

@

1

A

22

64

3

75 ð5Þ

where rk
j is the standard deviation of Gaussian MF.

Because of its larger number of design parameters for each rule, it was believed
that type-2 FLS has the potential to be used in control [22] and other areas where a
type-l model may be unable to perform well [23, 24]. Type-2 FLSs are very useful
in circumstances in which it is difficult to determine an exact membership function
for a fuzzy set. They can be used to handle rule uncertainties and even mea-
surement uncertainties. Comparing with mathematical modeling methods and
traditional fuzzy approach (type-1FLS), type-2 FLSs not only can obtain a mod-
eling result directly from vague input–output information, but also they can cap-
ture the uncertainties in the estimation result. This information is very helpful to a
decision maker. Type-2 FLSs move the world of FLSs into a fundamentally new
and important direction. To date, type-2 FL moves in progressive ways where
type-1 FL is eventually replaced or supplemented by type-2 FL [25, 26].

3 Type-2 Fuzzy Logic Based Tool Life Estimation

Key components of the proposed architecture of type-2 fuzzy analysis based tool
life estimation system are shown in Fig. 2. Firstly, raw AE signal is obtained
directly from the AE sensor, and the high and low frequency noise components in
the AE signal are eliminated by using traditional high-pass and low-pass filter.
Then the raw AE signal is demodulated to RMS value (AERMS) and different SFs
are extracted. The next is type-2 fuzzy analyze each SF. Subtractive clustering
based type-2 TSK fuzzy approach is adapted for modeling of the tool wear process
in micro-milling. Different tool wear states based on the information from each
AERMS SF are modeled as separate type-2 fuzzy models. The root-mean-square-
error (RMSE) between original SF and modeled one is one of the two measures of
SF usability for TCM. The other is the variation of SF. Furthermore, features with
higher RMSE and bigger variation (difference between type-2 upper boundary and
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lower boundary) are rejected from further evaluation. The determination of the
number of SFs depends on the request of the accuracy of the TCM. In the final
stage, type-2 TSK fuzzy approach is used again to estimate of the tool life esti-
mation by integrating the selected SFs.

In this TCM, type-2 fuzzy analysis uses the type-2 TSK fuzzy modeling
algorithm based on subtractive clustering method shown in Fig. 3. In this diagram,
the subtractive clustering method is combined with least-square estimation algo-
rithm to pre-identify a type-1 fuzzy model from input–output data [27, 28]. Then
considering the type-1 membership functions as principal MFs of type-2 FLS, the
antecedent MFs are extended as interval type-2 MFs by assigning uncertainty to
cluster centers and the consequent parameters are extended as fuzzy numbers by
assigning uncertainty to consequent parameter values. The best approach for AE
SFs is obtained through enumerative search of optimum values for spreading
percentage of cluster centers and consequent parameters.

4 Experimental Study

4.1 Experimental Setup and Measurement

The experiment of this chapter was taken on a high precision milling machine
KERN Evo, equipped with a 50,000 rpm electrospindle and an HSK 25 tool holder
[4, 5]. A laser system was used to measure the tool’s length. The workpiece was a
cold-work tool steel X155CrVMo12-1, 50HRC clamped on a three-axis Kistler
9256C1 mini-dynamometer side by side with Kistler 8152B221 AE sensor. Signals
from those sensors were acquired at a sampling frequency of 50 kHz. Two-flute
uncoated micro-grain WC ball end mills with 400 lm radii and 30o helix angle
were used for a side-milling operation performed on a 45o tilted workpiece surface
20 9 20 mm2 in subsequent cuts with cutting parameters: rotational speed
n = 36,210 rpm, cutting speed vc = 68 m/min, feed fz = 0.016 mm/tooth, depth
of cut ap = 0.05 mm, width of cut ae = 0.05 mm. Thus, one cut lased little more
than one second, and the surface was machined in 400 cuts. The total wear in the

Fig. 2 Architecture of type-2 fuzzy analysis based tool condition monitoring system
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flank wear VBBmax = 0.11 mm, was used as the tool life criterion. The test was
regularly interrupted to measure the wear in an optic stereo microscope.

In Fig. 4, examples of AE signal acquired in single tool pass (cut) are presented.
A pass lasts only some 1.05 s and there were hundreds of them in every tool life.
Since tool wear is a gradual process, only 10 passes every 50 s of cutting time
were taken into further evaluation as separate operations.

Fig. 3 Diagram of type-2
fuzzy analysis method
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4.2 Signal Feature Calculation for Tool Wear Monitoring

Numerous SFs should be calculated by the TCM system, because it cannot be
determined in advance which ones will appear to be useful in a particular appli-
cation. The average value of the diagnostic signal is most often used in TCM.
However, even under constant cutting conditions, the signals are not generally
constant. Therefore, to minimize the diagnosis uncertainty, reduce the randomness
in one SF and provide more reliable tool condition estimation, the number of SFs
should be as big as possible. Therefore, from the available AE signal, nine SFs
were calculated for each cut as listed in Table 1. As the signals are not generally
constant, to separate initial signal disturbances from the rest of the signal, anal-
ogous features were also calculated for the beginning (first 20 %) of the cut and for
the middle part (40–80 %) of the cut, and designated with the letters ‘‘BG’’ or
‘‘MD’’ in the indices of the SF’s designation, respectively, AEBG-MI and AEMD-
MI (see Fig. 4). In this experiment, Type-2 TSK fuzzy system is used to model and
analyze all the 27 SFs of AE.

Fig. 4 Example of acoustic emission signals registered during tests

Table 1 Signal features from AE signal

Symbols Definitions

AEAV The average value
AERMS The RMS value
AESD The standard deviation
AEMX The maximum value above which was 5 % of all values
AEMI The minimum value below which was 5 % of all values
AERG The range (maximum–minimum)
AEMX-AV The maximum minus average
AEMI-AV The minimum minus average
AEDy The absolute difference between subsequent signal values
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4.3 Type-2 Fuzzy Acoustic Emission Signal Feature
Selection

By following the step illustrated in the diagram of Fig. 3, each of the 27 SFs is
analyzed. In this experiment, MFs are Gaussian MFs. There are 529 datasets from
each AE SF. The clustering parameters are pre-initialized. The cluster radius is
confined to the range [0.15; 1.0] with a step size of 0.15. The accept ratio and the
reject ratio are both considered in the range [0; 1.0] with a step size of 0.1. The
squash factor is considered in the range [0.05; 2] with a step size of 0.05. Com-
bined with a least-square estimation algorithm, the fuzzy systems for each cutting
length were identified. To pre-identify the type-1 fuzzy system, the clustering
parameters used for subtractive clustering method in this experimental study are
cluster radius = 0.15, accept ratio = 0.5, reject ratio = 0.15 and squash
factor = 0.1.

In this experiment, RMSE and variations are the measures of SF usability for
TCM. RMSEs for the type-1 and type-2 fuzzy estimation are calculated using the
following expression:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

V
�
�V

� �2
�

N

s

ð6Þ

where V
�

is the fuzzy estimated voltage of AE, either type-1 modeling or type-2
modeling. V is the voltage of AE recorded. N is number of the registered datasets.

The variation of V
�

is estimated with Eq. (6) which represents the difference
between upper and lower values of the interval output of type-2 fuzzy approach,
revealing the uncertainties of the AE in type-2 fuzzy estimation.

Variation ¼ upper boundary� lower boundary ð7Þ

Moreover, SFs with RMSE higher than 60 mV and the maximum variation
higher than 100 mV are rejected from further evaluation, these threshold values
were selected the same as the ones used in [5]. The RMSE, spreading percentage
for cluster centers and consequent parameters, and the maximum and minimum
variation for the four selected SFs AEMD-MI-AV, AEMD-MI, AEBG-MI-AV, and
AEMD-RG are listed in Table 2. In this experiment, 6, 7, 6, 6-rules fuzzy systems
are used for modeling the SF AEMD-MI-AV, AEMD-MI, AEBG-MI-AV, and AEMD-RG.
Their type-2 fuzzy models are illustrated in Fig. 5. The RMSE, number of fuzzy
rules, spreading percentage for cluster centers and consequent parameters, and the
maximum and minimum variation for the four SFs are listed in Table 2 column
2–5. Further, they will be integrated to cutting tool life estimation.

Figure 6 depicts the type-1 fuzzy modeling results for the four selected SFs—
AEMD-MI-AV, AEMD-MI, AEBG-MI-AV, and AEMD-RG. Comparing the curves for
each SF to overall output curve from type-2 fuzzy modeling in Fig. 5, it is
observed that they are similar and have slight differences in each cutting instant
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Table 2 Type-2 fuzzy parameters for AE signal features

Symbols AEMD-

MI-AV

AEMD-

MI

AEBG-

MI-AV

AEMD-

BG

AEAV AEAV-

BG-dY

RMSE 18.8897 20.8703 35.5409 46.5838 31.3703 203.9663
Number of rules 6 7 6 6 7 5
Spreading percentage of the cluster

centers (%)
0.35 % 0.35 %

0.30 % 0.93 % 0.45 % 0.26 % 0.51 %
0.47 % 0.87 % 0.54 % 0.41 % 0.40 % 0.18 %
0.23 % 0.55 % 0.29 % 0.59 % 0.07 % 90 %
0.84 % 0.62 % 0.74 % 0.26 % 0.23 % 0.98 %
0.19 % 0.58 % 0.18 % 0.60 % 0.12 % 0.44 %
0.23 % 0.20 % 0.68 % 0.71 % 0.18 % 0.11 %

Spreading percentage of consequent
parameters (%)

4 % 4 % 4 % 4 % 4 % 4 %

Max variation 37.5224 47.5750 66.0816 88.7114 101.7906 375.5222
Min variation 9.0635 14.8341 21.8028 20.8129 32.4195 118.4191

Fig. 5 Type-2 fuzzy model for the four selected acoustic emission signal features
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which are illustrated in Fig. 7. The type-2 fuzzy modeling has additional outputs
for each SF—the upper boundary and lower boundary in Fig. 5. In this experi-
mental study, the variation between the upper boundary and lower boundary
calculated using Eq. (7) at each instant of the cutting process is of importance as it
gives one of the information of uncertainty. To detect damage on the millimeter-
sized end mill directly, knowing the difficulty in understanding the exact physics in
micromilling processes, establishment of intelligent models for modeling, and
propagating uncertainties of multiple AE SFs to characterize the tool condition is
one of the key elements in being able to produce small parts with better accuracy.

The AE signal data used in this experiment is the same as that of the first tool in
Jemielniak’s paper [5] which use an approach based on hierarchical algorithms
[29]. In Jemielniak’s paper, RMSE is the only measure of SF usability for TCM.
There were six SFs—AEAV, AEBG-MI-AV, AEMD-MI, AEMD-MI-AV, AEMD-RG and
AEAV-BG-dY, and AEAV were the best. In the type-2 fuzzy analysis, not only RMSE
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Fig. 6 Type-1 fuzzy
modeling acoustic emission
signal features
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but also variations are used as the measure of SF usability. For example, AEAV has
less RMSE but bigger variation which has the information of associated ambi-
guities and uncertainties. AEAV and AEAV-BG-dY are rejected because of their large
RMSE and variation (listed in Table 2 column 6–7). The best SF is AEMD-MI-AV.
Obviously, the results using type-2 FLS are more reasonable than the one using
hierarchical algorithms. AEMD-MI-AV is AE signal from the middle part of the cut,
which has less noise and is more stable than that AE signal from the whole cutting
process (AEAV). It is more suitable for TCM.

4.4 Tool Life Estimation with Signal Feature Integration

The four selected SFs—AEMD-MI-AV, AEMD-MI, AEBG-MI-AV, and AEMD-RG are
integrated to evaluate the micromilling cutting tool life by using type-2 TSK fuzzy
logic system. The tool life estimation is illustrated as the sold curve in Fig. 8. The
information on uncertainty in the tool life fuzzy estimation is shown between the
type-2 fuzzy output upper boundary (shown as dashed curve) and the lower
boundary (shown as dash-dotted curve). The maximum difference between the
upper boundary and the lower boundary is 0.5003 % and the minimum is
0.00032 %. The maximum difference between the overall tool life estimation and
the model ideal (shown as dotted curve) is 0.0492 %.

Comparing the results from type-2 fuzzy estimation with that in Jemielniak’s
paper [5], Type-2 tool life fuzzy estimation not only estimate the tool life by
integrating selected multiple AE SFs, but also predict the uncertainty in tool life in
each cutting instant. During initial cutting period (before 50 % of cutting tool life),
the estimated cutting tool life is almost the same as the situation ideal, which
corresponds to the initial stages of wear occurring. After cutting tool reach 50 % of
its life, uncertainty in the tool life estimation increases, even though the overall

Fig. 8 Type-2 fuzzy tool life
estimation
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estimation of cutting tool life still has the same trend of the model ideal. During the
period that cutting tool life reaches its 60–80 %, the interval of uncertainty becomes
very large, while AE SFs vary significantly. This corresponds to the period of
relatively rapid wear or failure of cutting tool. The information about uncertainty
prediction has great meaning for decision making or tool condition investigation.

5 Conclusion

This chapter presented type-2 fuzzy tool life estimation system. In this system,
type-2 fuzzy logic is used to analyze the AE SFs in TCM in micromilling process
and integrate the selected SFs for tool life estimation. The interval output of type-2
approach provides an interval of uncertainty associated with SFs of AE signal and
tool life prediction.

Nowadays, Type-2 fuzzy logic is the only intelligent method which not only
can model the AE signal, but also estimate the uncertainties from the vague
information obtained during high precision machining. The estimation of uncer-
tainties can be used for proving the conformance with specifications for products
or auto controlling of machine system. The application of type-2 fuzzy logic on
uncertainty estimation in high precision machining has great meaning for con-
tinuously improvement in product quality, reliability, and manufacturing efficiency
in machining industry.

One limitation of the results obtained in this chapter can be that the tool life
determination is carried out solely using the AE SF information during the mi-
cromilling process. For high precision machining, cutting force could be combined
with AE to effectively determinate cutting tool life at a higher precision scale.
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A Review of Cluster Validation
with an Example of Type-2 Fuzzy
Application in R

Ibrahim Ozkan and I. Burhan Türks�en

Abstract Interval valued type-2 fuzziness can be represented by means of
membership functions obtained with upper and lower values of the level of
fuzziness. These upper and lower values for the level of fuzziness in FCM algo-
rithm were obtained in our previous studies. A particular application of Interval
valued type-2 fuzziness is shown for cluster validity analysis in this chapter. For
this purpose, we introduce a brief taxonomy for cluster validity indices to clarify
the contribution of our novel approach. To provide reproducibility of our tech-
nique, the source code is written in freely available language ‘R’ and can be found
on our web site.

1 Introduction

Cluster validity is an important task in unsupervised learning of data structure with
an application of clustering algorithms based on predetermined similarity measure.
These algorithms are aimed at extracting group structure in a data set. Such
extractions are often validated by means of cluster validity indices. There is a vast
literature on this subject in both crisp and fuzzy clustering domains. Researchers
are still improving the reported validity measures. The aim of this chapter is
twofold. One is to introduce a brief taxonomy of cluster validity indices.
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The second aim is to provide an example of an application of interval valued
type-2 fuzziness for identification of the number of clusters in Fuzzy C-Mean
(FCM). To this end, upper and lower values of the level of fuzziness for FCM
clustering found in our previous studies [32, 33] are used to assess the stability of
clustering. In order to make this chapter fully reproducible, at least, as much as
possible, the source code written in freely available language ‘R’1 for computing is
available in our website: http://individual.utoronto.ca/ozkan/bk_chapters.htm.

1.1 A Brief Survey of Cluster Validity Indices

Since there is a vast literature on cluster validity indices (CVI), a list that includes
all previous works may not be explanatory. Hence, a brief survey of CVI and their
classification will be introduced for both fuzzy and crisp clustering algorithms.

In general, one can find three types of cluster validity indices in the literature
[12, 26, 38]. These are:

(i) Internal criteria that look for both small dispersion in clusters and high dis-
similarity between clusters;

(ii) External criteria in which pre-specified structures are used to validate the
clustering results;

(iii) Relative criteria that need a decision objective to be chosen before clustering.
Then the clustering algorithm is applied with different input parameter sets.
The results are assessed and the optimal clustering structure is selected based
on a previously chosen criterion [7, 8, 21, 38].

The objective ways of assessing clusters are: (i) to use the class membership
information if available, (ii) to use internal criteria or mix with relative criteria if
class membership information is not available.

Apart from this general classification, Stability and Biological types of valida-
tion can be seen in the literature. In case of biological criteria, the result is assessed
by means of intuition to determine if the clustering produced meaningful results.
Stability type validation is a special case of relative criteria approach in which the
variables are removed one by one and the results are compared for the selection of
the optimum number of clusters. (See for example, [1, 2, 11, 16, 29, 31]) Other
stability approaches use resampling to assess the cluster stability (See for example,
[17, 30, 31, 36]).

Since the clustering algorithms can be assessed under three basic criteria,
namely Compactness, Connectedness, and Separation [25, 36], the validity indices
naturally are formed based on the basis of such categories. These indices are also
classified as internal type validation measures. Compactness increases with the
number of clusters while separation decreases. Hence, compactness and separation

1 ‘R’ SW can be downloaded from http://cran.r-project.org/ web site.
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measurements are most common in classification of such indices within cluster
variability and gap statistics type validation measures. (One may want to refer to
the following brief list of papers for a discussion of the cluster validity: (i)
Compactness and Separation [15, 18, 22–24, 27]; (ii) within cluster validity and
gap statistics [10, 37, 40–42], and (iii) others, [43, 46, 49]).

There are several works on the validation of the number of clusters for FCM.
Among them the following articles are worth mentioning: [4, 6, 9, 15, 19, 20, 27,
28, 35, 37, 44, 45, 47, 49, 50].

In this chapter, we demonstrate our recently proposed validation criterion called
‘‘MiniMax e-stable cluster validity index’’, [34], using the free software ‘R’.
This validity index can be classified as a stability type validation where, the
stability of the clusters is assessed by means of the uncertainty associated with the
level of fuzziness in FCM clustering algorithms. In addition to this cluster validity
index, some other variations will also be demonstrated. Since one of the aims of
this chapter is to provide a good platform for researchers/practitioners, all scripts
related with CVI analysis are prepared in pure ‘R’ language and one may get these
functions from ‘‘http://individual.utoronto.ca/ozkan/bk_chapters.htm’’ web site.

In order to keep the chapter self-explanatory, we state a brief introduction of
FCM algorithm with an overview of selected and widely used cluster validity
indices together with packages that are necessary to perform fuzzy clustering
which is given in the following section. Then, MiniMax e-stable index is given
together with the implementation of the selected indices. The performances of
these indices and the conclusions are stated in the results section.

2 FCM, Upper and Lower Level of Fuzziness and Number
of Clusters

2.1 Fuzzy C-Means (FCM)

FCM algorithm partitions data into clusters in which each observation is assigned a
membership value between zero and one to each cluster. Bezdek [3] proposed the
minimization of the following objective function:

Jm U; V : Xð Þ ¼
Xnd

k¼1

Xnc

c¼1

lm
c; k xk � vck k2

A ð1Þ

where, lc; k: membership value of kth vector in cth cluster such that lc;k 2
0; 1½ �; nd is the number of vectors used in the analysis, nc is the number of

clusters, :k kA is norm and m is the level of fuzziness, the membership values are
calculated as:
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li;k ¼
Xnc

c¼1

xk � vik kA

xk � vck kA

� � 2
m�1

" #�1

ð2Þ

where,
Pnc

c¼1 lk;c ¼ 1 for some given m [ 1, and finally the cluster centers are
computed as:

vc ¼
Pnd

k¼1 lm
ckxk

Pnd
k¼1 lm

ck

ð3Þ

FCM algorithm is implemented in several packages in R. For example, ‘‘fanny’’
function in ‘‘cluster’’ package2 performs fuzzy clustering with limited similarity/
dissimilarity measures. Another package that provides FCM is ‘‘e1071’’ through
‘‘cmean’’ function. This function is used for the experiments given in this chapter.3

This function accepts only two dissimilarity methods that are Euclidian and
Manhattan.4

FCM algorithm requires that the number of clusters and the level of fuzziness
need to be identified first. There are limited studies for the level of fuzziness (0),
even though this parameter makes this algorithm a fuzzy algorithm. The most
widely used value for the level of fuzziness is two. And this value is usually
accepted as the rule of thumb. Pal and Bezdek [35] investigate that the value of the
level of fuzziness should be between 1.5 and 2.5 based on their analysis on the
performance of cluster validity indices. Yu et al. [48] suggest that the proper value
of the level of fuzziness depends on the data itself. Ozkan and Turksen [33] show
that the proper values for upper and lower bounds of level of fuzziness are 1.4 and
2.6, respectively. The upper and lower values of the level of fuzziness do not
depend on the number of clusters. Thus one can use uncertainty related with
fuzziness to find the optimum number of clusters among the possible stable
clusters. Hence this becomes a Type-2 fuzzy application, because it incorporates
the uncertainty of fuzziness.

2.2 Selected Validation Indices

In the current literature, several cluster validity indices have been introduced
to identify the number of clusters in fuzzy data with FCM [6, 9, 13–15, 20, 28, 35,
37, 44]. In this section, we briefly review those cluster validity indices that are
most frequently investigated.

2 See http://cran.r-project.org/web/packages/cluster/index.html.
3 http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/e1071/html/cmeans.html.
4 Euclidian distance is defined as square root of

P

i
ðxi � yiÞ2 and Manhattan is

P

i
absðxi � yiÞ:
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Bezdek proposed partition coefficient (PC) and partition entropy (PE) as cluster
validity criteria [4, 5]. Both indices use only membership values of fuzzy clusters.
Both seek higher membership values to any one of the clusters. These indices
implicitly seek stable cluster centers. Minimizing PE or maximizing PC with
respect to the number of clusters, nc, where nc 2 ½cmin; cmax�, are used to determine
the optimum number of clusters:

PC ðUÞ ¼ 1
nd

Xnd

k¼1

Xnc

c¼1

l2
c; k

 !

ð4Þ

Partition coefficient is increasing with the membership values which also
increase with the level of fuzziness approaches to its lower bound. Hence partition
coefficient is not an appropriate measure if clustering is performed with the level
of fuzziness close to 1.4.

PE ðUÞ ¼ � 1
nd

Xnd

k¼1

Xnc

c¼1

lc; k logaðlc; kÞ
 !

ð5Þ

Partition entropy is expected to increase with the level of fuzziness. For the sake
of explanation of its behavior, this index is calculated for the values of the level of
fuzziness 1.4, 2 and 2.6.

Fukuyama and Sugeno’s [20] selection index uses both membership values and
data as:

FS ðU; V : XÞ ¼
Xnc

c¼1

Xnd

k¼1

lm
c; k xk � vck k2

d� vc � vk k2
d

� �
ð6Þ

where, v ¼ 1
nd

Pnd
k¼1 xk, is the mean of the whole data set.

Xie-Beni’s index seeks compactness and separation through their ratios [47] as:

FS ðU; V : XÞ ¼

Pnc

c¼1

Pnd

k¼1
lm

c; k vc � xkk k2

nd �min
i; j

vi � vj

�� ��� � ð7Þ

The source code to calculate these indices is given as ‘‘cvindxs_cmeans’’
(‘‘cvindxscmeans.r’’ file) together with ‘‘sugenocmeans’’ (‘‘sugenocmeans.r’’ file)
function. MiniMax e-stable index, [34] and its variations worth explained explic-
itly, since this is a unique example of an application of interval valued type-2
fuzziness to cluster validity.
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2.3 MiniMax e-stable Index, l1 Norm

Ozkan and Turksen [34] proposed an application of interval valued type-2 fuzz-
iness to find the optimum number of clusters which is called MiniMax e-stable
index. This approach is based on the uncertainty associated with the level of
fuzziness. Pal and Bezdek [35] report that the level of fuzziness affects the success
of cluster validation and they suggest that the value of the level of fuzziness should
be between 1.5 and 2.5. If the value of the level of fuzziness is important in FCM,
the uncertainty associated with the value of the level of fuzziness is also important.
MiniMax e-stable index incorporates this uncertainty in validation. This method
seeks cluster center value stability with respect to the level of fuzziness where its
upper and lower bounds [33] are used as a guide to find the number of clusters in
FCM.5 This also means that the change in entropy is minimized with respect to the
change in the level of fuzziness if the stability of cluster centers is maximized.

For the well-separated clusters where membership values are closer to either 0
or 1, cluster center values become more stable with respect to the level of fuzzi-
ness. Thus, the effect of the changes of the level of fuzziness to the changes in the
cluster centers should be minimized for the optimum number of clusters. Hence
the objective function is given as

min Dvcjml;mu
¼ D

Pnd
k¼1 lm

ckxk
Pnd

k¼1 lm
ck

" #

ml;mu

0

@

1

A ð8Þ

where ml and mu are the lower and upper values of the level of fuzziness to be used
to assess the stability of cluster centers.

Authors [34] suggest using at least one half of the range of boundary values to
get a proper validity measure based on the behavior of the membership function.
Assessing the stability of cluster center values obtained with m ¼ 2:6 and m ¼ 1:4
should create enough information to decide the optimum number of clusters. In
order to measure the stability they suggest the l1 norm.6 This distance measure
seeks the maximum changes in cluster center values in its dimensions. Euclidian,
l2 norm, or Manhattan, l1 norm can also be considered as stability measures
although they are computationally expensive. Calculation of these measures can be
performed by the following steps:

1. I: Run FCM algorithm with m ¼ ml and m ¼ mu

II: Measure center dissimilarities by means of l1, l2 and l1 norms.

5 Kim et al. [27], used similar intuition and suggested that the optimal number of clusters can be
found by minimizing the change in cluster center with respect to the number of clusters.
6 l1 norm is defined as limp!1 lp where lp is p-norm. Since p-norm is given as

vmu
c � vml

c

�� ��
p
¼
Pnv

i¼1
ððvmu

c;i Þ
p � ðvml

c;iÞ
pÞ

1
p, hence, limp!1 vmu

c � vml
c

�� ��
1¼ maxnv

i¼1 vmu
c;i � vml

c;i

			
			.
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2. I: Run FCM algorithm with m ¼ mu: Then change m ¼ ml and calculate new
cluster centers (in one step only)
II: Measure center dissimilarities by means of l1, l2 and l1 norms.

Authors present four indices in order to find the optimum number of clusters in
fuzzy data sets. They also explicitly state that there can be more approaches
similar to theirs. The example of indices are listed below (all with respect to the
different number of clusters):

• ‘‘Average change in cluster centers measured by the values of a distance
measure, (Average change in distance, ACI)

• The change in specific entropy measure Ozkan and Turksen [32] used in their
analysis, (Change in Entropy, CIE, based on the adapted version of Shannon’s
Entropy [39])

• The minimum of the maximum changes in cluster centers measured by the
values of a distance measure, (Minimum of the Maximum change in distance,
MMI)

• The minimum of the maximum changes in cluster centers in any dimension,
MiniMax e-stable index. MiniMax e-stable index tries to identify stability in
every dimension and finds out the minimum of all maximum distances in all
dimensions. For example two sets of cluster centers are obtained with the per-
turbation of the level of fuzziness, m. Thus, the first set of cluster centers is
calculated with an application of FCM by setting the level of fuzziness 2.6. Then
the second set of centers is calculated with the perturbation of the level of
fuzziness from the value of 2.6 to the value of 1.4, in equation…’’ [34].

Since the first three indices are computationally expensive, one can apply these
measures to cluster centers and membership values calculated as given in the
fourth index. The experimentation is left to the reader. The code is given as
‘‘cvindxs_cmean’’ function in ‘‘cvindxscmeans.r’’ file.

In this chapter, several data sets are used for CVI experiments. In order to make
this chapter fully reproducible some data sets are obtained by means of random
number generations.Two other are selected among well-known real-world data
sets, ‘‘iris’’ and ‘‘wine’’ data sets, used in the literature.7

3 Experiment

In the first part of this section, several artificial data sets are used. The second part
contains real-world data sets, which are iris and wine data sets.

7 Iris data is available in R SW. Wine data can be downloaded from http://archive.ics.uci.edu/ml/
machine-learning-databases/wine/ manually or by using R SW as it is shown in ‘‘iris and wine
data ex.r’’ script file.
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3.1 Artificial Data

There are nine artificial data sets created by application of normal random values
with different variances (using ‘‘rmvnorm’’ function of ‘‘mvtnorm’’ package in R).
There are 1000 pairs divided equally into 5 clusters centered as randomly picked
{(1,4), (7,11), (11,3), (3,-2), (-2,12)} values. For the sake of simplicity, the
number of variables is set as nv ¼ 2. The random numbers are drawn with equal
variances of each dimension and zero covariance.

In Fig. 1, randomly generated data sets are shown. Each data set is gener-
ated with a diagonal covariance matrix where the values of the diagonals are
set to sampled values. The R code to create this figure is given as ‘‘fig1.r’’ file.

The boundaries of clusters are clear for the first few data sets but the boundaries
of clusters cannot be recognized in the last few of them. Up to sampled values with
covariance matrix whose diagonal values are six, the boundaries of the clusters can
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Fig. 1 Scatter graph of artificial data sets
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easily be identified. However the recognition becomes increasingly difficult for
data sets with higher values.

Figure 2 shows the membership functions for the sixth sample using the value
of the level of fuzziness 2. The implementation of this figure is given as fig2.r file
(‘‘plotMemcmeans’’ function is given as ‘‘plotmemcmeans.r’’ file).

3.2 Real-World Data

Aside from the experiments that are designed to be simple yet informative, some
real-world data sets are used for presentation. To this extend, selected cluster
validity indices are applied to ‘‘wine’’ and ‘‘iris’’ data sets. Both data sets can be
downloaded from the web site of, Machine Learning Repository of University of
California, Irvine.8 ‘‘iris’’ data set is readily available within R software. ‘‘wine’’
data set can be downloaded as shown in ‘‘iris and wine data ex.r’’ file.

Table 1 shows the summary statistics of wine data set. Since variables statistics
are significantly different to each other, variables are scaled to have zero mean and
unity variance (and they are not decorrelated) before clustering algorithm is
applied.

This data set contains 178 observations each 13 variables and three classes
(cultivars) named 1, 2, and 3 with 59, 71, and 48 observations each.
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Fig. 2 Membership values for sampled values 6 with the level of fuzziness, m = 2

8 http://www.ics.uci.edu/*mlearn/databases.html
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Summary statistics of iris data is shown in Table 2. Statistics suggest per-
forming scaling before clustering. There are 150 observations with four variables
and three types of species.

4 Results

4.1 Artificial Data Sets

Table 3 shows the numbers of clusters found by different cluster validity indices
for each of the nine artificially generated data sets. PE, PC, Xie-Beni and
Fukuyama and Sugeno’s cluster validation indices are used for comparison.
Although our intention is not to compare the result, for the sake of presentation it is
given. All these indices are calculated with the values of the level of fuzziness, 1.4,
2, and 2.6. The value 2 is rule of thumb and others are lower and upper bound
values suggested by Ozkan and Turksen [33]. The list of observations is:

• l1 indices perform well. It seems the lower half of the range, using the value
of the level of fuzziness 2 then changing to 1.4 works slightly better. Instead

Table 2 Summary statistics for iris data

Minimum First Qu. Median Mean Third Qu. Maximum

Sepal length 4.3 5.1 5.8 5.843 6.4 7.9
Sepal width 2 2.8 3 3.057 3.3 4.4
Petal length 1 1.6 4.35 3.758 5.1 6.9
Petal width 0.1 0.3 1.3 1.199 1.8 2.5

Table 1 Summary statistics for wine data

Minimum First Qu. Median Mean Third Qu. Maximum

Alcohol 11.03 12.36 13.05 13 13.68 14.83
Malic acid 0.74 1.603 1.865 2.336 3.083 5.8
Ash 1.36 2.21 2.36 2.367 2.558 3.23
Alkalinity of ash 10.6 17.2 19.5 19.49 21.5 30
Magnesium 70 88 98 99.74 107 162
Total phenols 0.98 1.742 2.355 2.295 2.8 3.88
Flavanoids 0.34 1.205 2.135 2.029 2.875 5.08
Nonflavanoid phenols 0.13 0.27 0.34 0.3619 0.4375 0.66
Proanthocyanins 0.41 1.25 1.555 1.591 1.95 3.58
Color intensity 1.28 3.22 4.69 5.058 6.2 13
Hue 0.48 0.7825 0.965 0.9574 1.12 1.71
OD280/OD315 of diluted wines 1.27 1.938 2.78 2.612 3.17 4
Proline 278 500.5 673.5 746.9 985 1680
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of global minimum, using the first local minimum is the best decision
criterion.

• Xie-Beni’s index performs quite well when the value of the level of fuzziness is
set to two. But it gets better when the value of the level of fuzziness is set to
upper bound if the first local minimum is taken as the number of clusters. The
result is poorer when the value of the level of fuzziness is 1.4.

• Fukuyama and Sugeno’s index also performs well when the first local minimum
is used as the decision criterion. Similar to Xie-Beni’s index, the performance is
increasing with the value of the level of fuzziness up to the upper bound.

• Partition Coefficient and Entropy indices perform better when the value of the
level of fuzziness is set to the lower bound.

• The performances of all indices are good up to r2 ¼ 7 when their best perfor-
mances are used.

4.2 Real-World Data Sets

4.2.1 Iris Data Set

Figure 3 shows the results of MiniMax e-stable index for iris data set. This
validity index identifies three clusters since the first (local) minimum is at three

Table 3 Validation indices performances

Artificially generated data set l1 : 1a l1 : 2a F–Sa,b XBc PEb PCb

1 - r2 ¼ 2 5 5 5 5 5 5

2 - r2 ¼ 3 5 5 5 5 5 5

3 - r2 ¼ 4 5 5 5 5 3 5

4 - r2 ¼ 5 5 5 5 5 3 3

5 - r2 ¼ 6 5 5 5 5 3 3

6 - r2 ¼ 7 5 5 5 5 3 3

7 - r2 ¼ 8 5 5 8 5 3 3

8 - r2 ¼ 9 5 5 – 5 3 3

9 - r2 ¼ 10 5 5 6 5 3 3

a Results for 1:ml ¼ 1:4; mu ¼ 2:6 2: ml ¼ 1:4; mu ¼ 2. Manhattan distance works well too. In
general setting first to upper bound, then changes to the lower bound values of the level of
fuzziness performs well. F–S: Fukuyama-Sugeno index
b Partition Coefficient identifies correctly up to number r2 ¼ 4. However when the level of
fuzziness is set to 1.4, it identifies the number of clusters up to r2 ¼ 8. Partition Entropy identifies
correctly up to number r2 ¼ 3. However when the level of fuzziness is set to 1.4, it identifies the
number of clusters up to r2 ¼ 7
c Xie-Beni’s index performs well only when the value of the level of fuzziness is set to 2. The
first local min is taken as the optimum number of clusters.
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and also there is another local minimum at six which is two times of the first
minimums place as suggested by Ozkan and Turksen [34]. Hence, three is an
optimum number of clusters based on authors’ recommendation. There are also
two other variants given in this figure. These are the Manhattan distance (l1

norm) and the Euclidian distance (l2 norm). Both identify the correct number of
clusters as l1 norm for iris data set. The averaging (or taking all the changes in
all dimensions into account may result in misleading information. Stability
measure in this example of usage should not be the average). Setting the upper
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Fig. 3 MiniMax CVI for iris data l1 norms. Left m1 ¼ 2; m2 ¼ 1:4, Right m1 ¼ 2:6; m2 ¼ 1:4
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and lower values of the level of fuzziness as ml ¼ 1:4; mu ¼ 2:6 or ml ¼
1:4; mu ¼ 2 perform well.

Since iris data set is a pretty small data sample and the number of variables is
four it may be informative to see the behavior of the membership function.
Figure 4 shows the membership functions obtained for iris data set. These figures
in fact demonstrate the existence of interval valued type-2 membership function
obtained with an application of upper and lower fuzziness. It appears that, the
change in the value of the ‘sepal. length’ in cluster labeled as c1 and the change in
the value of the ‘sepal. width’ in cluster labeled as c3 are significantly larger as
shown by vertical dotted lines. This change in cluster centers is the main idea for
this cluster validity index. The intuition is that the cluster center values become
more unstable if the number of clusters is set less than or greater than the optimal
number of clusters.

Membership function of iris data set with 5 clusters is given in Fig. 5. One can
observe that the significantly large changes in cluster center values in all dimen-
sions as shown by vertical dotted lines. Hence the stability reduces if this data set
is over-clustered.

Figure 6 shows the result of other selected cluster validity indices. Xie-Beni’s
indices for iris data set reach minimum when the number of clusters is set to three.
Also, Fukuyama and Sugeno’s indices for three different values of the level of
fuzziness identify the optimal number of clusters as three. The behavior of all
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indices clearly changes with the level of fuzziness. The list of observations given
above seems valid for iris data set experiment.

4.2.2 Wine Data Set

Figures 7 and 8 show the result of MiniMax e-stable index and other selected
indices respectively for wine data set. In order to avoid repetition, the discussion
given above is valid for this wine data experiment also. Since there are 13 variables,
creating the membership functions and discussion about them are left to the reader.
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2 4 6 8 10

0.
2

0.
6

1.
0

MiniMax CVI, -L-inf Norm

m=1.4 - m=2
Number of Clusters

C
V

I

L-inf
Manhattan
Euclidian

2 4 6 8 10

0.
5

1.
0

1.
5

MiniMax CVI, -L-inf Norm

m=1.4 - m=2.6
Number of Clusters

C
V

I

L-inf
Manhattan
Euclidian

Fig. 7 MiniMax CVI for wine data l1 norms. Left m1 ¼ 1:4; m2 ¼ 2, Right m1 ¼ 1:4; m2 ¼ 2:6

232 I. Ozkan and I. Burhan Türks�en



5 Conclusion

One of the aims of this chapter is to introduce a possible use of the interval valued
type-2 assessment for cluster validation. To this end, a brief survey of cluster
validation approaches including their basic taxonomy is given first. Then Ozkan
and Turksen’s MiniMax e-stable index is introduced as a recent example of how
type-2 fuzziness can be used for cluster validation. This approach is a novel one in
the sense that it is the first example of the use of upper and lower bounds of the
level of fuzziness used. This method seeks stability of the values of cluster centers
with respect to the level of fuzziness. One can create many possible measures for
cluster validation with an application of interval valued type-2 fuzziness. It
appears that the extra information that can be extracted from interval valued type-2
fuzziness opens a new path for the extensions of the research already conducted for
type-1 fuzzy systems.

The second aim of this chapter is to provide a platform for researchers and
practitioners to let them fully reproduce all examples given in this chapter. All the
source codes of the functions used in this chapter are written in freely available R9

software. The data sets used in this chapter are (i) artificial data sets created by

2 4 6 8 10

-2
00

20
0

60
0

10
00

Fukuyama-Sugeno's Cluster Validity Index

Number of Clusters

S
ug

en
o

m=1.4
m=2
m=2.6

2 4 6 8 10

0e
+0

0
2e

+1
2

4e
+1

2

Xie-Beni's Cluster Validity Index

Number of Clusters

X
ie

-B
en

i m=1.4
m=2
m=2.6

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0 Bezdek's Entropy Index

Number of Clusters

E
nt

ro
py

m=1.4
m=2
m=2.6

2 4 6 8 10

0.
1

0.
3

0.
5

0.
7

Bezdek's Coefficient Index

Number of Clusters

C
oe

ffi
ci

en
t

m=1.4
m=2
m=2.6

Fig. 8 Selected indices for wine data set

9 This software can be downloaded from http://cran.r-project.org/. There are also several good
documents related to this statistical computing environment and there are more than 3500
packages prepared already.
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multivariate sampling from normal distribution, (ii) iris ,and (iii) wine data sets.
Iris data set is available in R. Wine data set is available on the Internet and can be
downloaded within R. We believe researchers and practitioners can modify/extend
the given source code for further experimentation and research.

It is reasonable to suggest that the level of the fuzziness is a very powerful
parameter. It certainly helps us to understand both the relation between the data
vectors and the overall structure within a data set.
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Type-2 Fuzzy Set and Fuzzy Ontology
for Diet Application
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Abstract Nowadays, most people can get enough energy to maintain one-day
activity, while few people know whether they eat healthily or not. It is quite
important to analyze nutritional facts of foods eaten for those who are losing weight
or suffering chronic diseases such as diabetes. However, diet is a problem with a
high uncertainty, and it is widely pointed out that classical ontology is not sufficient
to deal with imprecise and vague knowledge for some real-world applications like
diet. On the other hand, a fuzzy ontology can effectively help handle and process
uncertain data and knowledge. This chapter proposes a type-2 fuzzy set and fuzzy
ontology for diet application and uses the type-2 fuzzy markup language (T2FML)
to describe the knowledge base and rule base of the diet, including ingredients and
the contained servings of six food categories of some common foods in Taiwan.
The experimental results show that type-2 fuzzy logic system (FLS) performs better
than type-1 FLS, proving that type-2 FLS can provide a powerful paradigm to
handle the high level of uncertainties present in diet.
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1 Introduction

According to the Food and Drug Administration, Department of Health, Executive
Yuan, Taiwan [5], a balanced diet is defined as follows: All of the nutrients a
human needs daily come from various kinds of foods. However, various types of
foods do not provide the same nutrients, so each food group cannot replace each
other. Unprocessed food has a higher priority than processed food because the
former is much healthier than the latter. Additionally, according to the daily
dietary guidelines suggested by [5] and according to each person’s age and daily
physical activity, a dietician is able to find suitable daily caloric requirement and
then plan the unique dietary goal for a person. Finally, a person can acquire
balanced nutrition by following a balanced intake of six food groups and various
choices from each food group. However, each dietician might have different views
on the daily caloric requirement and dietary goal even for the same person. What is
more, dietary habits might have something to do with religion, culture, or personal
preferences. Consequently, diet is a problem with high uncertainty and vagueness,
and also a highly personalized problem.

Because of the highly personalized feature of diet, ontology is a good method to
construct unique dietary information for each unique human. Ontology is an
explicit specification of a conceptualization and it is also a knowledge represen-
tation and communication model for intelligent agents. However, it is widely
pointed out that classical ontology is not sufficient to deal with imprecise and vague
knowledge for some real-world applications. A fuzzy ontology is an extension of
the classical ontology that is more suitable to describe the domain knowledge for
solving the uncertainty in reasoning problems [9, 10]. As a result, a fuzzy ontology
can effectively help handle and process uncertain data and knowledge. There has
been considerable research on the fuzzy ontology: Trappey et al. [18] presented a
novel hierarchical clustering approach for knowledge document self-organization,
particularly for patent analysis. Bobillo and Straccia [4] proposed a concrete
methodology to represent fuzzy ontologies using web ontology language (OWL) 2
to deal with vagueness or imprecision in the knowledge of Semantic web. Afacan
and Demirk [3] proposed an ontology-based universal design knowledge system to
support the cognitive activities of universal design process. Gaeta et al. [6] pro-
posed an integrated approach to manage the life cycle of ontologies to model
educational domains and to build, organize, and update specific learning resources.
Lee et al. [9, 10] proposed a type-2 fuzzy ontology to apply to a personal diabetic–
diet recommendation and a fuzzy ontology for news summarization.

Type-2 Fuzzy Logic Systems (FLSs) could be used to handle uncertainties in
the group decision-making process as they can model the uncertainties between
expert preferences using type-2 fuzzy sets. A type-2 fuzzy set is characterized by a
fuzzy Membership Function (MF), i.e., the membership value (or membership
grade) for each element of this set is a fuzzy set in [0,1], unlike a type-1 fuzzy set
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where the membership grade is a crisp number in [0,1] [9, 15, 16, 17]. Fuzzy
Markup Language (FML) permits to model only type-1 fuzzy logic controllers
with great success, but real-world environments and applications are usually with
high level of uncertainties [7]. Hence, type-2 FLSs have the potential to overcome
the limitations of type-1 FLSs and to produce a new generation of fuzzy systems
with improved performance for many applications required to handle high levels
of uncertainty [7, 15]. For this reason, Mendel et al. [15, 16] proposed type-2 fuzzy
systems to overcome the limitations of type-1 Fuzzy Logic Controllers (FLCs).
Therefore, in order to allow FML to model also type-2 FLCs in a transparent way,
an extension of FML, named type-2 FML (T2FML), dealing with type-2 fuzzy
sets, is defined [11]. Since the mathematics needed for interval type-2 fuzzy sets is
simpler than the ones needed for general type-2 fuzzy sets, the interval type-2
fuzzy sets are more popular. Consequently, T2FML describes type-2 fuzzy sys-
tems based on interval type-2 fuzzy sets.

A balanced diet must contain correctly proportioned carbohydrates, proteins,
fats, vitamins, mineral salts, and fiber because each nutrient plays an important
role in supporting humans’ everyday physical activities [13, 14]. However, what is
a balanced diet? According to [5, 8], eating a balanced diet means choosing a wide
variety of foods and drinks from all the food groups. It also means eating certain
things in moderation. The goal of a balanced diet is to take in nutrients you need
for health at the recommended levels. However, culture, religion, and lifestyle
deeply affect people’s diet and each person has a specific eating habit such that the
diet behavior is highly personalized [13, 14]. Consequently, this chapter proposes a
T2FML to describe the knowledge base and rule base of T2FML-based diet
healthy assessing system. Additionally, this chapter also tries to compare the
performance between type-1 FLSs and type-2 FLSs to show that integrating type-2
fuzzy sets with fuzzy ontology is suitable for dietary applications. The remainder
of this chapter is as follows. Section 2 describes the fuzzy ontology and type-2
fuzzy markup language, and Sect. 3 introduces the T2FML-based fuzzy inference
for dietary assessment to obtain the dietary healthy level of the food eaten.
Section 4 shows some experimental results and conclusions are given in Sect. 5.

2 Fuzzy Ontology and Type-2 Fuzzy Markup Language

This section introduces an extension of the previous works on domain ontology
[12] and fuzzy ontology [10] to describe the fuzzy concepts and relations in the
dietary domain. Section 2.1 introduces the fuzzy food ontology and fuzzy personal
food ontology,, and then the type-2 fuzzy set and type-2 fuzzy markup language
are described in Sects. 2.2 and 2.3, respectively.
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2.1 Fuzzy Food Ontology and Fuzzy Personal Food
Ontology

A fuzzy ontology is a knowledge representation model for describing the uncertain
domain knowledge, such as diet. Different people eat different types of food. Food
items are divided into six major groups: grains and starches, vegetables, fruits,
milk, meats and proteins, and fats. Each portion of food contains some information
such as servings of six food groups, nutrition facts, and contained calories. If there
is such an ontology existing to represent the above-mentioned information, then
people can easily know the calories of each food item that are high, medium, or
low for an adult or a child. Based on such ideas, we provide illustrative examples
of the fuzzy food ontology and fuzzy personal food ontology in Figs. 1 and 2,
respectively.

• Fuzzy Food Ontology

The daily dietary guideline from [5] suggests that a person should eat 1.5–4 bowls
of grains and starches (1 bowl = 200 ml), 3–5 plates of vegetables (1 plate = 1
serving), 2–4 servings offruits, 1.5–2 glasses of milk (1 glass = 240 ml = 1 serving),
3–8 servings of meats and proteins, and 3–7 teaspoons of fats. Besides, according to
[5], each gram of carbohydrate, protein, and fact contains 4 kcal, 4 kcal, and 9 kcal,
respectively, and the standard of one serving of each food group is listed in Table 1.
There are various kinds of food items to choose from for one’s daily meal.
For example, rice is a very common food item in Taiwan, and one bowl of rice

Fuzzy Food

Contained Calories
of each Serving of Six Food Groups Nutrition Facts each Portion
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Fig. 1 Structure of the fuzzy food ontology [14].
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(=one portion of rice) contains 4 servings of the grains the starches group. That is,
consuming one bowl of rice can produce about 280 kcal.

According to the knowledge mentioned in Table 1, the fuzzy food ontology is
constructed in Fig. 1. The domain layer represents the domain name of the fuzzy
food ontology. The categories in the category layer include Grains and Starches,
Vegetables, Fruits, Milk, Meats and Proteins, and Fats. The fuzzy food ontology
contains four concepts, Servings of Six Food Groups each Portion (SSFGP),
Nutrition Facts each Portion (NFP), Contained Calories of each Serving of Six
Food Groups (CCSSFG), and Contained Calories of Nutrition each Gram (CCNG).
The fuzzy variables, Servings of Grains and Starches (SGS), Servings of Vege-
tables (SV), Servings of Fruits (SF), Servings of Milk (SM), Servings of Meats and

Actual Eaten Items
of Milk
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of Meats & Proteins

Fuzzy Personal Food
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Fig. 2 Structure of the fuzzy personal ontology [14].

Table 1 Standard of one serving of each food group [5]

One serving of each food group Nutrients (g) Calories(kcal)

Carbohydrate Protein Fat

Grains and Starches 15 2 + 70
Vegetables 5 1 0 25
Fruits 15 + 0 60
Milk 12 8 4 120
Meats and Proteins + 7 5 75
Fats 0 0 5 45

Note ? means minute quantity
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Proteins (SMP), and Servings of Fats (SF), are defined in the fuzzy concept
Servings of Six Food Groups each Portion (SSFGP). In the fuzzy set layer, there
are three fuzzy sets, including Calories each Portion Low (CPL), Calories each
Portion Medium (CPM), and Calories each Portion High (CPH), defined to
describe the linguistic meaning of calories of the food item.

• Fuzzy Personal Food Ontology

According to [5], the daily calories that a person needs to digest are mainly
decided according to his/her age, weight, height, and physical activity. For
example, if a man aged 19–30 likes outdoor sport, such as swimming, hiking,
playing tennis, and so on, then his daily physical activity is high and caloric
requirement should be about 2700 kcal. With this information, the dietician plans
that this man should digest 4 servings of grains and starches group, 5 plates of
vegetables group, 4 servings of fruits group, 2 glasses of milk group, 8 servings of
meats and proteins group, and 8 servings of fats group per day. However, some-
times the consumed calories are not exactly equal to the planned ones so that some
people need to gain weight and others lose weight, instead. In this chapter, we
divide one-day meals into breakfast, lunch, and dinner in order to simplify the
problem. With planned servings of daily calories from the six food groups, planned
daily calories needs, planned percentage of daily calories from nutrition, and three-
meal actual eaten items, the possibility of daily healthy level diet can be known.

With the above-mentioned knowledge, the fuzzy personal food ontology,
shown in Fig. 2, is constructed to describe personal planned calories and one-day
actual eaten items. The domain name is fuzzy personal food. There are two cat-
egories, Planned Healthy Diet Goal and Actual Diet, in the category layer defined
in this ontology. In addition, the fuzzy concept layer contains six fuzzy concepts,
including Planned Servings of Daily Calories from Six Food Groups, Planned
Daily Calories Needs, Planned Percentage of Daily Calories from Nutrition,
Actual Eaten Items at Breakfast, Actual Eaten Items at Lunch, and Actual Eaten
items at Dinner. The fuzzy variables, Planned Percentage of Carbohydrate, Plan-
ned Percentage of Protein, and Planned Percentage of Fat, are defined for
the concept Planned Percentage of Daily Calories from Nutrition. The fuzzy
sets, ‘‘PCC_Low, PCC_Medium, PCC_High’’, ‘‘PCP_Low, PCP_Medium,
PCP_High’’, ‘‘PCF_Low, PCF_Medium, PCF_High’’, ‘‘PCR_Low, PCR_Medium,
PCR_High’’, and ‘‘FGB_Low, FGB_Medium, FGB_High,’’ are defined to describe
the linguistic meaning of Percentage of Calories from Carbohydrate (PCC), Per-
centage of Calories from Protein (PCP), Percentage of Calories from Fat (PCF),
Percentage of Caloric Ratio (PCR), and Food Group Balance (FGB), respectively.
Based on the information from PCC, PCP, PCF, PCR, and FGB, the Dietary
Healthy Level (DHL) can be obtained.
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2.2 Type-2 Fuzzy Set

Because the words mean different things to different people, T2FLS has the
potential to provide better performance than a type-1 FLS (T1FLS) when such
linguistic uncertainties are presented [15]. A T2FS ~A is characterized by a type-2
membership function l~Aðx; uÞ where x 2 X, u 2 Jx � [0, 1], and ~A is denoted by

Eq. 1 [9]. ~A can also be expressed by Eq. 2 for discrete universes of discourse.
When all l~Aðx; uÞ=1, then ~A is an interval T2FS (IT2FS) [9, 15, 17]. Figure 3 shows

an example of type-2 fuzzy set ~A which is with the upper bound of FOU(~A), called
AU , and the lower bound of FOU(~A), called AL. ~A is represented by the following
parameters on the x-axis f~l; ~ml; ~mr;~rg = {½lL; mlL ;mrL ; rL�, ½lU ; mlU ;mrU ; rU �}. AU

and AL are defined in Eqs. 3 and 4, respectively [9]. Unlike a type-1 fuzzy set whose
membership degree is a crisp value in [0, 1], a type-2 membership grade can be
described as any fuzzy subset in [0, 1]. This fuzzy subset is called the primary
membership. And, for each primary membership, there is a secondary grade that
defines the possibility for the primary membership [9, 15, 17].

~A ¼ fððx; uÞ; l~Aðx; uÞÞj8x 2 X; 8u 2 Jx � ½0; 1�g ð1Þ
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Fig. 3 Example of type-2
fuzz set [9]
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2.3 Type-2 Fuzzy Markup Language

Fuzzy Markup Language (FML) is a fuzzy-based markup language that can
manage fuzzy concepts, fuzzy rules, and a fuzzy inference engine [1, 2]. The fuzzy
knowledge base contains the domain knowledge used by human experts. The fuzzy
rule base represents the set of relations among fuzzy variables and fuzzy sets
defined in the controller system. The inference engine is the fuzzy controller
component able to extract new domain knowledge from fuzzy knowledge base and
fuzzy rule base [1]. Additionally, FML is composed of three layers—an Extensible
Markup Language (XML), a document-type definition, and extensible stylesheet
language transformations. It is also one of the most important results because it
allows fuzzy scientists to express their ideas in an abstract and interoperable way
by improving their productivity and, at the same time, increasing the average
quality of their works [2]. There has been considerable research on FML appli-
cations, such as Lee et al. [11, 19] applied FML to dietary domain, and Wang et al.
[20] applied to Electrocardiogram (ECG) domain to express the ECG’s knowledge
base and rule base between before and after examinations. In order to allow FML
to model type-2 FLCs in a transparent way, an extension of FML, named type-2
FML (T2FML), dealing with type-2 fuzzy sets, is defined [11]. In particular, since
FML is a markup language, its extension is realized by adding some tags and
attributes useful to model type-2 fuzzy sets and the inference features of a type-2
FLC. The definitions of the tags are described as follows: [11]:

• <FuzzyController>: The root of fuzzy controller taxonomy, the Controller
node, is represented through the FML tag \FuzzyController[ . Such tag rep-
resents the root tag of T2FML programs, that is, the opening tag of each T2FML
program.

• <KnowledgeBase>: The fuzzy knowledge base is defined by means of fuzzy
concepts used to model the fuzzy rule base. In order to define the type-2 fuzzy
concept related controlled system, \KnowledgeBase[ tag uses a set of nested
tags:

– \Type2FuzzyVariable[: This tag is used to define the type-2 fuzzy concept.
– \Type2FuzzyTerm[: This tag is used to define a linguistic term describing

the type-2 fuzzy concept, nested in \Type2FuzzyVariable[ tag.
– \Type2TriangularShape[, \Type2PIShape[, \Type2Gaussian-

Shape[, \Type2LinearShape[, \Type2Trapezoid-
Shape[, \Type2SShape[, \Type2ZShape[: These tags are used to define
the shape of a type-2 fuzzy set, including the shape of triangular, PI,
Gaussian, linear, trapezoid, S, or Z.

– \UMF[ and \LMF[: Every shaping tag uses these two nested tags to define
the upper membership function (UMF) and the lower membership function
(LMF) of a term of type-2 fuzzy concept, represented by two type-1 fuzzy
sets. The number of these attributes depends on the shape of the chosen fuzzy
set.
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• \RuleBase[: The root of fuzzy rule base component is modeled by
the \RuleBase[ tag.

– \Rule[: Define the single rule.
– \Antecedent[ and \Consequent[: These two tags are used to define the

antecedent and consequent rule parts, respectively.
– \Clause[: This tag is used to model the fuzzy clauses in antecedent and

consequent parts.
– \Variable[, \Term[, and \TSKParam[: The pair ‘‘\Variable[ ,

\Term[’’ is used to define fuzzy clauses in antecedent and consequent parts of
Mamdani controllers rules as well as in antecedent part of TSK controllers rules.
While, the pair ‘‘\Variable[, \TSKParam[’’ is used to model the consequent
part of TSK controllers rules.

3 T2FML-Based Fuzzy Inference Mechanism for Dietary
Assessment

This section utilizes the predefined fuzzy food ontology and fuzzy personal food
ontology to perform the T2FML-based fuzzy inference mechanism for dietary
assessment. The system structure is first introduced in Sect. 3.1, then some con-
sidered factors for dietary healthy level, T2FML view of the dietary assessment,
and type-2 fuzzy inference mechanism are described in Sects. 3.2, 3.3, and 3.4,
respectively.

3.1 System Structure

Figure 4 shows the structure of the T2FML-based fuzzy inference mechanism for
dietary assessment and it operates as follows [21]:

Step 1. The ingredients extraction mechanism retrieves the nutrition facts of each
eaten item from the food ontology.

Step 2. The nutrients analysis mechanism diagnoses the percentage of calories
from carbohydrates, proteins, and fats for one meal.

Step 3. The calorie computation mechanism calculates the caloric difference
between actual calories people consume and planned caloric intake set by
dieticians.

Step 4. The balance evaluation mechanism is to consider the balance of six food
groups. That is, the more variety the eaten food contains, the more bal-
anced the eaten food is.

Step 5. The type-2 fuzzy inference mechanism infers the dietary healthy level of
the eaten food based on the predefined ontology and the outputs from steps
1 to 4.
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Step 6. Finally, the dietary healthy level is stored into the dietary assessment
repository and validated by the dieticians to evaluate the performance of
the proposed approach.

3.2 Considered Factors for Dietary Healthy Level

PCC, PCP, PCF, PCR, and FGB of everyday meals are acquired from the collected
meal records and the pre-defined type-2 fuzzy food ontology. The detailed
information about these five fuzzy variables is described as follows:

• PCC, PCP, and PCF

In order to support one-day energy, it is necessary to consume the required calories
via the everyday diet. However, the main source of the calories is decided by the
fact of how many grams of the carbohydrate, protein, and fat the food contains. As
a result, to eat healthily, it is necessary for people to consider the balance of these
three main nutrients, namely the carbohydrate, protein, and fat, when consuming
your one-day meals. For this reason, this chapter sets PCC, PCP, and PCF to
represent the percentage of calories from carbohydrate, protein, and fat, respec-
tively. According to [5, 8], it indicates that (1) the suggested percentages of the
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Fig. 4 System structure [21]
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daily intake for carbohydrate, protein, and fat are 55*65 %, 10*20 %, and
25*35 %, respectively, and (2) the contained calories for each gram of the car-
bohydrate, protein, and fat are 4 kcal, 4 kcal, and 9 kcal, respectively. Hence, the
values of PCC, PCP, and PCF are defined in Eqs. 5, 6, and 7, respectively [13, 14].

PCC ¼ Contained Grams of Carbohydrate � 4
Total Consumed Carloies

� 100 % ð5Þ

PCP ¼ Contained Grams of Protein � 4
Total Consumed Carloies

� 100 % ð6Þ

PCF ¼ Contained Grams of Fat � 9
Total Consumed Carloies

� 100 % ð7Þ

• PCR

In addition to considering the balance of the three main nutrients, the ratio of
actual calories people consume to the planned caloric intake set by nutritionists is
also an important factor to affect the healthy diet, especially for the fat and the
slim. According to the involved domain experts’ opinions, the one-day actually
consuming calories for common people should be between 90 and 110 % of the
planned calories set by the dieticians. The domain experts set a planned goal for
each person according to individual’s height, weight, and daily physical activities.
Based on the planned goal and the actual acquiring energies, the value of PCR is
obtained by Eq. 8 [13, 14].

PCR ¼ Actual Consuming Calories
Planned Consuming Calories

� 100 % ð8Þ

• FGB

The balance of six food groups is the most important factor to decide how much at
healthy level the eaten meals are. This is because the lack of some beneficial
nutrients for our bodies such as fiber cannot be known if we only consider the
balanced intake of carbohydrate, protein, and fat. So, in addition to planning the
daily calories, dieticians also plan one-day unique consuming servings of each
food group for each person. Moreover, the contained quantity of sugar also affects
the balance of intake-in food. Owing to the present-day living style, most people
purchase processed foods as their usual meals from shopping malls. However,
unfortunately, processed foods frequently contain much more sugar than natural
foods, and this is harmful to our bodies. The suggested percentage of the daily
sugar intake is less than 10 % of the planned caloric intake each day. The value of
FGB is calculated by Eq. 9 [13, 14].
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FGB ¼ BLGrains&Starches þ BLVegetables þ BLFruits þ BLMilk þ BLMeats&Proteins

þ BLFats � CLSugar

ð9Þ

where (1) BLGrains&Starches, BLVegetables, BLFruits, BLMilk, BLMeats&Proteins, and BLFats

represent the balanced level of the food groups grains and starches, vegetables,
fruits, milk, meats and proteins, and fats, respectively. The higher the value, the
healthier the meals are; (2) CLSugar denotes the contained level of sugar for the
meals. The lower the value, the healthier the meals are; and (3) FGB value lies in
the interval [0, 6] [13, 14].

3.3 T2FML View of Dietary Assessment

Based on the T2FML, a T2FML editor, developed by the Ontology Application
and Software Engineer (OASE) Laboratory, National University of Tainan
(NUTN), Taiwan, is used to construct the knowledge base and rule base of the
T2FML-based fuzzy inference mechanism for dietary assessment. The knowledge
base describes fuzzy concepts, including fuzzy variables, fuzzy terms, and mem-
bership functions of fuzzy sets. And, the rule base describes the fuzzy rule sets,
including the antecedent and consequent rules. Figure 5 shows the controller tree
of T2FML-based fuzzy inference mechanism for dietary assessment. Table 2 lists
the partial knowledge base and rule base of the proposed system. It has five input
fuzzy variables—PCC, PCP, PCF, PCR, FGB, one output fuzzy variable DHL, and
243 fuzzy rules. Each fuzzy variable has several fuzzy terms.

3.4 Type-2 Fuzzy Inference Mechanism

How to embed domain experts’ knowledge into the design of the fuzzy rules is an
important issue. The involved dieticians consider that the FGB plays the most
important role on the dietary healthy level. But, FCR is as important as FGB when
people who are losing weight or gaining weight are neglected. As for PCC, PCP,
and PCF, generally speaking, these three factors are equally important, but the
dietary healthy level becomes lower when PCF is not within the balanced range.
Eventually, the involved domain experts determine that the fuzzy relation ratio of
PCC:PCP:PCF:PCR:FGB is 1:1:2:3:3. Table 3 shows fuzzy relation of each input
fuzzy variable. Take one fuzzy rule as example. Assume there is one fuzzy rule,
and the if-part is ‘‘IF PCC is Medium AND PCP is Medium AND PCF is Medium
AND PCR is Medium AND FGB is Medium.’’ Computed by Eq. 10, this fuzzy
rule’s score (S) can be obtained according to Table 3. After the normalization, the
normalized rule score (SN) is acquired by Eq. 11, where Smin and Smax are the
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minimum and maximum rule scores, respectively. Based on the normalized rule
score, the then-part of the fuzzy rule could be determined by Table 4. Finally, the
completed fuzzy rule is represented as ‘‘IF PCC is Medium AND PCP is Medium
AND PCF is Medium AND PCR is Medium AND FGB is Medium THEN DHL is
VeryHigh’’ [13, 14].

S ¼ 1� 2þ 1� 2þ 2� 2þ 3� 2þ 3� 1
1þ 1þ 2þ 3þ 3

¼ 1:7 ð10Þ

SN ¼
S� Smin

Smax � Smin

¼ 0:83 ð11Þ

DHL is then inferred by carrying out the proposed method to indicate how
much healthy, namely very high, high, medium, low, or very low, the eaten meals
are. Type-2 fuzzy inference mechanism for dietary assessment is composed of five
components, including type-2 fuzzy ontology, fuzzifier, inference, type reducer,
and defuzzifier [15]. Herein, the type-2 fuzzy ontology stores the established
knowledge base and rule base that are provided by domain experts. Additionally,
the Karnik–Mendel (KM) algorithms [15] are used to compute the centroids of
type-2 fuzzy sets. Figures 6a–f show the type-2 fuzzy sets for fuzzy variables
PCC, PCP, PCF, PCR, FGB, and DHL, respectively. Table 5 shows parameters of
the T2FSs for fuzzy variables PCC, PCP, PCF, PCR, FGB, and DHL [21].

IF PCC is Low AND PCP
is Low AND PCF is Low
AND FGB is Low AND
PCR is Low THEN DHL
is VeryLow

T2FML

Knowledge Base Rule Base

PCC

PCP

PCF PCR

DHL

High

FGB

VeryLow

Low

Medium

VeryHigh

High

Rule 1 Rule 2 Rule 243…
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Fig. 5 Controller tree
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Table 2 Partial knowledge base and rule base of the proposed system

\?xml version = ‘‘1.0’’?[
\FuzzyController ip =‘‘localhost’’ name = ‘‘’’[
\KnowledgeBase[
\Type2FuzzyVariable domainleft = ‘‘0’’ domainright = ‘‘100’’ name = ‘‘PCC’’
scale = ‘‘percentage’’ type = ‘‘input’’[
\Type2FuzzyTerm name = ‘‘Low’’ hedge = ‘‘Normal’’[
\Type2TrapezoidShape[
\UMF Param1 = ‘‘0’’ Param2 = ‘‘0’’ Param3 = ‘‘35’’ Param4 = ‘‘50’’/[
\LMF Param1 = ‘‘0’’ Param2 = ‘‘0’’ Param3 = ‘‘35’’ Param4 = ‘‘40’’/[
\/Type2TrapezoidShape[
\/Type2FuzzyTerm[

...
\/KnowledgeBase[
\RuleBase activationMethod = ‘‘MIN’’ andMethod = ‘‘MIN’’ orMethod = ‘‘MAX’’

name = ‘‘RuleBase1’’ type = ‘‘mamdani’’[
\Rule name = ‘‘Rule1’’ connector = ‘‘and’’ weight = ‘‘1’’ operator = ‘‘MIN’’[
\Antecedent[
\Clause[
\Variable[PCC \/Variable[
\Term[Low \/Term[
\/Clause[

...
\Clause[
\Variable[DHL \/Variable[
\Term[VeryLow \/Term[
\/Clause[
\/Consequent[

\/Rule[
...
\/RuleBase[

\/FuzzyController[

Table 3 Fuzzy relation of each input fuzzy variable [13, 14]

No. Fuzzy variable Fuzzy relation weight Fuzzy term (Fuzzy term weight)

1 PCC 1 Low (1) Medium (2) High (1)
2 PCP 1 Low (1) Medium (2) High (1)
3 PCF 2 Low (1) Medium (2) High (0)
4 PCR 3 Low (1) Medium (2) High (1)
5 FGB 3 Low (0) Medium (1) High (2)

Table 4 SN range of the output fuzzy variable [13, 14]

Fuzzy term Very low Low Medium High Very high

SN Range [0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
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4 Simulation Results

The system was implemented with the Microsoft Visual Studio C# programming
language. We have conducted several experiments focusing on people who are
aged from 20- to 30-years old and with the average levels of physical activity.
Seven students of OASE Lab. of NUTN in Taiwan were involved in this exper-
iment. They recorded their three meals from Monday to Friday for 20 days. The
research performance presented in this chapter is a research project involving with
NUTN and National Cheng Kung University Hospital in Taiwan.

Three factors, including PCR, FGB, and FR (Fuzzy Rule), are considered in the
experiment to evaluate the performance of the proposed approach. Each factor has
two different conditions, so totally eight main experiments are shown in Table 6.
In addition, three domain experts, including DE1, DE2, and DE3, are invited to
involve this research project. Because each domain expert is requested to give his/
her own opinions on FGB, Table 6 shows that Exps. 3, 4, 7, and 8 are with four
sub-experiments, where A and B denote that input of the factors are gained by
using the proposed approach in [21] and in this chapter [13], respectively. DE1,
DE2, and DE3 are responsible for providing his/her own opinions on FGB in (1)
Exps. 3-1, 4-1, 7-1, & 8-1, (2) Exps. 3-2, 4-2, 7-2, & 8-2, and (3) Exps. 3-3, 4-3,

Fig. 6 T2FSs for fuzzy variables (a) PCC, (b) PCP, (c) PCF, (d) PCR, (e) FGB, and (f) DHL
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7-3, & 8-3, respectively. FGB comments in Exps. 3-4, 4-4, 7-4, and 8-4 are
acquired by averaging three involved domain experts’ opinions and DEavg is used
to represent this virtual domain expert. In addition, we use mean square error
(MSE), calculated by Eq. 12, to evaluate the performance of the proposed method.

Table 5 Parameters of the T2FSs

Fuzzy variable Linguistic term Parameters of the T2FSs of the x-axis

{½lL; mlL ; mrL ; rL�, ½lU ; mlU ; mrU ; rU �}
PCC L~ow {[0, 0, 35, 40], [0, 0, 35, 50]}

Me~dium {[45, 50, 55, 60], [35 50 55 65]}

Hi~gh {[65, 70, 100, 100], [60, 70, 100, 100]}
PCP L~ow {[0, 0, 5, 10], [0, 0, 5, 15]}

Me~dium {[10, 15, 20, 25], [5, 15, 20, 30]}

Hi~gh {[25, 30, 100, 100], [20, 30, 100, 100]}
PCF L~ow {[0, 0, 10, 15], [0, 0, 10, 20]}

Me~dium {[15, 20, 25, 30], [10, 20, 25, 35]}

Hi~gh {[35, 40, 100, 100], [30, 40, 100, 100]}
PCR L~ow {[0, 0, 70, 80], [0, 0, 70, 90]}

Me~dium {[80, 90, 110, 120], [70, 90, 110, 130]}

Hi~gh {[120, 130, 200, 200], [110, 130, 200, 200]}
FGB L~ow {[0, 0, 2, 2.5], [0, 0, 2, 3]}

Me~dium {[2.5, 3, 4, 4.5], [2, 3, 4, 5]}

Hi~gh {[4.5, 5, 6, 6], [4, 5, 6, 6]}
DHL Ver~yLow {[0, 0, 2, 2.5], [0, 0, 2, 3]}

L~ow {[2.5, 3, 4, 4.5], [2, 3, 4, 5]}

Me~dium {[4.5, 5, 6, 6.5], [4, 5, 6, 7]}

Hi~gh {[6.5, 7, 8, 8.5], [6, 7, 8, 9]}
Ver~yHigh {[8.5, 9, 10, 10], [8, 9, 10, 10]}

Table 6 Experiments under different conditions

Factor Exp. No

1 2 3-1 * 3-4 4-1 * 4-4 5 6 7-1 * 7-4 8-1 * 8-4

PCR A A A A B B B B
FGB A A B B A A B B
FR A B A B A B A B
Note FR means the abbreviation of the fuzzy rule

A means to use the method proposed in [21] to obtain PCR, FGB, and FR
B means to use the method proposed in this chapter to obtain PCR, FGB, and FR, that is,

the method in [13]
The difference between (1) Exps. 1 & 5, (2) Exps. 2 & 6, (3) Exps. 3 & 7, and (4) Exps. 4

& 8 is PCR
The difference between (1) Exps. 1 & 3, (2) Exps. 2 & 4, (3) Exps. 5 & 7, and (4) Exps. 6

& 8 is FGB
The difference between (1) Exps. 1 & 2, (2) Exps. 3 & 4, (3) Exps. 5 & 6, and (4) Exps. 7

& 8 is FR
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MSE ¼ 1
n

Xn

i¼1

ðYi � ŶiÞ2 ð12Þ

where, Yi represents the inferred results via the type-2 fuzzy inference mech-

anism, Y
_

i denotes the desired output recommended from the dieticians, and n is the
number of the meal records.

Table 6 indicates that the difference between Exps. 1 & 5 and Exps. 2 & 6 is PCR,
and the difference between Exps. 1 & 2 and Exps. 5 & 6 is FR. Therefore, Fig. 7a
shows that the considered factor for the dotted lines and the solid lines is PCR.
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Fig. 7 Curves for considering the variance (a) in PCR and FR, (b) in FGB, and (c) between
T1FS and T2FS for all of the experiments
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Figure 7a also shows that the considered factor for the marked-cross lines and the
marked-triangular lines is FR. From the curves in Fig. 7a, they indicate the MSE of
the solid lines is smaller than the one of the dotted lines, showing that using the
proposed method in this chapter to consider the calories people consume too much
more or fewer than the planned caloric intake set by nutritionists can get much
smaller MSE. Figure 7a also shows that the MSE of the marked-crossed lines is
smaller than the one of the marked-triangular lines, which demonstrating that using
the method proposed in this chapter to construct the fuzzy rules can get the much
better performance, especially for T1FLS. Table 6 indicates that the difference
between Exps. 1 & 3 and Exps. 6 & 8 is FGB. Therefore, Fig. 7b shows that the MSE
of Exp. 3 is much smaller than the one of Exp. 1, and the MSE of Exp. 8 is also much
smaller than the one of Exp. 6, demonstrating that the performance of considering
the FGB method proposed in this chapter is much better. For most points in Fig. 7c,
the MSE of the solid lines is smaller than the one of the dotted lines under the same
experiment’s condition, which means that there is a tendency for the MSE to get
down when T2FLS is used to implement all of the experiments.

5 Conclusions

In this chapter, a type-2 FML-based dietary assessment system is proposed. Based
on the viewpoint from dieticians, the percentage of calories from carbohydrate, the
percentage of calories from protein, the percentage of calories from fat, and six
food groups balance, are considered as one of the features to evaluate if the eaten
food is healthy or not. From the experimental results, it shows that type-2 FLS
performs better than type-1 FLS, proving that type-2 FLS can provide a powerful
paradigm to handle the high level of uncertainties present in diet. Additionally,
owning to the change in the lifestyle, more and more processed food is generated
to meet modern-people’s requirements. However, natural food like fresh fruit juice
is much healthier than processed food like packaged fruit juice even though they
are with the same provided calories and nutrients. This is because valuable
nutrients contained in raw food are definitely partially washed away after the food
is processed. Consequently, the food-processed level and the genetic learning
machine will be considered to improve the experimental results in the future.
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