
Chapter 8
Infrastructure for Building Code Search
Applications for Developers

Sushil Krishna Bajracharya

Abstract The large availability of open source code on the Web provides great
opportunities to build useful code search applications for developers. Building such
applications requires addressing several challenges inherent in collecting and ana-
lyzing code from open source repositories to make them available for search. An
infrastructure that supports collection, analysis, and search services for open source
code available on the Web can greatly facilitate building effective code search appli-
cations. This chapter presents such an infrastructure called Sourcerer that facilitates
collection, analysis, and search of source code available in code repositories on the
Web. This chapter provides useful information to researchers and implementors of
code search applications interested in harnessing the large availability of source
code in the repositories on the Web. In particular, this chapter highlights key as-
pects of Sourcerer that supports combining Software Engineering and Information
Retrieval techniques to build effective code search applications.

8.1 Introduction

Building a search application for source code available on the Web can be a major
undertaking. The specificities and needs for code search pose interesting opportuni-
ties and challenges to build effective code search applications. For example, unlike
natural language text, source code has an inherent scarcity of terms that describe
the underlying implementation. From an information retrieval perspective source
code can be much harder artifact to retrieve if we rely solely on the terms that are
present in it. On the other hand, source code has rich structure compared to natural
language text. The structure comes from the organization of source code entities in

S.K. Bajracharya (�)
Black Duck Software, Burlington, MA, USA
e-mail: sbajra@acm.org

S.E. Sim and R.E. Gallardo-Valencia (eds.), Finding Source Code on the Web
for Remix and Reuse, DOI 10.1007/978-1-4614-6596-6__8,
© Springer Science+Business Media New York 2013

135

mailto:sbajra@acm.org

136 S.K. Bajracharya

the implementation, and also the various relations that exist among those entities.
As a result, code search applications can leverage structural information extracted
from source code for effective retrieval.

Sourcerer is an infrastructure that facilitates collection, analysis, and searching
of source code harnessing its inherent structural information. This chapter provides
details on the aspects of Sourcerer that makes it a unique state-of-the-art platform
to build code search applications. Rest of the chapter is organized as follows. Sec-
tion 8.2 provides an overview of three code search applications that Sourcerer sup-
ported, and presents the infrastructure requirements demanded by the code search
applications. Section 8.3 introduces the key elements of Sourcerer’s Architecture
(Fig. 8.1). Section 8.4 provides an in-depth discussion of various models that lie at
the core of Sourcerer’s architecture. Section 8.5 summarizes the contents that are
stored in Sourcerer’s repository, and Sect. 8.6 discusses services that allow access to
the stored contents. Section 8.7 provides details on the tools developed to build the
contents and services in Sourcerer. This chapter concludes by summarizing key fea-
tures that enabled the three code search applications (Sect. 8.8) and discusses related
work in Sect. 8.9.

Fig. 8.1 Elements of Sourcerer infrastructure

8.2 Infrastructure Requirements for Code Search Applications

Sourcerer enabled building three code search applications during the course of its
development. These code search applications put forth various requirements on
Sourcerer as a code search infrastructure. Overall, these requirements boil down
to three basic functionalities:

1. Collection and Storage: Fetching source code from forges on the Web and stor-
ing them locally with required metadata intact.

2. Analysis and Indexing: Extract both lexical (textual) and structural information
(entities and relations) from the source code downloaded from the Web.

3. Search and Retrieval: Provide access to underlying contents (source, search
index, and structural information) as needed by different applications

The core of these requirements demanded code-specific analyses and heuristics
to be incorporated into various models, services and tools. A pragmatic decision was
made to only provide support for the Java programming language in Sourcerer to be

8 Infrastructure for Building Code Search Applications for Developers 137

able to meet these requirements without being overburdened with the complexity of
analyzing and supporting all possible programming languages.

Next, we briefly introduce the three code search applications and look at the
infrastructure requirements they brought in.

8.2.1 Sourcerer Code Search Engine

Sourcerer Code Search Engine (SCSE) is a web-based code search engine to find
code entities in open source projects. SCSE provides a central user interface, code
specific search operators (e.g. limiting search on comments or code portions), and
employs a ranking scheme that leverages underlying structure and relations in code.
As a code search engine, SCSE aggregates and presents meta-data related to code
entities in the search results. This meta-data includes the origin information about
the code (i.e. the name and location of the open source project where the code
came from), license information, version, and category of the project. SCSE also
allows viewing and browsing source code, following usage relations, and provide
detail information on code structure (threading properties, Java attributes, and mi-
cropatterns [11]).1 With these features SCSE allowed a central access to search thou-
sands of open source projects. Implementation of SCSE itself required development
and integration of several core infrastructure pieces of Sourcerer. Since its develop-
ment several commercial applications are now available that offer similar features
as Sourcerer. Therefore, the infrastructure requirements for SCSE resemble much
similarity to the requirements to build a large-scale code search engine.

8.2.2 CodeGenie: A Test-Driven Code Search Application

CodeGenie is a code search application that allows a developer to start from a unit
test and search for a working set of code entities (classes) that would implement
the desired feature as specified in the unit test. CodeGenie is a plugin for Eclipse
IDE that works as a Test-Driven Code Search (TDCS) application. TDCS combines
the ‘Test-First’ principle of Test-Driven Development with code search. CodeGenie
allows a developer to start from an existing unit test that specifies a desired func-
tionality to be implemented. After this, CodeGenie can construct a query from the
unit tests, execute a search using the query on Sourcerer, and bring back found code
entities. A developer can choose any of the found entity, look at its source code, and
merge the code in her workspace to get the desired functionality originally being
tested in the unit test. While merging the code, CodeGenie uses a special service
provided by Sourcerer, called the code slicing service, that computes and extracts

1 This code structure information was originally intended to be used in implementing code simi-
larity techniques based on detailed code structures, but was not developed further as development
in Sourcerer proceeded.

138 S.K. Bajracharya

a dependency slice (a set of synthesized code entities that makes the found code
entity compilable and workable in the workspace). CodeGenie has features external
to the infrastructure that eases the selection and merging process, for example an
‘unmerge’ operation to get rid of previously merged code and select a new entity
to be merged in the workspace. CodeGenie relies on Sourcerer for these features
to work. For example, CodeGenie provides the merging and unmerging of code
entities that came from the dependency slice by using a unique identifier given to
the dependency slice by Sourcerer.

8.2.3 Sourcerer API Search

Sourcerer API Search (SAS) helps developers to find code snippets that serve
as API usage examples. Developers working with large frameworks and libraries
might not know or remember all APIs available to them. SAS attempts to provide
an exploratory search interface to help such developers in finding code snippets to
learn the names and usage patterns of APIs to perform certain programming tasks.

There are four major features in SAS that make finding code snippets easier. First,
a list of code snippets that show sections of code with auto-generated comments
highlighting the APIs that are used (showing their fully qualified names) and their
patterns of usage (by showing relations such as calls, instantiations etc.). Second, a
list of code entities that constitute the most popular APIs in a given search result;
these APIs can be used as filters to narrow down search results. Third, a set of
words as tag-cloud with every result set, where the words can be used for query
reformulation. These words are picked by analyzing the names of the code entities
found, names of the popular APIs used, and names of code entities that are similar to
the entities in the result in terms of API usage. Fourth, a more like this feature to find
similar code entities based on API usage. This allows users to get recommendation
on entities that exhibit similar API usage patterns which is helpful to find more
examples once a candidate example (or code entity) is found.

Structural Semantic Indexing (SSI): SAS uses an index with a set of rele-
vant terms mapped to each code entity found in a code collection. These
terms are extracted from various places: the source for the entity itself,
the source for the APIs that the entity uses, and the source for the code
entities that have similar API usage as the code entity. With terms coming
from various places the index is able to match queries with relevant code
entities (for API examples) even if the source for the entity does not con-
tain all of the terms in the query. The indexing technique used for this is
called Structural Semantic Indexing (SSI), and was enabled using various
pieces of the Sourcerer infrastructure.

8 Infrastructure for Building Code Search Applications for Developers 139

8.2.4 Infrastructure Requirements

SCSE, being the first and the most general application has the basic requirements.
CodeGenie and SAS have some common requirements as SCSE, along with some
new ones of their own. The overall infrastructure requirements to build the three
different code search applications emerge out as follows:

Common Requirements:

– Crawling open source forges, extracting project metadata; downloading and
checking out source code from open source forges and associating project
metadata with the checked out code

– Language aware parsing of source code to extract structural information (en-
tities and relations)

– Indexing source code entities to make them searchable
– Ability to store and retrieve source code for code entities

SCSE:

– Compute rank using structural and lexical information

CodeGenie:

– Code search service that could accept a structured code query, where the query
expresses matches on various parts of the code such as class name, method
signature, return types, and method arity (number of arguments)

– Search results at the granularity of code entities such as classes and methods
so that the IDE can show types and method signatures in the result pane

– A special code slicing service that could construct a set of synthesized code
entities that makes the retrieved code entity declaratively complete (i.e., all
dependencies must be resolved)

SAS:

– Data sources to produce an index using SSI
– For a given set of code entities in search result, ability to get a list of most

popular APIs that are used by the code entities
– For a given code entity, ability to get a list of other code entities that have

similar API usage
– For a given code entity, and a set of APIs, ability to provide details on where

and how the APIs are used

8.3 Infrastructure Architecture

Sourcerer provides the requirements posed by three code search applications
through a collection of services. These services provide programmatic access to the
underlying data (stored contents) that Sourcerer produces and stores. The format

140 S.K. Bajracharya

and schema of the data is defined by a set of models that are developed consider-
ing various needs for storage and retrieval needed for the services. Sourcerer also
consists a set of standalone tools that collect, analyze, produce, and persist the
needed contents. Figure 8.1 depicts how services, stored contents, Models, Tools,
and (Code Search) Applications constitute Sourcerer’s overall architecture.

Fig. 8.2 Sourcerer’s relational model

8.4 Models

Three models define the basic mechanisms for storing and retrieving information
from the source code available in Sourcerer’s repository.

8.4.1 Storage Model

The Storage Model defines the structure and physical layout of files in Sourcerer’s
local repository. A layered directory structure was chosen for two main reasons.

8 Infrastructure for Building Code Search Applications for Developers 141

First, it allows projects from the same source to be grouped together, which makes
adding or removing contents more straightforward. Second, some sort of branching
turned out to be required, not to overburden the file system with tens of thousands
of subdirectories in a single directory. The files collected from open source projects
are stored in a folder according to the following template:

<repo_root>/<batch>/<id>

Above, <repo_root> is a folder assigned as the root of Sourcerer’s file repos-
itory. Given the root folder, the individual project files are stored in a two-level
directory structure defined by the path fragment <batch>/<id>. <batch> is a top-
level folder in the directory structure that indicates a given batch. For example, a
crawl from a specific online repository or a collection of fixed number of projects
can denote a batch. Inside <batch>, another set of folders exists. Each second-level
folder in the local repository, indicated by <id> in the above template, contains the
contents of a specific project. Each <id> directory contains a single file and two
sub-directories, as shown below:

<repo_root>/<batch>/<id>/project.properties
<repo_root>/<batch>/<id>/download/
<repo_root>/<batch>/<id>/content/

Above, project.properties is a text file that stores the project metadata as
a list of name value pairs. download is a folder that contains the compressed file
packages that were fetched from the originating repository (e.g., a project’s distri-
bution in Sourceforge). content contains the expanded contents of the download

directory. Once the contents of the download directory have been expanded, the
directory itself is usually emptied in order to free up space.

The project contents in the content directory can take two different forms, de-
pending on its format in the initial repository. If the project contents are checked
out from a remote software configuration management (SCM) system such as svn
and cvs, the file located at a relative path path in the originating repository (e.g.,
Sourceforge) exists in Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/content/<path>

Instead, if the project is fetched from a package distribution, a source file can be
found in Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/content/package.<i>/<path>

Above, package.<i> indicates a unique folder for each ith package that is found
in a remote repository. path indicates a relative path of a source code file that is
found inside the ith archived package, which is unarchived inside the package.<i>
folder.

142 S.K. Bajracharya

Project metadata: The project.properties file is a generic project description
format that generalizes the project metadata from the online repositories. Many at-
tributes in project.properties are optional, except for the following:

• crawledDate: indicates when the crawler picked up the project information
• originRepositoryUrl: URL of the originating repository; e.g., http://

sourceforge.net
• name: project’s name as given in the originating repository
• containerUrl : project’s unique URL in the originating repository

And, one or both of the following: (i) Information on project’s SCM system in-
dicated by scmUrl (ii) Information on project’s source package distributed on the
originating repository, as indicated by the following fields:

• package.size indicating total number of packages distributed.
• package.name.i indicating name of the ith package, where 1 <= i <=

package.size, and i indicates a unique integer denoting a package number.
• package.sourceUrl.i indicating the URL to get the ith package from the orig-

inating repository.

The example below shows metadata description for a project crawled from
Google code hosting.

00 #Thu Sep 24 16:15:01 PDT 2009
01 releaseDate=null
02 name=dlctarea1
03 category=DLC, Java, Netbeans, FileChooser
04 languageGuessed=Java
05 versionGuessed=$SCM
06 scmUrl=svn checkout

http\://dlctarea1.googlecode.com/svn/trunk/
dlctarea1-read-only

07 license=GNU General Public License v2
08 keywords=null
09 sourceUrl=null
10 exractedVersion=$SCM
11 projectDescription=Tarea n\uFFFD 1
12 fileExtensions=null
13 originRepositoryUrl=http\://code.google.com
14 containerUrl=http\://code.google.com/p/dlctarea1/
15 contentDescription=null
16 crawledDate=2009-Sep-23

Jar Storage: In addition to the top-level batch directories described above, the
local repository also contains a single jars directory. The jars directory is structured
as follows:

<repo_root>/jars/project/<jar_path>
<repo_root>/jars/maven/<jar_path>
<repo_root>/jars/index.txt

The project subdirectory contains all of the jar files that come packaged with
the projects in the main repository. This directory is populated by crawling through
the repository itself, and copying every jar found. The copying is done so that
these jar files can be modified, if necessary, without altering the original projects.

http://sourceforge.net
http://sourceforge.net

8 Infrastructure for Building Code Search Applications for Developers 143

The maven subdirectory contains a mirror of the Maven2 central repository2 [43].
Lastly, index.txt contains an index that maps from the MD5 hash of a jar file to
its location in the directory structure. This index is used to link the jar files from the
projects to the files contained in the jars directory.

Sourcerer’s project metadata format enables capturing description of
projects and contents across various online repositories.

The Storage Model provides a standard for storing project files in Sourcerer and
is not directly used by applications. Applications rely on other higher-level abstrac-
tions to access the contents stored in Sourcerer.

8.4.2 Relational Model

Sourcerer’s relational model defines the basic source code elements and the relations
between those elements. It supports a fine-grained representation of the structural
information extracted from source code. It also links the code elements/relations
with their locations in physical artifacts.

Two major goals guided the design of Sourcerer’s relational model. First, it had to
be sufficiently expressive to allow fine-grained structure-based analyses and search
over code structure. Second, it had to be efficient and scalable enough to include
the large amount of code from thousands of open source projects. To meet these
two goals we decided to use an adapted version of Chen et al.’s [7] C++ entity-
relationship-based metamodel as Sourcerer’s relational model for source code. In
particular, their decision to focus on what they termed a top-level declaration gran-
ularity provides a good compromise between the excessive size of finer granularities
and the analysis limitations of coarser ones.

The relational model consists of the following five elements: Project, File, Entity,
Comment, and Relation.

A Project model element exists for every project contained in Sourcerer’s repos-
itory, as well as every unique Jar file. A project therefore contains either a collection
of Java source files and jar files, or a collection of class files. A File model element
represents these three types of files: source (.java), jar (.jar) or class (.class).
Both source and class files are linked to sets of Entities contained within them, and
to the Relations that have these entities as their source and target. Jar files, on the
other hand, are linked to their corresponding jar projects, which in turn contains all
of the Entities and Relations.

2 Maven is a build system for Java that provides the facility to fetch required libraries from a central
repository [42].

144 S.K. Bajracharya

An Entity model element either corresponds to an explicit declaration in the
source code (e.g., Class, Interface, Method), a Java package,3 or Java types that are
used but do not correspond to a known explicitly declared type (e.g., Array, Type
Variable). An entity type is UNKNOWN when the type cannot be determined due to
uncertainty in the analysis. Table 8.1 lists all entity model element types defined in
Sourcerer. These types adhere to their standard meaning in Java, as defined in the
Java Language Specification (JLS) [12].

A Relation model element represents a dependency between two Entities. A de-
pendency d originating from a source entity s to a target entity t is stored as a Rela-
tion r from s to t. Table 8.2 contains a complete list of the relation types with a brief
description and example for each. All of the relations are binary, linking a source
entity to a target. The source entity for a relation is smallest entity that contains the
code that triggers that relation. While containment is clear for most of the entities,
it should be noted that FIELDs are considered to contain their initializer code and
ENUM CONSTANTs are considered to call their constructors. The source entity is al-
ways found within the project being examined. This is not necessarily true of the
target entity. It can be a reference to the Java Standard Library or any other external
jar. In fact, due to missing dependencies, sometimes it is impossible to resolve the
type of the target entity.

PACKAGE
CLASS
INTERFACE
ENUM
ANNOTATION
INITIALIZER
FIELD
ENUM CONSTANT
CONSTRUCTOR
METHOD
ANNOTATION ELEMENT
PARAMETER
LOCAL VARIABLE
PRIMITIVE
ARRAY
TYPE VARIABLE
WILDCARD
PARAMETRIZED TYPE
UNKNOWN

Table 8.1: Entity types

A Comment model element represents the comments defined in the Java source
code.

3 Packages are not considered to be standard declared entities as they do not have a single declara-
tion.

8 Infrastructure for Building Code Search Applications for Developers 145

Figure 8.2 shows Sourcerer’s relational model using an ER-diagram. It shows the
five elements of Sourcerer’s relational model and a set of attributes for each of them.
Table 8.3 provides the details on all the attributes of the model elements. Figure 8.2
and Table 8.3 provide information on how the model elements are linked with each
other, and how the attributes in the relational model link the relational model ele-
ments with the storage model. For example, Project element’s ‘path’ attribute links
it to the physical location defined by the storage model.

Various tools in Sourcerer make use of this information to connect the relational
information with the textual contents stored in the physical files.

Entities and Relations are the key elements of the Sourcerer’s relational
model that enables code specific search capabilities. Capturing and asso-
ciating fully qualified names for code entities allows referring and look-
ing up code entities across projects using the FQNs as keys. Therefore,
FQNs for entities enables analysis of relations across projects. This led to
innovative use of structural information in code search applications such
as: (i) computing CodeRank (adaptation of Google’s Pagerank algorithm
on code graph) and using it as a ranking heuristic in SCSE, (ii) and using
feature vectors made up of FQNs of used entities as a basis to compute
usage similarity for entities in SSI.

8.4.3 Index Model

The Index Model complements Sourcerer’s relational model by facilitating appli-
cation of information retrieval techniques on the code entities. The index model
specifies a Document representation for each code Entity in the relational model.
A document in the index model is made up of a collection of Fields. Each field has
a name and different types of values associated with them, the most fundamental
being a collection of Terms. A term is a basic unit for search/retrieval. Terms are
extracted from various parts of an entity, and stored in a corresponding field of a
document representing a code entity.

Sourcerer’s information retrieval component is based on the popular Lucene [41]
information retrieval engine. Therefore, its index model confirms to how Lucene
models its contents. More details on Lucene’s contents model are available in [25].

Fields in Sourcerer’s index models can be categorized into five types:

1. Fields for basic retrieval that store terms coming from various parts of a code
entity.

2. Fields for retrieval with signatures that store terms coming from method signa-
tures and also terms that indicate number of arguments a method has.

3. Fields storing metadata, for example the type of the entity, so that a search could
be limited to one or more types of entities.

146 S.K. Bajracharya

Relation Description Example
INSIDE Physical

containment
java.lang.String INSIDE java.lang

EXTENDS Class
extension

java.util.LinkedList EXTENDS
java.util.AbstractSequentialList

IMPLEMENTS Interface im-
plementation

java.util.LinkedList IMPLEMENTS
java.util.List

Interface
extension

java.util.List IMPLEMENTS
java.util.Collection

HOLDS Field type java.lang.String.offset HOLDS int

RETURNS Method return
type

java.lang.String.toCharArray()
RETURNS char[]

READS Field read ...String.<init>(java.lang.String)
READS java.lang.String.offset

WRITES Field write java.lang.String.<init>() WRITES
java.lang.String.offset

CALLS Method
invocation

...String.indexOf(int) CALLS
java.lang.String.indexOf(int,int)

INSTANTIATES Constructor
invocation

foo() INSTANTIATES
java.lang.String.<init>

THROWS Declared
checked
exception

java.io.Writer.write(int) THROWS
java.io.IOException

CASTS A cast
expression

java.langString.equals(
java.lang.Object) CASTS
java.lang.String

CHECKS An instance of
expression

java.langString.equals(
java.lang.Object) CHECKS
java.lang.String

ANNOTATED BY Annotation java.lang.Override ANNOTATED BY
java.lang.annotation.Target

USES Any reference java.lang.String.<init>() USES
char

HAS ELEMENTS OF Array element
type

char[] HAS ELEMENTS OF char

PARAMETRIZED BY Associated
type variables

java.util.List PARAMETRIZED BY <E>

HAS BASE TYPE Generic base
type

java.util.List<java.lang.String>
HAS BASE TYPE java.util.List

HAS TYPE ARGUMENT Generic type
argument

java.util.List<java.lang.String>
HAS TYPE ARGUMENT java.lang.String

HAS UPPER BOUND ? extends <? extends java.util.List> HAS
UPPER BOUND java.util.List

HAS LOWER BOUND ? super <? super java.util.List> HAS LOWER
BOUND java.util.List

Table 8.2: Relation types

8 Infrastructure for Building Code Search Applications for Developers 147

Description
Project
project_id Unique identifier for a project
project_type Denotes whether this project represents a crawled project, or a Jar file
name Name of the project as it appears in the originating Internet repository
description Description of the project from the originating Internet repository
version Version of this project as extracted from originating Internet repository
groop Specific field applicable to Maven Jars
path Corresponds to the <batch>/<id> path fragment as defined by the storage

model
has_source Denotes whether the project contains source files
File
file_id Unique identifier for a file
file_type Denotes the file’s type – source, Jar, class
name Name of the file in the file system
path Corresponds to either <batch>/<id>/content/<path>, or

jars/<jar_path> as defined by the storage model
hash Unique MD5 hash, applicable for Jars only
project_id project_id that this file belongs to
Entity
entity_id Unique identifier for an Entity
entity_type One of the several code entity types. (e.g., CLASS, METHOD)
fqn Fully qualified name (FQN) of the entity
modifiers Modifiers defined for the code entity
multi Denotes array dimension, applicable for ARRAY types only
file_id file_id that this entity is extracted from
offset Start position of this entity in the source file
length Length of this entity in the text (source file)
Relation
relation_id Unique identifier for a relation
relation_type One of the several code relation types. (e.g., CALLS, EXTENDS)
relation_class Denotes whether the relation terminates to a library or a local entity
lhs_eid The source entity that the relation originates from
rhs_eid The target entity that the relation terminates into
offset Start position in the source entity’s corresponding file where this relation exists
length Length of the text in source code where this relation spans
Comment
comment_id Unique identifier for a comment
comment_type Denotes the comment’s type – Javadoc, Block, Line
containing_eid The immediate code entity that contains this comment
following_eid The immediate code entity that follows this comment
file_id File where this comment is found
offset Start position of comment in the source file
length Length of this comment in text (source file)

Table 8.3: Sourcerer’s relational model elements details

4. Fields that store information to facilitate retrieval based on structural similar-
ity (e.g., fields storing fully qualified names (FQNs) of used entities and terms
extracted from similar entities).

5. Fields that pertain to some metric computed on an entity.
6. Fields that store unique identifiers (ids) of entities for navigational/browsing

queries

148 S.K. Bajracharya

Being based on Lucene, Sourcerer’s index model is quite flexible. Depending on
a specific search application, an instance of a Sourcerer’s index schema can have a
subset of various field types listed above. The three code search applications built
on top of Sourcerer have used code index schemas with different configurations of
fields and associated data sources.

Fields for retrieval with signatures allowed precise construction of queries
for expressing desired method signatures and relations expected in test
cases in CodeGenie. Fields storing retrieval based on structural similarity
enabled retrieval schemes in SSI, and more like this queries based on
usage in SAS. Rest of the index fields supported basic operations of the
code search applications as in SCSE.

8.4.3.1 Structured Retrieval

Table 8.4 presents a subset of the fields available in the Sourcerer index. Sourcerer’s
search index can be searched using Lucene’s query language [25, 41]. The following
Lucene query demonstrates how different fields are utilized to express a query that
incorporates textual as well as structural information:

short_name: (day of week)
AND entity_type: METHOD
AND m_ret_type_sname_contents: String
AND m_args_fqn_contents: date
AND cdef: (date util)

Index field Description
Fields for basic retrieval
fqn_contents Tokenized terms from the FQN of an entity
short_name Right most fragment of the FQN (w/o method

arguments for methods)
Fields for retrieval with signatures
m_args_fqn_contents Method’s formal arguments tokenized into

terms
m_ret_type_sname_contents Short name of the method’s return type tok-

enized into terms
Fields Storing metadata
entity_type String representation of entity type. (e.g.,

“CLASS”)
Fields for navigation
fan_in_mcall_local Entity ids of all local callers for a method from

the same project

Table 8.4: Sample search index fields

8 Infrastructure for Building Code Search Applications for Developers 149

The above query has the following meaning: find a method with terms day, of
and date in its short name (or simple name in JLS [12]), that returns a type with
short name String, and takes in any number of arguments with term date as part
of its argument in their FQNs. This is an example of a query that CodeGenie would
construct for a unit test that would have an assertion that looks like:

Date date = ...
Assert.assertTrue(‘‘Tuesday’’,DateUtil.dayOfWeek(date));

With an index structure that has fields resembling various structural elements in
code, Sourcerer provides a code-specific index model.

8.4.3.2 Code-Specific Retrieval Schemes

Sourcerer’s index model enables implementation of retrieval schemes for a variety
of code search applications.

A retrieval scheme tuned for code search takes a query and returns rel-
evant code entities using a combination of code specific heuristics. A
heuristic is an idea to associate meaningful terms to code entities.

Consider a source code document in Java as shown in the top right part in Fig. 8.3.
If we focus on the method entity (createResource) shown inside the code docu-
ment, there can be multiple ways to associate meaningful terms to that entity. On the
top-left part in Fig. 8.3, several metadata related to the method createResource are
shown. For example ‘FQN’ indicating the fully qualified name of the method entity,
‘Used FQNs’ listing the FQNs of the APIs that the code entity uses, and ‘Similar
Entity’ indicating another method entity makeIcon that uses the same two APIs as
createResource uses.

Lower part of Fig. 8.3 shows how we can define several heuristics that would
associate different meaningful terms with the method entity createResource.

The first heuristic ‘Code as Text’ treats source code entities as normal text docu-
ment. Based on some code specific parsing (such as removing symbols and splitting
on camel case) ‘Code as Text’ will associate the following terms with the method
entity createResource: create, resource, file, open.

While writing code developers often express their design in some hierarchic
fashion; for example the method createResource is defined inside the class
entity creatResource that is further defined inside the package util. Program-
ming languages allow expressing such information about hierarchic containment
in a naming scheme resulting in fully qualified names (FQNs) for entities. For
example, in Java, the FQN of the method createResource is given as follows:
util.ResourceManager.createResource(). The second heuristic ‘focus on

150 S.K. Bajracharya

names’ assumes FQNs express structure and design of code entities, and associate
terms extracted from FQNs with code entities.

The third heuristic ‘Specificity’ says that the simple name of the method carries
more specific information about a code entity, and therefore terms extracted from
simple name should have some higher priority compared to others. This is repre-
sented as a boost value (shown as BV in Fig. 8.3) for list of terms associated with
‘Specificity’ heuristics.

The ability to prioritize the heuristics differently allows experimentation
and choosing the most effective retrieval performance.

The fourth heuristic ‘Usage’ says that the FQNs of the used entities also carry
some important information about the functionality of the code entity, as it is by
using these FQNs the entity is implementing some feature in the code. Therefore
this heuristic extracts terms from the FQNs of the used entities.

Finally, ‘Usage Similarity’ says that, terms found in code entities that have
similar API usage patterns can be used to describe each other. For example, as
shown in Fig. 8.3 both methods createResource and makeIcon are implement-
ing same behavior by using same APIs. This suggests that, to some extent, terms
extracted from makeIcon can be used to describe the functionality implemented in
createResource.

Fig. 8.3 Heuristics for code retrieval

8 Infrastructure for Building Code Search Applications for Developers 151

Sourcerer’s index model allows incorporating these code specific heuristics by
leveraging the semi-structured document model of Lucene. For each of the heuristics
the index model introduces a field that would store terms extracted based on the
heuristic. Each field is given an appropriate boosting value so that some heuristics
could be given higher priority (depending on the code search application). With such
an index model, a retrieval scheme for a code search application simply specifies
which fields to choose to match the user query. A different strategy to retrieve code
entities can be implemented by varying these schemes. For example, the top right
corner of Fig. 8.4 shows the code snippet for the method entity createResource

(previously shown in Fig. 8.3). The bottom part of Fig. 8.4 shows an index document
with five different fields capturing five different heuristics respectively. The top left
part of Fig. 8.4 shows in a tabular form, how two schemes would match the same
query create icon to the index document (and thus the method entity) differently.
Scheme 1 uses only three heuristics, compared to Scheme 2 that uses all five.

Scheme 1 looks over a limited set of terms associated with the method entity
createResource. This set only includes one of the terms create present in the
query create icon. Scheme 2 includes two more fields that makes it look over a
richer set of terms that includes both of the terms found in the query. Assuming that
all terms in query need to be matched for a document to be retrieved, Scheme 2
outperforms Scheme 1 because Scheme 2 uses additional heuristics to harvest more
meaningful words describing code entities.

Fig. 8.4 Incorporating heuristics in index model

152 S.K. Bajracharya

Vocabulary problem is a fundamental problem in information retrieval.
It arises from the fact that humans have different vocabulary to de-
scribe similar concepts. Consequently, terms used in a query might not
be present in all relevant documents. This can severely hinder retrieval
because not all users would know the right terms to use to retrieve a rele-
vant document. Sourcerer provides a solution to harvest more meaningful
words for code entities by incorporating code-specific heuristics in the
index model. This enables developing retrieval schemes that allows code
entities to be matched with relevant query terms even when the terms
themselves are not originally present in the code entity. This contributes
a unique solution to tackle the vocabulary problem in code search.

For an elaborate description of vocabulary problem, see [8]. SAS used Scheme
2 retrieval scheme shown in Fig. 8.4 and used all five heuristics shown in Fig. 8.3.

8.5 Stored Contents

The Sourcerer infrastructure maintains a collection of stored contents corresponding
to each of the three models.

A File Repository keeps a collection of files downloaded and fetched from open
source repositories in the Internet. The structure of the file repository follows the
storage model.

Two different databases store the relational information about the contents in the
file repository. First, ArtifactDB stores limited information about the jar files found
in the repository in order to enable the automated resolution of missing dependen-
cies [28]. Second, SourcererDB stores the relational information on all projects,
files and code entities that exist in the file repository. Both databases exist as MySql
databases whose schemas confirm to Sourcerer’s relational model.

A Lucene-based Search Index is available that stores information about terms
extracted from each code entity in the corresponding documents and fields. The
search index uses a code index schema following the index model.

Sourcerer’s web site [34] provides details on the most recent statistics on the size
of its contents. Currently, its repository contains above 3 million source files from
18,826 open source projects.

8.6 Services

All the artifacts managed and stored in Sourcerer are accessible through a set
of Web services. These services provide a layer of abstraction and programmatic

8 Infrastructure for Building Code Search Applications for Developers 153

access to rapidly build applications that can leverage the underlying contents stored
in Sourcerer.

Relational Query: Both ArtifactDB and SourcererDB are implemented as MySql
databases. They provide direct access to query the underlying structural/relational
information in Sourcerer using standard SQL. Relational Query is the basis for rich
structural queries over code. Dependency slicing, code rank, and usage similarity all
relied on SQL queries. As another use-case of using relational information, given
below are some details on snippet extraction (taken from [3]) implemented for SAS.

Snippet Extraction in SAS: The retrieval scheme for SAS takes a keyword query
and returns a ranked list of code entities as search result. This ranked list of entities
is called hits and each entry in the list is called a hit. The retrieval scheme also
returns the total number of entities in the index that match the query. For each hit the
corresponding ‘entity_id’ (a unique identifier for a code entity) is available. Further
details about the code entity can be queried from SourcererDB using the ‘entity_id’.
SAS uses the information returned by its retrieval scheme to extract a corresponding
code snippet for each hit (entity) in the list.

input : hits = top ‘n’ hits returned as search results; where, n = max_of(10,
10% of total hits)

output: top_used = list of top used entities
1 begin
2 list_eid = all entity ids from hits;

/* getTopApis(..) selects top 5 non-JSL (Java Standard Library) entities of
each type (Interface, Method, Constructor, Classes) from SourcererDB
such that they are used by at least 3 entities in the hits */

3 top_used = getTopApis(list_eid);
4 end

Algorithm 1: Getting the list of top used entities

Snippet extraction proceeds in two steps. First, given a set of hits, a list of top
APIs (used entities) is generated. This process is shown in Algorithm 1. As an input
Algorithm 1 takes a list of top ‘n’ hits where, ‘n’ is the greater of 10 or 10 % of the
total number of hits. These ‘n’ hits give ‘n’ unique entity ids (Line 2). To find the list
of top used entities, the search application queries SourcererDB for the top non-JSL
entities that are used by the entities in the list (Line 3). For each entity the top five
Interfaces, Methods, Constructors, and Classes are selected. Among all these used
entities in the list, only those entities that are used by at least three different entities
are returned as the top used entities (output of the algorithm).

154 S.K. Bajracharya

input : eid = entity id, top_used = top used entities
output: snip = an annotated code snippet

1 begin
2 snip = empty string;

/* getUsedPositions(..) looks up SourcererDB and returns all positions in
the code where top_used entities are used. Positions are mapped to a list
of used entities */

3 used_pos_map = getUsedPositions(top_used, eid);
4 forall the position IN used_pos_map do
5 rationale = empty string;
6 forall the used_entity IN used_pos_map[position] do

/* Below, append(a,b) returns a new string by appending string ‘b’
to ‘a’.createRationale(..) selects relation type and FQN of used
entity and creates a rationale as a comment */

7 rationale = append(rationale, createRationale(used_entity, eid));
8 end

/* extractFragment(..) extracts the surrounding expression in a code
entity from position */

9 snip_fragment = extractFragment(eid, position);
/* appendSnip(..) works same as append(..) and returns true if

rationale and snip_fragment do not already exist in snip */
10 if appendSnip(rationale, snip_fragment) /∈ snip then
11 snip = appendSnip(snip, rationale);
12 snip = appendSnip(snip, snip_fragment);
13 end
14 end
15 end

Algorithm 2: Snippet extraction

The second step involves generating code snippet for each entity in the hits.
This is done using the list of top used entities and the ‘entity_id’ of a given hit.
The algorithm for this process is shown in Algorithm 2. The procedure first queries
SourcererDB to locate all the positions in the source of an entity where any of the
top APIs are used (Line 3). For all APIs that are used in a position, a rationale com-
ment is generated (Lines 5–8). A rationale comment indicates the type and FQN of
the used API. Then, a few of the surrounding lines of code are extracted from each
starting position (Line 9). Rationale comments are inserted on top of these extracted
lines (Lines 10–13). Finally, a sequence of these commented code fragments is re-
turned as an example code snippet. A sample Java code snippet generated using a
hit returned for a query “write to workbench error log” is shown in Fig. 8.5.

In Fig. 8.5, Lines 5 and 14 are two positions in the code where some top APIs
were found to be used. Lines 1–4 show rationale comments for two APIs (IStatus

8 Infrastructure for Building Code Search Applications for Developers 155

Fig. 8.5 Annotated API usage example for the task of programmatically writing to eclipse work-
bench’s log

and the constructor for class Status) that are used in Lines 6–10. Similarly, Lines
12 and 13 show rationale comments for two APIs that are used in Line 14.

Repository Access: This service provides access to the textual contents of three
of Sourcerer’s relational model elements: File, Entity, and Comment. Repository
access is a simple HTTP-based Web service that returns the full text for one of the
three relational model elements given their unique ids as parameters.

Dependency Slicing: This service provides dependency slices of the code entities
in SourcererDB. A dependency slice of an entity is a program (collection of Java
source files) that includes the entity as well as all the entities upon which it depends.
Requested slices are packaged into zip files, and should be immediately compilable.
The dependency slicing service can take in one or more entity ids and return a zip
file containing the collection of sliced/synthesized Java files that the given set of
entities depend on. The chapter by Ossher and Lopes in this volume provides an
in-depth discussion of dependency slicing.

Code Search: This service implements a query processing and a code retrieval fa-
cility. Code search applications (such as CodeGenie [16, 17, 18, 19] and Sourcerer
API Search) can send queries as a combination of terms and fields and the service
returns a result set with detailed information on the entities that matched the queries.
The query language is based on Lucene’s implementation using which clients can
express structural information in the queries. The matching and scoring (ranking) of
entities follow Lucene’s implementation. Details on how Lucene matches the query
terms in index fields and score the matched entities are given in [37]. In summary,
a boolean retrieval is performed based on a Lucene query as described earlier in
Sect. 8.4.3, then all matched entities (documents) are ranked using the TF-IDF mea-
sure [23].

Similarity Calculation: The Similarity Calculation service takes in an entity_id of
an entity ‘e’ and returns a list of other entities that are similar to ‘e’. Currently, the

156 S.K. Bajracharya

Fig. 8.6 Usage similarity computation based on feature vectors

similarity calculator can suggest similar entities based on three different measures
of usage similarity. For this purpose, the similarity calculator uses the usage infor-
mation stored in SourcererDB. The similarity calculation service works based on a
feature vector representation of code entities. As shown in Fig. 8.6 for each code
entity such as the methods foo(..) and bar(..) a vector representation of used
APIs are stored, where each entry in the vector indicates usage frequency (could be
binary for certain similarity measures). For example, Fig. 8.6 shows that foo(..)
uses API a1 once and API a2 twice. Given a measure of similarity based on fea-
ture vector (for example Cosine Distance [23]), the similarity measure between two
code entities foo(..) and bar(..) can be computed (Usage_Similarity(foo(..),
bar(..))). With this collection of feature vectors, for each entity a given set of top
similar entities based on API usage can be computed by choosing an appropriate
similarity function that works on feature vectors. The Structural Semantic Indexing
(SSI) technique makes use of the similarity calculation service and uses three dif-
ferent measures of similarity. Further details on similarity calculation is available
in [3] and [6].

Except the Relational Query service, all other services are HTTP-based services.
Currently three services are open to the public. A detailed description of how to use
these services is available online [35].

8.7 Tools

A number of loosely coupled tools are available in the Sourcerer infrastructure.
These tools are primarily responsible for collecting/analyzing source code and pro-
ducing the stored contents.

Code Crawler: Sourcerer consists of a multithreaded plugin-based code crawler
that can crawl the Web pages in online source code repositories. One of the chal-
lenges in designing the Code Crawler was to adapt with the changes and differ-
ences with Web pages in different Internet repositories. To address this challenge,
the crawler follows a plugin-based design. A separate plugin can be written target-
ing the crawl of a repository. This makes it possible to just update the plugin (or add

8 Infrastructure for Building Code Search Applications for Developers 157

new plugins) when a different (or new) Web site has to be crawled. Currently the
crawler consists of plugins for Sourceforge [44], Java.net [40], Tigris [45], Google
Code Hosting [39], and Apache [38]. The crawler takes a set of root URLs as an
input and produces a list of download URLs and version control links along with
other project specific metadata. This project specific metadata is in the form as spec-
ified by (the project.properties file in) the storage model. Since Sourcerer only
supports Java source files, the crawler uses heuristics to detect the presence of Java
source files in a repository’s Web page. These heuristics are common patterns spe-
cific to each repository. For example, a tag named ‘Java’ in a project from Google
Code Hosting, and the presence of keywords such as ‘java’, ‘eclipse’, ‘ant’, etc. in
a project from Java.net are used as indicators that a project has source code written
in Java. These projects are candidates to be picked for further processing.

Repository Creator: The repository creator tool is responsible for parsing the code
crawler’s output list, filtering noise from the list (e.g., removing duplicate links),
and downloading the contents from the online repositories to Sourcerer’s local file
repository. Given a local file repository’s root folder, the repository creator creates
the required folder structure and places the contents as specified by Sourcerer’s stor-
age model. The repository creator first creates the two level folder structure based
on the number of projects it needs to add to the repository. Second, it creates the
project.properties file describing each project. Third, it fetches the files from
remote/original repositories. project.properties has metadata about two con-
tents sources in remote repositories: (i) SCM systems such as svn and cvs, and (ii)
downloadable packages such as compressed distributions (zips, tars, etc.). When
information on a SCM repository is available, the repository creator first tries to
check out contents from the respective SCM system. If errors are encountered,
or if the SCM check out brings no contents, then the repository creator down-
loads all the packages, given that the information on links to the packages exist
in project.properties. After the download, the repository creator explodes the
archives inside the content folder corresponding to the project. The end result of
this process is a local Sourcerer file repository, based on the storage model, which
contains contents fetched from remote open source repositories.

Repository Manager: The repository manager tool is responsible for two tasks: (i)
library management, and (ii) optimizing the local repository for feature extraction.
Under library management, the repository manager creates and maintains a local
mirror of all jar files from the Maven2 central repository. It also aggregates all of the
jar files from the individual projects into the jars directory. It then creates an index
of all the unique jar files in the repository. These jars can be used to provide missing
types to projects in Sourcerer’s file repository during feature extraction if needed.
Under optimizing the local repository, the repository manager performs tasks such
as compressing the contents inside a project’s folder, and cleaning the jars’ manifest
files to avoid problems due to unexpected classpath additions.

Feature Extractor: The feature extractor in Sourcerer is responsible for extracting
the detailed structural information from the source code files stored in Sourcerer’s

158 S.K. Bajracharya

file repository. The feature extractor is built as a headless Eclipse plugin, to make use
of Eclipse’s (Abstract Syntax Tree) AST Parser. Before running the feature extrac-
tor, the source code is preprocessed to detect missing libraries using import state-
ments. Some additional heuristics are used to be able to fully resolve the bindings in
the source code types and links to the libraries. These heuristics are fully explained
in an earlier publication [28]. The repository manager and the feature extractor to-
gether implement the required techniques for Automated Dependency Resolution, a
key feature available in the Sourcerer infrastructure, that enables feature extraction
from large number of open source projects despite missing dependencies and errors.
In summary, automated dependency resolution works as follows. First, the feature
extraction runs through the available projects to detect missing types. It creates the
AST representation of code available in the projects and generates a list of missing
types reported by the underlying Eclipse parser. From the list of missing types, the
feature extractor generates a list of possible FQNs for those types to be found. It
then looks up the ArtifactDB for possible jar files where the missing FQNs could be
found. While doing so it selects the jar files that can provide the maximum number
of missing FQNs. Once the jars are selected, they are included in the classpath of the
project with missing types and then the feature extractor runs again. This process is
repeated until all missing types are found or if no jars could be located for remaining
missing types. After this step, the feature extraction does a full extraction of entities
and relations from the projects. Our evaluation of automated dependency resolution
has shown that it can increase the percentage of declaratively complete projects in
Sourcerer’s file repository from 39 to 69 %. Automated dependency resolution is
fully explained in [28].

Database Importer: This tool allows importing the Feature Extractor’s output into
the code databases: ArtifactDB and SourcererDB.

Code Indexer: The code indexer tool is responsible to index all code entities in
Sourcerer’s file repository using the textual and structural information available for
the entities. The code indexer obtains this information using three services, the File
Access Service – to obtain the full text corresponding to a code entity, Sourcer-
erDB to retrieve entities and comments related to a code entity being indexed, and
Similarity Calculation service to retrieve similar entities. As a result of the index-
ing process, the code indexer produces a semi-structured full text index based on
Lucene [41]. To index a code entity, the code indexer can retrieve all or some the
following data: the full-text for the corresponding entity, the fully qualified names
(FQNs) of related entities, comments of the used libraries, and FQNs of used enti-
ties. The search index schema will consist of fields to store the terms corresponding
to these data types. The terms are extracted from the FQNs and full text of source
code documents using code-specific analysis techniques (e.g., camel case splitting
and removing language keywords as stop words). The code indexer tool consists of
several of these code-specific analyzers.

Code Ranker: The code ranker tool constructs a graph representation of source
code analyzed in Sourcerer. Entities constitute the nodes and relations constitute

8 Infrastructure for Building Code Search Applications for Developers 159

the edges in the graph. After constructing this graph, code ranker applies Google’s
Pagerank [15] algorithm on top of this graph to compute the Pagerank (called
CodeRank) for each entity which can be used as a measure of popularity of a code
entity in the code graph. SCSE used the value of CodeRank as one of the heuristics
to rank retrieved results.

8.8 Summary

The combination of models, services, and tools makes Sourcerer a unique infras-
tructure supporting three different code search applications. Going back to the re-
quirements that were listed (in Sect. 8.2) for the three code search applications, we
can summarize how Sourcerer meets these requirements.

SCSE: The storage model, stored contents, and the crawler in Sourcerer allowed
collection of source code from large number of open source repositories, and store
them locally making available for required further processing. The relational model
and the code parser tool allowed fine grained parsing and storing parsed informa-
tion in a readily available form. Being able to parse source code allowed storing
and retrieving source code at the level of finer entities such as classes and methods.
Using fully qualified names as keys for entities, and following relations in Sourcer-
erDB, SCSE provided a structure-based measure of CodeRank to rank code entities.
As discussed in the index model, several code-specific heuristics were supported to
build retrieval schemes that were specific to source code.

CodeGenie: The semi-structure index model with fields that supported retrieval
using signatures provided basic retrieval for CodeGenie. Information about code
entities and relations between them, allowed implementation of dependency slicing
– a novel technique to extract and synthesize declaratively complete code snippet
collection for CodeGenie.

SAS: Information on entities and usage (relations such as method calls and class
extensions) allowed building API usage profiles for each code entities in the form
of feature vectors. This served as the basis for usage similarity computation among
code entities, allowing to devise novel indexing technique such as SSI using the us-
age similarity heuristic. Furthermore, full relational information on relations among
code entities allowed computing useful API usage statistics that helped implement-
ing useful snippet extraction technique.

The three code search applications were built one after another and Sourcerer
evolved as it had to support the requirements for the applications. These require-
ments can be seen as major challenges that code search infrastructure builders need
to address. A major lesson learnt with the implementation of three code search ap-
plications was that structural information provides valuable ways to build effec-
tive code search applications, and challenges inherent in building such applications
can be overcome by harnessing large collection of source code and libraries avail-

160 S.K. Bajracharya

able over the Web. Two important factors contributed to Sourcerer’s success. First,
a principle of leveraging structural information in source code to build effective
search applications. This principle guided its design and implementation. Second, a
loosely coupled architecture that made it possible for selective use of smaller set of
elements across applications.

While SCSE, CodeGenie, and SAS represent three state-of-the art research pro-
totypes for code search, Sourcerer does not address needs to develop every code
search application that developers would need. For example, Sourcerer does not
provide support for information related to evolution and code changes, and there-
fore does not support search requirements around the problems related to evolution.
Also being focused solely on Java as the language of choice, Sourcerer does not
provide support to search in other languages. Sourcerer does not do any form of de-
duplication of source code while maintaining the repository for the three code search
applications. These could be some possible future improvements for Sourcerer and
next generation code search infrastructures.

Sourcerer’s contents as well as its implementation are freely available for oth-
ers to use. The content is released as a citable dataset [21]. The implementa-
tion is available as an open source project in Github [36]. These efforts have
enabled external researchers to use Sourcerer’s content and services in their re-
search [22, 24, 27, 30, 33].

8.9 Further Reading

Descriptions of earlier versions of Sourcerer are available in [2] and [20]. SCSE was
first described in [1]. Code specific heuristics used in SCSE and their formal evalua-
tion is discussed in [20] and [6]. Further details on CodeGenie is available in earlier
publications [17, 18]. For details on user experiments and effectiveness evaluation of
CodeGenie consult [6]. For detailed discussion on implementation and evaluation of
SSI refer to [3]. More details on SAS is given in [4]. A definitive resource on details
of the Sourcerer infrastructure, in particular the research contribution it made along
with all three code search applications presented earlier (SCSE, CodeGenie, and
SAS) is the author’s doctoral dissertation [6]. A revised version of Chap. 3 from [6]
appears in [5]. The chapter by Ossher and Lopes in this book provides the most re-
cent and detailed discussion on dependency slicing that is one of the core services
available in the Sourcerer infrastructure. The Software Engineering research com-
munity has produced a large body of work related to code search. A detailed review
of some of these closely related to Sourcerer is available in [6] (Chap. 1). Next we
summarize some of the work that focused on building code search application on
top of a large-scale repository.

Merobase [14] is an infrastructure similar to Sourcerer. Like Sourcerer, Merobase
has built a large code repository, a code/component search engine and a Test-Driven
Search application using its repository. Merobase offers syntax aware code search,
and covers additional languages (C++ and ADA). There is no documented evidence
that Merobase includes structural ranking such as Sourcerer Code Search Engine’s

8 Infrastructure for Building Code Search Applications for Developers 161

CodeRank, or advanced indexing techniques leveraging structural similarity such as
Sourcerer’s SSI. Its Test-Driven Code Search application, Code Conjurer, provides a
feature to do background search not present in CodeGenie (Sourcerer’s TDCS appli-
cation), but lacks automatic dependency slicing that allows declaratively complete
program slices to be merged into a developer workspace to create self-complete
code fragments satisfying the unit tests. Sourcerer also provides techniques to do
deep parsing of declaratively incomplete code found in repositories; this makes
Sourcerer resilient and superior in terms of extracting and leveraging structural in-
formation from source code collected from the ‘wild’. The chapter by Hummel and
Janjic in this volume provides an in-depth discussion of CodeConjurer.

Maracatu [9, 10] is another infrastructure built for code search. Similar to
Sourcerer, it is limited to searching Java source code. The authors of Maracatu
present useful requirements such as index update and optimization, but it is not clear
whether Maracatu implements all of such requirements. Sourcerer does not have a
proper mechanism to update its index to deal with changes in code repositories.
Maracatu also supports faceted search, where the facets are platform, component
type and component model. Sourcerer’s index model (being based on Lucene) sup-
ports faceting out-of-the box on any metadata present in its index. However, the only
faceting that has been implemented in an end-user search application is in Sourcerer
API Search, where the top API elements can be used as facets to filter the code
results.

S6 [29] is another Test-Driven Code Search application, that applies code trans-
formations to convert source code found via code search into workable solutions.
Parseweb [31], is another code search application that uses source and destination
object types as input query to retrieve code files from existing code search engines.
It applies program analysis on retrieved files to extract method sequences that work
as code samples to get destination object types from source types. Applications
such as S6 and Parseweb can easily benefit from code search infrastructure such as
Sourcerer.

Portfolio [26] is a code search application that incorporates structural informa-
tion in ranking and retrieval. One of its unique feature is to show the call graph
of functions involved in the search results. Portfolio provides search access to over
18,000 C/C++ projects and 13,000 Java projects. As reported in its web site, the Java
projects used in portfolio come from Sourcerer and Merobase repositories [33].

Although not a code search infrastructure, FLOSSmole [13] is another major un-
dertaking in building large collection of metadata about open source projects on the
Web. Currently, FLOSSmole reports a massive data collection of more than 500,000
open source projects in its web site [32]. For code search infrastructure builders, now
it is possible to leverage FLOSSmole’s project metadata to build code repositories
instead of spending an effort in implementing custom spiders and crawlers for code.

Acknowledgements The author would like to thank Joel Ossher, Otavio Lemos, Trung Ngo, Huy
Hunh, Paul Rigor, and Erik Linsted for their contributions to the Sourcerer infrastructure. The
author would like to thank Cristina Lopes and Pierre Baldi for their advice and support in making
Sourcerer successful.

162 S.K. Bajracharya

References

[1] Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.:
Sourcerer: a search engine for open source code supporting structure-based
search. pp. 681–682. ACM Press, New York, NY, USA (2006). DOI http://
doi.acm.org/10.1145/1176617.1176671

[2] Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An internet-scale software
repository. In: Proceedings of the 2009 ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation, pp. 1–4. IEEE Com-
puter Society (2009)

[3] Bajracharya, S., Ossher, J., Lopes, C.: Leveraging usage similarity for effective
retrieval of examples in code repositories. 18th International Symposium on
the Foundations of Software Engineering (2010)

[4] Bajracharya, S., Ossher, J., Lopes, C.: Searching API usage examples in code
repositories with sourcerer API search. In: Proceedings of 2010 ICSE Work-
shop on Search-driven Development: Users, Infrastructure, Tools and Evalua-
tion, pp. 5–8. ACM, Cape Town, South Africa (2010). DOI 10.1145/1809175.
1809177

[5] Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An infrastructure for the
large-scale collection and analysis of open-source code. Science of Computer
Programming (To Appear) (2012)

[6] Bajracharya, S.K.: Facilitating internet-scale code retrieval. Ph.D. thesis, Uni-
versity of California Irvine (2010)

[7] Chen, Y., Gansner, E.R., Koutsofios, E.: A c++ data model supporting reach-
ability analysis and dead code detection. IEEE Trans. Softw. Eng. 24(9),
682–694 (1998)

[8] Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary
problem in human-system communication. Commun. ACM 30, 964–971
(1987). DOI 10.1145/32206.32212

[9] Garcia, V., de Almeida, E., Lisboa, L., Martins, A., Meira, S., Lucredio, D.,
de M. Fortes, R.: Toward a code search engine based on the State-of-Art and
practice. In: Software Engineering Conference, 2006. APSEC 2006. 13th Asia
Pacific, pp. 61–70 (2006)

[10] Garcia, V., Lucrédio, D., Durão, F., Santos, E., de Almeida, E., de Mat-
tos Fortes, R., de Lemos Meira, S.: From Specification to Experimentation:
A Software Component Search Engine Architecture. In: I. Gorton, G. Heine-
man, I. Crnkovic, H. Schmidt, J. Stafford, C. Szyperski, K. Wallnau (eds.)
Component-Based Software Engineering, Lecture Notes in Computer Science,
vol. 4063, pp. 82–97. Springer Berlin / Heidelberg (2006)

[11] Gil, J.Y., Maman, I.: Micro patterns in java code. In: OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pp. 97–116. ACM Press, New
York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1094811.1094819

[12] Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification,
The, 3 edn. Addison Wesley (2005)

http://doi.acm.org/10.1145/1176617.1176671
http://doi.acm.org/10.1145/1176617.1176671
http://doi.acm.org/10.1145/1094811.1094819

8 Infrastructure for Building Code Search Applications for Developers 163

[13] Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative reposi-
tory for FLOSS research data and analyses. International Journal of Informa-
tion Technology and Web Engineering 1(3), 17–26 (2006)

[14] Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: Pulling reusable soft-
ware out of thin air. IEEE Softw. 25(5), 45–52 (2008)

[15] Lawrence Page Sergey Brin, R.M., Winograd, T.: The pagerank citation rank-
ing: Bringing order to the web. Stanford Digital Library working paper SIDL-
WP-1999-0120 of 11/11/1999 (see: http://dbpubs.stanford.edu/pub/1999-66)

[16] Lemos, O.A.L., Bajracharya, S., Ossher, J., Masiero, P.C., Lopes, C.: Applying
test-driven code search to the reuse of auxiliary functionality. In: Proceedings
of the 2009 ACM symposium on Applied Computing, pp. 476–482. ACM,
Honolulu, Hawaii (2009). DOI 10.1145/1529282.1529384

[17] Lemos, O.A.L., Bajracharya, S.K., Ossher, J.: CodeGenie: a tool for test-driven
source code search. In: Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion, pp.
917–918. ACM, Montreal, Quebec, Canada (2007). DOI 10.1145/1297846.
1297944

[18] Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Masiero, P.C., Lopes, C.V.: A
test-driven approach to code search and its application to the reuse of auxiliary
functionality. Information and Software Technology (2011)

[19] Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Morla, R.S., Masiero, P.C.,
Baldi, P., Lopes, C.V.: CodeGenie: using test-cases to search and reuse source
code. In: Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, pp. 525–526. ACM, Atlanta, Geor-
gia, USA (2007)

[20] Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.:
Sourcerer: mining and searching internet-scale software repositories. Data
Mining and Knowledge Discovery 18(2), 300–336 (2009). DOI 10.1007/
s10618-008-0118-x

[21] Lopes, C., Bajracharya, S., Ossher, J., Baldi, P.: UCI source code data sets
(2010). URL http://www.ics.uci.edu/~lopes/datasets/

[22] Lungu, M., Lanza, M., Nierstrasz, O.: Evolutionary and collaborative software
architecture recovery with softwarenaut. In: Science of Computer Program-
ming (SCP), (to appear) (2012)

[23] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Re-
trieval, 1 edn. Cambridge University Press (2008)

[24] Masuhara, H., Murakami, N., Watanabe, T.: Duplication removal for a search-
based recommendation system. In: Proceedings of the 4th International Work-
shop on Search-Driven Development: Users, Infrastructure, Tools, and Evalu-
ation, SUITE ’12. ACM, New York, NY, USA (2012)

[25] McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, 2 edn. Man-
ning Publications (2010)

[26] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C.: Portfolio: find-
ing relevant functions and their usage. In: Software Engineering (ICSE), 2011
33rd International Conference on, pp. 111–120 (2011). DOI 10.1145/1985793.
1985809

http://dbpubs.stanford.edu/pub/1999-66
http://www.ics.uci.edu/~lopes/datasets/

164 S.K. Bajracharya

[27] Murakami, N., Masuhara, H., Watanabe, T.: Optimizing a search-based code
recommendation system. In: Proceedings of 3rd International Workshop on
Recommendation Systems for Software Engineering, RSSE ’12. ACM, New
York, NY, USA (2012)

[28] Ossher, J., Bajracharya, S., Lopes, C.: Automated dependency resolution for
open source software. In: 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pp. 130–140. Cape Town, South Africa
(2010). DOI 10.1109/MSR.2010.5463346

[29] Reiss, S.P.: Semantics-based code search. In: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering - Volume 00, pp. 243–
253. IEEE Computer Society (2009)

[30] Takuya, W., Masuhara, H.: A spontaneous code recommendation tool based
on associative search. In: Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and Evalua-
tion, SUITE ’11, pp. 17–20. ACM, New York, NY, USA (2011). DOI
10.1145/1985429.1985434

[31] Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for
reusing open source code on the web. In: Proceedings of the twenty-
second IEEE/ ACM international conference on Automated soft-
ware engineering, pp. 204–213. ACM, Atlanta, Georgia, USA (2007).
10.1145/1321631.1321663

[32] Web Page for FLOSSmole Project: http://flossmole.org (2012)
[33] Web Page for Portfolio: http://www.searchportfolio.net/ (2012)
[34] Web Page for Sourcerer Project and the Sourcerer Code Search Engine: http://

sourcerer.ics.uci.edu (2012)
[35] Web Page for Sourcerer Web Services: http:// sourcerer.ics.uci.edu/services

(2010)
[36] Web page for Sourcerer’s github repository: http://github.com/sourcerer/

Sourcerer (2010)
[37] Web Page on Apache Lucene Scoring: http:// lucene.apache.org/ java/2_4_0/

scoring.html (2010)
[38] Web Site for Apache Software Foundation: http://apache.org (2010)
[39] Web Site for Google Code Hosting: http://code.google.com/projecthosting

(2010)
[40] Web site for Java.net: http:// java.net (2010)
[41] Web Site for Lucene: http:// lucene.apache.org (2010)
[42] Web site for Maven: http://maven.apache.org (2010)
[43] Web Site for Maven’s Central Repository: http:// repo1.maven.org/maven2/

(2010)
[44] Web Site for Sourceforge: http:// sourceforge.net (2010)
[45] Web site for Tigris: http:// tgris.org (2010)

http://flossmole.org
http://www.searchportfolio.net/
http://sourcerer.ics.uci.edu
http://sourcerer.ics.uci.edu
http://sourcerer.ics.uci.edu/services
http://github.com/sourcerer/Sourcerer
http://github.com/sourcerer/Sourcerer
http://lucene.apache.org/java/2_4_0/scoring.html
http://lucene.apache.org/java/2_4_0/scoring.html
http://apache.org
http://code.google.com/projecthosting
http://java.net
http://lucene.apache.org
http://maven.apache.org
http://repo1.maven.org/maven2/
http://sourceforge.net
http://tgris.org

	8 Infrastructure for Building Code Search Applicationsfor Developers
	8.1 Introduction
	8.2 Infrastructure Requirements for Code Search Applications
	8.2.1 Sourcerer Code Search Engine
	8.2.2 CodeGenie: A Test-Driven Code Search Application
	8.2.3 Sourcerer API Search
	8.2.4 Infrastructure Requirements

	8.3 Infrastructure Architecture
	8.4 Models
	8.4.1 Storage Model
	8.4.2 Relational Model
	8.4.3 Index Model
	8.4.3.1 Structured Retrieval
	8.4.3.2 Code-Specific Retrieval Schemes

	8.5 Stored Contents
	8.6 Services
	8.7 Tools
	8.8 Summary
	8.9 Further Reading
	References

